jackkuo commited on
Commit
be51e7e
·
verified ·
1 Parent(s): 1628bd5

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. -9A0T4oBgHgl3EQfPP_v/content/tmp_files/2301.02174v1.pdf.txt +2425 -0
  2. -9A0T4oBgHgl3EQfPP_v/content/tmp_files/load_file.txt +0 -0
  3. -NE2T4oBgHgl3EQfQQbP/content/2301.03769v1.pdf +3 -0
  4. -NE2T4oBgHgl3EQfQQbP/vector_store/index.faiss +3 -0
  5. -NE2T4oBgHgl3EQfQQbP/vector_store/index.pkl +3 -0
  6. -NE5T4oBgHgl3EQfRg5P/content/tmp_files/2301.05521v1.pdf.txt +0 -0
  7. .gitattributes +58 -0
  8. 09FKT4oBgHgl3EQfOS13/content/tmp_files/2301.11758v1.pdf.txt +1091 -0
  9. 09FKT4oBgHgl3EQfOS13/content/tmp_files/load_file.txt +0 -0
  10. 0dE0T4oBgHgl3EQfuAFm/content/tmp_files/2301.02599v1.pdf.txt +828 -0
  11. 0dE0T4oBgHgl3EQfuAFm/content/tmp_files/load_file.txt +354 -0
  12. 0tAzT4oBgHgl3EQftv2j/content/tmp_files/2301.01681v1.pdf.txt +2084 -0
  13. 0tAzT4oBgHgl3EQftv2j/content/tmp_files/load_file.txt +0 -0
  14. 1dAzT4oBgHgl3EQfDfo-/content/tmp_files/2301.00976v1.pdf.txt +1251 -0
  15. 1dAzT4oBgHgl3EQfDfo-/content/tmp_files/load_file.txt +0 -0
  16. 29FKT4oBgHgl3EQfQS0h/content/tmp_files/2301.11766v1.pdf.txt +1581 -0
  17. 29FKT4oBgHgl3EQfQS0h/content/tmp_files/load_file.txt +0 -0
  18. 29FST4oBgHgl3EQfYTgs/content/tmp_files/2301.13787v1.pdf.txt +1290 -0
  19. 29FST4oBgHgl3EQfYTgs/content/tmp_files/load_file.txt +0 -0
  20. 3NE0T4oBgHgl3EQfuwHF/content/tmp_files/2301.02610v1.pdf.txt +1236 -0
  21. 3NE0T4oBgHgl3EQfuwHF/content/tmp_files/load_file.txt +0 -0
  22. 4tA0T4oBgHgl3EQfNf_3/content/2301.02149v1.pdf +3 -0
  23. 4tA0T4oBgHgl3EQfNf_3/vector_store/index.faiss +3 -0
  24. 4tA0T4oBgHgl3EQfNf_3/vector_store/index.pkl +3 -0
  25. 5tAzT4oBgHgl3EQfu_3x/content/tmp_files/2301.01701v1.pdf.txt +1558 -0
  26. 5tAzT4oBgHgl3EQfu_3x/content/tmp_files/load_file.txt +0 -0
  27. 6dE1T4oBgHgl3EQfmwTN/content/2301.03302v1.pdf +3 -0
  28. 6dE1T4oBgHgl3EQfmwTN/vector_store/index.faiss +3 -0
  29. 6dE1T4oBgHgl3EQfmwTN/vector_store/index.pkl +3 -0
  30. 6tFKT4oBgHgl3EQfTy2d/content/tmp_files/2301.11781v1.pdf.txt +1761 -0
  31. 6tFKT4oBgHgl3EQfTy2d/content/tmp_files/load_file.txt +0 -0
  32. 8NAyT4oBgHgl3EQf2_mV/content/2301.00761v1.pdf +3 -0
  33. 8NAyT4oBgHgl3EQf2_mV/vector_store/index.faiss +3 -0
  34. 8NAyT4oBgHgl3EQf2_mV/vector_store/index.pkl +3 -0
  35. 9dE5T4oBgHgl3EQfRA7S/content/tmp_files/2301.05518v1.pdf.txt +553 -0
  36. 9dE5T4oBgHgl3EQfRA7S/content/tmp_files/load_file.txt +381 -0
  37. A9E1T4oBgHgl3EQfpAX1/content/tmp_files/2301.03328v1.pdf.txt +836 -0
  38. A9E1T4oBgHgl3EQfpAX1/content/tmp_files/load_file.txt +0 -0
  39. AtE4T4oBgHgl3EQfEwyK/content/tmp_files/2301.04880v1.pdf.txt +1463 -0
  40. AtE4T4oBgHgl3EQfEwyK/content/tmp_files/load_file.txt +359 -0
  41. BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf +3 -0
  42. CtE2T4oBgHgl3EQf9Ant/vector_store/index.faiss +3 -0
  43. CtFJT4oBgHgl3EQftS25/content/2301.11617v1.pdf +3 -0
  44. E9E0T4oBgHgl3EQfhAEU/vector_store/index.faiss +3 -0
  45. E9E0T4oBgHgl3EQfhAEU/vector_store/index.pkl +3 -0
  46. GNE4T4oBgHgl3EQfgA3B/content/tmp_files/2301.05113v1.pdf.txt +0 -0
  47. GNE4T4oBgHgl3EQfgA3B/content/tmp_files/load_file.txt +0 -0
  48. GNFIT4oBgHgl3EQfWStC/content/tmp_files/2301.11239v1.pdf.txt +1404 -0
  49. GNFIT4oBgHgl3EQfWStC/content/tmp_files/load_file.txt +0 -0
  50. LNE1T4oBgHgl3EQfswVe/content/2301.03369v1.pdf +3 -0
-9A0T4oBgHgl3EQfPP_v/content/tmp_files/2301.02174v1.pdf.txt ADDED
@@ -0,0 +1,2425 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.02174v1 [math.PR] 5 Jan 2023
2
+ Large time behavior of semilinear stochastic partial differential
3
+ equations perturbed by a mixture of Brownian and fractional
4
+ Brownian motions
5
+ Marco Dozzi∗
6
+ Ekaterina T. Kolkovska†
7
+ Jos´e A. L´opez-Mimbela†
8
+ Rim Touibi‡
9
+ Abstract
10
+ We study the trajectorywise blowup behavior of a semilinear partial differential equation that is
11
+ driven by a mixture of multiplicative Brownian and fractional Brownian motion, modeling different
12
+ types of random perturbations. The linear operator is supposed to have an eigenfunction of constant
13
+ sign, and we show its influence, as well as the influence of its eigenvalue and of the other parameters
14
+ of the equation, on the occurrence of a blowup in finite time of the solution. We give estimates for
15
+ the probability of finite time blowup and of blowup before a given fixed time. Essential tools are
16
+ the mild and weak form of an associated random partial differential equation.
17
+ Keywords Stochastic reaction-diffusion equation; mixed fractional noise; finite-time blowup of
18
+ trajectories
19
+ AMS Mathematics Subject Classification 60H15 60G22 35R60 35B40 35B44 35K58
20
+ 1
21
+ Introduction
22
+ In this paper we study existence, uniqueness and the blowup behavior of solutions to the fractional
23
+ stochastic partial differential equation of the form
24
+ du(x, t)
25
+ =
26
+ �1
27
+ 2k2(t)Lu(x, t) + g(u(x, t))
28
+
29
+ dt + u(x, t) dNt,
30
+ x ∈ D,
31
+ t > 0,
32
+ u(x, 0)
33
+ =
34
+ ϕ(x) ≥ 0,
35
+ u(x, t)
36
+ =
37
+ 0,
38
+ x ∈ ∂D,
39
+ t ≥ 0,
40
+ (1.1)
41
+ where D ⊂ Rd is a bounded Lipschitz domain, L is the infinitesimal generator of a strongly continuous
42
+ semigroup of contractions which satisfies conditions (3.18), (3.19) below, and ϕ ∈ L∞(D), where L∞(D)
43
+ is the space of real-valued essentially bounded functions on D. Additionally, g is a nonnegative locally
44
+ Lipschitz function and N is a process given by
45
+ Nt =
46
+ � t
47
+ 0
48
+ a(s) dB(s) +
49
+ � t
50
+ 0
51
+ b(s) dBH(s),
52
+ t ≥ 0,
53
+ (1.2)
54
+ ∗corresponding author, marco.dozzi@univ-lorraine.fr, UMR-CNRS 7502, Institut Elie Cartan de Lorraine, Nancy,
55
+ France
56
+ †Centro de Investigaci´on en Matem´aticas, Guanajuato, Mexico.
57
+ ‡UMR-CNRS 7502, Institut Elie Cartan de Lorraine, Nancy, France.
58
+ 1
59
+
60
+ where B is Brownian motion and BH is fractional Brownian motion with Hurst parameter H > 1/2,
61
+ a is continuous and b is H¨older continuous of order α > 1 − H. Both, B and BH, are supposed to be
62
+ defined on a filtered probability space (Ω, F, (Ft, t ≧ 0), P) and adapted to the filtration (Ft, t ≧ 0).
63
+ Such models have recently been studied under the name of ‘mixed models’ in the context of stochastic
64
+ differential equations, see [19] and [20]. When N = 0, L = ∆, k = 1, g(u) = u1+β we obtain the
65
+ classical Fujita equation which was studied in [10]. In [7] and [1] there were considered the cases when
66
+ N is a Brownian motion, in [5] it was investigated the case when N is a fractional Brownian motion
67
+ with Hurst parameter H > 1/2 and D ⊂ Rd, and in [6] the case of H ≥ 1/2 and D = Rd.
68
+ The fractional Brownian motion (fBm) appears in many stochastic phenomena, where rough exter-
69
+ nal forces are present. The principal difference, compared to Brownian motion, is that fBm is not a
70
+ semimartingale nor a Markov process, hence classical theory of stochastic integration cannot be applied.
71
+ Since H > 1/2, the stochastic integral with respect to BH in (1.1) can be understood as a fractional
72
+ integral. Also the presence of both, Brownian and fractional Brownian motion in (1.1), due to their
73
+ different analytic and probabilistic properties, modelize different aspects of the random evolution in
74
+ time of the solution. The factor k2/2 in front of L affects dissipativity, which in several cases is in favor
75
+ of retarding or even preventing blowup.
76
+ We consider both, weak and mild solutions of (1.1), which we prove are equivalent and unique.
77
+ Beyond existence and uniqueness of weak and mild solutions we are interested in their qualitative
78
+ behaviour. In Theorem 3 below we obtain a random time τ ∗ which is an upper bound of the explosion
79
+ time τ. In Theorem 8 we obtain a lower bound τ∗ of τ so that a.s.
80
+ τ∗ ≤ τ ≤ τ ∗.
81
+ The random times τ∗ and τ ∗ are given by exponential functionals of the mixture of a Brownian and a
82
+ fractional Brownian motion. The laws of such kind of functionals presently are not known. In order to
83
+ study the distribution of τ ∗ we use the well-known representation of BH in the form
84
+ BH
85
+ t =
86
+ � t
87
+ 0
88
+ KH(t, s) dWs,
89
+ where the kernel KH is given in (3.23) and W is a Brownian motion defined in the same filtered
90
+ probability space as B. In general, W can be different from the Brownian motion B appearing in the
91
+ first integral of (1.2). We obtain estimates of the probability P(τ < ∞), and of the tail distribution
92
+ of τ ∗. To achieve this we make use of recent results of N.T. Dung [8, 9] from the Malliavin theory for
93
+ continuous isonormal Gaussian processes.
94
+ In Theorem 4 we obtain upper bounds for P(τ ∗ ≤ T) in the case when B = W, and in Theorem
95
+ 5 when B is independent of W, and when B and W are general Brownian motions. In Theorem 6
96
+ we obtain lower bounds for P(τ < ∞) when B = W. As a result in the case when W = B we get
97
+ specific configurations of the coefficients a, b and k under which the weak solution (hence also the mild
98
+ solution) of equation (1.1) exhibits finite time blow-up. To be concrete suppose that g(z) ≥ Cz1+β for
99
+ 2
100
+
101
+ some constants C > 0, β > 0, BH
102
+ t =
103
+ � t
104
+ 0 KH(t, s) dBs, and
105
+ � t
106
+ 0
107
+ a2(r) dr ∼ t2l,
108
+ � t
109
+ 0
110
+ b2(r) dr ∼ t2m,
111
+ � t
112
+ 0
113
+ k2(r) dr ∼ t2p
114
+ as
115
+ t → ∞
116
+ for some nonnegative constants l, m and p. If β ∈ (0, 1/2) and max{p, l} > H + m − 1/2, or if β = 1/2
117
+ and p > H +m−1/2, or if β > 1/2 and p > max{l, H +m−1/2}, then all nontrivial positive solutions
118
+ of (1.1) suffer finite-time blowup with positive probability.
119
+ Our approach here is to transform the equation (1.1) into a random partial differential equation
120
+ (RPDE) (2.5), whose solution blows up at the same random time τ as the solution of (1.1), and to
121
+ work with this equation. The blowup behavior of (2.5) is easier to determine because N appears as
122
+ a coefficient, and not as stochastic integrator as in (1.1). Such transformations are indeed known for
123
+ more general SPDEs than (1.1), including equations whose stochastic term does not depend linearly
124
+ on u, see [17]. But for the RPDE’s associated to more general SPDE’s it seems difficult to find explicit
125
+ expressions for upper and lower bounds for the blowup time, and this is an essential point in our study.
126
+ Another reason for having chosen the relatively simple form of (1.1) and (2.5) is that we consider the
127
+ blowup trajectorywise which is a relatively strong notion compared, e.g., to blowup of the moments of
128
+ the solution (see, e.g. [4]). The crucial ingredient in the proofs is the existence of a positive eigenvalue
129
+ and an eigenfunction with constant sign of the adjoint operator of L. Special attention is given to the
130
+ case H ∈ (3
131
+ 4, 1) because then the process N is equivalent to a Brownian motion [3]. This allows us to
132
+ apply a result by Dufresne and Yor [27] on the law of exponential functionals of the Brownian motion
133
+ to get in Theorem 7 an explicit lower bound for the probability of blowup in finite time.
134
+ We finish this section by introducing some notations and definitions we will need in the sequel. A
135
+ stopping time τ : Ω → (0, ∞) with respect to the filtration (Ft, t ≧ 0) is a blowup time of a solution u
136
+ of (1.1) if
137
+ lim sup
138
+ tրτ
139
+ sup
140
+ x∈D
141
+ |u(x, t)| = +∞
142
+ P-a.s.
143
+ Let (P D
144
+ t , t ≧ 0) and ((P D)∗
145
+ t , t ≧ 0)
146
+ be the strongly continuous semigroups corresponding to the
147
+ operator L and its adjoint L∗ :
148
+
149
+ D
150
+ f(x)P D
151
+ t g(x)dx =
152
+
153
+ D
154
+ g(x)(P D)∗
155
+ tf(x)dx,
156
+ f, g ∈ L2(D).
157
+ (1.3)
158
+ As usual, Lf := lim
159
+ t→0
160
+ 1
161
+ t (P D
162
+ t f − f) for all f ∈ L2(D) in the domain of L, denoted by Dom(L). Due to
163
+ the Hille-Yosida theorem, Dom(L) and Dom(L∗) are dense in L2(D). Let P D
164
+ t (x, Γ) and (P D)∗
165
+ t (x, Γ)
166
+ denote the associated transition functions, where t > 0, x ∈ D, and Γ ∈ B(D), the Borel sets on D.
167
+ In the sequel we will assume that they admit densities, i.e. there exist families of continuous functions
168
+ 3
169
+
170
+ (pD(t, ·, ·), t > 0) and ((pD)∗(t, ·, ·), t > 0) on D × D such that
171
+ P D
172
+ t g(x)
173
+ =
174
+
175
+ D
176
+ g(y)P D
177
+ t (x, dy) =
178
+
179
+ D
180
+ g(y)pD(t, x, y)dy,
181
+ (P D)∗
182
+ t f(x)
183
+ =
184
+
185
+ D
186
+ f(y)(P D)∗
187
+ t (x, dy) =
188
+
189
+ D
190
+ f(y)(pD)∗(t, x, y)dy.
191
+ Due to (1.3),
192
+ (pD)∗(t, x, y) = pD(t, y, x)
193
+ for all t > 0 and x, y ∈ D.
194
+ (1.4)
195
+ 2
196
+ The weak solution of the associated random partial differential
197
+ equation, equivalence with the mild solution
198
+ Let us consider the random partial differential equation
199
+ ∂v
200
+ ∂t (x, t)
201
+ =
202
+ 1
203
+ 2k2(t)Lv(x, t) − 1
204
+ 2a2(t)v(x, t) + exp(−Nt)g(exp(Nt)v(x, t)),
205
+ (2.5)
206
+ v(x, 0)
207
+ =
208
+ ϕ(x), x ∈ D,
209
+ v(x, t)
210
+ =
211
+ 0, t ≥ 0, x ∈ ∂D.
212
+ In this section we transform the weak form of (1.1) into the weak form of (2.5) using the transformation
213
+ v(x, t) = exp(−Nt)u(x, t), x ∈ D, t ≥ 0. Hence, if blowup takes place in finite time, it occurs of course
214
+ at the same time and at the same place x ∈ D for the solutions of both equations.
215
+ In the following we write ⟨·, ·⟩D for the scalar product in L2(D).
216
+ Definition 1. An (Ft, t ≧ 0)-adapted random field v = (v(x, t), t ∈ [0, T], x ∈ D) with values in
217
+ L2(D) is a weak solution of (2.5) if, for all t ∈ [0, T] and all f ∈ Dom(L∗), P-a.s.
218
+ ⟨v(·, t), f⟩D
219
+ =
220
+ ⟨ϕ, f⟩D +
221
+ � t
222
+ 0
223
+ �1
224
+ 2k2(s) ⟨v(·, s), L∗f⟩D − 1
225
+ 2a2(s) ⟨v(·, s), f⟩D
226
+
227
+ ds
228
+ +
229
+ � t
230
+ 0
231
+ exp(−Ns) ⟨g(exp(Ns)v(·, s)), f⟩D ds.
232
+ (2.6)
233
+ Since g is supposed to be locally Lipschitz, a blowup in finite time of v may occur, and the blowup
234
+ time τ depends in general on ω ∈ Ω. A weak solution of (2.5) up to τ is defined as an (Ft, t ≧ 0)-
235
+ adapted random field v that satisfies (2.6) for all t ∈ (0, T ∧ τ) P-a.s. If ω is such that v(ω, ·, ·) does
236
+ not blowup in finite time, we set τ(ω) = ∞.
237
+ Definition 2. An (Ft, t ≧ 0)-adapted random field u = (u(x, t), t ∈ [0, T], x ∈ D) with values in L2(D)
238
+ is a weak solution of (1.1) up to τ if, for all t ∈ (0, T ∧ τ) and all f ∈ Dom(L∗), P-a.s.
239
+ (i)
240
+ � t
241
+ 0
242
+ a2(s)
243
+
244
+ 1 + ⟨u(·, s), f⟩2
245
+ D
246
+
247
+ ds < ∞,
248
+ b(•) ⟨u(·, •), f⟩D ∈ Cβ[0, t] for some β > 1 − H,
249
+ 4
250
+
251
+ (ii)
252
+ � t
253
+ 0
254
+
255
+ k2(s) |⟨u(·, s), L∗f⟩D| + |⟨g(u(·, s)), f⟩D|
256
+
257
+ ds < ∞,
258
+ and
259
+ ⟨u(·, t), f⟩D = ⟨ϕ, f⟩D +
260
+ � t
261
+ 0
262
+ �1
263
+ 2k2(s) ⟨u(·, s), L∗f⟩D + ⟨g(u(·, s), f⟩D
264
+
265
+ ds
266
+ +
267
+ � t
268
+ 0
269
+ ⟨u(·, s), f⟩D dNs.
270
+ (2.7)
271
+ Conditions (i) and (ii) in the above definition are sufficient for the Itˆo, the fractional and the Lebesgue
272
+ integrals in (2.7) to be well defined P-a.s.
273
+ We proceed now to the relation between (2.7) and (2.6).
274
+ Proposition 1. If u is a weak solution of (1.1) up to a random time τ, then v(x, t) = exp(−Nt)u(x, t)
275
+ is a weak solution of (2.5) up to τ, and viceversa.
276
+ Remark 1. We notice that ⟨v(·, s), f⟩D is absolutely continuous in s if v is a weak solution of (2.5).
277
+ With the choice u(x, t) := exp(Nt)v(x, t) condition (i) is satisfied. In fact, for t < T ∧ τ(ω),
278
+ � t
279
+ 0
280
+ ⟨u(·, s), f⟩D a(s) dBs =
281
+ � t
282
+ 0
283
+ ⟨v(·, s), f⟩D exp(Ns)a(s) dBs
284
+ is well defined since
285
+ � t
286
+ 0(
287
+
288
+ D v(x, s)f(x) dx)2 exp(2Ns)a2(s) ds < ∞ P-a.s.
289
+ Recall that the fractional integral
290
+ � T
291
+ 0 f(x)dg(x) is defined (in the sense of Z¨ahle [28]) in [18, Def.
292
+ 2.1.1] for f, g belonging to fractional Sobolev spaces. If 0 < ε < H, f and g are H¨older continuous
293
+ of exponents α and H − ε respectively, and α + H − ε > 1, this fractional integral coincides with
294
+ the corresponding generalized Riemann-Stieltjes integral; see [18, Thm. 2.1.7]. Hence, the fractional
295
+ integral
296
+ � t
297
+ 0
298
+ ⟨u(·, s), f⟩D b(s) dBH
299
+ s =
300
+ � t
301
+ 0
302
+ ⟨v(·, s), f⟩D exp(Ns)b(s) dBH
303
+ s
304
+ (2.8)
305
+ is well defined for t < T ∧ τ(ω) because, on the one hand, N· =
306
+ � ·
307
+ 0(a(s) dBs + b(s) dBH
308
+ s ) is P-a.s.
309
+ H¨older continous of order 1/2 − ǫ for all ǫ > 0 by the theorem of Kolmogorov and [22, Proposition
310
+ 4.1]. On the other hand b(·) is α-H¨older continuous (with α > 1 − H) and BH is H¨older continuous
311
+ with exponent H − ε for any ε > 0. Hence, choosing ε < min{H/2 − 1/4, α + H − 1} we get that
312
+ the integrand on the right side of (2.8) is H¨older continuous of order min{α, 1/2 − ε}, and therefore
313
+ H −ε+min{α, 1/2−ε} > 1 and the integral is well defined as a generalized Riemann-Stieltjes integral.
314
+ Proof. Let T > 0. It suffices to prove the assertion for t ∈ (0, T ∧ τ). We apply (a slight generalisation
315
+ 5
316
+
317
+ of) the Itˆo formula in [18, page 184]. Let
318
+ Y 1
319
+ t
320
+ =
321
+ � t
322
+ 0
323
+ a(s) dBs ,
324
+ Y 2
325
+ t =
326
+ � t
327
+ 0
328
+ ⟨u(·, s), f⟩D a(s) dBs,
329
+ Y 3
330
+ t
331
+ =
332
+ � t
333
+ 0
334
+ b(s) dBH
335
+ s ,
336
+ Y 4
337
+ t =
338
+ � t
339
+ 0
340
+ ⟨u(·, s), f⟩D b(s) dBH
341
+ s ,
342
+ Y 5
343
+ t
344
+ =
345
+ ⟨ϕ, f⟩D +
346
+ � t
347
+ 0
348
+ �1
349
+ 2k2(s) ⟨u(·, s), L∗f⟩D + ⟨g(u(·, s)), f⟩D
350
+
351
+ ds,
352
+ and let F(y1, y2, y3, y4, y5) = exp(−y1 − y3)(y5 + y2 + y4). Then
353
+ F(Y 1
354
+ t , . . . , Y 5
355
+ t ) = exp(−Nt) ⟨u(·, t), f⟩D = ⟨v(·, t), f⟩D .
356
+ The above mentioned Itˆo formula then reads
357
+ F(Y 1
358
+ t , . . . , Y 5
359
+ t )
360
+ =
361
+ F(Y 1
362
+ 0 , . . . , Y 5
363
+ 0 ) +
364
+ 5
365
+
366
+ i=1
367
+ � t
368
+ 0
369
+ ∂F
370
+ ∂yi
371
+ (Y 1
372
+ s , . . . , Y 5
373
+ s ) dY i
374
+ s + 1
375
+ 2
376
+ 2
377
+
378
+ i,j=1
379
+ � t
380
+ 0
381
+ ∂2F
382
+ ∂yi∂yj
383
+ (Y 1
384
+ s , . . . , Y 5
385
+ s ) d
386
+
387
+ Y i
388
+ s , Y j
389
+ s
390
+
391
+ .
392
+ Since u is a weak solution of (1.1),
393
+ ⟨v(·, t), f⟩D
394
+ =
395
+ ⟨ϕ, f⟩D −
396
+ � t
397
+ 0
398
+ exp(−Ns) ⟨u(·, s), f⟩D
399
+
400
+ a(s) dBs + b(s) dBH
401
+ s
402
+
403
+ +
404
+ � t
405
+ 0
406
+ exp(−Ns) ⟨u(·, s), f⟩D
407
+
408
+ a(s)dBs + b(s)dBH
409
+ s
410
+
411
+ +
412
+ � t
413
+ 0
414
+ exp(−Ns)
415
+ �1
416
+ 2k2(s) ⟨u(·, s), L∗f⟩D + ⟨g(u(·, s)), f⟩D
417
+
418
+ ds
419
+ −1
420
+ 2
421
+ � t
422
+ 0
423
+ exp(−Ns) ⟨u(·, s), f⟩D a2(s)ds
424
+ =
425
+ ⟨ϕ, f⟩D +
426
+ � t
427
+ 0
428
+ �1
429
+ 2k2(s) ⟨v(·, s), L∗f⟩D − 1
430
+ 2a2(s) ⟨v(·, s), f⟩D
431
+
432
+ ds
433
+ +
434
+ � t
435
+ 0
436
+ exp(−Ns) ⟨g(exp(Ns)v(·, s)), f⟩D ds.
437
+ Therefore v is a weak solution of (2.5). Similarly we obtain the viceversa result.
438
+ In order to define the mild solutions of equations (1.1) and (2.5) we define first the evolution families
439
+ of contractions corresponding to the generator 1
440
+ 2k2(t)L. For 0 ≤ s < t let
441
+ K(t, s) = 1
442
+ 2
443
+ � t
444
+ s
445
+ k2(r) dr,
446
+ A(t, s) = 1
447
+ 2
448
+ � t
449
+ s
450
+ a2(r) dr,
451
+ K(t) = K(t, 0),
452
+ A(t) = A(t, 0),
453
+ (2.9)
454
+ 6
455
+
456
+ and set pD(s, x; t, y) = pD(K(t, s), x, y), x, y ∈ D × D, 0 ≦ s < t. For f ∈ L2(D) the corresponding
457
+ evolution families of contractions on L2(D) are given by
458
+ U D(t, s)f(x)
459
+ =
460
+
461
+ D
462
+ pD(s, x; t, y)f(y)dy = P D
463
+ K(t,s)f(x),
464
+ (U D)∗(t, s)f(x)
465
+ =
466
+
467
+ D
468
+ pD(s, y; t, x)f(y)dy = (P D)∗
469
+ K(t,s)f(x).
470
+ Definition 3. An (Ft, t ≧ 0)-adapted random field v = (v(x, t), t ≧ 0, x ∈ D) with values in L2(D) is
471
+ a mild solution of (2.5) on [0, T] if, for all t ∈ [0, T], P-a.s.
472
+ v(x, t)
473
+ =
474
+ U D(t, 0)ϕ(x) − 1
475
+ 2
476
+ � t
477
+ 0
478
+ a2(s)U D(t, s)v(x, s) ds
479
+ +
480
+ � t
481
+ 0
482
+ exp(−Ns)U D(t, s)
483
+
484
+ g((exp Ns)v(x, s))
485
+
486
+ ds.
487
+ Proposition 2. The mild form of (2.5) can be written as
488
+ v(x, t)
489
+ =
490
+ exp(−A(t))U D(t, 0)ϕ(x)
491
+ +
492
+ � t
493
+ 0
494
+ exp(−Ns − A(t, s))U D(t, s)g(exp(Ns)v(·, s))(x)ds,
495
+ (2.10)
496
+ where A(t, s) and A(t) are given in (2.9).
497
+ Remark 2. Since g and ϕ are supposed to be nonnegative,
498
+ v(x, t) ≥ exp(−A(t))U D(t, 0)ϕ(x) ≥ 0 for all x ∈ D and t ≥ 0.
499
+ Proof. Let w(x, t) = exp(A(t))v(x, t). For f ∈ L2(D), we get from the definition of the mild solution
500
+ d
501
+ dt⟨w(·, t), f⟩D
502
+ =
503
+ 1
504
+ 2a2(t) exp(A(t))⟨v(·, t), f⟩D + exp(A(t)) d
505
+ dt⟨v(·, t), f⟩D
506
+ =
507
+ 1
508
+ 2a2(t) exp(A(t))⟨v(·, t), f⟩D
509
+ + exp(A(t))
510
+ �1
511
+ 2k2(t) ⟨v(·, t), L∗f⟩D − 1
512
+ 2a2(t) ⟨v(·, t), f⟩D
513
+
514
+ + exp(A(t)) exp(−Nt) ⟨g(exp(Nt)v(·, t)), f⟩D
515
+ =
516
+ 1
517
+ 2 exp(A(t))k2(t) ⟨v(·, t), L∗f⟩D + exp(A(t) − Nt) ⟨g(exp(Nt)v(·, t)), f⟩D
518
+ =
519
+ 1
520
+ 2k2(t) ⟨w(·, t), L∗f⟩D + exp(A(t) − Nt) ⟨g(exp(Nt − A(t))w(·, t)), f⟩D ,
521
+ with boundary conditions w(x, 0) = ϕ(x) for x ∈ D and w(x, t) = 0 for x ∈ ∂D. Therefore w is a weak
522
+ solution of the RPDE formally given by
523
+ d
524
+ dtw(x, t) = 1
525
+ 2k2(t)Lw(x, t) + exp(A(t) − Nt)g(exp(Nt − A(t))w(x, t)).
526
+ 7
527
+
528
+ By the definition of the mild solution
529
+ w(x, t) = U D(t, 0)ϕ(x) +
530
+ � t
531
+ 0
532
+ exp(A(s) − Ns)U D(t, s)g(exp(Ns − A(s))w(·, s))(x) ds.
533
+ Consequently,
534
+ v(x, t)
535
+ =
536
+ exp(−A(t))w(x, t)
537
+ =
538
+ exp(−A(t))U D(t, 0)ϕ(x) +
539
+ � t
540
+ 0
541
+ ds exp(−A(t, s) − Ns)U D(t, s)g(exp(Ns)v(·, s))(x).
542
+ Theorem 1. The equation (2.10) has a unique non-negative local mild solution, i.e. there exists t > 0
543
+ such that (2.10) has a mild solution in L∞([0, t[×D).
544
+ Proof. Let T > 0 and denote ET = {v : [0, T] × D → L∞(D) : []v[] < ∞} , where
545
+ []v[] := sup
546
+ 0≤t≤T
547
+ ∥v(t, ·)∥∞.
548
+ Let PT = {v ∈ ET : v ≥ 0} and for R > 0 let CR = {v ∈ ET : []v[] ≤ R}. Then ET is a Banach space
549
+ and PT and CR are closed subsets of ET . Let us now define
550
+ ψ(v)(t, x) = e−A(t)U D(t, 0)ϕ(x) +
551
+ � t
552
+ 0
553
+ e−A(t,s)−NsU D(t, s)g
554
+
555
+ eNsv(·, s)
556
+
557
+ (x) ds.
558
+ We will prove that for sufficiently big R and sufficiently small T, ψ is contraction on PT ∩ CR. Let
559
+ v1, v2 ∈ PT ∩ CR. Then
560
+ []ψ(v1) − ψ(v2)[] ≤
561
+ sup
562
+ 0≤t≤T
563
+ � t
564
+ 0
565
+ ��e−Ns �
566
+ g
567
+
568
+ eNsv1
569
+
570
+ − g
571
+
572
+ eNsv2
573
+ ����
574
+ ∞ ds.
575
+ Let AT = sup0≤s≤T e|Ns| and GR = sup|x|<R |g(x)|, and assume that g is locally Lipschitz with Lipschitz
576
+ constant KR in the ball of radius R > 0 centered at 0. Then,
577
+ sup
578
+ 0≤s≤T
579
+ ��e−Nsvi(s, ·)
580
+ ��
581
+ ∞ ≤ AT R,
582
+ i = 1, 2,
583
+ and
584
+ ��e−Nsg
585
+
586
+ eNsv1(s, ·)
587
+
588
+ − e−Nsg
589
+
590
+ eNsv2(s, ·)
591
+ ���
592
+ ∞ ≤ A2
593
+ T KAT R ∥v1(s) − v2(s)∥∞ .
594
+ Therefore,
595
+ []ψ(v1) − ψ(v2)[] ≤
596
+ sup
597
+ 0≤t≤T
598
+ � t
599
+ 0
600
+ A2
601
+ T KAT R []v1 − v2[] ds = TA2
602
+ T KAtR []v1 − v2[].
603
+ 8
604
+
605
+ We need
606
+ TA2
607
+ T KAT R < 1.
608
+ (2.11)
609
+ In addition, we require that CR ∩ PT be mapped by ψ into itself. Let v ∈ CR ∩ PT . Using that for 0 ≤
610
+ s ≤ T the operator U D(t, s) is a contraction, and that ∥eNsv(·, s)∥∞ ≤ AT R, we get ∥g(eNsv(·, s))∥∞ ≤
611
+ GAT R. It follows that
612
+ []ψ(v)[] ≤ ∥ϕ∥∞ + sup
613
+ 0≤t≤T
614
+ � t
615
+ 0
616
+ ���e−N(s)���
617
+ ∞ ds GAT R ≤ ∥ϕ∥∞ + TAT GAT R.
618
+ Hence, we need that
619
+ ∥ϕ∥∞ + TAT GAT R < R.
620
+ (2.12)
621
+ Let R be such that R ≥ 2∥ϕ∥∞. Since limT→0 AT = 1, we choose ε1 > 0 so that AT < 2 if T < ε1, and
622
+ ε <
623
+ R
624
+ 4G2R
625
+
626
+ 1
627
+ 4K2R
628
+ ∧ ε1.
629
+ Using that GA ≤ GB and KA ≤ KB if A ≤ B, we get for R > 2∥ϕ∥∞ and T < ε,
630
+ ∥ϕ∥∞ + TAT GAT R ≤ ∥ϕ∥∞ + 2εG2R < R
631
+ 2 + R
632
+ 2 = R
633
+ and
634
+ TA2
635
+ T KAT R < 4εK2R < 1.
636
+ We proceed to prove equivalence of weak and mild solutions of (2.5). The proof of this theorem
637
+ follows the method in [24, Theorem 9.15], where this equivalence is shown for SPDE’s with autonomous
638
+ differential operators and driven by L´evy noise. For a comparison of weak and mild solutions of SPDEs
639
+ driven by fractional Brownian motion we refer to [11].
640
+ We state first the Kolmogorov backward and forward equations for U D. By the Kolmogorov back-
641
+ ward equation for P D, the transition density pD(u, x, y) satisfies, for any y fixed,
642
+
643
+ ∂upD(u, x, y) =
644
+ LpD(u, x, y). Then (s, x) → pD(s, x; t, y) satisfies, for (t, y) fixed, the equation
645
+ − ∂
646
+ ∂spD(s, x; t, y) = − ∂
647
+ ∂spD(K(t, s), x, y) = − ∂
648
+ ∂upD(u, x, y) |u=K(t,s)
649
+
650
+ ∂sK(t, s)
651
+ = 1
652
+ 2k2(s)LpD(K(t, s), x, y) = 1
653
+ 2k2(s)LpD(s, x; t, y).
654
+ (2.13)
655
+ Similarly, by the Kolmogorov forward equation for P D, for any x fixed, pD(u, x, y) satisfies
656
+
657
+ ∂upD(u, x, y) = L∗pD(u, x, y).
658
+ 9
659
+
660
+ Then (t, y) → pD(s, x; t, y) satisfies, for (s, x) fixed, the equation
661
+
662
+ ∂tpD(s, x; t, y) = ∂
663
+ ∂tpD(K(t, s), x, y) = ∂
664
+ ∂upD(u, x, y) |u=K(t,s)
665
+
666
+ ∂tK(t, s)
667
+ = 1
668
+ 2k2(t)L∗pD(K(t, s), x, y) = 1
669
+ 2k2(t)L∗pD(s, x; t, y).
670
+ (2.14)
671
+ Theorem 2. Consider the random partial differential equation (2.5). Then v is a weak solution of
672
+ (2.5) on [0, T] if and only if v is a mild solution of (2.5) on [0, T].
673
+ Proof. Assume that v is a weak solution of (2.5). Let h ∈ C1([0, ∞), R), f ∈ Dom(L∗), and G(x, t) :=
674
+ − 1
675
+ 2a2(t)v(x, t) + exp(−Nt)g(exp(Nt)v(x, t)). The integration by parts formula is applicable since h ∈
676
+ C1([0, ∞), R) (see [24] Proposition 9.16) and yields
677
+ ⟨v(·, t), h(t)f(·)⟩D
678
+ =
679
+ ⟨v(·, 0), h(0)f(·)⟩D +
680
+ � t
681
+ 0
682
+ ⟨v(·, s), h′(s)f(·)⟩D ds
683
+ +
684
+ � t
685
+ 0
686
+ ⟨v(·, s), 1
687
+ 2h(s)k2(s)L∗f(·)⟩D ds +
688
+ � t
689
+ 0
690
+ ⟨G(·, s), h(s)f(·)⟩D ds.
691
+ Since the functions h · f are dense in C1([0, ∞), Dom(L∗)), for each z ∈ C1([0, ∞), Dom(L∗)) we have
692
+ ⟨v(·, t), z(·, t)⟩D
693
+ =
694
+ ⟨v(·, 0), z(·, 0)⟩D +
695
+ � t
696
+ 0
697
+ ⟨v(·, s), ∂
698
+ ∂sz(·, s)⟩D ds
699
+ (2.15)
700
+ +
701
+ � t
702
+ 0
703
+ ⟨v(·, s), 1
704
+ 2k2(s)L∗z(·, s)⟩D ds +
705
+ � t
706
+ 0
707
+ ⟨G(·, s), z(·, s)⟩D ds.
708
+ For each f ∈ Dom(L∗) we define
709
+ ψ(x, s) := (U D)∗(t, s)f(x) =
710
+
711
+
712
+
713
+ ⟨pD∗(s, x; t, ·), f(·)⟩D
714
+ if s < t,
715
+ f(x)
716
+ if s = t,
717
+ hence ψ ∈ C1([0, ∞), Dom(L∗)). Taking z = ψ(x, s) in (2.15) we get, for any t ∈ [0, T] fixed,
718
+ ⟨v(·, t), ψ(·, t)⟩D
719
+ =
720
+ ⟨v(·, 0), ψ(·, 0)⟩D +
721
+ � t
722
+ 0
723
+
724
+ v(·, s), d
725
+ dsψ(·, s) + 1
726
+ 2k2(s)L∗ψ(·, s)
727
+
728
+ D
729
+ ds
730
+ +
731
+ � t
732
+ 0
733
+ ⟨G(·, s), ψ(·, s)⟩D ds.
734
+ (2.16)
735
+ Now we evaluate the terms above:
736
+ ⟨v(·, 0), ψ(·, 0)⟩D
737
+ =
738
+
739
+ D
740
+ v(x, 0)
741
+
742
+ D
743
+ pD∗(0, x; t, y)f(y) dy dx
744
+ =
745
+
746
+ D
747
+ f(y)
748
+
749
+ D
750
+ pD∗(0, x; t, y)v(x, 0) dx dy =
751
+
752
+ U D(t, 0)v(·, 0), f(·)
753
+
754
+ D .
755
+ 10
756
+
757
+ By applying the Kolmogorov backward equation to (x, s) → (U D)∗(t, s)f(x) we get
758
+ − d
759
+ dsψ(x, s)
760
+ =
761
+ − ∂
762
+ ∂s
763
+
764
+ (pD)∗(s, x; t, ·), f(·)
765
+
766
+ D
767
+ =
768
+ 1
769
+ 2k2(s)L∗ �
770
+ (pD)∗(s, x; t, ·), f(·)
771
+
772
+ D = 1
773
+ 2k2(s)L∗ψ(x, s).
774
+ Moreover, from Fubini’s theorem and (1.4)
775
+ ⟨G(·, s), ψ(·, s)⟩D
776
+ =
777
+
778
+ D
779
+ G(x, s)
780
+
781
+ D
782
+ pD∗(s, x; t, y)f(y) dy dx
783
+ =
784
+
785
+ D
786
+ f(y)
787
+
788
+ D
789
+ pD(s, y; t, x)G(x, s) dx dy =
790
+
791
+ U D(t, s)G(·, s), f(·)
792
+
793
+ D .
794
+ Therefore, from (2.16), ⟨v(·, t), f(·)⟩D =
795
+
796
+ U D(t, 0)v(·, 0), f(·)
797
+
798
+ D +
799
+ � t
800
+ 0⟨U D(t, s)G(·, s), f(·)⟩D ds for all
801
+ f ∈ Dom(L∗). Since Dom(L∗) is dense in L2(D) we obtain that v is a mild solution of (2.5) on [0, T].
802
+ To prove the converse let v be a mild solution of (2.5) on [0, T]. For f ∈ Dom(L∗),
803
+ � t
804
+ 0
805
+
806
+ v(·, s), 1
807
+ 2k2(s)L∗f(·)
808
+
809
+ D
810
+ ds
811
+ =
812
+ � t
813
+ 0
814
+
815
+ U D(s, 0)v(·, 0), 1
816
+ 2k2(s)L∗f(·)
817
+
818
+ D
819
+ ds
820
+ +
821
+ � t
822
+ 0
823
+ �� s
824
+ 0
825
+ χ[0,s](r)U D(s, r)G(·, r) dr, 1
826
+ 2k2(s)L∗f(·)
827
+
828
+ D
829
+ ds
830
+ =
831
+ � t
832
+ 0
833
+
834
+ v(·, 0), (U D)∗(s, 0)1
835
+ 2k2(s)L∗f(·)
836
+
837
+ D
838
+ ds
839
+ +
840
+ � t
841
+ 0
842
+ � t
843
+ r
844
+
845
+ U D(s, r)G(·, r), 1
846
+ 2k2(s)L∗f(·)
847
+
848
+ D
849
+ ds dr.
850
+ (2.17)
851
+ By applying the Kolmogorov forward equation to (U D)∗ we get for the first integral on the right side
852
+ of (2.17):
853
+ (U D)∗(s, 0)(1
854
+ 2k2(s)L∗f)(x) =
855
+
856
+ D
857
+ pD∗(0, x; s, y)1
858
+ 2k2(s)L∗f(y) dy
859
+ =
860
+
861
+ D
862
+ (1
863
+ 2k2(s)L)pD∗(0, x; s, y)f(y) dy =
864
+
865
+ D
866
+
867
+ ∂spD∗(0, x; s, y)f(y) dy,
868
+ and therefore
869
+ � t
870
+ 0
871
+
872
+ v(·, 0), (U D)∗(s, 0)(1
873
+ 2k2(s)L∗)f(·)
874
+
875
+ D
876
+ ds
877
+ =
878
+ � t
879
+ 0
880
+
881
+ v(·, 0),
882
+
883
+ D
884
+
885
+ ∂spD∗(0, ·; s, y)f(y) dy
886
+
887
+ D
888
+ ds =
889
+
890
+ v(·, 0),
891
+
892
+ D
893
+ pD∗(0, ·; t, y)f(y)dy − f(·)
894
+
895
+ D
896
+ =
897
+
898
+ v(·, 0), (U D)∗(t, 0)f(·)
899
+
900
+ D − ⟨v(·, 0), f(·)⟩D.
901
+ 11
902
+
903
+ In the same way we get for the second integral on the right side of (2.17)
904
+
905
+ U D(s, r)G(·, r), 1
906
+ 2k2(s)L∗f(·))
907
+
908
+ D
909
+ =
910
+
911
+ G(·, r), (U D)∗(s, r)(1
912
+ 2k2(s)L∗f)(·)
913
+
914
+ D
915
+ =
916
+
917
+ G(·, r),
918
+
919
+ D
920
+
921
+ ∂spD∗(r, ·; s, y)f(y)dy
922
+
923
+ D
924
+ ,
925
+ and therefore
926
+ � t
927
+ r
928
+
929
+ U D(s, r)G(·, r), 1
930
+ 2k2(s)L∗f(·)
931
+
932
+ D
933
+ ds =
934
+ � t
935
+ r
936
+
937
+ G(·, r),
938
+
939
+ D
940
+
941
+ ∂spD∗(r, ·; s, y)f(y)dy
942
+
943
+ D
944
+ ds
945
+ =
946
+
947
+ G(·, r),
948
+
949
+ D
950
+ pD∗(r, ·; t, y)f(y)dy − f(·)
951
+
952
+ D
953
+ =
954
+
955
+ G(·, r), (U D)∗(t, r)f(·) − f(·)
956
+
957
+ D
958
+ =
959
+
960
+ U D(t, r)G(·, r), f(·)
961
+
962
+ D − ⟨G(·, r), f(·)⟩D .
963
+ In this way we obtain
964
+ � t
965
+ 0
966
+ ⟨v(·, s), 1
967
+ 2k2(s)L∗f(·)⟩D ds
968
+ =
969
+
970
+ U D(t, 0)v(·, 0) +
971
+ � t
972
+ 0
973
+ U D(t, r)G(·, r)dr, f(·)⟩D − ⟨v(·, 0), f(·)
974
+
975
+ D
976
+
977
+ � t
978
+ 0
979
+ ⟨G(·, r), f(·)⟩D dr
980
+ =
981
+ ⟨v(·, t), f(·)⟩D − ⟨v(·, 0), f(·)⟩ D −
982
+ � t
983
+ 0
984
+ ⟨G(·, r), f(·)⟩D dr,
985
+ since v is a mild solution on [0, T]. It follows that v is a weak solution on [0, T].
986
+ Corollary 1. The equations (1.1) and (2.5) possess unique weak solutions.
987
+ Proof. Theorem 2 and Proposition 1 show the existence and uniqueness of a local weak and mild
988
+ solution of (2.5), and Proposition 1 shows the uniqueness of a weak solution of (1.1).
989
+ Remark 3. We refer to [23] for an existence and uniqueness theorem of the variational solution of
990
+ an SPDE with a nonautonomous second order differential operator and driven by fractional Brownian
991
+ motion, and to [26] for the existence and uniqueness of the mild solution. In [20] the existence and
992
+ uniqueness of the mild solution is shown for equations with the same differential operator and driven
993
+ by mixed noise.
994
+ 3
995
+ An upper bound for the blowup time and probability estimates
996
+ 3.1
997
+ An upper bound for the blowup time
998
+ In the remaining part of the paper we will assume that L and L∗ admit strictly positive eigenfunctions:
999
+ there exists a positive eigenvalue λ0 and strictly positive eigenfunctions ψ0 ∈ Dom(L) for P D
1000
+ t
1001
+ and
1002
+ 12
1003
+
1004
+ ϕ0 ∈ Dom(L∗) for (P D)∗
1005
+ t with
1006
+
1007
+ D ψ0(x)dx =
1008
+
1009
+ D ϕ0(x)dx = 1 such that
1010
+ (P D
1011
+ t − e−λ0t)ψ0 = ((P D)∗
1012
+ t − e−λ0t)ϕ0 = 0,
1013
+ (3.18)
1014
+ hence
1015
+ (L + λ0)ψ0 = (L∗ + λ0)φ0 = 0.
1016
+ (3.19)
1017
+ For generators of a general class of L´evy processes, properties (3.18) and (3.19) follow from [14, 2].
1018
+ Another example are the diffusion processes: for f ∈ C2
1019
+ 0(D), the set of twice continously differentiable
1020
+ functions with compact support in D, let us define the differential operator
1021
+ Lf =
1022
+ d
1023
+
1024
+ j,k=1
1025
+
1026
+ ∂xj
1027
+
1028
+ ajk
1029
+
1030
+ ∂xk
1031
+ f
1032
+
1033
+ +
1034
+ d
1035
+
1036
+ j=1
1037
+ bj
1038
+
1039
+ ∂xj
1040
+ f − cf,
1041
+ where aj,k, bj, j, k = 1, ..., d are bounded smooth functions on D and c is bounded and continous. We
1042
+ assume that the matrix (aj,k, j, k = 1, ..., d) is symmetric and uniformly elliptic. In this case properties
1043
+ (3.18) and (3.19) follow from [12, Theorem 11, Chapter 2].
1044
+ Theorem 3. Assume (3.19) and let g(z) ≥ Cz1+β for all z > 0, where C > 0, β > 0, are given
1045
+ constants. Let us define
1046
+ τ ∗ = inf
1047
+
1048
+ t > 0 :
1049
+ � t
1050
+ 0
1051
+ exp [−β(λ0K(r) + A(r)) + βNr] dr ≥
1052
+ 1
1053
+ Cβ ⟨ϕ, φ0⟩−β
1054
+ D
1055
+
1056
+ ,
1057
+ (3.20)
1058
+ where the functions K and A are defined in (2.9). Then, on the event {τ ∗ < ∞} the solution v of (2.5)
1059
+ and the solution u of (1.1) blow up in finite time τ, and τ ≤ τ ∗ P-a.s.
1060
+ Proof. Using the hypothesis on g and Jensen’s inequality we get for the terms in (2.6):
1061
+ ⟨v(·, s), L∗φ0⟩D
1062
+ =
1063
+ −λ0⟨v(·, s), φ0⟩D,
1064
+ exp(−Ns) ⟨g(exp(Ns)v(·, s)), φ0⟩D
1065
+
1066
+ C exp(βNs)
1067
+
1068
+ v1+β(·, s), φ0
1069
+
1070
+ D ,
1071
+
1072
+ C exp(βNs)⟨v(·, s), φ0⟩1+β
1073
+ D
1074
+ .
1075
+ Applying these lower bounds to (⟨v(·, t + ε), φ0⟩D − ⟨v(·, t), φ0⟩D)/ε and letting ε → 0 we get
1076
+ d
1077
+ dt⟨v(·, t), φ0⟩D ≧ −1
1078
+ 2(λ0k2(t) + a2(t))⟨v(·, t), φ0⟩D + C exp(βNt)⟨v(·, t), φ0⟩1+β
1079
+ D
1080
+ .
1081
+ (3.21)
1082
+ The corresponding differential equality reads
1083
+ d
1084
+ dtI(t) = −1
1085
+ 2(λ0k2(t) + a2(t))I(t) + C exp(βNt)I(t)1+β,
1086
+ and I(t) is a subsolution of (3.21), i.e. ⟨v(·, t), φ0⟩D ≧ I(t). Then
1087
+ I(t) = exp[−(λ0K(t) + A(t))]
1088
+
1089
+ ⟨ϕ, φ0⟩−β
1090
+ D − βC
1091
+ � t
1092
+ 0
1093
+ exp [−β(λ0K(s) + A(s)) + βNs] ds
1094
+ �−1/β
1095
+ 13
1096
+
1097
+ for all t ∈ [0, τ ∗), where τ ∗ is given by (3.20). Therefore τ ∗ is an upper bound for the blowup time
1098
+ of ⟨v(·, t), φ0⟩D, and the function t �→ ∥v(·, t)∥∞ = exp(−Nt)∥u(·, t)∥∞ can not stay finite on [0, τ ∗] if
1099
+ τ ∗ < ∞. Therefore u and v blow up before τ ∗ if τ ∗ < ∞.
1100
+ Remark 4. Notice that τ ∗ depends on L only by the positive eigenvalue λ0 and the associated eigen-
1101
+ function φ0. Moreover, τ ∗ is a decreasing function of ϕ, φ0 and C, and an increasing function of λ0K.
1102
+ Therefore small functions ϕ, φ0 and a small constant C, as well as high values of λ0K postpone the
1103
+ blowup of I and have, in this sense, the tendency to postpone the blowup of v and u.
1104
+ 3.2
1105
+ A tail probability estimate for the upper bound of the blowup time
1106
+ In the following theorem we apply a tail probability estimate for exponential functionals of fBm studied
1107
+ by N.T. Dung [8] to estimate the probability that τ ∗ occurs before a fixed time T. Here we assume
1108
+ that the process BH is given by the formula
1109
+ BH
1110
+ t =
1111
+ � t
1112
+ 0
1113
+ KH(t, s) dBs,
1114
+ (3.22)
1115
+ where the kernel KH is given for H > 1/2 by
1116
+ KH(t, s) =
1117
+
1118
+
1119
+
1120
+ CHs1/2−H � t
1121
+ s (σ − s)H−3/2σH−1/2dσ
1122
+ if t > s,
1123
+ 0
1124
+ if t ≦ s,
1125
+ (3.23)
1126
+ where CH = [
1127
+ H(2H−1)
1128
+ B(2−2H,H−1/2)]
1129
+ 1
1130
+ 2 and B is the usual beta function (see Section 5.1.3 in [21] for a general
1131
+ representation formula of fBm with H > 1/2). Notice that BH and B are dependent in this case.
1132
+ Theorem 4. Under assumptions (3.19) and (3.22), let g(z) ≥ Cz1+β for all z > 0, where C > 0,
1133
+ β > 0, are given constants, and let µ(T) =
1134
+ � T
1135
+ 0 exp[−β(λ0K(t) + A(t))]E [exp(βNt)] dt. Then, for any
1136
+ T > 0 such that
1137
+ 1
1138
+ Cβ⟨ϕ, φ0⟩−β
1139
+ D > µ(T),
1140
+ P {τ ∗ ≤ T} ≤ 2 exp
1141
+
1142
+ −
1143
+ ln2 �
1144
+ Cβ⟨ϕ, φ0⟩β
1145
+ D µ(T)
1146
+
1147
+ 2M(T)
1148
+
1149
+  ,
1150
+ where
1151
+ M(T) = 2β2
1152
+ � T
1153
+ 0
1154
+ a2(r) dr + 4β2HT 2H−1
1155
+ � T
1156
+ 0
1157
+ b2(u) du.
1158
+ Proof. For t ≥ 0, using (3.22), we have the following representation:
1159
+ Xt
1160
+ :=
1161
+ −β(λ0K(t) + A(t)) + βNt
1162
+ (3.24)
1163
+ =
1164
+ −β(λ0K(t) + A(t)) + β
1165
+ �� t
1166
+ 0
1167
+ a(s) dBs +
1168
+ � t
1169
+ 0
1170
+ � t
1171
+ s
1172
+ b(r) ∂
1173
+ ∂rKH(r, s) dr dBs
1174
+
1175
+ .
1176
+ 14
1177
+
1178
+ From [8, Theorem 3.1] it follows that for any T ≥ 0 and any x > µ(T), there holds
1179
+ P
1180
+ �� T
1181
+ 0
1182
+ eXtdt ≥ x
1183
+
1184
+ ≤ 2 exp
1185
+
1186
+ −(ln x − ln µ(T))2
1187
+ 2M(T)
1188
+
1189
+ ,
1190
+ (3.25)
1191
+ where µ(T) =
1192
+ � T
1193
+ 0 E
1194
+
1195
+ eXt�
1196
+ dt and M(T) is such that
1197
+ sup
1198
+ t∈[0,T]
1199
+ � T
1200
+ 0
1201
+ |DrXt|2 dr ≤ M(T)
1202
+ P-a.s.
1203
+ (3.26)
1204
+ Here DrXt denotes the Malliavin derivative of Xt. In the following we will find an upper bound M(T)
1205
+ such that (3.26) holds. For r < t we have, using the representation (3.25),
1206
+ DrXt = β
1207
+
1208
+ a(r) +
1209
+ � t
1210
+ r
1211
+ b(s) ∂
1212
+ ∂sK(s, r) ds
1213
+
1214
+ .
1215
+ Hence
1216
+ � t
1217
+ 0 |DrXt|2 dr ≤ 2β2 � t
1218
+ 0 a2(r) dr + 2β2 � t
1219
+ 0(
1220
+ � t
1221
+ r b(s) ∂
1222
+ ∂sK(s, r) ds)2 dr and
1223
+ � t
1224
+ 0
1225
+ �� t
1226
+ r
1227
+ b(s) ∂
1228
+ ∂sK(s, r) ds
1229
+ �2
1230
+ dr
1231
+ =
1232
+ � t
1233
+ 0
1234
+ �� t
1235
+ r
1236
+ b(s) ∂
1237
+ ∂sK(s, r) ds
1238
+ ��� �� t
1239
+ r
1240
+ b(s′) ∂
1241
+ ∂s′ K(s′, r) ds′
1242
+
1243
+ dr
1244
+ =
1245
+ � t
1246
+ 0
1247
+ b(s) ds
1248
+ � s
1249
+ 0
1250
+
1251
+ ∂sK(s, r) dr
1252
+ � t
1253
+ r
1254
+ b(s′) ∂
1255
+ ∂s′ K(s′, r) ds′
1256
+ =
1257
+ � t
1258
+ 0
1259
+ ds b(s)
1260
+ � t
1261
+ 0
1262
+ dr1[0,s](r) ∂
1263
+ ∂sK(s, r)
1264
+ � t
1265
+ r
1266
+ b(s′) ∂
1267
+ ∂s′ K(s′, r) ds′
1268
+ =
1269
+ � t
1270
+ 0
1271
+ ds b(s)
1272
+ � t
1273
+ 0
1274
+ ds′b(s′)
1275
+ � s′
1276
+ 0
1277
+ 1[0,s](r) ∂
1278
+ ∂sK(s, r) ∂
1279
+ ∂s′ K(s′, r) dr
1280
+ =
1281
+ � t
1282
+ 0
1283
+ ds
1284
+ � t
1285
+ 0
1286
+ ds′ b(s)b(s′)
1287
+ � s∧s′
1288
+ 0
1289
+
1290
+ ∂sK(s, r) ∂
1291
+ ∂s′ K(s′, r) dr
1292
+ =
1293
+ � t
1294
+ 0
1295
+ ds
1296
+ � t
1297
+ 0
1298
+ ds′ b(s)b(s′)Φ(s, s′)
1299
+ =
1300
+ � t
1301
+ 0
1302
+ ds
1303
+ � s
1304
+ 0
1305
+ ds′ b(s)b(s′)Φ(s, s′) +
1306
+ � t
1307
+ 0
1308
+ ds
1309
+ � t
1310
+ s
1311
+ ds′ b(s)b(s′)Φ(s, s′)
1312
+ =
1313
+ 2
1314
+ � t
1315
+ 0
1316
+ ds
1317
+ � s
1318
+ 0
1319
+ ds′ b(s)b(s′)Φ(s, s′),
1320
+ where Φ(s, s′) =
1321
+ � s∧s′
1322
+ 0
1323
+
1324
+ ∂sK(s, r) ∂
1325
+ ∂s′ K(s′, r) dr. Since
1326
+
1327
+ ∂sK(s, r) = CHr1/2−H(s − r)H−3/2sH−1/2, using
1328
+ (5.7) in [21] we obtain
1329
+ Φ(s, s′) = C2
1330
+ H(ss′)H−1/2
1331
+ � s∧s′
1332
+ 0
1333
+ r1−2H(s − r)H−3/2(s′ − r)H−3/2 dr = H(2H − 1)(s − s′)2H−2
1334
+ 15
1335
+
1336
+ for s′ < s, hence
1337
+ � t
1338
+ 0
1339
+ �� t
1340
+ r
1341
+ b(s) ∂
1342
+ ∂sK(s, r) ds
1343
+ �2
1344
+ dr
1345
+ ≤ 2H(2H − 1)
1346
+ � t
1347
+ 0
1348
+ ds
1349
+ � s
1350
+ 0
1351
+ |b(s)b(s′)|(s − s′)2H−2 ds′
1352
+ ≤ H(2H − 1)
1353
+ �� t
1354
+ 0
1355
+ b(s)2
1356
+ � s
1357
+ 0
1358
+ (s − s′)2H−2 ds′ ds +
1359
+ � t
1360
+ 0
1361
+ � s
1362
+ 0
1363
+ b(s′)2(s − s′)2H−2 ds′ ds
1364
+
1365
+ = H
1366
+ � t
1367
+ 0
1368
+ b(s)2s2H−1 ds + H(2H − 1)
1369
+ � t
1370
+ 0
1371
+ b(s′)2
1372
+ � t
1373
+ s′ (s − s′)2H−2 ds ds′
1374
+ = H
1375
+ � t
1376
+ 0
1377
+ b(s)2(s2H−1 + (t − s)2H−1) ds
1378
+ ≤ 2Ht2H−1
1379
+ � t
1380
+ 0
1381
+ b(s)2 ds.
1382
+ (3.27)
1383
+ From the above inequalities we obtain
1384
+ sup
1385
+ t∈[0,T]
1386
+ � T
1387
+ 0
1388
+ |DrXt|2dr ≤ 2β2
1389
+ � T
1390
+ 0
1391
+ a2(r)dr + 4β2HT 2H−1
1392
+ � T
1393
+ 0
1394
+ b2(u)du := M(T).
1395
+ (3.28)
1396
+ Now, from (3.20)
1397
+ P(τ ∗ ≦ T)
1398
+ =
1399
+ P
1400
+ �� T
1401
+ 0
1402
+ exp[−β(λ0K(t) + A(t)) + βNt] dt ≧
1403
+ 1
1404
+ Cβ ⟨ϕ, φ0⟩−β
1405
+ D
1406
+
1407
+ =
1408
+ P
1409
+ �� T
1410
+ 0
1411
+ exp[X(t)] dt ≥ x
1412
+
1413
+ ,
1414
+ (3.29)
1415
+ where x =
1416
+ 1
1417
+ Cβ⟨ϕ, φ0⟩−β
1418
+ D . The result follows from (3.25) and (3.28).
1419
+ In the following theorem we obtain upper bounds for the tail of τ ∗ in the case when the Brownian
1420
+ motion B and the fractional Brownian motion BH have general dependence structure.
1421
+ Theorem 5. Assume (3.19) and let g(z) ≥ Cz1+β for all z > 0, where C > 0, β > 0, are given
1422
+ constants.
1423
+ 1. Assume that BH
1424
+ t
1425
+ =
1426
+ � t
1427
+ 0 KH(t, s) dWs, where W is a Brownian motion defined in the same proba-
1428
+ bility space, and adapted to the same filtration as the Brownian motion B. Then
1429
+ P(τ ∗ ≤ T)
1430
+
1431
+ Cβ⟨ϕ, φ0⟩β
1432
+ D
1433
+ � T
1434
+ 0
1435
+
1436
+ e−βλ0
1437
+ � t
1438
+ 0 k2(s) ds+2β2 � t
1439
+ 0 a2(s) ds + e−β � t
1440
+ 0 a2(s) ds+4β2Ht2H−1 � t
1441
+ 0 b2(s) ds�
1442
+ dt.
1443
+ 16
1444
+
1445
+ 2. If B and BH are independent, then
1446
+ P(τ ∗ ≤ T) ≤ Cβ⟨ϕ, φ0⟩β
1447
+ D
1448
+ � T
1449
+ 0
1450
+ e−βλ0K(t)+ β2−β
1451
+ 2
1452
+ � t
1453
+ 0 a2(s) ds+β2Ht2H−1 � t
1454
+ 0 b2(s) ds.
1455
+ Proof.
1456
+ 1. Using H¨older’s and Chebishev’s inequalities we obtain
1457
+ P(τ ∗ ≤ T)
1458
+ =
1459
+ P
1460
+ �� T
1461
+ 0
1462
+ e−βλ0K(t)+β � t
1463
+ 0 a(s) dBs−βA(t)+β � t
1464
+ 0 b(s) dBH
1465
+ s dt ≥
1466
+ 1
1467
+ Cβ⟨ϕ, φ0⟩−β
1468
+ D
1469
+
1470
+
1471
+ P
1472
+
1473
+
1474
+ �� T
1475
+ 0
1476
+ e−2βλ0K(t)+2β � t
1477
+ 0 a(s) dBs dt
1478
+ � 1
1479
+ 2
1480
+ ×
1481
+ �� T
1482
+ 0
1483
+ e−2βA(t)+2β � t
1484
+ 0 b(s) dBH
1485
+ s dt
1486
+ � 1
1487
+ 2
1488
+
1489
+ 1
1490
+ Cβ ⟨ϕ, φ0⟩−β
1491
+ D
1492
+
1493
+
1494
+
1495
+ P
1496
+ �� T
1497
+ 0
1498
+ e−2βλ0K(t)+2β � t
1499
+ 0 a(s) dBs dt ≥
1500
+ 1
1501
+ Cβ ⟨ϕ, φ0⟩−β
1502
+ D
1503
+
1504
+ +P
1505
+ �� T
1506
+ 0
1507
+ e−2βA(t)+2β � t
1508
+ 0 b(s) dBH
1509
+ s dt ≥
1510
+ 1
1511
+ Cβ⟨ϕ, φ0⟩−β
1512
+ D
1513
+
1514
+
1515
+ E
1516
+ �� T
1517
+ 0 e−2βλ0K(t)+2β � t
1518
+ 0 a(s) dBs dt
1519
+
1520
+ + E
1521
+ �� T
1522
+ 0 e−2βA(t)+2β � t
1523
+ 0 b(s) dBH
1524
+ s dt
1525
+
1526
+ 1
1527
+ Cβ⟨ϕ, φ0⟩−β
1528
+ D
1529
+
1530
+ � T
1531
+ 0
1532
+
1533
+ e−2βλ0K(t)+2β2 � t
1534
+ 0 a2(s) ds�
1535
+ dt +
1536
+ � T
1537
+ 0 e−2βA(t)E
1538
+
1539
+ e2β � t
1540
+ 0 b(s) dBH
1541
+ s
1542
+
1543
+ dt
1544
+ 1
1545
+ Cβ⟨ϕ, φ0⟩−β
1546
+ D
1547
+ ,
1548
+ (3.30)
1549
+ where we have used the fact that E
1550
+
1551
+ exp
1552
+ �� t
1553
+ 0 f(s) dB(s)
1554
+ ��
1555
+ = exp
1556
+
1557
+ 1
1558
+ 2
1559
+ � t
1560
+ 0 f 2(s) ds
1561
+
1562
+ to obtain the
1563
+ last inequality. In addition,
1564
+ E
1565
+
1566
+ e2β
1567
+ � t
1568
+ 0 b(s) dBH
1569
+ s
1570
+
1571
+ = E
1572
+
1573
+ e2β
1574
+ � t
1575
+ 0
1576
+ � t
1577
+ s b(r) ∂
1578
+ ∂r KH(r,s) dr dWs�
1579
+ = e2β2 � t
1580
+ 0[
1581
+ � t
1582
+ s b(r) ∂
1583
+ ∂r KH(r,s) dr]
1584
+ 2 ds,
1585
+ where the last equality follows from [13, Theorem 4.12]. Therefore, using (3.27) we get
1586
+ E
1587
+
1588
+ e2β
1589
+ � t
1590
+ 0 b(s) dBH
1591
+ s
1592
+
1593
+ ≤ exp
1594
+
1595
+ 4β2Ht2H−1
1596
+ � t
1597
+ 0
1598
+ b2(s) ds
1599
+
1600
+ .
1601
+ (3.31)
1602
+ Substituting (3.31) into (3.30) we obtain the desired bound.
1603
+ 17
1604
+
1605
+ 2. Using Chebishev’s inequality, the independence of B and BH and the proof of (3.31),
1606
+ P(τ ∗ ≤ T)
1607
+ =
1608
+ P
1609
+ �� T
1610
+ 0
1611
+ e−βλ0K(t)+β � t
1612
+ 0 a(s) dBs−βA(t)+β � t
1613
+ 0 b(s) dBH
1614
+ s ) dt ≥
1615
+ 1
1616
+ Cβ ⟨ϕ, φ0⟩−β
1617
+ D
1618
+
1619
+
1620
+ Cβ⟨ϕ, φ0⟩β
1621
+ D
1622
+ � T
1623
+ 0
1624
+ E
1625
+
1626
+ e−βλ0K(t)+β � t
1627
+ 0 a(s) dBs�
1628
+ E
1629
+
1630
+ e−βA(t)+β � t
1631
+ 0 b(s) dBH
1632
+ s
1633
+
1634
+ dt
1635
+
1636
+ Cβ⟨ϕ, φ0⟩β
1637
+ D
1638
+ � T
1639
+ 0
1640
+ exp
1641
+
1642
+ −βλ0K(t) + β2 − β
1643
+ 2
1644
+ � t
1645
+ 0
1646
+ a2(s) ds + β2Ht2H−1
1647
+ � t
1648
+ 0
1649
+ b2(s) ds
1650
+
1651
+ dt.
1652
+ 4
1653
+ Lower bounds for the blowup time and for the probability of finite
1654
+ time blowup
1655
+ 4.1
1656
+ A lower bound for the probability of finite time blowup
1657
+ In the following theorem we give a lower bound for the probability of finite time blow up of the weak
1658
+ solution of (1.1). If f, g are nonnegative functions and c is a constant, we write f(t) ∼ cg(t) as t → ∞
1659
+ if limt→∞ f(t)/g(t) = c.
1660
+ Theorem 6. Assume (3.19) and (3.22). Let g(z) ≥ Cz1+β and
1661
+ � t
1662
+ 0
1663
+ a2(r) dr ∼ C1t2l,
1664
+ � t
1665
+ 0
1666
+ b2(r) dr ∼ C2t2m,
1667
+ � t
1668
+ 0
1669
+ k2(r) dr ∼ C3t2p
1670
+ as t → ∞ for some nonnegative constants l, m, p and positive constants C, β, C1, C2 and C3. Suppose
1671
+ additionally that
1672
+ 1. if β ∈ (0, 1/2), then max{p, l} > H + m − 1
1673
+ 2,
1674
+ 2. if β = 1/2, then H+m − 1
1675
+ 2 < p,
1676
+ 3. if β > 1/2, then p > max{l, H + m − 1
1677
+ 2}.
1678
+ Under these assumptions the solution of (1.1) blows up in finite time with positive probability. Moreover,
1679
+ P(τ < ∞) ≧ P(τ ∗ < ∞) ≧ 1 − exp
1680
+
1681
+ −(mξ − 1)2
1682
+ 2Lξ
1683
+
1684
+ ,
1685
+ (4.32)
1686
+ where
1687
+ ξ =
1688
+ 1
1689
+ Cβ ⟨ϕ, φ0⟩−β
1690
+ D ,
1691
+ Lξ = sup
1692
+ t≧0
1693
+ M(t)
1694
+ (ln(ξ + 1) + f(t))2 ,
1695
+ (4.33)
1696
+ 18
1697
+
1698
+ with f(t) = tmax{H+m−1/2, l} and
1699
+ mξ = E
1700
+
1701
+ sup
1702
+ t≧0
1703
+ ln
1704
+ �� t
1705
+ 0 exp (−β(λ0K(s) + A(s)) + βNs) ds + 1
1706
+
1707
+ + f(t)
1708
+ ln(ξ + 1) + f(t)
1709
+
1710
+  .
1711
+ (4.34)
1712
+ Proof. From (3.29) it follows that P(τ ∗ < ∞) = P(
1713
+ � ∞
1714
+ 0 eXt dt ≥ ξ). In order to estimate P(
1715
+ � ∞
1716
+ 0
1717
+ eXt dt ≥ ξ)
1718
+ we use [9, Theorem 3.1], with a = 0 and σ = 1 :
1719
+ Proposition 3 ([9]). Assume that the stochastic process X is adapted and satisfies
1720
+ a)
1721
+ � ∞
1722
+ 0
1723
+ EeXs ds < ∞,
1724
+ b) For each t ≥ 0, Xt ∈ D1,2,
1725
+ c) There exists a function f : R+ → R+ such that limt→∞ f(t) = ∞ and for each x > 0,
1726
+ sup
1727
+ t≧0
1728
+ sups∈[0,t]
1729
+ � t
1730
+ 0 |DrXs|2dr
1731
+ (ln(x + 1) + f(t))2
1732
+ ≤ Lx < ∞
1733
+ a.s.
1734
+ (4.35)
1735
+ Then
1736
+ P
1737
+ �� ∞
1738
+ 0
1739
+ eXt dt < x
1740
+
1741
+ ≤ exp
1742
+
1743
+ −(mx − 1)2
1744
+ 2Lx
1745
+
1746
+ ,
1747
+ where
1748
+ mx = E
1749
+
1750
+ sup
1751
+ t≥0
1752
+ ln(
1753
+ � t
1754
+ 0 eXs ds + 1) + f(t)
1755
+ ln(x + 1) + f(t)
1756
+
1757
+ .
1758
+ We now verify that conditions a) - c) of the above proposition hold.
1759
+ For condition a) we have from (3.25),
1760
+ � ∞
1761
+ 0
1762
+ E exp[Xt] dt
1763
+ =
1764
+ � ∞
1765
+ 0
1766
+ E exp
1767
+
1768
+ −βλ0
1769
+ 2
1770
+ � t
1771
+ 0
1772
+ k2(s) ds − β
1773
+ 2
1774
+ � t
1775
+ 0
1776
+ a2(s) ds
1777
+ + β
1778
+ �� t
1779
+ 0
1780
+ a(s) dBs +
1781
+ � t
1782
+ 0
1783
+ � t
1784
+ s
1785
+ b(r) ∂
1786
+ ∂rKH(r, s) dr dBs
1787
+ ��
1788
+ dt
1789
+ =
1790
+ � ∞
1791
+ 0
1792
+ E exp
1793
+
1794
+ −βλ0
1795
+ 2
1796
+ � t
1797
+ 0
1798
+ k2(s) ds − β
1799
+ 2
1800
+ � t
1801
+ 0
1802
+ a2(s) ds + β
1803
+ � t
1804
+ 0
1805
+
1806
+ a(s) +
1807
+ � t
1808
+ s
1809
+ b(r) ∂
1810
+ ∂rKH(r, s) dr
1811
+
1812
+ dBs
1813
+
1814
+ dt
1815
+ =
1816
+ � ∞
1817
+ 0
1818
+ exp
1819
+
1820
+ −βλ0
1821
+ 2
1822
+ � t
1823
+ 0
1824
+ k2(s) ds − β
1825
+ 2
1826
+ � t
1827
+ 0
1828
+ a2(s) ds + β2
1829
+ 2
1830
+ � t
1831
+ 0
1832
+
1833
+ a(s) +
1834
+ � t
1835
+ s
1836
+ b(r) ∂
1837
+ ∂rKH(r, s) dr
1838
+ �2
1839
+ ds
1840
+
1841
+ dt,
1842
+ where, again, we have used [13, Theorem 4.12] to obtain the last equality. Therefore, using (3.27),
1843
+ � ∞
1844
+ 0
1845
+ E exp[Xt] dt
1846
+
1847
+ � ∞
1848
+ 0
1849
+ exp
1850
+
1851
+ −βλ0
1852
+ 2
1853
+ � t
1854
+ 0
1855
+ k2(s) ds − β
1856
+ 2
1857
+ � t
1858
+ 0
1859
+ a2(s) ds + β2
1860
+ 2
1861
+ � t
1862
+ 0
1863
+ 2a2(s) ds
1864
+ + 2β2Ht2H−1
1865
+ � t
1866
+ 0
1867
+ b2(s) ds
1868
+
1869
+ dt.
1870
+ (4.36)
1871
+ 19
1872
+
1873
+ The integral (4.36) is finite if and only if the leading power of t in the term
1874
+ −βλ0
1875
+ 2
1876
+ � t
1877
+ 0
1878
+ k2(s) ds + 2β2 − β
1879
+ 2
1880
+ � t
1881
+ 0
1882
+ a2(s) ds + 2β2Ht2H−1
1883
+ � t
1884
+ 0
1885
+ b2(s) ds
1886
+ has negative coefficient, which follows from our assumptions.
1887
+ Condition b) is a consequence of (3.28).
1888
+ For condition c) we use the inequality (3.28), which implies that for any x > 0 and any fixed
1889
+ function f,
1890
+ sup
1891
+ t≧0
1892
+ sups∈[0,t]
1893
+ � t
1894
+ 0 |DrXs|2dr
1895
+ (ln(x + 1) + f(t))2
1896
+ ≤ sup
1897
+ t≥0
1898
+ M(t)
1899
+ (ln(x + 1) + f(t))2 .
1900
+ (4.37)
1901
+ Due to our assumptions, for big t, the leading power of t in the numerator is max{2l, 2H + 2m − 1}.
1902
+ It follows that
1903
+ lim
1904
+ t→∞
1905
+ M(t)
1906
+
1907
+ ln(x + 1) + tmax{l,H+m−1/2}�2 < ∞,
1908
+ and therefore the supremum in (4.37) is finite. The result follows from Proposition 3.
1909
+ The cases when a = 0 (presence only of fractional Brownian motion) or b = 0 (presence only of
1910
+ Brownian motion), are simpler:
1911
+ Corollary 2. Under the assumptions in Theorem 6,
1912
+ 1. When a(t) ≡ 0 and p > H + m − 1/2 the solution of (1.1) explodes in finite time with positive
1913
+ probability for all β > 0.
1914
+ 2. If a(t) ≡ 0 and p = H + m − 1/2, the solution of (1.1) explodes in finite time with positive
1915
+ probability for all β > 0 satisfying β < C3λ0
1916
+ 4C2H .
1917
+ 3. When b(t) ≡ 0 and 0 < β ≤ 1
1918
+ 2 the solution of (1.1) exhibits explosion in finite time with positive
1919
+ probability for all values of p and l.
1920
+ 4. If b(t) ≡ 0 and β > 1/2, the solution of (1.1) exhibits explosion in finite time with positive
1921
+ probability if p > l or if p = l and C3λ0 > C1(2β − 1).
1922
+ Notice that mξ given in (4.34) satisfies mξ > 1 due to Theorem 3.1 in [9]. The formula for mξ
1923
+ shows interactions between ϕ and K that have an influence on the lower bound in (4.32). Increasing
1924
+ values of K decrease the lower bound in (4.32). In this sense high values of K are in favour of absence
1925
+ of finite time blowup.
1926
+ 20
1927
+
1928
+ 4.2
1929
+ The case H > 3/4 and independent B and BH
1930
+ In order to find more explicit lower bounds for P(τ < +∞), we consider in this subsection the case
1931
+ H ∈ (3/4, 1) and suppose that B and BH are independent and b(s) = ca(s) for all s ≧ 0, where c
1932
+ is a constant. Then Nt =
1933
+ � t
1934
+ 0 a(s)dMs with Ms = Bs + cBH
1935
+ s . By [3] M is equivalent to a Brownian
1936
+ motion �B, and therefore Nt is equivalent to ˜Nt :=
1937
+ � t
1938
+ 0 a(s) d �Bs. Here equivalence means equality of the
1939
+ laws of the processes on (C[0, T], B), the space of continous functions defined on [0, T] endowed with
1940
+ the σ−algebra generated by the cylinder sets. Furthermore, ( ˜Nt)t≧0 is a continous martingale and
1941
+ therefore a time-changed Brownian motion: ˜Nt = �B2A(t).
1942
+ Theorem 7. Assume (3.19). Let H ∈ (3/4, 1), B and BH be independent and b(s) = ca(s) for all
1943
+ s ≧ 0, where c is a constant.We assume also that g(z) ≥ Cz1+β, that the functions k and a are positive
1944
+ continuous on R+ and that there exist constants η ∈ (0, +∞] and c1 > 0 such that
1945
+ 1
1946
+ a2(t) exp(−βλ0K(t)) ≥ c1 exp
1947
+
1948
+ −2β A(t)
1949
+ η
1950
+
1951
+ ,
1952
+ t ∈ R+.
1953
+ (4.38)
1954
+ Then
1955
+ P(τ < +∞) ≥ P(Zµ ≤ θ),
1956
+ (4.39)
1957
+ where τ is the blowup time of (1.1), Zµ is a gamma-distributed random variable with parameter µ :=
1958
+ 2
1959
+ β( 1
1960
+ η + 1
1961
+ 2), θ := 2c1
1962
+ β2ξ and ξ :=
1963
+ 1
1964
+ Cβ⟨ϕ, φ0⟩−β
1965
+ D .
1966
+ Proof. From Theorem 3,
1967
+ P(τ ∗ = +∞)
1968
+ =
1969
+ P
1970
+ �� t
1971
+ 0
1972
+ dr exp
1973
+
1974
+ −β(λ0K(r) + A(r)) + β ˜Nr
1975
+
1976
+ < ξ for all t > 0
1977
+
1978
+ =
1979
+ P
1980
+ �� ∞
1981
+ 0
1982
+ dr exp
1983
+
1984
+ −β(λ0K(r) + A(r)) + β ˜Nr
1985
+
1986
+ ≤ ξ
1987
+
1988
+ .
1989
+ By the change of variable q = 2A(r) we get
1990
+ P(τ ∗ = +∞) = P
1991
+ �� ∞
1992
+ 0
1993
+ dr exp
1994
+
1995
+ −β(λ0K(r) + A(r)) + β ˜B2A(r)
1996
+
1997
+ ≤ ξ
1998
+
1999
+ = P
2000
+ �� ∞
2001
+ 0
2002
+ dq
2003
+ a2(A−1(q/2)) exp
2004
+
2005
+ −β(λ0K(A−1(q/2)) + 1
2006
+ 2q) + β ˜Bq
2007
+
2008
+ ≤ ξ
2009
+
2010
+ .
2011
+ Applying (4.38) to t = A−1(q/2) yields
2012
+ 1
2013
+ a2(A−1(q/2)) exp
2014
+
2015
+ −β(λ0K(A−1(q/2))
2016
+
2017
+ ≥ c1 exp
2018
+
2019
+ −β
2020
+ η q
2021
+
2022
+ ,
2023
+ q ∈ R+.
2024
+ 21
2025
+
2026
+ Therefore
2027
+ P(τ ∗ = +∞)
2028
+
2029
+ P
2030
+
2031
+ c1
2032
+ � ∞
2033
+ 0
2034
+ dq exp
2035
+
2036
+ −βq
2037
+ �1
2038
+ η + 1
2039
+ 2
2040
+
2041
+ + β ˜Bq
2042
+
2043
+ ≤ ξ
2044
+
2045
+ =
2046
+ P
2047
+ �� ∞
2048
+ 0
2049
+ dq exp
2050
+
2051
+ β( ˜Bq − ˜µq)
2052
+
2053
+ ≤ ξ
2054
+ c1
2055
+
2056
+ ,
2057
+ where ˜µ := 1
2058
+ η + 1
2059
+ 2. A second change of variable q = 4s
2060
+ β2 yields
2061
+ P(τ ∗ = +∞) ≤ P
2062
+ �� ∞
2063
+ 0
2064
+ ds exp
2065
+
2066
+ 2( ˜Bs − µs)
2067
+
2068
+ ≤ β2ξ
2069
+ 4c1
2070
+
2071
+ ,
2072
+ where µ := ˜µ 2
2073
+ β. Due to [27, Corollary 1.2, page 95],
2074
+ � ∞
2075
+ 0
2076
+ e2( ˜
2077
+ Bs−µs) ds L=
2078
+ 1
2079
+ 2Zµ
2080
+ ,
2081
+ where Zµ is a gamma-distributed random variable with parameter µ. Therefore
2082
+ P(τ = +∞) ≤ P(τ ∗ = +∞) ≤ P
2083
+ � 1
2084
+ 2Zµ
2085
+ ≤ β2ξ
2086
+ 4c1
2087
+
2088
+ = P
2089
+
2090
+ Zµ ≥ 2c1
2091
+ β2ξ
2092
+
2093
+ .
2094
+ This implies the statement of the theorem.
2095
+ Remark 5. If k, a and b are constants, a more explicit lower bound for P(τ < +∞) is available
2096
+ without the assumption (4.38). Indeed, starting with (3.20), a straightforward calculation gives a lower
2097
+ bound in terms of a gamma-distributed random variable Z again, but this time with parameter �µ :=
2098
+ (λ0k2 + a2)/(a2β). More precisely,
2099
+ P(τ < ∞) ≧ P(τ ∗ < ∞) = P
2100
+
2101
+ Z�µ ≦ 2C
2102
+ a2β ⟨ϕ, φ0⟩β
2103
+ D
2104
+
2105
+ .
2106
+ 4.3
2107
+ A lower bound for the blowup time
2108
+ Our next goal is to obtain a lower bound for the blowup time τ. Since the proofs of the following results
2109
+ are close to those in [1] (where b = 0), we omit them here.
2110
+ Theorem 8. Let the function g be such that g(0) = 0, z → g(z)/z is increasing, and g(z) ≤ Λz1+β for
2111
+ some positive constant Λ. Then τ ≥ τ∗, where
2112
+ τ∗ = inf
2113
+
2114
+ t > 0 :
2115
+ � t
2116
+ 0
2117
+ exp(β(Nr − A(r)))
2118
+ ��U D(r, 0)ϕ
2119
+ ��β
2120
+ ∞ dr ≧ 1
2121
+ Λβ
2122
+
2123
+ .
2124
+ (4.40)
2125
+ Let us define for 0 ≦ t < τ∗,
2126
+ J(t) =
2127
+
2128
+ 1 − Λβ
2129
+ � t
2130
+ 0
2131
+ exp(β(Nr − A(r)))
2132
+ ��U D(r, 0)ϕ
2133
+ ��β
2134
+ ∞ dr
2135
+ �−1/β
2136
+ .
2137
+ 22
2138
+
2139
+ Then the solution u of (1.1) satisfies, for x ∈ D, 0 ≦ t < τ∗, P-a.s.
2140
+ 0 ≦ u(x, t) ≦ J(t) exp(Nt − A(t))U D(t, 0)ϕ(x).
2141
+ (4.41)
2142
+ Remark 6. More precisely, the proof of this theorem shows that the mild solution v of (2.5) satisfies
2143
+ (4.41) without the factor exp(Nt). By Theorem 2, v is also the weak solution of (2.5), hence the weak
2144
+ solution u(·, t) = exp(Nt)v(·, t) of (1.1) satisfies (4.41).
2145
+ Corollary 3. Assume that
2146
+ Λβ
2147
+ � ∞
2148
+ 0
2149
+ exp[β(Nr − A(r))]
2150
+ ��U D(r, 0)ϕ
2151
+ ��β
2152
+ ∞ dr < 1.
2153
+ Then the solution u of (1.1) satisfies (4.41) P-a.s. for all t.
2154
+ Remark 7. For the special choice of ϕ = pψ0, p > 0, the integrals appearing in (3.20) and (4.40) are
2155
+ the same exponential functionals of N. In fact, U D(r, 0)ψ0 = exp(−λ0K(r))ψ0, and τ∗ becomes
2156
+ τ∗ = inf
2157
+
2158
+ t > 0 :
2159
+ � t
2160
+ 0
2161
+ exp
2162
+
2163
+ β(Nr − λ0K(r) − A(r))
2164
+
2165
+ dr ≧ p−β
2166
+ Λβ ∥ψ0∥−β
2167
+
2168
+
2169
+ ,
2170
+ (4.42)
2171
+ whereas
2172
+ τ ∗ = inf
2173
+
2174
+ t > 0 :
2175
+ � t
2176
+ 0
2177
+ exp
2178
+
2179
+ β(Nr − λ0K(r) − A(r))
2180
+
2181
+ dr ≥ p−β
2182
+ Cβ ⟨ψ0, φ0⟩−β
2183
+ D
2184
+
2185
+ .
2186
+ (4.43)
2187
+ In fact τ∗ ≦ τ ∗ if C ≦ Λ, since ⟨ψ0, φ0⟩D ≦ ∥ψ0∥∞
2188
+
2189
+ D φ0(x)dx = ∥ψ0∥∞. In order to apply both bounds
2190
+ simultaneously, we have to suppose Cz1+β ≦ g(z) ≦ Λz1+β, z > 0. It is therefore of interest to know
2191
+ the law of the integral appearing in (4.42) and (4.43). This seems possible only for bH = 0, since, to
2192
+ our best knowledge, the law of exponential functionals of fractional Brownian motion is still unknown.
2193
+ For the moment it seems that only estimates of the type of those in Section 3.2 are available. See also
2194
+ Theorem 7 for H > 3/4.
2195
+ 5
2196
+ A sufficient condition for finite time blowup
2197
+ We consider now the mild form of (2.5) obtained in Proposition 2, and obtain a sufficient condition for
2198
+ finite time blowup.
2199
+ Theorem 9. Suppose that g(z) ≥ Cz1+β and that there exists w∗ > 0 such that
2200
+ exp(βA(w∗)) ∥ U D(w∗, 0)ϕ ∥−β
2201
+ ∞ < βC
2202
+ � w∗
2203
+ 0
2204
+ exp(βNs) ds .
2205
+ (5.44)
2206
+ Then for the explosion time τ of (1.1) there holds τ ≤ w∗.
2207
+ 23
2208
+
2209
+ Remark 8. Inequality (5.44) is understood trajectorywise. Therefore w∗ is random. (5.44) is harder to
2210
+ satisfy with a small initial condition ϕ and with a small value of C. Due to the different interpretations
2211
+ of the integrals in N, the effects on blowup of B and BH are different.
2212
+ If N = 0, (5.44) reads ∥
2213
+ U D(w∗, 0)ϕ ∥−β
2214
+ ∞ < βCw∗ and in this case w∗ is deterministic; if in addition ϕ = ψ0, (5.44) reads
2215
+ exp(λ0βK(w∗)) ∥ ψ0 ∥−β
2216
+ ∞ < βCw∗.
2217
+ Proof. We use the approach in [25, Lemma 15.6]; see also [15]. Suppose that v(x, t), x ∈ D, t ≥ 0, is
2218
+ a global solution of (2.5), and let 0 < t < t′. Using the semigroup property of the evolution system
2219
+ (U D(t, r))0≦r<t we obtain
2220
+ exp
2221
+
2222
+ − A(t′, t)
2223
+
2224
+ U D(t′, t)v(·, t)(x)
2225
+ =
2226
+ exp
2227
+
2228
+ − A(t′, t)
2229
+
2230
+ U D(t′, t)
2231
+
2232
+ exp
2233
+
2234
+ − A(t)
2235
+
2236
+ U D(t, 0)ϕ(·)
2237
+
2238
+ (x)
2239
+ + exp
2240
+
2241
+ − A(t′, t)
2242
+
2243
+ U D(t′, t)
2244
+ �� t
2245
+ 0
2246
+ exp(−Nr) exp
2247
+
2248
+ − A(t, r)
2249
+
2250
+ U D(t, r)g(exp(Nr)v(·, r))(x) dr
2251
+
2252
+ (x)
2253
+ =
2254
+ exp
2255
+
2256
+ − A(t′)
2257
+
2258
+ U D(t′, 0)ϕ(·)(x)
2259
+ +
2260
+ � t
2261
+ 0
2262
+ exp(−Nr) exp
2263
+
2264
+ − A(t′, r)
2265
+
2266
+ U D(t′, r)g(exp(Nr)v(·, r))(x) dr
2267
+
2268
+ exp
2269
+
2270
+ − A(t′)
2271
+
2272
+ U D(t′, 0)ϕ(·)(x)
2273
+ +C
2274
+ � t
2275
+ 0
2276
+ exp(βNr) exp
2277
+
2278
+ − A(t′, r)
2279
+
2280
+ U D(t′, r)v(·, r)1+β(x) dr.
2281
+ By Jensen’s inequality
2282
+ U D(t′, r)v(·, r)1+β(x)
2283
+ =
2284
+
2285
+ D
2286
+ pD(r, x; t′, y)v(y, r)1+β dy
2287
+
2288
+ ��
2289
+ D
2290
+ pD(r, x; t′, y)v(y, r) dy
2291
+ �1+β
2292
+ =
2293
+
2294
+ U D(t′, r)v(·, r)(x)
2295
+ �1+β
2296
+ .
2297
+ Therefore
2298
+ exp
2299
+
2300
+ − A(t′, t)
2301
+
2302
+ U D(t′, t)v(·, t)(x) ≧ exp
2303
+
2304
+ − A(t′)
2305
+
2306
+ U D(t′, 0)ϕ(x)
2307
+ + C
2308
+ � t
2309
+ 0
2310
+ exp(βNr)
2311
+
2312
+ exp
2313
+
2314
+ − A(t′, r)
2315
+
2316
+ U D(t′, r)v(·, r)(x)
2317
+ �1+β
2318
+ dr.
2319
+ (5.45)
2320
+ Let ψ(t) be the last term in (5.45). Then, from the above inequality,
2321
+ ψ′(t) = C exp(βNt)
2322
+
2323
+ exp(−A(t′, t))U D(t′, t)v(·, t)(x)
2324
+ �1+β
2325
+ ≧ C exp(βNt)(ψ(t))1+β
2326
+ 24
2327
+
2328
+ Let now Ψ(t) :=
2329
+ � ∞
2330
+ t
2331
+ dz/z1+β = 1
2332
+ βt−β, t > 0. Then
2333
+ d
2334
+ dtΨ(ψ(t)) = −
2335
+ ψ′(t)
2336
+ (ψ(t))1+β ≦ −C exp(βNt).
2337
+ Hence
2338
+ C
2339
+ � t′
2340
+ 0
2341
+ exp(βNs) ds ≦ Ψ(ψ(0)) − Ψ(ψ(t′)) =
2342
+ � ψ(t′)
2343
+ ψ(0)
2344
+ dz/z1+β <
2345
+ � ∞
2346
+ exp(−A(t′))UD(t′,0)ϕ(·)(x)
2347
+ dz/z1+β
2348
+ for all x ∈ D and all t′ > 0. Therefore βC
2349
+ � t′
2350
+ 0 exp(βNs) ds ≦ exp(βA(t′))∥U D(t′, 0)ϕ∥−β
2351
+ ∞ for all t′ > 0.
2352
+ This contradicts (5.44).
2353
+ Acknowledgement The authors are grateful to two anonymous referees for their valuable comments,
2354
+ which greatly improved our paper. The second- and third-named authors acknowledge the hospitality
2355
+ of Institut ´Elie Cartan de Lorraine, where part of this work was done. The research of the second-
2356
+ named author was partially supported by CONACyT (Mexico), Grant No. 652255. The fourth-named
2357
+ author would like to express her gratitude to the entire staff of the IECL for their hospitality and
2358
+ strong support during the completion of her Ph.D. dissertation there.
2359
+ References
2360
+ [1] A. Alvarez, J.A. L´opez-Mimbela, N. Privault. Blowup estimates for a family of semilinear SPDEs
2361
+ with time-dipendent coefficients. Differential Equations and Applications 2 (2015), 201-219.
2362
+ [2] X. Chen, J. Wang. Intrinsic ultracontractivity for general L´evy processes on bounded open sets.
2363
+ Illinois J. Math. 58 (2014), 1117-1144.
2364
+ [3] P. Cheridito. Mixed fractional Brownian motion. Bernoulli 7 (2001), 913-934.
2365
+ [4] P.L. Chow. Explosive solutions of stochastic reaction-diffusion equations in mean Lp-norm. J.
2366
+ Diff. Equations 250 (2011), 2567-2580.
2367
+ [5] M. Dozzi, E.T. Kolkovska, J.A. L´opez-Mimbela. Finite-time blowup and existence of global positive
2368
+ solutions of a semi-linear SPDE with fractional noise. In: Modern Stochastics and Applications,
2369
+ V. Korolyuk, N. Limnios, Y. Mishura, L. Sakhno, G. Shevchenko (Eds.), Springer 2014, 95-108.
2370
+ [6] M. Dozzi, E.T. Kolkovska, J.A. L´opez-Mimbela. Global and non-global solutions of a fractional
2371
+ reaction-diffusion equation perturbed by a fractional noise. Stoch. Anal. Appl. 38 (2020), no. 6,
2372
+ 959-978.
2373
+ [7] M. Dozzi, J.A. L´opez-Mimbela. Finite time blowup and existence of global positive solutions of a
2374
+ semi-linear SPDE. Stochastic Processes Appl. 120 (2010), 767-776.
2375
+ 25
2376
+
2377
+ [8] N.T. Dung. Tail estimates for exponential functionals and applications to SDEs. Stochastic Pro-
2378
+ cesses Appl. 128, Issue 12, (2018), 4154-4170.
2379
+ [9] N.T. Dung. The probability of finite-time blowup of a semi-linear SPDE with fractional noise.
2380
+ Statist. Probab. Lett. 149 (2019), 86-92.
2381
+ [10] H. Fujita. On some nonexistence and nonuniqueness theorems for nonlinear parabolic equations,
2382
+ in Nonlinear Functional Analysis, Providence, R.I., 1970, Proc. Symp. Pure Math. 18(1) (1968)
2383
+ 105-113.
2384
+ [11] M.J. Garrido-Atienza, B. Maslowski, J. ˇSnup´arkov´a. Semilinear stochastic equations with bilinear
2385
+ fractional noise. Discrete Contin. Dyn. Syst. Ser. B 21 (2016), no. 9, 3075-3094.
2386
+ [12] A. Friedman. Partial differential equations of parabolic type. Prentice-Hall 1964.
2387
+ [13] F.C. Klebaner. Introduction to stochastic calculus with applications. Second edition. Imperial
2388
+ College Press, London, 2005.
2389
+ [14] P. Kim, R. Song, Intrinsic ultracontractivity of non-symmetric L´evy processes. Forum Math. 21
2390
+ (2009), 43-66.
2391
+ [15] M. Loayza, C.S. Da Paix˜ao. Existence and non-existence of global solutions for a semilinear heat
2392
+ equation on a general domain. Electron. J. Differential Equations 2014 (2014), No. 168, 1-9.
2393
+ [16] J.A. L´opez-Mimbela, A. P´erez. Global and nonglobal solutions of a system of nonautonomous
2394
+ semilinear equations with ultracontractive L´evy generators. J. Math. Anal. Appl. 423 (2015),
2395
+ 720-733.
2396
+ [17] S.V. Lototsky, B.L. Rozovsky, Stochastic partial differential equations. Springer 2017.
2397
+ [18] Y. Mishura. Stochastic calculus for fractional Brownian motion and related processes. Springer
2398
+ Lecture Notes in Mathematics 1929 2008.
2399
+ [19] Y. Mishura, G. M. Shevchenko. Existence and uniqueness of the solution of stochastic differential
2400
+ equation involving Wiener process and fractional Brownian motion with Hurst index H > 1/2.
2401
+ Comm. Stat. - Theory and Methods 40 (2011), 3492-3508.
2402
+ [20] Y. Mishura, K. Ralchenko, G. Shevchenko. Existence and uniqueness of mild solution to stochastic
2403
+ heat equation with white and fractional noises. Theory Probab. Math. Statist. No. 98 (2019), 149-
2404
+ 170.
2405
+ [21] D. Nualart. The Malliavin calculus and related topics. Springer Verlag 2006.
2406
+ [22] D. Nualart, N. R˘a¸scanu. Differential equations driven by fractional Brownian motion.
2407
+ Collect.
2408
+ Math. 53 (2002) 55-81.
2409
+ 26
2410
+
2411
+ [23] D. Nualart, P.-A. Vuillermot. Variational solutions for partial differential equations driven by a
2412
+ fractional noise. J. Funct. Anal. 232 (2006), 390-454.
2413
+ [24] S. Peszat, J. Zabczyk.
2414
+ Stochastic partial differential equations with L´evy noise.
2415
+ Cambridge
2416
+ University Press 2007.
2417
+ [25] P. Quittner; P. Souplet. Superlinear parabolic problems. Blow-up, global existence and steady
2418
+ states. Birkh¨auser Verlag, Basel, 2007.
2419
+ [26] K. Ralchenko, G. Shevchenko, Existence and uniqueness of mild solutions to fractional stochastic
2420
+ heat equation. Mod. Stoch. Theory Appl. 6 (2019) 57-79.
2421
+ [27] M. Yor. Exponential functionals of Brownian motion and related processes. Springer Verlag 2001.
2422
+ [28] M. Z¨ahle, Integration with respect to fractional functions and stochastic calculus I. Prob. Theory
2423
+ Rel. Fields 111 (1998) 333-374.
2424
+ 27
2425
+
-9A0T4oBgHgl3EQfPP_v/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
-NE2T4oBgHgl3EQfQQbP/content/2301.03769v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bed556d590a3e121fd44e768de7b9bc512da9ac69c44e1c4e242fed52c479453
3
+ size 955416
-NE2T4oBgHgl3EQfQQbP/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d95d135c20860f7d574e704d693f4eabacd99c1812d84b61eda09727619066e
3
+ size 2687021
-NE2T4oBgHgl3EQfQQbP/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56aab9558cafe560f129c5e2b9aa009710f017ebc672c50c0be46dcd9b052f7b
3
+ size 96195
-NE5T4oBgHgl3EQfRg5P/content/tmp_files/2301.05521v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
.gitattributes CHANGED
@@ -3389,3 +3389,61 @@ E9E0T4oBgHgl3EQfQwCg/content/2301.02198v1.pdf filter=lfs diff=lfs merge=lfs -tex
3389
  p9E1T4oBgHgl3EQfPQN5/content/2301.03025v1.pdf filter=lfs diff=lfs merge=lfs -text
3390
  c9E4T4oBgHgl3EQfQAyD/content/2301.04978v1.pdf filter=lfs diff=lfs merge=lfs -text
3391
  SdFAT4oBgHgl3EQf1h7S/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3389
  p9E1T4oBgHgl3EQfPQN5/content/2301.03025v1.pdf filter=lfs diff=lfs merge=lfs -text
3390
  c9E4T4oBgHgl3EQfQAyD/content/2301.04978v1.pdf filter=lfs diff=lfs merge=lfs -text
3391
  SdFAT4oBgHgl3EQf1h7S/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3392
+ q9FKT4oBgHgl3EQf0C6i/content/2301.11914v1.pdf filter=lfs diff=lfs merge=lfs -text
3393
+ -NE2T4oBgHgl3EQfQQbP/content/2301.03769v1.pdf filter=lfs diff=lfs merge=lfs -text
3394
+ jtE1T4oBgHgl3EQfgQQH/content/2301.03226v1.pdf filter=lfs diff=lfs merge=lfs -text
3395
+ v9FRT4oBgHgl3EQfgDc7/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3396
+ 4tA0T4oBgHgl3EQfNf_3/content/2301.02149v1.pdf filter=lfs diff=lfs merge=lfs -text
3397
+ rtAzT4oBgHgl3EQfA_rZ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3398
+ h9AzT4oBgHgl3EQf4v4M/content/2301.01847v1.pdf filter=lfs diff=lfs merge=lfs -text
3399
+ YdFOT4oBgHgl3EQf9zRP/content/2301.12971v1.pdf filter=lfs diff=lfs merge=lfs -text
3400
+ f9FJT4oBgHgl3EQfUSzI/content/2301.11508v1.pdf filter=lfs diff=lfs merge=lfs -text
3401
+ SdFAT4oBgHgl3EQf1h7S/content/2301.08710v1.pdf filter=lfs diff=lfs merge=lfs -text
3402
+ E9E0T4oBgHgl3EQfhAEU/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3403
+ UdAzT4oBgHgl3EQfX_ww/content/2301.01326v1.pdf filter=lfs diff=lfs merge=lfs -text
3404
+ -NE2T4oBgHgl3EQfQQbP/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3405
+ qdE3T4oBgHgl3EQf8QuK/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3406
+ PtAyT4oBgHgl3EQftfn_/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3407
+ 4tA0T4oBgHgl3EQfNf_3/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3408
+ fNE3T4oBgHgl3EQf3QsN/content/2301.04761v1.pdf filter=lfs diff=lfs merge=lfs -text
3409
+ CtE2T4oBgHgl3EQf9Ant/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3410
+ vtE3T4oBgHgl3EQfkwrp/content/2301.04601v1.pdf filter=lfs diff=lfs merge=lfs -text
3411
+ v9FQT4oBgHgl3EQfvTYe/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3412
+ fNE3T4oBgHgl3EQf3QsN/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3413
+ 8NAyT4oBgHgl3EQf2_mV/content/2301.00761v1.pdf filter=lfs diff=lfs merge=lfs -text
3414
+ edE0T4oBgHgl3EQf5gLh/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3415
+ YdFOT4oBgHgl3EQf9zRP/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3416
+ RtE4T4oBgHgl3EQfKwzR/content/2301.04933v1.pdf filter=lfs diff=lfs merge=lfs -text
3417
+ v9FQT4oBgHgl3EQfvTYe/content/2301.13397v1.pdf filter=lfs diff=lfs merge=lfs -text
3418
+ LNE1T4oBgHgl3EQfswVe/content/2301.03369v1.pdf filter=lfs diff=lfs merge=lfs -text
3419
+ x9E0T4oBgHgl3EQf-gLJ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3420
+ kdE_T4oBgHgl3EQf5hys/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3421
+ p9E1T4oBgHgl3EQfPQN5/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3422
+ RNE3T4oBgHgl3EQfygta/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3423
+ edE0T4oBgHgl3EQf5gLh/content/2301.02753v1.pdf filter=lfs diff=lfs merge=lfs -text
3424
+ mNAyT4oBgHgl3EQf_vq9/content/2301.00915v1.pdf filter=lfs diff=lfs merge=lfs -text
3425
+ 6dE1T4oBgHgl3EQfmwTN/content/2301.03302v1.pdf filter=lfs diff=lfs merge=lfs -text
3426
+ vtE3T4oBgHgl3EQfkwrp/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3427
+ kdE_T4oBgHgl3EQf5hys/content/2301.08359v1.pdf filter=lfs diff=lfs merge=lfs -text
3428
+ RNE3T4oBgHgl3EQfygta/content/2301.04720v1.pdf filter=lfs diff=lfs merge=lfs -text
3429
+ b9AzT4oBgHgl3EQfZvxg/content/2301.01356v1.pdf filter=lfs diff=lfs merge=lfs -text
3430
+ 8NAyT4oBgHgl3EQf2_mV/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3431
+ 6dE1T4oBgHgl3EQfmwTN/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3432
+ ltE_T4oBgHgl3EQf6hwW/content/2301.08364v1.pdf filter=lfs diff=lfs merge=lfs -text
3433
+ ltE_T4oBgHgl3EQf6hwW/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3434
+ sNE5T4oBgHgl3EQfmA8g/content/2301.05675v1.pdf filter=lfs diff=lfs merge=lfs -text
3435
+ UdAzT4oBgHgl3EQfX_ww/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3436
+ x9E3T4oBgHgl3EQflwp-/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3437
+ VdE5T4oBgHgl3EQfBg5L/content/2301.05387v1.pdf filter=lfs diff=lfs merge=lfs -text
3438
+ T9E5T4oBgHgl3EQfbA-t/content/2301.05593v1.pdf filter=lfs diff=lfs merge=lfs -text
3439
+ ltE4T4oBgHgl3EQfUAze/content/2301.05013v1.pdf filter=lfs diff=lfs merge=lfs -text
3440
+ otA0T4oBgHgl3EQfKP8P/content/2301.02100v1.pdf filter=lfs diff=lfs merge=lfs -text
3441
+ BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf filter=lfs diff=lfs merge=lfs -text
3442
+ b9A0T4oBgHgl3EQfGf_e/content/2301.02049v1.pdf filter=lfs diff=lfs merge=lfs -text
3443
+ kb_36/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3444
+ sNE5T4oBgHgl3EQfmA8g/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3445
+ CtFJT4oBgHgl3EQftS25/content/2301.11617v1.pdf filter=lfs diff=lfs merge=lfs -text
3446
+ otFQT4oBgHgl3EQfrTZB/content/2301.13383v1.pdf filter=lfs diff=lfs merge=lfs -text
3447
+ VdE5T4oBgHgl3EQfBg5L/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3448
+ rtAzT4oBgHgl3EQfPPsG/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3449
+ jNE0T4oBgHgl3EQfYQBW/content/2301.02304v1.pdf filter=lfs diff=lfs merge=lfs -text
09FKT4oBgHgl3EQfOS13/content/tmp_files/2301.11758v1.pdf.txt ADDED
@@ -0,0 +1,1091 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Robust statistical properties of T1 transitions in
2
+ confluent cell tissues
3
+ Harish P Jain1,*, Axel Voigt2,3,4, and Luiza Angheluta1
4
+ 1Njord Centre, Department of Physics, University of Oslo, Oslo, 0371, Norway
5
+ 2Institute of Scientific Computing, Technische Universit¨at Dresden, Dresden, 01062, Germany
6
+ 3Center of Systems Biology Dresden, Pfotenhauerstr. 108, 01307 Dresden, Germany
7
+ 4Cluster of Excellence - Physics of Life, TU Dresden, 01062 Dresden, Germany
8
+ *harishpj@fys.uio.no
9
+ ABSTRACT
10
+ Large-scale tissue deformation which is fundamental to tissue development hinges on local cellular rearrangements, such as
11
+ T1 transitions. In the realm of the multi-phase field model, we analyse the statistical and dynamical properties of T1 transitions
12
+ in a confluent tissue. We identify an energy profile that is robust to changes in several model parameters. It is characterized by
13
+ an asymmetric profile with a fast increase in energy before the T1 transition and a sudden drop after the T1 transition, followed
14
+ by a slow relaxation. The latter being a signature of the fluidity of the cell tissue. We show that T1 transitions are sources of
15
+ localised large deformation of the cells undergoing the neighbour exchange and induce other T1 transitions in the nearby cells
16
+ through a chaining of events that propagate local cell deformation to large scale tissue flows.
17
+ 1 Introduction
18
+ Collective motion of cells is essential to several processes including development of an embryo, tissue morphogenesis, wound
19
+ healing, homeostasis and cancer metastasis1–3. These biological processes are highly complex and orchestrate mechanical,
20
+ chemical and biochemical interactions across multiple scales4–7. Through the interplay between directed motion, neighbour
21
+ alignment and mechanical interactions, cell tissues exhibit emergent structures and dynamics that are crucial for their biological
22
+ function. A fundamental underlying process for emergent large-scale behavior is the topological rearrangement of neighbouring
23
+ cells, also known as T1 transition. It is a local, dissipative event that leads to remodelling of the tissue architecture and
24
+ influences the large-scale flow properties of cell tissues that affects tissue homeostasis and epithelial morphogenesis8–10.
25
+ In confluent tissues, the tissue architecture can change in several ways. To isolate the tissue dynamics driven by spontaneous
26
+ T1 transitions, we consider an idealised situation where apoptosis and cell division are neglected, cells have a constant volume,
27
+ identical mechanical properties, and their total number is fixed. During a T1 transition, typically two neighbouring cells move
28
+ apart, while two of their neighbours come towards each other and make contact as illustrated in Figure 1. The average number
29
+ of neighbours before and after the T1 transition is invariant. Through T1 transitions, cells undergo large deformations and
30
+ shape changes, and encounter an energy barrier that they have to overcome through their activity11,12. Albeit, there are several
31
+ competing scenarios of the mechanical-chemical-biological feedback involved in a T1 transition, our understanding of these
32
+ coupled processes is still elusive13.
33
+ T1 transitions are common features also in granular matter and foams under external forcing14–16. The energy relaxation
34
+ after a T1 transition has been studied in foams by measuring the length of T1 junctions17. This concept was adapted for active
35
+ tissues 18, where the length of the T1 junction before and after a T1 transition has been measured. During a T1 transition in
36
+ dry foams15, the cells form a rosette where either four or more edges meet. It has been shown that a junction is energetically
37
+ stable for three edges incident at 120 degrees. So, while undergoing a T1 transition, the cells pass from one metastable state
38
+ to another via an unstable state comprising of a rosette. In confluent tissue extracellular spaces (gaps) change this process19.
39
+ Rosettes and tri-junctions can no longer be defined by the number of edges meeting but are placed where gaps are formed.
40
+ Also, various mathematical models have been used to study different facets of T1 transitions in foams and tissues11,19–23.
41
+ They are mainly based on vertex models, which approximate cells by polygonal shapes. However, cell shape plays a crucial role
42
+ in T1 transitions and the ability to accurately describe complex cell shapes, beyond polygons, might be advantageous19,24,25.
43
+ We consider a multi-phase field model that allows for spontaneous T1 transitions while capturing the cell shape at a high
44
+ resolution and allowing for large shape deformations. Multi-phase field models have been used to probe several questions
45
+ pertaining collective motion of cells26–34. These models consider cells as active incompressible droplets and unlike vertex
46
+ models, T1 transitions emerge spontaneously as a result of shape deformations. In vertex models, also extracellular spaces
47
+ (gaps) need explicit modelling with ad-hoc assumptions19, whereas in multi-phase field models they are emergent.
48
+ arXiv:2301.11758v1 [physics.bio-ph] 27 Jan 2023
49
+
50
+ In this paper, we focus on characterising the energy profile preceding and succeeding T1 transitions. We show that this
51
+ energy profile is statistically robust to changes in several model parameters. It is characterized by an asymmetric profile with
52
+ a fast increase in energy before the T1 transition, a sudden drop after the T1 transition, followed by a slow relaxation. The
53
+ relaxation profile provides insights into the flow properties of the tissue. Previously, the relaxation has been indirectly studied
54
+ in tissues by examining the relaxation of an ellipsoid droplet immersed in a tissue17,19,35. The relaxation profile was attributed
55
+ to yield stress due to limitations in the measurement timescales35, and also associated with the fluidization of the tissue19,36.
56
+ We further consider the duration of T1 transitions and find that the average duration scales inversely to the maximum average
57
+ energy attained during the T1 transition. Also, we show that T1 transitions may trigger the creation of other T1 transitions
58
+ nearby and the chaining of T1 transitions leads to large-scale deformation and fluid like behaviour.
59
+ We introduce the multi-phase field model in Section 2 and discuss results on local statistical properties of T1 transitions in
60
+ Section 3. We further analyse the dependency of these statistical properties on various model parameters. The effect of cell
61
+ deformability and activity is considered in detail. We study the impact of chaining of T1 transitions on flow at larger scales. In
62
+ Section 4 we relate these finding to mechanical and rheological properties of the tissue and postulate that they can be used to
63
+ characterize fluidization. Details on the numerical methods, the initialization and characterization of T1 transitions are provided
64
+ in Section 5.
65
+ 2 Multi-phase field model
66
+ We represent a two-dimensional confluent cell tissue within a multi-phase field model following formulations28,32–34. We
67
+ consider a system of N cells of equal area occupying a square domain of size [0,L]×[0,L] and use periodic boundary conditions.
68
+ Each cell is represented by a scalar phase field φi(x,t) as an indicator function of the domain occupied by each cell labeled by
69
+ i = 1,2,··· ,N. Namely, the bulk phase values φi ≈ 1 and φi ≈ −1 indicate the interior and exterior of the cell, respectively.
70
+ The cell boundary is defined by the localised transition region between the two bulk values. The time evolution of the i-th phase
71
+ field follows a conservative dynamics which preserves the cell areas and is given by
72
+ ∂tφi +vi ·∇φi = ∆δF
73
+ δφi
74
+ ,
75
+ (1)
76
+ where ∆ is the two-dimensional Laplacian applied to the variational derivative of a free energy functional F with respect to the
77
+ phase field φi. The free energy F = FCH +FINT contains the Cahn-Hilliard energy
78
+ FCH = 1
79
+ Ca
80
+ N
81
+
82
+ i=1
83
+
84
+
85
+ �ε
86
+ 2||∇φi||2 + 1
87
+ 4ε (φ 2
88
+ i −1)2
89
+
90
+ dx,
91
+ (2)
92
+ and the interaction energy28,34
93
+ FINT = 1
94
+ In
95
+ N
96
+
97
+ i=1
98
+
99
+ Ω B(φi)∑
100
+ j̸=i
101
+ w(φj)dx.
102
+ (3)
103
+ The capillary number Ca and interaction number In are tuning parameters for the cell deformability and the strength of mutual
104
+ repulsion/attraction interactions, respectively. In equation 2, the Cahn-Hilliard energy has a local free energy density given by
105
+ the double well potential with the minima corresponding to the two bulk values and a gradient energy. The parameter ε controls
106
+ the width of the diffuse interface. The Cahn-Hilliard energy ensures phase separation into two bulk regions which are separated
107
+ by a thin, diffusive interface. This energy alone is minimised by cells with circular shapes. In equation 3, each cell’s interior
108
+ and interface (B(φi) = (φi +1)/2) is coupled with every other cell through a local interaction potential,
109
+ w(φj) = 1−(a+1)
110
+ �φ j −1
111
+ 2
112
+ �2
113
+ +a
114
+ �φj −1
115
+ 2
116
+ �4
117
+ ,
118
+ where the parameter a = 1 models repulsion, while a > 1 models attraction and repulsion (see34 for a detailed analysis of role
119
+ of a).
120
+ Cell activity is introduced through the advection velocity vi(x,t) in equation 1 and is given by
121
+ vi(x,t) = v0B(φi)ei(t),
122
+ (4)
123
+ where v0 is a constant parameter that controls the magnitude of the activity, ei = [cosθi(t),sinθi(t)] where θi is the orientation
124
+ of the self-propulsion which evolves as
125
+ dθi =
126
+
127
+ 2DrdWi(t)+α(βi(t)−θi(t))dt.
128
+ (5)
129
+ 2/14
130
+
131
+ Figure 1. Successive time snapshots of tissue section undergoing a T1 transition, a finite-time neighbour exchange process
132
+ between cells A, B, C and D. The transition starts when cells B and D lose contact and is completed when cells A and C make
133
+ contact. During the T1 transition an extracellular space (gap) is formed between cells A, B, C and D. Also see Supplementary
134
+ Movie 1
135
+ The first term on the right side of equation 5 is a rotational diffusion term with a Wiener process Wi. The second term is a
136
+ relaxation to the orientation of the cell’s shape elongation. The cell elongation is identified by the principal eigenvector of the
137
+ shape deformation tensor29,32
138
+ Si =
139
+
140
+ Si,0
141
+ Si,1
142
+ Si,1
143
+ −Si,0
144
+
145
+ (6)
146
+ which is symmetric and traceless and has the two components
147
+ Si,0 = 1
148
+ 8
149
+
150
+
151
+ ��∂φi
152
+ ∂y
153
+ �2
154
+
155
+ �∂φi
156
+ ∂x
157
+ �2�
158
+ dx
159
+ and
160
+ Si,1 = −1
161
+ 4
162
+
163
+
164
+ �∂φi
165
+ ∂x
166
+ ∂φi
167
+ ∂y
168
+
169
+ dx.
170
+ Its corresponding eigenvalues are λ ±
171
+ i = ±
172
+
173
+ S2
174
+ i,0 +S2
175
+ i,1 and eigenvectors are η±
176
+ i = ( Si,0+λ ±
177
+ i
178
+ Si,1
179
+ ,1). The vector η+
180
+ i is parallel to the
181
+ elongation axis of the cell and determines the preferred self-propulsion direction as
182
+ βi(t) =
183
+
184
+ arg(η+
185
+ i (t))
186
+ : ei(t)·η+
187
+ i (t) > 0
188
+ −arg(η+
189
+ i (t))
190
+ : ei(t)·η+
191
+ i (t) < 0
192
+ (7)
193
+ Therefore, the second term on the right hand side of equation (5) aligns θi(t) with βi(t). The parameter α controls the time
194
+ scale of this alignment of the self-propulsion direction with the elongation axis of the cell. There are different possibilities
195
+ to define the advection velocity vi(x,t) (see Ref.32 for an overview and comparison). The current form includes approaches
196
+ of Ref.29 and, as the elongation is a result of the interaction with neighbouring cells, it accounts for contact inhibition of
197
+ locomotion37,38. The model leads to properties appropriate to describe, e.g., Madin-Darby canine kidney (MDCK) cells32,39.
198
+ (a)
199
+ (b)
200
+ (c)
201
+ Figure 2. (a). Free energy density, in a region surrounding a T1 transition. (b) and (c) Coarse-grained energy density in a
202
+ linear and log-scale, respectively. The white dot represents the epicenter of the T1 transition while the green dotted circle
203
+ represents the coarse graining radius ravg, the estimated core of the T1 transition.
204
+ 3/14
205
+
206
+ A
207
+ A
208
+ A
209
+ A
210
+ B
211
+ D
212
+ D
213
+ D
214
+ B
215
+ B
216
+ D
217
+ B
218
+ c
219
+ c
220
+ c
221
+ c36
222
+ 32
223
+ 28
224
+ 24
225
+ 20
226
+ 16
227
+ 12
228
+ 8
229
+ 4
230
+ 05.4
231
+ 4.8
232
+ 4.2
233
+ e grained)
234
+ 3.6
235
+ 3.0
236
+ (coarse
237
+ 2.4
238
+ energy
239
+ 1.8
240
+ 1.2
241
+ 0.6
242
+ 0.05.4
243
+ 4.8
244
+ 4.2
245
+ 3.6
246
+ 3.0
247
+ 2.4
248
+ energy (
249
+ 1.8
250
+ 1.2
251
+ 0.6
252
+ 0.03 Results
253
+ 3.1 Energy profile of T1 transitions
254
+ Within our multi-phase field approach, T1 transitions are neighbour exchange processes with a finite duration. A prototypical
255
+ time sequence of a T1 transition is illustrated in Figure 1. Four cells A, B, C and D are involved. Before the T1 transition, the
256
+ cell junction shared by cells B and D shrink. The T1 transition starts when the cells B and D break contact and move apart.
257
+ This results in the formation of an extracellular space which we call ’gap’. Cells A and C move towards each other, close the
258
+ gap, and form a new contact concluding the T1 transition. After the T1 transition, this new junction between cells A and D
259
+ expands. The junctions that shrink and expand are called T1 junctions. We refer to Section 5 for the procedure to detect T1
260
+ transitions and their durations. A T1 transition not only leads to topological rearrangements of the four neighbouring cells, it
261
+ also involves deformation of the cells. While details, such as the specific shape of the cells and their deformation, the duration
262
+ of the T1 transition and the relaxation process differ between T1 transitions, we will demonstrate that robust statistical features
263
+ of T1 transitions exist.
264
+ Figure 3. (a) Evolution of energy (averaged for 158 T1 transitions) at the epicenter of the T1 transitions. Negative time
265
+ corresponds to time before a T1 transition and positive time corresponds to time after a T1 transition. The shaded region
266
+ denotes a width of 1 standard deviation. The gray dashed line is the average energy across the whole domain. (b) Average
267
+ energy profile during a T1 transition as function of percentage of T1 duration. The standard deviation is also indicated. (c), (d)
268
+ and (e) Montages of deformed cells involved in a T1 transition. Each montage is made up of 5 images, that capture the cells at
269
+ equidistant times, stacked over each other. The darkest colored overlay represents the latest time. (c) Cell shapes before the
270
+ start of the T1 transition, (d) during the T1 transition, and (e) after the end of the T1 transition. Also see Supplementary Movie
271
+ 2 for corresponding simulation
272
+ We define the epicenter of a T1 transition as the point with the minimum total distance from the centers of the involved cells
273
+ in the neighbour exchange process midway through the T1 transition. We define the immediate region around the epicenter as
274
+ the core of a T1 transition, which is of essence because it is the region where T1 junctions shrink and expand, and the gap
275
+ appears and disappears.
276
+ Figure 2a shows the total free energy density midway through a T1 transition. The epicentre is shown by the white dot and
277
+ 4/14
278
+
279
+ 4.85
280
+ energy before T1
281
+ (a)
282
+ energy during T1
283
+ 0.36
284
+ 5
285
+ (b)
286
+ energy after T1
287
+ maximum
288
+ standard deviation of energy
289
+ mean global energy
290
+ 4.80
291
+ 4
292
+ T
293
+ ~75% of maximum !
294
+ ~75% of maximum
295
+ 4.75
296
+ buunp
297
+ 0.32
298
+ rgy standar
299
+ 2
300
+ 0.30
301
+ ener
302
+ 4.65
303
+ 1
304
+ 0.28
305
+ 4.60
306
+ 0
307
+ -30
308
+ -20
309
+ -10
310
+ 0(T1)
311
+ 10
312
+ 20
313
+ 30
314
+ 0%(start)
315
+ 20%
316
+ 40%
317
+ 60%
318
+ 80%
319
+ 100%(end)
320
+ time
321
+ percent of T1 duration
322
+ (d)
323
+ e
324
+ tT1
325
+ 5 to 0
326
+ c
327
+ 0 to 100%
328
+ tt1=0the estimated core is highlighted by the green circle. It has a radius ravg = 0.02L, where L is the side length of the computational
329
+ domain. We compute a coarse-grained energy whose value at any point in the domain is the average of the energy density in a
330
+ circular region centered at that point with radius ravg. Figure 2b shows this coarse grained energy field fravg, which we will call
331
+ ’energy’ field in the following. The signature of triple-junctions and T1 transitions already becomes appealing due to their
332
+ higher energy. The difference between both is enhanced by using a log scale, see Figure 2c. Considering this energy field in the
333
+ epicenter over time provides a spatial-temporal description of T1 transitions. For discussions on the sensitivity of this procedure
334
+ on ravg we refer to Section 5.
335
+ Figure 3a shows the time evolution of this energy averaged over 158 T1 transitions. The time is negative before a T1
336
+ transition and is positive after a T1 transition, and is denoted by tT1. The energy during the T1 transitions is excluded, which
337
+ leads to a discontinuity at tT1 = 0. The two values at tT1 = 0 correspond to the averaged energies at the start and the end of
338
+ the T1 transitions. As the duration of T1 transitions differs, an averaged energy as a function of time during the T1 transition
339
+ does not provide any meaningful information. Details on the energy during the T1 transition are shown in Figure 3b using a
340
+ normalized time. The energy profile in Figure 3a, 3b has a peak at the T1 transition. The profile is asymmetric with a strong
341
+ increase in energy before the T1 transition and a sudden decrease after the T1 transition followed by a slow relaxation. The
342
+ asymmetry can be quantified by considering the 75% of the maximum value, which is marked in Figure 3a. Figures 3c-3e
343
+ illustrate the evolution for one T1 transition, the one depicted in Figure 1. These figures contain overlays of several snapshots
344
+ as per the time marked in the figures. The darkest of these snapshots pertains to the latest time. The yellow region marks the
345
+ estimated core of the T1 transition. The asymmetry before and after the T1 transition, Figure 3c, 3e, respectively, is clearly
346
+ visible. The T1 junctions are longer at tT1 = 5 compared with tT1 = −5. During the T1 transition, Figure 3d, the asymmetry is
347
+ less pronounced. Most of the deformations are concentrated in the core. These deformations arise as a result of the formation of
348
+ the gap, and subsequently its disappearance. The shrinking and formation of T1 junctions and the deformations within the core
349
+ are a signature of the T1 transition. However, they also influence the deformation of the four cells outside of the core, and their
350
+ neighbours, which can be perceived by the overlayed cell shapes. Interestingly in the depicted T1 transition, the deformations
351
+ of each of the four cells seems to be persistent before, during and after the T1 transition (see the arrows indicating the direction
352
+ of deformations). We will elaborate on this and other coarse grained effects in Section 3.4. The energy profile indicates an
353
+ accumulation of energy to reach the energy barrier at the T1 transition. This is due to probing several possibilities in local
354
+ movement and cell shape deformation, which are coupled by the definition of activity, taking into account cell elongation and
355
+ contact inhibition of locomotion. After the energy barrier has been overcome the fast relaxation of the energy can be associated
356
+ with a steep gradient in the energy landscape in one direction.
357
+ The asymmetric shape of the energy profile is robust to changes in most model parameters, as demonstrated in Figure 4
358
+ where α, Ca, a, D and v0 are varied and the energy profile associated with passive sheared foams is included for comparison.
359
+ Figure 4b shows the energy rescaled by the maximum energy as changes in Ca directly affect the free energy, see equation
360
+ (2). Within the range of parameters explored, the changes in the values of alignment parameter α, interaction coefficient a,
361
+ and diffusivity D have minimal effects on the energy profile. We see that the profile is robust even in absence of noise (D = 0)
362
+ (Figure 4d). On the other hand, the profile deviates from Figure 3a for low values of v0 and Ca. Figure 4e shows that the cell
363
+ activity v0 affects the rate at which the cells approach a T1 transition which is indicated by the slower accumulation of energy
364
+ for low v0. However, change in v0 has a minor effect on the energy relaxation immediately after a T1 transition. The slow
365
+ relaxation afterwards is largest for large values of v0. This can be associated with the definition of activity, which is related to
366
+ cell elongation and at least on average cells elongate in the direction of movement after the T1 transition. The characteristic
367
+ profile of the accumulation of energy before the T1 transition and the fast relaxation of energy after the T1 transition is also
368
+ present for low values of Ca, see Figure 4b. However, as Figure 4b considers a rescaled energy the actual rates depend on Ca.
369
+ The slow relaxation after the sudden decrease only slightly depends on Ca. We would like to point out that the results for low
370
+ values of v0 and Ca should be considered with care, as the number of T1 transitions considered in these cases is much lower.
371
+ While the system is still in the fluid phase, the extreme values for v0 = 0.1 and Ca = 0.05 already approach the transition to the
372
+ solid phase.
373
+ In passive foams T1 transitions can be induced by applying shear. This is considered by an advection velocity field
374
+ vi(x,t) = 0.5|x1 −L/2| and the resulting energy profile is compared with the profile from Figure 3a, see Figure 4f. The profiles
375
+ differ before the T1 transition and within the slow relaxation, but are similar in the sudden drop of energy right after the T1
376
+ transition. The latter reiterates that the energy relaxation right after a T1 transition is independent on activity. The differences
377
+ in the accumulation of the energy can be associated with the persistent orientation of advection velocity due to shear, which
378
+ results in collective deformation and a more deterministic approach of the T1 transition. Also the termination of the decay in
379
+ the passive case results from the restricted possibilities of relaxation due to the applied shear.
380
+ 5/14
381
+
382
+ Figure 4. Evolution of energy for different parameter values. The pink and cyan shaded region are used to denote time before
383
+ and after the T1 transitions, respectively. The number of T1 transition used to obtain these results in indicated. (a) The aligning
384
+ parameter α is varied. (b) The parameter to control cell deformability, Ca is varied. As Ca is a parameter that influences the
385
+ overall total energy, for better comparison the energy is rescaled by division with the maximum energy. (c) Adhesion and
386
+ repulsion corresponds to a = 1.5 and repulsion corresponds to a = 1. (d) The diffusivity D is varied. (e) The magnitude of the
387
+ activity v0 is varied. (f) The passive shear corresponds to advection field vi(x,t) = 0.5|x1 − L
388
+ 2| while the active case
389
+ corresponds to parameters in Table 1.
390
+ 3.2 Duration and other properties of T1 transitions
391
+ As mentioned earlier, the duration of T1 transitions strongly depends on the specific cell arrangements. We now discuss the
392
+ statistical properties of the duration. Figure 5a shows the probability distributions of the duration of T1 transitions. The
393
+ distributions peak at smaller values and have a long tail for larger values. The profiles corresponds to repulsive and adhesive
394
+ (a > 1), and only repulsive interactions (a = 1), and are fitted by Gamma distributions. The average duration of T1 transitions
395
+ for repulsive interactions (3.418 measured for 539 T1 transitions across 3 simulations) is smaller compared to that for repulsive
396
+ and adhesive interactions (3.826 for 631 T1 transitions across 4 simulations). Keeping other parameters fixed, the average
397
+ number of T1 transitions in the repulsive and adhesive case was 157.75 while for the repulsive case was 179.66, respectively.
398
+ Therefore, in the repulsive case, cells undergo neighbour exchanges faster and more often. Figure 5b shows the duration of T1
399
+ 6/14
400
+
401
+ α: 0.0, Total Tl: 173
402
+ (b)
403
+ 1.0
404
+ 5.0
405
+ (a)
406
+ α: 0.001, Total T1: 194
407
+ α: 0.01, Total T1: 159
408
+ 0.9
409
+ 4.5
410
+ α: 0.1, Total T1: 158
411
+ ::
412
+ :
413
+ α: 1.0, Total T1: 140
414
+ 0
415
+ ::
416
+ 4.0
417
+ ::
418
+ 8
419
+ :
420
+ 8:
421
+ :
422
+ :
423
+ :
424
+ .
425
+ :::
426
+ ner
427
+ led
428
+ 1:
429
+ .
430
+ 3.0-
431
+ 0.6
432
+ :
433
+ ::
434
+ Ca: 0.05, Total T1: 25
435
+ 2.5
436
+ ::::
437
+ Ca: 0.1, Total T1: 96
438
+ :
439
+ .
440
+ Ca: 0.15, Total T1: 160
441
+ 0.4
442
+ 2.0
443
+ :
444
+ Ca: 0.2, Total T1: 151
445
+ Ca: 0.25, Total T1: 193
446
+ 0
447
+ 0.3
448
+ 1.5
449
+ Ca: 0.3, Total T1: 182
450
+ -30
451
+ -20
452
+ 20
453
+ -10
454
+ 0(T1)
455
+ 10
456
+ 30
457
+ -30
458
+ -10
459
+ 0(T1)
460
+ -20
461
+ 10
462
+ 20
463
+ 30
464
+ time
465
+ time
466
+ (c)
467
+ D: 0.0 , Total T1: 182
468
+ 5.0
469
+ (d)
470
+ 5.0-
471
+ D: 0.01 , Total T1: 158
472
+ ..
473
+ D: 0.02 , Total T1: 177
474
+ 4.5
475
+ 4.5
476
+ D: 0.03, Total T1: 145
477
+ 8
478
+ :
479
+ :
480
+ 4.0.
481
+ :
482
+ 0
483
+ 4.0
484
+ 8
485
+ ::
486
+ :
487
+ :
488
+ ner
489
+ 3.0
490
+ 8
491
+ 3.0
492
+ :.
493
+ 2.5
494
+ 2.5.
495
+ 1...:
496
+ 2.0
497
+ 2.0
498
+ 8888888
499
+ adhesion & repulsion, Total T1: 158
500
+ repulsion, Total T1: 188
501
+ 1.5
502
+ 1.5
503
+ -30
504
+ -20
505
+ -10
506
+ 0(T1)
507
+ -30
508
+ -20
509
+ 10
510
+ 20
511
+ 30
512
+ -10
513
+ 0(T1)
514
+ 10
515
+ 20
516
+ 30
517
+ time
518
+ time
519
+ Vo: 0.1 , Total T1: 8
520
+ active, Total T1: 158
521
+ (4)
522
+ 5.0
523
+ 5.0
524
+ (e)
525
+ Vo: 0.2 , Total T1: 27
526
+ passive shear, Total T1: 64
527
+ Vo: 0.3 , Total T1: 72
528
+ .
529
+ 4.5
530
+ Vo: 0.4 , Total T1: 98
531
+ 4.5
532
+ .
533
+ Vo: 0.5 , Total T1: 158
534
+ 0
535
+ .
536
+ o:
537
+ Vo: 0.6 , Total Tl: 268
538
+ 4.0
539
+ 4.0
540
+ .
541
+ Vo: 0.7 , Total T1: 266
542
+ :
543
+ 8
544
+ :
545
+ :
546
+ .
547
+ :
548
+ ..
549
+ 3.0
550
+ ..
551
+ .......
552
+ 3.0
553
+ :
554
+ 2.5-
555
+ 2.5
556
+ 2.0
557
+ 8.8
558
+ 2.0
559
+ 1.5
560
+ 1.5
561
+ -30
562
+ -20
563
+ -10
564
+ 0(T1)
565
+ 10
566
+ 20
567
+ 30
568
+ -30
569
+ -20
570
+ -10
571
+ 0(T1)
572
+ 10
573
+ 20
574
+ 30
575
+ time
576
+ time(a)
577
+ (b)
578
+ (c)
579
+ (d)
580
+ Figure 5. (a) Probability distributions of the duration of T1 transitions for only repulsion interactions (magenta dots) and for
581
+ both repulsion and adhesion (cyan dots). Both data sets are fitted by Gamma distributions highlighting the exponential tails. (b)
582
+ Scatter plot of duration of T1 transition as function of the maximum energy reached during a T1 transition. (c) Evolution of
583
+ average shape index and (d) Evolution of the average velocity of center of mass of the cells involved in the T1 transitions as
584
+ function of time relative to a T1 transition. The shaded regions mark the standard deviations of both quantities.
585
+ transitions as a function of the maximum energy reached during a T1 transition. While the data is scattered, it qualitatively
586
+ shows that high energy T1 transitions are faster. This qualitative result holds for both cases and can be explained by a larger
587
+ accumulation of energy in the core, which increases the spatial energy gradients and in turn speeds up the relaxation of the
588
+ energy which leads to the shorter duration.
589
+ Figure 5c shows the averaged shape index (perimeter/√area) of the four cells involved in a T1 transition as function of
590
+ time relative to a T1 transition. The asymmetry found for the energy profile and the discontinuity at tT1 = 0 is also present
591
+ for this quantity. The cells deform and elongate as they approach a T1 transition and relax afterwards. This increases and
592
+ decreases their shape index, respectively. The faster relaxation leads to the asymmetry in the evolution of the shape index.
593
+ The asymmetry around a T1 transition is also seen in the average velocity of the center of mass of the cells involved in a T1
594
+ transition as shown in Figure 5d. While the velocity is almost constant before the T1 transition, the velocity peaks at the
595
+ T1 transition and slows down afterwards until it reaches the average value before the T1 transition. The peak in the average
596
+ velocity of the center of mass is due to the large deformations of the portions of cells within the core and their fast relaxation
597
+ after the T1 transition. Both quantities, the shape index and the cell velocity of the four cells involved in a T1 transition are also
598
+ experimentally accessible. These quantities can be related to the energy considered above.
599
+ 3.3 Effect of cell deformability, activity and gaps on T1 transitions
600
+ The asymmetric energy profile in Figure 3a is robust to tuning of most of the model parameters. Significant variations only
601
+ occur for low values of Ca and v0, see Figure 4b, 4e. We now analyse the effect of cell deformability and activity on T1
602
+ transitions in more detail. This requires a detailed analysis of the influence of gaps. The gap fraction is related to the confluency
603
+ as confluency = 100(1−gap fraction). It essentially is a fixed quantity set by the initial data. We fix all parameters as per table
604
+ 1 and compare two different initial cell sizes, denoted by ’low gap’ with gap fraction 0.00048 and ’high gap’ with gap fraction
605
+ 0.00212. Both can be considered as confluent. The number of T1 transitions within the considered time frame is not influenced
606
+ by this variation. The total numbers of T1 transitions are 162 and 158 for low and high gap cases, respectively. However, the
607
+ 7/14
608
+
609
+ 0.22
610
+ before Tl
611
+ after T1
612
+ 0.20
613
+ S
614
+ cell
615
+ 0.18
616
+ 0.16
617
+ f
618
+ velocity
619
+ 0.14
620
+ 0.12
621
+ 0.10
622
+ 0.08
623
+ -30
624
+ -20
625
+ -10
626
+ 0(T1)
627
+ 10
628
+ 20
629
+ 30
630
+ timerepulsion gamma fit
631
+ adhesion & repulsion gamma fit
632
+ repulsion
633
+ 0.3
634
+ adhesion & repulsion
635
+ probability
636
+ 0.2
637
+ 0.1
638
+ 0.0
639
+ 0
640
+ 2
641
+ 4
642
+ 6
643
+ 8
644
+ 10
645
+ Tl duration10
646
+ adhesion & repulsion
647
+ repulsion
648
+ 8
649
+ duration
650
+ 6
651
+ 4
652
+ 2
653
+ 4.0
654
+ 4.5
655
+ 5.0
656
+ 5.5
657
+ max energy4.15
658
+ before Tl
659
+ after T1
660
+ shape index of Tl cells
661
+ 4.10
662
+ 4.05
663
+ O
664
+ 4.00
665
+ 000:
666
+ 0000
667
+ 3.95
668
+ 3.90
669
+ -30
670
+ -20
671
+ -10
672
+ 0(T1)
673
+ 10
674
+ 20
675
+ 30
676
+ timeFigure 6. Dependency of various properties on deformability Ca ((a) - (f)) and activity v0 ((g) - (l)). Total T1 considers the
677
+ total number of T1 transitions within the considered time frame, T1 duration is the averaged time from start to end of all T1
678
+ transitions, Gap fraction is the extracellular space, considered as ∑i B(φi) below a fixed threshold, again averaged over time,
679
+ Shape index considers the averaged shape index of the four cells involved in the T1 transitions. Time between T1 is the average
680
+ time a cell spends between successive T1 transitions, Max energy is the maximum energy reached at a T1 transition and vavg is
681
+ the average velocity of center of mass of all cells.
682
+ average duration of T1 transitions is reduced by reducing the gap fraction. The values are 2.559 and 3.794 for low and high gap
683
+ cases, respectively. We measure the gap fraction as the fraction of domain where ∑i B(φi) is less than a fixed threshold which is
684
+ set to 0.2. This essentially excludes possible partial overlap of the diffuse interface region of cells and only accounts for gaps at
685
+ tri-junctions and rosettes. This makes the measured gap fraction to depend on deformability and activity. For the considered
686
+ cases low Ca leads to rounder cells with stronger overlap of the diffuse interfaces of the cells, which are in contact. This leads
687
+ 8/14
688
+
689
+ 300
690
+ 8
691
+ 0.012
692
+ (a)
693
+ (b)
694
+ (c)
695
+ 250
696
+ duration
697
+ 6
698
+ 0.009
699
+ 4
700
+ 2
701
+ % 0.003
702
+ 50
703
+ 0
704
+ 0
705
+ 0.0
706
+ 0.05 0.10 0.15 0.20 0.25 0.30
707
+ 0.05 0.10 0.15 0.20 0.25 0.30
708
+ 0.05 0.10 0.15 0.20 0.25 0.30
709
+ Ca
710
+ Ca
711
+ Ca
712
+ 4.2
713
+ 125
714
+ (d)
715
+ (f)
716
+ (e)
717
+ Regular pentagon
718
+ 15
719
+ 4.1
720
+ Regular hexagon
721
+ energy
722
+ index
723
+ 100
724
+ between
725
+ 4.0
726
+ 75
727
+ 10
728
+ 1/Ca fit
729
+ pe
730
+ 3.9
731
+ xeu
732
+ 50
733
+ hal
734
+ time
735
+ 5
736
+ S
737
+ 3.8
738
+ 25
739
+ 3.7
740
+ 0.05 0.10 0.15 0.20 0.25 0.30
741
+ 0.05 0.10 0.15 0.20 0.25 0.30
742
+ 0.05 0.10 0.15 0.20 0.25 0.30
743
+ Ca
744
+ Ca
745
+ Ca
746
+ 300
747
+ 8
748
+ 0.012
749
+ .(g).
750
+ (h)
751
+ (i)
752
+ 250
753
+ 6
754
+ 150
755
+ 4
756
+ b
757
+ 2
758
+ 50
759
+ 0
760
+ 0.0
761
+ 0
762
+ 0.2 0.3 0.4 0.5 0.6 0.7
763
+ 0.2
764
+ ¥0.7
765
+ 0.4 0.5 0.6 0.7
766
+ 0.1
767
+ 0.1 (
768
+ 0.3 0.4 0.5 0.6
769
+ 0.1
770
+ 0.2
771
+ 0.3
772
+ Vo
773
+ Vo
774
+ Vo
775
+ 4.2
776
+ 125
777
+ (k)
778
+ ·(I)
779
+ Regular pentagon
780
+ 0.20
781
+ 4.1
782
+ index
783
+ Regular hexagon
784
+ 100
785
+ between
786
+ 0.15
787
+ 4.0
788
+ 75
789
+ Vavg
790
+ 0.10
791
+ 50
792
+ leus
793
+ time
794
+ S
795
+ 3.8
796
+ 25
797
+ 0.05
798
+ 3.7
799
+ 0
800
+ 0.00
801
+ 0.2 0.3 0.4 0.5
802
+ 0.60.7
803
+ 0.1 0.2 0.3
804
+ 0.40.50.60.7
805
+ 0.1
806
+ 0.2
807
+ 0.1
808
+ 0.3 0.4 0.50.60.7
809
+ Vo
810
+ Vo
811
+ Voto an increase in the measured gap fraction, see Figure 6c. A similar dependency, but smaller in magnitude, is found for activity.
812
+ Larger v0 lead to stronger interactions between cells and thus more overlap of the diffuse interface region of cells in contact
813
+ which again leads to an increase in measured gap fraction, see 6i. The gap fraction in both figures is the average quantity over
814
+ the considered time frame. Both results and the dependencies discussed below are considered for the ’high gap’ setting.
815
+ As shown in Figure 6a, the number of T1 transitions increases with increasing cell deformability parameter Ca. Cells that
816
+ are more deformable can more easily acquire the shape deformations associated with T1 transitions. When Ca is low, these
817
+ deformations are energetically more expensive resulting in fewer T1 transitions. Also the duration of T1 transitions depends on
818
+ Ca, as shown in Figure 6b. T1 transitions are shorter when cells are more deformable. We suspect that this might be due to the
819
+ presence of smaller gaps at T1 transitions, as this requires less shape deformation. Figure 6d shows the average cell shape index
820
+ of the four involved cells in a T1 transition as function of cell deformability Ca. The shape index increases as deformability
821
+ increases. The shape index of Ca = 0.05 is less than that of a regular pentagon. The shape index of regular pentagon (3.813)
822
+ was attributed as the critical shape index for jamming transition in classical vertex models40 without gaps. It has been argued
823
+ that gaps influence the mechanical properties and solid-liquid transition17, which might explain this discrepancy, as our system
824
+ is still within the fluid phase. Further details, which are related to the previous dependencies are shown in Figures 6e and 6f.
825
+ Figure 6e shows the average time a cell spends between successive T1 transitions as function of Ca. This quantity is large for
826
+ low Ca but decreases and plateaus to low values upon increasing Ca. Figure 6f shows the maximum energy reached during a T1
827
+ transition against Ca. We see from the dotted curve that the maximum energy is proportional to 1/Ca. Recall that 1/Ca scales
828
+ the Cahn-Hilliard energy as per equation (2). This means that Fravg is primarily affected by the Cahn-Hilliard energy, which
829
+ explains the correspondence of our results with the length of T1 junctions discussed earlier and considered in17,18.
830
+ The dependency on v0 shows qualitatively similar behaviour for the number of T1 transitions, the duration of T1 transitions,
831
+ the shape index of the cells involved in T1 transitions and the time a cell spends between successive T1 transitions, see Figures
832
+ 6g, 6h, 6j, 6k, respectively. The increase in T1 transitions and decrease in the time between T1 transitions with activity is a
833
+ property of active systems, which are driven out of equilibrium. T1 transitions are topological defects and thus an indication of
834
+ out of equilibrium. The decrease in duration with increasing activity can again be associated with the decrease in measured
835
+ gap fraction, see 6i, and also the increasing shape index with activity is a direct consequence of the form of active forcing
836
+ considered. Figure 6l shows the average velocity of center of mass of all cells as a function of v0. As expected, activity is
837
+ primarily converted into motion with an almost linear dependency.
838
+ 3.4 Chaining of T1 transitions
839
+ So far, we have analysed robust statistical properties of T1 transitions within their cores. However, we have also seen that these
840
+ local features influence the position and shape of the four cells involved in a T1 transition, and their neighbours. This can
841
+ induce new T1 transitions and lead to the formation of chains of T1 transitions as illustrated in Figure 7. Each of these images
842
+ consists of 10 tissue states captured at equally-spaced time instants and overlaid on top of each other. The cell shapes outlined
843
+ in the darkest colors correspond to the latest time. The yellow circles mark the cores of the T1 transitions at those time instants.
844
+ The chaining of T1 transitions is a result of the assumptions on constant cell area and a confluent tissue. Any cell deformation
845
+ associated with a T1 transition induces deformation of the neighbouring cells and thereby increases the possibility of new
846
+ T1 transitions. This is further enhanced by activity and the considered propulsion mechanism which favours the direction of
847
+ elongation.
848
+ This chaining of T1 transitions is also observed experimentally in sheared foams41 and in our simulations of passive foams
849
+ which are sheared with a constant shear velocity profile. For v0 = 0, typically one or two T1 transitions occur due to the initial
850
+ non-equilibrium configuration of the tissue. As cells relax toward an equilibrium state, their motility is reduced which prevents
851
+ any further T1 transitions. The situation for small v0 is similar. The tissue becomes jammed by cells being caged amongst
852
+ their neighbours and no T1 transitions occur32. Furthermore, when cell deformability (Ca) is low, the energetic cost for cell
853
+ deformations that are necessary to undergo T1 transitions is high, which prevents or at least reduces T1 transitions and the
854
+ tissue also becomes jammed32. This corresponds to the low number of T1 transitions in Figure 4b, 4e for low Ca and low v0,
855
+ respectively.
856
+ However, in the considered case in Figure 7 we are far away from jamming and the chaining of T1 transitions leads to
857
+ cell deformation propagating to larger scales. This is highlighted in Figure 8a, which shows the evolution of the cell tissue in
858
+ the whole time window considered in Figure 7 together with the trajectory of the center of mass of the colored cells, which
859
+ highlights the movement on larger spatial scales. The chaining of T1 transitions is also a source of large-scale flows as evidenced
860
+ in Figure 8b. We consider the velocities of the centers of mass of all cells, average this quantity with the neighboring cells and
861
+ construct a continuous velocity field by interpolating in space. The velocity field is shown together with the cell boundaries at
862
+ t = 52. The mean direction corresponds with the direction of the black path shown in Figure 8a. However, as the variations in
863
+ magnitude and direction of the flow field in Figure 8b indicate, T1 transitions can also induce fluctuations and could play an
864
+ important role in sustaining chaotic flows (active turbulence) in cell tissues42–44.
865
+ 9/14
866
+
867
+ (a)
868
+ (b)
869
+ (c)
870
+ (d)
871
+ (e)
872
+ (f)
873
+ Figure 7. Chaining of T1 transitions. Each panel is a montage of 10 snapshots of tissue configurations taken successively at
874
+ constant times intervals. Latest time is represented by the cell shapes marked in the darkest color shades. The cores of the T1
875
+ transitions are highlighted in yellow. Also see Supplementary Movie 3.
876
+ Figure 8. (a) Montage of tissue snapshots from time t = 25 to t = 79 (see figure 7). The black path is the trajectory of the
877
+ center of mass of the 11 coloured cells. (b) LIC visualization of streamlines, magnitude (color) and direction (black arrows) of
878
+ the flow velocity. The velocity and the cell boundaries correspond to time t = 52.
879
+ 10/14
880
+
881
+ time: 25 to 34time: 34 to 43time: 43 to 52time: 52 to 61time: 61 to 70time: 70 to 794 Discussion
882
+ Large-scale tissue deformation requires cellular rearrangements. The simplest rearrangement in confluent cell tissue is a T1
883
+ transition. We have analysed these neighbour exchanges among cells in detail using a multi-phase field model and identified
884
+ a characteristic asymmetric energy profile, see Figure 3. The energy profile has a peak at the T1 transition. The profile is
885
+ asymmetric with a strong increase in energy before the T1 transition and a sudden decrease after the T1 transition which is
886
+ followed by a slow relaxation. Detailed studies on the dependency of this profile on model parameters show robustness to
887
+ variations in most parameters. They also allowed to associate the strong energy increase before the T1 transition with the
888
+ strength in activity. This region is characterized by an accumulation of energy to reach the energy barrier at the T1 transition.
889
+ This is achieved by probing several possibilities of direction of movement and shape deformation. This process is enhanced
890
+ by activity, which is quantified by Figure 4e. In contrast to this the sudden relaxation after the T1 transition can clearly be
891
+ associated with energy relaxation. It is almost independent of activity, see Figure 4e, and cell deformability, see Figure 4b, and
892
+ also present in sheared foams, see Figure 4f. We would like to remark that the behaviour is independent but the actual slope and
893
+ duration of this regime depends on deformability, as the energy is scaled in Figure 4b. The sudden decrease is associated with a
894
+ steep gradient in the energy landscape in one direction set by the deformation of the cells in the core of the T1 transition. The
895
+ third characteristic region, the slow relaxation, depends on activity and cell deformability. This relaxation profile provides
896
+ insight in the mechanical properties of the tissue. Similar energy profiles have been obtained by actuation and relaxation of
897
+ magnetic microdroplets which are injected into the tissue17,19,35. In these experiments a slow relaxation is associated with the
898
+ fluidization of the tissue19,35, while stagnation of the relaxation indicates more solid-like behaviour17 and is associated with
899
+ irreversible (plastic) tissue rearrangements. We postulate that these mechanical characterizations can also be obtained from the
900
+ energy decay of the T1 transitions.
901
+ In the considered confluent tissue the type of interaction between the cells, if repulsive or repulsive and attractive, seems to
902
+ play a minor role on the characteristic energy profile of a T1 transition, see Figure 4c. However, the degree of confluency is
903
+ known to influence the solid-fluid phase transition35. Increasing the extracellular space enhances fluidization. While we only
904
+ consider the fluid phase, we observe an increased duration of T1 transitions for larger extracellular space. A finite duration
905
+ of T1 transitions in cell tissues has been associated with molecular processes and is considered in an adhoc manner in vertex
906
+ models22. Within the multi-phase field model a finite duration is a result of the mechanical properties of the cells and the their
907
+ interactions. An increased duration of T1 transitions is observed for low deformability and low activity, see Figures 6b and 6h,
908
+ respectively. Both indicating more solid-like behaviour, which is consistent with22, where increased duration of T1 transitions
909
+ leads to decreasing the overall number of T1 transitions and a possible stiffening of the global tissue mechanics. However,
910
+ these results don’t take extracellular space into account.
911
+ Even if characterized locally, due to the confluent cell tissue, large enough deformations induced by T1 transitions lead to
912
+ permanent cell deformations in the neighbourhood, which can trigger other T1 transitions, leading to a chaining effect. This
913
+ behaviour is associated with the foam-like architecture and consistent with previously reported nonlinear tissue mechanics35. It
914
+ is this chaining of T1 transitions which allows for large-scale tissue deformations and flow patterns which can be associated
915
+ with sustaining chaotic flows, see Figure 8b.
916
+ We believe these results also to hold in more general situations, e.g. for varying cell sizes and varying mechanical cell
917
+ properties.
918
+ 5 Numerical Methods
919
+ Model Parameters
920
+ Unless otherwise specified, we use the model parameters as per Table 1
921
+ τ
922
+ τsave
923
+ T
924
+ L
925
+ ε
926
+ v0
927
+ a
928
+ Ca
929
+ In
930
+ Dr
931
+ α
932
+ 0.005
933
+ 0.5
934
+ 150
935
+ 100
936
+ 0.15
937
+ 0.5
938
+ 1.5
939
+ 0.2
940
+ 0.1
941
+ 0.1
942
+ 0.1
943
+ Table 1. Default values of the model parameters.
944
+ Finite element simulations
945
+ The simulations are run for time interval [0,T] discretised into Nt units with a uniform timestep size τ, i.e. T = Ntτ. We employ
946
+ a semi-implicit discretization in time. Discretization in space follows the finite element method. We adaptively refine the diffuse
947
+ interface and employ a parallelization approach which scales with the number of cells. For details we refer to28,32–34,45,46. The
948
+ algorithm is implemented in the open-source library AMDiS47,48.
949
+ 11/14
950
+
951
+ Detecting T1 transitions
952
+ The T1 transitions are detected by tracking the neighbour relations of all cells. If two cells A and B are in contact, their neighbour
953
+ relation is denoted by (A,B) or (B,A), both of which are equivalent. Suppose, there are four cells as in the Figure 1. The set of
954
+ neighbour relations between these four cells before, during and after a T1 transition are {(A,B),(B,C),(C,D),(D,A),(B,D)},
955
+ {(A,B),(B,C),(C,D),(D,A)} and {(A,B),(B,C),(C,D),(D,A),(A,C)} respectively. Before and after a T1 transition, there
956
+ are 5 distinct neighbour relations between the four cells. The sets of relations before and after a T1 transition have four elements
957
+ in common. These common elements make up the set of relations during a T1 transition. The duration of a T1 transition is time
958
+ difference when the number of neighbour relations between the four cells change from 5 to 4 and back to 5.
959
+ Sensitivity of fravg on ravg
960
+ The coarse graining region of a point p is the region with all points x such that |p−x| < ravg. As the free energy is high at the
961
+ cell edges, the points which include the edges within its coarse graining region around it would have high fravg. Moreover,
962
+ points with triple junctions (where 3 edges meet) within its coarse graining region would have a higher fravg due to the presence
963
+ of longer total length of cell edges. Usually at a given time, fravg has peaks near the T1 epicenter. This is because, the region
964
+ around it would have either two triple junctions along with a gap as seen in the snapshots of Figure 1. Also, it is clear that points
965
+ that do not have any cell edges within its coarse graining region, would have zero fravg. We have found that increasing the ravg
966
+ loses information about the T1 transition in the value of fravg at the epicenter. A larger coarse graining region would entail a
967
+ larger contribution from the bulk of the interior of the cell and would reduce fravg at the epicenters such that fravg at epicenters
968
+ would not be uniquely discerned as a signature of a T1 transition. On the other hand, reducing ravg would mean that we might
969
+ not encompass the information of the two triple junctions and the gap formed during the T1 transition. It also increases the
970
+ deviations in the statistics that we describe. Moreover, if the energy along the length of the edge is uniform then the energy
971
+ field fravg at a point gives an approximate measure of length of edges within the coarse graining region around that point.
972
+ Data availability
973
+ All data are available from the corresponding author upon reasonable request. The AMDiS implementation and additional
974
+ codes for pre- and postprocessing are available from the corresponding author upon reasonable request
975
+ Supplementary Information
976
+ Supplementary Movie 1
977
+ Supplementary Movie 2
978
+ Supplementary Movie 3
979
+ References
980
+ 1. Ladoux, B. & Mège, R. M. Mechanobiology of collective cell behaviours. Nat. Rev. Mol. Cell Biol. 18, 743–757, DOI:
981
+ 10.1038/nrm.2017.98 (2017).
982
+ 2. Brugués, A. et al. Forces driving epithelial wound healing. Nat. Phys. 10, 683–690, DOI: 10.1038/nphys3040 (2014).
983
+ 3. Friedl, P., Locker, J., Sahai, E. & Segall, J. E. Classifying collective cancer cell invasion. Nat. Cell Biol. 14, 777–783, DOI:
984
+ 10.1038/ncb2548 (2012).
985
+ 4. Guirao, B. et al. Unified quantitative characterization of epithelial tissue development. eLife 4, e08519, DOI: 10.7554/
986
+ eLife.08519 (2015).
987
+ 5. Etournay, R. et al. Interplay of cell dynamics and epithelial tension during morphogenesis of the Drosophila pupal wing.
988
+ eLife 4, e07090, DOI: 10.7554/eLife.07090 (2015).
989
+ 6. Iyer, K. V., Piscitello-Gómez, R., Paijmans, J., Jülicher, F. & Eaton, S. Epithelial viscoelasticity is regulated by mechanosen-
990
+ sitive E-cadherin turnover. Curr. Biol. 29, 578–591.e5, DOI: 10.1016/j.cub.2019.01.021 (2019).
991
+ 7. Dye, N. A. et al. Self-organized patterning of cell morphology via mechanosensitive feedback. eLife 10, e57964, DOI:
992
+ 10.7554/eLife.57964 (2021).
993
+ 8. Keller, R. et al. Mechanisms of convergence and extension by cell intercalation. Philos. Transactions Royal Soc. B: Biol.
994
+ Sci. 355, 897–922 (2000).
995
+ 9. Walck-Shannon, E. & Hardin, J. Cell intercalation from top to bottom. Nat. Rev. Mol. Cell Biol. 15, 34–48, DOI:
996
+ 10.1038/nrm3723 (2014).
997
+ 12/14
998
+
999
+ 10. Rauzi, M. Cell intercalation in a simple epithelium. Philos. Transactions Royal Soc. B: Biol. Sci. 375, 20190552, DOI:
1000
+ 10.1098/rstb.2019.0552 (2020).
1001
+ 11. Bi, D., Lopez, J. H., Schwarz, J. M. & Manning, M. L. A density-independent rigidity transition in biological tissues. Nat.
1002
+ Phys. 11, 1074–1079, DOI: 10.1038/nphys3471 (2015).
1003
+ 12. Oswald, L., Grosser, S., Smith, D. M. & Käs, J. A. Jamming transitions in cancer. J. Phys. D: Appl. Phys. 50, 483001,
1004
+ DOI: 10.1088/1361-6463/aa8e83 (2017).
1005
+ 13. Rauzi, M., Verant, P., Lecuit, T. & Lenne, P.-F. Nature and anisotropy of cortical forces orienting Drosophila tissue
1006
+ morphogenesis. Nat. Cell Biol. 10, 1401–1410, DOI: 10.1038/ncb1798 (2008).
1007
+ 14. Schall, P., Weitz, D. A. & Spaepen, F. Structural rearrangements that govern flow in colloidal glasses. Science 318,
1008
+ 1895–1899, DOI: 10.1126/science.1149308 (2007).
1009
+ 15. Weaire, D. & Hutzler, S. The Physics of Foams (Oxford University Press, Oxford, New York, 2001).
1010
+ 16. Stavans, J. The evolution of cellular structures. Reports on Prog. Phys. 56, 733–789, DOI: 10.1088/0034-4885/56/6/002
1011
+ (1993).
1012
+ 17. Durand, M. & Stone, H. A. Relaxation time of the topological T1 process in a two-dimensional foam. Phys. Rev. Lett. 97,
1013
+ 226101, DOI: 10.1103/PhysRevLett.97.226101 (2006).
1014
+ 18. Curran, S. et al. Myosin II controls junction fluctuations to guide epithelial tissue ordering. Dev. Cell 43, 480–492.e6,
1015
+ DOI: 10.1016/j.devcel.2017.09.018 (2017).
1016
+ 19. Kim, S., Pochitaloff, M., Stooke-Vaughan, G. A. & Campàs, O. Embryonic tissues as active foams. Nat. Phys. 17, 859–866,
1017
+ DOI: 10.1038/s41567-021-01215-1 (2021).
1018
+ 20. Barton, D. L., Henkes, S., Weijer, C. J. & Sknepnek, R. Active Vertex Model for cell-resolution description of epithelial
1019
+ tissue mechanics. PLOS Comput. Biol. 13, e1005569, DOI: 10.1371/journal.pcbi.1005569 (2017).
1020
+ 21. Sknepnek, R., Djafer-Cherif, I., Chuai, M., Weijer, C. J. & Henkes, S.
1021
+ Generating active T1 transitions through
1022
+ mechanochemical feedback (2022). arXiv:2106.12394.
1023
+ 22. Erdemci-Tandogan, G. & Manning, M. L. Effect of cellular rearrangement time delays on the rheology of vertex models
1024
+ for confluent tissues. PLOS Comput. Biol. 17, e1009049, DOI: 10.1371/journal.pcbi.1009049 (2021).
1025
+ 23. Drenckhan, W. et al. Rheology of ordered foams—on the way to Discrete Microfluidics. Colloids Surfaces A: Physicochem.
1026
+ Eng. Aspects 263, 52–64, DOI: 10.1016/j.colsurfa.2005.01.005 (2005).
1027
+ 24. Boromand, A., Signoriello, A., Ye, F., O’Hern, C. S. & Shattuck, M. D. Jamming of deformable polygons. Phys. Rev. Lett.
1028
+ 121, 248003, DOI: 10.1103/PhysRevLett.121.248003 (2018).
1029
+ 25. Perrone, M. C., Veldhuis, J. H. & Brodland, G. W. Non-straight cell edges are important to invasion and engulfment as
1030
+ demonstrated by cell mechanics model. Biomech. Model. Mechanobiol. 15, 405–418, DOI: 10.1007/s10237-015-0697-6
1031
+ (2016).
1032
+ 26. Nonomura, M. Study on multicellular systems using a phase field model. PLoS ONE 7, 1–9, DOI: 10.1371/journal.pone.
1033
+ 0033501 (2012). 1109.5246.
1034
+ 27. Palmieri, B., Bresler, Y., Wirtz, D. & Grant, M. Multiple scale model for cell migration in monolayers: Elastic mismatch
1035
+ between cells enhances motility. Sci. Reports 5, 1–13, DOI: 10.1038/srep11745 (2015).
1036
+ 28. Marth, W. & Voigt, A. Collective migration under hydrodynamic interactions: A computational approach. Interface Focus.
1037
+ 6, DOI: 10.1098/rsfs.2016.0037 (2016). 1605.06108.
1038
+ 29. Mueller, R., Yeomans, J. M. & Doostmohammadi, A. Emergence of active nematic behavior in monolayers of isotropic
1039
+ cells. Phys. Rev. Lett. 122, 048004, DOI: 10.1103/PhysRevLett.122.048004 (2019).
1040
+ 30. Loewe, B., Chiang, M., Marenduzzo, D. & Marchetti, M. C. Solid-liquid transition of deformable and overlapping active
1041
+ particles. Phys. Rev. Lett. 125, 038003, DOI: 10.1103/PhysRevLett.125.038003 (2020).
1042
+ 31. Camley, B. A. et al. Polarity mechanisms such as contact inhibition of locomotion regulate persistent rotational motion
1043
+ of mammalian cells on micropatterns. Proc. Natl. Acad. Sci. United States Am. 111, 14770–14775, DOI: 10.1073/pnas.
1044
+ 1414498111 (2014).
1045
+ 32. Wenzel, D. & Voigt, A. Multiphase field models for collective cell migration. Phys. Rev. E 104, 054410, DOI: 10.1103/
1046
+ PhysRevE.104.054410 (2021).
1047
+ 13/14
1048
+
1049
+ 33. Wenzel, D., Praetorius, S. & Voigt, A. Topological and geometrical quantities in active cellular structures. J. Chem. Phys.
1050
+ 150, DOI: 10.1063/1.5085766 (2019). 1812.10416.
1051
+ 34. Jain, H. P., Wenzel, D. & Voigt, A. Impact of contact inhibition on collective cell migration and proliferation. Phys. Rev. E
1052
+ 105, 034402, DOI: 10.1103/PhysRevE.105.034402 (2022).
1053
+ 35. Mongera, A. et al. A fluid-to-solid jamming transition underlies vertebrate body axis elongation. Nature 561, 401–405,
1054
+ DOI: 10.1038/s41586-018-0479-2 (2018).
1055
+ 36. Mongera, A. et al. Mechanics of the cellular microenvironment as probed by cells in vivo during zebrafish presomitic
1056
+ mesoderm differentiation. Nat. Mater. 22, 135–143, DOI: 10.1038/s41563-022-01433-9 (2023).
1057
+ 37. Smeets, B. et al. Emergent structures and dynamics of cell colonies by contact inhibition of locomotion. Proc. Natl. Acad.
1058
+ Sci. 113, 14621–14626, DOI: 10.1073/pnas.1521151113 (2016).
1059
+ 38. Stramer, B. & Mayor, R. Mechanisms and in vivo functions of contact inhibition of locomotion. Nat. Rev. Mol. Cell Biol.
1060
+ 18, 43–55, DOI: 10.1038/nrm.2016.118 (2017).
1061
+ 39. Peyret, G. et al. Sustained oscillations of epithelial cell sheets. Biophys. J. 117, 464–478, DOI: 10.1016/j.bpj.2019.06.013
1062
+ (2019).
1063
+ 40. Park, J. A. et al. Unjamming and cell shape in the asthmatic airway epithelium. Nat. Mater. 2014 14:10 14, 1040–1048,
1064
+ DOI: 10.1038/nmat4357 (2015).
1065
+ 41. Rosa, M. E. & Fortes, M. A. Nucleation and glide of dislocations in a monodisperse two-dimensional foam under uniaxial
1066
+ deformation. Philos. Mag. A 77, 1423–1446, DOI: 10.1080/01418619808214261 (1998).
1067
+ 42. Doostmohammadi, A., Ignés-Mullol, J., Yeomans, J. M. & Sagués, F. Active nematics. Nat. Commun. 9, DOI: 10.1038/
1068
+ s41467-018-05666-8 (2018).
1069
+ 43. Wenzel, D., Nestler, M., Reuther, S., Simon, M. & Voigt, A. Defects in active nematics – algorithms for identification and
1070
+ tracking. Comput. Methods Appl. Math. 21, 683–692, DOI: 10.1515/cmam-2020-0021 (2021).
1071
+ 44. Alert, R., Casademunt, J. & Joanny, J.-F. Active turbulence. Annu. Rev. Condens. Matter Phys. 13, 143–170, DOI:
1072
+ 10.1146/annurev-conmatphys-082321-035957 (2022).
1073
+ 45. Marth, W., Aland, S. & Voigt, A. Margination of white blood cells: A computational approach by a hydrodynamic phase
1074
+ field model. J. Fluid Mech. 790, 389–406, DOI: 10.1017/jfm.2016.15 (2016). 1507.01544.
1075
+ 46. Praetorius, S. & Voigt, A. Collective cell behaviour – a cell-based parallelisation approach for a phase field active polar gel
1076
+ model. In NIC Series, 49, 369–376 (Forschungszentrum Jülich GmbH, Zentralbibliothek, Jülich, 2018).
1077
+ 47. Vey, S. & Voigt, A. AMDiS: Adaptive multidimensional simulations. Comput. Vis. Sci. 10, 57–67, DOI: 10.1007/
1078
+ s00791-006-0048-3 (2007).
1079
+ 48. Witkowski, T., Ling, S., Praetorius, S. & Voigt, A. Software concepts and numerical algorithms for a scalable adaptive
1080
+ parallel finite element method. Adv. Comput. Math. 41, 1145–1177, DOI: 10.1007/s10444-015-9405-4 (2015).
1081
+ Acknowledgements
1082
+ This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the
1083
+ Marie Skłodowska-Curie grant agreement No 945371. We acknowledge computing resources provided within project WIR at
1084
+ ZIH at TU Dresden.
1085
+ Author contributions statements
1086
+ H.P.J. implemented the codes, performed all simulations, analysed data and contributed to conceptual development and
1087
+ manuscript writing. A.V. and L.A. contributed to supervision, conceptual development, data analysis and manuscript writing.
1088
+ Additional information
1089
+ Competing interests The authors declare no competing interests.
1090
+ 14/14
1091
+
09FKT4oBgHgl3EQfOS13/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
0dE0T4oBgHgl3EQfuAFm/content/tmp_files/2301.02599v1.pdf.txt ADDED
@@ -0,0 +1,828 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.02599v1 [math.GM] 2 Jan 2023
2
+ Wigner–Yanase–Dyson function and logarithmic mean
3
+ Shigeru Furuichi1∗
4
+ 1Department of Information Science,
5
+ College of Humanities and Sciences, Nihon University,
6
+ 3-25-40, Sakurajyousui, Setagaya-ku, Tokyo, 156-8550, Japan
7
+ Abstract.
8
+ The ordering between Wigner–Yanase–Dyson function and logarithmic mean
9
+ is known. Also bounds for logarithmic mean are known. In this paper, we give two reverse
10
+ inequalities for Wigner–Yanase–Dyson function and logarithmic mean. We also compare the
11
+ obtained results with the known bounds of the logarithmic mean.
12
+ Finally we give operator
13
+ inequalities based on the obtained results.
14
+ Keywords :
15
+ Wigner–Yanase–Dyson function, logarithmic mean, Kantorovich constant,
16
+ Specht ratio and reverse inequalities
17
+ 2020 Mathematics Subject Classification :
18
+ Primary 26E60, Secondary 26D07.
19
+ 1
20
+ Introduction
21
+ In this paper, we study the ordering of the symmetric homogeneous means N(x, y) for x, y > 0.
22
+ The mean N(x, y) is called the symmetric homogeneous mean if the following conditions are
23
+ satisfied ([8]):
24
+ (i) N(x, y) = N(y, x).
25
+ (ii) N(kx, ky) = kN(x, y) for k > 0.
26
+ (iii) min{x, y} ≤ N(x, y) ≤ max{x, y}.
27
+ (iv) N(x, y) is non–decreasing in x and y.
28
+ Since we do not treat the weighted means, a symmetric homogeneous mean is often called a
29
+ mean simply in this paper. In order to determine the ordering of two means such as N1(x, y) ≤
30
+ N2(x, y) for x, y > 0, it is sufficient to show the ordering N1(x, 1) ≤ N2(x, 1) for x > 0 by
31
+ homogeneity such that yN (x/y, 1) = N(x, y) for a symmetric homogeneous mean N(·, ·) and
32
+ x, y > 0. Throughout this paper, we use the standard symbol A(x, y) := x + y
33
+ 2
34
+ , L(x, y) :=
35
+ x − y
36
+ log x − log y, (x ̸= y > 0) with L(x, x) := x, G(x, y) := √xy and H(x, y) :=
37
+ 2xy
38
+ x + y as the
39
+ arithmetic mean, logarithmic mean, geometric mean and harmonic mean, respectively.
40
+ The
41
+ Wigner–Yanase–Dyson function is given by
42
+ Wp (x, y) :=
43
+ p (1 − p) (x − y)2
44
+ (xp − yp) (x1−p − y1−p), (x ̸= y > 0, p ∈ R) , with Wp(x, x) = x
45
+ ∗E-mail:furuichi.shigeru@nihon-u.ac.jp
46
+ 1
47
+
48
+ which was firstly appeared in [13]. Since Wp(x, 1) is matrix monotone function on x ∈ (0, ∞)
49
+ when −1 ≤ p ≤ 2 [16], the parameter p is often considered to be −1 ≤ p ≤ 2. We mainly
50
+ consider the case of 0 ≤ p ≤ 1 in this paper, as it was done so in [4, 5, 6] to study the
51
+ Wigner–Yanase–Dyson metric with Morozova–Chentsov function or the Wigner–Yanase–Dyson
52
+ skew information. It is easily seen that W1−p(x, y) = Wp(x, y) and W1/2(x, y) =
53
+ �√x + √y
54
+ 2
55
+ �2
56
+ which is called the Wigner–Yanase function or the binomial mean Bp(x, y) :=
57
+ �xp + yp
58
+ 2
59
+ �1/p
60
+ with p = 1/2. It is also known that
61
+ H(x, y) ≤ G(x, y) ≤ L(x, y) ≤ Wp(x, y) ≤ W1/2(x, y) ≤ A(x, y), (x, y > 0, 0 ≤ p ≤ 1).
62
+ The set M(n, C) represents all n×n matrices on complex field. The set M+(n, C) represents
63
+ all positive semi–definite matrices in M(n, C). The stronger ordering N1(x, y) ⪯ N2(x, y) for
64
+ means N1 and N2 have been studied in [3, 7, 8, 11, 14] for the study of the unitarily invariant
65
+ norm inequalities and recent advances on the related topics.
66
+ It is known [8, 11] that the ordering N1(x, y) ⪯ N2(x, y) is equivalent to the unitarily
67
+ invariant norm inequality |||N1(S, T)X||| ≤ |||N1(S, T)X||| for S, T ∈ M+(n, C) and arbitrary
68
+ X ∈ M(n, C), implies the usual ordering N1(x, y) ≤ N2(x, y) which is equivalent to the Hilbert–
69
+ Schmidt (Frobenius) norm inequality ∥N1(S, T)X∥2 ≤ ∥N2(S, T)X∥2. See [8, 11] the precise
70
+ definition and equivalent conditions on the stronger ordering N1(x, y) ⪯ N2(x, y). We study the
71
+ usual ordering for some means in this paper. The following propositions are known.
72
+ Proposition 1.1. ([9]) For S, T ∈ M+(n, C) and any X ∈ M(n, C), if 1/2 ≤ p ≤ 1 ≤ q ≤ 2 or
73
+ −1 ≤ q ≤ 0 ≤ p ≤ 1/2, then we have
74
+ |||H(S, T)X||| ≤ |||Wq(S, T)X||| ≤ |||L(S, T)X||| ≤ |||Wp(S, T)X||| ≤
75
+ ������B1/2(S, T)X
76
+ ������.
77
+ In particular, p ∈ [0, 1] =⇒ |||L(S, T)X||| ≤ |||Wp(S, T)X|||.
78
+ Proposition 1.2. ([1]) For S, T ∈ M+(n, C) and any X ∈ M(n, C),if |p| ≤ 1, then
79
+ ���
80
+ ���
81
+ ��� ˆGp(S, T)X
82
+ ���
83
+ ���
84
+ ��� ≤ |||L(S, T)X||| ≤
85
+ ���
86
+ ���
87
+ ��� ˆAp(S, T)X
88
+ ���
89
+ ���
90
+ ���,
91
+ where ˆGp(x, y) := p(xy)p/2(x − y)
92
+ xp − yp
93
+ and ˆAp(x, y) := p(xp + yp)(x − y)
94
+ 2(xp − xp)
95
+ for |p| ≤ 1 and x ̸= y.
96
+ See [1] for the details on ˆGp(x, y) and ˆAp(x, y). From Proposition 1.1, we see L(x, y) ≤
97
+ Wp(x, y) for 0 ≤ p ≤ 1. In Section 2, we study the reverse inequalities of L(x, y) ≤ Wp(x, y). In
98
+ addition, we compare the obtained results in Section 2 with the bounds in Proposition 1.2, in
99
+ Section 3.
100
+ 2
101
+ Reverse inequalities
102
+ For x > 0, t > 0,we have ln−t x ≤ log x ≤ lnt x, where lnt x := xt − 1
103
+ t
104
+ , (x > 0, t ̸= 0). Thus we
105
+ have the simple bounds of Wp, (0 ≤ p ≤ 1) as
106
+ Wp(x, 1) ≤ L(x, 1)2, (x ≥ 1),
107
+ Wp(x, 1) ≥ L(x, 1)2, (0 < x ≤ 1).
108
+ 2
109
+
110
+ Since fp(t) := xpt log x is convex in t when x ≥ 1, 0 ≤ p ≤ 1, taking an account for
111
+ � 1
112
+ 0 fp(t)dt = lnp x, we have xp/2 log x ≤ lnp x ≤
113
+ �xp + 1
114
+ 2
115
+
116
+ log x from Hermite–Hadamard in-
117
+ equality. Thus the slightly improved upper bound was obtained under the condition x ≥ 1:
118
+ 4
119
+ (xp + 1)(x1−p + 1)L(x, 1)2 ≤ Wp(x, 1) ≤
120
+ 1
121
+ √xL(x, 1)2, (x ≥ 1).
122
+ Also,we have the reverse inequality of the above for 0 < x ≤ 1 since fp(t) concave in t when
123
+ 0 < x ≤ 1.In this section, we study the reverse inequalities of L(x, y) ≤ Wp(x, y) for all x > 0
124
+ not restricted as x ≥ 1 or 0 < x ≤ 1.
125
+ We firstly consider the difference type reverse inequality of L(x, 1) ≤ Wp(x, 1), (x > 0, 0 ≤
126
+ p ≤ 1). From the simple calculations, we have
127
+ Wp(x, 1) ≤
128
+ �√x + 1
129
+ 2
130
+ �2
131
+ ≤ r
132
+ �√x − 1
133
+ �2+√x ≤ r
134
+ �√x − 1
135
+ �2+L(x, 1), (x > 0, 0 ≤ p ≤ 1, r ≥ 1/4)
136
+ (1)
137
+ Considering the parameter p, we can obtain the first inequality in the following as a general
138
+ result.
139
+ Theorem 2.1. Let x > 0. For 0 ≤ p ≤ 1, we have
140
+ Wp(x, 1) ≤ p(1 − p)
141
+ �√x − 1
142
+ �2 + L(x, 1) ≤ A(x, 1).
143
+ (2)
144
+ Proof. If the inequality (2) holds for x ≥ 1, then the inequality (2) holds for 0 < x ≤ 1. It is
145
+ easily seen by putting x := 1/y ≥ 1 in the proven inequality (2) for x ≥ 1. Thus it is sufficient
146
+ to prove inequality (2) for x ≥ 1 to show the inequality (2) for x > 0.
147
+ In (2), put x instead of √x. Then the denominator is
148
+ 2p(1 − p)(x − 1)(x2p − 1)(x2(1−p) − 1) log x ≥ 0
149
+ for x ≥ 1 when we reduce the difference right hand side minus the left hand side to a common
150
+ denominator. Also we set the numerator as f(x, p), namely
151
+ f(x, p) := (x + 1)(x2p − 1)(x2(1−p) − 1) + 2p(1 − p)
152
+
153
+ (x2p − 1)(x2(1−p) − 1) − (x + 1)2�
154
+ log x.
155
+ Since f(x, 1 − p) = f(x, p),we have only to prove f(x, p) ≥ 0 for x ≥ 1 and 0 ≤ p ≤ 1/2. We
156
+ calculate
157
+ df(x, p)
158
+ dp
159
+ = 4(x1−2p + 1)(log x)g(x, p),
160
+ g(x, p) := h(x, p) + p(1 − p)(x − 1)(x − x2p) log x
161
+ h(x, p) := px2 − (1 − p)x2p+1 − px + x − px2p,
162
+ dh(x, p)
163
+ dx
164
+ = 2px − (1 − p)(1 + 2p)x2p − 2p2x2p−1 + 1 − p,
165
+ d2h(x, p)
166
+ dx2
167
+ = 2p
168
+
169
+ −(1 − p)(1 + 2p)x2p−1 + p(1 − 2p)x2p−2 + 1
170
+
171
+ ,
172
+ d3h(x, p)
173
+ dx3
174
+ = 2p(1 − p)(1 − 2p)x2p−3 {2p(x − 1) + x} ≥ 0, (x ≥ 1, 0 ≤ p ≤ 1/2),
175
+ so that we have
176
+ d2h(x, p)
177
+ dx2
178
+ ≥ d2h(1, p)
179
+ dx2
180
+ = 0 =⇒ dh(x, p)
181
+ dx
182
+ ≥ dh(1, p)
183
+ dx
184
+ = 0 =⇒ h(x, p) ≥ h(1, p) = 0.
185
+ 3
186
+
187
+ From p(1 − p)(x − 1)(x − x2p) log x ≥ 0, (x ≥ 1, 0 ≤ p ≤ 1/2) with the above results, we have
188
+ df(x, p)
189
+ dp
190
+ ≥ 0 which implies f(x, p) ≥ f(x, 0) = 0.
191
+ To prove the second inequality, we set
192
+ k(x, p) := x + 1
193
+ 2
194
+ − p(1 − p)
195
+ �√x − 1
196
+ �2 − x − 1
197
+ log x , (x > 1).
198
+ Then we have
199
+ k(x, p) ≥ k(x, 1/2) = 4 − 4x + (√x + 1)2 log x
200
+ 4 log x
201
+ ≥ 0.
202
+ Indeed, we have x − 1
203
+ log x ≤
204
+ �√x + 1
205
+ 2
206
+ �2
207
+ which implies 4−4x+(√x +1)2 log x ≥ 0 for x > 1. This
208
+ completes the proof with k(1, p) = 0.
209
+ For the special case p = 1/2 in Theorem 2.1, the inequalities in (2) are reduced to G(x, 1) ≤
210
+ L(x, 1) ≤ B1/2(x, 1). Note that the right hand side of the second inequality in (2) can not be
211
+ replaced by W1/2(x, 1) which is less than or equal to A(x, 1).
212
+ Secondly we consider the ratio type reverse inequality of L(x, y) ≤ Wp(x, y). From the known
213
+ wesults, we have
214
+ Wp(x, 1) ≤
215
+ �√x + 1
216
+ 2
217
+ �2
218
+ ≤ A(x, 1) ≤ S(x)G(x, 1) ≤ S(x)L(x, 1), (x > 0, 0 ≤ p ≤ 1).
219
+ (3)
220
+ Where S(x) :=
221
+ x
222
+ 1
223
+ x−1
224
+ e log x
225
+ 1
226
+ x−1
227
+ is Specht ratio [15]. From the relation K(x) := (x + 1)2
228
+ 4x
229
+ ≥ S(x),
230
+ Specht ratio in (3) can be replaced by Kantorovich constant K(x) [10]. See [2, Chapter 2] and
231
+ references therein for the recent results on the inequalities with Specht ratio and Kantorovich
232
+ constant. Moreover we have the following inequality if we use Kantorovich constant K(x).
233
+ Wp(x, 1) ≤
234
+ �√x + 1
235
+ 2
236
+ �2
237
+ = K(√x)√x ≤ K(√x)L(x, 1), (x > 0, 0 ≤ p ≤ 1)
238
+ (4)
239
+ From (3) and (4), it may be expected that
240
+ �√x + 1
241
+ 2
242
+ �2
243
+ ≤ S(√x)√x. However, this fails.
244
+ Indeed we have the following proposition. In this point, we see that the ordering K(x) ≥ S(x)
245
+ is effective.
246
+ Proposition 2.2. For x > 0,
247
+ �√x + 1
248
+ 2
249
+ �2
250
+ ≥ S(√x)√x.
251
+ (5)
252
+ Proof. When x = 1, we have equality of (5) since S(1) = 1. The inequality (5) is equivalent to
253
+ the following inequality:
254
+ (x − 1)x
255
+ x
256
+ x−1
257
+ e log x
258
+
259
+ �x + 1
260
+ 2
261
+ �2
262
+ .
263
+ (6)
264
+ By the similar reason as we stated in the beginning of the proof in Theorem 2.1, it is sufficient
265
+ to prove (6) for x > 1. Taking a logarithm of both sides in (6) and considering its difference:
266
+ f(x) := 2 log
267
+ �x + 1
268
+ 2
269
+
270
+ − log(x − 1) −
271
+ x
272
+ x − 1 log x + 1 + log (log x) .
273
+ 4
274
+
275
+ Since L(x, 1) ≥ H(x, 1) and L(x, 1)−1 ≥ A(x, 1)−1 for x > 0, we have
276
+ f ′(x) =
277
+ 1
278
+ x(x − 1)
279
+ �x − 1
280
+ log x + x log x
281
+ x − 1 −
282
+ 4x
283
+ x + 1
284
+
285
+ ≥ 0, (x > 1).
286
+ Thus we have f(x) ≥ f(1) = 0.
287
+ It is notable that the inequality (5) can be also obtaind by putting v = 1/2 in [2, Theorem
288
+ 2.10.1], taking a square the both sides and then replacing x by √x.
289
+ The following result is the ratio type reverse inequality of L(x, y) ≤ Wp(x, y) for 0 ≤ p ≤ 1.
290
+ Theorem 2.3. For x > 0, 0 ≤ p ≤ 1, we have
291
+ Wp(x, 1) ≤ K(x)p(1−p)L(x, 1).
292
+ (7)
293
+ Proof. For x = 1, we have equality in (7). So it is sufficient to prove (7) for x > 1. Take a
294
+ logarithm of the both sides in (7) and put the function f(x, p) as its difference, namely
295
+ f(x, p)
296
+ :=
297
+ − log(x − 1) − log (log x) + 2p(1 − p) log(x + 1) − p(1 − p) log 4x
298
+ − log p − log(1 − p) + log(xp − 1) + log(x1−p − 1).
299
+ We calculate
300
+ df(x, p)
301
+ dx
302
+ =
303
+
304
+ 1
305
+ x − 1 − p(1 − p)
306
+ x
307
+ + 2p(1 − p)
308
+ x + 1
309
+ + pxp−1
310
+ xp − 1 + p − 1
311
+ xp − x +
312
+ 1
313
+ x log x
314
+ =
315
+
316
+ 1
317
+ x − 1 + p(1 − p) (x − 1)
318
+ x(x + 1) +
319
+ 1
320
+ x1−p lnp x +
321
+ 1
322
+ xp ln1−p x +
323
+ 1
324
+ x log x
325
+
326
+
327
+ 1
328
+ x − 1 +
329
+ 1
330
+ x1−p lnp x +
331
+ 1
332
+ xp ln1−p x =: g(x, p)
333
+ and
334
+ g(x, p) =
335
+ h(x, p)
336
+ (x − 1)(xp − 1)(x − xp) ≥ 0, (x > 1, 0 ≤ p ≤ 1).
337
+ Indeed,
338
+ h(x, p) :
339
+ =
340
+ −(xp − 1)(x − xp) + pxp−1(x − 1)(x − xp) + (1 − p)(x − 1)(x − xp)
341
+ =
342
+ (1 − p) + px − 2xp + (1 − p)x2p + px2p−1
343
+ =
344
+ (1 − p)(1 + x2p) + p(x + x2p−1) − 2xp
345
+
346
+ (1 − p) × 2xp + p × 2xp − 2xp = 0.
347
+ Therefore we have f(x, p) ≥ f(1, p) = 0.
348
+ Remark 2.4. It is natural to consider the replacement K(x) by S(x) in (7). However we have
349
+ not prove
350
+ Wp(x, 1) ≤ S(x)p(1−p)L(x, 1),
351
+ (x > 0, 0 ≤ p ≤ 1).
352
+ We also have not found any counter-example of the above inequality.
353
+ It is known that S(x) ≤ K(x), S(xr) ≤ S(x)r and K(xr) ≤ K(x)r for x > 0 and 0 ≤ r ≤ 1
354
+ [2, Section 2.10]. Also it is known that both K(x) and S(x) are decreasing for 0 < x < 1 and
355
+ increasing x > 1 with S(1) = K(1) = 1.
356
+ We are interested to find the smaller constant depending p ∈ [0, 1] than K(x)p(1−p). By the
357
+ numerical computations we found the counter-example for
358
+ Wp(x, 1) ≤ K(xp)L(x, 1),
359
+ (x > 0, 0 ≤ p ≤ 1).
360
+ Thus the inequalities Wp(x, 1) ≤ S(xp)L(x, 1) and Wp(x, 1) ≤ K(xp(1−p))L(x, 1) do not hold in
361
+ general.
362
+ 5
363
+
364
+ 3
365
+ Comparisons of the bounds for logarithmic mean
366
+ From Proposition 1.1 and Theorem 2.3, we have
367
+ K(x)−p(1−p)Wp(x, 1) ≤ L(x, 1) ≤ Wp(x, 1), (x > 0, 0 ≤ p ≤ 1).
368
+ (8)
369
+ On the other hand, from Proposition 1.2, we have
370
+ ˆGp(x, 1) ≤ L(x, 1) ≤ ˆAp(x, 1), (x > 0, 0 ≤ p ≤ 1).
371
+ (9)
372
+ In this section, we compare the bounds of L(x, 1) in (8) and (9). The first result is the
373
+ comparison on the upper bounds of L(x, 1).
374
+ Theorem 3.1. Let x > 0 and p ∈ R.
375
+ (i) If p ∈ [0, 1/2], then Wp(x, 1) ≥ ˆAp(x, 1).
376
+ (ii) If p /∈ (0, 1/2), then Wp(x, 1) ≤ ˆAp(x, 1).
377
+ Proof. It is sufficient to prove for x ≥ 1. Taking account of x1−p − 1
378
+ 1 − p
379
+ ≥ 0 for x ≥ 1, we set
380
+ fp(x) := 2(x − 1) − (xp + 1)(x1−p − 1)
381
+ (1 − p)
382
+ =
383
+
384
+ 2 −
385
+ 1
386
+ 1 − p
387
+
388
+ (x − 1) + xp − x1−p
389
+ 1 − p
390
+ .
391
+ Since we have
392
+ f ′
393
+ p(x) =
394
+
395
+ 2 −
396
+ 1
397
+ 1 − p
398
+
399
+ + pxp−1 − (1 − p)x−p
400
+ 1 − p
401
+ , f ′′
402
+ p (x) = px−p−1(1 − x2p−1),
403
+ we have f ′′
404
+ p (x) ≥ 0 for p ∈ [0, 1/2].Thus we have f ′
405
+ p(x) ≥ f ′
406
+ p(1) = 0 which implies fp(x) ≥
407
+ fp(1) = 0. Therefore we obtain (i). Similarly we have f ′′
408
+ p (x) ≤ 0 for p /∈ (0, 1/2). Thus we have
409
+ f ′
410
+ p(x) ≤ f ′
411
+ p(1) = 0 which implies fp(x) ≤ fp(1) = 0. Therefore we obtain (ii).
412
+ The second result is the comparison on the lower bounds of L(x, 1). To prove it, we prepare
413
+ the following lemma which is interesting itself.
414
+ Lemma 3.2. For x > 0, we have
415
+ L(x, 1)2 − G(x, 1)2
416
+ 2L(x, 1)2
417
+ ≤ A(x, 1) − L(x, 1)
418
+ L(x, 1)
419
+ ≤ log K(x).
420
+ (10)
421
+ Proof. It is sufficient to prove (10) for x ≥ 1. We firstly prove the second inequality. To this
422
+ end, we set
423
+ u(x) := 2(x − 1) − (x + 1) log x + 4(x − 1) log(x + 1) − 2(x − 1) log(4x), (x ≥ 1).
424
+ We calculate
425
+ u′(x) =
426
+ 4x
427
+ x + 1 −
428
+ 4
429
+ x + 1 + 1
430
+ x − 1 − 3 log x + 4 log(x + 1) − 4 log 2
431
+ u′′(x) = (x − 1)(x2 + 6x + 1)
432
+ x2(x + 1)2
433
+ ≥ 0.
434
+ Thus we have
435
+ u′(x) ≥ u′(1) = 0 =⇒ u(x) ≥ u(1) = 0.
436
+ 6
437
+
438
+ We secondly prove the first inequality. To this end, we set
439
+ v(x) := (x2 − 1) log x + x(log x)2 − 3(x − 1)2,
440
+ (x ≥ 1).
441
+ We calculate
442
+ v′(x) = 2(x + 1) log x + (log x)2 − 5x + 6 − 1
443
+ x,
444
+ v′′(x) = 1
445
+ x2
446
+
447
+ 2x(x + 1) log x − 3x2 + 2x + 1
448
+
449
+ v(3)(x) = 2
450
+ x3 w(x),
451
+ w(x) := x2 − 1 − x log x,
452
+ w′(x) = 2x − 1 − log x ≥ 0.
453
+ Thus we have
454
+ w(x) ≥ w(1) = 0 =⇒ v(3)(x) ≥ 0 =⇒ v′′(x) ≥ v′′(1) = 0 =⇒ v′(x) ≥ v′(1) = 0 =⇒ v(x) ≥ v(1) = 0.
455
+ Therefore we obtain 3L(x, 1) ≤ 2A(x, 1) + G(x, 1)2/L(x, 1), (x > 0) which is equivalent to the
456
+ first inequality of (10).
457
+ Here, the second inequality of (10) is equivalent to the inequality:
458
+ 1 − (x + 1) log x
459
+ 2(x − 1)
460
+ + log
461
+ �(x + 1)2
462
+ 4x
463
+
464
+ ≥ 0
465
+ (11)
466
+ Also the inequality L(x, 1)2 − G(x, 1)2
467
+ 2L(x, 1)2
468
+ ≤ log K(x) is equivalent to the inequality:
469
+ 1 − x(log x)2
470
+ (x − 1)2 + 2 log
471
+
472
+ 4x
473
+ (x + 1)2
474
+
475
+ ≤ 0.
476
+ (12)
477
+ The inequalities (11) and (12) will be used in the proof of Theorem 3.3 below.
478
+ Theorem 3.3. Let x > 0 and p ∈ R.
479
+ (i) If 0 ≤ p ≤ 1
480
+ 2, then ˆGp(x, 1) ≥ K(x)−p(1−p)Wp(x, 1).
481
+ (ii) If p ≤ 0 or p ≥ 1, then ˆGp(x, 1) ≤ K(x)−p(1−p)Wp(x, 1).
482
+ Proof. It is sufficient to prove for x ≥ 1. Since K(x) ≥ 1, in order to prove (i),
483
+ ˆGp(x, 1) ≥ K(x)−p(1−p)Wp(x, 1) ⇐⇒ ˆGp(x, 1)K(x)p(1−p) ≥ Wp(x, 1)
484
+ ⇐⇒ x
485
+ p
486
+ 2
487
+ �(x + 1)2
488
+ 4x
489
+ �p(1−p)
490
+ ≥ (1 − p)(x − 1)
491
+ x1−p − 1
492
+ we set
493
+ fp(x) := p
494
+ 2 log x + p(1 − p) {2 log(x + 1) − log(4x)} − log(1 − p) − log(x − 1) + log(x1−p − 1).
495
+ Then we have
496
+ f ′
497
+ p(x)
498
+ =
499
+
500
+ 1
501
+ x − 1 + p
502
+ 2x + p(1 − p)(x − 1)
503
+ x(x + 1)
504
+ + 1 − p
505
+ x − xp
506
+ =
507
+ gp(x)
508
+ 2(x − 1)(x + 1)(x − xp)
509
+ 7
510
+
511
+ where
512
+ gp(x) := 2(x + 1)(xp − 1 − p(x − 1)) + p(x − 1)(1 − xp−1) ((3 − 2p)x + (2p − 1)) .
513
+ When x ≥ 1 and 0 ≤ p ≤ 1/2, we have 1 ≥ xp−1, −xp−3 ≥ −xp−2 and (1−p)(1−2p)(p−2) ≤ 0.
514
+ Also when x ≥ 1 and 0 ≤ p ≤ 1/2, we have xp−1 ≥ xp−2. Thus we calculate
515
+ g′
516
+ p(x) = (p + 1)(2p2 − 3p + 2)xp − 2p(2p2 − 2p − 1)xp−1 + p(1 − p)(1 − 2p)xp−2
517
+ +2p(1 − 2p)x + 2(2p2 − 2p − 1)
518
+ g′′
519
+ p(x) = p
520
+
521
+ (p + 1)(2p2 − 3p + 2)xp−1 + 2(1 − p)(2p2 − 2p − 1)xp−2
522
+ +(1 − p)(1 − 2p)(p − 2)xp−3 + 2(1 − 2p)
523
+
524
+ ≥ p
525
+
526
+ (p + 1)(2p2 − 3p + 2)xp−1 + 2(1 − 2p)xp−1 + 2(1 − p)(2p2 − 2p − 1)xp−2
527
+ +(1 − p)(1 − 2p)(p − 2)xp−2�
528
+ = (2p3 − p2 − 5p + 4)(xp−1 − xp−2) = 2(1 − p) {(1 − p)(1 + p) + 1 − p/2} (xp−1 − xp−2) ≥ 0.
529
+ Thus we have g′
530
+ p(x) ≥ g′
531
+ p(1) = 0 so that gp(x) ≥ gp(1) = 0. Therefore we have f ′
532
+ p(x) ≥ 0 for
533
+ x ≥ 1 and taking an accout for lim
534
+ x→1
535
+ (1 − p)(x − 1)
536
+ x1−p − 1
537
+ = 1, we havefp(x) ≥ fp(1) = 0 which proves
538
+ (i).
539
+ It is also sufficent to prove (ii) for x ≥ 1. For the special cases p = 0 or p = 1 we have
540
+ equality. Since
541
+ ˆGp(x, 1) ≤ K(x)−p(1−p)Wp(x, 1) ⇐⇒ x
542
+ p
543
+ 2
544
+ �(x + 1)2
545
+ 4x
546
+ �p(1−p)
547
+ ≤ (1 − p)(x − 1)
548
+ x1−p − 1
549
+ ,
550
+ we have only to prove fp(x) ≤ 0 for x ≥ 1.
551
+ (a) We consider the case p > 1. We set g′′
552
+ p(x) = p · hp(x), namely
553
+ hp(x) := (p+1)(2p2−3p+2)xp−1+2(1−p)(2p2−2p−1)xp−2+(1−p)(1−2p)(p−2)xp−3+2(1−2p).
554
+ Then
555
+ h′
556
+ p(x) = (p − 1)xp−4kp(x),
557
+ where
558
+ kp(x) := 2p3(x − 1)2 − p2(x − 1)(x − 11) − p(x2 + 6x − 17) + 2(x − 3)(x + 1)
559
+ and we have
560
+ k′
561
+ p(x) = 4p3(x−1)−2p2(x−6)−2p(x+3)+4(x−1), k′′
562
+ p(x) = 2(p+1)(2p2−3p+2) > 0, (p > 1).
563
+ Thus we have k′
564
+ p(x) ≥ k′
565
+ p(1) = 10p2 − 8p > 0, (p > 1) so that kp(x) ≥ kp(1) = 10p − 8 >
566
+ 0, (p > 1). Therefore we have h′
567
+ p(x) ≥ 0, (p > 1) which implies hp(x) ≥ hp(1) = 0. Thus
568
+ we have g′′
569
+ p(x) ≥ 0 so that we have g′
570
+ p(x) ≥ g′
571
+ p(1) = 0 which implies gp(x) ≥ gp(1) = 0.
572
+ Taking account of x − xp ≤ 0 when x ≥ 1, p > 1, we have f ′
573
+ p(x) ≤ 0 Therefore we have
574
+ fp(x) ≤ fp(1) = 0 which proves (ii) for the case p > 1.
575
+ (b) We consider the case p < 0. We calculate
576
+ dfp(x)
577
+ dp
578
+ =
579
+ 1
580
+ 1 − p +
581
+ �1
582
+ 2 +
583
+ x
584
+ xp − x
585
+
586
+ log x + (2p − 1) log(4x) + (2 − 4p) log(x + 1),
587
+ d2fp(x)
588
+ dp2
589
+ = −xp+1(log x)2
590
+ (x − xp)2
591
+ +
592
+ 1
593
+ (p − 1)2 + 2 log(4x) − 4 log(x + 1),
594
+ d3fp(x)
595
+ dp3
596
+ = xp+1 (xp + x) (log x)3
597
+ (xp − x)3
598
+
599
+ 2
600
+ (p − 1)3 .
601
+ 8
602
+
603
+ We further calculate
604
+ d
605
+ dx
606
+ �d3fp(x)
607
+ dp3
608
+
609
+ = −xp(log x)2
610
+ (x − xp)4 s(x, p),
611
+ s(x, p) := 3(x2 − x2p) + (p − 1)
612
+
613
+ x2 + x2p + 4x1+p�
614
+ log x,
615
+ ds(x, p)
616
+ dp
617
+ =
618
+
619
+ x2 − 5x2p + 4xp+1 + 2(p − 1)
620
+
621
+ x2p + 2xp+1�
622
+ log(x)
623
+
624
+ log x,
625
+ d2s(x, p)
626
+ dp2
627
+ = 4xp(log x)2 {2(x − xp) + (p − 1)(x + xp) log x} ≤ 0 (p ≤ 1, x ≥ 1).
628
+ Indeed, putting a := x, b := xp in the inequality
629
+ a − b
630
+ log a − log b ≤ a + b
631
+ 2
632
+ , (a, b > 0), we have
633
+ 2(x−xp)+(p−1)(x+xp) log x ≤ 0 for p < 1 and x ≥ 1. (The equality holds when p = 1.)
634
+ From d2s(x, p)
635
+ dp2
636
+ ≤ 0, we have ds(x, p)
637
+ dp
638
+ ≥ ds(x, p)
639
+ dp
640
+ ����
641
+ p=1
642
+ = 0 which implies s(x, p) ≤ s(x, 1) =
643
+ 0 so that we have d
644
+ dx
645
+ �d3fp(x)
646
+ dp3
647
+
648
+ ≥ 0. From this, we have
649
+ d3fp(x)
650
+ dp3
651
+ ≥ d3fp(1)
652
+ dp3
653
+ = −
654
+ 2
655
+ (p − 1)3 > 0, (p < 1).
656
+ By the inequality (12), we have
657
+ p ≤ 0 =⇒ d2fp(x)
658
+ dp2
659
+ ≤ d2fp(x)
660
+ dp2
661
+ ����
662
+ p=0
663
+ = 1 − x(log x)2
664
+ (x − 1)2 + 2 log
665
+
666
+ 4x
667
+ (x + 1)2
668
+
669
+ ≤ 0.
670
+ (13)
671
+ Thus we have by the inequality (11),
672
+ p ≤ 0 =⇒ dfp(x)
673
+ dp
674
+ ≥ dfp(x)
675
+ dp
676
+ ����
677
+ p=0
678
+ = 1 − (x + 1) log x
679
+ 2(x − 1)
680
+ + log
681
+ �(x + 1)2
682
+ 4x
683
+
684
+ ≥ 0.
685
+ Therefore p ≤ 0 =⇒ fp(x) ≤ f0(x) = 0 which proves (ii) for the case p < 0.
686
+ Remark 3.4.
687
+ (i) Since fp(x) = log
688
+ ��(x + 1)2
689
+ 4x
690
+ �p(1−p)
691
+ × xp/2(x1−p − 1)
692
+ (1 − p)(x − 1)
693
+
694
+ appeared in the
695
+ proof of Theorem 3.3 and comparing the maximum degree of the numerator and the
696
+ denominator insides of the logarithmic function, we found that if p < 0 or p > 1/2, then
697
+ we have
698
+ lim
699
+ x→∞
700
+ ��(x + 1)2
701
+ 4x
702
+ �p(1−p)
703
+ × xp/2(x1−p − 1)
704
+ (1 − p)(x − 1)
705
+
706
+ = 0.
707
+ Thus we have lim
708
+ x→∞ fp(x) = −∞ if p < 0 or p > 1/2. On the other hand, by the muner-
709
+ ical computations, we have f3/4(e) ≃ 0.0063209. Therefore there is no ordering between
710
+ K(x)−p(1−p)Wp(x, 1) and ˆGp(x, 1) for x > 0 and 1/2 < p < 1.
711
+ (ii) From Theorem 3.1 (i) and Theorem 3.3 (i), we have for x > 0 and 0 ≤ p ≤ 1/2,
712
+ K(x)−p(1−p)Wp(x, 1) ≤ ˆGp(x, 1) ≤ L(x, 1) ≤ ˆAp(x, 1) ≤ Wp(x, 1).
713
+ (iii) From the proof (b) in Theorem 3.3, we obtained d3fp(x)
714
+ dp3
715
+ ≥ 0, (p < 1). From this with
716
+ simple calculations, we have
717
+ H(x, xp)3 ≤ xp+1A(x, xp) ≤ L(x, xp)3, (p ≤ 1, x > 0).
718
+ 9
719
+
720
+ 4
721
+ Conclusion
722
+ As we have seen, we studied the inequalities on the relations between the Wigner–Yanase–
723
+ Dyson function Wp(·, ·) and the logarithmic mean L(·, ·). As one of main results, we obtained
724
+ two kinds of the reverse inequalities for L(x, y) ≤ Wp(x, y) for x, y > 0 and 0 ≤ p ≤ 1. That
725
+ is, the inequalities (2) and (7) shown in Theorem 2.1 and 2.3 are respectively equivalent to the
726
+ following inequalities for x, y > 0 and 0 ≤ p ≤ 1:
727
+ Wp(x, y) ≤ p(1 − p)
728
+ �√x − √y
729
+ �2 + L(x, y),
730
+ (14)
731
+ Wp(x, y) ≤ K (x/y)p(1−p) L(x, y).
732
+ (15)
733
+ The inequality (14) and (15) are the difference type reverse inequality and the ratio type reverse
734
+ inequality for L(x, y) ≤ Wp(x, y), (0 ≤ p ≤ 1), respectively.
735
+ In addition, we compared the obtained inequality (15) with the known result in Section 3.
736
+ It is summerized in the following. The inequalities given in Remark 3.4 (ii) are equivalent to
737
+ the following inequalities for x, y > 0 and 0 ≤ p ≤ 1/2:
738
+ K (x/y)−p(1−p) Wp(x, y) ≤ ˆGp(x, y) ≤ L(x, y) ≤ ˆAp(x, y) ≤ Wp(x, y).
739
+ (16)
740
+ We conclude this paper by giving operator inequalities baesd on Theorem 2.1 and 2.3. For
741
+ positive operators S, T and 0 ≤ p ≤ 1, we define the operator version of the logarithmic mean
742
+ and the Wigner–Yanase–Dyson function as
743
+ L(S, T) :=
744
+ � 1
745
+ 0
746
+ S♯tTdt,
747
+ Wp(S, T) := p(1 − p)
748
+ 2
749
+ (S − T) (S∇T − Hzp(S, T))−1 (S − T), (S ̸= T),
750
+ Wp(S, S) := S.
751
+ where
752
+ S♯pT := S1/2 �
753
+ S−1/2TS−1/2�p
754
+ S1/2, S∇T := S + T
755
+ 2
756
+ , Hzp(S, T) := 1
757
+ 2 (S♯pT + S♯1−pT) .
758
+ We often use the symbol S♯T := S♯1/2T for short. Hzp(S, T) is often called the Heinz mean. It
759
+ is notable that we have the relation for the validity in the case p := 1/2,
760
+ �S − T
761
+ 2
762
+
763
+ (S∇T + S♯T)−1
764
+ �S − T
765
+ 2
766
+
767
+ = S∇T − S♯T,
768
+ which can be confirmed by multiplying S−1/2 to both sides.
769
+ From Theorem 2.1, we have the following corollary.
770
+ Corollary 4.1. Let S and T be positive operators and let 0 ≤ p ≤ 1. Then we have
771
+ Wp(S, T) ≤ 2p(1 − p) (S∇T − S♯T) + L(S, T).
772
+ From Theorem 2.3, we also have the following corollary.
773
+ Corollary 4.2. Let S and T be positive operators with αS ≤ T ≤ βS for 0 < α ≤ β and let
774
+ 0 ≤ p ≤ 1. Then we have
775
+ Wp(S, T) ≤ kp · L(S, T),
776
+ kp := max
777
+ α≤x≤β K(x)p(1−p).
778
+ 10
779
+
780
+ Acknowledgement
781
+ The author (S.F.) was partially supported by JSPS KAKENHI Grant Number 21K03341.
782
+ References
783
+ [1] S.Furuichi,
784
+ Unitarily
785
+ invariant
786
+ norm
787
+ inequalities
788
+ for
789
+ some
790
+ means,
791
+ J.Inequal.Appl.,2014(2014), Art.158.
792
+ [2] S.Furuichi and H.R.Moradi, Advances in mathematical inequalities, De Gruyter, 2020.
793
+ [3] S.Furuichi and M.E.Amlashi, On bounds of logarithmic mean and mean inequality chain,
794
+ arXiv:2203.01134.
795
+ [4] S.Furuichi and K.Yanagi, Schr¨odinger uncertainty relation, Wigner–Yanase–Dyson skew
796
+ information and metric adjusted correlation measure, J. Math. Anal. Appl.,388(2)(2012),
797
+ 1147–1156.
798
+ [5] P. Gibilisco, F.Hansen and T. Isola, On a correspondence between regular and non-regular
799
+ operator monotone functions, Linear Alg. Appl., 430 (2009) 2225–2232.
800
+ [6] F.Hansen, Metric adjusted skew information, Proc. Nat.Acad. Sci.,105(2008), 9909–9916.
801
+ [7] F. Hiai and H. Kosaki, Means for matrices and comparison of their norms, Indiana Univ.
802
+ Math. J. 48 (1999) 899–936.
803
+ [8] F.Hiai and H.Kosaki, Means of Hilbert space operators, Springer–Verlag, 2003.
804
+ [9] F.Hiai, H.Kosaki,D.Petz and B.Ruskai Families of completely positive maps associated with
805
+ monotone metrics, Linear Alg. Appl., 48(439)(2013), 1749–1791.
806
+ [10] L. V. Kantorovich, Functional analysis and applied mathematics, Uspekhi Mat. Nauk,
807
+ 3:6(28) (1948), 89–185. http://mi.mathnet.ru/eng/umn/v3/i6/p89.
808
+ [11] H. Kosaki, Positive definiteness of functions with applications to operator norm inequalities,
809
+ Mem. Amer. Math. Soc., 212(997), 2011.
810
+ [12] H.Kosaki, Strong monotonicity for various means, J.Func.Anal.,267(2014),1917–1958.
811
+ [13] D.Petz and H.Hasegawa, On the Riemannian metric of α–entropies of density matrices,
812
+ Lett.Math.Phys.,38(1996), 221-225.
813
+ [14] H.Kosaki, Positive definiteness and infinite divisibility of certain functions of hyperbolic
814
+ cosine function, Int. J. Math.,33(7) (2022), 2250050.
815
+ [15] W.Specht,
816
+ Zur
817
+ Theorie
818
+ der
819
+ elementaren
820
+ Mittel,
821
+ Math.Z,
822
+ 74
823
+ (1960),
824
+ 91–98.
825
+ 10.1007/BF01180475.
826
+ [16] V.E.S.Szab´o, A class of matrix monotone functions, Linear Alg. Appl.,420(2007), 79–85.
827
+ 11
828
+
0dE0T4oBgHgl3EQfuAFm/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,354 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf,len=353
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
3
+ page_content='02599v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
4
+ page_content='GM] 2 Jan 2023 Wigner–Yanase–Dyson function and logarithmic mean Shigeru Furuichi1∗ 1Department of Information Science, College of Humanities and Sciences, Nihon University, 3-25-40, Sakurajyousui, Setagaya-ku, Tokyo, 156-8550, Japan Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
5
+ page_content=' The ordering between Wigner–Yanase–Dyson function and logarithmic mean is known.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
6
+ page_content=' Also bounds for logarithmic mean are known.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
7
+ page_content=' In this paper, we give two reverse inequalities for Wigner–Yanase–Dyson function and logarithmic mean.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
8
+ page_content=' We also compare the obtained results with the known bounds of the logarithmic mean.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
9
+ page_content=' Finally we give operator inequalities based on the obtained results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
10
+ page_content=' Keywords : Wigner–Yanase–Dyson function, logarithmic mean, Kantorovich constant, Specht ratio and reverse inequalities 2020 Mathematics Subject Classification : Primary 26E60, Secondary 26D07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
11
+ page_content=' 1 Introduction In this paper, we study the ordering of the symmetric homogeneous means N(x, y) for x, y > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
12
+ page_content=' The mean N(x, y) is called the symmetric homogeneous mean if the following conditions are satisfied ([8]): (i) N(x, y) = N(y, x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
13
+ page_content=' (ii) N(kx, ky) = kN(x, y) for k > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
14
+ page_content=' (iii) min{x, y} ≤ N(x, y) ≤ max{x, y}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
15
+ page_content=' (iv) N(x, y) is non–decreasing in x and y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
16
+ page_content=' Since we do not treat the weighted means, a symmetric homogeneous mean is often called a mean simply in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
17
+ page_content=' In order to determine the ordering of two means such as N1(x, y) ≤ N2(x, y) for x, y > 0, it is sufficient to show the ordering N1(x, 1) ≤ N2(x, 1) for x > 0 by homogeneity such that yN (x/y, 1) = N(x, y) for a symmetric homogeneous mean N(·, ·) and x, y > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
18
+ page_content=' Throughout this paper, we use the standard symbol A(x, y) := x + y 2 , L(x, y) := x − y log x − log y, (x ̸= y > 0) with L(x, x) := x, G(x, y) := √xy and H(x, y) := 2xy x + y as the arithmetic mean, logarithmic mean, geometric mean and harmonic mean, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
19
+ page_content=' The Wigner–Yanase–Dyson function is given by Wp (x, y) := p (1 − p) (x − y)2 (xp − yp) (x1−p − y1−p), (x ̸= y > 0, p ∈ R) , with Wp(x, x) = x ∗E-mail:furuichi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
20
+ page_content='shigeru@nihon-u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
21
+ page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
22
+ page_content='jp 1 which was firstly appeared in [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
23
+ page_content=' Since Wp(x, 1) is matrix monotone function on x ∈ (0, ∞) when −1 ≤ p ≤ 2 [16], the parameter p is often considered to be −1 ≤ p ≤ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
24
+ page_content=' We mainly consider the case of 0 ≤ p ≤ 1 in this paper, as it was done so in [4, 5, 6] to study the Wigner–Yanase–Dyson metric with Morozova–Chentsov function or the Wigner–Yanase–Dyson skew information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
25
+ page_content=' It is easily seen that W1−p(x, y) = Wp(x, y) and W1/2(x, y) = �√x + √y 2 �2 which is called the Wigner–Yanase function or the binomial mean Bp(x, y) := �xp + yp 2 �1/p with p = 1/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
26
+ page_content=' It is also known that H(x, y) ≤ G(x, y) ≤ L(x, y) ≤ Wp(x, y) ≤ W1/2(x, y) ≤ A(x, y), (x, y > 0, 0 ≤ p ≤ 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
27
+ page_content=' The set M(n, C) represents all n×n matrices on complex field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
28
+ page_content=' The set M+(n, C) represents all positive semi–definite matrices in M(n, C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
29
+ page_content=' The stronger ordering N1(x, y) ⪯ N2(x, y) for means N1 and N2 have been studied in [3, 7, 8, 11, 14] for the study of the unitarily invariant norm inequalities and recent advances on the related topics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
30
+ page_content=' It is known [8, 11] that the ordering N1(x, y) ⪯ N2(x, y) is equivalent to the unitarily invariant norm inequality |||N1(S, T)X||| ≤ |||N1(S, T)X||| for S, T ∈ M+(n, C) and arbitrary X ∈ M(n, C), implies the usual ordering N1(x, y) ≤ N2(x, y) which is equivalent to the Hilbert– Schmidt (Frobenius) norm inequality ∥N1(S, T)X∥2 ≤ ∥N2(S, T)X∥2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
31
+ page_content=' See [8, 11] the precise definition and equivalent conditions on the stronger ordering N1(x, y) ⪯ N2(x, y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
32
+ page_content=' We study the usual ordering for some means in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
33
+ page_content=' The following propositions are known.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
34
+ page_content=' Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
35
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
36
+ page_content=' ([9]) For S, T ∈ M+(n, C) and any X ∈ M(n, C), if 1/2 ≤ p ≤ 1 ≤ q ≤ 2 or −1 ≤ q ≤ 0 ≤ p ≤ 1/2, then we have |||H(S, T)X||| ≤ |||Wq(S, T)X||| ≤ |||L(S, T)X||| ≤ |||Wp(S, T)X||| ≤ ������B1/2(S, T)X ������.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
37
+ page_content=' In particular, p ∈ [0, 1] =⇒ |||L(S, T)X||| ≤ |||Wp(S, T)X|||.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
38
+ page_content=' Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
39
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
40
+ page_content=' ([1]) For S, T ∈ M+(n, C) and any X ∈ M(n, C),if |p| ≤ 1, then ��� ��� ��� ˆGp(S, T)X ��� ��� ��� ≤ |||L(S, T)X||| ≤ ��� ��� ��� ˆAp(S, T)X ��� ��� ���, where ˆGp(x, y) := p(xy)p/2(x − y) xp − yp and ˆAp(x, y) := p(xp + yp)(x − y) 2(xp − xp) for |p| ≤ 1 and x ̸= y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
41
+ page_content=' See [1] for the details on ˆGp(x, y) and ˆAp(x, y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
42
+ page_content=' From Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
43
+ page_content='1, we see L(x, y) ≤ Wp(x, y) for 0 ≤ p ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
44
+ page_content=' In Section 2, we study the reverse inequalities of L(x, y) ≤ Wp(x, y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
45
+ page_content=' In addition, we compare the obtained results in Section 2 with the bounds in Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
46
+ page_content='2, in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
47
+ page_content=' 2 Reverse inequalities For x > 0, t > 0,we have ln−t x ≤ log x ≤ lnt x, where lnt x := xt − 1 t , (x > 0, t ̸= 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
48
+ page_content=' Thus we have the simple bounds of Wp, (0 ≤ p ≤ 1) as Wp(x, 1) ≤ L(x, 1)2, (x ≥ 1), Wp(x, 1) ≥ L(x, 1)2, (0 < x ≤ 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
49
+ page_content=' 2 Since fp(t) := xpt log x is convex in t when x ≥ 1, 0 ≤ p ≤ 1, taking an account for � 1 0 fp(t)dt = lnp x, we have xp/2 log x ≤ lnp x ≤ �xp + 1 2 � log x from Hermite–Hadamard in- equality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
50
+ page_content=' Thus the slightly improved upper bound was obtained under the condition x ≥ 1: 4 (xp + 1)(x1−p + 1)L(x, 1)2 ≤ Wp(x, 1) ≤ 1 √xL(x, 1)2, (x ≥ 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
51
+ page_content=' Also,we have the reverse inequality of the above for 0 < x ≤ 1 since fp(t) concave in t when 0 < x ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
52
+ page_content='In this section, we study the reverse inequalities of L(x, y) ≤ Wp(x, y) for all x > 0 not restricted as x ≥ 1 or 0 < x ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
53
+ page_content=' We firstly consider the difference type reverse inequality of L(x, 1) ≤ Wp(x, 1), (x > 0, 0 ≤ p ≤ 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
54
+ page_content=' From the simple calculations, we have Wp(x, 1) ≤ �√x + 1 2 �2 ≤ r �√x − 1 �2+√x ≤ r �√x − 1 �2+L(x, 1), (x > 0, 0 ≤ p ≤ 1, r ≥ 1/4) (1) Considering the parameter p, we can obtain the first inequality in the following as a general result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
55
+ page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
56
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
57
+ page_content=' Let x > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
58
+ page_content=' For 0 ≤ p ≤ 1, we have Wp(x, 1) ≤ p(1 − p) �√x − 1 �2 + L(x, 1) ≤ A(x, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
59
+ page_content=' (2) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
60
+ page_content=' If the inequality (2) holds for x ≥ 1, then the inequality (2) holds for 0 < x ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
61
+ page_content=' It is easily seen by putting x := 1/y ≥ 1 in the proven inequality (2) for x ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
62
+ page_content=' Thus it is sufficient to prove inequality (2) for x ≥ 1 to show the inequality (2) for x > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
63
+ page_content=' In (2), put x instead of √x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
64
+ page_content=' Then the denominator is 2p(1 − p)(x − 1)(x2p − 1)(x2(1−p) − 1) log x ≥ 0 for x ≥ 1 when we reduce the difference right hand side minus the left hand side to a common denominator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
65
+ page_content=' Also we set the numerator as f(x, p), namely f(x, p) := (x + 1)(x2p − 1)(x2(1−p) − 1) + 2p(1 − p) � (x2p − 1)(x2(1−p) − 1) − (x + 1)2� log x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
66
+ page_content=' Since f(x, 1 − p) = f(x, p),we have only to prove f(x, p) ≥ 0 for x ≥ 1 and 0 ≤ p ≤ 1/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
67
+ page_content=' We calculate df(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
68
+ page_content=' p) dp = 4(x1−2p + 1)(log x)g(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
69
+ page_content=' p),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
70
+ page_content=' g(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
71
+ page_content=' p) := h(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
72
+ page_content=' p) + p(1 − p)(x − 1)(x − x2p) log x h(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
73
+ page_content=' p) := px2 − (1 − p)x2p+1 − px + x − px2p,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
74
+ page_content=' dh(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
75
+ page_content=' p) dx = 2px − (1 − p)(1 + 2p)x2p − 2p2x2p−1 + 1 − p,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
76
+ page_content=' d2h(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
77
+ page_content=' p) dx2 = 2p � −(1 − p)(1 + 2p)x2p−1 + p(1 − 2p)x2p−2 + 1 � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
78
+ page_content=' d3h(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
79
+ page_content=' p) dx3 = 2p(1 − p)(1 − 2p)x2p−3 {2p(x − 1) + x} ≥ 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
80
+ page_content=' (x ≥ 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
81
+ page_content=' 0 ≤ p ≤ 1/2),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
82
+ page_content=' so that we have d2h(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
83
+ page_content=' p) dx2 ≥ d2h(1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
84
+ page_content=' p) dx2 = 0 =⇒ dh(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
85
+ page_content=' p) dx ≥ dh(1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
86
+ page_content=' p) dx = 0 =⇒ h(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
87
+ page_content=' p) ≥ h(1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
88
+ page_content=' p) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
89
+ page_content=' 3 From p(1 − p)(x − 1)(x − x2p) log x ≥ 0, (x ≥ 1, 0 ≤ p ≤ 1/2) with the above results, we have df(x, p) dp ≥ 0 which implies f(x, p) ≥ f(x, 0) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
90
+ page_content=' To prove the second inequality, we set k(x, p) := x + 1 2 − p(1 − p) �√x − 1 �2 − x − 1 log x , (x > 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
91
+ page_content=' Then we have k(x, p) ≥ k(x, 1/2) = 4 − 4x + (√x + 1)2 log x 4 log x ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
92
+ page_content=' Indeed, we have x − 1 log x ≤ �√x + 1 2 �2 which implies 4−4x+(√x +1)2 log x ≥ 0 for x > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
93
+ page_content=' This completes the proof with k(1, p) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
94
+ page_content=' For the special case p = 1/2 in Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
95
+ page_content='1, the inequalities in (2) are reduced to G(x, 1) ≤ L(x, 1) ≤ B1/2(x, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
96
+ page_content=' Note that the right hand side of the second inequality in (2) can not be replaced by W1/2(x, 1) which is less than or equal to A(x, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
97
+ page_content=' Secondly we consider the ratio type reverse inequality of L(x, y) ≤ Wp(x, y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
98
+ page_content=' From the known wesults, we have Wp(x, 1) ≤ �√x + 1 2 �2 ≤ A(x, 1) ≤ S(x)G(x, 1) ≤ S(x)L(x, 1), (x > 0, 0 ≤ p ≤ 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
99
+ page_content=' (3) Where S(x) := x 1 x−1 e log x 1 x−1 is Specht ratio [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
100
+ page_content=' From the relation K(x) := (x + 1)2 4x ≥ S(x), Specht ratio in (3) can be replaced by Kantorovich constant K(x) [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
101
+ page_content=' See [2, Chapter 2] and references therein for the recent results on the inequalities with Specht ratio and Kantorovich constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
102
+ page_content=' Moreover we have the following inequality if we use Kantorovich constant K(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
103
+ page_content=' Wp(x, 1) ≤ �√x + 1 2 �2 = K(√x)√x ≤ K(√x)L(x, 1), (x > 0, 0 ≤ p ≤ 1) (4) From (3) and (4), it may be expected that �√x + 1 2 �2 ≤ S(√x)√x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
104
+ page_content=' However, this fails.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
105
+ page_content=' Indeed we have the following proposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
106
+ page_content=' In this point, we see that the ordering K(x) ≥ S(x) is effective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
107
+ page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
108
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
109
+ page_content=' For x > 0, �√x + 1 2 �2 ≥ S(√x)√x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
110
+ page_content=' (5) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
111
+ page_content=' When x = 1, we have equality of (5) since S(1) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
112
+ page_content=' The inequality (5) is equivalent to the following inequality: (x − 1)x x x−1 e log x ≤ �x + 1 2 �2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
113
+ page_content=' (6) By the similar reason as we stated in the beginning of the proof in Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
114
+ page_content='1, it is sufficient to prove (6) for x > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
115
+ page_content=' Taking a logarithm of both sides in (6) and considering its difference: f(x) := 2 log �x + 1 2 � − log(x − 1) − x x − 1 log x + 1 + log (log x) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
116
+ page_content=' 4 Since L(x, 1) ≥ H(x, 1) and L(x, 1)−1 ≥ A(x, 1)−1 for x > 0, we have f ′(x) = 1 x(x − 1) �x − 1 log x + x log x x − 1 − 4x x + 1 � ≥ 0, (x > 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
117
+ page_content=' Thus we have f(x) ≥ f(1) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
118
+ page_content=' It is notable that the inequality (5) can be also obtaind by putting v = 1/2 in [2, Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
119
+ page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
120
+ page_content='1], taking a square the both sides and then replacing x by √x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
121
+ page_content=' The following result is the ratio type reverse inequality of L(x, y) ≤ Wp(x, y) for 0 ≤ p ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
122
+ page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
123
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
124
+ page_content=' For x > 0, 0 ≤ p ≤ 1, we have Wp(x, 1) ≤ K(x)p(1−p)L(x, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
125
+ page_content=' (7) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
126
+ page_content=' For x = 1, we have equality in (7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
127
+ page_content=' So it is sufficient to prove (7) for x > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
128
+ page_content=' Take a logarithm of the both sides in (7) and put the function f(x, p) as its difference, namely f(x, p) := − log(x − 1) − log (log x) + 2p(1 − p) log(x + 1) − p(1 − p) log 4x − log p − log(1 − p) + log(xp − 1) + log(x1−p − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
129
+ page_content=' We calculate df(x, p) dx = − 1 x − 1 − p(1 − p) x + 2p(1 − p) x + 1 + pxp−1 xp − 1 + p − 1 xp − x + 1 x log x = − 1 x − 1 + p(1 − p) (x − 1) x(x + 1) + 1 x1−p lnp x + 1 xp ln1−p x + 1 x log x ≥ − 1 x − 1 + 1 x1−p lnp x + 1 xp ln1−p x =: g(x, p) and g(x, p) = h(x, p) (x − 1)(xp − 1)(x − xp) ≥ 0, (x > 1, 0 ≤ p ≤ 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
130
+ page_content=' Indeed, h(x, p) : = −(xp − 1)(x − xp) + pxp−1(x − 1)(x − xp) + (1 − p)(x − 1)(x − xp) = (1 − p) + px − 2xp + (1 − p)x2p + px2p−1 = (1 − p)(1 + x2p) + p(x + x2p−1) − 2xp ≥ (1 − p) × 2xp + p × 2xp − 2xp = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
131
+ page_content=' Therefore we have f(x, p) ≥ f(1, p) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
132
+ page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
133
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
134
+ page_content=' It is natural to consider the replacement K(x) by S(x) in (7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
135
+ page_content=' However we have not prove Wp(x, 1) ≤ S(x)p(1−p)L(x, 1), (x > 0, 0 ≤ p ≤ 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
136
+ page_content=' We also have not found any counter-example of the above inequality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
137
+ page_content=' It is known that S(x) ≤ K(x), S(xr) ≤ S(x)r and K(xr) ≤ K(x)r for x > 0 and 0 ≤ r ≤ 1 [2, Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
138
+ page_content='10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
139
+ page_content=' Also it is known that both K(x) and S(x) are decreasing for 0 < x < 1 and increasing x > 1 with S(1) = K(1) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
140
+ page_content=' We are interested to find the smaller constant depending p ∈ [0, 1] than K(x)p(1−p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
141
+ page_content=' By the numerical computations we found the counter-example for Wp(x, 1) ≤ K(xp)L(x, 1), (x > 0, 0 ≤ p ≤ 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
142
+ page_content=' Thus the inequalities Wp(x, 1) ≤ S(xp)L(x, 1) and Wp(x, 1) ≤ K(xp(1−p))L(x, 1) do not hold in general.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
143
+ page_content=' 5 3 Comparisons of the bounds for logarithmic mean From Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
144
+ page_content='1 and Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
145
+ page_content='3, we have K(x)−p(1−p)Wp(x, 1) ≤ L(x, 1) ≤ Wp(x, 1), (x > 0, 0 ≤ p ≤ 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
146
+ page_content=' (8) On the other hand, from Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
147
+ page_content='2, we have ˆGp(x, 1) ≤ L(x, 1) ≤ ˆAp(x, 1), (x > 0, 0 ≤ p ≤ 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
148
+ page_content=' (9) In this section, we compare the bounds of L(x, 1) in (8) and (9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
149
+ page_content=' The first result is the comparison on the upper bounds of L(x, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
150
+ page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
151
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
152
+ page_content=' Let x > 0 and p ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
153
+ page_content=' (i) If p ∈ [0, 1/2], then Wp(x, 1) ≥ ˆAp(x, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
154
+ page_content=' (ii) If p /∈ (0, 1/2), then Wp(x, 1) ≤ ˆAp(x, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
155
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
156
+ page_content=' It is sufficient to prove for x ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
157
+ page_content=' Taking account of x1−p − 1 1 − p ≥ 0 for x ≥ 1, we set fp(x) := 2(x − 1) − (xp + 1)(x1−p − 1) (1 − p) = � 2 − 1 1 − p � (x − 1) + xp − x1−p 1 − p .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
158
+ page_content=' Since we have f ′ p(x) = � 2 − 1 1 − p � + pxp−1 − (1 − p)x−p 1 − p , f ′′ p (x) = px−p−1(1 − x2p−1), we have f ′′ p (x) ≥ 0 for p ∈ [0, 1/2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
159
+ page_content='Thus we have f ′ p(x) ≥ f ′ p(1) = 0 which implies fp(x) ≥ fp(1) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
160
+ page_content=' Therefore we obtain (i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
161
+ page_content=' Similarly we have f ′′ p (x) ≤ 0 for p /∈ (0, 1/2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
162
+ page_content=' Thus we have f ′ p(x) ≤ f ′ p(1) = 0 which implies fp(x) ≤ fp(1) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
163
+ page_content=' Therefore we obtain (ii).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
164
+ page_content=' The second result is the comparison on the lower bounds of L(x, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
165
+ page_content=' To prove it, we prepare the following lemma which is interesting itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
166
+ page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
167
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
168
+ page_content=' For x > 0, we have L(x, 1)2 − G(x, 1)2 2L(x, 1)2 ≤ A(x, 1) − L(x, 1) L(x, 1) ≤ log K(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
169
+ page_content=' (10) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
170
+ page_content=' It is sufficient to prove (10) for x ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
171
+ page_content=' We firstly prove the second inequality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
172
+ page_content=' To this end, we set u(x) := 2(x − 1) − (x + 1) log x + 4(x − 1) log(x + 1) − 2(x − 1) log(4x), (x ≥ 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
173
+ page_content=' We calculate u′(x) = 4x x + 1 − 4 x + 1 + 1 x − 1 − 3 log x + 4 log(x + 1) − 4 log 2 u′′(x) = (x − 1)(x2 + 6x + 1) x2(x + 1)2 ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
174
+ page_content=' Thus we have u′(x) ≥ u′(1) = 0 =⇒ u(x) ≥ u(1) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
175
+ page_content=' 6 We secondly prove the first inequality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
176
+ page_content=' To this end, we set v(x) := (x2 − 1) log x + x(log x)2 − 3(x − 1)2, (x ≥ 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
177
+ page_content=' We calculate v′(x) = 2(x + 1) log x + (log x)2 − 5x + 6 − 1 x, v′′(x) = 1 x2 � 2x(x + 1) log x − 3x2 + 2x + 1 � v(3)(x) = 2 x3 w(x), w(x) := x2 − 1 − x log x, w′(x) = 2x − 1 − log x ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
178
+ page_content=' Thus we have w(x) ≥ w(1) = 0 =⇒ v(3)(x) ≥ 0 =⇒ v′′(x) ≥ v′′(1) = 0 =⇒ v′(x) ≥ v′(1) = 0 =⇒ v(x) ≥ v(1) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
179
+ page_content=' Therefore we obtain 3L(x, 1) ≤ 2A(x, 1) + G(x, 1)2/L(x, 1), (x > 0) which is equivalent to the first inequality of (10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
180
+ page_content=' Here, the second inequality of (10) is equivalent to the inequality: 1 − (x + 1) log x 2(x − 1) + log �(x + 1)2 4x � ≥ 0 (11) Also the inequality L(x, 1)2 − G(x, 1)2 2L(x, 1)2 ≤ log K(x) is equivalent to the inequality: 1 − x(log x)2 (x − 1)2 + 2 log � 4x (x + 1)2 � ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
181
+ page_content=' (12) The inequalities (11) and (12) will be used in the proof of Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
182
+ page_content='3 below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
183
+ page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
184
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
185
+ page_content=' Let x > 0 and p ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
186
+ page_content=' (i) If 0 ≤ p ≤ 1 2, then ˆGp(x, 1) ≥ K(x)−p(1−p)Wp(x, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
187
+ page_content=' (ii) If p ≤ 0 or p ≥ 1, then ˆGp(x, 1) ≤ K(x)−p(1−p)Wp(x, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
188
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
189
+ page_content=' It is sufficient to prove for x ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
190
+ page_content=' Since K(x) ≥ 1, in order to prove (i), ˆGp(x, 1) ≥ K(x)−p(1−p)Wp(x, 1) ⇐⇒ ˆGp(x, 1)K(x)p(1−p) ≥ Wp(x, 1) ⇐⇒ x p 2 �(x + 1)2 4x �p(1−p) ≥ (1 − p)(x − 1) x1−p − 1 we set fp(x) := p 2 log x + p(1 − p) {2 log(x + 1) − log(4x)} − log(1 − p) − log(x − 1) + log(x1−p − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
191
+ page_content=' Then we have f ′ p(x) = − 1 x − 1 + p 2x + p(1 − p)(x − 1) x(x + 1) + 1 − p x − xp = gp(x) 2(x − 1)(x + 1)(x − xp) 7 where gp(x) := 2(x + 1)(xp − 1 − p(x − 1)) + p(x − 1)(1 − xp−1) ((3 − 2p)x + (2p − 1)) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
192
+ page_content=' When x ≥ 1 and 0 ≤ p ≤ 1/2, we have 1 ≥ xp−1, −xp−3 ≥ −xp−2 and (1−p)(1−2p)(p−2) ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
193
+ page_content=' Also when x ≥ 1 and 0 ≤ p ≤ 1/2, we have xp−1 ≥ xp−2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
194
+ page_content=' Thus we calculate g′ p(x) = (p + 1)(2p2 − 3p + 2)xp − 2p(2p2 − 2p − 1)xp−1 + p(1 − p)(1 − 2p)xp−2 +2p(1 − 2p)x + 2(2p2 − 2p − 1) g′′ p(x) = p � (p + 1)(2p2 − 3p + 2)xp−1 + 2(1 − p)(2p2 − 2p − 1)xp−2 +(1 − p)(1 − 2p)(p − 2)xp−3 + 2(1 − 2p) � ≥ p � (p + 1)(2p2 − 3p + 2)xp−1 + 2(1 − 2p)xp−1 + 2(1 − p)(2p2 − 2p − 1)xp−2 +(1 − p)(1 − 2p)(p − 2)xp−2� = (2p3 − p2 − 5p + 4)(xp−1 − xp−2) = 2(1 − p) {(1 − p)(1 + p) + 1 − p/2} (xp−1 − xp−2) ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
195
+ page_content=' Thus we have g′ p(x) ≥ g′ p(1) = 0 so that gp(x) ≥ gp(1) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
196
+ page_content=' Therefore we have f ′ p(x) ≥ 0 for x ≥ 1 and taking an accout for lim x→1 (1 − p)(x − 1) x1−p − 1 = 1, we havefp(x) ≥ fp(1) = 0 which proves (i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
197
+ page_content=' It is also sufficent to prove (ii) for x ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
198
+ page_content=' For the special cases p = 0 or p = 1 we have equality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
199
+ page_content=' Since ˆGp(x, 1) ≤ K(x)−p(1−p)Wp(x, 1) ⇐⇒ x p 2 �(x + 1)2 4x �p(1−p) ≤ (1 − p)(x − 1) x1−p − 1 , we have only to prove fp(x) ≤ 0 for x ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
200
+ page_content=' (a) We consider the case p > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
201
+ page_content=' We set g′′ p(x) = p · hp(x), namely hp(x) := (p+1)(2p2−3p+2)xp−1+2(1−p)(2p2−2p−1)xp−2+(1−p)(1−2p)(p−2)xp−3+2(1−2p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
202
+ page_content=' Then h′ p(x) = (p − 1)xp−4kp(x), where kp(x) := 2p3(x − 1)2 − p2(x − 1)(x − 11) − p(x2 + 6x − 17) + 2(x − 3)(x + 1) and we have k′ p(x) = 4p3(x−1)−2p2(x−6)−2p(x+3)+4(x−1), k′′ p(x) = 2(p+1)(2p2−3p+2) > 0, (p > 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
203
+ page_content=' Thus we have k′ p(x) ≥ k′ p(1) = 10p2 − 8p > 0, (p > 1) so that kp(x) ≥ kp(1) = 10p − 8 > 0, (p > 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
204
+ page_content=' Therefore we have h′ p(x) ≥ 0, (p > 1) which implies hp(x) ≥ hp(1) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
205
+ page_content=' Thus we have g′′ p(x) ≥ 0 so that we have g′ p(x) ≥ g′ p(1) = 0 which implies gp(x) ≥ gp(1) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
206
+ page_content=' Taking account of x − xp ≤ 0 when x ≥ 1, p > 1, we have f ′ p(x) ≤ 0 Therefore we have fp(x) ≤ fp(1) = 0 which proves (ii) for the case p > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
207
+ page_content=' (b) We consider the case p < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
208
+ page_content=' We calculate dfp(x) dp = 1 1 − p + �1 2 + x xp − x � log x + (2p − 1) log(4x) + (2 − 4p) log(x + 1), d2fp(x) dp2 = −xp+1(log x)2 (x − xp)2 + 1 (p − 1)2 + 2 log(4x) − 4 log(x + 1), d3fp(x) dp3 = xp+1 (xp + x) (log x)3 (xp − x)3 − 2 (p − 1)3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
209
+ page_content=' 8 We further calculate d dx �d3fp(x) dp3 � = −xp(log x)2 (x − xp)4 s(x, p), s(x, p) := 3(x2 − x2p) + (p − 1) � x2 + x2p + 4x1+p� log x, ds(x, p) dp = � x2 − 5x2p + 4xp+1 + 2(p − 1) � x2p + 2xp+1� log(x) � log x, d2s(x, p) dp2 = 4xp(log x)2 {2(x − xp) + (p − 1)(x + xp) log x} ≤ 0 (p ≤ 1, x ≥ 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
210
+ page_content=' Indeed, putting a := x, b := xp in the inequality a − b log a − log b ≤ a + b 2 , (a, b > 0), we have 2(x−xp)+(p−1)(x+xp) log x ≤ 0 for p < 1 and x ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
211
+ page_content=' (The equality holds when p = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
212
+ page_content=') From d2s(x, p) dp2 ≤ 0, we have ds(x, p) dp ≥ ds(x, p) dp ���� p=1 = 0 which implies s(x, p) ≤ s(x, 1) = 0 so that we have d dx �d3fp(x) dp3 � ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
213
+ page_content=' From this, we have d3fp(x) dp3 ≥ d3fp(1) dp3 = − 2 (p − 1)3 > 0, (p < 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
214
+ page_content=' By the inequality (12), we have p ≤ 0 =⇒ d2fp(x) dp2 ≤ d2fp(x) dp2 ���� p=0 = 1 − x(log x)2 (x − 1)2 + 2 log � 4x (x + 1)2 � ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
215
+ page_content=' (13) Thus we have by the inequality (11), p ≤ 0 =⇒ dfp(x) dp ≥ dfp(x) dp ���� p=0 = 1 − (x + 1) log x 2(x − 1) + log �(x + 1)2 4x � ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
216
+ page_content=' Therefore p ≤ 0 =⇒ fp(x) ≤ f0(x) = 0 which proves (ii) for the case p < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
217
+ page_content=' Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
218
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
219
+ page_content=' (i) Since fp(x) = log ��(x + 1)2 4x �p(1−p) × xp/2(x1−p − 1) (1 − p)(x − 1) � appeared in the proof of Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
220
+ page_content='3 and comparing the maximum degree of the numerator and the denominator insides of the logarithmic function, we found that if p < 0 or p > 1/2, then we have lim x→∞ ��(x + 1)2 4x �p(1−p) × xp/2(x1−p − 1) (1 − p)(x − 1) � = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
221
+ page_content=' Thus we have lim x→∞ fp(x) = −∞ if p < 0 or p > 1/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
222
+ page_content=' On the other hand, by the muner- ical computations, we have f3/4(e) ≃ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
223
+ page_content='0063209.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
224
+ page_content=' Therefore there is no ordering between K(x)−p(1−p)Wp(x, 1) and ˆGp(x, 1) for x > 0 and 1/2 < p < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
225
+ page_content=' (ii) From Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
226
+ page_content='1 (i) and Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
227
+ page_content='3 (i), we have for x > 0 and 0 ≤ p ≤ 1/2, K(x)−p(1−p)Wp(x, 1) ≤ ˆGp(x, 1) ≤ L(x, 1) ≤ ˆAp(x, 1) ≤ Wp(x, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
228
+ page_content=' (iii) From the proof (b) in Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
229
+ page_content='3, we obtained d3fp(x) dp3 ≥ 0, (p < 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
230
+ page_content=' From this with simple calculations, we have H(x, xp)3 ≤ xp+1A(x, xp) ≤ L(x, xp)3, (p ≤ 1, x > 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
231
+ page_content=' 9 4 Conclusion As we have seen, we studied the inequalities on the relations between the Wigner–Yanase– Dyson function Wp(·, ·) and the logarithmic mean L(·, ·).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
232
+ page_content=' As one of main results, we obtained two kinds of the reverse inequalities for L(x, y) ≤ Wp(x, y) for x, y > 0 and 0 ≤ p ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
233
+ page_content=' That is, the inequalities (2) and (7) shown in Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
234
+ page_content='1 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
235
+ page_content='3 are respectively equivalent to the following inequalities for x, y > 0 and 0 ≤ p ≤ 1: Wp(x, y) ≤ p(1 − p) �√x − √y �2 + L(x, y), (14) Wp(x, y) ≤ K (x/y)p(1−p) L(x, y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
236
+ page_content=' (15) The inequality (14) and (15) are the difference type reverse inequality and the ratio type reverse inequality for L(x, y) ≤ Wp(x, y), (0 ≤ p ≤ 1), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
237
+ page_content=' In addition, we compared the obtained inequality (15) with the known result in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
238
+ page_content=' It is summerized in the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
239
+ page_content=' The inequalities given in Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
240
+ page_content='4 (ii) are equivalent to the following inequalities for x, y > 0 and 0 ≤ p ≤ 1/2: K (x/y)−p(1−p) Wp(x, y) ≤ ˆGp(x, y) ≤ L(x, y) ≤ ˆAp(x, y) ≤ Wp(x, y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
241
+ page_content=' (16) We conclude this paper by giving operator inequalities baesd on Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
242
+ page_content='1 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
243
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
244
+ page_content=' For positive operators S, T and 0 ≤ p ≤ 1, we define the operator version of the logarithmic mean and the Wigner–Yanase–Dyson function as L(S, T) := � 1 0 S♯tTdt, Wp(S, T) := p(1 − p) 2 (S − T) (S∇T − Hzp(S, T))−1 (S − T), (S ̸= T), Wp(S, S) := S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
245
+ page_content=' where S♯pT := S1/2 � S−1/2TS−1/2�p S1/2, S∇T := S + T 2 , Hzp(S, T) := 1 2 (S♯pT + S♯1−pT) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
246
+ page_content=' We often use the symbol S♯T := S♯1/2T for short.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
247
+ page_content=' Hzp(S, T) is often called the Heinz mean.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
248
+ page_content=' It is notable that we have the relation for the validity in the case p := 1/2, �S − T 2 � (S∇T + S♯T)−1 �S − T 2 � = S∇T − S♯T, which can be confirmed by multiplying S−1/2 to both sides.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
249
+ page_content=' From Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
250
+ page_content='1, we have the following corollary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
251
+ page_content=' Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
252
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
253
+ page_content=' Let S and T be positive operators and let 0 ≤ p ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
254
+ page_content=' Then we have Wp(S, T) ≤ 2p(1 − p) (S∇T − S♯T) + L(S, T).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
255
+ page_content=' From Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
256
+ page_content='3, we also have the following corollary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
257
+ page_content=' Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
258
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
259
+ page_content=' Let S and T be positive operators with αS ≤ T ≤ βS for 0 < α ≤ β and let 0 ≤ p ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
260
+ page_content=' Then we have Wp(S, T) ≤ kp · L(S, T), kp := max α≤x≤β K(x)p(1−p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
261
+ page_content=' 10 Acknowledgement The author (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
262
+ page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
263
+ page_content=') was partially supported by JSPS KAKENHI Grant Number 21K03341.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
264
+ page_content=' References [1] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
265
+ page_content='Furuichi, Unitarily invariant norm inequalities for some means, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
266
+ page_content='Inequal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
267
+ page_content='Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
268
+ page_content=',2014(2014), Art.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
269
+ page_content='158.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
270
+ page_content=' [2] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
271
+ page_content='Furuichi and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
272
+ page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
273
+ page_content='Moradi, Advances in mathematical inequalities, De Gruyter, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
274
+ page_content=' [3] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
275
+ page_content='Furuichi and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
276
+ page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
277
+ page_content='Amlashi, On bounds of logarithmic mean and mean inequality chain, arXiv:2203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
278
+ page_content='01134.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
279
+ page_content=' [4] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
280
+ page_content='Furuichi and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
281
+ page_content='Yanagi, Schr¨odinger uncertainty relation, Wigner–Yanase–Dyson skew information and metric adjusted correlation measure, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
282
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
283
+ page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
284
+ page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
285
+ page_content=',388(2)(2012), 1147–1156.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
286
+ page_content=' [5] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
287
+ page_content=' Gibilisco, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
288
+ page_content='Hansen and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
289
+ page_content=' Isola, On a correspondence between regular and non-regular operator monotone functions, Linear Alg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
290
+ page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
291
+ page_content=', 430 (2009) 2225–2232.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
292
+ page_content=' [6] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
293
+ page_content='Hansen, Metric adjusted skew information, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
294
+ page_content=' Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
295
+ page_content='Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
296
+ page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
297
+ page_content=',105(2008), 9909–9916.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
298
+ page_content=' [7] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
299
+ page_content=' Hiai and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
300
+ page_content=' Kosaki, Means for matrices and comparison of their norms, Indiana Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
301
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
302
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
303
+ page_content=' 48 (1999) 899–936.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
304
+ page_content=' [8] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
305
+ page_content='Hiai and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
306
+ page_content='Kosaki, Means of Hilbert space operators, Springer–Verlag, 2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
307
+ page_content=' [9] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
308
+ page_content='Hiai, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
309
+ page_content='Kosaki,D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
310
+ page_content='Petz and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
311
+ page_content='Ruskai Families of completely positive maps associated with monotone metrics, Linear Alg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
312
+ page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
313
+ page_content=', 48(439)(2013), 1749–1791.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
314
+ page_content=' [10] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
315
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
316
+ page_content=' Kantorovich, Functional analysis and applied mathematics, Uspekhi Mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
317
+ page_content=' Nauk, 3:6(28) (1948), 89–185.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
318
+ page_content=' http://mi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
319
+ page_content='mathnet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
320
+ page_content='ru/eng/umn/v3/i6/p89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
321
+ page_content=' [11] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
322
+ page_content=' Kosaki, Positive definiteness of functions with applications to operator norm inequalities, Mem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
323
+ page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
324
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
325
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
326
+ page_content=', 212(997), 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
327
+ page_content=' [12] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
328
+ page_content='Kosaki, Strong monotonicity for various means, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
329
+ page_content='Func.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
330
+ page_content='Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
331
+ page_content=',267(2014),1917–1958.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
332
+ page_content=' [13] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
333
+ page_content='Petz and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
334
+ page_content='Hasegawa, On the Riemannian metric of α–entropies of density matrices, Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
335
+ page_content='Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
336
+ page_content='Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
337
+ page_content=',38(1996), 221-225.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
338
+ page_content=' [14] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
339
+ page_content='Kosaki, Positive definiteness and infinite divisibility of certain functions of hyperbolic cosine function, Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
340
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
341
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
342
+ page_content=',33(7) (2022), 2250050.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
343
+ page_content=' [15] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
344
+ page_content='Specht, Zur Theorie der elementaren Mittel, Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
345
+ page_content='Z, 74 (1960), 91–98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
346
+ page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
347
+ page_content='1007/BF01180475.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
348
+ page_content=' [16] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
349
+ page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
350
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
351
+ page_content='Szab´o, A class of matrix monotone functions, Linear Alg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
352
+ page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
353
+ page_content=',420(2007), 79–85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
354
+ page_content=' 11' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/0dE0T4oBgHgl3EQfuAFm/content/2301.02599v1.pdf'}
0tAzT4oBgHgl3EQftv2j/content/tmp_files/2301.01681v1.pdf.txt ADDED
@@ -0,0 +1,2084 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Tower of quantum scars in a partially many-body localized system
2
+ Michael Iversen and Anne E. B. Nielsen
3
+ Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
4
+ Isolated quantum many-body systems are often well-described by the eigenstate thermalization
5
+ hypothesis. There are, however, mechanisms that cause different behavior: many-body localization
6
+ and quantum many-body scars. Here, we show how one can find disordered Hamiltonians hosting
7
+ a tower of scars by adapting a known method for finding parent Hamiltonians. Using this method,
8
+ we construct a spin-1/2 model which is both partially localized and contains scars. We demonstrate
9
+ that the model is partially localized by studying numerically the level spacing statistics and bipar-
10
+ tite entanglement entropy. As disorder is introduced, the adjacent gap ratio transitions from the
11
+ Gaussian orthogonal ensemble to the Poisson distribution and the entropy shifts from volume-law
12
+ to area-law scaling. We investigate the properties of scars in a partially localized background and
13
+ compare with a thermal background. At strong disorder, states initialized inside or outside the scar
14
+ subspace display different dynamical behavior but have similar entanglement entropy. We demon-
15
+ strate that localization stabilizes scar revivals of initial states with support both inside and outside
16
+ the scar subspace. Finally, we show how strong disorder introduces additional towers of approximate
17
+ scar states.
18
+ I.
19
+ INTRODUCTION
20
+ The eigenstate thermalization hypothesis (ETH) de-
21
+ scribes how isolated quantum systems reach thermal
22
+ equilibrium [1–3]. The hypothesis is a statement about
23
+ generic quantum many-body systems and has been veri-
24
+ fied for a wide variety of physical models [3–13]. Despite
25
+ the effectiveness of ETH, several phenomena are known
26
+ to cause non-thermal behavior.
27
+ One such mechanism is many-body localization (MBL)
28
+ [14–17].
29
+ MBL appears in many-body interacting sys-
30
+ tems with local disorder.
31
+ When the disorder strength
32
+ is sufficiently strong, it causes a change in the structure
33
+ of the energy eigenstates.
34
+ An extensive set of quasi-
35
+ local integrals of motion (LIOM) emerges and the en-
36
+ ergy eigenstates localize [18, 19]. Consequently, all en-
37
+ ergy eigenstates behave non-thermally and MBL repre-
38
+ sents a strong violation of ETH. While this phenomenon
39
+ is well-established for finite systems, the stability of MBL
40
+ in the thermodynamic limit is still an open question [20].
41
+ Another mechanism leading to non-thermal behav-
42
+ ior was discovered in experiments with kinetically con-
43
+ strained Rydberg atoms [21]. The atoms were arranged
44
+ with strong nearest neighbor interactions so the simul-
45
+ taneous excitation of neighboring atoms was prohibited.
46
+ When initializing the system in the N´eel state, observ-
47
+ ables displayed abnormal persistent oscillations – con-
48
+ trary to the predictions by ETH. Subsequent theoreti-
49
+ cal works uncovered that the revivals were caused by a
50
+ small number of non-thermal eigenstates dubbed quan-
51
+ tum many-body scars (QMBS) [22–25]. These scar states
52
+ have approximately equal energy spacing so any initial
53
+ state in the scar subspace displays revivals.
54
+ The scar
55
+ states are uncommon and represent a vanishingly small
56
+ part of an otherwise thermalizing spectrum. Therefore,
57
+ QMBS represent a weak violation of ETH.
58
+ In this work, we realize both ETH-breaking mecha-
59
+ nisms simultaneously. We study a one-dimensional dis-
60
+ ordered spin-1/2 chain hosting a tower of QMBS. As the
61
+ disorder strength is increased, the model transitions from
62
+ the thermal phase to being partially localized while pre-
63
+ serving the scar states.
64
+ In earlier works, a single scar
65
+ state was embedded in an otherwise MBL spectrum [26–
66
+ 28]. Our work adds to these studies by considering a full
67
+ tower of QMBS in an MBL spectrum. The presence of
68
+ multiple scar states, enables us to study the effect of lo-
69
+ calization on the dynamical revivals characteristic of scar
70
+ states. Using this model, we demonstrate how scar states
71
+ can be distinguished from a localized background. We
72
+ also find two phenomena originating from the interplay
73
+ between QMBS and localization: disorder stabilization
74
+ of scar revivals and disorder induced approximate scars.
75
+ The paper is structured as follows. In Sec. II A, we
76
+ summarize the model by Iadecola and Schecter which is
77
+ the starting point of our analysis. In Sec. II B, we explain
78
+ how we find Hamiltonians having a set of scar states with
79
+ equal energy spacing. In Sec. II C, we use this method to
80
+ determine all local 1- and 2-body Hamiltonians for the
81
+ tower of scar states in the Iadecola and Schecter model.
82
+ In Sec. III A, we show that a subset of these Hamiltoni-
83
+ ans partially localize as disorder is introduced. We quan-
84
+ tify the partial localization as a special structure in the
85
+ energy eigenstates and compare with results from exact
86
+ diagonalization. We verify the localization by studying
87
+ the level spacing statistics in Sec. III B and the entan-
88
+ glement entropy in Sec. III C. In Sec. IV, we show that
89
+ the fidelity between initial states and the corresponding
90
+ time evolved states can be utilized to distinguish the scar
91
+ states from the partially localized background. We fur-
92
+ ther show that the bipartite entanglement entropy is an
93
+ ineffective tool for distinguishing scar states from a par-
94
+ tially localized background. In Sec. V, we demonstrate
95
+ how scar revivals are stabilized by strong disorder. In
96
+ Sec. VI, we uncover additional towers of approximate scar
97
+ states which emerge as disorder is introduced. Finally, we
98
+ summarize our results in Sec. VII.
99
+ arXiv:2301.01681v1 [cond-mat.dis-nn] 4 Jan 2023
100
+
101
+ 2
102
+ II.
103
+ MODEL
104
+ A.
105
+ Model by Iadecola and Schecter
106
+ We take the model by Iadecola and Schecter as our
107
+ starting point [29]. Consider a one-dimensional spin- 1
108
+ 2
109
+ chain of even length L with periodic boundary conditions.
110
+ The local Hilbert space on each site is described by the
111
+ eigenkets |↑⟩ and |↓⟩ of the Pauli z-matrix, i.e. ˆσz |↑⟩ = |↑⟩
112
+ and ˆσz |↓⟩ = − |↓⟩. The model by Iadecola and Schecter
113
+ is given by
114
+ ˆH0 =
115
+ L
116
+
117
+ i=1
118
+
119
+ λ(ˆσx
120
+ i − ˆσz
121
+ i−1ˆσx
122
+ i ˆσz
123
+ i+1) + ∆ˆσz
124
+ i + J ˆσz
125
+ i ˆσz
126
+ i+1
127
+
128
+ , (1)
129
+ with λ, ∆, J ∈ R. All indices are understood as modulo
130
+ L, i.e. the index i+L is identified as i. The operators ˆσx
131
+ i ,
132
+ ˆσy
133
+ i and ˆσz
134
+ i are the Pauli matrices acting on site i. The
135
+ first term in Eq. (1) flips the spin si at site i if its nearest
136
+ neighbors are in different states, i.e. si−1 ̸= si+1. The
137
+ second term is a magnetic field along the z-direction with
138
+ strength ∆. The third term represents nearest neighbor
139
+ interactions with strength J.
140
+ Two adjacent spins in different states represent a do-
141
+ main wall, i.e. ↑↓ or ↓↑. The Hamiltonian conserves the
142
+ number of domain walls Ndw because only spins with dif-
143
+ ferent neighbors are allowed to change their state. Fur-
144
+ thermore, the Hamiltonian is invariant under spatial in-
145
+ version and translation, but these symmetries are broken
146
+ when disorder is introduced in section III and we will not
147
+ consider them any further.
148
+ For nonzero values of λ, ∆ and J, the energy eigen-
149
+ states are thermal except for a small number of ETH-
150
+ violating scar states grouped into two towers. Through-
151
+ out this work, we only focus on one of these towers. This
152
+ tower contains L/2+1 eigenstates and the n-th state |Sn⟩
153
+ is constructed by acting n times with the operator ˆQ† on
154
+ the “all-spin-down” state
155
+ |Sn⟩ ∝
156
+ � ˆQ†�n |↓↓ . . . ↓⟩ .
157
+ (2)
158
+ The operator ˆQ† is given by
159
+ ˆQ† =
160
+ L
161
+
162
+ i=1
163
+ (−1)i ˆP ↓
164
+ i−1ˆσ+
165
+ i ˆP ↓
166
+ i+1,
167
+ (3)
168
+ where ˆσ+
169
+ i = (ˆσx
170
+ i +iˆσy
171
+ i )/2 is the raising operator and ˆP ↓
172
+ i =
173
+ (ˆ1 − ˆσz
174
+ i )/2 is the local projection onto spin down. The
175
+ n-th scar state has energy En = 2(∆ − 2J)n + (J − ∆)L,
176
+ number of domain walls Ndw = 2n and generally appears
177
+ central in the spectrum after resolving all symmetries.
178
+ Since the scar states are equally spaced in energy, any
179
+ initial state in the scar subspace displays the dynami-
180
+ cal revivals characteristic of QMBS. Furthermore, it was
181
+ shown in Ref. [29] that the bipartite entanglement en-
182
+ tropy of the scar states displays logarithmic scaling with
183
+ system size.
184
+ B.
185
+ Determining Hamiltonians
186
+ All eigenstates of ˆH0 located near the middle of the
187
+ spectrum are thermal except the scar states. We wish
188
+ to extend the model so the scar states are embedded
189
+ in a MBL background instead of a thermal background.
190
+ MBL is possible in systems with quench disorder, and it
191
+ has been realized in numerous models by e.g. introduc-
192
+ ing a disordered magnetic field [17], bond-disorder [30]
193
+ or disordered nearest-neighbor interactions [31]. Unfor-
194
+ tunately, disorder cannot be introduced naively to the
195
+ Hamiltonian ˆH0. When promoting any parameter to be-
196
+ ing site-dependent λ → λi, ∆ → ∆i or J → Ji, the
197
+ scar states are no longer eigenstates. Therefore, disorder
198
+ must be introduced through new terms. In this section,
199
+ we uncover all local few-body Hamiltonians which share
200
+ the scar states as eigenstates and maintain equal energy
201
+ spacing. In the next section, we show that a subset of
202
+ these Hamiltonians are partially localized.
203
+ We search for local Hamiltonians following Refs. [32,
204
+ 33]. The set of 2L×2L Hermitian operators form a vector
205
+ space. Most of these operators are long-ranged, contain
206
+ many-body interactions and are difficult to realize in ex-
207
+ periments. Therefore, we restrict ourselves to Hamiltoni-
208
+ ans containing local 1- and 2-body Hermitian operators.
209
+ This subspace is spanned by the operator basis
210
+ B2 =
211
+
212
+ ˆσa
213
+ i
214
+ ���a ∈ {x, y, z}, i ∈ ZL
215
+
216
+
217
+
218
+ ˆσa
219
+ i ˆσb
220
+ i+1
221
+ ���a, b ∈ {x, y, z}, i ∈ ZL
222
+
223
+ ,
224
+ (4)
225
+ where ZL = {1, 2, . . . , L} are the first L integers. This
226
+ subspace is considerably smaller than the full operator
227
+ vector space and has dimension |B2| = 12L where | · |
228
+ denotes the number of elements in a set. Any local 1-
229
+ or 2-body interacting Hamiltonian can be expressed as a
230
+ linear combination of the basis elements
231
+ ˆH =
232
+ |B2|
233
+
234
+ i=1
235
+ αiˆhi,
236
+ ˆhi ∈ B2,
237
+ (5)
238
+ where αi ∈ R are free coefficients.
239
+ To simplify no-
240
+ tation, we collect the coefficients in a vector α
241
+ =
242
+ (α1, α2, . . . , α|B2|)T where T is the transpose.
243
+ We search for the vector of parameters α so the re-
244
+ sulting Hamiltonian has |Sn⟩ as eigenstates for n =
245
+ 0, 1, . . . , L/2. The scar state |Sn⟩ is an eigenstate of ˆH if
246
+ and only if the energy variance of |Sn⟩ is exactly zero
247
+ ⟨Sn| ˆH2|Sn⟩ − ⟨Sn| ˆH|Sn⟩
248
+ 2 = 0.
249
+ (6)
250
+ Inserting Eq. (5), the expression becomes
251
+ αT Cnα = 0,
252
+ (7)
253
+ where Cn is the quantum covariance matrix
254
+ [Cn]ij = ⟨Sn|ˆhiˆhj|Sn⟩ − ⟨Sn|ˆhi|Sn⟩ ⟨Sn|ˆhj|Sn⟩ .
255
+ (8)
256
+
257
+ 3
258
+ Equation (7) is satisfied when the vector of coefficients
259
+ lies in the null space of the quantum covariance matrix
260
+ α ∈ Null(Cn), i.e. Cnα = 0. We ensure all scar states
261
+ |Sn⟩ are simultaneously eigenstates of ˆH by demanding
262
+ the vector of coefficients α lies in the null space of ev-
263
+ ery covariance matrix α ∈ Null(C0) ∩ Null(C1) ∩ . . . ∩
264
+ Null(CL/2). While this condition ensures all scar states
265
+ are eigenstates of ˆH, they are not necessarily equally
266
+ spaced in energy.
267
+ Equal energy spacing is established
268
+ by imposing another set of requirements
269
+ ⟨Sn+2| ˆH|Sn+2⟩ − ⟨Sn+1| ˆH|Sn+1⟩
270
+ = ⟨Sn+1| ˆH|Sn+1⟩ − ⟨Sn| ˆH|Sn⟩ ,
271
+ (9)
272
+ for all n = 0, 1, . . . , L/2 − 2. Inserting Eq. (5), we find
273
+ Gα = 0,
274
+ (10)
275
+ where we introduce the rectangular matrix of energy gap
276
+ differences
277
+ [G]ij = ⟨Si+2|ˆhj|Si+2⟩ − 2 ⟨Si+1|ˆhj|Si+1⟩ + ⟨Si|ˆhj|Si⟩ .
278
+ (11)
279
+ We observe that the scar states are equally spaced in en-
280
+ ergy when the coefficient vector resides in the null space
281
+ of the gap matrix. In summary, the scar states appear as
282
+ eigenstates of the Hamiltonian with equal energy spacing
283
+ when the vector of coefficients lies in the intersection
284
+ α ∈
285
+ L/2
286
+
287
+ n=0
288
+ Null(Cn) ∩ Null(G).
289
+ (12)
290
+ It is straightforward to determine this subspace numeri-
291
+ cally since the scar states are known analytically. Note
292
+ however, that while the matrices Cn and G are com-
293
+ plex, we only search for real vectors α ∈ R|B2| (for com-
294
+ plex vectors α ∈ C|B2|, the linear combination in Eq.
295
+ (5) is not necessarily Hermitian).
296
+ We find real coeffi-
297
+ cient vectors by stacking the real and imaginary parts of
298
+ the matrices (Re(C0), Im(C0), . . . , Re(CL/2), Im(CL/2),
299
+ Re(G), Im(G))T and determining the null space of the
300
+ resulting rectangular matrix by e.g. singular value de-
301
+ composition.
302
+ The vectors αi produced by this numerical method are
303
+ typically dense, i.e. have few nonzero entries. As a con-
304
+ sequence, the corresponding operator �
305
+ i αiˆhi is difficult
306
+ to interpret. We overcome this difficulty by noting that
307
+ if {αi|i = 1, 2, . . .} lies in the null space Eq. (12), then
308
+ any linear combination of these vectors also lies in the
309
+ null space. We apply a heuristic algorithm to determine
310
+ sparse vectors in the subspace [34].
311
+ C.
312
+ Generalized models
313
+ We apply the numerical method for system sizes L = 8,
314
+ 10, 12, 14 and for all sizes find L + 4 linearly indepen-
315
+ dent vectors αi satisfying Eq. (12). The corresponding
316
+ (i)
317
+ ˆHz = �L
318
+ i=1 ˆσz
319
+ i
320
+ (ii)
321
+ ˆDi = ˆσz
322
+ i + ˆσz
323
+ i+1 + ˆσz
324
+ i ˆσz
325
+ i+1,
326
+ for i ∈ ZL
327
+ (iii) ˆHodd
328
+ zz
329
+ = �L/2
330
+ i=1 ˆσz
331
+ 2i−1ˆσz
332
+ 2i
333
+ (iv)
334
+ ˆHalt
335
+ xz = �L
336
+ i=1(−1)i(ˆσx
337
+ i ˆσz
338
+ i+1 + ˆσz
339
+ i ˆσx
340
+ i+1)
341
+ (v)
342
+ ˆHalt
343
+ yz = �L
344
+ i=1(−1)i(ˆσy
345
+ i ˆσz
346
+ i+1 + ˆσz
347
+ i ˆσy
348
+ i+1)
349
+ TABLE I. Local 1- and 2-body operators which have |Sn⟩
350
+ for n = 0, 1, . . . , L/2 as energy eigenstates with equal energy
351
+ spacing. The operators are determined by applying the nu-
352
+ merical method presented in Sec. II B and Appendix A proves
353
+ the statement rigorously.
354
+ operators are summarized in Tab. I. The first operator
355
+ ˆHz was already present in the initial model Eq. (1) and
356
+ adds nothing new. The L operators ˆDi act locally on
357
+ sites i and i+1 and represent good candidates for adding
358
+ quench disorder into the model in Eq. (1). Indeed, in Sec.
359
+ III, we demonstrate the system partially localizes when
360
+ introducing sufficiently strong disorder via these opera-
361
+ tors. The third operator ˆHodd
362
+ zz
363
+ represents an interaction
364
+ between every odd site and its right neighbor with equal
365
+ interaction strength. The fourth and fifth operators ˆHalt
366
+ xz
367
+ and ˆHalt
368
+ yz flip spins with the sign of the term determined
369
+ by the nearest neighbors.
370
+ Using the numerical method, we rediscover the 1- and
371
+ 2-body terms of the model in Eq. (1) by starting from
372
+ the scar states. As noted above, the operator ˆHz was
373
+ already present in the original model. Furthermore, the
374
+ third term in Eq. (1) is a linear combination of the oper-
375
+ ators in Tab. I: �L
376
+ i=1 ˆσz
377
+ i ˆσz
378
+ i+1 = �L
379
+ i=1 ˆDi − 2 ˆHz. Hence,
380
+ the operators in Tab. I only represent L + 2 non-trivial
381
+ extensions to the initial model.
382
+ The numerical method presented in Sec. II B finds all
383
+ operators in the operator subspace span(B2) hosting the
384
+ tower of scars for finite L (up to length L = 14 in our
385
+ case). However, in principle, the scar states may not be
386
+ eigenstates of these operators at larger L. Therefore, in
387
+ Appendix A we prove analytically for all even L that the
388
+ scar states remain eigenstates with equal energy spacing
389
+ for all operators in Tab. I.
390
+ The method from Sec. II B can be extended by in-
391
+ cluding all 3-body terms to the basis B3
392
+ =
393
+ B2 ∪
394
+ {ˆσa
395
+ i ˆσb
396
+ i+1ˆσc
397
+ i+2
398
+ ���a, b, c ∈ {x, y, z}, i ∈ ZL}.
399
+ This results
400
+ in a myriad of new operators – including the first term
401
+ from Eq. (1). Hence, with a large enough operator basis,
402
+ the numerical method fully recovers the original model.
403
+ Since long-ranged many-body interactions are less rele-
404
+ vant experimentally, we will not explore this possibility
405
+ any further.
406
+ Finally, we remark that the effectiveness of this ap-
407
+ proach is highly non-trivial. For an eigenstate of a generic
408
+ local Hamiltonian, it is unlikely for another local Hamil-
409
+
410
+ 4
411
+ tonian to exist that shares the same eigenstate [35]. Con-
412
+ trary to this, we find a large subspace of local Hamiltoni-
413
+ ans sharing a full tower of scar states. We attribute the
414
+ effectiveness of our study to the analytical structure of
415
+ the scar states, i.e. Eq. (2) and (3). Our methods are not
416
+ expected to be valuable starting from generic eigenstates
417
+ but may be equally effective in other scarred models with
418
+ similar amount of structure.
419
+ III.
420
+ MANY-BODY LOCALIZATION
421
+ In the last section, we determined a subspace of Hamil-
422
+ tonians with the scar states |Sn⟩ as eigenstates equally
423
+ spaced in energy. Now, we study a concrete Hamiltonian
424
+ from this subspace
425
+ ˆH = ˆH0 +
426
+ L
427
+
428
+ i=1
429
+ di ˆDi,
430
+ (13)
431
+ with di chosen randomly from the uniform probability
432
+ distribution di ∈ [−W, W] where W > 0 is the disorder
433
+ strength. The action of ˆDi is given by
434
+ ˆDi |s1 . . . sisi+1 . . . sL⟩
435
+ =
436
+
437
+ 3 |s1 . . . sisi+1 . . . sL⟩ ,
438
+ if si = si+1 = ↑
439
+ − |s1 . . . sisi+1 . . . sL⟩ ,
440
+ otherwise
441
+ (14)
442
+ The operator ˆDi is related to the projection operators
443
+ through ˆDi = 4 ˆP ↑
444
+ i ˆP ↑
445
+ i+1 − ˆ1 with ˆP ↑
446
+ i = (ˆ1 + ˆσz
447
+ i )/2. We
448
+ remark that Ref. [29] also observes that the operator
449
+ ˆP ↑
450
+ i ˆP ↑
451
+ i+1 preserves the scar states.
452
+ The model conserves the number of domain walls. The
453
+ dimension of the symmetry sector containing Ndw do-
454
+ main walls is given by the binomial coefficient 2(
455
+ L
456
+ Ndw ).
457
+ We generally consider the largest symmetry sector with
458
+ Ndw = 2⌊L/4⌋ domain walls where ⌊·⌋ is the function
459
+ rounding down to the nearest integer.
460
+ A.
461
+ Partial many-body localization
462
+ A physical system may transition to the MBL phase
463
+ when disorder is introduced.
464
+ MBL is usually real-
465
+ ized with the disorder term in the Hamiltonian acting
466
+ uniquely on each basis state. Consequently, a complete
467
+ set of LIOMs emerge and all energy eigenstates are fully
468
+ described by their eigenvalues of the LIOMs.
469
+ The situation is slightly different in our model because
470
+ the disorder term �
471
+ i di ˆDi treats some basis states the
472
+ same. The operator ˆDi is only sensitive to whether spins
473
+ i and i+1 are both up (it acts identically on states where
474
+ spins i and i+1 are ↓↓, ↓↑ or ↑↓). Therefore, the operator
475
+
476
+ i di ˆDi has the same action on product states with all
477
+ consecutive spin-ups placed identically. We do not expect
478
+ these to localize in the usual sense. Instead, we anticipate
479
+ the spectrum to separate into fully MBL eigenstates and
480
+ partially localized eigenstates.
481
+ This structure is most easily described when the prod-
482
+ uct states |s1s2 . . . sL⟩ are relabeled to reflect the ac-
483
+ tion of �
484
+ i di ˆDi.
485
+ In this spirit, we define |Ndw, D, n⟩
486
+ as a simultaneous eigenstate of the ˆDi’s with eigenvalues
487
+ D = (D1, D2, . . . DL) where Di ∈ {−1, 3}. We will refer
488
+ to D as the disorder indices. As discussed above, the
489
+ state |s1s2 . . . sL⟩ is not fully described by D since mul-
490
+ tiple states can have the same eigenvalues. Therefore, we
491
+ further label the states by their number of domain walls
492
+ Ndw and introduce a dummy index n = 1, 2, . . . , N (Ndw)
493
+ D
494
+ to distinguish states with identical Ndw and D. For in-
495
+ stance, if two states |s1s2 . . . sL⟩ and |s′
496
+ 1s′
497
+ 2 . . . s′
498
+ L⟩ have the
499
+ same number of domain walls Ndw and disorder indices
500
+ D, then they are relabeled as |Ndw, D, n⟩ for n = 1, 2.
501
+ Note that some labelings are invalid. Consider the vector
502
+ of eigenvalues D = (3, −1, 3, 3) for a small system L = 4.
503
+ The “3”s imply all spins are up, while the “−1” entail at
504
+ least one spin is down. In the following, we study a single
505
+ symmetry sector and hence omit the Ndw index for clar-
506
+ ity but reintroduce it in Secs. V and VI when studying
507
+ multiple symmetry sectors at once.
508
+ Upon introducing strong disorder, we expect LIOMs to
509
+ emerge which are localized on the operators ˆDi and en-
510
+ ergy eigenstates are characterized by their eigenvalues of
511
+ the LIOMs. Therefore, we expect the energy eigenstates
512
+ to be close to linear combinations of product states with
513
+ the same disorder indices
514
+ |ED,m⟩ ≈
515
+ ND
516
+
517
+ n=1
518
+ αmn |D, n⟩ .
519
+ (15)
520
+ with αmn ∈ R and m = 1, 2, . . . , ND. This expression
521
+ is an approximation rather than an equality due to an
522
+ exponentially small overlap with states |D′, n⟩ with dif-
523
+ ferent disorder indices D′ ̸= D. The special case ND = 1
524
+ corresponds to the disorder term acting uniquely on the
525
+ basis state |D, 1⟩. We expect the corresponding energy
526
+ eigenstate |ED,1⟩ ≈ |D, 1⟩ to be MBL. For ND > 1,
527
+ the states {|ED,m⟩ |m = 1, 2, . . . , ND} are only partially
528
+ MBL since the LIOMs do not fully describe each state
529
+ and all additional structure is captured by the extra in-
530
+ dex m.
531
+ The above considerations are verified in numerical sim-
532
+ ulations by considering a system of size L = 8 at strong
533
+ disorder W = 10. Figure 1 illustrates the norm squared
534
+ overlap of all energy eigenstates |ED,m⟩ with the prod-
535
+ uct states |D, n⟩. The (i, j)-th pixel displays the norm
536
+ squared overlap between the i-th product state and j-
537
+ th energy eigenstate. The product states on the second
538
+ axis are sorted according to ND. The energy eigenstates
539
+ are reordered to allow the diagonal shape in Fig. 1. In
540
+ the upper left corner of Fig. 1, each eigenstate has high
541
+ overlap with a single product state. Numerical analysis
542
+ reveals that these product states exactly coincide with
543
+ those being fully described by their disorder indices, i.e.
544
+ ND = 1. These results support the claim that such eigen-
545
+
546
+ 5
547
+ |ED,m⟩
548
+ |D, n⟩
549
+ 1
550
+ 2
551
+ 3
552
+ 4
553
+ 20
554
+ ND
555
+ (a)
556
+ (b)
557
+ (c)
558
+ 0.0
559
+ 0.2
560
+ 0.4
561
+ 0.6
562
+ 0.8
563
+ 1.0
564
+ |⟨D, n|ED,m⟩|2
565
+ FIG. 1.
566
+ The norm squared overlap of the energy eigenstates
567
+ with the product states | ⟨D, n|ED,m⟩ |2 for system size L = 8,
568
+ disorder strength W = 10 and parameters λ = ∆ = J = 1.
569
+ The color of pixel (i, j) displays the overlap between the i’th
570
+ product state and the j’th eigenstate. The product states are
571
+ sorted into ascending order according to ND. The second axis
572
+ on the right hand side groups the product states according to
573
+ ND. The insets show eigenstates with significant weight on
574
+ (a) two, (b) three and (c) four product states.
575
+ The figure
576
+ verifies that all energy eigenstates are approximately linear
577
+ combinations of product states with the same disorder indices.
578
+ states fully localize. The next eigenstates shown in Fig.
579
+ 1(a) each has significant overlap with exactly two product
580
+ states of the same disorder indices. The pattern contin-
581
+ ues: we find eigenstates that are linear combinations of
582
+ Fig. 1(b) three, Fig. 1(c) four, and (bottom right corner)
583
+ twenty product states. In each case, the product states
584
+ have the same disorder indices and hence correspond to
585
+ {|D, n⟩ |n = 1, 2, . . . , ND} for ND = 3, 4, 20. These ob-
586
+ servations are not restricted to L = 8, but seem universal
587
+ at all system sizes. For larger system sizes, the number
588
+ and sizes of the blocks increase. Finally, we note that
589
+ the scar state within the considered symmetry sector is
590
+ located in the block ND = 20 in Fig. 1. The scar state
591
+ is generally an equal weight linear combination of prod-
592
+ uct states with the maximum ND. This fact will play an
593
+ important role when we explore the system dynamics in
594
+ Sec. V.
595
+ Next, we discuss how the eigenstates are distributed
596
+ in energy. The magnetization MD = �
597
+ i σz
598
+ i of a prod-
599
+ uct state |D, n⟩ is fixed by the symmetry sector Ndw
600
+ E
601
+ Thermal
602
+ |Sn⟩
603
+ Partial MBL
604
+ |ED1,m1⟩
605
+ |ED2,1⟩
606
+ |ED2,2⟩
607
+ |ED2,3⟩
608
+ |ED3,m3⟩
609
+ |ED4,m4⟩
610
+ |ED5,m5⟩
611
+ FIG. 2.
612
+ Sketch of the spectrum in the thermal phase (left)
613
+ and in the partially localized phase (right). In the thermal
614
+ phase, the energy levels follow the Wigner-Dyson surmise.
615
+ As disorder is introduced, the spectrum experiences partial
616
+ localization. Eigenstates with similar indices D are near de-
617
+ generate and the spectrum forms clusters of such eigenstates.
618
+ The scar state lies in the largest of these clusters.
619
+ and disorder indices D. Likewise, the number N (↑↑,↓↓)
620
+ D
621
+ of adjacent spins pointing in the same direction (↑↑ or
622
+ ↓↓) and the number N (↑↓,↓↑)
623
+ D
624
+ of adjacent spins point-
625
+ ing in opposite directions (↑↓ or ↓↑) are also fully de-
626
+ termined.
627
+ Therefore, the terms ∆ �
628
+ i ˆσz
629
+ i , J �
630
+ i ˆσz
631
+ i ˆσz
632
+ i+1
633
+ and �
634
+ i di ˆDi have the same action on all product states
635
+ with the same number of domain walls and disorder in-
636
+ dices: {|D, n⟩ |n = 1, 2, . . . , ND}.
637
+ At strong disorder,
638
+ the energy of an eigenstate is approximately ED,m ≈
639
+ ∆MD + J(N (↑↑,↓↓)
640
+ D
641
+ − N (↑↓,↓↑)
642
+ D
643
+ ) + �
644
+ i diDi with a small
645
+ correction that depends on the value of the m index. The
646
+ slight additional contribution originates from the term
647
+
648
+ i λ(ˆσx
649
+ i − ˆσz
650
+ i−1ˆσx
651
+ i ˆσz
652
+ i+1) and scales with λ. Consequently,
653
+ at large disorder, the set of eigenstates {|ED,m⟩ |m =
654
+ 1, 2, . . . , ND} are near degenerate and form clusters. A
655
+ scar state resides in the largest of these clusters in all
656
+ symmetry sectors. Figure 2 illustrates the spectral struc-
657
+ ture. Note that Fig. 2 is highly idealized to highlight the
658
+ structure described above. In practice, it is highly likely
659
+ for two or more clusters to overlap making the structure
660
+ less apparent.
661
+ B.
662
+ Spectral statistics
663
+ The distribution of energy gaps distinguishes the ther-
664
+ mal and MBL phases.
665
+ Let Ei be the energies of the
666
+ Hamiltonian in ascending order and δi = Ei+1 − Ei ≥ 0
667
+ the i-th energy gap. In the thermal phase, the number of
668
+ energy levels in an interval [E, E+∆E] is known to follow
669
+ the Wigner-surmise [36, 37]. In particular, it follows the
670
+ Gaussian orthogonal ensemble (GOE) since the model in
671
+ Eq. (13) is time-reversal invariant. On the other hand,
672
+ the number of energy levels in an interval follows the Pois-
673
+ son distribution in the MBL phase. Since our model only
674
+ partially localizes, we review how the Poisson distribu-
675
+ tion accurately describes the MBL phase and investigate
676
+
677
+ T6
678
+ the validity of these arguments in our model. Consider
679
+ two adjacent eigenstates with energies Ei and Ei+1. At
680
+ large disorder, the energy of these states are dominated
681
+ by the disorder term �
682
+ i di ˆDi. If the states have differ-
683
+ ent disorder indices |ED,m⟩ and |ED′,m′⟩, then their en-
684
+ ergies originate from different linear combinations of the
685
+ random numbers di: �
686
+ i diDi ≈ �
687
+ i diD′
688
+ i with Di ̸= D′
689
+ i
690
+ for some i’s. Consequently, the eigenstates “arrive” at
691
+ this energy independently of each other and hence fol-
692
+ low the Poisson distribution.
693
+ These arguments are no
694
+ longer valid when two adjacent eigenstates have the same
695
+ disorder indices and different m indices.
696
+ In this case,
697
+ we expect the level spacing distribution to follow GOE.
698
+ Thus, the distribution of energy levels still identifies the
699
+ transition to partial localization if we only consider level
700
+ spacings between eigenstates of different disorder indices.
701
+ Instead of working directly with the level spacing dis-
702
+ tribution, it is convenient to analyze the adjacent gap
703
+ ratio since it removes the need for unfolding the spec-
704
+ trum [37, 38]. The adjacent gap ratio is defined by [16]
705
+ ri = min(δi, δi+1)
706
+ max(δi, δi+1).
707
+ (16)
708
+ This quantity is bounded by the interval ri ∈ [0, 1] and
709
+ follows the distributions below in the thermal and MBL
710
+ phases respectively [39]
711
+ PGOE(r) = 27
712
+ 4
713
+ r(1 + r)
714
+ (1 + r + r2)5/2 ,
715
+ (17a)
716
+ PPoisson(r) =
717
+ 2
718
+ (1 + r)2 .
719
+ (17b)
720
+ The mean values of the distributions in Eq. (17) are given
721
+ by ⟨r⟩GOE = 2(2 −
722
+
723
+ 3) ≈ 0.536 and ⟨r⟩Poisson = 2 ln 2 −
724
+ 1 ≈ 0.386.
725
+ Figure 3(a) illustrates the mean adjacent gap ratio as
726
+ a function of disorder strength for different system sizes.
727
+ We average the adjacent gap ratio over 2 × 103 disor-
728
+ der realizations for L = 8, 103 disorder realizations for
729
+ L = 10, 12, 14 and 500 disorder realizations for L = 16.
730
+ For each disorder realization, we average over all energies
731
+ in the interval Ei ∈ [E(q=1/3), E(q=2/3)] where E(q) is the
732
+ q-th quantile of the energy distribution for the current
733
+ disorder realization. For system size L = 16, we average
734
+ over the 103 energies closest to (Emin + Emax)/2 where
735
+ Emin and Emax are the smallest and largest energies in
736
+ the spectrum. The errorbars indicate two standard devi-
737
+ ations of the average when assuming a Gaussian distri-
738
+ bution. As discussed above, the distribution of adjacent
739
+ gap ratios only converges to Eq. (17b) if the analysis is
740
+ restricted to adjacent energy levels with different disor-
741
+ der indices. In practice, however, it is unlikely for two
742
+ neighboring eigenstates to have the same disorder indices.
743
+ Furthermore, the likelihood of neighboring eigenstates
744
+ having the same disorder indices decreases rapidly with
745
+ system size. With this in mind, we study the mean adja-
746
+ cent gap ratio using all eigenstates in the central third of
747
+ the spectrum. We verify the considerations above by also
748
+ computing the mean adjacent gap ratio using only adja-
749
+ cent eigenstates with different disorder indices at large
750
+ disorder. For each energy gap δi = Ei+1 −Ei, we inspect
751
+ the eigenstates |ED,m⟩ and |ED′,m′⟩ corresponding to the
752
+ energies Ei and Ei+1. At large disorder, the disorder in-
753
+ dices D are accurately determined by computing which
754
+ D yields �ND
755
+ m=1 | ⟨D, m|ED,m⟩ |2 ≈ 1. The mean of the
756
+ adjacent gap ratio is then restricted to energy gaps with
757
+ D ̸= D′. For small system sizes, there is a large differ-
758
+ ence between the two methods, but the difference is seen
759
+ to be small for large systems.
760
+ The mean adjacent gap ratio agrees well with the GOE
761
+ value at weak disorder 0 <∼ W <∼ 1.
762
+ As the disorder
763
+ strength is increased, the mean adjacent gap ratio de-
764
+ creases and ultimately approaches the Poisson value at
765
+ 5 <∼ W. The agreement of data with the GOE and Pois-
766
+ son values improves with increasing system size and the
767
+ transition between the thermal and localized phase be-
768
+ comes steeper for larger systems.
769
+ Figures 3(b)-(d) illustrate the adjacent gap ratio dis-
770
+ tribution at (b) weak disorder W = 0.46, (c) intermedi-
771
+ ate disorder strength W = 2.27 and (d) strong disorder
772
+ W = 6. The figures display the distributions in Eq. (17)
773
+ for comparison. As expected, the data agrees with Eq.
774
+ (17a) at weak disorder and (17b) at strong disorder. Fig-
775
+ ure 3 indicates the system transitions from the thermal
776
+ phase to being partially localized as disorder is intro-
777
+ duced.
778
+ C.
779
+ Bipartite entanglement entropy
780
+ In this section, we further verify the transition from
781
+ the thermal phase to partial localization by studying the
782
+ bipartite entanglement entropy. We separate the system
783
+ into a left part L containing the first L/2 sites and a
784
+ right part R containing the remaining sites. The reduced
785
+ density matrix of the left part is obtained by tracing out
786
+ the right part
787
+ ρL = TrR(ρ)
788
+ (18)
789
+ where ρ is the density matrix of the full system and
790
+ TrR(·) is the partial trace over R.
791
+ The entanglement
792
+ entropy between the left and right halves is given by,
793
+ S = − TrL
794
+
795
+ ρL ln(ρL)
796
+
797
+ .
798
+ (19)
799
+ In the thermal phase, we expect eigenstates near the
800
+ center of the spectrum to display volume-law scaling with
801
+ system size. Specifically, the entropy is approximately
802
+ described by the Page value SPage = [L ln(2) − 1]/2 [40].
803
+ On the other hand, the entanglement entropy displays
804
+ area-law scaling for MBL eigenstates [41]. While some
805
+ eigenstates in our model are fully MBL, others are only
806
+ partially localized. Hence, the precise scaling behavior
807
+ of the entanglement entropy is not clear. Nonetheless,
808
+ we expect the entropy of partially localized eigenstates
809
+ to grow slower with system size than thermal eigenstates
810
+
811
+ 7
812
+ P(r)
813
+ (b)
814
+ Poisson
815
+ GOE
816
+ P(r)
817
+ (c)
818
+ 0.0
819
+ 0.5
820
+ 1.0
821
+ r
822
+ P(r)
823
+ (d)
824
+ 0
825
+ 1
826
+ 2
827
+ 3
828
+ 4
829
+ 5
830
+ 6
831
+ W
832
+ 0.40
833
+ 0.45
834
+ 0.50
835
+ ⟨r⟩
836
+ (a)
837
+ GOE
838
+ Poisson
839
+ L = 8
840
+ 10
841
+ 12
842
+ 14
843
+ 16
844
+ FIG. 3.
845
+ (a) Mean adjacent gap ratio ⟨r⟩ (solid line) as a function of disorder strength W for different system sizes L with
846
+ parameters λ = ∆ = J = 1. The shaded areas display two standard deviations on the estimate of ⟨r⟩ when assuming a Gaussian
847
+ distribution of data. For L = 8, the adjacent gap ratio is averaged over 2 × 103 disorder realizations, for L = 10, 12, 14 we
848
+ use 103 disorder realizations and for L = 16 we use 500 disorder realizations. For system sizes L = 8, 10, 12, 14, we average
849
+ over all energies Ei ∈ [E(q=1/3), E(q=2/3)] where E(q) is the q-th quantile. For system size L = 16, we average over the 103
850
+ energies closest to (Emin + Emax)/2 where Emin and Emax are the smallest and largest energies in the spectrum.
851
+ At low
852
+ disorder 0 <∼ W <∼ 1, the system is thermal and ⟨r⟩ coincides with the Gaussian orthogonal ensemble ⟨r⟩GOE ≈ 0.536 (upper
853
+ dashed line). At strong disorder 5 <∼ W, the mean adjacent gap ratio agrees with the Poisson distribution ⟨r⟩Poisson ≈ 0.386
854
+ (lower dotted line). The agreement between data and the GOE and Poisson values improves with system size. Additionally,
855
+ the transition from the thermal phase to partial localization happens more rapidly as a function of disorder strength for larger
856
+ system sizes. The figure also illustrates the mean adjacent gap ratio when only averaging over neighboring energy eigenstates
857
+ with different disorder indices (dots). The errorbars show two standard deviations on the estimate of the mean. This average
858
+ coincides with the naive calculation at large system sizes. The figure also shows the adjacent gap ratio distribution for L = 16
859
+ at (b) weak disorder W = 0.46, (c) intermediate disorder strength W = 2.27 and (d) strong disorder W = 6. These plots
860
+ include the distributions Eq. (17a) (dashed curve) and Eq. (17b) (dotted curve). The data agrees with Eq. (17a) at weak
861
+ disorder and transitions to the distribution (17b) at strong disorder.
862
+ and we use the entropy to identify the onset of partial
863
+ localization.
864
+ Figure 4(a) shows the entropy of the eigenstate with
865
+ energy closest to (Emin + Emax)/2 as a function of disor-
866
+ der strength W for different system sizes L. Each data
867
+ point represents the average entropy over 103 disorder
868
+ realizations with errorbars displaying two standard devi-
869
+ ations of the mean when assuming a Gaussian distribu-
870
+ tion. For low disorder, the entanglement entropy scales
871
+ linearly with the system size and hence agrees with the
872
+ expected volume-law scaling in the thermal phase. Ad-
873
+ ditionally, the entropy approaches the Page value with
874
+ increasing system size.
875
+ At large disorder, the entropy
876
+ seems to be roughly independent of system size. Thus,
877
+ the scaling of entropy is consistent with area-law for par-
878
+ tially localized eigenstates.
879
+ The sudden shift in scaling behavior of the entropy
880
+ verifies the transition from the thermal phase to partial
881
+ localization at strong disorder. The transition point is
882
+ identified by analyzing the variance of entanglement en-
883
+ tropy. Figure 4(b) illustrates the sample variance of the
884
+ entropy over 103 disorder realizations. The variance dis-
885
+ plays a peak when the system transitions from volume-
886
+ law to area-law scaling.
887
+ IV.
888
+ DISTINGUISHABLE FEATURES OF SCAR
889
+ STATES IN A PARTIALLY LOCALIZED
890
+ BACKGROUND
891
+ Scar states are commonly distinguished from a thermal
892
+ background by their low entanglement and oscillatory dy-
893
+ namics. In this section, we show that oscillatory dynam-
894
+ ics can also be utilized to distinguish scar states from
895
+ a partially localized background, while entanglement en-
896
+ tropy turns out not to be an effective tool to identify the
897
+ scar states.
898
+ A.
899
+ Entanglement entropy
900
+ The entanglement entropy of the scar states scales log-
901
+ arithmically with system size [29], while thermal states
902
+ display volume-law scaling. Therefore, the entanglement
903
+
904
+ 8
905
+ 0
906
+ 1
907
+ 2
908
+ 3
909
+ 4
910
+ 5
911
+ ⟨S⟩
912
+ (a)
913
+ L = 8
914
+ 10
915
+ 12
916
+ 14
917
+ 16
918
+ 0
919
+ 2
920
+ 4
921
+ 6
922
+ W
923
+ 0
924
+ 1
925
+ Var(S)
926
+ (b)
927
+ FIG. 4.
928
+ (a) Average bipartite entanglement entropy of the
929
+ eigenstate closest to the center of the spectrum ⟨S⟩ as a func-
930
+ tion of disorder strength W for different system sizes L. The
931
+ entropy is averaged over 103 disorder realizations with system
932
+ parameters λ = ∆ = J = 1.
933
+ Errorbars display two stan-
934
+ dard deviations on the estimate of average entropy assuming
935
+ a Gaussian distribution. At low disorder, the entropy displays
936
+ volume-law scaling with system size and approaches the Page
937
+ value (dashed lines) as expected in the thermal phase.
938
+ At
939
+ large disorder, the entropy follows area-law scaling with sys-
940
+ tem size. (b) Variance of bipartite entanglement entropy of
941
+ the eigenstate closest to the center of the spectrum.
942
+ The
943
+ variance is computed from 103 disorder realizations. As the
944
+ disorder strength is increased, the variance displays a sudden
945
+ peak. This indicates a transition from the thermal phase to
946
+ partial localization. The peak becomes higher at larger sys-
947
+ tem sizes.
948
+ entropy provides a way to identify the scar states in a
949
+ thermal background. Figure 5(a) illustrates the entropy
950
+ as a function of energy of a thermal system with size
951
+ L = 14 and disorder strength W = 0.5. The thermal
952
+ states form a narrow arc with maximum in the middle
953
+ of the spectrum while the scar state appears as an out-
954
+ lier at much lower entropy. The situation is different in
955
+ a partially localized background. Figure 5(b) illustrates
956
+ the entropy as a function of energy at strong disorder
957
+ W = 6. As discussed above, partially localized eigen-
958
+ states are weakly entangled making it difficult to identify
959
+ the scar state. We conclude that entanglement entropy
960
+ is an ineffective tool for distinguishing scar states from a
961
+ partially localized background.
962
+ 0.0
963
+ 0.5
964
+ 1.0
965
+ ϵ
966
+ 0
967
+ 2
968
+ 4
969
+ S
970
+ (a)
971
+ 0.0
972
+ 0.5
973
+ 1.0
974
+ ϵ
975
+ (b)
976
+ FIG. 5.
977
+ The entanglement entropy S as a function of nor-
978
+ malized energy ϵ = (E − Emin)/(Emax − Emin) where Emin
979
+ and Emax are the smallest and largest energies in the spec-
980
+ trum.
981
+ Lighter (darker) colors indicate lower (higher) den-
982
+ sity of points.
983
+ (a) We consider a thermal system of size
984
+ L = 14, disorder strength W = 0.5 and system parameters
985
+ λ = ∆ = J = 1. In the thermal phase, the energy eigenstates
986
+ form a narrow band with maximum at the center of the spec-
987
+ trum. The scar state (inside the green ring) is easily identified
988
+ since it appears isolated below the curve. (b) We consider a
989
+ partially localized system at strong disorder W = 6. The en-
990
+ ergy eigenstates are spread out at low entropy with the scar
991
+ state embedded among them. The entanglement entropy is
992
+ hence not an effective tool to distinguish the scar state from
993
+ a partially localized background.
994
+ B.
995
+ Fidelity
996
+ States initialized in the scar subspace distinguish them-
997
+ selves from a thermal background by displaying persis-
998
+ tent dynamic revivals. We now show that this behavior
999
+ also enables the identification of scar states from a par-
1000
+ tially localized background. We quantify the dynamics of
1001
+ quantum systems by the fidelity F(t). Let |ψ(0)⟩ be the
1002
+ initial state and |ψ(t)⟩ = e−i ˆ
1003
+ Ht |ψ(0)⟩ the time evolved
1004
+ state. The fidelity is given by
1005
+ F(t) = | ⟨ψ(0)|ψ(t)⟩ |2.
1006
+ (20)
1007
+ The time evolution of fidelity is most clearly understood
1008
+ by considering the overlap of the initial state with all
1009
+ energy eigenstates. Let |φi⟩ be the i-th energy eigenstate
1010
+ with corresponding energy Ei and let ci be the inner
1011
+ product between the i-th energy eigenstate and the initial
1012
+ state ci = ⟨φi|ψ(0)⟩. The relation between fidelity and
1013
+ the expansion coefficients ci is highlighted by rewriting
1014
+ the fidelity according to
1015
+ F(t) =
1016
+
1017
+ i
1018
+ |ci|4 +
1019
+
1020
+ i̸=j
1021
+ |ci|2|cj|2ei(Ei−Ej)t
1022
+ (21)
1023
+ It is clear from this expression that the dynamics of fi-
1024
+ delity is sensitive to the distribution of |ci|2. We generally
1025
+ display this distribution along with the fidelity for clarity.
1026
+ We demonstrate the different dynamical behavior of
1027
+ the thermal and partial MBL phases by initializing a sys-
1028
+ tem of size L = 14 in a product state. First, we consider
1029
+
1030
+ 9
1031
+ 0.0
1032
+ 0.5
1033
+ 1.0
1034
+ F
1035
+ (a)
1036
+ ⟨F T⟩
1037
+ ⟨F MBL⟩
1038
+ Fscar
1039
+ 0.0
1040
+ 0.5
1041
+ 1.0
1042
+ F
1043
+ (b)
1044
+ 0
1045
+ 1
1046
+ 2
1047
+ 3
1048
+ 4
1049
+ 5
1050
+ t/Tscar
1051
+ 0.0
1052
+ 0.5
1053
+ 1.0
1054
+ F
1055
+ (c)
1056
+ −25
1057
+ 0
1058
+ 25
1059
+ Ei
1060
+ 0.0
1061
+ 0.1
1062
+ |ci|2
1063
+ (d)
1064
+ −50
1065
+ 0
1066
+ 50
1067
+ Ei
1068
+ 0.0
1069
+ 0.5
1070
+ (e)
1071
+ −20
1072
+ 0
1073
+ Ei
1074
+ 0.0
1075
+ 0.1
1076
+ (f)
1077
+ FIG. 6.
1078
+ (a) The average fidelity of a random product state in
1079
+ a thermal system at disorder strength W = 0.5. (b) The aver-
1080
+ age fidelity in a partially localized system at disorder strength
1081
+ W = 10. The system is initialized in a product state which
1082
+ fully localizes (solid line). For comparison, the system is ini-
1083
+ tialized in a random product state which only partially local-
1084
+ izes |ψ(0))⟩ = |D, n⟩ with ND = 5 (dashed line), 10 (dashed
1085
+ dotted line) and 35 (dotted line). (c) The system is initialized
1086
+ in the scar subspace at any disorder strength. The average
1087
+ fidelity is in all cases calculated over 103 disorder realizations.
1088
+ The bottom panel displays the distribution of expansion coef-
1089
+ ficients |ci|2 across energy in a single disorder realization. (d)
1090
+ For the thermal phase W = 0.5. (e) For partial MBL W = 10
1091
+ with initial state |ψ(0)⟩ = |D, n⟩ for ND = 5. (f) For the
1092
+ initial state being an equal weight linear combination of the
1093
+ scar states.
1094
+ a thermal system at disorder strength W = 0.5.
1095
+ The
1096
+ initial state is chosen as a random product state with
1097
+ all product states having the same probability of being
1098
+ drawn.
1099
+ We ensure the initial state resides outside the
1100
+ scar subspace by drawing a new product state if the first
1101
+ has non-zero overlap with a scar state. We consider 103
1102
+ disorder realizations and draw a random product state
1103
+ in each realization. In the i-th realization, the fidelity is
1104
+ computed as a function of time Fi(t) and Fig. 6(a) shows
1105
+ the average fidelity ⟨F(t)⟩ = 10−3 �103
1106
+ i=1 Fi(t) over all re-
1107
+ alizations. Figure 6(d) shows the expansion coefficients
1108
+ |ci|2 of a single disorder realization following the Gaus-
1109
+ sian distribution as expected [42, 43]. Since the initial
1110
+ state has large overlap with many different eigenstates,
1111
+ the second sum in Eq. (21) rapidly vanishes due to can-
1112
+ cellation between terms with different phase factors. As
1113
+ a consequence, the fidelity quickly decreases and satu-
1114
+ rates at Fi(t) ≈ �
1115
+ i |ci|4 ≈ 0 at long times Tscar ≪ t for
1116
+ all disorder realizations. These considerations agree with
1117
+ the observed time evolution of the average fidelity in Fig.
1118
+ 6(a) which rapidly decreases to a value near zero.
1119
+ Next, we consider the same setup when the system is
1120
+ partially localized at large disorder W = 10. As discussed
1121
+ in Sec. III A, the spectrum separates into fully MBL
1122
+ eigenstates and partially localized eigenstates.
1123
+ Conse-
1124
+ quently, the dynamics depend greatly on the initial state.
1125
+ The solid blue line in Fig. 6(b) is the average fidelity
1126
+ over 103 disorder realizations when initialing the sys-
1127
+ tem in a random product state which fully localizes, i.e.
1128
+ |ψ(0)⟩ = |D, n⟩ with ND = 1. Fully MBL eigenstates
1129
+ have significant overlap with only one product state, and
1130
+ the average fidelity remains far from zero at all times as
1131
+ observed in Fig. 6(b).
1132
+ We note that a stronger disor-
1133
+ der strength is needed to achieve MBL in larger systems.
1134
+ Therefore, the average fidelity saturates significantly be-
1135
+ low unity in Fig. 6(b) even though all product states with
1136
+ ND = 1 in Fig. 1 are near identical to an energy eigen-
1137
+ state. The average fidelity saturates closer to unity at
1138
+ larger disorder strengths.
1139
+ When the initial state is chosen as a product state that
1140
+ only partially localizes, it has significant overlap with
1141
+ multiple eigenstates. Consequently, the average fidelity
1142
+ drops closer to zero as illustrated by the dashed and dot-
1143
+ ted curves in Fig. 6(b). For these curves, we choose the
1144
+ initial state randomly as |ψ(0)⟩ = |D, n⟩ with ND = 5, 10
1145
+ and 35. These initial states have significant support on
1146
+ up to ND eigenstates causing the average fidelity to de-
1147
+ crease with increasing ND.
1148
+ Figure 6(e) illustrates the
1149
+ distribution of |ci|2 for a single disorder realization for a
1150
+ random initial state |ψ(0)⟩ = |D, n⟩ with ND = 5. The
1151
+ distribution is more sparse than the thermal case.
1152
+ Finally, we consider the initial state being a linear com-
1153
+ bination of scar states
1154
+ |ψscar⟩ =
1155
+ 1
1156
+
1157
+ L
1158
+ 2 + 1
1159
+ L/2
1160
+
1161
+ n=0
1162
+ |Sn⟩ .
1163
+ (22)
1164
+ When the initial state is chosen within the scar subspace,
1165
+ the equal energy spacing causes the fidelity to display
1166
+ persistent periodic revivals. In particular, for the equal
1167
+ weight linear combination in Eq. (22), the fidelity is given
1168
+ by
1169
+ Fscar(t) =
1170
+ 1
1171
+ L
1172
+ 2 + 1
1173
+
1174
+ 1 + 2
1175
+ L/2
1176
+
1177
+ n=1
1178
+
1179
+ 1 −
1180
+ n
1181
+ L
1182
+ 2 + 1
1183
+
1184
+ cos(n∆Et)
1185
+
1186
+ .
1187
+ (23)
1188
+ Revivals occur at times tℓ = Tscarℓ =
1189
+ 2πℓ
1190
+ ∆Escar where ℓ ∈ N
1191
+ and ∆Escar is the energy spacing between consecutive
1192
+ scar states.
1193
+ Figure 6(c) illustrates the fidelity of this
1194
+ initial state and Fig. 6(f) shows the distribution of the
1195
+ expansion coefficients.
1196
+
1197
+ 10
1198
+ In the thermal phase, states initialized respectively in-
1199
+ side and outside the scar subspace behave differently.
1200
+ The fidelity of states outside the scar subspace quickly
1201
+ drops to zero, while any linear combination of scar states
1202
+ display persistent revivals. In our analysis, we specifi-
1203
+ cally initialized the system as a product state, but the
1204
+ same conclusions hold for generic linear combinations of
1205
+ product states. In a partially localized background, the
1206
+ average fidelity distinguishes between states with sup-
1207
+ port inside and outside the scar subspace. The average
1208
+ fidelity of partially localized states saturates while scar
1209
+ states display revivals. Again, our analysis concerns the
1210
+ special case of initializing the system as a random prod-
1211
+ uct state. If instead the initial state is a generic linear
1212
+ combination of a large number of product states, the sec-
1213
+ ond term of Eq. (21) will generally vanish due to phase
1214
+ cancellation, and the average fidelity saturates near zero.
1215
+ While this is true for generic linear combinations, there
1216
+ exists particular states where the phase cancellation hap-
1217
+ pens exceptionally slowly. We discuss these special initial
1218
+ states in section VI and how to distinguish them from the
1219
+ scar states. Summing up, the average fidelity represents
1220
+ an effective tool for identifying scar states in both a ther-
1221
+ mal and localized background.
1222
+ Finally, we remark that the fidelity of individual dis-
1223
+ order realizations are enough to distinguish initial states
1224
+ with support inside and outside the scar subspace. This
1225
+ statement is simple in the thermal phase where initial
1226
+ states outside the scar subspace rapidly converges to zero.
1227
+ At large disorder, the fidelity of individual disorder re-
1228
+ alizations may oscillate rapidly contrary to the average
1229
+ fidelity. However, these oscillations are generally com-
1230
+ posed of frequencies different from the scar revivals. The
1231
+ amplitude of the oscillations are also typically different
1232
+ from the scar revivals. Thus, the scar states can be dis-
1233
+ tinguished from a partially localized background.
1234
+ V.
1235
+ DISORDER STABILIZATION OF SCAR
1236
+ REVIVALS
1237
+ We study the dynamics of initial states with support
1238
+ both inside and outside the scar subspace across all sym-
1239
+ metry sectors.
1240
+ In this case, we generally expect the
1241
+ scar revivals to diminish.
1242
+ The scar revivals are stabi-
1243
+ lized when the initial state only has support on product
1244
+ states with the same disorder indices as the scar states
1245
+ D0 = (−1, −1, . . . , −1). We demonstrate this behavior
1246
+ by initializing the system in a generic state only having
1247
+ support on product states with disorder indices D0
1248
+ |ψstable⟩ =
1249
+ 1
1250
+ Nstable
1251
+
1252
+ |ψscar⟩ +
1253
+
1254
+ Ndw,n
1255
+ β(Ndw)
1256
+ n
1257
+ |Ndw, D0, n⟩
1258
+
1259
+ ,
1260
+ (24)
1261
+ where Nstable is a normalization constant and β(Ndw)
1262
+ n
1263
+ are
1264
+ drawn
1265
+ randomly
1266
+ from
1267
+ the
1268
+ interval
1269
+ β(Ndw)
1270
+ n
1271
+
1272
+ [0, 1.5/
1273
+
1274
+ N (Ndw)
1275
+ D0
1276
+ ]. We reintroduce the index Ndw to de-
1277
+ scribe product states with the same disorder indices in
1278
+ different symmetry sectors. The time evolution of fidelity
1279
+ is investigated at weak and strong disorder in 103 real-
1280
+ izations. The coefficients β(Ndw)
1281
+ n
1282
+ are redrawn in each dis-
1283
+ order realization. Figure 7(a) displays the disorder aver-
1284
+ aged fidelity for a thermal system and a partially local-
1285
+ ized system. In both cases, the average fidelity displays
1286
+ persistent revivals with the revival amplitude decaying
1287
+ and eventually saturating at a value around 0.5.
1288
+ The fidelity amplitude quickly decays for a thermal
1289
+ system. The explanation can be found by studying the
1290
+ expansion coefficients |ci|2 as illustrated in Fig. 7(b). Be-
1291
+ cause the system is thermal, the initial state has support
1292
+ on many energy eigenstates. Consequently, terms with
1293
+ different phases quickly cancel causing the fidelity ampli-
1294
+ tude to saturate almost immediately.
1295
+ At large disorder, the fidelity amplitude decays at a
1296
+ much slower rate and only saturates alongside the ther-
1297
+ mal graph after many revivals t ∼ 7Tscar.
1298
+ We under-
1299
+ stand this behavior by recalling the spectral structure at
1300
+ large disorder. First, recall that the energy eigenstates
1301
+ {|ED0,m⟩ |m = 1, 2, . . . , ND0} are near degenerate and
1302
+ only have significant overlap with product states of the
1303
+ same disorder indices as described in Eq. (15). There-
1304
+ fore, the second term in Eq. (24) can be rewritten as a
1305
+ sum of near degenerate eigenstates,
1306
+ ND0
1307
+
1308
+ n=1
1309
+ β(Ndw)
1310
+ n
1311
+ |Ndw, D0, n⟩ ≈
1312
+ ND0
1313
+
1314
+ m=1
1315
+ γ(Ndw)
1316
+ m
1317
+ |ENdw,D0,m⟩ ,
1318
+ (25)
1319
+ with γ(Ndw)
1320
+ m
1321
+ = �
1322
+ n β(Ndw)
1323
+ n
1324
+ ⟨ENdw,D0,m|Ndw, D0, n⟩. Fur-
1325
+ thermore, the scar states themselves are described by
1326
+ the disorder indices D0, so the eigenstates |ENdw,D0,m⟩
1327
+ are close in energy to a scar state.
1328
+ Consequently, the
1329
+ eigenstates outside the scar subspace having large over-
1330
+ lap with |ψstab⟩ are always close in energy to a scar state.
1331
+ We sketch this structure in Fig. 8 where the eigenstates
1332
+ |ENdw,D0,m⟩ have similar energy to the scar states for
1333
+ all Ndw. These considerations agree with the observed
1334
+ distribution of |ci|2 for a single disorder realization illus-
1335
+ trated in Fig. 7(c). The expansion coefficients are sharply
1336
+ peaked around the scar states and consequently the can-
1337
+ cellation of terms with different phases takes place at
1338
+ much larger times.
1339
+ In this way, the partially localized background stabi-
1340
+ lizes the scar revivals by rearranging the support outside
1341
+ the scar subspace. The stabilization takes place whenever
1342
+ the initial state is predominantly a linear combination of
1343
+ product states with the same disorder indices as the scar
1344
+ states D0. If product states with other disorder indices
1345
+ D′ ̸= D0 are included, the stabilization will be less pro-
1346
+ nounced.
1347
+
1348
+ 11
1349
+ 10−4
1350
+ 10−2
1351
+ 100
1352
+ |ci|2
1353
+ (b)
1354
+ −50
1355
+ 0
1356
+ 50
1357
+ E
1358
+ 10−4
1359
+ 10−2
1360
+ 100
1361
+ |ci|2
1362
+ (c)
1363
+ 0
1364
+ 2
1365
+ 4
1366
+ 6
1367
+ 8
1368
+ t/Tscar
1369
+ 0.00
1370
+ 0.25
1371
+ 0.50
1372
+ 0.75
1373
+ 1.00
1374
+ F
1375
+ (a)
1376
+ W = 10
1377
+ W = 0.5
1378
+ FIG. 7.
1379
+ A system of size L = 14 with parameters ∆ = 1, J = 5, λ = 1 is initialized according to Eq. (24) in the thermal phase
1380
+ at disorder strength W = 0.5 and the partial MBL phase at disorder strength W = 10. (a) The average fidelity over 103 disorder
1381
+ realizations when the system is thermal and partially MBL. The disorder protects the scar revivals and the fidelity amplitude
1382
+ decays much slower compared to the thermal case. The right panels illustrate the distribution of expansion coefficients |ci|2
1383
+ over energy Ei for a single disorder realization at disorder strength (b) W = 0.5 and (c) W = 10. The distribution of the
1384
+ expansion coefficients is wide in the thermal phase and consists of narrow peaks near the scar states in the localized phase.
1385
+ E
1386
+ Symmetry sectors
1387
+ ∆Escar
1388
+ ∆Escar
1389
+ ∆Escar
1390
+ Ndw0
1391
+ Ndw1
1392
+ Ndw2
1393
+ Ndw3
1394
+ FIG. 8.
1395
+ At large disorder, the initial state Eq. (24) has
1396
+ significant overlap with a small number of energy eigenstates
1397
+ (black lines) as sketched in the figure. These eigenstates ap-
1398
+ pear in clusters around the energy of the scar states (green
1399
+ lines). A single cluster exists in every symmetry sector and
1400
+ the energy gap between two adjacent clusters equals the en-
1401
+ ergy gap between scar states ∆Escar.
1402
+ VI.
1403
+ DISORDER INDUCED APPROXIMATE
1404
+ SCARS
1405
+ Additional approximate scar states emerge as disorder
1406
+ is introduced. These approximate scars appear because
1407
+ some symmetry sectors contain energy eigenstates with
1408
+ the same disorder indices. For instance, the eigenstates
1409
+ |E2,D,1⟩ ≈ |↑↑↓↓↓↓⟩ and |E4,D,m⟩ ≈ αm1 |↑↑↓↑↓↓⟩ +
1410
+ αm2 |↑↑↓↓↑↓⟩ for m = 1, 2 have the same disorder in-
1411
+ dices D = (3, −1, −1, −1, −1, −1) but different number
1412
+ of domain walls Ndw. Recall from Sec. III A that the en-
1413
+ ergy of an eigenstate at large disorder is approximately
1414
+ given by,
1415
+ ENdw,D,m ≈ ∆MNdw,D + J
1416
+
1417
+ N (↑↑,↓↓)
1418
+ Ndw,D − N (↑↓,↓↑)
1419
+ Ndw,D
1420
+
1421
+ +
1422
+
1423
+ i
1424
+ diDi,
1425
+ (26)
1426
+ If an eigenstate |ENdw,D,m⟩ is described by the values
1427
+ MNdw,D, N (↑↑,↓↓)
1428
+ Ndw,D and N (↑↓,↓↑)
1429
+ Ndw,D , then another eigenstate
1430
+ |ENdw+2,D,m⟩ with Ndw + 2 domain walls and identical
1431
+ disorder indices D is described by
1432
+ MNdw+2,D = MNdw,D + 2,
1433
+ (27a)
1434
+ N (↑↑,↓↓)
1435
+ Ndw+2,D = N (↑↑,↓↓)
1436
+ Ndw,D − 2,
1437
+ (27b)
1438
+ N (↑↓,↓↑)
1439
+ Ndw+2,D = N (↑↓,↓↑)
1440
+ Ndw,D + 2.
1441
+ (27c)
1442
+ Using Eq. (26) and (27), one can show the energy dif-
1443
+ ference between two eigenstates with the same disorder
1444
+ indices D and number of domain walls ND and ND + 2
1445
+ is approximately
1446
+ ENdw+2,D,m − ENdw,D,m ≈ ∆Escar,
1447
+ (28)
1448
+ where ∆Escar = 2(∆−2J) is the energy gap between the
1449
+ scar states. This calculation demonstrates that towers
1450
+ of approximate scar states appear in the spectrum as
1451
+ disorder is introduced.
1452
+ We demonstrate how the appearance of approximate
1453
+ scars generates non-trivial dynamics. The system is ini-
1454
+ tialized in a generic linear combination of product states
1455
+ with disorder indices D1 = (3, −1, −1, . . . , −1)
1456
+ |ψinduced
1457
+ D1
1458
+ ⟩ =
1459
+ 1
1460
+ Ninduced
1461
+
1462
+ Ndw,n
1463
+ ζ(Ndw)
1464
+ n
1465
+ |Ndw, D1, n⟩ .
1466
+ (29)
1467
+ The coefficients are chosen randomly from the interval
1468
+ ζ(Ndw)
1469
+ n
1470
+ ∈ [0, 1] and Ninduced is a normalization constant.
1471
+
1472
+ 12
1473
+ 0
1474
+ 1
1475
+ 2
1476
+ 3
1477
+ 4
1478
+ 5
1479
+ t/Tscar
1480
+ 0.0
1481
+ 0.5
1482
+ 1.0
1483
+ F
1484
+ (a)
1485
+ 0
1486
+ 1
1487
+ 2
1488
+ 3
1489
+ 4
1490
+ 5
1491
+ t/Tscar
1492
+ 0.0
1493
+ 0.5
1494
+ 1.0
1495
+ (b)
1496
+ 0
1497
+ 1
1498
+ 2
1499
+ 3
1500
+ 4
1501
+ 5
1502
+ t/Tscar
1503
+ 0.0
1504
+ 0.5
1505
+ 1.0
1506
+ (c)
1507
+ −50
1508
+ 0
1509
+ 50
1510
+ E
1511
+ 0.000
1512
+ 0.025
1513
+ |ci|2
1514
+ (d)
1515
+ −50
1516
+ 0
1517
+ 50
1518
+ E
1519
+ 0.0
1520
+ 0.1
1521
+ (e)
1522
+ −50
1523
+ 0
1524
+ 50
1525
+ E
1526
+ 0.0
1527
+ 0.2
1528
+ (f)
1529
+ FIG. 9.
1530
+ The average fidelity of the initial state Eq. (29) over 103 disorder realizations for system size L = 14 with parameters
1531
+ λ = ∆ = 1, J = 5 at disorder strength (a) W = 0.5, (b) W = 5 and (c) W = 10. The shaded areas show the interquartile range
1532
+ (middle 50%) of the disorder realizations. The corresponding distribution of expansion coefficients |ci|2 of a single disorder
1533
+ realization at disorder strength (d) W = 0.5, (e) W = 5 and (f) W = 10. At weak disorder, the initial state has significant
1534
+ overlap with many energy eigenstates and the average fidelity quickly decays to zero. As the disorder strength is increased,
1535
+ the initial state has significant overlap with a small number of energy eigenstates with equal energy spacing. Consequently, the
1536
+ average fidelity shows persistent revivals.
1537
+ We study this initial state because, at large disorder, it
1538
+ is a linear combination of an approximate scar tower.
1539
+ We consider 103 disorder realizations at different disor-
1540
+ der strengths and the fidelity is computed for each re-
1541
+ alization. Figure 9(a) displays the average fidelity of a
1542
+ thermal system at weak disorder W = 0.5. In this case,
1543
+ there is nothing special about the initial state in Eq. (29)
1544
+ and it quickly decays to zero similar to Fig. 6(a). The
1545
+ dynamical behavior changes remarkably as the disorder
1546
+ strength is increased as illustrated in Fig. 9(b)-(c). At
1547
+ stronger disorder, the initial state Eq. (29) has large over-
1548
+ lap with eigenstates that are approximately equidistant
1549
+ in energy.
1550
+ Consequently, the average fidelity oscillates
1551
+ with a period given by the energy gap Tscar =
1552
+
1553
+ ∆Escar .
1554
+ The revival amplitude increases with disorder strength.
1555
+ The shaded area in Fig. 9(a)-(c) displays the interquar-
1556
+ tile range of disorder realizations. Figures 9(d)-(f) shows
1557
+ the expansion of the initial state in energy eigenstates at
1558
+ (d) weak disorder W = 0.5, (e) strong disorder W = 5
1559
+ and (f) very strong disorder W = 10. As expected, the
1560
+ initial state is distributed over a wide range of eigenstates
1561
+ in the thermal phase similar to Fig. 6(d). As the disor-
1562
+ der strength increases, the initial state has higher and
1563
+ higher overlap with eigenstates in an approximate tower
1564
+ of equidistant states.
1565
+ Figure 9 demonstrates that it is possible to observe
1566
+ revivals from generic linear combinations of the states
1567
+ {|Ndw, D, n⟩ |Ndw = 0, 2, . . . ; n = 1, 2, . . .} at large dis-
1568
+ order. However, the effects may be enhanced by choosing
1569
+ the initial state more carefully. The initial state in Eq.
1570
+ (29) is, in some sense, the worst case scenario. When all
1571
+ product states with disorder indices D are included in
1572
+ the sum, the initial state generally has significant overlap
1573
+ with all relevant energy eigenstates {|ENdw,D,m⟩ |Ndw =
1574
+ 0, 2, . . . ; m = 1, 2, . . .}. This causes a large spread in the
1575
+ distribution of |ci|2 resulting in a faster decay of the av-
1576
+ erage fidelity. If instead, we consider an initial state with
1577
+ exactly one product state from each symmetry sector, the
1578
+ spread of |ci|2 is smaller
1579
+ | ˜ψinduced
1580
+ D1
1581
+ ⟩ =
1582
+ 1
1583
+
1584
+ L
1585
+ 2 − 1
1586
+
1587
+ |↑↑↓↓↓↓↓ . . . ↓⟩ + |↑↑↓↑↓↓↓ . . . ↓⟩
1588
+ + |↑↑↓↑↓↑↓ . . . ↓⟩ + . . . + |↑↑↓↑↓↑ . . . ↓↑↓↓⟩
1589
+
1590
+ .
1591
+ (30)
1592
+ Figure 10(a) shows the average fidelity of this initial state
1593
+ over 103 disorder realizations at strong disorder W =
1594
+ 10 and Fig. 10(b) displays the distribution of |ci|2 for a
1595
+ single realization. As expected, the distribution of |ci|2
1596
+ is narrower and the revival amplitude larger compared to
1597
+ Fig. 9.
1598
+ The initial states Eq. (29) and (30) display revivals
1599
+ similar to the scar states. However, one may distinguish
1600
+ these initial states from the scar subspace by noting that
1601
+ the average fidelity in Fig. 9 and 10 decays to zero, while
1602
+ the amplitude in Fig. 6(c) and 7 remain strictly larger
1603
+ than zero. The different dynamical behavior is caused by
1604
+ Eq. (29) and (30) being composed of approximate scar
1605
+ towers while the original scars |Sn⟩ are exactly equally
1606
+ spaced in energy.
1607
+
1608
+ 13
1609
+ 0
1610
+ 2
1611
+ 4
1612
+ t/Tscar
1613
+ 0.0
1614
+ 0.5
1615
+ 1.0
1616
+ F
1617
+ (a)
1618
+ −50
1619
+ 0
1620
+ 50
1621
+ E
1622
+ 0.0
1623
+ 0.1
1624
+ |ci|2
1625
+ (b)
1626
+ FIG. 10.
1627
+ (a) Average fidelity of the initial state Eq. (30)
1628
+ over 103 disorder realizations with system size L = 14 and
1629
+ parameters λ = ∆ = 1, J = 5 and W = 10. The shaded
1630
+ area displays the interquartile range of the disorder realiza-
1631
+ tions. The average fidelity displays persistent revivals with
1632
+ larger amplitude compared to Fig. 7. (b) Expansion of the
1633
+ initial state across energy eigenstates. The coefficients |ci|2
1634
+ are sharply peaked around certain energies which are approx-
1635
+ imately equally spaced.
1636
+ VII.
1637
+ CONCLUSION
1638
+ Building on a known method to find parent Hamil-
1639
+ tonians, we proposed a way to determine Hamiltonians
1640
+ hosting a tower of QMBS. Starting from the model by
1641
+ Iadecola and Schecter, we used this method to identify
1642
+ all local 1- and 2-body Hamiltonians of the scar tower
1643
+ |Sn⟩. Among these Hamiltonians, we found operators fa-
1644
+ cilitating the implementation of local disorder while pre-
1645
+ serving the scar states. When introducing disorder, the
1646
+ mean level spacing statistics shifts from the GOE to the
1647
+ Poisson distribution and the entanglement entropy goes
1648
+ from volume-law to area-law scaling with system size. We
1649
+ conclude the system transitions from the thermal phase
1650
+ to being partially localized. A theory describing the par-
1651
+ tially localized eigenstates was developed and verified nu-
1652
+ merically.
1653
+ In total, we determined a system hosting a
1654
+ tower of scar states with the remaining spectrum being
1655
+ either thermal or partially localized depending on the
1656
+ disorder strength.
1657
+ We studied the properties of scar states embedded in a
1658
+ localized spectrum and compared with the corresponding
1659
+ features in a thermal spectrum. In contrast to thermal
1660
+ systems, the bipartite entanglement entropy does not en-
1661
+ able the identification of scar states in a localized back-
1662
+ ground. The average fidelity, on the other hand, effec-
1663
+ tively identifies the scar subspace.
1664
+ We investigated the effect of localization on initial
1665
+ states with support both inside and outside the scar sub-
1666
+ space. For a thermal system, the fidelity displays persis-
1667
+ tent revivals with rapidly decreasing amplitude. In con-
1668
+ trast, the revival amplitude decays slower for a partially
1669
+ localized system.
1670
+ Hence, partial localization stabilizes
1671
+ the persistent revivals of states initialized partly outside
1672
+ the scar subspace.
1673
+ Finally, we demonstrated how additional approximate
1674
+ scar states emerge as disorder is introduced. When ini-
1675
+ tializing the system as a superposition of these states, the
1676
+ average fidelity displays revivals with the same period as
1677
+ the true scar states. While this effect does not rely on
1678
+ fine-tuning the initial state, the revivals are amplified by
1679
+ choosing the initial state appropriately.
1680
+ ACKNOWLEDGMENTS
1681
+ This work has been supported by the Carlsberg Foun-
1682
+ dation under grant number CF20-0658.
1683
+ Appendix A: Proof that |Sn⟩ are eigenstates of all
1684
+ operators in Tab. I with equal energy spacing
1685
+ In section II C, we found L + 4 operators having the
1686
+ scar states as eigenstates equidistantly spaced in energy.
1687
+ Since this analysis was carried out for finite system sizes
1688
+ L = 8, 10, 12, 14, the validity of this statement is not
1689
+ guaranteed for larger system sizes. In this appendix, we
1690
+ rigorously prove the scar states |Sn⟩ are equally spaced
1691
+ eigenstates of all operators in Tab. I. Since the scar states
1692
+ are constructed iteratively by applying the operator Q†,
1693
+ we generally prove this statement using proof by induc-
1694
+ tion.
1695
+ First, we consider the operator ˆHz = �
1696
+ i ˆσz
1697
+ i .
1698
+ The
1699
+ lowest scar state |S0⟩ = |↓↓ . . . ↓⟩ is trivially an eigen-
1700
+ state of ˆHz.
1701
+ A straightforward calculation shows that
1702
+ [ ˆHz, ˆQ†] = 2 ˆQ† and by induction all other scar states are
1703
+ eigenstates because
1704
+ ˆHz |Sn+1⟩ ∝ ˆHz ˆQ† |Sn⟩
1705
+ =
1706
+
1707
+ Ez,n ˆQ† + 2 ˆQ†�
1708
+ |Sn⟩
1709
+ =
1710
+
1711
+ Ez,n + 2
1712
+
1713
+ |Sn+1⟩ ,
1714
+ (A1)
1715
+ where ˆHz |Sn⟩ = Ez,n |Sn⟩.
1716
+ The scar states are also
1717
+ equally spaced in energy En+1,z − En,z = 2.
1718
+ A simi-
1719
+ lar argument holds for ˆHodd
1720
+ zz
1721
+ since [ ˆHodd
1722
+ zz , ˆQ†] = −4 ˆQ†
1723
+ where the energy gap between scar states is −4.
1724
+ Next, we consider the operators ˆDi = ˆσz
1725
+ i + ˆσz
1726
+ i+1 +
1727
+ ˆσz
1728
+ i ˆσz
1729
+ i+1. Recall that ˆDi is related to the projection oper-
1730
+ ators through ˆDi = 4 ˆP ↑
1731
+ i ˆP ↑
1732
+ i+1 − ˆ1 where ˆP ↑
1733
+ i = (ˆ1 + ˆσz
1734
+ i )/2
1735
+ projects site i onto spin-up. First note that ˆDi |S0⟩ =
1736
+ (4 ˆP ↑
1737
+ i ˆP ↑
1738
+ i+1 − ˆ1) |↓↓ . . . ↓⟩ = − |↓↓ . . . ↓⟩. A simple calcu-
1739
+ lation shows that ˆDi commutes with ˆQ† by noting that
1740
+
1741
+ 14
1742
+ ˆP ↑
1743
+ i ˆP ↓
1744
+ i = 0
1745
+ [ ˆDi, ˆQ†] = 4
1746
+ L
1747
+
1748
+ j=1
1749
+ (−1)j�
1750
+ ˆP ↓
1751
+ j−1[ ˆP ↑
1752
+ i , ˆσ+
1753
+ j ] ˆP ↓
1754
+ j+1 ˆP ↑
1755
+ i+1
1756
+ + ˆP ↑
1757
+ i ˆP ↓
1758
+ j−1[ ˆP ↑
1759
+ i+1, ˆσ+
1760
+ j ] ˆP ↓
1761
+ j+1
1762
+
1763
+ = 4(−1)i�
1764
+ ˆP ↓
1765
+ i−1ˆσ+
1766
+ i ˆP ↓
1767
+ i+1 ˆP ↑
1768
+ i+1 − ˆP ↑
1769
+ i ˆP ↓
1770
+ i ˆσ+
1771
+ i+1 ˆP ↓
1772
+ i+2
1773
+
1774
+ = 0.
1775
+ (A2)
1776
+ Thus, for all scar states we have ˆDi |Sn⟩ = − |Sn⟩. Alter-
1777
+ natively, one may note that |Sn⟩ by construction does not
1778
+ contain adjacent sites being spin-up. Therefore, ˆP ↑
1779
+ i ˆP ↑
1780
+ i+1
1781
+ naturally annihilates the state.
1782
+ Next, we consider the operator ˆHalt
1783
+ xz . Before studying
1784
+ the action of ˆHalt
1785
+ xz on the scar states, we prove by in-
1786
+ duction that the commutator [ ˆHalt
1787
+ xz , ˆQ†] annihilates |Sn⟩.
1788
+ The commutator is given by
1789
+ [ ˆHalt
1790
+ xz , ˆQ†] =
1791
+ L
1792
+
1793
+ i=1
1794
+
1795
+ 2
1796
+ � ˆP ↓
1797
+ i ˆσ+
1798
+ i+1ˆσ−
1799
+ i+2 − ˆσ+
1800
+ i ˆσ+
1801
+ i+1 ˆP ↓
1802
+ i+2
1803
+
1804
+ + i
1805
+ � ˆP ↓
1806
+ i ˆσ+
1807
+ i+1ˆσy
1808
+ i+2 + ˆσy
1809
+ i ˆσ+
1810
+ i+1 ˆP ↓
1811
+ i+2
1812
+ + ˆσz
1813
+ i ˆσy
1814
+ i+1ˆσ+
1815
+ i+2 ˆP ↓
1816
+ i+3 − ˆP ↓
1817
+ i ˆσ+
1818
+ i+1ˆσy
1819
+ i+2ˆσz
1820
+ i+3
1821
+ ��
1822
+ ,
1823
+ (A3)
1824
+ where ˆP ↓
1825
+ i = (ˆ1 − ˆσz
1826
+ i )/2 is the local projection onto spin-
1827
+ down. By direct calculation, one can show the lowest scar
1828
+ state is annihilated by this expression [ ˆHalt
1829
+ xz , ˆQ†] |S0⟩ = 0.
1830
+ A lengthy, yet straightforward, calculation also shows the
1831
+ nested commutator vanishes
1832
+
1833
+ [ ˆHalt
1834
+ xz , ˆQ†], ˆQ†�
1835
+ = 0.
1836
+ We
1837
+ now prove by induction that the commutator annihilates
1838
+ all scar states. Assume [ ˆHalt
1839
+ xz , ˆQ†] |Sn⟩ = 0 and consider,
1840
+ [ ˆHalt
1841
+ xz , ˆQ†] |Sn+1⟩ ∝ [ ˆHalt
1842
+ xz , ˆQ†] ˆQ† |Sn⟩
1843
+ =
1844
+
1845
+ ˆQ†[ ˆHalt
1846
+ xz , ˆQ†] +
1847
+
1848
+ [ ˆHalt
1849
+ xz , ˆQ†], ˆQ†��
1850
+ |Sn⟩
1851
+ = 0.
1852
+ (A4)
1853
+ Having shown this intermediate result, we prove by in-
1854
+ duction that the operator ˆHalt
1855
+ xz annihilates the scar states.
1856
+ First we show the operator ˆHalt
1857
+ xz annihilates |S0⟩
1858
+ ˆHalt
1859
+ xz |S0⟩ =
1860
+ L
1861
+
1862
+ i=1
1863
+ (−1)i(ˆσx
1864
+ i ˆσz
1865
+ i+1 + ˆσz
1866
+ i ˆσx
1867
+ i+1) |↓↓ . . . ↓⟩
1868
+ =
1869
+ L
1870
+
1871
+ i=1
1872
+ (−1)i+1(ˆσx
1873
+ i + ˆσx
1874
+ i+1) |↓↓ . . . ↓⟩
1875
+ = 0,
1876
+ (A5)
1877
+ where the second term cancels the first after changing
1878
+ summation index i + 1 → i. Next, we show by induction
1879
+ that the n-th scar state is annihilated by ˆHalt
1880
+ xy . Assume
1881
+ ˆHalt
1882
+ xz annihilates |Sn⟩ and consider
1883
+ ˆHalt
1884
+ xz |Sn+1⟩ ∝ ˆHalt
1885
+ xz ˆQ† |Sn⟩
1886
+ = ( ˆQ† ˆHalt
1887
+ xz + [ ˆHalt
1888
+ xz , ˆQ†]) |Sn⟩
1889
+ = 0.
1890
+ (A6)
1891
+ The first term vanishes by assumption and the second
1892
+ term is exactly what we considered in Eq. (A4). In total,
1893
+ we conclude ˆHalt
1894
+ xy has |Sn⟩ as eigenstates equidistantly
1895
+ separated in energy (with zero energy spacing).
1896
+ Finally we consider the operator ˆHalt
1897
+ yz . One can prove
1898
+ this operator annihilates the scar states using similar ar-
1899
+ guments to above. The commutator is given by
1900
+ [ ˆHalt
1901
+ yz , ˆQ†] =i
1902
+ L
1903
+
1904
+ i=1
1905
+
1906
+ 2
1907
+ � ˆP ↓
1908
+ i ˆσ+
1909
+ i+1ˆσ−
1910
+ i+2 + ˆσ+
1911
+ i ˆσ+
1912
+ i+1 ˆP ↓
1913
+ i+2
1914
+
1915
+ − ˆσx
1916
+ i ˆσ+
1917
+ i+1 ˆP ↓
1918
+ i+2 − ˆP ↓
1919
+ i ˆσ+
1920
+ i+1ˆσx
1921
+ i+2
1922
+ + ˆP ↓
1923
+ i ˆσ+
1924
+ i+1ˆσx
1925
+ i+2ˆσz
1926
+ i+3 − ˆσz
1927
+ i ˆσx
1928
+ i+1ˆσ+
1929
+ i+2 ˆP ↓
1930
+ i+3
1931
+
1932
+ .
1933
+ (A7)
1934
+ Using induction, one can prove the commutator annihi-
1935
+ lates all scar states [ ˆHalt
1936
+ yz , ˆQ†] |Sn⟩ = 0 and the operator
1937
+ annihilates the lowest scar state ˆHalt
1938
+ yz |S0⟩ = 0. Retracing
1939
+ the steps in Eq. (A6), we find that ˆHalt
1940
+ yz annihilates all
1941
+ scar states.
1942
+ [1] J. M. Deutsch, Quantum statistical mechanics in a closed
1943
+ system, Phys. Rev. A 43, 2046 (1991).
1944
+ [2] M. Srednicki, Chaos and quantum thermalization, Phys.
1945
+ Rev. E 50, 888 (1994).
1946
+ [3] M. Rigol, V. Dunjko, and M. Olshanii, Thermalization
1947
+ and its mechanism for generic isolated quantum systems,
1948
+ Nature 452, 854 (2008).
1949
+ [4] M. Rigol, Breakdown of thermalization in finite one-
1950
+ dimensional systems, Phys. Rev. Lett. 103, 100403
1951
+ (2009).
1952
+ [5] M. Rigol, Quantum quenches and thermalization in one-
1953
+ dimensional fermionic systems, Phys. Rev. A 80, 053607
1954
+ (2009).
1955
+ [6] L. F. Santos and M. Rigol, Onset of quantum chaos
1956
+ in one-dimensional bosonic and fermionic systems and
1957
+ its relation to thermalization, Phys. Rev. E 81, 036206
1958
+ (2010).
1959
+ [7] S. Sorg, L. Vidmar, L. Pollet, and F. Heidrich-Meisner,
1960
+
1961
+ 15
1962
+ Relaxation and thermalization in the one-dimensional
1963
+ Bose-Hubbard model: A case study for the interaction
1964
+ quantum quench from the atomic limit, Phys. Rev. A
1965
+ 90, 033606 (2014).
1966
+ [8] C. Neuenhahn and F. Marquardt, Thermalization of
1967
+ interacting fermions and delocalization in Fock space,
1968
+ Phys. Rev. E 85, 060101 (2012).
1969
+ [9] R. Steinigeweg, A. Khodja, H. Niemeyer, C. Gogolin, and
1970
+ J. Gemmer, Pushing the limits of the eigenstate thermal-
1971
+ ization hypothesis towards mesoscopic quantum systems,
1972
+ Phys. Rev. Lett. 112, 130403 (2014).
1973
+ [10] K. R. Fratus and M. Srednicki, Eigenstate thermalization
1974
+ in systems with spontaneously broken symmetry, Phys.
1975
+ Rev. E 92, 040103 (2015).
1976
+ [11] R. Steinigeweg, J. Herbrych, and P. Prelovˇsek, Eigenstate
1977
+ thermalization within isolated spin-chain systems, Phys.
1978
+ Rev. E 87, 012118 (2013).
1979
+ [12] H. Kim, T. N. Ikeda, and D. A. Huse, Testing whether all
1980
+ eigenstates obey the eigenstate thermalization hypothe-
1981
+ sis, Phys. Rev. E 90, 052105 (2014).
1982
+ [13] R. Mondaini, K. R. Fratus, M. Srednicki, and M. Rigol,
1983
+ Eigenstate thermalization in the two-dimensional trans-
1984
+ verse field Ising model, Phys. Rev. E 93, 032104 (2016).
1985
+ [14] D. Basko, I. Aleiner, and B. Altshuler, Metal–insulator
1986
+ transition in a weakly interacting many-electron system
1987
+ with localized single-particle states, Annals of Physics
1988
+ 321, 1126 (2006).
1989
+ [15] I. V. Gornyi, A. D. Mirlin, and D. G. Polyakov, Interact-
1990
+ ing electrons in disordered wires: Anderson localization
1991
+ and low-T transport, Phys. Rev. Lett. 95, 206603 (2005).
1992
+ [16] V. Oganesyan and D. A. Huse, Localization of interacting
1993
+ fermions at high temperature, Phys. Rev. B 75, 155111
1994
+ (2007).
1995
+ [17] A. Pal and D. A. Huse, Many-body localization phase
1996
+ transition, Phys. Rev. B 82, 174411 (2010).
1997
+ [18] M. Serbyn, Z. Papi´c, and D. A. Abanin, Local conserva-
1998
+ tion laws and the structure of the many-body localized
1999
+ states, Phys. Rev. Lett. 111, 127201 (2013).
2000
+ [19] D. A. Huse, R. Nandkishore, and V. Oganesyan, Phe-
2001
+ nomenology of fully many-body-localized systems, Phys.
2002
+ Rev. B 90, 174202 (2014).
2003
+ [20] J. ˇSuntajs, J. Bonˇca, T. c. v. Prosen, and L. Vidmar,
2004
+ Ergodicity breaking transition in finite disordered spin
2005
+ chains, Phys. Rev. B 102, 064207 (2020).
2006
+ [21] H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Om-
2007
+ ran, H. Pichler, S. Choi, A. S. Zibrov, M. Endres,
2008
+ M. Greiner, V. Vuleti´c, and M. D. Lukin, Probing many-
2009
+ body dynamics on a 51-atom quantum simulator, Nature
2010
+ 551, 579 (2017).
2011
+ [22] C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn,
2012
+ and Z. Papi´c, Weak ergodicity breaking from quantum
2013
+ many-body scars, Nature Physics 14, 745 (2018).
2014
+ [23] C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn,
2015
+ and Z. Papi´c, Quantum scarred eigenstates in a Rydberg
2016
+ atom chain: Entanglement, breakdown of thermalization,
2017
+ and stability to perturbations, Phys. Rev. B 98, 155134
2018
+ (2018).
2019
+ [24] C.-J. Lin and O. I. Motrunich, Exact quantum many-
2020
+ body scar states in the Rydberg-blockaded atom chain,
2021
+ Phys. Rev. Lett. 122, 173401 (2019).
2022
+ [25] T. Iadecola, M. Schecter, and S. Xu, Quantum many-
2023
+ body scars from magnon condensation, Phys. Rev. B
2024
+ 100, 184312 (2019).
2025
+ [26] N. S. Srivatsa, R. Moessner, and A. E. B. Nielsen, Many-
2026
+ body delocalization via emergent symmetry, Phys. Rev.
2027
+ Lett. 125, 240401 (2020).
2028
+ [27] M. Iversen, N. S. Srivatsa, and A. E. B. Nielsen, Escap-
2029
+ ing many-body localization in an exact eigenstate, Phys.
2030
+ Rev. B 106, 214201 (2022).
2031
+ [28] N. S. Srivatsa, H. Yarloo, R. Moessner, and A. E. B.
2032
+ Nielsen, Mobility edges through inverted quantum many-
2033
+ body scarring (2022), arXiv:2208.01054.
2034
+ [29] T. Iadecola and M. Schecter, Quantum many-body
2035
+ scar states with emergent kinetic constraints and finite-
2036
+ entanglement revivals, Phys. Rev. B 101, 024306 (2020).
2037
+ [30] R. Vasseur, A. J. Friedman, S. A. Parameswaran, and
2038
+ A. C. Potter, Particle-hole symmetry, many-body local-
2039
+ ization, and topological edge modes, Phys. Rev. B 93,
2040
+ 134207 (2016).
2041
+ [31] J. A. Kj¨all, J. H. Bardarson, and F. Pollmann, Many-
2042
+ body localization in a disordered quantum Ising chain,
2043
+ Phys. Rev. Lett. 113, 107204 (2014).
2044
+ [32] E. Chertkov and B. K. Clark, Computational inverse
2045
+ method for constructing spaces of quantum models from
2046
+ wave functions, Phys. Rev. X 8, 031029 (2018).
2047
+ [33] M. Greiter, V. Schnells, and R. Thomale, Method to iden-
2048
+ tify parent Hamiltonians for trial states, Phys. Rev. B 98,
2049
+ 081113 (2018).
2050
+ [34] Q. Qu, J. Sun, and J. Wright, Finding a sparse vec-
2051
+ tor in a subspace: Linear sparsity using alternating di-
2052
+ rections, IEEE Transactions on Information Theory 62,
2053
+ 5855 (2016).
2054
+ [35] X.-L. Qi and D. Ranard, Determining a local Hamilto-
2055
+ nian from a single eigenstate, Quantum 3, 159 (2019).
2056
+ [36] L. D’Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol,
2057
+ From quantum chaos and eigenstate thermalization to
2058
+ statistical mechanics and thermodynamics, Advances in
2059
+ Physics 65, 239 (2016).
2060
+ [37] T. Guhr, A. M¨uller–Groeling, and H. A. Weidenm¨uller,
2061
+ Random-matrix theories in quantum physics: Common
2062
+ concepts, Physics Reports 299, 189 (1998).
2063
+ [38] A. A. Abul-Magd and A. Y. Abul-Magd, Unfolding of the
2064
+ spectrum for chaotic and mixed systems, Physica A: Sta-
2065
+ tistical Mechanics and its Applications 396, 185 (2014).
2066
+ [39] Y. Y. Atas, E. Bogomolny, O. Giraud, and G. Roux,
2067
+ Distribution of the ratio of consecutive level spacings in
2068
+ random matrix ensembles, Phys. Rev. Lett. 110, 084101
2069
+ (2013).
2070
+ [40] D. N. Page, Average entropy of a subsystem, Phys. Rev.
2071
+ Lett. 71, 1291 (1993).
2072
+ [41] B. Bauer and C. Nayak, Area laws in a many-body lo-
2073
+ calized state and its implications for topological order,
2074
+ Journal of Statistical Mechanics:
2075
+ Theory and Experi-
2076
+ ment 2013, P09005 (2013).
2077
+ [42] L. F. Santos, F. Borgonovi, and F. M. Izrailev, Chaos and
2078
+ statistical relaxation in quantum systems of interacting
2079
+ particles, Phys. Rev. Lett. 108, 094102 (2012).
2080
+ [43] L. F. Santos, F. Borgonovi, and F. M. Izrailev, Onset of
2081
+ chaos and relaxation in isolated systems of interacting
2082
+ spins: Energy shell approach, Phys. Rev. E 85, 036209
2083
+ (2012).
2084
+
0tAzT4oBgHgl3EQftv2j/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
1dAzT4oBgHgl3EQfDfo-/content/tmp_files/2301.00976v1.pdf.txt ADDED
@@ -0,0 +1,1251 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.00976v1 [hep-ph] 3 Jan 2023
2
+ The Σ and Ξ electromagnetic form factors in the extended vector meson dominance model
3
+ Bing Yan,1,2, ∗ Cheng Chen,2,3, † and Ju-Jun Xie2, 3, 4, ‡
4
+ 1College of Mathematics and Physics, Chengdu University of Technology, Chengdu 610059, China
5
+ 2Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
6
+ 3School of Nuclear Sciences and Technology, University of Chinese Academy of Sciences, Beijing 101408, China
7
+ 4Southern Center for Nuclear-Science Theory (SCNT), Institute of Modern Physics,
8
+ Chinese Academy of Sciences, Huizhou 516000, Guangdong Province, China
9
+ We propose a phenomenological extended vector meson dominance model for the baryon electromagnetic
10
+ structure, and it is found that the current experimental data on the Σ and Ξ electromagnetic form factors in the
11
+ time-like region can be well described. Meanwhile, we can also reproduce the ratios of the total cross sections
12
+ of reactions e+e− → Σ+ ¯Σ−, Σ0 ¯Σ0, and Σ− ¯Σ+, which are 9.7 ± 1.3 : 3.3 ± 0.7 : 1 at center-of-mass
13
+ energies from 2.3864 to 3.02 GeV. We also analytically continue the expression of the form factors to space-
14
+ like region and estimate the charge radii of the Σ and Ξ hyperons. The result for the Σ− is in agreement with
15
+ the experimental date.
16
+ I.
17
+ INTRODUCTION
18
+ The electromagnetic structure information of hadrons is
19
+ characterized by the electromagnetic form factors (EMFFs),
20
+ which are functions of the four-momentum transfer squared
21
+ q2, with q the four-momentum carried by the exchanged vir-
22
+ tual photon. Study of these EMFFs can lead to a better under-
23
+ standing of fundamental structure of hadrons. On the experi-
24
+ mental side, most commonly the baryon EMFFs in the space-
25
+ like region (q2 < 0) were measured in the electron-baryon
26
+ scattering [1–4]. While for these unstable hadrons, for ex-
27
+ ample, these hyperons, their EMFFs in the space-like region
28
+ are very difficult to be experimentally measured. However, in
29
+ the time-like region (q2 > 0), their EMFFs can be measured
30
+ through the electron-positron annihilation reactions by the
31
+ BESIII and Belle collaborations [5–12]. Meanwhile, the ef-
32
+ fective form factor Geff(q2) of hyperons can be extracted from
33
+ the high-precision measured Born cross sections of the reac-
34
+ tions e+e− → Y ¯Y (Y stands for hyperon; ¯Y is anti-hyperon).
35
+ It was pointed out that these baryon EMFFs in the time-like
36
+ region can be associated with the time evolution of the charge
37
+ and magnetic distributions inside the baryon [13, 14].
38
+ The hyperon effective form factors Geff(q2) are the func-
39
+ tions that parametrize the γY ¯Y vertex generated by the strong
40
+ interaction. While, the production vertex γY ¯Y is very poorly
41
+ understood so far [15, 16].
42
+ The vector meson dominance
43
+ (VMD) model is a very successful tool for studying the nu-
44
+ cleon electromagnetic form factors, in both the space-like and
45
+ time-like regions [17–19]. Within a modified VMD model,
46
+ the EMFFs of Λ hyperon were investigated in Refs. [20, 21].
47
+ By considering the Y ¯Y final sate interactions, the EMFFs
48
+ of hyperons in the time-like region have been studied in
49
+ Ref. [22]. It is worth to mention that the enhancement of the
50
+ ∗Electronic address: yanbing@impcas.ac.cn
51
+ †Electronic address: chencheng22@mails.ucas.ac.cn
52
+ ‡Electronic address: xiejujun@impcas.ac.cn
53
+ effective form factor of the Λ hyperon seen in the e+e− →
54
+ Λ¯Λ reaction, was reproduced within the two above different
55
+ calculations in Refs. [20, 21] and Ref. [22], respectively. In
56
+ the vector meson dominance model for studying the electro-
57
+ magnetic form factors of baryons, there is a phenomenological
58
+ intrinsic form factor g(q2). From these studies of the nucleon
59
+ and hyperon EMFFs [17–29], it is found that a better choice
60
+ of g(q2) is the dipole form
61
+ g(q2) =
62
+ 1
63
+ (1 − γq2)2 ,
64
+ (1)
65
+ with γ a free parameter. In the space-like region, the dipole
66
+ form is consistent with the results obtained from perturbative
67
+ quantum chromodynamics calculations [30, 31]. In the time-
68
+ like region, it should be noticed that γ is a positive parameter,
69
+ thus g(q2) will have a pole in the position γ = 1/q2, such
70
+ pole could be restricted in the unphysical region, if γ satisfy
71
+ γ > 1/(4m2
72
+ Y ) for hyperon Y .
73
+ For a long time, the simple dipole form paremetrization is
74
+ very useful for the discussion of different baryons. For exam-
75
+ ple, the dipole form of g(q2) can well describe the effective
76
+ form factors of Λ [20, 21], Σ [32], and Ξ [27]. While for the
77
+ nucleon, a good general review is given in Refs. [33–36], both
78
+ from the theoretical and from the experimental points of view.
79
+ However, these determined values of γ for different ground
80
+ state octet baryons with spin 1/2 are much different, even for
81
+ the triplet Σ+, Σ− and Σ0 [32]. The determined values of γ,
82
+ from previous works, for nucleon, Λ, Σ, and Ξ0 baryons are
83
+ collected in Table I. Nevertheless, the VMD model and the
84
+ parametrization of g(q2) can give a reasonable description of
85
+ the experimental data on the baryon EMFFs at the considered
86
+ energy region.
87
+ Various experimental and theoretical efforts have been con-
88
+ tributed to the electromagnetic form factors. Very recently, the
89
+ EMFFs of Σ+, Σ−, and Σ0 hyperons in the time-like region,
90
+ have been measured with high-precision by the BESIII collab-
91
+ oration through e+e− → Σ+ ¯Σ− [9], Σ− ¯Σ+ [9], and Σ0 ¯Σ0
92
+ reactions [10] at center-of-mass energies from 2.3864 to 3.02
93
+ GeV. The resulting ratios of total cross sections of these above
94
+
95
+ 2
96
+ TABLE I: Values of γ (in GeV−2) for octet baryons used in previous
97
+ works.
98
+ Proton ([17–19]) Neutron ([24–27])
99
+ Λ ([20])
100
+ Λ ([21])
101
+ γ
102
+ 1.408
103
+ 1.408
104
+ 0.336
105
+ 0.48 ± 0.08
106
+ Σ+ ([32])
107
+ Σ− ([32])
108
+ Σ0 ([27])
109
+ Ξ0 ([27])
110
+ γ
111
+ 0.46 ± 0.01
112
+ 1.18 ± 0.13
113
+ 0.26 ± 0.01 0.21 ± 0.02
114
+ three reactions are 9.7 ± 1.3 : 1 : 3.3 ± 0.7 [9, 37, 38], which
115
+ disagree with various theoretical model predictions [39, 40].
116
+ After the experimental measurements of e+e− → Σ+ ¯Σ− and
117
+ Σ− ¯Σ+ [9], the effective form factors of Σ+ and Σ− were in-
118
+ vestigated by using the VMD model [32], where the param-
119
+ eter γ were taken with different values for Σ+ and Σ−. In
120
+ Ref. [22], by considering the final state interactions of Y ¯Y ,
121
+ the energy dependence of the three reactions e+e− → Σ+ ¯Σ−,
122
+ Σ0 ¯Σ0, and Σ− ¯Σ+ at low energies can be roughly reproduced,
123
+ and it was found that there is a strong interplay between
124
+ Σ+ ¯Σ−, Σ0 ¯Σ0, and Σ− ¯Σ+ channel in the near-threshold re-
125
+ gion, caused by the Σ¯Σ final state interactions. In the present
126
+ work, we revisit the EMFFs at the time-like region of Σ and Ξ
127
+ hyperons within an extended vector meson dominance model,
128
+ where the affects of the isospin combinations from isovector
129
+ ρ0 and isoscalar ω and φ mesons are taken into account. Fur-
130
+ thermore, we assume that the values of model parameter γ
131
+ are same for Σ and Ξ hyperons. In addition, a vector meson
132
+ with mass around 2.7 GeV was considered for the sake of bet-
133
+ ter fitting the EMFFs of the Ξ0 and Ξ− hyperons. We then
134
+ progress to an analysis of the electromagnetic form factors in
135
+ the space-like region and evaluate the electromagnetic radius
136
+ of Σ hyperons. The theoretical result for the Σ− hyperon is in
137
+ agreement with the experimental measurements. This article
138
+ is organized as follows: in next section we will show the theo-
139
+ retical formalism of the Σ and Ξ electromagnetic form factors
140
+ in the VMD model. Numerical results about the effective form
141
+ factors of Σ and Ξ and total cross sections of e+e− → Σ¯Σ and
142
+ Ξ¯Ξ are shown in Sec. III, and a short summary is given in the
143
+ final section.
144
+ II.
145
+ FORMALISM
146
+ As already pointed out, as fixed-energy e+e− colliders,
147
+ the EMFFs of hyperons in the time-like region was extracted
148
+ from the data on the differential cross section of the process
149
+ e+e− → Y ¯Y . For analysis the data, the BESIII Collaboration
150
+ use the energy scan method [41–43], while the initial state
151
+ radiation method was used by Belle Collaboration [12] and
152
+ BABAR collaboration [44, 45]. Besides, the effective form
153
+ factors Geff can be easily obtained from the data of the total
154
+ cross sections. The module squared of effective form factor
155
+ |Geff|2 is a linear combination of |GE|2 and |GM|2, and pro-
156
+ portional to the total cross section of e+e− → Y ¯Y reaction.
157
+ In this work, we study the EMFFs of Σ and Ξ baryons in the
158
+ time-like region with the experimental measurements on the
159
+ e+e− → Y ¯Y reactions. Based on parity conservation and
160
+ Lorentz invariant, the electromagnetic current of the baryons
161
+ with a spin of 1/2 characterize two independent scalar func-
162
+ tions F1(q2) and F2(q2) depending on q2, which are the Dirac
163
+ and Pauli form factors, respectively. While the corresponding
164
+ electrical and magnetic form factors GE(q2) and GM(q2) are
165
+ written as [38, 46, 47],
166
+ GE(q2) = F1(q2) + τF2(q2),
167
+ (2)
168
+ GM(q2) = F1(q2) + F2(q2),
169
+ (3)
170
+ where M is the baryon mass and τ = q2/(4M 2).
171
+ With
172
+ GE(q2) and GM(q2), the magnitude of the effective form fac-
173
+ tor |Geff(q2)| is defined as
174
+ |Geff(q2)| =
175
+
176
+ 2τ|GM(q2)|2 + |GE(q2)|2
177
+ 1 + 2τ
178
+ .
179
+ (4)
180
+ In the time-like region, the effective form factors of hyper-
181
+ ons are experimentally studied via the electron-positron anni-
182
+ hilation processes. Under the one photon exchange approx-
183
+ imation, the total cross section of the annihilation reaction
184
+ e+e− → ¯Y Y can be expressed in terms of the effective form
185
+ factor Geff as [44, 48, 49]
186
+ σe+e−→ ¯Y Y = 4πα2βCY
187
+ 3s
188
+ (1 + 1
189
+ 2τ ) | Geff(s) |2,
190
+ (5)
191
+ with α = e2/(4π) = 1/137.036 the fine-structure con-
192
+ stant, and β =
193
+
194
+ 1 − 4M 2
195
+ Y /s is a phase-space factor. Here,
196
+ s = q2 is the invariant mass square of the e+e− system. The
197
+ coulomb enhancement factor CY accounts for the electromag-
198
+ netic interaction of charged point-like fermion pairs in the fi-
199
+ nal state [50], which is given by
200
+ CY =
201
+
202
+ y
203
+ 1−e−y
204
+ for Σ+, Σ−, and Ξ−,
205
+ 1
206
+ for Σ0 and Ξ0,
207
+ (6)
208
+ with y = απ
209
+ β
210
+ 2MY
211
+ √s . Considering the CY factor, it is expected
212
+ that the cross section of process e+e− → Y ¯Y is nonzero at
213
+ the reaction threshold for charged hyperons pairs. As plotted
214
+ in Fig. 1 for the case of Ξ− 1, the factor CY affects only at
215
+ the energy region very close to the reaction threshold, and it
216
+ decreases very quickly as the reaction energy growing and it
217
+ follows that few MeV above the reaction threshold it is CY ∼
218
+ 1, then its effect can be neglected [50–53].
219
+ A.
220
+ The EMFFs of Σ hyperon
221
+ In the VMD model, the virtual photon couples to Σ and ¯Σ
222
+ through isovector ρ0 meson and isoscalar ω and φ mesons.
223
+ Since both the ω and φ are far from the mass threshold of Σ¯Σ,
224
+ the behavior of the contributions from them are similar, thus
225
+ we combine their contributions. In this way, one can param-
226
+ eterize Dirac and Pauli form factors for Σ+ and Σ− in the
227
+ 1 The numerical results for Σ+ and Σ− are similar.
228
+
229
+ 3
230
+ 0
231
+ 1
232
+ 2
233
+ 3
234
+ 4
235
+ 5
236
+ 6
237
+ 7
238
+ 8
239
+ 9
240
+ 10
241
+
242
+ s
243
+
244
+ 2M
245
+ Ξ
246
+
247
+ (MeV)
248
+ 0
249
+ 2
250
+ 4
251
+ 6
252
+ 8
253
+ 10
254
+ 12
255
+ C
256
+ Ξ
257
+
258
+ FIG. 1: The Coulomb factor for Ξ−.
259
+ time-like region as follows [17, 19], 2
260
+ F Σ+
261
+ 1
262
+ = g(q2)(f Σ+
263
+ 1
264
+ + βρ
265
+
266
+ 2Bρ − βωφ
267
+
268
+ 3 Bωφ),
269
+ (8)
270
+ F Σ+
271
+ 2
272
+ = g(q2)(f Σ+
273
+ 2
274
+ Bρ − αωφ
275
+
276
+ 3 Bωφ),
277
+ (9)
278
+ F Σ−
279
+ 1
280
+ = g(q2)(f Σ−
281
+ 1
282
+ − βρ
283
+
284
+ 2Bρ − βωφ
285
+
286
+ 3 Bωφ),
287
+ (10)
288
+ F Σ−
289
+ 2
290
+ = g(q2)(f Σ−
291
+ 2
292
+ Bρ − αωφ
293
+
294
+ 3 Bωφ),
295
+ (11)
296
+ F Σ0
297
+ 1
298
+ = g(q2)(βωφ
299
+
300
+ 3
301
+ − βωφ
302
+
303
+ 3
304
+ Bωφ),
305
+ (12)
306
+ F Σ0
307
+ 2
308
+ = g(q2)µΣ0Bωφ,
309
+ (13)
310
+ with
311
+ Bρ =
312
+ m2
313
+ ρ
314
+ m2ρ − q2 − imρΓρ
315
+ ,
316
+ (14)
317
+ Bωφ =
318
+ m2
319
+ ωφ
320
+ m2
321
+ ωφ − q2 − imωφΓωφ
322
+ ,
323
+ (15)
324
+ where the widths of ρ, ω and φ are taken into account. In this
325
+ work, we take mρ = 0.775 MeV, Γρ = 149.1 MeV, Γωφ =
326
+ 2 We have followed:
327
+ |Σ+ ¯Σ−⟩ =
328
+ 1
329
+
330
+ 2
331
+ |1, 0⟩ +
332
+ 1
333
+
334
+ 3
335
+ |0, 0⟩ +
336
+ 1
337
+
338
+ 6
339
+ |2, 0⟩ ,
340
+ |Σ− ¯Σ+⟩ = − 1
341
+
342
+ 2
343
+ |1, 0⟩ +
344
+ 1
345
+
346
+ 3
347
+ |0, 0⟩ +
348
+ 1
349
+
350
+ 6
351
+ |2, 0⟩ ,
352
+ |Σ0 ¯Σ0⟩ = − 1
353
+
354
+ 3
355
+ |0, 0⟩ +
356
+
357
+ 2
358
+ 3 |2, 0⟩ ,
359
+ (7)
360
+ with the basis of |IΣ¯Σ, IZ
361
+ Σ¯Σ⟩. In the one photon exchange approximation,
362
+ there is no contributions from the isospin tensor terms.
363
+ (Γω + Γφ)/2 = 6.4645 MeV, and mωφ = (mω + mφ)/2 =
364
+ 0.9005 GeV, which are quoted in the review of particle
365
+ physics book [54].
366
+ Besides, we take µΣ+ = 3.112ˆµΣ+,
367
+ µΣ− = −1.479ˆµΣ−, µΣ0 = 2.044ˆµΣ0 in natural unit [54],
368
+ i.e., ˆµ =
369
+ e
370
+ 2MΣ . In addition, at q2 = 0, with the constraints
371
+ GΣ+
372
+ E
373
+ = 1 and GΣ+
374
+ M = µΣ+, GΣ−
375
+ E
376
+ = −1 and GΣ−
377
+ M = µΣ−, the
378
+ coefficients f Σ+
379
+ 1
380
+ and f Σ+
381
+ 2
382
+ , f Σ−
383
+ 1
384
+ and f Σ−
385
+ 2
386
+ can be calculated,
387
+ f Σ+
388
+ 1
389
+ = 1 − βρ
390
+
391
+ 2 + βωφ
392
+
393
+ 3 ,
394
+ f Σ+
395
+ 2
396
+ = 2.112 + αωφ
397
+
398
+ 3 ,
399
+ (16)
400
+ f Σ−
401
+ 1
402
+ = −1 + βρ
403
+
404
+ 2 + βωφ
405
+
406
+ 3 ,
407
+ f Σ−
408
+ 2
409
+ = −0.479 + αωφ
410
+
411
+ 3 .(17)
412
+ Finally, the model parameters γ, the coefficients βρ, βωφ, and
413
+ αωφ will be determined by fitting them to the experimental
414
+ data on the time-like effective form factors of Σ+, Σ0, and
415
+ Σ−, which will be discussed in following.
416
+ B.
417
+ The EMFFs of Ξ hyperon
418
+ For the case of e+e− → Ξ−¯Ξ+ and Ξ0¯Ξ0 reactions, since
419
+ Ξ− and Ξ0 are isospin doublets, we express the Ξ−¯Ξ+ and
420
+ Ξ0¯Ξ0 states in terms of isospin 0 and 1 components. The mix-
421
+ tures of isoscalar and isovector for Ξ−¯Ξ+ and Ξ0¯Ξ0 of equal
422
+ relative wight but different sign are imposed by the isospin
423
+ symmetry as introduced by the underlying Clebsch-Gorden
424
+ coefficients [54]. Then, the Dirac and Pauli form factors F1
425
+ and F2 for Ξ− and Ξ0 can be easily obtained as before for the
426
+ Σ hyperon,
427
+ F Ξ−
428
+ 1
429
+ = g(q2)(f Ξ−
430
+ 1
431
+ − βρ
432
+
433
+ 2
434
+ Bρ − βV1
435
+
436
+ 2
437
+ BV1
438
+ −βV2
439
+
440
+ 2 BV2 + βωφ
441
+
442
+ 2 Bωφ),
443
+ (18)
444
+ F Ξ−
445
+ 2
446
+ = g(q2)(f Ξ−
447
+ 2
448
+ Bρ − αV1
449
+
450
+ 2 BV1
451
+ −αV2
452
+
453
+ 2 BV2 + αωφ
454
+
455
+ 2 Bωφ),
456
+ (19)
457
+ F Ξ0
458
+ 1
459
+ = g(q2)(f Ξ0
460
+ 1
461
+ + βρ
462
+
463
+ 2
464
+ Bρ + βV1
465
+
466
+ 2
467
+ BV1
468
+ +βV2
469
+
470
+ 2 BV2 + βωφ
471
+
472
+ 2 Bωφ),
473
+ (20)
474
+ F Ξ0
475
+ 2
476
+ = g(q2)(f Ξ0
477
+ 2 Bρ + αV1
478
+
479
+ 2 BV1
480
+ +αV2
481
+
482
+ 2
483
+ BV2 + αωφ
484
+
485
+ 2
486
+ Bωφ),
487
+ (21)
488
+ with
489
+ BV 1 =
490
+ M 2
491
+ V1
492
+ M 2
493
+ V1 − q2 − iMV1ΓV1
494
+ ,
495
+ (22)
496
+ BV 2 =
497
+ M 2
498
+ V2
499
+ M 2
500
+ V2 − q2 − iMV2ΓV2
501
+ ,
502
+ (23)
503
+ where we have considered contributions from two more ex-
504
+ cited vector mesons, V1 and V2, in addition the contribu-
505
+ tions from ground states ρ, ω and φ. Their mass and width
506
+
507
+ 4
508
+ are MV1 (MV2) and ΓV1 (ΓV2), respectively. The mass MV2
509
+ and width ΓV2 are taken as used in Ref. [7], which are:
510
+ MV2 = 2.993 GeV and ΓV2 = 88 MeV.
511
+ Besides, we
512
+ take µΞ− = −0.915ˆµΞ−, and µΞ0 = −1.749ˆµΞ0 in natural
513
+ unit [54]. Then the coefficients f Ξ−
514
+ 1
515
+ , f Ξ−
516
+ 2
517
+ , f Ξ0
518
+ 1 , and f Ξ0
519
+ 2
520
+ can
521
+ be calculated as
522
+ f Ξ−
523
+ 1
524
+ = −1 + βρ
525
+
526
+ 2 + βV1
527
+
528
+ 2 + βV2
529
+
530
+ 2 − βωφ
531
+
532
+ 2 ,
533
+ (24)
534
+ f Ξ−
535
+ 2
536
+ = 0.085 + αV1
537
+
538
+ 2 + αV2
539
+
540
+ 2 − αωφ
541
+
542
+ 2 ,
543
+ (25)
544
+ f Ξ0
545
+ 1
546
+ = − βρ
547
+
548
+ 2 − βV1
549
+
550
+ 2 − βV2
551
+
552
+ 2 − βωφ
553
+
554
+ 2 ,
555
+ (26)
556
+ f Ξ0
557
+ 2
558
+ = −1.749 − αV1
559
+
560
+ 2 − αV2
561
+
562
+ 2 − αωφ
563
+
564
+ 2 .
565
+ (27)
566
+ The parameter γ will be fixed as the one determined from the
567
+ case of Σ, while the other free parameters βωφ, βρ, βV1, βV2,
568
+ αωφ, αV1, αV2, ΓV1, and MV1 are determined by fitting them
569
+ to experimental data on the time-like effective form factors of
570
+ Ξ− and Ξ0.
571
+ III.
572
+ NUMERICAL RESULTS
573
+ Under the above formulations, we perform a four-parameter
574
+ (γ, βρ, βωφ, αωφ)-χ2 fit to the experimental data on the ef-
575
+ fective form factors Geff of Σ+, Σ0, and Σ− hyperons. There
576
+ are 33 data points in total, which are extracted at the center-
577
+ of-mass energies from 2.3864 to 3.0200 GeV. The fitted pa-
578
+ rameters are: γ = 0.527 ± 0.024 GeV−2, βρ = 1.63 ± 0.07,
579
+ βωφ = −0.08 ± 0.06, and αωφ = −3.18 ± 0.77. And the
580
+ obtained χ2/dof is 1.69, where dof is the number of dimen-
581
+ sion of the freedom. Note that the obtained χ2/dof is larger
582
+ than 1, since we have fitted all the experimental data from
583
+ BESIII [9, 10], Belle [12], and BABAR [45] Collaborations,
584
+ by considering these contributions from only ground state of
585
+ vector mesons. If we considered only these data of BESIII
586
+ Collaboration [9, 10], the obtained χ2/dof is 1.17. In Fig. 2
587
+ we show the theoretical results of the effective form factors of
588
+ the Σ+, Σ0, and Σ−. The red, blue, and green curves stand
589
+ for the results for Σ+, Σ0, and Σ−, respectively. The exper-
590
+ imental data from BESIII [9, 10], Belle [12], and BABAR
591
+ Collaboration [45] are also shown for comparing. One can
592
+ see that, with same model parameters, we can describe these
593
+ data on the effective form factors of Σ+, Σ0 and Σ− quite
594
+ well, especially for the precise data measured by the BESIII
595
+ Collaboration [9, 10]. The total cross sections of e+e− → Σ¯Σ
596
+ are also calculated with these fitted parameters. The numeri-
597
+ cal results are shown in Fig. 3, compared with the experimen-
598
+ tal data. Since the effective form factors of Σ hyperons can
599
+ be well reproduced with our model, the total cross sections
600
+ of e+e− → Σ+ ¯Σ−, e+e− → Σ0 ¯Σ0 and e+e− → Σ− ¯Σ+
601
+ reactions can be also well described.
602
+ For the case of Ξ− and Ξ0 effective form factors, γ is taken
603
+ as the result of fitting to Σ hyperon, i.e., γ = 0.527, we per-
604
+ form nine-parameter (βωφ, βρ, βV1, βV2, αωφ, αV1, αV2, ΓV1,
605
+ MV1)-χ2 fit to the experimental data on. There are totally 18
606
+ 2.3
607
+ 2.4
608
+ 2.5
609
+ 2.6
610
+ 2.7
611
+ 2.8
612
+ 2.9
613
+ 3.0
614
+ 3.1
615
+
616
+ s
617
+ (GeV�
618
+ 10
619
+ −3
620
+ 10
621
+ −2
622
+ 10
623
+ −1
624
+ 10
625
+ 0
626
+ 10
627
+ 1
628
+ |Geff|
629
+ Σ
630
+ +
631
+ BESIII
632
+ Σ
633
+ 0
634
+ BESIII
635
+ Σ
636
+
637
+ BESIII
638
+ Σ
639
+ +
640
+ Belle
641
+ Σ
642
+ 0
643
+ Belle
644
+ Σ
645
+ 0
646
+ BABAR
647
+ FIG. 2: The obtained effective form factors of Σ+, Σ0, and Σ−,
648
+ compared with the experimental data.
649
+ 2.3
650
+ 2.4
651
+ 2.5
652
+ 2.6
653
+ 2.7
654
+ 2.8
655
+ 2.9
656
+ 3.0
657
+ 3.1
658
+
659
+ s
660
+ (GeV�
661
+ 10
662
+ −1
663
+ 10
664
+ 0
665
+ 10
666
+ 1
667
+ 10
668
+ 2
669
+ 10
670
+ 3
671
+ 10
672
+ 4
673
+ σ(pb)
674
+ Σ
675
+ +
676
+ BESIII
677
+ Σ
678
+ 0
679
+ BESIII
680
+ Σ
681
+
682
+ BESIII
683
+ Σ
684
+ +
685
+ Belle
686
+ Σ
687
+ 0
688
+ Belle
689
+ Σ
690
+ 0
691
+ BABAR
692
+ FIG. 3: The total cross section of Σ+, Σ0 and Σ− hyperons com-
693
+ pared with experimental data.
694
+ data points, and these data correspond to the center-of-mass
695
+ energies from 2.644 to 3.080 GeV. The fitted parameters are
696
+ listed in Table II, with a reasonably small χ2/dof = 0.29.
697
+ Since we have more free parameters and the experimental data
698
+ points is limited, we did not get the uncertainties of these pa-
699
+ rameters from the χ2 fit. In Fig. 4, we depict the effective form
700
+ factor of the Ξ− and Ξ0 using the fitted parameters shown in
701
+ Table II. The red curve stands for the results of Ξ0, while the
702
+ green curve is the fitted results for Ξ−. Again, one can see that
703
+ the experimental data on the effective form factors of Ξ− and
704
+ Ξ0 can be well reproduced. It is worth to mention that the two
705
+ resonances V1 and V2 are crucial to describe the experimental
706
+ data, and without their contributions, we cannot get a good fit
707
+ to the experimental data. In addition, the total cross section of
708
+ e+e− → Ξ−¯Ξ+ and e+e− → Ξ0¯Ξ0 are also calculated with
709
+
710
+ 5
711
+ TABLE II: Fitted model parameters for the effective form factors of
712
+ Ξ− and Ξ0.
713
+ Parameter
714
+ Value
715
+ Parameter
716
+ Value
717
+ βωφ
718
+ −0.774
719
+ αωφ
720
+ 9.346
721
+ βρ
722
+ 0.616
723
+ αV1
724
+ −0.039
725
+ βV1
726
+ 0.099
727
+ αV2
728
+ −0.113
729
+ βV2
730
+ 0.115
731
+ ΓV1 (MeV)
732
+ 71
733
+ MV1 (GeV)
734
+ 2.742
735
+ the fitted parameters shown in Table II, and the numerical re-
736
+ sults are shown Fig. 5. The two peaks of V1 and V2 can be
737
+ clear seen, and more precise data around 2744 and 2993 MeV
738
+ are needed to further study their properties.
739
+ We next pay
740
+ 2.6
741
+ 2.7
742
+ 2.8
743
+ 2.9
744
+ 3.0
745
+ 3.1
746
+
747
+ s
748
+ (GeV�
749
+ 10
750
+ −2
751
+ 10
752
+ −1
753
+ 10
754
+ 0
755
+ |Geff|
756
+ Ξ
757
+
758
+ BESIII
759
+ Ξ
760
+ 0
761
+ BESIII
762
+ FIG. 4: The obtained effective form factors of Ξ− and Ξ0 compared
763
+ with the experimental data.
764
+ attention to the EMFFs at the space-like region, which can
765
+ be straightforwardly obtained with the these parameters de-
766
+ termined from the experimental data in the time-like region.
767
+ Since the EMFFs in the space-like region are real, thus we
768
+ have to ignore the widths of the vector mesons. Then one can
769
+ calculate the mean squared charge radius, which is defined by
770
+ the relation [1, 40, 55]
771
+ ��
772
+ r2
773
+ ch
774
+
775
+ =
776
+
777
+
778
+
779
+
780
+
781
+
782
+
783
+ −6
784
+ GE(0)
785
+ dGE(Q2)
786
+ dQ2
787
+ ����
788
+ Q2=0
789
+ ,
790
+ for Σ+, Σ− and Ξ−,
791
+ −6 dGE(Q2)
792
+ dQ2
793
+ ����
794
+ Q2=0
795
+ ,
796
+ for Σ0 and Ξ0,
797
+ (28)
798
+ with Q2 = −q2. With the parameters fitted above, the cal-
799
+ culated results of
800
+
801
+ r2
802
+ ch
803
+
804
+ of Σ and Ξ hyperons are shown in
805
+ Table III. Our result for Σ− is agreement with the experi-
806
+ mental data within uncertainties:
807
+
808
+ r2
809
+ ch
810
+
811
+ Σ− = 0.61 ± 0.12 ±
812
+ 0.09 [1],
813
+
814
+ r2
815
+ ch
816
+
817
+ Σ− = 0.91 ± 0.32 ± 0.4 [2]. In Ref. [1] the
818
+ Σ− charge radius was measured in the space-like Q2 range
819
+ 0.035 − 0.105 GeV2 by elastic scattering of a Σ− beam
820
+ off atomic electrons. The measurement was performed with
821
+ the SELEX (E781) spectrometer using the Fermilab hyperon
822
+ 2.6
823
+ 2.7
824
+ 2.8
825
+ 2.9
826
+ 3.0
827
+ 3.1
828
+
829
+ s
830
+ (GeV�
831
+ 10
832
+ −1
833
+ 10
834
+ 0
835
+ 10
836
+ 1
837
+ 10
838
+ 2
839
+ 10
840
+ 3
841
+ σ(pb)
842
+ Ξ
843
+
844
+ BESIII
845
+ Ξ
846
+ 0
847
+ BESIII
848
+ FIG. 5: The total cross sections of e+e− → Ξ−¯Ξ+ and e+e− →
849
+ Ξ0¯Ξ0 reactions compared with experimental data.
850
+ beam at a mean energy of 610GeV. In Ref. [2] it was at-
851
+ tracted from the elastic scattering of high energy Σ− off elec-
852
+ trons from carbon and copper targets using the CERN hy-
853
+ peron beam, where these events are identified using a maxi-
854
+ mum likelihood technique exploring the kinematical relations
855
+ of the scattered particles. Theoretical calculations with chi-
856
+ ral perturbation theory (ChPT) [40, 56] and the nonlocal chi-
857
+ ral effective theory (ChET) [57], and chiral constituent quark
858
+ model (ChCQM) [58] are also listed for comparison. On can
859
+ see that the orderings of the most charge radii calculated by
860
+ other works are in agreement with our results. Moreover, our
861
+ results are consistent with these calculations in Refs. [56–58]
862
+ that
863
+
864
+ r2
865
+ ch
866
+
867
+ Σ+ >
868
+
869
+ r2
870
+ ch
871
+
872
+ Σ−. On the contrary, the results ob-
873
+ tained with chiral perturbation theory predictions in Ref. [40]
874
+ indicate that the charge radius of Σ− is larger than the one of
875
+ Σ+. In addition, the charge radius of Ξ0 calculated here is
876
+ small and negative, which is in agreement with the nonlocal
877
+ chiral effective theory calculation in Ref. [57]. It is expected
878
+ that these results can be tested by future experimental mea-
879
+ surements.
880
+ IV.
881
+ SUMMARY
882
+ In this work, we study the effective form factor of Σ and
883
+ Ξ hyperons in time-like region within the vector meson dom-
884
+ inance model, and we take a common model parameter γ. In
885
+ addition, the effect of the isospin combination is taken into
886
+ account. For the case of Σ hyperon, the contributions from ρ,
887
+ ω and φ mesons are considered. Within same model parame-
888
+ ters, we can simultaneously describe the current experimental
889
+ data on the effective form factors of Σ+, Σ0 and Σ−. While
890
+ for the case of Ξ+ and Ξ−, in addition to the contributions of
891
+ the ground states ρ, ω and φ, it is found that one needs also
892
+ contributions from two new vector states, and their masses and
893
+ widths are: MV1 = 2.742 GeV, ΓV1 = 71 MeV, MV2 = 2.993
894
+
895
+ 6
896
+ TABLE III: The obtained results for mean squared electromagnetic radii
897
+
898
+ r2
899
+ ch
900
+
901
+ (fm2) for Σ and Ξ. The results from two ChPT calculations,
902
+ ChET and, ChCQM as well as the experimental data are also listed.
903
+ Baryon
904
+ Ξ0
905
+ Ξ−
906
+ Σ+
907
+ Σ0
908
+ Σ−
909
+ This work
910
+ −0.07
911
+ 0.43
912
+ 0.78
913
+ 0.12
914
+ 0.65
915
+ ChPT [40]
916
+ 0.13 ± 0.03
917
+ 0.49 ± 0.05
918
+ 0.60 ± 0.02
919
+ −0.03 ± 0.01
920
+ 0.67 ± 0.03
921
+ ChPT [56]
922
+ 0.36 ± 0.02
923
+ 0.61 ± 0.01
924
+ 0.99 ± 0.03
925
+ 0.10 ± 0.02
926
+ 0.780
927
+ ChET [57]
928
+ −0.015 ± 0.007 0.601 ± 0.127 0.719 ± 0.116 0.010 ± 0.004 0.700 ± 0.124
929
+ ChCQM [58]
930
+ 0.091
931
+ 0.587
932
+ 0.825
933
+ 0.089
934
+ 0.643
935
+ GeV, and ΓV2 = 88 MeV. It is expected that new precise ex-
936
+ perimental data at BESIII [59] can be used to further study
937
+ their properties. Finally, we would like to stress that thanks
938
+ to the effects of the isospin combinations, the effective form
939
+ factors of Σ+, Σ0 and Σ− can be simultaneously reproduced
940
+ within the same model parameters by using the vector meson
941
+ dominance model. Again, the theoretical results obtained here
942
+ also indicate that the vecor meson dominance model is a valid
943
+ tool for studying the baryonic electromagnetic form factors at
944
+ the time-like region. More precise data on the e+e− → Y ¯Y
945
+ reactions can be used to improve our knowledge of hyperon
946
+ effective form factors.
947
+ Acknowledgements
948
+ We warmly thank Profs. Xiong-Fei Wang and Xiao-Rong
949
+ Zhou for useful comments and discussions.
950
+ This work is
951
+ partly supported by the National Natural Science Founda-
952
+ tion of China under Grant Nos. 12075288, 11735003, and
953
+ 11961141012. It is also supported by the Youth Innovation
954
+ Promotion Association CAS.
955
+ [1] I. M. Gough Eschrich et al. [SELEX], Phys. Lett. B
956
+ 522,
957
+ 233-239
958
+ (2001)
959
+ doi:10.1016/S0370-2693(01)01285-0
960
+ [arXiv:hep-ex/0106053 [hep-ex]].
961
+ [2] M. I. Adamovich et al. [WA89], Eur. Phys. J. C 8, 59-66 (1999)
962
+ doi:10.1007/s100520050444
963
+ [3] M. K. Jones et al. [Jefferson Lab Hall A], Phys. Rev.
964
+ Lett. 84, 1398-1402 (2000) doi:10.1103/PhysRevLett.84.1398
965
+ [arXiv:nucl-ex/9910005 [nucl-ex]].
966
+ [4] O.
967
+ Gayou
968
+ et
969
+ al.
970
+ [Jefferson
971
+ Lab
972
+ Hall
973
+ A],
974
+ Phys.
975
+ Rev.
976
+ Lett. 88, 092301 (2002) doi:10.1103/PhysRevLett.88.092301
977
+ [arXiv:nucl-ex/0111010 [nucl-ex]].
978
+ [5] M. Ablikim et al. [BESIII], Phys. Rev. D 97, no.3, 032013
979
+ (2018) doi:10.1103/PhysRevD.97.032013 [arXiv:1709.10236
980
+ [hep-ex]].
981
+ [6] M. Ablikim et al. [BESIII], Phys. Rev. Lett. 124, no.3,
982
+ 032002
983
+ (2020)
984
+ doi:10.1103/PhysRevLett.124.032002
985
+ [arXiv:1910.04921 [hep-ex]].
986
+ [7] M. Ablikim et al. [BESIII], Phys. Rev. D 103, no.1, 012005
987
+ (2021) doi:10.1103/PhysRevD.103.012005 [arXiv:2010.08320
988
+ [hep-ex]].
989
+ [8] M. Ablikim et al. [BESIII], Phys. Lett. B 820, 136557 (2021)
990
+ doi:10.1016/j.physletb.2021.136557 [arXiv:2105.14657 [hep-
991
+ ex]].
992
+ [9] M. Ablikim et al. [BESIII], Phys. Lett. B 814, 136110 (2021)
993
+ doi:10.1016/j.physletb.2021.136110 [arXiv:2009.01404 [hep-
994
+ ex]].
995
+ [10] M. Ablikim et al. [BESIII], Phys. Lett. B 831, 137187 (2022)
996
+ doi:10.1016/j.physletb.2022.137187 [arXiv:2110.04510 [hep-
997
+ ex]].
998
+ [11] X. Wang and G. Huang, Symmetry 14, no.1, 65 (2022)
999
+ doi:10.3390/sym14010065
1000
+ [12] [Belle], [arXiv:2210.16761 [hep-ex]].
1001
+ [13] M. A. Belushkin, H. W. Hammer and U. G. Meissner, Phys.
1002
+ Rev. C 75, 035202 (2007) doi:10.1103/PhysRevC.75.035202
1003
+ [arXiv:hep-ph/0608337 [hep-ph]].
1004
+ [14] E. A. Kuraev, E. Tomasi-Gustafsson and A. Dbeyssi, Phys. Lett.
1005
+ B 712, 240-244 (2012) doi:10.1016/j.physletb.2012.04.073
1006
+ [arXiv:1106.1670 [hep-ph]].
1007
+ [15] I. T. Lorenz, H. W. Hammer and U. G. Meißner, Phys. Rev.
1008
+ D 92, no.3, 034018 (2015) doi:10.1103/PhysRevD.92.034018
1009
+ [arXiv:1506.02282 [hep-ph]].
1010
+ [16] A. Mangoni, S. Pacetti and E. Tomasi-Gustafsson, Phys. Rev. D
1011
+ 104, no.11, 116016 (2021) doi:10.1103/PhysRevD.104.116016
1012
+ [arXiv:2109.03759 [hep-ph]].
1013
+ [17] F. Iachello, A. D. Jackson and A. Lande, Phys. Lett. B 43, 191-
1014
+ 196 (1973) doi:10.1016/0370-2693(73)90266-9
1015
+ [18] F. Iachello and Q. Wan, Phys. Rev. C 69, 055204 (2004)
1016
+ doi:10.1103/PhysRevC.69.055204
1017
+ [19] R. Bijker and F. Iachello, Phys. Rev. C 69, 068201 (2004)
1018
+ doi:10.1103/PhysRevC.69.068201
1019
+ [arXiv:nucl-th/0405028
1020
+ [nucl-th]].
1021
+ [20] Y. Yang, D. Y. Chen and Z. Lu, Phys. Rev. D 100, no.7, 073007
1022
+ (2019) doi:10.1103/PhysRevD.100.073007 [arXiv:1902.01242
1023
+ [hep-ph]].
1024
+ [21] Z. Y. Li, A. X. Dai and J. J. Xie, Chin. Phys. Lett.
1025
+ 39, no.1, 011201 (2022) doi:10.1088/0256-307X/39/1/011201
1026
+ [arXiv:2107.10499 [hep-ph]].
1027
+ [22] J. Haidenbauer, U. G. Meißner and L. Y. Dai, Phys. Rev. D
1028
+ 103, no.1, 014028 (2021) doi:10.1103/PhysRevD.103.014028
1029
+ [arXiv:2011.06857 [nucl-th]].
1030
+ [23] E. Tomasi-Gustafsson and M. P. Rekalo, Phys. Lett. B 504, 291-
1031
+ 295 (2001) doi:10.1016/S0370-2693(01)00312-4
1032
+ [24] A. Bianconi and E. Tomasi-Gustafsson, Phys. Rev. Lett. 114,
1033
+ no.23, 232301 (2015) doi:10.1103/PhysRevLett.114.232301
1034
+ [arXiv:1503.02140 [nucl-th]].
1035
+ [25] A.
1036
+ Bianconi
1037
+ and
1038
+ E. Tomasi-Gustafsson,
1039
+ Phys.
1040
+ Rev.
1041
+ C
1042
+ 93, no.3, 035201 (2016) doi:10.1103/PhysRevC.93.035201
1043
+ [arXiv:1510.06338 [nucl-th]].
1044
+ [26] M. Ablikim et al. [BESIII], Nature Phys. 17, no.11, 1200-1204
1045
+ (2021) doi:10.1038/s41567-021-01345-6
1046
+ [arXiv:2103.12486
1047
+
1048
+ 7
1049
+ [hep-ex]].
1050
+ [27] A. X. Dai, Z. Y. Li, L. Chang and J. J. Xie, Chin. Phys.
1051
+ C 46, no.7, 073104 (2022) doi:10.1088/1674-1137/ac5f9c
1052
+ [arXiv:2112.06264 [hep-ph]].
1053
+ [28] Q. H. Yang, L. Y. Dai, D. Guo, J. Haidenbauer, X. W. Kang and
1054
+ U. G. Meißner, [arXiv:2206.01494 [nucl-th]].
1055
+ [29] X. Cao, J. P. Dai and H. Lenske, Phys. Rev. D 105,
1056
+ no.7, L071503 (2022) doi:10.1103/PhysRevD.105.L071503
1057
+ [arXiv:2109.15132 [hep-ph]].
1058
+ [30] G. P. Lepage and S. J. Brodsky, Phys. Rev. Lett. 43, 545-
1059
+ 549 (1979) [erratum: Phys. Rev. Lett. 43, 1625-1626 (1979)]
1060
+ doi:10.1103/PhysRevLett.43.545
1061
+ [31] G. P. Lepage and S. J. Brodsky, Phys. Rev. D 22, 2157 (1980)
1062
+ doi:10.1103/PhysRevD.22.2157
1063
+ [32] Z. Y. Li and J. J. Xie, Commun. Theor. Phys. 73, no.5, 055201
1064
+ (2021)
1065
+ doi:10.1088/1572-9494/abea0f
1066
+ [arXiv:2012.02379
1067
+ [hep-ph]].
1068
+ [33] C.
1069
+ F.
1070
+ Perdrisat,
1071
+ V.
1072
+ Punjabi
1073
+ and
1074
+ M.
1075
+ Vander-
1076
+ haeghen,
1077
+ Prog.
1078
+ Part.
1079
+ Nucl.
1080
+ Phys.
1081
+ 59,
1082
+ 694-764
1083
+ (2007)
1084
+ doi:10.1016/j.ppnp.2007.05.001
1085
+ [arXiv:hep-ph/0612014
1086
+ [hep-ph]].
1087
+ [34] A. Denig and G. Salme, Prog. Part. Nucl. Phys. 68, 113-
1088
+ 157 (2013) doi:10.1016/j.ppnp.2012.09.005 [arXiv:1210.4689
1089
+ [hep-ex]].
1090
+ [35] S.
1091
+ Pacetti,
1092
+ R.
1093
+ Baldini
1094
+ Ferroli
1095
+ and
1096
+ E.
1097
+ Tomasi-
1098
+ Gustafsson,
1099
+ Phys.
1100
+ Rept.
1101
+ 550-551,
1102
+ 1-103
1103
+ (2015)
1104
+ doi:10.1016/j.physrep.2014.09.005
1105
+ [36] V. Punjabi,
1106
+ C. F. Perdrisat, M. K. Jones,
1107
+ E. J. Brash
1108
+ and
1109
+ C.
1110
+ E.
1111
+ Carlson,
1112
+ Eur.
1113
+ Phys.
1114
+ J.
1115
+ A
1116
+ 51,
1117
+ 79
1118
+ (2015)
1119
+ doi:10.1140/epja/i2015-15079-x [arXiv:1503.01452 [nucl-ex]].
1120
+ [37] A.
1121
+ Mangoni,
1122
+ SciPost
1123
+ Phys.
1124
+ Proc.
1125
+ 10,
1126
+ 021
1127
+ (2022)
1128
+ doi:10.21468/SciPostPhysProc.10.021
1129
+ [arXiv:2110.12475
1130
+ [hep-ex]].
1131
+ [38] M. Irshad, D. Liu, X. Zhou and G. Huang, Symmetry 14, no.1,
1132
+ 69 (2022) doi:10.3390/sym14010069
1133
+ [39] M. Anselmino, E. Predazzi, S. Ekelin, S. Fredriksson and
1134
+ D. B. Lichtenberg, Rev. Mod. Phys. 65, 1199-1234 (1993)
1135
+ doi:10.1103/RevModPhys.65.1199
1136
+ [40] B. Kubis and U. G. Meissner, Eur. Phys. J. C 18, 747-756
1137
+ (2001)
1138
+ doi:10.1007/s100520100570
1139
+ [arXiv:hep-ph/0010283
1140
+ [hep-ph]].
1141
+ [41] M. Ablikim et al. [BESIII], Phys. Rev. Lett. 124, no.4,
1142
+ 042001
1143
+ (2020)
1144
+ doi:10.1103/PhysRevLett.124.042001
1145
+ [arXiv:1905.09001 [hep-ex]].
1146
+ [42] L. Xia, C. Rosner, Y. D. Wang, X. Zhou, F. E. Maas, R. B. Fer-
1147
+ roli, H. Hu and G. Huang, Symmetry 14, no.2, 231 (2022)
1148
+ doi:10.3390/sym14020231 [arXiv:2111.13009 [hep-ex]].
1149
+ [43] X. Zhou, L. Yan, R. B. Ferroli and G. Huang, Symmetry 14,
1150
+ no.1, 144 (2022) doi:10.3390/sym14010144
1151
+ [44] B. Aubert et al. [BaBar], Phys. Rev. D 73, 012005 (2006)
1152
+ doi:10.1103/PhysRevD.73.012005
1153
+ [arXiv:hep-ex/0512023
1154
+ [hep-ex]].
1155
+ [45] B. Aubert et al. [BaBar],
1156
+ Phys. Rev.
1157
+ D 76,
1158
+ 092006
1159
+ (2007)
1160
+ doi:10.1103/PhysRevD.76.092006
1161
+ [arXiv:0709.1988
1162
+ [hep-ex]].
1163
+ [46] R.
1164
+ G.
1165
+ Sachs,
1166
+ Phys.
1167
+ Rev.
1168
+ 126,
1169
+ 2256-2260
1170
+ (1962)
1171
+ doi:10.1103/PhysRev.126.2256
1172
+ [47] J. R. Green, J. W. Negele, A. V. Pochinsky, S. N. Syrit-
1173
+ syn, M. Engelhardt and S. Krieg, Phys. Rev. D 90, 074507
1174
+ (2014)
1175
+ doi:10.1103/PhysRevD.90.074507
1176
+ [arXiv:1404.4029
1177
+ [hep-lat]].
1178
+ [48] S.
1179
+ Dobbs,
1180
+ A.
1181
+ Tomaradze,
1182
+ T.
1183
+ Xiao,
1184
+ K.
1185
+ K.
1186
+ Seth
1187
+ and
1188
+ G.
1189
+ Bonvicini,
1190
+ Phys.
1191
+ Lett.
1192
+ B
1193
+ 739,
1194
+ 90-94
1195
+ (2014)
1196
+ doi:10.1016/j.physletb.2014.10.025
1197
+ [arXiv:1410.8356
1198
+ [hep-
1199
+ ex]].
1200
+ [49] J. Haidenbauer, X. W. Kang and U. G. Meißner, Nucl. Phys.
1201
+ A 929, 102-118 (2014) doi:10.1016/j.nuclphysa.2014.06.007
1202
+ [arXiv:1405.1628 [nucl-th]].
1203
+ [50] A. B. Arbuzov and T. V. Kopylova, JHEP 04, 009 (2012)
1204
+ doi:10.1007/JHEP04(2012)009 [arXiv:1111.4308 [hep-ph]].
1205
+ [51] R. Baldini,
1206
+ S. Pacetti,
1207
+ A. Zallo and A. Zichichi,
1208
+ Eur.
1209
+ Phys. J. A 39, 315-321 (2009) doi:10.1140/epja/i2008-10716-1
1210
+ [arXiv:0711.1725 [hep-ph]].
1211
+ [52] R. Baldini Ferroli, S. Pacetti and A. Zallo, Eur. Phys. J. A 48,
1212
+ 33 (2012) doi:10.1140/epja/i2012-12033-6 [arXiv:1008.0542
1213
+ [hep-ph]].
1214
+ [53] Q. F. Cao, H. R. Qi, Y. F. Wang and H. Q. Zheng, Phys. Rev. D
1215
+ 100, no.5, 054040 (2019) doi:10.1103/PhysRevD.100.054040
1216
+ [arXiv:1906.00356 [hep-ph]].
1217
+ [54] R. L. Workman et al. [Particle Data Group], PTEP 2022,
1218
+ 083C01 (2022) doi:10.1093/ptep/ptac097
1219
+ [55] H. Atac, M. Constantinou,
1220
+ Z. E. Meziani, M. Paolone
1221
+ and N. Sparveris, Nature Commun. 12, no.1, 1759 (2021)
1222
+ doi:10.1038/s41467-021-22028-z
1223
+ [arXiv:2103.10840
1224
+ [nucl-
1225
+ ex]].
1226
+ [56] A. N. Hiller Blin, Phys. Rev. D 96, no.9, 093008 (2017)
1227
+ doi:10.1103/PhysRevD.96.093008
1228
+ [arXiv:1707.02255
1229
+ [hep-
1230
+ ph]].
1231
+ [57] M. Yang and P. Wang, Phys. Rev. D 102, no.5, 056024
1232
+ (2020) doi:10.1103/PhysRevD.102.056024 [arXiv:2005.11971
1233
+ [hep-ph]].
1234
+ [58] G.
1235
+ Wagner,
1236
+ A.
1237
+ J.
1238
+ Buchmann
1239
+ and
1240
+ A.
1241
+ Faessler,
1242
+ Phys.
1243
+ Rev. C 58, 3666-3669 (1998) doi:10.1103/PhysRevC.58.3666
1244
+ [arXiv:nucl-th/9809015 [nucl-th]].
1245
+ [59] M. Ablikim et al. [BESIII], Chin. Phys. C 44,
1246
+ no.4,
1247
+ 040001
1248
+ (2020)
1249
+ doi:10.1088/1674-1137/44/4/040001
1250
+ [arXiv:1912.05983 [hep-ex]].
1251
+
1dAzT4oBgHgl3EQfDfo-/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
29FKT4oBgHgl3EQfQS0h/content/tmp_files/2301.11766v1.pdf.txt ADDED
@@ -0,0 +1,1581 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ EPJ manuscript No.
2
+ (will be inserted by the editor)
3
+ Investigation of the Σ0 Production Mechanism in p(3.5 GeV)+p
4
+ Collisions
5
+ R. Abou Yassine6,13, O. Arnold10,9, M. Becker11, P. Bergmann5, A. Blanco1, C. Blum8, M. B¨ohmer10, N. Carolino1,
6
+ L. Chlad14,c, P. Chudoba14, I. Ciepał3, J. Dreyer7, W. Esmail5, L. Fabbietti10,9, P. Fonte1,a, J. Friese10, I. Fr¨ohlich8,
7
+ T. Galatyuk6,5, J. A. Garz´on15, M. Grunwald17, M. Gumberidze5, S. Harabasz6,b, C. H¨ohne11,5, F. Hojeij13, R. Holzmann5,
8
+ H. Huck8, M. Idzik2, B. K¨ampfer7,c, B. Kardan8, V. Kedych6, I. Koenig5, W. Koenig5, M. Kohls8, J. Kolas17, G. Korcyl4,
9
+ G. Kornakov17, R. Kotte7, W. Krueger6, A. Kugler14, T. Kunz10, R. Lalik4, F. Linz6,5, L. Lopes1, M. Lorenz8, A. Malige4,
10
+ J. Markert5, V. Metag11, J. Michel8, A. Molenda2, C. M¨untz8, M. Nabroth8, L. Naumann7, K. Nowakowski4, J. Orli´nski16,
11
+ J.-H. Otto11, Y. Parpottas12, M. Parschau8, V. Pechenov5, O. Pechenova5, K. Piasecki16, J. Pietraszko5, A. Prozorov14,d,
12
+ W. Przygoda4, B. Ramstein13, N. Rathod17, J. Ritman5, A. Rost6,5, A. Rustamov5, P. Salabura4, N. Schild6, E. Schwab5,
13
+ F. Seck6, U. Singh4, S. Spies8, M. Stefaniak17,5, H. Str¨obele8, J. Stroth8,5, C. Sturm5, K. Sumara4, O. Svoboda14, M. Szala8,
14
+ P. Tlusty14, M. Traxler5, H. Tsertos12, V. Wagner14, A.A. Weber11, C. Wendisch5, H.P. Zbroszczyk17, E. Zherebtsova5,e,
15
+ M. Zielinski4, and P. Zumbruch5 (HADES collaboration)
16
+ 1 LIP-Laborat´orio de Instrumentac¸˜ao e F´ısica Experimental de Part´ıculas 3004-516 Coimbra, Portugal
17
+ 2 AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, 30-059 Krak´ow, Poland
18
+ 3 Institute of Nuclear Physics, Polish Academy of Sciences, 31342 Krak´ow, Poland
19
+ 4 Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Krak´ow, Poland
20
+ 5 GSI Helmholtzzentrum f¨ur Schwerionenforschung GmbH, 64291 Darmstadt, Germany
21
+ 6 Technische Universit¨at Darmstadt, 64289 Darmstadt, Germany
22
+ 7 Institut f¨ur Strahlenphysik, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden, Germany
23
+ 8 Institut f¨ur Kernphysik, Goethe-Universit¨at, 60438 Frankfurt, Germany
24
+ 9 Excellence Cluster ’Origin and Structure of the Universe’, 85748 Garching, Germany
25
+ 10 Physik Department E62, Technische Universit¨at M¨unchen, 85748 Garching, Germany
26
+ 11 II.Physikalisches Institut, Justus Liebig Universit¨at Giessen, 35392 Giessen, Germany
27
+ 12 Department of Physics, University of Cyprus, 1678 Nicosia, Cyprus
28
+ 13 Laboratoire de Physique des 2 infinis Ir`ene Joliot-Curie, Universit´e Paris-Saclay, CNRS-IN2P3., F-91405 Orsay, France
29
+ 14 Nuclear Physics Institute, The Czech Academy of Sciences, 25068 Rez, Czech Republic
30
+ 15 LabCAF. F. F´ısica, Univ. de Santiago de Compostela, 15706 Santiago de Compostela, Spain
31
+ 16 Uniwersytet Warszawski - Instytut Fizyki Do´swiadczalnej, 02-093 Warszawa, Poland
32
+ 17 Warsaw University of Technology, 00-662 Warsaw, Poland
33
+ a also at Coimbra Polytechnic - ISEC, Coimbra, Portugal
34
+ b also at Helmholtz Research Academy Hesse for FAIR (HFHF), Campus Darmstadt, 64390 Darmstadt, Germany
35
+ c also at Technische Universit¨at Dresden, 01062 Dresden, Germany
36
+ d also at Charles University, Faculty of Mathematics and Physics, 12116 Prague, Czech Republic
37
+ e also at University of Wrocław, 50-204 Wrocław, Poland
38
+ e-mail: hades-info@gsi.de
39
+ Abstract The production of Σ0 hyperons in proton proton collisions at a beam kinetic energy of 3.5 GeV impinging
40
+ on a liquid hydrogen target was investigated using data collected with the HADES setup. The total production cross
41
+ section is found to be σ(pK+Σ0)[µb] = 17.7 ± 1.7(stat) ± 1.6(syst). Differential cross section distributions of the
42
+ exclusive channel pp → pK+Σ0 were analyzed in the center-of-mass, Gottfried-Jackson and helicity reference frames
43
+ for the first time at the excess energy of 556 MeV. The data support the interplay between pion and kaon exchange
44
+ mechanisms and clearly demonstrate the contribution of interfering nucleon resonances decaying to K+Σ0. The Bonn-
45
+ Gatchina partial wave analysis was employed to analyse the data. Due to the limited statistics, it was not possible
46
+ to obtain an unambiguous determination of the relative contribution of intermediate nucleon resonances to the final
47
+ state. However nucleon resonances with masses around 1.710 GeV/c2 (N∗(1710)) and 1.900 GeV/c2 (N∗(1900) or
48
+ ∆∗(1900)) are preferred by the fit.
49
+ arXiv:2301.11766v1 [nucl-ex] 27 Jan 2023
50
+
51
+ 2
52
+ R. Abou Yassine et al.: Investigation of the Σ0 Production Mechanism in p(3.5 GeV)+p Collisions
53
+ 1 Introduction
54
+ Strangeness production at intermediate energies in p+p and
55
+ p+A collisions is of particular importance to the field of hadron
56
+ physics. The production of baryons with strange quark content,
57
+ i.e. hyperons, requires creating a new quark flavor, which can
58
+ occur out of the vacuum from the quark sea in the colliding
59
+ protons. The s-quark with mass
60
+ O(ΛQCD) is distinguished
61
+ from the light (u, d) quark flavors but much smaller than heavy
62
+ (c, t, b) flavors. The resulting (approximate) SU(3) flavor
63
+ symmetry in the u-d-s sector is therefore still a cornerstone of
64
+ hadron physics. Since the entrance channel in p+p and p+A
65
+ collisions carries no net strangeness, the emergence of an
66
+ s-quark can unravel much of the flavor dynamics in hadronic
67
+ reactions. The flavor-conserving strong interaction process
68
+ requires associate strangeness production, e.g. realized by
69
+ simultaneous creation of a single-strange hyperon, such as
70
+ Λ or Σ0 and an associated kaon. Therefore, understanding
71
+ the production mechanism of strange baryons near threshold
72
+ deepens our knowledge of their internal structure and of the
73
+ strong interaction in the non-perturbative regime. Strangeness
74
+ production is also used as a probe to study hot and dense
75
+ nuclear matter in heavy ion collisions both at medium-energy
76
+ and in the late stages prior to freeze-out in high-energy
77
+ collisions, e.g. at LHC [1].
78
+ The production of the Λ hyperon in p+p and p+A reac-
79
+ tions near threshold has been studied extensively by many ex-
80
+ periments including HADES [2, 3, 4, 5, 6], yet there are only
81
+ few experimental investigations on the Σ0 hyperon [2, 7]. De-
82
+ spite there are considerable experimental results and numerous
83
+ dedicated theoretical investigations, the strangeness production
84
+ mechanism is not yet well understood. In the context of the bo-
85
+ son exchange model [8, 9, 10, 11],
86
+ it is assumed that the initial protons exchange a virtual me-
87
+ son. The interaction between the meson and the initial protons
88
+ results in the production of the final state particles, which can
89
+ proceed directly or via an intermediate resonance.
90
+ The exchange of a virtual meson can be put into one of
91
+ two categories. The first category is strange meson exchange,
92
+ where strangeness exchange occurs, and no resonances are
93
+ involved. In this case, the reaction amplitude KN → KN
94
+ is governed by t-channel diagrams. The second category is
95
+ non-strange meson exchange, a pion exchange in its simplest
96
+ form. At the same time the elementary reaction amplitude
97
+ πN → KY is dominated by resonance excitations, which
98
+ implies a strong and characteristic energy dependence, where
99
+ Y stands for hyperons (Λ, Σ0, ...).
100
+ Several experiments have studied the exclusive reaction
101
+ pp → pK+Λ and proven that a pure phase space model de-
102
+ scription of the data is not sufficient without taking the dynam-
103
+ ics of the process into account [2, 6, 12, 13]. It was found that
104
+ the Λ hyperon production is dominated by the excitation and
105
+ subsequent decay of N∗ resonances to the K+Λ decay chan-
106
+ nel. In particular N∗(1650) (JP= 1
107
+ 2
108
+ −), N∗(1710) (JP= 1
109
+ 2
110
+ +)
111
+ and N∗(1720) (JP= 3
112
+ 2
113
+ +) were found to contribute. This sup-
114
+ ports a picture wherein the exchange of non-strange mesons
115
+ is the leading process in the production mechanism. In addi-
116
+ tion, a considerable Final State Interaction (FSI) was found
117
+ to contribute [14, 15] leading to ΣN → ΛN conversion that
118
+ is observed as a ΣN cusp effect in the Λ cross section [16].
119
+ In the pp → pK+Σ0 reaction the proton–hyperon FSI seems
120
+ to be negligible, especially at low energies near threshold and
121
+ a pure phase space distribution describes the data reasonably
122
+ well. The cross section ratio σ(pK+Λ) / σ(pK+Σ0) below ex-
123
+ cess energies of ∼ 20 MeV is about 28 in agreement of the
124
+ SU(6) prediction and reduces drastically to about 2.5 at excess
125
+ energies above 300 MeV [17, 18]. This energy-dependence of
126
+ the cross section ratio is strongly affected by FSI effects in the
127
+ pp → pK+Λ reaction [19].
128
+ Besides the energy dependence of the cross section, the
129
+ differential cross sections at selected energies add much more
130
+ stringent tests of the model descriptions. This study fills this
131
+ gap and delivers such data which allow some clues about the
132
+ involved exchange mesons and resonances, in particular by em-
133
+ ploying a partial wave analysis.
134
+ Furthermore,
135
+ a
136
+ theoretical
137
+ study
138
+ of
139
+ the
140
+ reaction
141
+ pp → pK+Σ0
142
+ based on a chiral dynamical study has
143
+ been proposed in [20]. This approach uses the pion and kaon
144
+ exchange mechanisms and chiral amplitudes in addition to all
145
+ pairs FSI, where the contribution of nucleon resonances appear
146
+ naturally using chiral unitary amplitudes.
147
+ This paper is organized as follows. In Section 2, the experi-
148
+ mental setup is briefly explained. Section 3 is devoted to the Σ0
149
+ selection method, where the particle identification, the Λ hy-
150
+ peron reconstruction and the kinematic refit methods were pre-
151
+ sented. In Section 3.5 the method for efficiency correction and
152
+ differential analysis is described. Sections 5 and 6 presents the
153
+ calculated total production cross section and the partial wave
154
+ analysis of the exclusive reaction pp → pK+Σ0. In Section 7
155
+ a summary and a short outlook are given.
156
+ 2 The HADES experiment
157
+ The data presented here were collected in April 2007 with the
158
+ High Acceptance Di-Electron Spectrometer (HADES) located
159
+ at the heavy ion synchrotron SIS18 at GSI Helmholtzzentrum
160
+ f¨ur Schwerionenforschung in Darmstadt, Germany. HADES is
161
+ characterized by six identical sectors covering almost the full
162
+ azimuthal range and polar angles from θ = 18◦ to θ = 85◦. Each
163
+ sector of the spectrometer contains a Ring-Imaging Cherenkov
164
+ Detector (RICH) operating in a magnetic field-free region that
165
+ allows lepton identification over a wide range of momenta. Two
166
+ Multi-Wire Drift Chambers (MDCs) are placed in front of a
167
+ toroidal magnetic field, and two outer MDCs are placed behind
168
+ the magnetic field. The MDCs enable the momentum informa-
169
+ tion and the specific energy loss dE/dx to be reconstructed for
170
+ each particle track. Two scintillator hodoscopes, the Time Of
171
+ Flight (TOF) and TOFino are also placed behind the magnet
172
+ and provide a stop time (ts) signal. The TOF and TOFino sys-
173
+ tem are used as input to the trigger systems to start the data
174
+ readout. A detailed description of the HADES setup can be
175
+ found in [21].
176
+ In the present analysis, a proton beam with an intensity of
177
+ 107 particles/s and kinetic energy T = 3.5 GeV was incident on
178
+ a liquid hydrogen target with an areal density of 0.35 g/cm2.
179
+ The dimensions of the target were 15 mm in diameter and 50
180
+ mm length located between -65 to -15 mm in the longitudi-
181
+ nal direction. The data readout was started by a first level trig-
182
+
183
+ R. Abou Yassine et al.: Investigation of the Σ0 Production Mechanism in p(3.5 GeV)+p Collisions
184
+ 3
185
+ ger requiring a charged particle multiplicity ≥ 3 (M3). In total,
186
+ 1.14 × 109 events were recorded under these conditions [3].
187
+ During this experiment HADES included an additional For-
188
+ ward Wall (FW) scintillator hodoscope that was placed 7 me-
189
+ ters downstream the target in a magnetic field-free region and
190
+ covered polar angles from θ = 0.33◦ to θ = 7.17◦ with full az-
191
+ imuthal acceptance. The FW measured the hit position and ar-
192
+ rival time of the particle track with a time resolution of about
193
+ 700 ps [22].
194
+ 3 Event selection method
195
+ In this section, the exclusive reconstruction of the reaction
196
+ pp → pK+Σ0 is presented. The Σ0 hyperon is reconstructed
197
+ via its electromagnetic decay Σ0 → Λγ (BR ≈ 100%) and the
198
+ daughter Λ hyperon is reconstructed with the decay mode
199
+ Λ → pπ− (BR = 63.9%).
200
+ The Σ0 reconstruction strategy includes the following steps:
201
+ a) time of flight (tof) reconstruction, b) charged particle iden-
202
+ tification (PID), c) the Λ hyperon reconstruction, and d) the Σ0
203
+ hyperon reconstruction.
204
+ 3.1 Time of flight reconstruction
205
+ The interaction of the high intensity proton beam with the
206
+ START detector induced a background and prevented a stable
207
+ operation of the RICH detector. Therefore, it was not possible
208
+ to use the START detector information during this experiment.
209
+ Consequently, the tof of particle tracks were not directly mea-
210
+ sured since there was no common start time (t0) reference for
211
+ tracks in the same event. The start time has to be reconstructed
212
+ in order to obtain a proper time of flight measurement.
213
+ The reconstruction algorithm is based on the assumption
214
+ that at least one particle has been correctly identified. Since pi-
215
+ ons are abundantly produced, it is assumed that any negatively
216
+ charged particle track that is geometrically uncorrelated to a
217
+ ring in the RICH detector is a π−. The common start time for
218
+ each event is calculated by
219
+ t0 = ts − d
220
+ c ×
221
+
222
+ p2 + m2π
223
+ p
224
+ ,
225
+ where ts is the stop time of the π−, d is the distance to the TOF
226
+ or TOFino hit, mπ is the pion mass, p is the momentum of the
227
+ π− and c is the velocity of light. The tof of the other particles
228
+ in the same event is the difference between the measured stop
229
+ time ts and the common start time t0.
230
+ 3.2 Particle identification (PID)
231
+ The reconstruction of the exclusive reaction pp → pK+pπ−γ
232
+ only requires the identification of three particle species, pions
233
+ (π−), kaons (K+) and protons (p), since the event is kinemati-
234
+ cally complete even without measuring the photon (γ).
235
+ As mentioned in the previous section, the π− is identified
236
+ as any negatively charged track that is geometrically uncorre-
237
+ lated to a ring in the RICH detector. Therefore, the problem
238
+ reduces to identifying the positively charged tracks.
239
+ In order to minimize systematic bias in the model output,
240
+ an auto-encoder [23] implemented in PyTorch framework [24]
241
+ is trained simultaneously with both simulated and real events
242
+ [25]. The input features used to train the auto-encoder are the
243
+ momentum components, the energy loss dE/dx in the MDC and
244
+ TOF sub-systems, the reconstructed tof and the distance to the
245
+ TOF/TOFino hit.
246
+ A classification layer has been stacked on top of the
247
+ bottleneck layer of the auto-encoder, which has three output
248
+ nodes corresponding to the three classes (π+, K+ and p). Each
249
+ node outputs a number between 0 and 1, where all output
250
+ numbers sum to 1, so that each number can be interpreted as
251
+ a probability of being a specific particle species. The network
252
+ is trained by minimizing a cost function that is defined as the
253
+ binary cross-entropy loss [26]. Because the network outputs
254
+ three probabilities for each particle track, the node with the
255
+ largest probability is chosen.
256
+ The classification accuracy evaluated on a holdout data-set
257
+ is 92% for pions, 76% for kaons and 98% for protons. It is
258
+ much lower in the case of kaons since their production rate is
259
+ suppressed with respect to the protons and pions.
260
+ 3.3 Λ hyperon reconstruction
261
+ The next step after the PID is to reconstruct the intermediate Λ
262
+ hyperon. In this analysis the Λ reconstruction method is two-
263
+ fold. In the first case, which is referred to as the Spectrometer
264
+ data-set, events with exactly 2 protons, 1 pion and 1 kaon are
265
+ required to be within the main HADES detector acceptance.
266
+ The other case, referred as the WALL data-set, events were ac-
267
+ cepted if exactly 1 proton, 1 pion and 1 kaon are registered in
268
+ HADES and in addition one hit in the FW. In the latter case, it is
269
+ assumed that the hit registered in the FW is due to the daughter
270
+ proton from the Λ decay (marked as pdecay).
271
+ A common primary vertex in each event is then defined as
272
+ the intersection point or the Point of Closest Approach (PCA)
273
+ of the proton and kaon tracks. Since there is more than one pro-
274
+ ton in each event in the Spectrometer data-set, the proton-kaon
275
+ pair with the smaller Distance of Closest Approach (DCA) is
276
+ used to define the primary vertex. To reduce the contribution
277
+ from off-target events, a two dimensional selection is applied
278
+ on the primary vertex position (x, y, z):
279
+ a) -65 < z [mm] < -15 and
280
+ b)
281
+
282
+ x2 + y2 < 5 [mm].
283
+ The Spectrometer data-set
284
+ Since the daughter Λ decays weakly (cτ = 7.89 cm), it can be
285
+ identified by its displaced vertex. First, all possible combina-
286
+ tions of the two p and π− candidates were made, leaving the
287
+ decision about which is the decay proton (Λ → p π−) for later.
288
+ For each combination the decay vertex (the displaced vertex) is
289
+ defined as the PCA between the two tracks. The DCA between
290
+ the p and π− tracks (marked as dpπ−) is expected to be small if
291
+ the tracks stem from the same vertex. Therefore, an upper limit
292
+ of dpπ− < 10 mm is imposed in order to reduce Combinatorial
293
+
294
+ 4
295
+ R. Abou Yassine et al.: Investigation of the Σ0 Production Mechanism in p(3.5 GeV)+p Collisions
296
+ Figure 1: (a) The DCA distribution between the p and π− tracks. (b) The DCA distribution between the Λ track and the primary
297
+ vertex. In both panels, data are shown by the black points, the blue histogram represents the true Λ and the red histogram
298
+ represents the CB, where both the true Λ and the CB were estimated from the simulation. (c) Distribution of the DCA between
299
+ the π− track and the primary vertex as a function of the DCA between the p track and the primary vertex. The arrows indicate
300
+ the accepted regions.
301
+ Background (CB), which originates from combining the wrong
302
+ p and π− pairs. Considering momentum and energy conserva-
303
+ tion, the p should be emitted in nearly the same direction as the
304
+ Λ in the laboratory reference frame, while the π− will have a
305
+ different direction. Thus, the DCA between the p track and the
306
+ primary vertex (dp,pvtx) is required to be smaller than the DCA
307
+ between the π− track and the primary vertex (dπ−,pvtx). Fi-
308
+ nally, the DCA between the calculated Λ track and the primary
309
+ vertex (dΛ,pvtx) is required to be < 6 mm. The distributions
310
+ of the topological variables are shown in Figure 1, where the
311
+ selection criteria are indicated by the vertical dashed lines. The
312
+ proton used in the Λ reconstruction is tagged as the decay pro-
313
+ ton (marked in the following as pdecay), while the other proton
314
+ in the event is tagged as the scattered (primary) proton.
315
+ To further purify the selected Λ sample, the event kinemat-
316
+ ics were constrained to the Σ0 production range. The squared
317
+ pΛ missing mass (MM2(ppdecayπ−)) is required to be > 0.2
318
+ GeV/c2 in order to reject the multi-pion production channel
319
+ as shown in Figure 2. In this figure, the experimental data
320
+ are shown by the black points and the simulations (discussed
321
+ in Section 3.4) by different colored histograms. Two peaks
322
+ are visible, the first peak at 0.02 GeV/c2 corresponds to the
323
+ multi-pion channel via the reaction pp → ppπ+π− (violet
324
+ histogram), where a pπ− pair is incorrectly identified as a Λ
325
+ candidate and the π+ is incorrectly identified as a K+. The
326
+ other broader peak is the sum of pp → pK+Λ, pp → pK+Σ0
327
+ and pp → pK+Λπ0 reactions shown by the red, blue and
328
+ green histograms, respectively. The relative normalizations
329
+ of the simulated channels have been chosen to best fit the
330
+ experimental data as explained in Section 3.4.
331
+ The pdecay π− invariant mass distribution is shown in
332
+ Figure 3. A peak around the nominal Λ mass is visible on
333
+ top of background. The signal has been parameterized by
334
+ a Voigt distribution and the background is modeled by a
335
+ fourth-order polynomial. Events are further processed if they
336
+ are in the range of µ ± 3σ, where the calculated signal to
337
+ background ratio in this range is S/B = 2.57 and the number
338
+ of Λ candidates is NΛ = 6766.
339
+ The WALL data-set
340
+ In the WALL data-set the hit in the FW is assumed to be due
341
+ to the decay proton. Since the FW is installed in a magnetic
342
+ field-free region, the pdecay is reconstructed as a straight line
343
+ trajectory from the primary vertex position to the hit in the FW.
344
+ The track momentum is calculated from the tof and the dis-
345
+ tance from the primary vertex and the FW detector hit, assum-
346
+ ing the proton mass. In this case, the topological cuts are not
347
+ as effective to suppress the background as in the Spectrometer
348
+ data-set. Therefore, events fulfilling the following kinematical
349
+ constraints were selected:
350
+ (i) MM2(ppdecayπ−) > 0.2 GeV/c2 (Figure 4 a) and
351
+ (ii) The squared missing mass of all charged particles is
352
+ required to be in the following range:
353
+ −0.02 < MM2(pK+pdecayπ−)[GeV2/c4] < 0.01
354
+ be-
355
+ cause
356
+ only a photon is missing to completely measure the
357
+ exclusive final state (Figure 4 b).
358
+
359
+ (a)
360
+ (b)
361
+ (c)
362
+ 108
363
+ 108
364
+ 15
365
+ ×103
366
+ L Data
367
+ 4.5
368
+ HADES
369
+ TrueA
370
+ 4
371
+ p(3.5 GeV)+p → pK+z0
372
+ 106
373
+ 106
374
+ CB
375
+ 3.5
376
+ ww
377
+ 0.2
378
+ 3
379
+ 2.5
380
+ 104
381
+ Events
382
+ 2
383
+ 1.5
384
+ 102
385
+ 102
386
+ 1
387
+ 0.5
388
+ 0
389
+ 0
390
+ 50
391
+ 100
392
+ 0
393
+ 20
394
+ 40
395
+ 0
396
+ 5
397
+ 10
398
+ 15
399
+ [mm]
400
+ d(p, pvtx) [mm]R. Abou Yassine et al.: Investigation of the Σ0 Production Mechanism in p(3.5 GeV)+p Collisions
401
+ 5
402
+ Figure 2: The squared ppdecay π− missing mass distribu-
403
+ tion after applying the topological selections. Black points are
404
+ the Spectrometer data-set data. The violet histogram is the
405
+ pp → ppπ+π− simulation. The pp → pK+Λ, pp → pK+Σ0
406
+ and pp → pK+Λπ0 simulations are shown by the red, blue and
407
+ green histograms, respectively. The vertical line and the arrow
408
+ indicate the accepted region for the further analysis.
409
+ The pdecayπ− invariant mass distribution for the WALL
410
+ data-set is shown Figure 5 after applying the selections
411
+ mentioned above. Once again, the peak has been fitted by
412
+ a Voigt distribution and the background by a fourth-order
413
+ polynomial. However, the mass resolution of the Λ peak of
414
+ the Spectrometer data-set(Figure 3) is better than the signal
415
+ of the WALL data-set, since in the latter case the proton was
416
+ detected in the FW, which has a worse momentum resolution.
417
+ Events are further processed if they are in the range of µ ± 3σ,
418
+ where the calculated signal to background ratio in this range is
419
+ S/B = 1.56 and the number of Λ candidates is NΛ = 2340.
420
+ 3.4 Σ0 hyperon reconstruction
421
+ To further suppress the remaining background and to obtain a
422
+ better mass resolution, a kinematic fit based on the Lagrange
423
+ multiplier method is employed [27]. The fit χ2, expressed as
424
+ χ2(η, λ) = (y − η)T V (y)(y − η) + 2λT f(η) ,
425
+ is minimized by differentiating χ2 with respect to all measured
426
+ variables. Here y is a vector containing the initial guesses for
427
+ the measured quantities, which are the track parameters pro-
428
+ vided by the tracking algorithm, η is an improved set of the
429
+ track parameters and V is the covariance matrix comprising
430
+ the estimated errors on the measured quantities. The constraint
431
+ Figure 3: The pdecay π− invariant mass distribution. The verti-
432
+ cal dashed lines indicate the selected mass range. The blue, red
433
+ and green curves are for the signal, background and the total
434
+ fit.
435
+ equations are expressed as a function of η in f(η), where λi are
436
+ a set of Lagrange multipliers.
437
+ The spherical coordinates used in this analysis for the track
438
+ parameterization are defined as follows
439
+ y =
440
+
441
+
442
+ 1/p
443
+ θ
444
+ φ
445
+
446
+ � ,
447
+ where 1/p is the inverse of the absolute momentum, θ and φ
448
+ are the polar and azimthual angles of the track.
449
+ Two constraints were applied to both data-sets. The first is
450
+ the proton and pion from the Λ decay are constrained to the Λ
451
+ mass (MΛ = 1.1157 GeV/c2). The second constraint is that
452
+ the missing mass of all the charged final state particles is con-
453
+ strained to the photon mass (Mγ = 0 GeV/c2).
454
+ The probability that a χ2 of the theoretical distribution is
455
+ greater than or equal to the χ2 value found from the fit is known
456
+ as the p-value (P(χ2)). The p-value distributions of the Spec-
457
+ trometer and the WALL data-sets are shown in Figure 6. Be-
458
+ cause both Λ and Σ0 have MM(pK+Λ) = 0, they have simi-
459
+ lar distributions, which makes these two reactions difficult to
460
+ distinguish. On the other hand, the reaction pp → pK+Λπ0
461
+ should ideally have zero p-value. However, due to the limited
462
+ detector resolution it has p-values greater than zero, which is
463
+ more pronounced in the WALL data-set. The signal events show
464
+ an almost flat distribution between 0 and 1, while events that do
465
+ not satisfy the constraint equations have a prominent yield of
466
+ p-values close to 0. Therefore, events with p-values > 0.01 are
467
+ selected, where the cut was optimized based on a significance
468
+ analysis.
469
+
470
+ X103
471
+ 1.2
472
+ Data
473
+ HADES
474
+ pK+0
475
+ p(3.5 GeV)+p -→ pK+z0
476
+ Pp元+元
477
+ pK+^
478
+ pK+^元°
479
+ 0.8
480
+ 0.01
481
+ 0.6
482
+ Events /
483
+ 0.4
484
+ 0.2
485
+ -0.5
486
+ 0
487
+ 0.5
488
+ MM?
489
+ (pp
490
+ 元)[GeV2/c4]
491
+ decayX103
492
+ 1.
493
+ Mean
494
+ 1.114
495
+ Sigma
496
+ 0.002
497
+ HADES
498
+ 1.2
499
+ S/B
500
+ 2.57
501
+ p(3.5 GeV)+p → pK+≥0
502
+ Na
503
+ 6766
504
+ 2
505
+ / 0.001 GeV/c
506
+ 0.8
507
+ 0.6
508
+ Events /
509
+ 0.4
510
+ 0.2
511
+ 1.09
512
+ 1.1
513
+ 1.11
514
+ 1.12
515
+ 1.13
516
+ 1.14
517
+ 1.15
518
+ M.
519
+ [GeV/c"]
520
+ decay6
521
+ R. Abou Yassine et al.: Investigation of the ��0 Production Mechanism in p(3.5 GeV)+p Collisions
522
+ Figure 4: (a) The squared ppdecay π− missing mass distribution of WALL data-set. (b) The squared ppdecay π− K+ missing mass
523
+ distributions. The pp → ppπ+π−, pp → pK+Λ, pp → pK+Σ0 and pp → pK+Λπ0 simulations are shown by the violet, red,
524
+ blue and green histograms, respectively. The arrows indicate the accepted regions.
525
+ Simulation scaling to the experimental data
526
+ By inspecting the pK+ missing mass distribution of the com-
527
+ bined data-set shown in Figure 7, two peaks corresponding to
528
+ the Λ and the Σ0, as well as other minor contributions in the
529
+ high mass region, are plainly evident. In order to quantify the
530
+ different contributions an incoherent cocktail has been simu-
531
+ lated using the Pluto event generator [28]. All the simulated re-
532
+ actions have been processed using the same full scale analysis
533
+ employed for the experimental data, thus taking into account
534
+ the efficiency of the trigger condition, the tracking algorithm
535
+ and the analysis procedure. The particle decays, the acceptance
536
+ and the particle interactions with the materials of HADES and
537
+ the FW have been considered by using GEANT3 [29].
538
+ To determine the contributions of the different channels, a
539
+ fit of the simulations to the measured missing mass spectrum
540
+ (MM(pK+)) has been carried out by minimizing the quantity
541
+ χ2 =
542
+ nbins
543
+
544
+ i
545
+ (ndata − �
546
+ ch(f ch × nch
547
+ simulation))2
548
+ σ2
549
+ data + σ2
550
+ simulation
551
+ ,
552
+ where the summation runs over the number of bins of the miss-
553
+ ing mass spectrum, ndata is the number of data events in each
554
+ bin, nch
555
+ simulation is the number of simulated events in each bin
556
+ for each channel and fch is a scaling factor for each channel.
557
+ The uncertainty for the data and the simulations in each bin is
558
+ σdata and σsimulation, respectively.
559
+ As can be seen from Figure 7, the experimental data is
560
+ primarily described by contributions of pp → pK+Λ,
561
+ pp → pK+Σ0 and pp → pK+Λπ0 indicated by the red, blue
562
+ and the green histogram, respectively. The other simulated
563
+ channels have minor contributions. In total 2613 Σ0 candidates
564
+ were collected within the pK+ missing mass range of 1.170-
565
+ 1.220 GeV/c2, 58% of them are within the main HADES
566
+ acceptance and 42% within the FW acceptance. The signal
567
+ purity in the mass window calculated from the simulation is
568
+ found to be 81%, where the main background contributions are
569
+ the reactions pp → pK+Λ (14%) and pp → pK+Λπ0 (5%).
570
+ 3.5 Efficiency and acceptance correction
571
+ The reconstructed experimental distributions are corrected for
572
+ the limited detector acceptance and efficiency by using a sim-
573
+ ulated phase space distribution that were assigned a weight de-
574
+ termined by the best partial wave solution (discussed in Sec-
575
+ tion 6), then the events were filtered through the full scale simu-
576
+ lation and analysis. The efficiency correction is done in one di-
577
+ mension whereas the other three degrees of freedom on which
578
+ the efficiency depends are integrated.
579
+ The 1D correction matrix (M) is calculated given the ini-
580
+ tial 4π distribution (T) for each observable and after filtering
581
+
582
+ (a)
583
+ (b)
584
+ X103
585
+ X103
586
+ Data
587
+ 45
588
+ HADES
589
+ pK+0
590
+ 5
591
+ 40
592
+ p(3.5 GeV)+p → pK+≥0
593
+ pp元+元
594
+ 35
595
+ pK+A
596
+ Events / 0.002 GeV2/c4
597
+ pK+A元0
598
+ 4
599
+ 30
600
+ 25
601
+ 3
602
+ 20
603
+ 2
604
+ 15
605
+ 10F
606
+ 5
607
+ 0
608
+ -1
609
+ -0.5
610
+ 0
611
+ 0.5
612
+ -0.1
613
+ -0.05
614
+ 0
615
+ 0.05
616
+ 0.1
617
+ MM2 (pp
618
+ 元) [GeV?/c4]
619
+ MM? (pK*p.,) [GeV2/c*]R. Abou Yassine et al.: Investigation of the Σ0 Production Mechanism in p(3.5 GeV)+p Collisions
620
+ 7
621
+ Figure 5: The pwallπ− invariant mass distribution. The vertical
622
+ dashed lines indicate the selected mass range. The blue, red and
623
+ green curves are for the signal, background and the total fit.
624
+ through the full scale simulation and analysis (R). To put it an-
625
+ other way, a distinct correction matrix M = R/T is constructed
626
+ for each angular distribution shown in Figure 8. The inverse
627
+ of the correction matrix is then calculated using the Singular
628
+ Value Decomposition (SVD) technique [30] implemented in
629
+ RooUnfold framework [31].
630
+ 3.6 Absolute normalization and systematic
631
+ uncertainties
632
+ The production cross section of Σ0 can be calculated by nor-
633
+ malizing the corrected Σ0 yield to the p+p elastic scattering
634
+ yield measured in the same experimental run [32]. This nor-
635
+ malization results in a systematic uncertainty of 7%. In addi-
636
+ tion, there might be other sources of systematic uncertainty.
637
+ The systematic error associated to the exclusive event selection
638
+ has been estimated by varying the selection ranges and recal-
639
+ culating the cross section.
640
+ To test the influence of different selection cuts on the calcu-
641
+ lated cross section (see section 5), the whole analysis chain has
642
+ been repeated many times under different cut combinations.
643
+ Each cut is varied in two steps in either direction. the cross
644
+ section for each combination is then calculated by integrating
645
+ the yield of the cosθ∗
646
+ Σ0 angular distribution. Following this pro-
647
+ cedure the obtained systematic error, defined as the 1σ interval
648
+ of the cross sections distribution, is found to be ≈ 2%.
649
+ Another source of the systematic errors is the PID, which
650
+ is evaluated by activating the dropout layers of the neural net-
651
+ work during the inference time as this is equivalent to doing
652
+ a Bayesian approximation [33]. The estimated size of the PID
653
+ systematic is ≈ 5%.
654
+ Table 1: Coefficients of Legendre polynomials determined by
655
+ fitting the angular distributions presented in Figure 8.
656
+ Angle
657
+ A0 [µb]
658
+ A1 [µb]
659
+ A2 [µb]
660
+ cosθ∗
661
+ Σ0
662
+ 8.55 ± 0.31
663
+ 0.00
664
+ 2.75 ± 0.73
665
+ cosθ∗
666
+ p
667
+ 10.01 ± 0.50
668
+ 0.00
669
+ 4.33 ± 1.27
670
+ cosθ∗
671
+ K+
672
+ 9.83 ± 0.43
673
+ 0.00
674
+ -0.13 ± 1.02
675
+ cosθFRpΣ0
676
+ pb,t,p
677
+ 10.40 ± 0.80
678
+ -0.64 ± 1.73
679
+ 2.79 ± 1.85
680
+ cosθFRK+Σ0
681
+ pb,t,K+
682
+ 8.55 ± 0.71
683
+ -1.61 ± 1.54
684
+ 0.66 ± 1.63
685
+ cosθFRK+p
686
+ pb,t,K+
687
+ 10.30 ± 1.00
688
+ 1.91 ± 1.18
689
+ 0.50 ± 2.69
690
+ cosθFRK+Σ0
691
+ p,Σ0
692
+ 8.70 ± 0.30
693
+ 3.17 ± 0.59
694
+ -0.73 ± 0.75
695
+ cosθFRpΣ0
696
+ p,K+
697
+ 8.75 ± 0.29
698
+ -3.52 ± 0.50
699
+ 0.37 ± 0.67
700
+ cosθFRK+p
701
+ K+,Σ0
702
+ 8.81 ± 0.31
703
+ 4.84 ± 0.56
704
+ -0.98 ± 0.75
705
+ 4 Angular Distributions
706
+ This section presents the differential cross section of the reac-
707
+ tion pp → pK+Σ0, namely the angular distributions of final
708
+ state particles in the center-of-mass (CMS) frame, as well as in
709
+ both the Gottfried-Jackson and helicity frames of all two-body
710
+ subsystems. All distributions are acceptance and efficiency cor-
711
+ rected and then fit with Legendre polynomials dσ/dcosθ =
712
+
713
+ l Al · Pl, with l = 0, 1, 2. The coefficients A1 and A2 are
714
+ used to judge the asymmetries and anisotropies of the observed
715
+ distributions. The best description of the distribution (indicated
716
+ by the blue histogram in Figure 8) was found when the sim-
717
+ ulations have been weighted simultaneously with the angular
718
+ distribution of the Σ0 hyperon in the CMS frame and the pro-
719
+ ton Gottfried-Jackson angular distribution measured in the pΣ0
720
+ rest frame obtained from the data.
721
+ Center of mass frame
722
+ The angular distributions of the three final state particles in the
723
+ CMS are shown in the top row of Figure 8. The Legendre poly-
724
+ nomial coefficients obtained from the fits of the angular distri-
725
+ butions are listed in Table 1. Since the initial p+p is a symmetric
726
+ system, the A1 Legendre parameters of all CMS distributions
727
+ were set to zero. The angular distribution of the Σ0 hyperon
728
+ (Figure 8 (a)) and proton (Figure 8 (b)) shows an anisotropy,
729
+ where it is more pronounced for the proton as quantified by the
730
+ A2 parameter listed in Table 1. From the observed anisotropies
731
+ and the fit parameters one deduces that a non-zero orbital an-
732
+ gular momentum (L) is observed in both the p − K+Σ0 and
733
+ Σ0 − pK+ sub-systems. This is in contrast to the kaons, where
734
+ the angular distribution is compatible with isotropy. For pure
735
+ pion exchange, the final state proton is the leading particle,
736
+ since the exchange pion has a small mass, implying a small
737
+ 4-momentum transfer so that the proton is preferably emitted
738
+ in the direction of the initial protons, which could explain the
739
+ anisotropy in the proton angular distribution. In this picture, the
740
+ Σ0 CMS angular distribution reflects the proton one, while the
741
+ kaon has a broader distribution.
742
+ The angular distributions in the overall CMS are not suited
743
+ to directly draw conclusions on resonant production, which
744
+ proceeds as a two step process pp → pR, R → K+ Σ0, where R
745
+
746
+ Mean
747
+ 1.114
748
+ 600
749
+ Sigma
750
+ 0.005
751
+ HADES
752
+ S/B
753
+ 1.56
754
+ p(3.5 GeV)+p -→ pK+Z0
755
+ NA
756
+ 2340
757
+ 500
758
+ 2
759
+ ieV/
760
+ 5400
761
+ G
762
+ .001
763
+ 0300
764
+ Events
765
+ 2200
766
+ 100
767
+ 1.09
768
+ 1.1
769
+ 1.11
770
+ 1.12
771
+ 1.13
772
+ 1.14
773
+ 1.15
774
+ 1.08
775
+ M.
776
+ [GeV/c']
777
+
778
+ decay8
779
+ R. Abou Yassine et al.: Investigation of the Σ0 Production Mechanism in p(3.5 GeV)+p Collisions
780
+ Figure 6: (a) The p-value distributions for the HADES data-set and for (b) the WALL data-set. The insets display the region
781
+ of small p-values, where the dashed line and the arrow indicates the accepted region. The pp → pK+Λ, pp → pK+Σ0 and
782
+ pp → pK+Λπ0 simulations are shown by the red, blue and green histograms, respectively.
783
+ stands for every kind of nucleon resonance, that can be either
784
+ an isospin 1/2 N∗ state or an isospin 3/2 ∆∗ state. Therefore
785
+ in the following the Gottfreid-Jackson and helicity frames are
786
+ presented as a more natural choice for the Lorentzian reference
787
+ frames in order to study the reaction properties due to resonant
788
+ production.
789
+ Gottfried-Jackson frames
790
+ The Gottfried-Jackson (G-J) frame first introduced in [34] is
791
+ the rest frame of two out of the three produced particles. In the
792
+ G-J frame, the G-J angle is defined as the angle between one
793
+ of the rest frame particles (e.g. the Σ0) and the initial proton
794
+ θRF K+Σ0
795
+ pb,t,Σ0
796
+ , where the label RF stands for reference frame, the
797
+ superscript indicates which rest frame is used and the subscript
798
+ stands for the two particles, between which the angle is mea-
799
+ sured. It should be noted that the two initial protons are indis-
800
+ tinguishable. Therefore, the angular distribution is calculated
801
+ by using the angle to both protons (pb,t).
802
+ In the case of kaon (pion) exchange, the K+p (K+Σ0) rest
803
+ frame is equivalent to the rest frame of the exchanged meson
804
+ and the initial proton. In this way, the initial 2 → 3 reaction is
805
+ reduced to a pure 2 → 2 reaction. If there is a resonant produc-
806
+ tion, the internal angular momentum of the resonance is then
807
+ reflected in this observable. It has to be noted that the distri-
808
+ butions in the G-J frames do not have to be symmetric. The
809
+ reason is the asymmetric reaction system, where either a kaon
810
+ or a pion collides with a proton. The angular distributions in
811
+ the G-J frames are shown in the middle row of Figure 8.
812
+ An anisotropy is observed in the pΣ0 G-J frame (Figure 8
813
+ (d)), which could be due to a relative angular momentum in
814
+ the pΣ0 system. This effect is related to the above mentioned
815
+ anisotropies of the p and Σ0 CMS angular distributions since
816
+ they are kinematically related. The angular distribution in the in
817
+ K+Σ0 G-J frame (Figure 8 (e)) tends to be asymmetric, which
818
+ could be caused by the excitation of nucleon resonances decay-
819
+ ing into the K+Σ0 channel [2]. Many of N∗ or ∆∗ resonances
820
+ could contribute to the reaction. All these resonances have large
821
+ widths and may also contribute through their broad tails to the
822
+ reaction. The angular distribution of a true two-body resonance
823
+ reaction is asymmetric only if resonances with both parities are
824
+ simultaneously excited through interfering amplitudes. Hence,
825
+ this distribution in the K+Σ0 G-J frame indicates that more
826
+ than one nucleon resonance with opposite parity participates in
827
+ the production process [2]. As explained earlier, the K+p rest
828
+ frame is equivalent to the rest frame of the exchanged kaon.
829
+ Therefore, the deviation from isotropy in the cosθFRK+p
830
+ pb,t,K+ an-
831
+ gular distribution could be explained by kaon exchange com-
832
+ ponent [25]. For a pure pion exchange, the Treiman-Yang (T-
833
+ Y) angle measured in the K+Σ0 rest frame is expected to be
834
+ an isotropic distribution [35]. Therefore, if a kaon exchange
835
+ contributes to the production mechanism it should reflect it-
836
+
837
+ (a)
838
+ (b)
839
+ 108
840
+ 103
841
+ Data
842
+ 107
843
+ Spectrometer
844
+ 107
845
+ Wall
846
+ HADES
847
+ TTTT
848
+ data-set
849
+ pp → pK+z0
850
+ data-set
851
+ 103
852
+ pp →pK+△
853
+ 106
854
+ 106
855
+ 102
856
+ Pp →pK+A元°
857
+ 105
858
+ Events
859
+ 10
860
+ 104
861
+ 10
862
+ 10
863
+ E103
864
+ 103
865
+ 0
866
+ 0.005
867
+ 0.01
868
+ 0.015
869
+ 0.02
870
+ 0
871
+ 0.005
872
+ 0.01
873
+ 0.015
874
+ 0.02
875
+ 102
876
+ 102
877
+ 10
878
+ 10
879
+ 1
880
+ 0
881
+ 0.2
882
+ 0.4
883
+ 0.6
884
+ 0.8
885
+ 1
886
+ 0
887
+ 0.2
888
+ 0.4
889
+ 0.6
890
+ 0.8
891
+ P(x2)
892
+ P(×2)R. Abou Yassine et al.: Investigation of the Σ0 Production Mechanism in p(3.5 GeV)+p Collisions
893
+ 9
894
+ Figure 7: The pK+ missing mass distribution. The colored
895
+ histograms represent the simulated channels, where Y∗ refers
896
+ to an excited hyperon (Σ(1385), Λ(1405) or Λ(1520)). The
897
+ two peaks are due to the exclusive reactions pp → pK+Λ and
898
+ pp → pK+Σ0 as shown by the red and the blue histograms,
899
+ respectively. The vertical dashed lines mark the mass window
900
+ used to select candidate events of the pp → pK+Σ0 final state.
901
+ self in this distribution. The Σ0 hyperon T-Y angle measured in
902
+ the K+Σ0 rest frame, shown in Figure 9, shows a clear devia-
903
+ tion from isotropy, which could be an indication of a significant
904
+ kaon exchange contribution to the reaction mechanism.
905
+ Helicity frames
906
+ The helicity angle is defined in a similar way as the G-J angle,
907
+ but instead of calculating the angle of the respective particle
908
+ to the initial proton, the helicity angle is calculated between
909
+ one of the rest frame particles and the third produced parti-
910
+ cle. The helicity angular distribution thus interrelates the kine-
911
+ matics of the three final state particles and it is thus a linear
912
+ transformation projection of the Dalitz plot. A uniformly popu-
913
+ lated Dalitz plot results in isotropic helicity angle distributions.
914
+ On the other hand, if dynamical effects distort the Dalitz plot,
915
+ then the helicity angular distribution will be anisotropic. The
916
+ helicity angular distributions are shown in the bottom row of
917
+ Figure 8. All the distributions are significantly non-isotropic,
918
+ which indicates that the reaction is dominated by intermediate
919
+ resonances. Therefore, an inclusion of intermediate resonances
920
+ is necessary in order to quantitatively describe experimental an-
921
+ gular distributions.
922
+ Comparison to lower energy
923
+ A comparison of the normalized Legendre coefficients between
924
+ this measurement and data collected at a lower value of excess
925
+ energy ϵ = 162 MeV [2] is listed Table 2. The two sets of coeffi-
926
+ cients show striking differences for few coefficients indicating
927
+ that the Σ0 production mechanism changes between these val-
928
+ ues of excess energy. The CMS distributions are more forward-
929
+ backward peaked for the proton and the Σ0 hyperon and less
930
+ peaked for the kaon, pointing to a larger relative contribution
931
+ of pion with respect to kaon exchange at larger energies. In ad-
932
+ dition, the helicity angle distributions have a significant asym-
933
+ metry at the highest energy, in contrast with the lower energy
934
+ results.
935
+ 5 Total Cross Section
936
+ The total production cross section as function of the excess
937
+ energy ϵ is used as a tool to compare the experimental
938
+ data to the different theoretical approaches. The result on
939
+ the pp → pK+Σ0 production cross section, obtained by
940
+ integrating the cosθ∗
941
+ Σ0 angular distribution, is
942
+ σ(pK+Σ0)[µb] = 17.7 ± 1.7(stat) ± 1.6(syst) .
943
+ The cross section value is included in Figure 10, which
944
+ shows a compilation of the pp → pK+Σ0 cross sections as
945
+ a function of the excess energy. The present data point corre-
946
+ sponds to ϵ = 556 MeV, which is depicted by the green square
947
+ and existed in a region where no other measurements have been
948
+ performed. This behaviour can not be described by phase space
949
+ within experimental uncertainty as clearly seen by the solid
950
+ curve σpK+Σ0 = Kϵ2, where the quadratic excess-energy de-
951
+ pendence is attributed to a pure (i.e. trivial) three-body phase
952
+ space and K is the fit free parameter.
953
+ An alternative parametrization proposed by F¨aldt and
954
+ Wilkin in [43] that takes the proton-hyperon FSI interaction
955
+ into account
956
+ σ = C ·
957
+ ϵ2
958
+ (1 +
959
+
960
+ 1 + ϵ/α)2 ,
961
+ where the parameters C = 7.82 × 102µb GeV −2 and α =
962
+ 4.57 × 10−2GeV are related to the FSI strength. Interestingly,
963
+ the deviations to the pure phase space behavior start showing
964
+ up at ϵ > 200 MeV. The displayed data in that region could also
965
+ be approximated by σ ≈ 10 µb.
966
+ A more appropriate paramerization proposed by Tsushima
967
+ in [44] shown by the dotted line is based on a resonance model,
968
+ where the hyperon is produced via an intermediate nucleon res-
969
+ onance N∗ or ∆∗. This paramerization describes all data points
970
+ near threshold up to 1.4 GeV fairly well.
971
+ Using
972
+ the
973
+ pp → pK+Λ
974
+ cross
975
+ section
976
+ measured
977
+ by
978
+ the HADES collaboration [22], the cross section ratio
979
+ σ(pK+Λ)/σ(pK+Σ0) is determined to be 1.90 ± 0.41.
980
+ Based on the coupled channel calculation, where the interfer-
981
+ ence of the pion and kaon exchange is taken in account, the
982
+ cross section ratio can be reproduced by selecting the relative
983
+
984
+ X103
985
+ Data
986
+ 1.2
987
+ pK+0
988
+ HADES
989
+ pK+^
990
+ p(3.5 GeV)+p → pK+0
991
+ pK+E元0
992
+ pK++元
993
+ pK+(Y* → A)
994
+ 0.8
995
+ pK+(Y* → A元°)
996
+ pK+(Y* → +元)
997
+ 50.6
998
+ Simulation Sum
999
+ Events /
1000
+ 0.4
1001
+ 0.2
1002
+ 0.8
1003
+ 0.9
1004
+ 1
1005
+ 1.1
1006
+ 1.2
1007
+ 1.3
1008
+ 1.4
1009
+ 1.5
1010
+ 1.6
1011
+ MM (pK*) [GeV/c?]10
1012
+ R. Abou Yassine et al.: Investigation of the Σ0 Production Mechanism in p(3.5 GeV)+p Collisions
1013
+ Figure 8: The corrected angular distributions in the CMS (top row), Gottfried-Jackson (middle row) and helicity frames (bottom
1014
+ row). The experimental data are shown by the black points, where the error bars are the square root of the quadratic sum of
1015
+ the statistical and systematic uncertainties. The blue histogram represent the weighted pp → pK+Σ0 phase space simulation
1016
+ described in the text and the dotted pink histogram indicates the best partial wave analysis solution (discussed in Section 6).
1017
+ sign for these two mechanism [17]. Figure 11 shows the cross
1018
+ section ratio as a function of the excess energy together with
1019
+ a compilation of other measurements [42]. The solid curve
1020
+ is the ratio of the paramerization of both channels, where
1021
+ the paramerization proposed by F¨aldt and Wilkin [43] based
1022
+ on phase space and FSI is used for pp → pK+Λ and the
1023
+ Tsushima paramerization [44] based on a resonance model is
1024
+ used for the pp → pK+Σ0 channel.
1025
+ The observed cross section ratio in the present p+p data is
1026
+ similar to the corresponding value measured in p+Nb data [7],
1027
+ despite the large difference in the individual cross sections, thus
1028
+ corroborating the importance of FSI for these reactions.
1029
+ 6 Partial Wave Analysis
1030
+ From the results presented above, it was concluded that
1031
+ the experimental data on angular distributions can not be
1032
+ described by pure phase space production, but there must be a
1033
+ resonant component as anticipated in [2]. Therefore, a Partial
1034
+ Wave Analysis (PWA) using the Bonn-Gatchina Partial Wave
1035
+ Analysis (Bo-Ga PWA) framework [45] has been applied
1036
+ with the goal to quantify the relative contributions of different
1037
+ partial waves.
1038
+ The Bo-Ga PWA framework takes a list of possible transi-
1039
+ tion waves as an input that may contribute to the final state. The
1040
+ non-resonant production proceeds as follows: the proton (JP=
1041
+
1042
+ 20
1043
+ C
1044
+ a
1045
+ HADES
1046
+ 15
1047
+ p(3.5 GeV)+p -→ pK+≥0
1048
+ 10F
1049
+ 5
1050
+ -0.5
1051
+ 0.5
1052
+ 1 -1
1053
+ -0.5
1054
+ 0.5
1055
+ 1 -1
1056
+ -0.5
1057
+ 0
1058
+ 0
1059
+ 0.5
1060
+ 0
1061
+ cos Q,.
1062
+ cos Ok+
1063
+ 20
1064
+ (d)
1065
+ (f)
1066
+ (e)
1067
+ 15
1068
+ [ub]
1069
+ 0
1070
+ 5
1071
+ -0.5
1072
+ 0.5
1073
+ 0.5
1074
+ 1 -1
1075
+ 0.5
1076
+ 0
1077
+ -1
1078
+ -0.5
1079
+ 0.5
1080
+ RFpLC
1081
+ COS ORF K*20
1082
+ cos 0'
1083
+ COS
1084
+ Pb.t. K*
1085
+ 20
1086
+ (g)
1087
+ (h)
1088
+ (i)
1089
+ 15
1090
+ 10
1091
+ 5
1092
+ -0.5
1093
+ -0.5
1094
+ 0.5
1095
+ 1-1
1096
+ -0.5
1097
+ 0.5
1098
+ 1-1
1099
+ 0.5
1100
+ 1
1101
+ 0
1102
+ RF Ktp
1103
+ COS ORF K*20
1104
+ p, kt
1105
+ p, oR. Abou Yassine et al.: Investigation of the Σ0 Production Mechanism in p(3.5 GeV)+p Collisions
1106
+ 11
1107
+ Table 2: Comparison of the normalized Legendre coefficients between the present measurement and the data collected by COSY-
1108
+ TOF experiment at ϵ = 162 MeV [2].
1109
+ ϵ = 162 MeV
1110
+ ϵ = 556 MeV
1111
+ A1/A0
1112
+ A2/A0
1113
+ A1/A0
1114
+ A2/A0
1115
+ cosθCMS
1116
+ Σ0
1117
+ 0.0 ± 0.0
1118
+ 0.03 ± 0.24
1119
+ 0.0 ± 0.0
1120
+ 0.32 ± 0.09
1121
+ cosθCMS
1122
+ p
1123
+ 0.0 ± 0.0
1124
+ 0.25 ± 0.29
1125
+ 0.0 ± 0.0
1126
+ 0.43 ± 0.13
1127
+ cosθCMS
1128
+ K+
1129
+ 0.0 ± 0.0
1130
+ 0.48 ± 0.22
1131
+ 0.0 ± 0.0
1132
+ -0.01 ± 0.1
1133
+ cosθFRpΣ0
1134
+ pb,t,p
1135
+ 0.0 ± 0.0
1136
+ 0.11 ± 0.15
1137
+ -0.06 ± 0.17
1138
+ 0.27 ± 0.18
1139
+ cosθFRK+Σ0
1140
+ pb,t,K+
1141
+ -0.04 ± 0.04
1142
+ 0.14 ± 0.18
1143
+ -0.19 ± 0.18
1144
+ 0.08 ± 0.19
1145
+ cosθFRK+p
1146
+ pb,t,K+
1147
+ -0.07 ± 0.07
1148
+ 0.57 ± 0.18
1149
+ 0.19 ± 0.12
1150
+ 0.05 ± 0.26
1151
+ cosθFRK+Σ0
1152
+ p,Σ0
1153
+ 0.27 ± 0.27
1154
+ -0.15 ± 0.15
1155
+ 0.36 ± 0.07
1156
+ -0.08 ± 0.09
1157
+ cosθFRpΣ0
1158
+ p,K+
1159
+ -0.22 ± 0.22
1160
+ 0.0 ± 0.15
1161
+ -0.4 ± 0.06
1162
+ 0.04 ± 0.08
1163
+ cosθFRK+p
1164
+ K+,Σ0
1165
+ -0.11 ± 0.11
1166
+ 0.11 ± 0.18
1167
+ 0.55 ± 0.07
1168
+ -0.11 ± 0.09
1169
+ Figure 9: The Σ0 Treiman-Yang angular distribution measured
1170
+ in the K+Σ0 reference frame. The blue histogram represents
1171
+ the weighted pp → pK+Σ0 phase space simulation and the
1172
+ dotted histogram indicates the best partial wave analysis so-
1173
+ lution (discussed in Section 6).
1174
+ 1
1175
+ 2
1176
+ +) and the hyperon (in this case Σ0 with JP= 1
1177
+ 2
1178
+ +) are com-
1179
+ bined into a two particle sub-system and then the kaon (JP=
1180
+ 0−) is combined with this sub-system to produce the three-
1181
+ body final state. In case of the resonant production, the proton
1182
+ is combined with one of the resonances listed in Table 3 N∗-p,
1183
+ or ∆∗-p to produce the final state pp → pK+Σ0. Resonance
1184
+ masses and widths were fixed to the PDG values [46] in order
1185
+ to reduce the number of the free fit parameters.
1186
+ The strength (α1) and the phase (α2) of each transition
1187
+ wave are determined by fitting the partial wave amplitudes
1188
+ to the experimental data on an event-by-event basis in an
1189
+ Figure 10: Compilation of cross sections of the reaction
1190
+ pp → pK+Σ0 from different experiments: COSY-11 [36, 37,
1191
+ 38, 39, 40, 41], COSY-TOF [2] and data points from Landolt-
1192
+ B¨ornstein (LB) [42]. The production cross section of Σ0 deter-
1193
+ mined here is shown by the green square. The solid curve rep-
1194
+ resents a pure phase space fit, the dotted curve is a parametriza-
1195
+ tion based on the resonance model and the dashed curve is
1196
+ phase space and FSI as described in the text.
1197
+ unbinned fit. The fit is based on a log-likelihood minimization
1198
+ and the fitting procedure is repeated for many iterations until
1199
+ there is no further improvement of the log-likelihood value.
1200
+ By comparing the log-likelihood value of many fits the best fit
1201
+ can be determined through the largest negative value. As an
1202
+ output, the BG-PWA returns the fitted values of the parameters
1203
+ α1 and α2 and a list of simulated events that have been used
1204
+ as an input but with each event being assigned a weight factor,
1205
+ which gives the contribution of this event to the total yield.
1206
+ Since the signal region contains background events (mainly
1207
+ pp → pK+Λ and pp → pK+Λπ0), and because the Bo-Ga
1208
+
1209
+ 103
1210
+ HaDEs
1211
+ p(3.5 GeV)+p → pK+z0
1212
+ 102
1213
+ 10
1214
+ [ub]
1215
+ COSY-11
1216
+ COSY-TOF
1217
+ LB
1218
+ HADES
1219
+ 10-
1220
+ Phase Space
1221
+ - Phase Space + FSi
1222
+ Resonance Model
1223
+ 0.2
1224
+ 0.4
1225
+ 0.6
1226
+ 0.8
1227
+ 1
1228
+ 1.2
1229
+ 1.4
1230
+ E[GeV].25
1231
+ do/Φ [degree]
1232
+ 0.2
1233
+ 0.15
1234
+ 0.
1235
+ 0.05
1236
+ 50
1237
+ 100
1238
+ 150
1239
+ RF K+0
1240
+ [degree]HAPESp(3.5 GeV)+p -→ pK+Z0do/db [ub/degree12
1241
+ R. Abou Yassine et al.: Investigation of the Σ0 Production Mechanism in p(3.5 GeV)+p Collisions
1242
+ Figure 11: Experimental cross section ratio of the present data
1243
+ point together with a compilation of the world data: COSY-
1244
+ 11 [36, 37, 38, 39, 40, 41], COSY-TOF [2] and data points
1245
+ from Landolt-B¨ornstein (LB) [42]. The present data square is
1246
+ shown by the green square. The solid curve is the ratio of the
1247
+ paramerization of both channels [43, 44].
1248
+ Table 3: A list of N∗ and ∆∗ resonances that might contribute
1249
+ to the pp → pK+Σ0 reaction. The mass, width and spin-parity
1250
+ quantum numbers were taken from [46].
1251
+ Resonance
1252
+ Mass
1253
+ [GeV/c2 ]
1254
+ Width
1255
+ [GeV/c2 ]
1256
+ JP
1257
+ N∗(1710)
1258
+ 1.710
1259
+ 0.140
1260
+ 1
1261
+ 2
1262
+ +
1263
+ N∗(1875)
1264
+ 1.875
1265
+ 0.200
1266
+ 3
1267
+ 2
1268
+
1269
+ N∗(1880)
1270
+ 1.880
1271
+ 0.300
1272
+ 1
1273
+ 2
1274
+ +
1275
+ N∗(1895)
1276
+ 1.895
1277
+ 0.120
1278
+ 1
1279
+ 2
1280
+
1281
+ N∗(1900)
1282
+ 1.920
1283
+ 0.200
1284
+ 3
1285
+ 2
1286
+ +
1287
+ ∆∗(1900)
1288
+ 1.860
1289
+ 0.250
1290
+ 1
1291
+ 2
1292
+
1293
+ ∆∗(1910)
1294
+ 1.900
1295
+ 0.300
1296
+ 1
1297
+ 2
1298
+ +
1299
+ ∆∗(1920)
1300
+ 1.920
1301
+ 0.300
1302
+ 3
1303
+ 2
1304
+ +
1305
+ PWA method works on an event-by-event basis, it is important
1306
+ to identify whether a particular event belongs to the signal or
1307
+ the background. The pp → pK+Λ contribution is three times
1308
+ larger than pp → pK+Λπ0 inside the signal region. Therefore,
1309
+ the pp → pK+Λ channel is considered the main contributing
1310
+ background and its kinematics is modeled by performing a
1311
+ PWA on the pp → pK+Λ-like events. The solutions published
1312
+ in [22] have been tested and solution No. 8/1 was found
1313
+ to provide the best description of the experimental data by
1314
+ including the p+p initial waves 2S+1LJ = 1S0, 3P0, 3P1 and
1315
+ 1D2.
1316
+ The solution No. 8/1 is then applied to the Λ 4π-phase
1317
+ space simulations and these events are filtered through the
1318
+ full simulation and analysis chain. After reconstructing the Λ
1319
+ events that have been assigned a PWA weight, the missing mass
1320
+ MM(pK+) spectrum was investigated and the Λ contribution
1321
+ in the signal region 1.170 < MM(pK+)[GeV/c2] < 1.220
1322
+ was determined to be 292 events. Those events are then added
1323
+ to the signal list with a negative weight.
1324
+ After subtracting the Λ contribution, the PWA technique
1325
+ is applied to the pp → pK+Σ0 events. A systematic variation
1326
+ of the input partial waves was performed and, in addition, the
1327
+ number of non-resonant and resonant final partial waves was
1328
+ varied and the quality of the PWA solution was determined by
1329
+ the negative log-likelihood value of the fit.
1330
+ The best PWA solution shown by the dashed histograms in
1331
+ Figures 8 and 9 was obtained by including p+p initial waves
1332
+ 2S+1LJ = 2S0, 3P0, 3P1, 3P2, 1D2 and 3F2. In addition,
1333
+ nucleon resonances N∗(1710), N∗(1900) and ∆∗(1900) were
1334
+ found to contribute as well as non-resonant partial waves.
1335
+ However, due to the limited statistics and the large number
1336
+ of free fit parameters, an unambiguous determination of
1337
+ the contributions of each resonance is not possible since
1338
+ these contributions vary significantly for different solutions.
1339
+ Nevertheless, resonances with masses around 1.710 GeV/c2
1340
+ (N∗(1710)) and 1.900 GeV/c2 (N∗(1900) or ∆∗(1900)) are
1341
+ certainly preferred by the fit.
1342
+ 7 Conclusion and Outlook
1343
+ The exclusive reconstruction of the reaction pp → pK+Σ0 at
1344
+ a beam kinetic energy of 3.5 GeV has been presented and the
1345
+ pp → pK+Σ0 total production cross section was determined
1346
+ with an accuracy better than 10 % in a region where no data
1347
+ existed. The dynamics of the reaction was investigated by
1348
+ studying the angular distributions in the CMS, G-J and helicity
1349
+ frame. The corrected CMS distributions of the hyperon and
1350
+ the proton show anisotropies, which it is more pronounced
1351
+ in the case of the proton. This is the expected behavior if
1352
+ the pion exchange mechanism dominates the particle pro-
1353
+ duction process in a simple one-boson exchange formalism.
1354
+ In addition, an investigation of the Σ0 T-Y angle measured
1355
+ in the K+Σ0 reference frame, deviates from isotropy, which
1356
+ hints to a non-negligible contribution of the of kaon exchange
1357
+ mechanism.
1358
+ The helicity angular distributions are not isotropic,
1359
+ which indicates that a pure phase space description with-
1360
+ out momentum-dependent matrix element(s) is by far not
1361
+ appropriate. The influence of different nucleon resonances
1362
+ has been tested by means of a PWA using the Bo-Ga PWA
1363
+ framework. The best solution was obtained by including the
1364
+ initial p+p configuration 1S0, 3P0, 3P1, 3P2, 1D2 and 3F2.
1365
+ Due to the limited statistics, it was not possible to obtain the
1366
+ exact strength of the individual nucleon resonances. However,
1367
+ nucleon resonances N∗(1710), N∗(1900) and ∆∗(1900) are
1368
+ preferred by the fit.
1369
+ Recently, the HADES setup has been upgraded by an elec-
1370
+ tromagnetic calorimeter (ECAL) and a Forward Detector (FD)
1371
+ based on PANDA experiment straw tubes [47]. The new data
1372
+ that was collected in February 2022 offers the opportunity to
1373
+ perform the same measurement with an upgraded setup at a
1374
+ higher proton beam energy of 4.5 GeV. This upgrade will allow
1375
+ the identification of the daughter photon in Σ0 → Λγ via the
1376
+ ECAL. In addition, it will improve the mass resolution of the
1377
+
1378
+ 102
1379
+ HADES
1380
+ (pK+A)/ (pK+0
1381
+ 10
1382
+ 0
1383
+ COSY-11
1384
+ COSY-TOF
1385
+ + LB
1386
+ HADES
1387
+ 10-1
1388
+ E[GeV]R. Abou Yassine et al.: Investigation of the Σ0 Production Mechanism in p(3.5 GeV)+p Collisions
1389
+ 13
1390
+ Λ hyperon in the FD acceptance and consequently improve the
1391
+ quality of the kinematic refit. Furthermore, the collected data
1392
+ will provide sufficient statistics to extract quantitative contri-
1393
+ butions of the different nucleon resonances and a measurement
1394
+ of their K+Σ0 branching ratios, which will certainly improve
1395
+ the current measurement.
1396
+ 8 Acknowledgment
1397
+ The HADES collaboration gratefully acknowledges the support by
1398
+ SIP JUC Cracow, Cracow (Poland), 2017/26/M/ST2/00600; WUT
1399
+ Warsaw (Poland) No: 2020/38/E/ST2/00019 (NCN), IDUB-POB-
1400
+ FWEiTE-3; TU Darmstadt, Darmstadt (Germany), VH-NG-823,
1401
+ DFG GRK 2128, DFG CRC-TR 211, BMBF:05P18RDFC1, HFHF,
1402
+ ELEMENTS 500/10.006, GSI F&E, EMMI at GSI Darmstadt;
1403
+ Goethe-University,
1404
+ Frankfurt
1405
+ (Germany),
1406
+ BMBF:05P12RFGHJ,
1407
+ GSI F&E, HIC for FAIR (LOEWE), EMMI at GSI Darmstadt;
1408
+ JLU Giessen, Giessen (Germany),BMBF:05P12RGGHM; IJCLab
1409
+ Orsay, Orsay (France), CNRS/IN2P3; NPI CAS, Rez, Rez (Czech
1410
+ Republic), MSMT LTT17003, MSMT LM2018112, MSMT OP VVV
1411
+ CZ.02.1.01/0.0/0.0/18 046/0016066;
1412
+ European
1413
+ Union’s
1414
+ Horizon
1415
+ 2020, no. 824093 (STRONG2020).
1416
+ This project has received funding from the programme ”Netzwerke
1417
+ 2021”, an initiative of the Ministry of Culture and Science of the State
1418
+ of Northrhine Westphalia. The sole responsibility for the content of
1419
+ this publication lies with the authors.
1420
+ The following colleagues from Russian institutes did contribute
1421
+ to the results presented in this publication but are not listed as
1422
+ authors following the decision of the HADES Collaboration Board
1423
+ on March 23, 2022: G. Agakishiev, A. Belyaev, O. Fateev, A.
1424
+ Ierusalimov, V. Ladygin, T. Vasiliev, M. Golubeva, F. Guber, A.
1425
+ Ivashkin, T. Karavicheva, A. Kurepin, A. Reshetin, A. Sadovsky and
1426
+ A.V.Sarantsev.
1427
+ References
1428
+ [1]
1429
+ G. E. Brown et al., Phys. Rev. C 43 (1991), 1881–1892.
1430
+ DOI: 10.1103/PhysRevC.43.1881.
1431
+ [2]
1432
+ M. Abdel-Bary et al., Eur. Phys. J. A 46 (2010), 27–44.
1433
+ DOI: 10.1140/epja/i2010-11023-0.
1434
+ [3]
1435
+ J. Adamczewski-Musch et al., Phys. Rev. C 95 (2017),
1436
+ 015207. DOI: 10.1103/PhysRevC.95.015207.
1437
+ [4]
1438
+ G. Agakishiev et al., Eur. Phys. J. A 50 (2014), 81. DOI:
1439
+ 10.1140/epja/i2014-14081-2.
1440
+ [5]
1441
+ J. T. Balewski et al., Phys. Lett. B 388 (1996), 859–865.
1442
+ DOI: 10.1016/S0370-2693(96)01360-3.
1443
+ [6]
1444
+ R. M¨unzer et al., Phys. Lett. B 785 (2018), 574–580.
1445
+ DOI: 10.1016/j.physletb.2018.08.068.
1446
+ [7]
1447
+ J. Adamczewski-Musch et al., Phys. Lett. B 781 (2018),
1448
+ 735–740. DOI: 10.1016/j.physletb.2018.02.
1449
+ 043.
1450
+ [8]
1451
+ G. F. Chew and F. E. Low, Phys. Rev. 113 (1959), 1640–
1452
+ 1648. DOI: 10.1103/PhysRev.113.1640.
1453
+ [9]
1454
+ J. Sakurai, Nuovo Cim 20 (1961), 1212–1216. DOI:
1455
+ https://doi.org/10.1007/BF02732532.
1456
+ [10]
1457
+ R. Machleidt, K. Holinde, and C. Elster, Phys. Rept. 149
1458
+ (1987), 1–89. DOI: 10.1016/S0370- 1573(87)
1459
+ 80002-9.
1460
+ [11]
1461
+ R. Machleidt, Adv. Nucl. Phys. 19 (1989), 189–376.
1462
+ [12]
1463
+ S. Abd El-Samad et al., Phys. Lett. B 688 (2010), 142–
1464
+ 149. DOI: 10.1016/j.physletb.2010.03.076.
1465
+ [13]
1466
+ A. Sibirtsev et al., Eur. Phys. J. A 27 (2006), 269–285.
1467
+ DOI: 10.1140/epja/i2005-10268-x.
1468
+ [14]
1469
+ A. Budzanowski et al., Phys. Lett. B 687 (2010), 31–35.
1470
+ DOI: 10.1016/j.physletb.2010.02.082.
1471
+ [15]
1472
+ M. R¨oder et al., Eur. Phys. J. A 49 (2013), 157. DOI:
1473
+ 10.1140/epja/i2013-13157-9.
1474
+ [16]
1475
+ S. Abd El-Samad et al., Eur. Phys. J. A 49 (2013), 41.
1476
+ DOI: 10.1140/epja/i2013-13041-8.
1477
+ [17]
1478
+ P. Kowina et al., Eur. Phys. J. A 22 (2004), 293–299.
1479
+ DOI: 10.1140/epja/i2003-10236-6.
1480
+ [18]
1481
+ T. Rozek et al., Phys. Lett. B 643 (2006), 251–256. DOI:
1482
+ 10.1016/j.physletb.2006.07.066.
1483
+ [19]
1484
+ A. Sibirtsev et al., Eur. Phys. J. A 29 (2006), 363–367.
1485
+ [20]
1486
+ J.-J. Xie, H.-X. Chen, and E. Oset, Phys. Rev. C 84
1487
+ (2011), 034004. DOI: 10 . 1103 / PhysRevC . 84 .
1488
+ 034004.
1489
+ [21]
1490
+ G. Agakishiev et al., Eur. Phys. J. A 41 (2009), 243–277.
1491
+ DOI: 10.1140/epja/i2009-10807-5.
1492
+ [22]
1493
+ G. Agakishiev et al., Phys. Lett. B 742 (2015), 242–248.
1494
+ DOI: 10.1016/j.physletb.2015.01.032.
1495
+ [23]
1496
+ C.-Y. Liou et al., Neurocomputing 139 (2014), 84–96.
1497
+ [24]
1498
+ A. Paszke et al., Adv. Neural Inf. Process Syst. 32
1499
+ (2019), 8024–8035.
1500
+ [25]
1501
+ W. Esmail, EPJ Web Conf. 271 (2022), 08013. DOI: 10.
1502
+ 1051/epjconf/202227108013.
1503
+ [26]
1504
+ I. J. Good, J. R. Stat. Soc.: Series B 14 (1952). DOI:
1505
+ https://doi.org/10.1111/j.2517-6161.
1506
+ 1952.tb00104.x.
1507
+ [27]
1508
+ S. Taylor et al., Phys. Rev. C 71 (2005-05). DOI: 10.
1509
+ 1103/PhysRevC.71.054609.
1510
+ [28]
1511
+ I. Fr¨ohlich et al., PoS ACAT (2007), 076. DOI: 10 .
1512
+ 22323/1.050.0076.
1513
+ [29]
1514
+ R. Brun et al., CERN-W5013 (1994). DOI: 10.17181/
1515
+ CERN.MUHF.DMJ1.
1516
+ [30]
1517
+ A. Hocker and V. Kartvelishvili, Nucl. Instrum. Meth.
1518
+ A 372 (1996), 469–481. DOI: 10 . 1016 / 0168 -
1519
+ 9002(95)01478-0.
1520
+ [31]
1521
+ T. Adye, PHYSTAT 2011 (2011), 313–318. DOI: 10.
1522
+ 5170/CERN-2011-006.313.
1523
+ [32]
1524
+ G. Agakishiev et al., Eur. Phys. J. A 48 (2012), 64. DOI:
1525
+ 10.1140/epja/i2012-12064-y.
1526
+ [33]
1527
+ Y. Gal and Z. Ghahramani, ICML2016 48 (2016), 1050–
1528
+ 1059. DOI: https://dl.acm.org/doi/10.
1529
+ 5555/3045390.3045502.
1530
+ [34]
1531
+ K. Gottfried and J. D. Jackson, Nuovo Cim. 33 (1964),
1532
+ 309–330. DOI: 10.1007/BF02750195.
1533
+ [35]
1534
+ E. Ferrari and S. Serio, Phys. Rev. 167 (1968), 1298–
1535
+ 1308. DOI: 10.1103/PhysRev.167.1298.
1536
+ [36]
1537
+ D. Grzonka and K. Kilian, Nucl. Phy. A 626 (1997), 41–
1538
+ 54. DOI: https://doi.org/10.1016/S0375-
1539
+ 9474(97)00519-8.
1540
+ [37]
1541
+ J. Balewski et al., Nucl. Phy. A 626 (1997), 85–92.
1542
+ DOI: https : / / doi . org / 10 . 1016 / S0375 -
1543
+ 9474(97)00524-1.
1544
+ [38]
1545
+ J. Balewski et al., Phys. Lett. B 420 (1998), 211–216.
1546
+ DOI: https : / / doi . org / 10 . 1016 / S0370 -
1547
+ 2693(97)01527-X.
1548
+
1549
+ 14
1550
+ R. Abou Yassine et al.: Investigation of the Σ0 Production Mechanism in p(3.5 GeV)+p Collisions
1551
+ [39]
1552
+ S. Sewerin et al., Phys. Rev. Lett. 83 (1999), 682–685.
1553
+ DOI: 10.1103/PhysRevLett.83.682.
1554
+ [40]
1555
+ S. Abd El-Samad et al., Phys. Lett. B 632 (2006),
1556
+ 27–34. DOI: https://doi.org/10.1016/j.
1557
+ physletb.2005.09.086.
1558
+ [41]
1559
+ Y. Valdau and C. Wilkin, Phys. Lett. B 696 (2011), 23–
1560
+ 25. DOI: 10.1016/j.physletb.2010.11.072.
1561
+ [42]
1562
+ H. Schopper. Landolt-B¨ornstein. New series. Group 1
1563
+ Nuclear and particle physics. Berlin: Springer, 1988.
1564
+ DOI: 10.1007/b35211.
1565
+ [43]
1566
+ G. Faldt and C. Wilkin, Z. Phys. A 357 (1997), 241–243.
1567
+ DOI: 10.1007/s002180050239.
1568
+ [44]
1569
+ K. Tsushima et al., Phys. Rev. C 59 (1999), 369–387.
1570
+ DOI: 10.1103/PhysRevC.59.369.
1571
+ [45]
1572
+ A. V. Sarantsev et al., Eur. Phys. J. A 25 (2005), 441–
1573
+ 453. DOI: 10.1140/epja/i2005-10121-4.
1574
+ [46]
1575
+ M. Tanabashi et al., Phys. Rev. D 98 (2018), 030001.
1576
+ DOI: 10.1103/PhysRevD.98.030001.
1577
+ [47]
1578
+ J. Adamczewski-Musch et al., Eur. Phys. J. A 57 (2021),
1579
+ 138. DOI: 10.1140/epja/s10050-021-00388-
1580
+ w.
1581
+
29FKT4oBgHgl3EQfQS0h/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
29FST4oBgHgl3EQfYTgs/content/tmp_files/2301.13787v1.pdf.txt ADDED
@@ -0,0 +1,1290 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Designing Covalent Organic Framework-based Light-driven Microswimmers
2
+ towards Intraocular Theranostic Applications
3
+
4
+ Varun Sridhar1,+, Erdost Yildiz1,+, Andrés Rodríguez-Camargo,2,3, Xianglong Lyu1, Liang Yao2, Paul
5
+ Wrede1, Amirreza Aghakhani1, Mukrime Birgul Akolpoglu1, Filip Podjaski2,4,5,*, Bettina V.
6
+ Lotsch2,3,5,6,*, Metin Sitti1,7,8,*
7
+
8
+ 1 Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart,
9
+ Germany
10
+ 2 Nanochemistry Department, Max Planck Institute for Solid State Research, 70569 Stuttgart,
11
+ Germany
12
+ 3 Department of Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
13
+ 4 Department of Chemistry, Imperial College London, W12 0BZ London, United Kingdom
14
+ 5 Cluster of Excellence E-conversion, Lichtenbergstrasse 4, 85748 Garching, Germany
15
+ 6 Department of Chemistry, University of Munich (LMU), Munich, Germany
16
+ 7 Institute for Biomedical Engineering, ETH Zurich, 8092 Zurich, Switzerland
17
+ 8 School of Medicine and College of Engineering, Koç University, 34450 Istanbul, Turkey
18
+
19
+ + These authors contributed equally to this article.
20
+ * Correspondence to: sitti@is.mpg.de, f.podjaski@imperial.ac.uk, b.lotsch@fkf.mpg.de
21
+
22
+
23
+
24
+ Abstract
25
+ Even micromachines with tailored functionalities enable targeted therapeutic applications in
26
+ biological environments, their controlled motion in biological media and drug delivery functions
27
+ usually require sophisticated designs and complex propulsion apparatuses for practical
28
+ applications. Covalent organic frameworks (COFs), new chemically versatile and nanoporous
29
+ materials, offer microscale multi-purpose solutions, which are not explored in light-driven
30
+ micromachines. We describe and compare two different types of COFs, uniformly spherical TABP-
31
+ PDA-COF sub-micron particles and texturally highly nanoporous, irregular, micron-sized TpAzo-
32
+ COF particles as light-driven microrobots. They can be used as highly efficient visible-light-driven
33
+ drug carriers in aqueous ionic and cellular media, even in intraocular fluids. Their absorption
34
+ ranging down to red light enables phototaxis even in deeper biological media and the organic
35
+ nature of COFs enables their biocompatibility. The inherently porous structure with ~2.5 nm
36
+ structural pores, and large surface areas allow for targeted and efficient drug loading even for
37
+ insoluble drugs and peptides, which can be released on demand. Also, indocyanine green (ICG)
38
+ dye loading in the pores enables photoacoustic imaging or optical coherence tomography and
39
+ hyperthermia in operando conditions. The real-time visualization of the drug-loaded COF
40
+ microswimmers enables new insights into the function of porous organic micromachines, which
41
+ will be useful to solve various drug delivery problems.
42
+
43
+ Keywords: Covalent organic framework, light-driven, microswimmer, targeted drug delivery,
44
+ optical coherence tomography
45
+
46
+
47
+ Introduction
48
+ Microrobots are tiny machines that are tailored to be controlled externally to perform individual
49
+ tasks. In order to achieve external control as well as multi-purpose functionality, micro/nanobots
50
+ typically require a sophisticated and specifically adapted design enabling targeted control and
51
+ applications. Their primary area of use is the large field of biomedicine.1, 2, 3, 4, 5 The microrobots
52
+ should not elicit any immune response and should be compatible with the cells to enable
53
+ biomedical applications.6, 7 Also, the propulsion method should be as noninvasive as possible,
54
+ and non-toxic, excluding the use of dedicated toxic fuels.8, 9 For an efficient microrobot function,
55
+ motion control is the first requirement, which can become more and more challenging if the
56
+ liquid they are propelled in contains species that hinder propulsion or external control. Wireless
57
+ motion control requires external energy input and is typically realized by magnetic or acoustic
58
+ actuation,10 but can also be realized by ultraviolet (UV) or blue light, even in biological conditions,
59
+ as evidenced very recently.11 However, UV light, which is typically used for light-driven
60
+ microswimmers12, 13 is incompatible with biological tissues. Also, visible light control, usually
61
+ reported with high-intensity blue light,12 limits applications to transparent conditions since tissue
62
+ penetration requires more red light or near-infrared light, which is a significant challenge to the
63
+ field.
64
+ The critical tasks of mobile microrobots are cargo uptake and delivery, often linked to
65
+ biopharmaceutical classes and properties of drugs, after actively navigating to a target diseased
66
+ tissue region.4, 7, 14, 15 Drug uptake and its controlled release were typically realized efficiently by
67
+ encapsulation structures being a separate part of the microrobots; these were then opened in
68
+ the desired conditions or where a release could be triggered otherwise. More recently, inherently
69
+ porous structures, such as metal-organic frameworks16, 17, 18 and porous carbon nitrides were
70
+ used for such applications since their sizeable inner pore volume, reminiscent of a sponge,
71
+ enables high and, even environmentally stable drug loading.11 However, porous particle
72
+ structures with many textural pores of different sizes as part of their inner surface area leave
73
+ challenges for controlled loading and release from their volume.
74
+ As a last critical step to clinical applications, cell viability, the absence of foreign body reactions,
75
+ and tissue biocompatibility are necessary conditions for microrobots to be used in biological
76
+
77
+ contexts, which is not always easy to ensure, with all the desired functions being fulfilled at a
78
+ time.4, 7, 14 For this purpose, typically biocompatible metal coatings, such as gold, titanium, or
79
+ polymers are employed, but also organic-based materials are up-and-coming and were used
80
+ recently without coatings, such as carbon nitrides.11, 17, 19 Compared to inorganic structures,
81
+ organic materials not only offer potential biodegradability but also the high flexibility of chemical
82
+ design of organic materials, especially in terms of surface functionalities and porosity, might
83
+ enable more efficient and targeted biomedical applications, such as drug delivery or
84
+ hyperthermia.20 Even the most sophisticated designs with biocompatible metallic structures fail
85
+ during actuation inside heterogenic biological fluids and specific-targeted drug delivery and
86
+ imaging in live tissues.21, 22, 23 Because of that, new materials and actuation methods should be
87
+ investigated for the basic tasks for the clinical obstacles, such as intraocular motion and drug
88
+ delivery.
89
+ In this work, we introduce covalent organic frameworks (COFs) as a tailorable active component
90
+ to the field of micro- and nanomachines, or more precisely, light-driven microswimmers. These
91
+ highly porous and crystalline materials can fulfill all the requirements listed above since their
92
+ molecular structure, and also their morphology, can be designed and tuned bottom-up while
93
+ enabling targeted properties.20, 24, 25 Simultaneously, they can use visible light for photocatalytic
94
+ reactions with their environment, which can also be used for active particle propulsion.19, 26, 27
95
+ Depending on the propulsion mechanism and particle structure, the propulsion can be self-
96
+ diffusiophoretic or self-electrophoretic, while allowing light-induced directional motion control
97
+ via phototaxis.28 The tailorable properties of the COF building blocks enable tuning of not only
98
+ their absorption wavelength but also pore size and volume, surface polarity, and chemical
99
+ affinity, which enable the loading of large and small molecule cargo based on the specific
100
+ application requirements. Since such organic structures are non-magnetic per se, unless so-called
101
+ Janus or hybrid (encapsulation) structures were to be employed, the use of light is a highly
102
+ promising and convenient method not only to propel them but also to trigger functions within
103
+ them and to image their behavior.29 Thanks to their promising and ion-tolerant visible light-
104
+ driven propulsion properties, we especially focused on their use in ophthalmological
105
+ applications. In addition to their light-driven propulsion, their configurable particle sizes enable
106
+
107
+ them to pass through the fibrillar mesh of vitreous humor (~500 nm pore size).30 For this purpose,
108
+ we selected therapeutic agents and imaging modalities accordingly.
109
+ Here, these possibilities are investigated and exemplified. We study and compare two very
110
+ different modified COFs, namely TAPB-PDA-COF made from the condensation of 1,3,5-tris(4-
111
+ aminophenyl)benzene
112
+ and
113
+ terephthaldehyde,31
114
+ and
115
+ TpAzo-COF
116
+ made
117
+ from
118
+ 1,3,5-
119
+ triformylphloroglucinol and 4,4′-azodianiline,32 as light-driven microswimmer examples, in order
120
+ to explore the microrobotic possibilities for this class of materials and to establish versatile
121
+ applications. We describe their light-controlled propulsion in biological media, their
122
+ biocompatibility, as well as their uptake and release of drugs that can be physisorbed to the pores
123
+ of the material.25, 33 Since these two COFs have distinct structures and morphologies, we derive
124
+ design guidelines for their propulsion and cargo-related functions. For theranostic delivery
125
+ functions of microrobots, we used doxorubicin, insulin, and indocyanine green (ICG), which
126
+ covers the breath of small molecules and peptides used as therapeutic and imaging agents. We
127
+ further image the motion of the COFs in real-time and potential in-vivo conditions using optical
128
+ coherence tomography as well as photoacoustic imaging of COF particle swarms loaded with a
129
+ near-infrared active dye (ICG). The water-soluble or insoluble drugs and the contrast agents can
130
+ be loaded to track their release, allowing for first insights into the action of porous drug carriers
131
+ in real-time clinical imaging modalities. In this way, we designed and investigated in detail the
132
+ first photoactive intraocular drug carriers for various theranostic applications.
133
+
134
+ Results and Discussion
135
+ COF synthesis and characterization
136
+ The COF structures to be used as microswimmers were selected based on their structural and
137
+ optical properties and synthesized akin to a procedure reported earlier.31, 32 In brief, the TAPB-
138
+ PDA-COF nanospheres were obtained by using TAPB (1,3,5-tris(4-aminophenyl)benzene) and
139
+ PDA (terephthaldehyde) as building blocks, with acetonitrile and Sc(Otf)3 as solvent and catalyst,
140
+ respectively (see Materials & Methods section for more details) to yield a two-dimensional (2D),
141
+ imide linked organic network (Fig. 1a). These 2D sheets are stacked on each together forming an
142
+
143
+ ordered 3D structure with hexagonal pore channels of a diameter of approx. 3.4 nm, as reported
144
+ earlier and confirmed for the here modified synthesis by nitrogen sorption, powder XRD, and FT-
145
+ IR analysis (Fig. 1b and Fig. S1).34 The obtained COF submicron particles (henceforth called
146
+ nanoparticles for better discrimination) have an almost perfectly spherical shape (Fig. 1c), which
147
+ is beneficial for propulsion in fluids.35 The synthesis yields a very homogeneous product with a
148
+ Brunauer, Emmett, and Teller (BET) surface area as high as 685 m²/g (Fig. S1c) and a narrow size
149
+ distribution of approx. 452 ± 74 nm (Fig. S2a,b). TEM analysis reveals that these nanoparticles
150
+ consist of agglomerated individual crystallites with sizes between 50 and 100 nm (Fig. S1c).
151
+ The TpAzo-COF presented here for comparison is synthesized by solvothermal condensation
152
+ between 1,3,5-triformylphloroglucinol (Tp) and 4,4´-azodianiline (Azo), forming a tautomeric
153
+ ketoenamine COF (Fig. 1d). A highly crystalline product with a 2D molecular structure is obtained
154
+ (see Fig. S3 for structural analysis), with slightly smaller structural pores of 2.6 nm and a similar
155
+ BET surface area of 635 m²/g (Fig. 1e). In contrast to the first COF, the particle morphology is
156
+ much less defined, leaving open large textural voids reminiscent of a sponge (Fig. 1f and Fig. S4).
157
+ The overall particle sizes are broadly distributed (7 ± 18 µm), hence being much larger. The
158
+ primary crystallites forming the COF particle are only 20 nm (Fig. S4d), and the TpAzo-COF
159
+ particles appear to be agglomerates of those.
160
+ Light-induced swimming in aqueous media
161
+ To enable light-triggered propulsion, we first investigate the light absorption properties. UV-Vis
162
+ spectroscopy and Kubelka-Munck analysis show that TAPB-PDA-COF and TpAzo-COF have an
163
+ optical band gap of 464 nm (Fig. 2a) and 616 nm (Fig. 2f), respectively with a small absorption
164
+ tail commonly arising from defect states. Hence, visible light propulsion can be extended up to a
165
+ wavelength of ~470 nm (blue light) for the small TABP-PDA particles, and to green or even red
166
+ parts of the spectrum for the large TpAzo-COF. Their light-induced propulsion was studied under
167
+ a microscope in a microfluidic chamber under ambient conditions to test the phototaxis
168
+ capabilities while diluting them to 100 µg/ml. First, we focus on propulsion in distilled water.
169
+ While in the dark, COF particles show only local Brownian motion with a mean displacement
170
+ speed of 4.5 µm/s for the TAPB-PDA and 3.7 µm/s for the TpAzo-COF, respectively (Fig. 2b,g,
171
+ dashed line). When light from the photodiode is focused on the microswimmers through the
172
+
173
+ microscope, their propulsion speed is significantly enhanced and becomes ballistic, as seen in
174
+ Video S1. The particles move towards the center of the light, then upwards. This way, the light-
175
+ driven collective assembly or trapping of the microswimmers is made possible. UV excitation at
176
+ 385 nm propels the TABP-PDA-COF with 13.2 ± 2.4 µm/s, while 470 nm blue light gives an even
177
+ increased speed of 16.4 ± 3.1 µm/s (~36 bodylengths/s (BLPS)). At 510 nm illumination, no light-
178
+ enhanced swimming was observed, consistent with the absorption spectrum (Fig. 2b). The Tp-
179
+ Azo-COF is propelled with 4.9 ± 1.2, 12.1 ± 2.1 (~2 BLPS), 8.2 ± 1.7, and 4.2 ± 1.2 µm/s at 385,
180
+ 470, 560 nm, and 630 nm, respectively (Fig. 2g). UV and red light hence do not increase
181
+ propulsion significantly below Brownian motion and the absolute propulsion speed is lower, but
182
+ it can be triggered even by yellow light (560 nm).
183
+ Ion tolerance for light-driven microswimmers and phototaxis behavior
184
+ Ionic conditions represent a major challenge for light-driven microswimmers.36, 37, 38 The
185
+ presence of pores, both structural and textural (=morphological), was suggested previously to
186
+ enable the propulsion of microswimmers in ionic environments, which includes most of the
187
+ biological fluids and cell culture media.11 To confirm this and to widen the insights from different
188
+ and better controlled structural features present in our model COFs, we first tested them in
189
+ increasing concentrations of salt (NaCl), see Fig. 2c,h.
190
+ When propelled at 470 nm, the TABP-PDA-COF does not decrease the speed compared to
191
+ distilled water up to concentrations as large as 1000 mM. Therefore, the ionic concentration in
192
+ the media at which the microswimmers’ speed is halved (EI50) cannot be attributed.39 Also, we
193
+ observe a slightly increasing propulsion speed between 0.5 and 10 mM, with a maximum value
194
+ of 25.2 ± 3.7 µm/s (54% increase vs. distilled water, 0 mM) at 1 mM NaCl (Fig. 2c). An explanation
195
+ for this non-linear behavior remains to be found. Ionic interactions can be influencing the
196
+ Helmholtz and Debye layers, as well as the materials' inner space charge layer. As such, light-
197
+ induced charge carrier stability or recombination will also be affected. On the other hand, the
198
+ chlorine evolution reaction due to dissolved NaCl may another photocatalytic pathway possibly
199
+ increasing the reaction rate, and thereby the propulsion speed.11, 40, 41, 42 These factors currently
200
+ cannot be studied or disentangled on such size and complex reaction interface. However, their
201
+
202
+ propulsion speed even surpasses our previously reported PHI microswimmers, the only reported
203
+ system with comparable ionic tolerance.11
204
+ Similarly, for the TpAzo-COFs, an increased propulsion speed compared to pure water is observed
205
+ in all ionic conditions (1-1000 mM) at 560 nm illumination, peaking at 1 mM (14.7 ± 2.7 µm/s,
206
+ 79% increase vs. distilled water) and followed by a 28% relative decay to 10.5 µm/s at 1000 mM.
207
+ When increasing the wavelength, no active propulsion is observed for TABP-PDA-COF (Fig. 2b),
208
+ but the Tp-AZO-COF exhibits slightly enhanced propulsion even at 630 nm (4.2 µm/s) (Fig. 2g).
209
+ Next, three standard biological media are studied, namely, Dulbecco’s phosphate-buffered saline
210
+ (dPBS), minimum essential medium (MEM), and MEM plus fetal bovine serum (FBS) (Fig. 2d,i),
211
+ which slightly differ in their components: dPBS contains NaCl, KCl, Na2HPO4, and KH2PO4 at ca. 10
212
+ g/L (~150 mM) in total; MEM contains the same components as dPBS and additional two amino
213
+ acids, vitamins, and glucose, some of which can be redox-active agents that help extract not only
214
+ electrons but especially holes from the microswimmers under illumination to power them.11, 43
215
+ FBS, slightly more viscous, adds nutrients for cell growth and imitates the conditions found within
216
+ the body.11 At 470 nm illumination, the mean speeds of the TAPB-PDA-COF microswimmers in
217
+ dPBS, MEM, and MEM + FBS are 20.4 ± 4.5 µm/s, 20.9 ± 2.8µm/s and 17.6 ± 3.3 µm/s,
218
+ respectively. These speeds are again higher than in distilled water (16.4 ± 3.1 µs/s). The slight
219
+ decrease upon FBS addition can be attributed to the increasing viscosity or other surface
220
+ interactions with the proteins present in the FBS.
221
+ Very similar behavior is observed with the TpAzo-COF at 560 nm, where the swimming speeds
222
+ are equivalent to the maximum value in 1mM NaCl, or even slightly higher (13.8 ± 3.4 µm/s, 16.2±
223
+ 3.4 µm/s, 14.7 ± 3.6 µm/s, and 11.8 ± 2.2 µm/s in dPBS, MEM (with and without glucose), and
224
+ MEM + FBS). A difference however is observed when glucose, a well-oxidizable fuel,11, 43 is absent
225
+ – the speed is reduced. Its vital role as fuel for propulsion is clearly visible when illuminating
226
+ TpAzo at 630 nm in MEM that contains glucose, where efficient propulsion, independent of FBS,
227
+ is observed (10 ± 2.7 µm/s and 7.4 ± 1.8 µm/s respectively). This purely red light-induced
228
+ photocatalytic motion in the presence of high ion concentrations and without using potent and
229
+ toxic fuels is unprecedented.29, 44 However, the still efficient propulsion at 560 nm without
230
+
231
+ glucose in MEM confirms that the other ingredients (including dissolved oxygen11, 19) may also
232
+ assist motion induced by photocatalysis, or at least do not hamper it. These experiments not only
233
+ show the superiority in performance over current inorganic microswimmers in high-salinity
234
+ media but also highlight how crucial facile redox species are that can act as fuel for propulsion,
235
+ akin to photocatalysis in general, and especially if sub-band gap trap states might be partially
236
+ involved (630 nm illumination).43, 45, 46 Such a substantial shift toward the red part of the spectrum
237
+ that can penetrate deeper tissues makes organic and small band gap microswimmers (especially
238
+ with trap states in the gap) attractive for micromachines not just in-vitro, but even for in-vivo
239
+ conditions.
240
+ Light-driven directional propulsion control
241
+ Phototaxis is the property by which microswimmers swim towards or away from the direction of
242
+ incident light (i.e., positive or negative phototaxis), which often depends on their surface
243
+ charge.47, 48 It enables direction control, opposite to random ballistic displacement usually
244
+ observed with Janus particles.11, 49 When the COF microswimmers were illuminated by a directed
245
+ light source from the side with a 45° angle, both TABP-PDA-COF and TpAzo-COF microswimmers
246
+ exhibit positive phototaxis, and swim toward the light that can propel them (Fig. 2 e, j, and video
247
+ S2). TABP-PDA-COF and TpAzo-COF particles move with mean speeds of 13.3 ± 1.8 µm/s and 7.6
248
+ ± 0.8 µm/s, at 470 nm and 630 nm illumination in water and MEM, respectively. This apparent
249
+ increase in the particle speed compared to vertical illumination could be attributed to the larger
250
+ parallel component of the light direction to the propulsion direction when the samples were
251
+ illuminated from the side. When the samples are illuminated from the bottom, only the side-
252
+ wise motion component is measured as a common standard, artificially decreasing the actual
253
+ velocity.50, 51 Similar findings have been found on carbon nitride microswimmers, which were
254
+ discussed in more detail in our previous study.11 The required symmetry breaking is created by
255
+ the side-wise illumination and, thereby, an artificially created Janus structure results from the
256
+ self-shadowing of the microswimmers.13, 47
257
+ Biocompatibility of COFs
258
+ In order to be used in potential biomedical applications and to ascertain biocompatibility,
259
+ microswimmers should have no significant cytotoxicity. Hence, we tested the cytotoxicity of the
260
+
261
+ microswimmers with human umbilical vein endothelial cells (HUVEC) in dMEM with FBS.
262
+ Different concentrations of TAPB-PDA-COF and TpAzo-COF microswimmers (3.1-25 µg/ml) were
263
+ incubated with HUVECs in the dark, and their viability was investigated with calcein-based
264
+ live/dead fluorescence staining of the cells after 24 hours. The cells with TABP-PDA COF were
265
+ completely viable, and they did not show any significant decrease in viability even at high
266
+ concentrations, both with illumination and without illumination at 470 nm with maximum light
267
+ intensity, 10 mW/cm2, for 30 minutes), as seen in Fig. 3 a, which is visible also in live cell
268
+ fluorescent images in Fig. 3 b. TpAzo-COF (Fig. 3 c,d) shows lower cell viability in comparison with
269
+ TAPB-PDA-COF, with 93% and 75% HUVEC cell viability in 25 µg/ml concentration (in dark and
270
+ with 630 nm illumination (10 mW/cm2), respectively). Also, at concentrations of 3.1 µg/ml, the
271
+ viability is decreased to 88% in comparison to the TABP-PDA COF. However, this fairly good
272
+ viability indicates that also the TpAZo COF can be used at lower concentrations for drug delivery
273
+ applications. Generally, illumination seems not to affect the viability at low concentrations (3.1
274
+ and 6.25 µg/ml), and only slightly at 12.5 and 25 µg/ml for both COFs. These results also suggest
275
+ that light-induced propulsion induces only minimal cytotoxicity in the range of light-driven
276
+ propulsion periods. Compared to carbon nitride microswimmers, which have a larger band gap
277
+ (2.5 eV, 450 nm) and a very low-lying valance band, and therefore enable more redox reactions
278
+ with organic matter, including cells in principle, the use of 470 nm or 630 nm light with our TABP-
279
+ PDA COFs and TpAzo COFs shows potential for reduced cell death [with 97% and 88% cell viability
280
+ after 30 minutes of light in 3.1 µg/ml concentrations of TAPB-PDA-COFs and TpAzo-COFs,
281
+ respectively] and makes especially the TABP-PDA COFs more applicable to practical applications
282
+ such as drug delivery.11 A previous study with primary cells from mouse splenocytes further
283
+ confirmed no detectable level of IL-12 (a pro-inflammatory cytokine) in the untreated samples in
284
+ concentrations used above in the dark.52
285
+ Drug loading, drug delivery, and hyperthermia
286
+ To explore the COF microswimmer’s applicability to biological environments, we also studied
287
+ their potential as drug carriers with different pharmacological agents. The differently
288
+ pronounced textural and structural porosity of the TABP-PDA and TpAzo-COFs (see Fig. 1 and Fig.
289
+ S1-S4), which enables ionic tolerance (Fig. 2c,h), is not only beneficial for motion but also as space
290
+
291
+ to take up, transport and deliver therapeutic drugs. We studied and compared how the structural
292
+ features enable interactions with such cargo in the following experiments. For this reason, we
293
+ chose an imaging agent, indocyanine green (ICG), and two different pharmacological agents with
294
+ different Biopharmaceutics Classification System (BCS) classes: doxorubicin (DOX) (Class III) and
295
+ insulin (Class I).53 Also both pharmacological agents are currently used to treat common ocular
296
+ disorders.54
297
+ First, we tested the loading of DOX, a chemotherapeutic agent against various cancer types,
298
+ including retinoblastoma.55 200 µg of DOX was added to a suspension of 100 µg of COF
299
+ microswimmers dispersed in 1 mL MEM, resulting in 138 µg DOX encapsulated (loading efficiency
300
+ of 138%) on the TABP-PDA-COF microswimmers after 24 hours, and 75% for TpAzo-COF. Due to
301
+ the small molecular size of DOX (~1.1 nm approximate molecular diameter), the molecule should
302
+ fit into the structural pores of both COF structures (3.4 nm and 2.5 nm), while adsorbing also on
303
+ the inner textural surface. The overall negative surface charge on both COF microswimmers
304
+ attracts the positively charged DOX molecules in physiological pH values and gives rise to stable
305
+ loading. Since the overall surface areas are similar within 10%, it appears that differences in
306
+ polarity or hydrogen bonding, possibly mediated by the carbonyl groups of TpAzo-COF, enable
307
+ electrostatic repulsions with the DOX molecules and interfere with DOX uptake in TpAzo-COF
308
+ structures, which is also correlated with the zeta potential measurements. While the positive
309
+ zeta potential of the TABP-PDA-COF (ζTABP-PDA-COF = 12.13 ± 1.28 mV) reduces agglomeration and
310
+ enables sufficient drug loading values, the negative zeta potential of the TpAzo-COF (ζTpAzo-COF = -
311
+ 19.67 ± 0.68 mV) leads to agglomerations and reduces drug loading due to electrostatic
312
+ repulsions.56 In addition, a lower crystallinity and thereby, possibly decreased accessible pore
313
+ volume of TpAzo-COF are expected to lead to reduced DOX uptake. Overall, the DOX uptake of
314
+ both COF materials is among the highest reported, relative to other artificial structures using
315
+ physical encapsulation.11, 57
316
+ The DOX release can be achieved by changing the pH to slightly more acidic conditions, i.e., from
317
+ pH = 7.2 to 5.5 (Fig. 3 e, g), which is achieved by adding HCl to PBS. The TABP-PDA microswimmers
318
+ release 95 µg of DOX within 60 minutes, which is significantly boosted compared to the weak,
319
+ passive release also observed (12 µg). The passive release is commonly observed when drugs
320
+
321
+ such as DOX are not entirely trapped or encapsulated within porous structures but physisorbed
322
+ to the surface. Encapsulation within the TpAzo-COF, with a more open texture, appears more
323
+ stable, as evidenced by the lower passive release at pH 7.2 (5 µg in 60 minutes). In line, a
324
+ reduction of pH to 5 only releases 7% in 60 min, whereas a pH 3.5 yields 25% and is more
325
+ reasonable as a release trigger. The acid-triggered DOX release in the TABP-PDA-COF and TpAzo-
326
+ COF microswimmers can be seen in fluorescence imaging in Figure 3f,h, respectively. The
327
+ enhanced drug delivery of microswimmers at lower pH has the potential to enable the targeted
328
+ therapy in tumor or infection environments, which typically have acidic pHs.58, 59
329
+ We also studied the loading and release of peptide (insulin), a frequently used drug in diabetic
330
+ retinopathy and convenient for light-controlled drug release applications.60, 61 Its larger molecular
331
+ size of ~3 nm makes larger pore sizes on the COFs desirable to allow for an efficiently
332
+ encapsulated loading. Indeed, insulin loading was observed on both COFS, 60% for TABP-PDA-
333
+ COF (3.5 nm pore size] and 40% for TpAzo-COF (2.5 nm pore size) (Fig. 3i,k), which suggests that
334
+ physisorption of the drugs occurs on the outer surface of the textural pores and that the
335
+ structural pores can assist stable uptake.
336
+ Similar to DOX release from the COF structures, changing pH enables insulin release from both
337
+ COFs. While the TABP-PDA-COF shows a continuously increasing cumulative release of
338
+ approximately 35 µg/ml within 60 min at pH 5 already, which may be desirable for slower dosing,
339
+ the TpAzo-COF releases its cargo rather instantly (within 10 min), and at lower amounts (~10
340
+ µg/ml in more acidic pH 3.3 again). With both drugs, no visible light-triggered release was
341
+ observed, opposite to the carbon nitride systems reported earlier with DOX. However, as seen
342
+ herein, the absence of such a property can be very beneficial since it enables the decoupling of
343
+ motion control and drug release, which would otherwise have to co-occur.11
344
+ As a third theranostic agent to load onto COFs, we used ICG dye, commonly used in diagnosing
345
+ retinal diseases.62 Firstly, we investigated ICG loading and near-infrared laser-induced
346
+ hyperthermia capabilities; then, we focused on medical imaging of ICG-loaded COF
347
+ microswimmers with photoacoustic imaging and optical coherence tomography. As is the case
348
+ with drug delivery, TABP-PDA-COF has a pore size larger than the size of the ICG (~2.9 nm
349
+ molecular diameter on its longest axis); hence, the drug is presumably loaded better into the
350
+
351
+ structural pores of the TABP-PDA COF (3.5 nm), while in the case of TpAzo-COF, it appears to
352
+ dominantly bond to the bigger, textural pores (Fig. 4a). After ICG was loaded onto the both,
353
+ TpAzo-COF and TAPB-PDA-COF microswimmers at two different loading levels (50% and 100%,
354
+ w/w), they were irradiated with a near-infrared (NIR) laser at 808 nm.63 ICG-loaded TABP-PDA-
355
+ COFs achieved quick heating to 66 oC and 69 oC after only 3 minutes of 808 nm NIR irradiation for
356
+ 50% and 100% loading, respectively. Compared to TABP-PDA-COFs, ICG-loaded TpAzo-COFs
357
+ heated up to 42 oC and 45 oC for 50% and 100% loading under the same NIR illumination
358
+ conditions (Fig 4 b, c). Heat generation and accumulation are always affected by heat transport
359
+ to the environment. Assuming similar absorption and hence heat generation at the same
360
+ loadings, these findings indicate that indeed, ICG transfers the heat slightly better by binding to
361
+ TABP-PDA COF, and that the TpAzo COF dissipates accumulated heat faster to the environment
362
+ due to its more open shape, and thereby reaches lower temperatures over extended times. In
363
+ both cases, this NIR-controlled hyperthermia behavior of both COFs could be helpful for novel
364
+ intraocular photodynamic therapy application, which is already in the clinical trial phase for ICG
365
+ dye.64 Compared to other novel intraocular photothermal therapy agents in the recent literature,
366
+ especially TABP-PDA-COFs with pores enabling ICG uptake into the material’s structural pores
367
+ and intense heating from 25 oC to 69 oC in 3 minutes, shows significant potential for the
368
+ photodynamic combined therapy applications that are used to degrade cells by heat
369
+ generation.65, 66
370
+ Photoacoustic imaging and optical coherence tomography
371
+ Imaging microswimmers as they move in different fluids is one of the most critical enablers for
372
+ their potential in vivo applications.67 For this purpose, we selected to study two clinical imaging
373
+ methods: optical coherence tomography (OCT) and photoacoustic (PA) imaging. OCT is the gold
374
+ standard high-resolution clinical imaging method to observe intraocular structures and is
375
+ accessible in most ophthalmology clinics worldwide.68 PA is an emerging imaging technique that
376
+ combines the resolution of optical imaging with the depth of penetration of ultrasound imaging.
377
+ In recent years, PA has been used in ophthalmology as it shows significant advantages in imaging
378
+ deep ocular structures, such as lymphatic drainage and choroidal vasculature.69, 70 While in the
379
+ PA imaging method ICG was used as a contrast agent to enhance the visualization of COF
380
+
381
+ microswimmers in the complex environment of intraocular fluids, COFs were imaged in
382
+ intraocular structures and ocular fluids without any contrast agent during OCT imaging. Different
383
+ concentrations of ICG are loaded onto the COF microswimmers and imaged under photoacoustic
384
+ imaging (Fig. 4d,e). While TAPB-PDA-COFs achieve up to 500 mean pixel intensity (MPI) at 815
385
+ nm, which is the highest peak in the emission spectrum of ICG, TpAzo-COFs achieve 250 MPI
386
+ under the same imaging conditions. These signal intensity increases correlate with the
387
+ concentration of the ICG in the COF loading suspension and also the drug uptake ability of both
388
+ COFs, which correlate with other drug loading experiments. Imaging uptake and delivery of
389
+ therapeutic agents on microswimmers will be helpful in the targeted in vivo drug delivery
390
+ experiments.71
391
+ As a next step, the light-driven propulsion of the COF microswimmers in intraocular fluids was
392
+ observed using PA imaging. In both vitreous and aqueous fluids, COFs were illuminated in the
393
+ same fashion as in the light-induced swimming experiments in various media and then observed
394
+ with photoacoustic imaging for 30 minutes (Fig. 5a-c). Except for TpAzo-COF in vitreous humor
395
+ under 630 nm light illumination, an increased ICG emission signal was observed in the focus areas
396
+ for all experimental groups. These results indicate that the light-driven collective motion of both
397
+ COF microswimmer types could be trackable under PA imaging.
398
+ For clinical applicability, we observed and measured the light-driven swimming of COF
399
+ microswimmers in intraocular fluids under real-time OCT. While the mean speeds of the smaller
400
+ and spherical TAPB-PDA-COFs were 12.1 ± 1.7 µm/s in aqueous humor and 7.6 ± 0.8 µm/s (~16.8
401
+ BLPS) in the vitreous humor, mean speeds of TpAzo-COFs were slightly increased to 14.2 ± 1.5
402
+ µm/s in aqueous humor and 8.8 ± 1.0 µm/s (~1.25 BLPS) in the vitreous humor under 470 nm
403
+ light illumination (Fig. 5d and Video S3). Compared to the previous intraocular microrobotic
404
+ studies employing magnetic actuation of helical microswimmers, the speed of the
405
+ microswimmers in terms of BLPS was significantly higher, ~16.8 BLPS in the current study vs. ~5.3
406
+ BLPS for the fastest magnetic intraocular microswimmers previously.23 Light-driven accumulation
407
+ behavior of both COF microswimmer types in the focus of the light was trackable under real-time
408
+ OCT imaging without any contrast agent loading (Fig. 5e and Video S4). Additionally, their light-
409
+ driven propulsion in 470 nm wavelength light was also trackable even inside an ex vivo porcine
410
+
411
+ eye with anterior segment OCT imaging (Video S5). The COF-based microswimmers are the first
412
+ intraocular microswimmers that can swim and be trackable inside the eye without any contrast
413
+ agent or surface modification. TpAzo-COFs were actuated faster, opposite to the previous
414
+ experiments, which highlights that a perfectly spherical shape of TAPB-PDA-COFs alone is not of
415
+ dominating benefit for mesh-like heterogeneous structures. Although the reasons for this
416
+ inverted swimming speed remain to be clarified and likely depend on photocatalytic reaction
417
+ rates in the respective environment, it is possibly also linked to the increased viscosity and
418
+ fibrillary mesh structures in the aqueous and vitreous humor that overall decrease the propulsion
419
+ speed of both COF microswimmer types compared with previous aqueous conditions.30 These
420
+ results show that both COF microswimmer types are suitable microrobotic drug delivery agents
421
+ under both PA and OCT imaging, while enabling actual biomedical applications inside body fluids,
422
+ especially for intraocular structures. With the help of their promising drug delivery and NIR-
423
+ based hyperthermia abilities, they could solve the active retinal drug delivery problems in various
424
+ ocular disorders.54 They could be easily loaded with DOX for chemotherapy without adverse
425
+ effects on retinoblastoma patients or with insulin to treat increased ocular pressure.72, 73 COF-
426
+ based microswimmers can easily be controllable with visible light, instead of other passive
427
+ nanomedicine agents in ophthalmology clinics and they do not require complex and unalterable
428
+ magnetic coil setups with narrow working spaces.21, 23
429
+
430
+ Conclusion and Outlook
431
+ In this manuscript, we have studied two structurally and texturally distinct COF microswimmer
432
+ types with tunable nanopore sizes towards their potential intraocular medical applications as
433
+ multifunctional microswimmers. This comparison of COFs from two different families with
434
+ distinct morphologies and drug loading capabilities yielded promising results in terms of
435
+ biocompatibility, imaging, drug delivery, and visible light-induced propulsion in ionic and
436
+ biological media, surpassing the applicability of current magnetically actuated microswimmer-
437
+ based systems – without a need of further structural modification or sophisticated structural
438
+ engineering. Simultaneously, the COF microswimmers can be propelled by visible and even red
439
+
440
+ light in ionic and biological conditions (Fig. 2). Although some medium-dependent propulsion
441
+ trends at low salt concentrations remain to be clarified, their porous structure, coupled with
442
+ photocatalytic activity, seems key to efficient photocatalytic motion without dedicated toxic fuels
443
+ or harm to the tissue. A compact spherical shape, as achieved by the size-modified synthesis of
444
+ the TABP-PDA COFs, appears beneficial for fast propulsion, enabling bubble-free motion at 36
445
+ BLPS while opening up possibilities for mobility in the intraocular region. On the other hand, large
446
+ and texturally more porous structures, as observed for the TpAZo-COF, enable similar absolute
447
+ propulsion speeds in ionic conditions, albeit at a much-reduced speed relative to their size (~2
448
+ BLPS). The explanation for this behavior remains to be found and rationalized by numerical
449
+ models, especially since simple fluid dynamics and the applicability of Reynolds numbers, which
450
+ do not include inner flow, are not suited for these systems.74 Both microswimmers allow for
451
+ precise motion control as single particles by their phototactic properties, enabling complex
452
+ curvilinear navigation around obstacles in principle and collective motion for particle (re-
453
+ )assembly (Fig. 2).11, 19, 75 We show that large structural and textural pores enable the loading of
454
+ different drugs and dyes (e.g., insulin, ICG, and DOX) but that the pore size itself only plays a
455
+ partial role in (stable) uptake, since textural surface area also contributes to drug binding, as
456
+ clearly visible by the different uptake properties of the small drug DOX (Fig. 3), whereas larger
457
+ molecules, such as insulin or ICG, can stay more stably bound, even in lower loading amounts
458
+ (Fig. 4). Since the drug binding and release is also affected by chemical interactions between the
459
+ COF backbone and the drug, independent of pore size and surface area, future material design
460
+ should focus on optimizing these interaction factors to broaden our insights.
461
+ The versatility of COFs, not only on the morphological but especially on a molecular level, is
462
+ anticipated to enable tailored approaches to tune the adsorption and desorption properties of
463
+ drugs, akin to their use on gas sorption.76 Modifications of these interactions, especially by
464
+ external stimuli, such as pH changes, light, viscosity changes, and oxygen content in the vicinity,
465
+ can enable the desired interaction strength with the cargo and its release kinetics.11 This
466
+ possibility is anticipated to enable tailored, targeted, and especially semi-autonomous therapy
467
+ not only for in vitro but also for in vivo applications.77, 78
468
+
469
+ We further demonstrated medical imaging of the ICG-loaded COFs, enabled by photoacoustic
470
+ imaging and optical coherence tomography. In principle, both of them enable the visualization of
471
+ swarms and motion of large individual particles, providing more detailed insights into local
472
+ propulsion and release properties inside the eye or soft tissues where visible light cannot
473
+ penetrate easily. Since the ICG loading can be kept very low in the porous COFs while maintaining
474
+ a high signal intensity (Fig. 4). Optical coherence tomography inside eye tissue also enables real-
475
+ time imaging studies of drug-loaded microswimmers and evaluation in intraocular fluids and
476
+ structures, laying the grounds for a more detailed understanding of release properties and burst
477
+ kinetics for various theranostic agents. By decoupling COF microswimmers’ motion control and
478
+ release mechanism, a broad range of independent functionalities is made possible on these
479
+ porous organic structures in parallel. We anticipate that especially simultaneous imaging, drug
480
+ release, and NIR light-assisted photothermal therapy capabilities will offer additional theranostic
481
+ abilities beyond what current state-of-art noninvasive photodynamic therapy techniques could
482
+ achieve.79 In the near future, they could be functionalized in ophthalmology clinics for
483
+ multimodal therapy and imaging of retinal diseases, such as retinoblastoma, diabetic
484
+ retinopathy, or glaucoma.
485
+
486
+ Materials & Methods
487
+ Synthesis and preparation of covalent organic frameworks
488
+ Synthesis of TAPB-PDA-COF was carried out according to a previous report with minor changes.34
489
+ In a typical colloidal reaction, 1,3,5- tris(4-aminophenyl)benzene (TAPB) (0.030 mmol, 10.4 mg)
490
+ and terephthaldehyde (PDA) (0.044 mmol, 5.96 mg) were dissolved in 14 mL acetonitrile. After
491
+ 10 minutes of sonication, a solution of Sc(OTf)3 (0.014 mmol, 7.00 mg) in 7 mL acetonitrile was
492
+ added dropwise at room temperature under slight stirring. After 24 hours of reaction, the solvent
493
+ was exchanged for distilled water by centrifugation for five times (795 g for 10 minutes each).
494
+ For solids characterization, the particles were precipitated by adding 0.5 mL of 1 M NaCl solution,
495
+ washed with methanol, and dried by supercritical CO2 on a Leica EM CPD300 instrument. TpAzo-
496
+ COF was synthesized according to a previous report.80
497
+
498
+ Brunauer–Emmett–Teller (BET) measurements and analysis
499
+ Nitrogen sorption measurements were performed on a Quantachrome Instruments Autosorb iQ
500
+ MP at 77 K. Before the gas adsorption studies, the samples were degassed for 12 h at 120 °C
501
+ under a vacuum. Multipoint BET surface area calculations and pressure ranges were chosen
502
+ according to the linear region on the BET plot in the range between 0.05 and 0.35 P/P0. Pore size
503
+ distribution was determined from Nitrogen adsorption isotherms using the NLDFT cylindrical
504
+ pores in the carbon model for nitrogen at 77 K.
505
+ PXRD measurements and analysis
506
+ Powder X-ray diffraction experiments were performed on a Stoe Stadi P diffractometer (Cu-Kα1,
507
+ Ge(111) in Debye-Scherrer geometry. The samples were measured in sealed glass capillaries (OD
508
+ = 1.0 mm) and spun for improved particle statistics.
509
+ Transmission electron microscopy (TEM) and scanning electron microscopy (SEM)
510
+ Transmission electron microscopy was performed with a Philips CM30 ST (300kV, LaB6 cathode).
511
+ The samples were prepared dry onto a copper lacey carbon grid (Plano). Images were recorded
512
+ with a TVIPS TemCam-F216 CMOS camera. The program EM-Menu 4.0 Extended was used for
513
+ analysis.
514
+ SEM images were obtained on a Zeiss Merlin or a VEGA TS 5130MM (TESCAN) with an InLens
515
+ detector using electron energy of 1.5 kV. The samples were cast on indium-doped tin oxide (ITO)
516
+ substrates, and a 3 nm-thick iridium film was sputtered on them to reduce charging.
517
+ UV-VIS measurements and analysis
518
+ For diffuse reflectance UV–visible absorption, spectra were collected on a Cary 5000
519
+ spectrometer (referenced to barium sulfate). Absorption spectra were calculated from the
520
+ reflectance data using the Kubelka-Munk and assuming a direct band gap.81
521
+ Zeta potential measurements
522
+ The Z potential was determined using a Malvern nano Zs zetasizer. Dispersions of 0.5 mg/mL COF
523
+ in 10 mM aqueous NaCl were sonicated 15 min before zeta potential experiments. Surface charge
524
+ values represent the mean of 3 experiments and their standard deviation is indicated.
525
+
526
+ Light-driven propulsion experiments
527
+ The spectral irradiance of the illumination in the microscope was measured at the place of the
528
+ sample chamber with a calibrated Ocean Optics OCEAN-FX-XR1-ES spectrophotometer after
529
+ attenuation by a neutral density filter. The results have been normalized to the filter attenuation
530
+ and the spot size of the light beam in the microscope. It was measured to be 2.0 ± 0.5 mm in
531
+ diameter, resulting in a relative experimental error of 50% after the error propagation
532
+ calculation. In the case of visible light propulsion, a broad-spectrum low-intensity white LED is
533
+ illuminated from the top, and lights with various wavelengths (385 nm, 470 nm, 510 nm, 560 nm,
534
+ and 630 nm) are illuminated through the microscope objective. The intensity of the microscope
535
+ light (1 mW/cm2 for the control experiments in the dark and 2 mW/cm2 for imaging during UV
536
+ light-based propulsion) was increased to 10 mW/cm2 for visible light propulsion. For
537
+ photocatalytic and PEC experiments, a calibrated Thorlabs S425C/PM100D optical power meter
538
+ directly measured the light intensity.19 All light intensities are used in the light propulsion
539
+ experiments under the ocular safety limit (54 mW/cm2) for ophthalmic devices.82
540
+ Biocompatibility experiments
541
+ Human umbilical vein endothelial cells (CRL-1730 [HUVEC], ATCC, Manassas, VA) were grown in
542
+ dMEM supplemented with 10% (v/v) FBS and 1% (v/v) penicillin/streptomycin (Gibco, Grand
543
+ Island, NY, USA) at 37°C in a 5% CO2, 95% air-humidified atmosphere. Cells were reseeded after
544
+ growing to confluence into μ-Slide eight-well plates (Ibidi GmbH, Gräfelfing, Germany) at a cell
545
+ density of 25 x 103 cells/well and incubated for two days. HUVEC cells were incubated with TAPB-
546
+ PDA or TpAzo COF microswimmers at varying concentrations (3.1 to 25 μg/ml) for cytotoxicity
547
+ testing. Then, the cell viability was measured using a LIVE/DEAD assay (Thermo Fisher Scientific,
548
+ Waltham, MA) incorporating calcein-AM (green) and ethidium homodimer-1 (red) dyes. After 24
549
+ hours of incubation with the COF microswimmers, live-dead cell numbers were calculated from
550
+ fluorescence microscopy images. Furthermore, cytotoxicity of microswimmers during light
551
+ actuation (470 nm for TAPB-PDA and 630 nm for TpAzo, 10 mW/cm2 and 4 mW/cm2, respectively)
552
+ was tested by live/dead staining of HUVEC cells right after and 24 hours after actuation of COF
553
+ microswimmers for 30 minutes.11
554
+
555
+ Drug & ICG loading and release tests
556
+ The loading efficiency was measured by centrifuging the DOX (44583, Sigma-Aldrich, St. Louis,
557
+ USA) or insulin (I3661, Sigma-Aldrich, St. Louis, USA) loaded microswimmers and comparing the
558
+ optical density (OD) of the supernatant with the precalibrated OD of DOX or insulin (200 μg/ml)
559
+ at 480 nm. Both COF microswimmers (100 μg/ml) were dispersed with DOX or insulin (200
560
+ μg/ml), and this solution was stirred in the dark for 24 hours to allow the drugs to be adsorbed.
561
+ After 24 hours, the suspension was centrifuged, and the supernatant was used for measuring the
562
+ drug loading. The drug-loaded COF solution was washed three times with water and stored in
563
+ dPBS at +4°C for further delivery experiments. For the pH release, the pH of the resulting HCl-
564
+ diluted PBS solution was checked using a pH meter to confirm the stability of the pH during the
565
+ release experiments.11
566
+ NIR-based remote heating of ICG-loaded COF particles
567
+ TpAzo-COF and TAPB-PDA-COF loaded with 50% and 100% ICG were loaded in microtubes and
568
+ irradiated with a NIR laser (808 nm, 0.6 W/cm2). Thermal images were obtained, and temperature
569
+ information was recorded with a thermal infrared camera (ETS320, FLIR Systems).
570
+ Photoacoustic imaging measurements and analysis
571
+ The photoacoustic (PA) signal characterizations were performed inside a Multispectral
572
+ Optoacoustic Tomography device (MSOT 512-element transducer, iThera Medical) system with
573
+ three scanning steps of 0.2 mm at different wavelengths. The samples with different
574
+ concentrations were prepared inside a transparent stripe and embedded in an agar phantom (1.5
575
+ g/100 mL agar-DI water). The same preparation was done for the control sample. The agar
576
+ phantom was placed at the center of the transducer arrays. The measurements were then taken
577
+ for a range of wavelengths (660 – 980 nm), and each image was repeated three times for each
578
+ laser pulse and then averaged. A circular region of interest (ROI) was chosen for calculating the
579
+ PA signal at each wavelength. Finally, the diagrams were plotted against the control sample for
580
+ all concentrations.
581
+ For PA imaging of light-induced motion of nanoparticles, a handheld 3D photoacoustic probe
582
+ (256-element transducer, iThera Medical) was used for real-time tracking. The laser wavelength
583
+ was set at 800 nm, and the image sequences were taken at 10 frames per second. Then, a
584
+
585
+ volumetric image of 20 × 20 × 20 mm³ was constructed from three orthogonal imaging planes.
586
+ The real-time change in the signal intensity at the light actuation spot indicated the movement
587
+ of the nanoparticles.
588
+ Optical coherence tomography (OCT)
589
+ The fresh porcine eyes were purchased from Ulmer Fleisch food factory, Ulm, Germany. Within
590
+ six hours after the euthanasia of the animals, a set of enucleated eyes stabilized to the holder,
591
+ and COFs were injected with a 30G syringe in the anterior chambers of the porcine eyes before
592
+ OCT imaging. Besides that, aqueous humor was removed from another set of fresh porcine eyes
593
+ with the help of 30G trocar and cannula. For vitreous collection, a classical vitrectomy procedure
594
+ is followed.83 The intraocular fluids with COFs were injected into a cylindrical tubing and
595
+ observed via OCT (TEL320C1 – Spectral Domain OCT System, Thorlabs). The motion inside the leg
596
+ was recorded with an image speed at a medium sensitivity (76 kHz). The refractive index was set
597
+ to 1.00, and the Hann filter was used for the apodization window. The A-scan averaging was set
598
+ to 1, and the B-scan averaging to 1 with a pixel size of 6.5 μm.
599
+
600
+ Author contributions: F.P., V.S., B.V.L., and M.S. conceived and designed the project. F.P., V.S.,
601
+ and E.Y. wrote the manuscript, with input and corrections from all authors. A.R. and L.Y
602
+ synthesized and characterized the materials. V.S. and X.L. performed the light propulsion
603
+ experiments and analyzed the data. E.Y. performed and analyzed in vitro biocompatibility tests.
604
+ X.L. and M.B.A. performed and analyzed drug loading experiments. B. A. performed and analyzed
605
+ NIR hyperthermia experiments. A.A., E.Y., and P.W. performed and analyzed the photoacoustic
606
+ imaging. E.Y. isolated porcine intraocular fluids and performed optical coherence tomography.
607
+ M.S., F.P., and B.V.L. supervised the research. All authors contributed to the discussion of the
608
+ data and overall results.
609
+ Data availability: All data are available from the corresponding author upon reasonable request.
610
+ Acknowledgments: The authors acknowledge Viola Duppel for SEM and TEM image acquisition.
611
+ We thank Julia Kröger for the fruitful discussions. Support by the Max Planck Society, the Bavarian
612
+ Research Network SolTech (B.V.L.), and the Deutsche Forschungsgemeinschaft (DFG) via the
613
+
614
+ cluster of excellence “e-conversion” (project number EXC2089/1–390776260) is gratefully
615
+ acknowledged. F.P. has received and acknowledges UKRI funding under the grant reference
616
+ EP/X027449/1. E.Y. has received funding from the European Union’s Horizon 2020 research and
617
+ innovation program under the Marie Skłodowska-Curie grant agreement [PHOTODOCTOR].
618
+
619
+ References
620
+ 1.
621
+ M.Sitti. Mobile microrobotics. MIT Press, Cambridge, MA 2017.
622
+
623
+ 2.
624
+ Erkoc P, Yasa IC, Ceylan H, Yasa O, Alapan Y, Sitti M. Mobile Microrobots for Active
625
+ Therapeutic Delivery. Advanced Therapeutics 2019, 2(1): 1800064.
626
+
627
+ 3.
628
+ Dupont PE, Nelson BJ, Goldfarb M, Hannaford B, Menciassi A, O'Malley MK, et al. A
629
+ decade retrospective of medical robotics research from 2010 to 2020. Sci Robot 2021,
630
+ 6(60): eabi8017.
631
+
632
+ 4.
633
+ Wang B, Kostarelos K, Nelson BJ, Zhang L. Trends in Micro-/Nanorobotics: Materials
634
+ Development, Actuation, Localization, and System Integration for Biomedical
635
+ Applications. Adv Mater 2021, 33(4): e2002047.
636
+
637
+ 5.
638
+ Sitti M, Ceylan H, Hu W, Giltinan J, Turan M, Yim S, et al. Biomedical Applications of
639
+ Untethered Mobile Milli/Microrobots. Proc IEEE Inst Electr Electron Eng 2015, 103(2):
640
+ 205-224.
641
+
642
+ 6.
643
+ Mujtaba J, Liu J, Dey KK, Li T, Chakraborty R, Xu K, et al. Micro-Bio-Chemo-Mechanical-
644
+ Systems: Micromotors, Microfluidics, and Nanozymes for Biomedical Applications. Adv
645
+ Mater 2021, 33(22): e2007465.
646
+
647
+
648
+ 7.
649
+ Soto F, Wang J, Ahmed R, Demirci U. Medical Micro/Nanorobots in Precision Medicine.
650
+ Adv Sci (Weinh) 2020, 7(21): 2002203.
651
+
652
+ 8.
653
+ Wu Z, Chen Y, Mukasa D, Pak OS, Gao W. Medical micro/nanorobots in complex media.
654
+ Chem Soc Rev 2020, 49(22): 8088-8112.
655
+
656
+ 9.
657
+ Sitti M, Wiersma DS. Pros and Cons: Magnetic versus Optical Microrobots. Adv Mater
658
+ 2020, 32(20): e1906766.
659
+
660
+ 10.
661
+ Srivastava SK, Clergeaud G, Andresen TL, Boisen A. Micromotors for drug delivery in
662
+ vivo: The road ahead. Adv Drug Deliv Rev 2019, 138: 41-55.
663
+
664
+ 11.
665
+ Sridhar V, Podjaski F, Alapan Y, Kroger J, Grunenberg L, Kishore V, et al. Light-driven
666
+ carbon nitride microswimmers with propulsion in biological and ionic media and
667
+ responsive on-demand drug delivery. Sci Robot 2022, 7(62): eabm1421.
668
+
669
+ 12.
670
+ Kong L, Mayorga-Martinez CC, Guan J, Pumera M. Photocatalytic Micromotors Activated
671
+ by UV to Visible Light for Environmental Remediation, Micropumps, Reversible
672
+ Assembly, Transportation, and Biomimicry. Small 2020, 16(27): e1903179.
673
+
674
+ 13.
675
+ Wang J, Xiong Z, Tang J. The Encoding of Light‐Driven Micro/Nanorobots: from Single to
676
+ Swarming Systems. Advanced Intelligent Systems 2021, 3(4): 2000170.
677
+
678
+ 14.
679
+ Schmidt CK, Medina-Sanchez M, Edmondson RJ, Schmidt OG. Engineering microrobots
680
+ for targeted cancer therapies from a medical perspective. Nature communications 2020,
681
+ 11(1): 5618.
682
+
683
+
684
+ 15.
685
+ Vargason AM, Anselmo AC, Mitragotri S. The evolution of commercial drug delivery
686
+ technologies. Nature Biomedical Engineering 2021, 5(9): 951-967.
687
+
688
+ 16.
689
+ Lin G, Richardson JJ, Ahmed H, Besford QA, Christofferson AJ, Beyer S, et al.
690
+ Programmable Phototaxis of Metal-Phenolic Particle Microswimmers. Adv Mater 2021,
691
+ 33(13): e2006177.
692
+
693
+ 17.
694
+ Vikrant K, Kim K-H. Metal–organic framework micromotors: perspectives for
695
+ environmental applications. Catalysis Science & Technology 2021, 11(20): 6592-6600.
696
+
697
+ 18.
698
+ Li J, Yu X, Xu M, Liu W, Sandraz E, Lan H, et al. Metal-Organic Frameworks as
699
+ Micromotors with Tunable Engines and Brakes. J Am Chem Soc 2017, 139(2): 611-614.
700
+
701
+ 19.
702
+ Sridhar V, Podjaski F, Kroger J, Jimenez-Solano A, Park BW, Lotsch BV, et al. Carbon
703
+ nitride-based light-driven microswimmers with intrinsic photocharging ability.
704
+ Proceedings of the National Academy of Sciences of the United States of America 2020,
705
+ 117(40): 24748-24756.
706
+
707
+ 20.
708
+ Haase F, Lotsch BV. Solving the COF trilemma: towards crystalline, stable and functional
709
+ covalent organic frameworks. Chem Soc Rev 2020, 49(23): 8469-8500.
710
+
711
+ 21.
712
+ Ullrich F, Bergeles C, Pokki J, Ergeneman O, Erni S, Chatzipirpiridis G, et al. Mobility
713
+ Experiments With Microrobots for Minimally Invasive Intraocular Surgery. Investigative
714
+ ophthalmology & visual science 2013, 54(4): 2853-2863.
715
+
716
+
717
+ 22.
718
+ Kim M-S, Lee H-T, Ahn S-H. Laser Controlled 65 Micrometer Long Microrobot Made of
719
+ Ni-Ti Shape Memory Alloy. Advanced Materials Technologies 2019, 4(12): 1900583.
720
+
721
+ 23.
722
+ Wu Z, Troll J, Jeong H-H, Wei Q, Stang M, Ziemssen F, et al. A swarm of slippery
723
+ micropropellers penetrates the vitreous body of the eye. Science Advances 2018, 4(11):
724
+ eaat4388.
725
+
726
+ 24.
727
+ Vyas VS, Lotsch BV. Materials chemistry: Organic polymers form fuel from water. Nature
728
+ 2015, 521(7550): 41-42.
729
+
730
+ 25.
731
+ Zhao W, Xia L, Liu X. Covalent organic frameworks (COFs): perspectives of
732
+ industrialization. CrystEngComm 2018, 20(12): 1613-1634.
733
+
734
+ 26.
735
+ Wang H, Wang H, Wang Z, Tang L, Zeng G, Xu P, et al. Covalent organic framework
736
+ photocatalysts: structures and applications. Chem Soc Rev 2020, 49(12): 4135-4165.
737
+
738
+ 27.
739
+ McCracken JM, Donovan BR, White TJ. Materials as Machines. Adv Mater 2020, 32(20):
740
+ e1906564.
741
+
742
+ 28.
743
+ Zhou D, Zhuang R, Chang X, Li L. Enhanced Light-Harvesting Efficiency and Adaptation: A
744
+ Review on Visible-Light-Driven Micro/Nanomotors. Research 2020, 2020: 6821595.
745
+
746
+ 29.
747
+ Zhou D, Zhuang R, Chang X, Li L. Enhanced Light-Harvesting Efficiency and Adaptation: A
748
+ Review on Visible-Light-Driven Micro/Nanomotors. Research (Wash D C) 2020, 2020:
749
+ 6821595.
750
+
751
+
752
+ 30.
753
+ Lee B, Litt M, Buchsbaum G. Rheology of the vitreous body. Part I: Viscoelasticity of
754
+ human vitreous. Biorheology 1992, 29(5-6): 521-533.
755
+
756
+ 31.
757
+ Li RL, Flanders NC, Evans AM, Ji W, Castano I, Chen LX, et al. Controlled growth of imine-
758
+ linked two-dimensional covalent organic framework nanoparticles. Chem Sci 2019,
759
+ 10(13): 3796-3801.
760
+
761
+ 32.
762
+ Cote AP, El-Kaderi HM, Furukawa H, Hunt JR, Yaghi OM. Reticular synthesis of
763
+ microporous and mesoporous 2D covalent organic frameworks. J Am Chem Soc 2007,
764
+ 129(43): 12914-12915.
765
+
766
+ 33.
767
+ Lohse MS, Bein T. Covalent Organic Frameworks: Structures, Synthesis, and
768
+ Applications. Advanced Functional Materials 2018, 28(33): 1705553.
769
+
770
+ 34.
771
+ Li Rebecca L, Flanders NC, Evans AM, Ji W, Castano I, Chen LX, et al. Controlled growth
772
+ of imine-linked two-dimensional covalent organic framework nanoparticles. Chemical
773
+ Science 2019, 10(13): 3796-3801.
774
+
775
+ 35.
776
+ Wu Z, Zhang Y, Ai N, Chen H, Ge W, Xu Q. Magnetic Mobile Microrobots for Upstream
777
+ and Downstream Navigation in Biofluids with Variable Flow Rate. Advanced Intelligent
778
+ Systems 2022, 4(7): 2100266.
779
+
780
+ 36.
781
+ Wei M, Zhou C, Tang J, Wang W. Catalytic Micromotors Moving Near Polyelectrolyte-
782
+ Modified Substrates: The Roles of Surface Charges, Morphology, and Released Ions. ACS
783
+ Appl Mater Interfaces 2018, 10(3): 2249-2252.
784
+
785
+
786
+ 37.
787
+ Zhan X, Wang J, Xiong Z, Zhang X, Zhou Y, Zheng J, et al. Enhanced ion tolerance of
788
+ electrokinetic locomotion in polyelectrolyte-coated microswimmer. Nature
789
+ communications 2019, 10(1): 3921.
790
+
791
+ 38.
792
+ Wang J, Xiong Z, Zheng J, Zhan X, Tang J. Light-Driven Micro/Nanomotor for Promising
793
+ Biomedical Tools: Principle, Challenge, and Prospect. Acc Chem Res 2018, 51(9): 1957-
794
+ 1965.
795
+
796
+ 39.
797
+ Liang Z, Shen R, Ng YH, Fu Y, Ma T, Zhang P, et al. Covalent organic frameworks:
798
+ Fundamentals, mechanisms, modification, and applications in photocatalysis. Chem
799
+ Catalysis 2022, 2(9): 2157-2228.
800
+
801
+ 40.
802
+ Xiao K, Chen L, Chen R, Heil T, Lemus SDC, Fan F, et al. Artificial light-driven ion pump for
803
+ photoelectric energy conversion. Nature communications 2019, 10(1): 74.
804
+
805
+ 41.
806
+ Xiao K, Giusto P, Wen L, Jiang L, Antonietti M. Nanofluidic Ion Transport and Energy
807
+ Conversion through Ultrathin Free-Standing Polymeric Carbon Nitride Membranes.
808
+ Angew Chem Int Ed Engl 2018, 57(32): 10123-10126.
809
+
810
+ 42.
811
+ Xu F, Wei M, Zhang X, Wang Y. Ion Rejection in Covalent Organic Frameworks: Revealing
812
+ the Overlooked Effect of In-Pore Transport. ACS Appl Mater Interfaces 2019, 11(48):
813
+ 45246-45255.
814
+
815
+ 43.
816
+ Gouder A, Jiménez-Solano A, Vargas-Barbosa NM, Podjaski F, Lotsch BV.
817
+ Photomemristive sensing via charge storage in 2D carbon nitrides. Materials Horizons
818
+ 2022, 9(7): 1866-1877.
819
+
820
+
821
+ 44.
822
+ Wang J, Xiong Z, Zhan X, Dai B, Zheng J, Liu J, et al. A Silicon Nanowire as a Spectrally
823
+ Tunable Light-Driven Nanomotor. Adv Mater 2017, 29(30).
824
+
825
+ 45.
826
+ Kröger J, Podjaski F, Savaşçı G, Moudrakovski I, Jimenez-Solano A, Terban MW, et al.
827
+ Conductivity mechanism in ionic 2D carbon nitrides: from hydrated ion motion to
828
+ enhanced photocatalysis. ChemRxiv 2021.
829
+
830
+ 46.
831
+ Kröger J, Jiménez-Solano A, Savasci G, Lau VWh, Duppel V, Moudrakovski I, et al.
832
+ Morphology Control in 2D Carbon Nitrides: Impact of Particle Size on Optoelectronic
833
+ Properties and Photocatalysis. Advanced Functional Materials 2021, 31(28): 2102468.
834
+
835
+ 47.
836
+ Chen C, Mou F, Xu L, Wang S, Guan J, Feng Z, et al. Light-Steered Isotropic
837
+ Semiconductor Micromotors. Adv Mater 2017, 29(3): 1603374.
838
+
839
+ 48.
840
+ Dai B, Wang J, Xiong Z, Zhan X, Dai W, Li CC, et al. Programmable artificial phototactic
841
+ microswimmer. Nat Nanotechnol 2016, 11(12): 1087-1092.
842
+
843
+ 49.
844
+ Uspal WE. Theory of light-activated catalytic Janus particles. The Journal of Chemical
845
+ Physics 2019, 150(11): 114903.
846
+
847
+ 50.
848
+ Uspal WE. Theory of light-activated catalytic Janus particles. J Chem Phys 2019, 150(11):
849
+ 114903.
850
+
851
+ 51.
852
+ You M, Chen C, Xu L, Mou F, Guan J. Intelligent Micro/nanomotors with Taxis. Acc Chem
853
+ Res 2018, 51(12): 3006-3014.
854
+
855
+
856
+ 52.
857
+ Zhou Y, Liu S, Hu C, Cai L, Pang M. A covalent organic framework as a nanocarrier for
858
+ synergistic phototherapy and immunotherapy. Journal of Materials Chemistry B 2020,
859
+ 8(25): 5451-5459.
860
+
861
+ 53.
862
+ Mehta M. Biopharmaceutics Classification System (BCS): Development, Implementation,
863
+ and Growth. Wiley, 2017.
864
+
865
+ 54.
866
+ Kompella UB, Amrite AC, Pacha Ravi R, Durazo SA. Nanomedicines for back of the eye
867
+ drug delivery, gene delivery, and imaging. Progress in Retinal and Eye Research 2013,
868
+ 36: 172-198.
869
+
870
+ 55.
871
+ Dimaras H, Kimani K, Dimba EAO, Gronsdahl P, White A, Chan HSL, et al.
872
+ Retinoblastoma. The Lancet 2012, 379(9824): 1436-1446.
873
+
874
+ 56.
875
+ Lestari WA, Wahyuningsih S, Gomez-Ruiz S, Wibowo FR. Drug loading ability and release
876
+ study of various size small mesoporous silica nanoparticle as drug carrier. Journal of
877
+ Physics: Conference Series 2022, 2190(1): 012032.
878
+
879
+ 57.
880
+ Ibrahim M, Abuwatfa WH, Awad NS, Sabouni R, Husseini GA. Encapsulation, Release,
881
+ and Cytotoxicity of Doxorubicin Loaded in Liposomes, Micelles, and Metal-Organic
882
+ Frameworks: A Review. Pharmaceutics 2022, 14(2).
883
+
884
+ 58.
885
+ Lin Q, Pilewski JM, Di YP. Acidic Microenvironment Determines Antibiotic Susceptibility
886
+ and Biofilm Formation of Pseudomonas aeruginosa. Frontiers in Microbiology 2021, 12.
887
+
888
+ 59.
889
+ Justus C, Dong L, Yang L. Acidic tumor microenvironment and pH-sensing G protein-
890
+ coupled receptors. Frontiers in Physiology 2013, 4.
891
+
892
+
893
+ 60.
894
+ Broichhagen J, Schönberger M, Cork SC, Frank JA, Marchetti P, Bugliani M, et al. Optical
895
+ control of insulin release using a photoswitchable sulfonylurea. Nature communications
896
+ 2014, 5(1): 5116.
897
+
898
+ 61.
899
+ Reiter CEN, Gardner TW. Functions of insulin and insulin receptor signaling in retina:
900
+ possible implications for diabetic retinopathy. Progress in Retinal and Eye Research
901
+ 2003, 22(4): 545-562.
902
+
903
+ 62.
904
+ Yannuzzi LA. Indocyanine Green Angiography: A Perspective on Use in the Clinical
905
+ Setting. American journal of ophthalmology 2011, 151(5): 745-751.e741.
906
+
907
+ 63.
908
+ Gowsalya K, Yasothamani V, Vivek R. Emerging indocyanine green-integrated
909
+ nanocarriers for multimodal cancer therapy: a review. Nanoscale Adv 2021, 3(12): 3332-
910
+ 3352.
911
+
912
+ 64.
913
+ Yannuzzi LA, Slakter JS, Gross NE, Spaide RF, Costa DL, Huang SJ, et al. Indocyanine green
914
+ angiography-guided photodynamic therapy for treatment of chronic central serous
915
+ chorioretinopathy: a pilot study. Retina 2003, 23(3): 288-298.
916
+
917
+ 65.
918
+ Li L, Zeng Z, Chen Z, Gao R, Pan L, Deng J, et al. Microenvironment-Triggered Degradable
919
+ Hydrogel for Imaging Diagnosis and Combined Treatment of Intraocular Choroidal
920
+ Melanoma. ACS nano 2020, 14(11): 15403-15416.
921
+
922
+ 66.
923
+ Liu D, Wu Q, Chen W, Chen K, Lin H, Liu F, et al. Nanoporous Gold Ring-Integrated
924
+ Photothermal Intraocular Lens for Active Prevention of Posterior Capsular Opacification.
925
+ Small 2022, 18(34): 2201098.
926
+
927
+
928
+ 67.
929
+ Aziz A, Pane S, Iacovacci V, Koukourakis N, Czarske J, Menciassi A, et al. Medical Imaging
930
+ of Microrobots: Toward In Vivo Applications. ACS nano 2020, 14(9): 10865-10893.
931
+
932
+ 68.
933
+ Drexler W, Morgner U, Ghanta RK, Kärtner FX, Schuman JS, Fujimoto JG. Ultrahigh-
934
+ resolution ophthalmic optical coherence tomography. Nature Medicine 2001, 7(4): 502-
935
+ 507.
936
+
937
+ 69.
938
+ Jeon S, Song HB, Kim J, Lee BJ, Managuli R, Kim JH, et al. In Vivo Photoacoustic Imaging
939
+ of Anterior Ocular Vasculature: A Random Sample Consensus Approach. Scientific
940
+ reports 2017, 7(1): 4318.
941
+
942
+ 70.
943
+ Yücel YH, Cardinell K, Khattak S, Zhou X, Lapinski M, Cheng F, et al. Active Lymphatic
944
+ Drainage From the Eye Measured by Noninvasive Photoacoustic Imaging of Near-
945
+ Infrared Nanoparticles. Investigative ophthalmology & visual science 2018, 59(7): 2699-
946
+ 2707.
947
+
948
+ 71.
949
+ Aziz A, Holthof J, Meyer S, Schmidt OG, Medina-Sánchez M. Dual Ultrasound and
950
+ Photoacoustic Tracking of Magnetically Driven Micromotors: From In Vitro to In Vivo.
951
+ Advanced Healthcare Materials 2021, 10(22): 2101077.
952
+
953
+ 72.
954
+ Fujiwara K, Yasuda M, Ninomiya T, Hata J, Hashimoto S, Yoshitomi T, et al. Insulin
955
+ Resistance Is a Risk Factor for Increased Intraocular Pressure: The Hisayama Study.
956
+ Investigative ophthalmology & visual science 2015, 56(13): 7983-7987.
957
+
958
+
959
+ 73.
960
+ Velez G, Yuan P, Sung C, Tansey G, Reed GF, Chan C-C, et al. Pharmacokinetics and
961
+ Toxicity of Intravitreal Chemotherapy for Primary Intraocular Lymphoma. Archives of
962
+ Ophthalmology 2001, 119(10): 1518-1524.
963
+
964
+ 74.
965
+ Yang M, Wysocki A, Ripoll M. Hydrodynamic simulations of self-phoretic
966
+ microswimmers. Soft Matter 2014, 10(33): 6208-6218.
967
+
968
+ 75.
969
+ Wang J, Xiong Z, Zhan X, Dai B, Zheng J, Liu J, et al. A Silicon Nanowire as a Spectrally
970
+ Tunable Light-Driven Nanomotor. Advanced Materials 2017, 29(30): 1701451.
971
+
972
+ 76.
973
+ Vyas VS, Haase F, Stegbauer L, Savasci G, Podjaski F, Ochsenfeld C, et al. A tunable azine
974
+ covalent organic framework platform for visible light-induced hydrogen generation.
975
+ Nature communications 2015, 6(1): 1-9.
976
+
977
+ 77.
978
+ Zhang G, Li X, Liao Q, Liu Y, Xi K, Huang W, et al. Water-dispersible PEG-curcumin/amine-
979
+ functionalized covalent organic framework nanocomposites as smart carriers for in vivo
980
+ drug delivery. Nature communications 2018, 9(1): 2785.
981
+
982
+ 78.
983
+ Benyettou F, Kaddour N, Prakasam T, Das G, Sharma SK, Thomas SA, et al. In vivo oral
984
+ insulin delivery via covalent organic frameworks. Chemical Science 2021, 12(17): 6037-
985
+ 6047.
986
+
987
+ 79.
988
+ Pham TC, Nguyen V-N, Choi Y, Lee S, Yoon J. Recent Strategies to Develop Innovative
989
+ Photosensitizers for Enhanced Photodynamic Therapy. Chemical Reviews 2021, 121(21):
990
+ 13454-13619.
991
+
992
+
993
+ 80.
994
+ Chandra S, Kundu T, Kandambeth S, BabaRao R, Marathe Y, Kunjir SM, et al. Phosphoric
995
+ Acid Loaded Azo (−N═N−) Based Covalent Organic Framework for Proton Conduction.
996
+ Journal of the American Chemical Society 2014, 136(18): 6570-6573.
997
+
998
+ 81.
999
+ Chen Z, Dinh HN, Miller E. Photoelectrochemical water splitting, vol. 344. Springer, 2013.
1000
+
1001
+ 82.
1002
+ Yan B, Vakulenko M, Min SH, Hauswirth WW, Nirenberg S. Maintaining ocular safety
1003
+ with light exposure, focusing on devices for optogenetic stimulation. Vision Res 2016,
1004
+ 121: 57-71.
1005
+
1006
+ 83.
1007
+ Mohamed S, Claes C, Tsang CW. Review of small gauge vitrectomy: progress and
1008
+ innovations. Journal of ophthalmology 2017, 2017.
1009
+
1010
+
1011
+
1012
+
1013
+
1014
+ Graphical Abstract:
1015
+
1016
+
1017
+
1018
+
1019
+ Conceptual illustration of light-driven and light-steered COF microswimmers towards targeted
1020
+ intraocular drug delivery and photothermal therapy applications under optical coherence
1021
+ tomography-based real-time imaging.
1022
+
1023
+
1024
+ Drug Loaded COF
1025
+ Microswimmers
1026
+ Light-driven propulsion
1027
+ Visible Light Laser
1028
+ Optical Trapping &
1029
+ Source
1030
+ Real-time Imaging
1031
+ Targeted Drug Release &
1032
+ Photothermal Therapy
1033
+ Central Retina
1034
+ Eye
1035
+ Optical Coherence
1036
+ Tomography
1037
+ Figure 1: Structural properties of the two types of COF particles used as light-powered
1038
+ microswimmers. a-c: Imine-linked TABP-PDA-COF nanoparticles. a: Precursors for synthesis and
1039
+ molecular structure of the 2D covalent organic framework that stacks in the third dimension. b:
1040
+ Calculated pore size distribution from nitrogen sorption isotherms at 77 K (see Fig. S1, S2 for
1041
+ details), highlighting a fairly uniform pore diameter of 3.4 nm. c: SEM image of TABP-PDA COF
1042
+ nanoparticles with a narrow diameter distribution around 450 nm. d-f: Azo-linked TpAzo-COF
1043
+ microparticles. d: Precursors for synthesis and molecular structure of the 2D network that stacks
1044
+ in the 3rd dimension. e: Calculated pore size distribution from nitrogen sorption isotherms at 77
1045
+ K (see Fig. S3, S4 for details), highlighting a relatively uniform pore diameter of 2.6 nm. f: SEM
1046
+ images of the TpAzo-COF microparticles with a sponge-like structure and high levels of textural
1047
+ porosity, including macropores and heterogeneous size distribution (6.97 ± 17.62 µm, see Fig.
1048
+ S3, S4).
1049
+
1050
+
1051
+
1052
+ 685m²/g
1053
+ 0.3
1054
+ 3.41nm
1055
+ 200nm
1056
+ 0.25-
1057
+ NH2
1058
+ Y
1059
+ 0.2
1060
+ (p)^p
1061
+ TAPB-PDA
1062
+ 0.1
1063
+ 3.4nm
1064
+ 0.05-
1065
+ PDA
1066
+ H2N
1067
+ NH2
1068
+ 10
1069
+ 20
1070
+ 30
1071
+ 40
1072
+ TAPB
1073
+ Pore width (nm)
1074
+ d
1075
+ 0.2
1076
+ TpAzo-COF
1077
+ 2.54 mm
1078
+ 500.mm
1079
+ OHI
1080
+ HO
1081
+ OH
1082
+ TpAzo
1083
+ 00
1084
+ H2N
1085
+ OH
1086
+ Azo
1087
+ Tp
1088
+ 80
1089
+ Pana width (nm)
1090
+
1091
+ Figure 2: Optical properties and propulsion of TABP-PDA-COF and TpAzo-COF microswimmers
1092
+ in water and ionic media and their phototaxis behavior. a, f: Absorbance properties and optical
1093
+ band gap extracted from UV-Vis diffuse reflectance spectra of TABP-PDA-COF (a) and TpAzo-COF
1094
+ (f) particles, respectively, measured in the solid state. b, g: Mean speeds of the COF
1095
+ microswimmers illuminated in distilled water at different wavelengths under the microscope.
1096
+ The dashed line denotes the local Brownian motion speed. Density: 100 µg/ml, N = 50 particles.
1097
+ Error bar = S.D. c, h: Propulsion in NaCl with increasing concentration and wavelength highlighting
1098
+ strong ionic tolerance for light-driven propulsion. d, i: Comparison of propulsion speed in
1099
+ different commonly used biological media (dPBS, MEM) and MEM modified by removing glucose
1100
+ or adding FBS. Density: 100 µg/ml, N = 50 particles (a-d). Mean ± S.D. e, j: Phototactic control of
1101
+ diluted COF microswimmer particles following illumination from the side (S=start, E=end of
1102
+ trajectory).
1103
+
1104
+
1105
+
1106
+ Mumination directbion
1107
+ Figure 3: COF microswimmer biocompatibility, drug loading, and triggered release properties.
1108
+ a-d: In vitro cell viability results for COF microswimmers a, c: cell viability percentages of HUVEC
1109
+ cells in the presence of increasing TAPB-PDA-COF and TpAzo-COF microswimmer concentrations
1110
+ with/without 470 nm and 630 nm illumination, respectively, for 30 minutes, mean ± S.D. b, d:
1111
+ Corresponding fluorescence images of live cells (green) and dead cells (red) with 25 μg/ml, 30
1112
+ minutes, 470 nm and 630 nm, respectively. e-h: DOX uptake & release results for COF
1113
+ microswimmers. e: TAPB-PDA-COF loading and release capacity with Doxorubicin (DOX) in MEM
1114
+ at different pH over time, reaching 138% for TABP-PDA-COF loaded in MEM. f: Corresponding
1115
+ fluorescence image of DOX (red) loaded TAPB-PDA-COFs at 25 µg/ml concentration. g: TpAzo-
1116
+ COF with 75% loading and their subsequent stepwise release at different pH conditions; in
1117
+
1118
+ LiV
1119
+ :Dead
1120
+ Live.Dead
1121
+ DoX Loaded Particles
1122
+ DOX Loaded Particles
1123
+ nsulin Loaded Particle
1124
+ Insulin Loaded Particlesneutral pH (7.2), slightly acidic conditions (pH=5), and acidic (3.3) as encountered around cancer
1125
+ cells. h: Corresponding fluorescence image of DOX (red) loaded TpAzo-COFs at 25 µg/ml
1126
+ concentration. i-l: Insulin uptake & release results for COF microswimmers. i: Insulin loading of
1127
+ TAPB-PDA-COF with 60 % loading in MEM and release in different pH values over time. j:
1128
+ Corresponding fluorescence images of FITC (green) labeled insulin-loaded TAPB-PDA COFs. k:
1129
+ Insulin loading of TpAzo-COF with 40% loading in MEM and its release at different pH values over
1130
+ time. l: Corresponding fluorescence images of FITC (green) labeled insulin-loaded TpAzo-COFs.
1131
+ All scale bars are 100 μm.
1132
+
1133
+
1134
+
1135
+
1136
+ Figure 4: Indocyanine green (ICG) loading, imaging, and hyperthermia functions of both COF
1137
+ microswimmer types. a: ICG uptake into suitable structural pores (TAPB-PDA-COF) or texturally
1138
+ porous structures (Tp-Azo-COF). b,c: NIR-based heating of 50% and 100% ICG-loaded COF
1139
+ particles. d: Intensity of photoacoustic signal vs. ICG loading, highlighting high sensitivity regimes
1140
+ at low loading concentrations for TAPB-PDA-COF microswimmers. e: The photoacoustic signal
1141
+ intensity vs. ICG loading highlights high sensitivity regimes at low loading concentrations for
1142
+ TpAzo COF microswimmers.
1143
+
1144
+
1145
+ 2.9nm
1146
+ structure
1147
+ texture
1148
+ Figure 5: Real-time imaging of COF motion by photoacoustic and optical coherence tomography
1149
+ imaging modalities. a-c: Photoacoustic imaging of focused light-driven actuation of ICG-loaded
1150
+ COFs in both intraocular fluids. After 30 min, the accumulation of COF microswimmers in the
1151
+ focus of the light with different wavelengths is visible. d: Mean speeds of COF microswimmer
1152
+ particles illuminated with 470 nm light in intraocular fluids (Video S3). e: Optical coherence
1153
+ images of COFs in aqueous humor (Video S4). The COF swimmers’ light-driven movement on the
1154
+ tubing’s light-applied side is visible. The scale bar is 500 μm on each axis.
1155
+
1156
+
1157
+ No Light
1158
+ Light
1159
+ No LighitSupporting Information
1160
+
1161
+ Designing Covalent Organic Framework-based Light-driven Microswimmers
1162
+ towards Intraocular Theranostic Applications
1163
+
1164
+
1165
+
1166
+
1167
+ Figure S1. TABP-PDA COF structural analysis. a: Powder XRD after washing. b: FT-IR of the
1168
+ precursors and the COF. c: BET surface area measurement for overall surface area analysis.
1169
+
1170
+
1171
+
1172
+
1173
+ Figure S2. TABP-PDA COF particle morphology and structure. a: SEM image illustrating uniform
1174
+ size distribution of the washed COF microparticles. b: Particle size distribution showing high
1175
+ uniformity. c: TEM image showing a single COF nanoparticle consisting of crystalline domains
1176
+ with a lateral size of approx. 50 nm.
1177
+
1178
+
1179
+ 300
1180
+ Experimental
1181
+ Simulated
1182
+ N-H
1183
+ Intensity (a.u.)
1184
+ Transmittance
1185
+ mmn
1186
+ C-H
1187
+ =0
1188
+ C=N
1189
+ 50)
1190
+ -Adsorption
1191
+ TAPB
1192
+ PDA
1193
+ IDesaption
1194
+ TAPB-PDA COF
1195
+ 5
1196
+ 10
1197
+ 15
1198
+ 20
1199
+ 25
1200
+ 30
1201
+ 35
1202
+ 40
1203
+ 4000
1204
+ 3500
1205
+ 3000
1206
+ 2500
1207
+ 2000
1208
+ 1500
1209
+ 1000
1210
+ 500
1211
+ 0
1212
+ 0.4.
1213
+ 20 (Degrees)
1214
+ Wavenumber(cm-1)
1215
+ PAP3μm
1216
+ 20-
1217
+ 15-
1218
+ 5.
1219
+ 250300350400450500550
1220
+ 100nm
1221
+ Particle size (nm)
1222
+ Figure S3: TpAzo-COF structural analysis. a: Powder XRD after washing. b: FTIR of the COF. c: BET
1223
+ surface area measurement for overall surface area analysis.
1224
+
1225
+
1226
+
1227
+ Figure S4. TpAzo-COF particle morphology and structure. a: SEM image illustrating the
1228
+ agglomerated structure of TpAzo-COF microparticles. b: SEM image (zoomed in) showing sponge-
1229
+ like inner structure with macropores. c: Particle size distribution showing non-uniformity of the
1230
+ particle agglomerates. The particle size is centered around 7 µm. d: TEM image showing the
1231
+ interconnection of crystalline COF nanosheets with a domain size of approximately 50 nm or less.
1232
+
1233
+ b
1234
+ a
1235
+ TpAzo exp.
1236
+ 100
1237
+ BET surface
1238
+ TpAzosim.
1239
+ 600
1240
+ 90
1241
+ Intensity (a.u.)
1242
+ area: 635 m2 g-1
1243
+ 80
1244
+ ?
1245
+ 400
1246
+ 300
1247
+ 70
1248
+ 200
1249
+ Volume
1250
+ 09
1251
+ 100-
1252
+ a-Adsorption
1253
+ Desorption
1254
+ 50-
1255
+ 0
1256
+ 0.2
1257
+ 0.4
1258
+ 0.6
1259
+ 4000350030002500200015001000500
1260
+ 0.8
1261
+ 5
1262
+ 10
1263
+ 15
1264
+ 20
1265
+ 25
1266
+ 30
1267
+ 35
1268
+ 40
1269
+ P/Po
1270
+ 2e(Degree)
1271
+ Wavenumber(cm-1)500nm
1272
+ 20μm
1273
+ 100nmSupporting Videos
1274
+
1275
+ Video S1. Light-driven propulsion of 100 µg/ml TABP-PDA and TpAzo COF microswimmers
1276
+ inside distilled water with a 470-nm wavelength light source
1277
+
1278
+ Video S2. Phototaxis behavior of TABP-PDA and TpAzo COF microswimmers inside MEM using a
1279
+ directional 470-nm wavelength light source
1280
+
1281
+ Video S3. TABP-PDA COF and TpAzo COF microswimmer propulsion inside the porcine aqueous
1282
+ and porcine vitreous humor fluid
1283
+
1284
+ Video S4. Optical coherence tomography (OCT) imaging and guided trapping of TABP-PDA and
1285
+ TpAzo COF microswimmers inside the aqueous humor fluid
1286
+
1287
+ Video S5. Optical coherence tomography (OCT) imaging and guided propulsion of TABP-PDA
1288
+ and TpAzo COF microswimmers inside the anterior chambers of the porcine eye
1289
+
1290
+
29FST4oBgHgl3EQfYTgs/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
3NE0T4oBgHgl3EQfuwHF/content/tmp_files/2301.02610v1.pdf.txt ADDED
@@ -0,0 +1,1236 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Feedback-Gated Rectified Linear Units
2
+ Marco Kemmerling 1
3
+ Abstract
4
+ Feedback connections play a prominent role in
5
+ the human brain but have not received much
6
+ attention in artificial neural network research.
7
+ Here, a biologically inspired feedback mecha-
8
+ nism which gates rectified linear units is pro-
9
+ posed. On the MNIST dataset, autoencoders with
10
+ feedback show faster convergence, better perfor-
11
+ mance, and more robustness to noise compared
12
+ to their counterparts without feedback.
13
+ Some
14
+ benefits, although less pronounced and less con-
15
+ sistent, can be observed when networks with
16
+ feedback are applied on the CIFAR-10 dataset.
17
+ 1. Introduction
18
+ The brain has served as inspiration for artificial neural net-
19
+ works (ANNs) for decades. While these models are usually
20
+ heavily simplified compared to the brain, they have seen
21
+ significant successes in areas such as image recognition
22
+ (Krizhevsky et al., 2012), speech recognition (Hinton et al.,
23
+ 2012), and machine translation (Sutskever et al., 2014) in
24
+ recent times.
25
+ Despite successes, it is clear that the average human brain
26
+ is vastly more powerful and versatile than any model used
27
+ in practice today, and as such it may be useful to investigate
28
+ how and where exactly the brain and ANNs differ.
29
+ One such discrepancy between ANNs and the brain is the
30
+ existence of feedback, or top-down connections.
31
+ While
32
+ there is clear evidence of prominent feedback connections
33
+ in the brain, ANNs have overwhelmingly been designed
34
+ based on the feedforward paradigm, although networks that
35
+ do not work solely on the feedforward principle exist and
36
+ are called recurrent neural networks (RNNs). Most RNNs
37
+ used in practice today focus on recurrent connections from
38
+ one layer to itself (e.g.
39
+ LSTM networks (Hochreiter &
40
+ Schmidhuber, 1997)), which, while recurrent, arguably do
41
+ not constitute top-down connections. These networks are
42
+ 1University
43
+ of
44
+ Maastricht,
45
+ Maastricht,
46
+ The
47
+ Nether-
48
+ lands.
49
+ Correspondence
50
+ to:
51
+ Marco
52
+ Kemmerling
53
+ <m.kemmerling@student.maastrichtuniversity.nl>.
54
+ typically applied on problems where the input consists of
55
+ sequence data, where the recurrence allows for memory of
56
+ previously seen elements of the sequence.
57
+ However, the usefulness of recurrent connections or feed-
58
+ back is not necessarily restricted to sequence data. If the
59
+ input is image data, a first look, or pass, at an image could
60
+ be used to construct a rough idea of what the image con-
61
+ tains, as well as to identify areas of interest, which can then
62
+ be further examined on a second pass.
63
+ While the network architectures considered in this paper
64
+ feature real top-down connections, the focus is not on the
65
+ network topology itself, but on how these top-down con-
66
+ nections influence the behaviour of single neurons, i.e. a
67
+ mechanism for incorporating feedback.
68
+ This feedback mechanism is derived from neuroscience lit-
69
+ erature and examined from two broad angles: (1) Whether
70
+ the feedback mechanism can in any way improve on stan-
71
+ dard methods. Relevant metrics include convergence speed
72
+ and performance quality of the trained network. (2) If ex-
73
+ amining the feedback’s properties and how it behaves un-
74
+ der certain conditions (e.g. noisy signals) can offer any in-
75
+ sights into what role the feedback might fulfil in the brain.
76
+ Needless to say, care has to be taken when trying to infer
77
+ functionality of mechanisms in the brain from simplified
78
+ artificial networks. Nevertheless, experimentation on arti-
79
+ ficial models offers an intriguing opportunity, as they are
80
+ naturally easier to investigate and manipulate than the real
81
+ brain.
82
+ In the remainder of this paper, some neuroscientific back-
83
+ ground is explored in section 2 to serve as context for the
84
+ feedback mechanism, followed by a description of the feed-
85
+ back mechanism itself as it occurs in the brain (section 2.1).
86
+ In section 3 the mechanism is adapted for use in ANNs and
87
+ some practical considerations on its use are given in sec-
88
+ tion 3.1. The following sections describe a range of experi-
89
+ ments with the intention to provide answers to the research
90
+ questions posed above.
91
+ 2. Neuroscientific Background
92
+ The neocortex, part of the cerebral cortex, is a part of the
93
+ brain that evolved in mammals comparatively recently. It
94
+ comprises around 80% of the human brain (Markram et al.,
95
+ arXiv:2301.02610v1 [cs.NE] 6 Jan 2023
96
+
97
+ Feedback-Gated Rectified Linear Units
98
+ 2004) and is therefore often speculated to be responsible
99
+ for the emergence of higher intelligence.
100
+ The most abundant type of neuron in the neocortex is the
101
+ pyramidal neuron, constituting between 70-85% of cells.
102
+ In contrast to the remaining neurons in the neocortex, so
103
+ called interneurons, which are mostly inhibitory, pyramidal
104
+ neurons are excitatory (DeFelipe & Fari˜nas, 1992).
105
+ As the name suggests, pyramidal neurons have a cell body
106
+ roughly shaped like a pyramid, with a base at the bottom
107
+ and an apex at the top. Pyramidal neurons have two types
108
+ of dendrites: basal dendrites, originating at the base, and
109
+ one apical dendrite, originating at the apex. This apical
110
+ dendrite terminates in what is called the apical tuft, where
111
+ heavy branching of the apical dendrite occurs. (DeFelipe
112
+ & Fari˜nas, 1992).
113
+ These apical and basal dendrites are not just differently lo-
114
+ cated, but also serve different functions. Basal dendrites
115
+ receive regular feedforward input, while the apical tuft den-
116
+ drites receive feedback input (Larkum, 2013).
117
+ The neocortex appears to have a distinct structure which
118
+ is characterised by its organisation into layers as well as
119
+ columns. The columnar organisation is based on the ob-
120
+ servation that neurons stacked on top of each other tend to
121
+ be connected and have similar response properties, while
122
+ only few connections exist between columns. Columns are
123
+ hence hypothesised to be a basic functional unit in the cor-
124
+ tex, although this is somewhat debated in the neuroscience
125
+ community (Goodhill & Carreira-Perpi˜n´an, 2002).
126
+ The further organisation into six layers was proposed by
127
+ Brodman in 1909 (Brodmann, 1909). Layers 1 and 6 are
128
+ of particular interest here. Layer 1 consists of almost no
129
+ cell bodies, but mostly connections between axons and the
130
+ apical dendrites of pyramidal neurons (Shipp, 2007), i.e. it
131
+ serves as a connection hub for feedback signals. Layer 6
132
+ sends signals to neurons in the thalamus which then in turn
133
+ sends signals to layer 1 neurons in the same column (Shipp,
134
+ 2007), i.e. layers 1 and 6 create a loop where feedback is
135
+ sent from layer 6 and received by layer 1.
136
+ 2.1. Distal Input to Pyramidal Neurons
137
+ As described above, apical tuft dendrites receive feedback
138
+ input, which appears to modulate the gain of the corre-
139
+ sponding neuron (Larkum, 2004). It is hypothesised that
140
+ this is a way for the cortex to combine an internal repre-
141
+ sentation of the world with external input, i.e. feedback
142
+ to a neuron may predict whether this particular neuron
143
+ should be firing, and even small feedforward input may
144
+ lead the neuron to fire as long as the feedback signal is
145
+ strong (Larkum, 2013).
146
+ Taking both feedforward and feedback input into account,
147
+ the firing rate of a neuron can be modelled as follows
148
+ (Larkum, 2004):
149
+ f = g(µS + αµD + σ + fβ(µD) − θ)
150
+ (1)
151
+ where f is the firing rate of the neuron, g the gain, µS the
152
+ average somatic current (i.e. feedforward input), µD the
153
+ average distal current (i.e. feedback input), α is an atten-
154
+ uation factor, σ represents fluctuations in the current, θ is
155
+ the firing threshold, and β(µD) is an increasing function of
156
+ the dendritic mean current which saturates for values above
157
+ some current threshold.
158
+ 3. Feedback-Gated Rectified Linear Units
159
+ The model described in the previous section serves as a
160
+ basis to derive an activation function which can replace
161
+ the common rectified linear unit (ReLU) (Nair & Hinton,
162
+ 2010), i.e. f(x) = max(0, x).
163
+ To arrive at a more practical activation function, g and θ are
164
+ dropped from equation 1, since the threshold is modelled
165
+ through the bias unit and the gain (i.e. slope) of a ReLU is
166
+ by definition 1 and can thus be safely dropped. Dropping
167
+ the summands αµD and σ is less justifiable, but since they
168
+ do not contribute to the core property of gain increase, they
169
+ will be disregarded here, arriving at the following simpli-
170
+ fied relationship:
171
+ f = µS + fβ(µD)
172
+ (2)
173
+ Removing f from the right hand side:
174
+ f =
175
+ 1
176
+ 1 − β(µD)µS
177
+ (3)
178
+ What remains is an exact definition of β(µD), which, ac-
179
+ cording to (Larkum, 2004), is “an increasing function of the
180
+ dendritic mean current µ which saturates for values above
181
+ 1000pA“. In other words, the function is bounded, i.e. the
182
+ gain cannot be increased to arbitrarily high values. Accord-
183
+ ingly, some maximum value βmax the function can produce
184
+ and a threshold value η which describes when this maxi-
185
+ mum is reached need to be defined. Assuming a piecewise
186
+ linear model, β(µD) is thus defined as follows:
187
+ β(µD) = min
188
+ �βmax
189
+ η
190
+ µD, βmax
191
+
192
+ (4)
193
+ As there are no obvious values to assign to βmax and η,
194
+ they are treated as hyperparameters. Since setting βmax to
195
+ 1 results in a division by 0 and a value of βmax > 1 causes
196
+ a negative slope, βmax should be smaller than 1.
197
+
198
+ Feedback-Gated Rectified Linear Units
199
+ Plugging equation 4 into equation 3 yields:
200
+ f =
201
+ 1
202
+ 1 − min( βmax
203
+ η
204
+ µD, βmax)
205
+ µS
206
+ (5)
207
+ Since negative values for µS are not taken into account in
208
+ the above equations, µS is replaced with max(0, µS), i.e.
209
+ the classic ReLU function:
210
+ f =
211
+ max(0, µS)
212
+ 1 − min( βmax
213
+ η
214
+ µD, βmax)
215
+ (6)
216
+ 3.1. Feedback-Gated ReLUs in Practice
217
+ The feedback path attempts to mimic the top-down path in
218
+ the brain. As such, the origin of feedback terminating in a
219
+ layer should be a layer that is higher in the (feedforward)
220
+ hierarchy.
221
+ Since feedback from higher layers can only be computed
222
+ if these higher layers have priorly received feedforward in-
223
+ put, at least two time steps are needed to incorporate the
224
+ modified ReLUs into a network. Concretely, some data,
225
+ e.g. an image is fed into the network twice, where the first
226
+ pass enables the computation of feedback which can then
227
+ be utilised in the second pass. Although more than two
228
+ timesteps are not required, it is possible to use an arbitrary
229
+ number of timesteps, which is examined in section 4.1.1.
230
+ Any layer that receives feedback requires an additional set
231
+ of weights to compute µD. Specifically, each layer hi with
232
+ size n receiving feedback from layer hj with size m intro-
233
+ duces n × m additional parameters.
234
+ The resulting networks can then be unrolled to create a
235
+ feedforward network, so that for t timesteps, each layer oc-
236
+ curs t times, while using the same weights at each timestep
237
+ (see figure 1). Since the unrolled network is purely feedfor-
238
+ ward, the standard backpropagation is a suitable learning
239
+ rule.
240
+ In convolutional neural networks (LeCun, 1989), feedback
241
+ is implemented on a filter-wise basis, i.e. each neuron does
242
+ not receive its own unique feedback signal, but rather ev-
243
+ ery filter receives a unique feedback signal that is shared
244
+ between all units belonging to that filter.
245
+ Dropout (Srivastava et al., 2014) should be used by drop-
246
+ ping out the same units in all passes. Otherwise, if e.g.
247
+ dropout is only applied on the last pass, the remaining units
248
+ will still receive signals from dropped out units in previous
249
+ passes, which defeats the purpose of dropout.
250
+ 4. Experimental Results
251
+ The preceding sections describe a feedback mechanism and
252
+ how it can be implemented in practice. Here, a range of ex-
253
+ Figure 1. Left: autoencoder with (partial) feedback. Right: Un-
254
+ rolled autoencoder.
255
+ periments is performed to observe how this feedback mech-
256
+ anism changes the behaviour of ANNs. Several networks
257
+ are applied on two datasets, MNIST (LeCun et al., 2010)
258
+ and CIFAR-10 (Krizhevsky et al., 2014). Specifically, the
259
+ experiments are designed to answer the research questions
260
+ posed in the introduction: (1) whether feedback can im-
261
+ prove the performance of ANNs, (2) whether observing
262
+ how the feedback works in artificial models can reveal any
263
+ clues on what function feedback has in the brain. Sections
264
+ 4.1.3, 4.1.4, and 4.2.2 serve to answer the latter question,
265
+ where section 4.1.3 is more of a general analysis of feed-
266
+ back, while sections 4.1.4 and 4.2.2 test whether feedback
267
+ might increase the networks robustness to noise. The re-
268
+ maining sections are concerned primarily with question (1)
269
+ in that they test convergence speed and performance quality
270
+ in various configurations.
271
+ 4.1. MNIST
272
+ The MNIST dataset is composed of 28 × 28 pixel binary
273
+ images of handwritten digits, split into 60000 training and
274
+ 10000 test instances (LeCun et al., 2010). Each image is
275
+ associated with one of ten classes representing the digits
276
+ between 0 and 9.
277
+ The models used in the following experiments are based
278
+ on a (non-convolutional) autoencoder with two encoding
279
+ and two decoding layers. The input layer has dimension
280
+ (1 × 784), the first encoding layer (E1) outputs data of di-
281
+ mension (1×392), the second (E2) of dimension (1×196),
282
+ the first decoding layer (D1) of dimension (1 × 392) and
283
+ the second decoding layer (D2) restores the data back to its
284
+ original dimension. Except for the final layer, each layer is
285
+ followed by a ReLU activation. The final layer makes use
286
+ of a sigmoid activation function.
287
+ First experiments were performed with only a single feed-
288
+ back connection between the first decoder and the first en-
289
+ coder (see figure 1).
290
+
291
+ D2
292
+
293
+ D1
294
+ E2
295
+
296
+ E1
297
+
298
+ InputD2
299
+
300
+ 个个个个
301
+
302
+ >E1
303
+ InputFeedback-Gated Rectified Linear Units
304
+ Figure 2. Test set loss of autoencoders with and without feedback.
305
+ The dimension of the second encoding layer is 196.
306
+ Figure 3. Test set loss of autoencoders with and without feedback.
307
+ The dimension of the second encoding layer is 10.
308
+ Optimal values for η and βmax were determined by a grid
309
+ search (βmax = 0.95, η = 5).
310
+ Figure 2 shows the loss curves for the autoencoder with
311
+ and without feedback. While the autoencoder with feed-
312
+ back converges noticeably faster, the difference is relatively
313
+ small. It is conceivable that feedback might have a greater
314
+ effect if the difficulty of the task is increased. While diffi-
315
+ culty is not a well defined term, reducing the dimension of
316
+ the second encoding layer (i.e. the bottleneck) can arguably
317
+ be seen as an increase in difficulty.
318
+ The dimension of the second encoding layer is thus reduced
319
+ to 10 (this modification will persist in all subsequent ex-
320
+ periments) and the experiment is repeated. Indeed, figure
321
+ 3 shows a much larger gap between the autoencoder with
322
+ feedback and the one without it, supporting the hypothe-
323
+ sis that feedback may be more beneficial on more difficult
324
+ tasks.
325
+ Figure 4. Autoencoder performance with varying numbers of
326
+ timesteps. Each configuration was trained and evaluated 10 times.
327
+ The curves shown are the averaged losses on the test set.
328
+ 4.1.1. MORE THAN TWO TIMESTEPS
329
+ While at least two timesteps are required to incorporate
330
+ feedback, it is not clear whether exactly two timesteps
331
+ should be used or whether > 2 timesteps can be benefi-
332
+ cial. To examine this, autoencoders with 1, 2, 4, 6, and 8
333
+ timesteps are trained.
334
+ The results, depicted in figure 4, show that more than two
335
+ timesteps yield no or negligible improvement. This may
336
+ of course be data and/or task dependent. Since MNIST is
337
+ a fairly simple dataset (binary images, clear separation of
338
+ background and foreground, etc.), it is not inconceivable
339
+ that tasks on other datasets may benefit from more than two
340
+ timesteps.
341
+ 4.1.2. COMPREHENSIVE FEEDBACK
342
+ In the previous experiments, feedback is only sent from
343
+ one decoding layer to one encoding layer. Naturally, there
344
+ are many more possible configurations that incorporate fur-
345
+ ther feedback connections. In the following experiment,
346
+ each layer receives feedback from every layer above it, i.e.
347
+ every possible top-down connection is present in the net-
348
+ work. This will be referred to as comprehensive feedback,
349
+ whereas the previous approach will be referred to as partial
350
+ feedback.
351
+ As shown in figure 5, the configuration explained above
352
+ does not only converge faster than a standard autoencoder,
353
+ but also settles to a smaller loss value, which was not the
354
+ case when only partial feedback was applied.
355
+ 4.1.3. FEEDBACK VS CONSTANT GAIN
356
+ In an effort to gain some understanding on how exactly
357
+ feedback helps to improve performance, the frequency of
358
+ different feedback values is examined.
359
+ A distinction is
360
+ made between feedback and gain, where feedback refers
361
+
362
+ 0.250
363
+ Without feedback
364
+ With feedback
365
+ 0.225
366
+ 0.200
367
+ 0.175
368
+ B80
369
+ 0.150
370
+ 0.125
371
+ 0.D75
372
+ DOEZ
373
+ 4000
374
+ 00
375
+ 8400
376
+ babches0.26 -
377
+ Without feedback
378
+ 0.24 -
379
+ With feedback
380
+ 0.22
381
+ 0.20
382
+ 0.18 -
383
+ 0.16
384
+ 0.14
385
+ 0.12
386
+ 0.10
387
+ 0
388
+ DOZ
389
+ 4000
390
+ 00
391
+ DOt8
392
+ babches0.26
393
+ 1 timestep
394
+ 2 timesteps
395
+ 0.24
396
+ 4 timesteps
397
+ 0.22
398
+ 6 timesteps
399
+ 8 timesteps
400
+ 0.20
401
+ 0.18
402
+ 0.16
403
+ 0.14
404
+ 0.12
405
+ 0
406
+ DOEZ
407
+ 4000
408
+ 00
409
+ DOt8
410
+ babchesFeedback-Gated Rectified Linear Units
411
+ Figure 5. Loss on the test set of autoencoders without feedback,
412
+ partial feedback, and comprehensive feedback. Note that the hori-
413
+ zontal axis is different from previous figures, i.e. the training time
414
+ is longer.
415
+ to µD and gain refers to
416
+ 1
417
+ 1−min( βmax
418
+ η
419
+ (µD),βmax).
420
+ Figure 6 shows the data as collected in a network with a
421
+ single feedback connection.
422
+ While there are some smaller gain values, the overwhelm-
423
+ ing majority of values are the maximum gain the network
424
+ can produce. This raises the question whether there is much
425
+ benefit to learning feedback or whether it might be simi-
426
+ larly beneficial to simply multiply all activation values by
427
+ a constant.
428
+ This is easily tested by setting the gain of every ReLU in
429
+ the affected layer to a constant value of 10.
430
+ As can be seen in figure 7, this does lead to a steeper loss
431
+ curve than the standard autoencoder, although not quite as
432
+ steep as that of the autoencoder with actual learned feed-
433
+ back. Further, the performance after training is completed
434
+ is worse than that of the standard autoencoder.
435
+ Repeating this same experiment for more than one feed-
436
+ back connection, i.e. for an autoencoder with comprehen-
437
+ sive feedback, yields results as illustrated in figure 8.
438
+ In this setup, the simple multiplication by a constant ini-
439
+ tially converges even faster than the autoencoder with
440
+ learned feedback. While it does not achieve the same per-
441
+ formance as the feedback autoencoder in later stages of
442
+ training, it is on par with the standard autoencoder’s per-
443
+ formance.
444
+ Clearly, the effects of feedback cannot be fully explained
445
+ by this constant gain, but the idea of a constant gain seems
446
+ to have some merit.
447
+ Figure 6. Distribution of feedback (top) and gain (bottom) values
448
+ collected in a network with partial feedback over the complete
449
+ MNIST test set.
450
+ Figure 7. Comparison of a standard autoencoder, an autoencoder
451
+ with partial feedback, and an autoencoder with partial constant
452
+ gain (the gain of all units in the second encoding layer is set to
453
+ 10)
454
+
455
+ 0.250
456
+ Without feedback
457
+ Partial feedback
458
+ 0.225
459
+ Comprehensive feedback
460
+ 0.200
461
+ 0.150
462
+ 0.125
463
+ 0
464
+ 2500
465
+ 5000
466
+ DOSE
467
+ # betchesFeedbadk Distribution
468
+ 840000
469
+ ODOM
470
+ 500000
471
+ 400000
472
+ ODODE
473
+ 240000
474
+ 0
475
+ 40
476
+ 20
477
+ 0
478
+ 21
479
+ 40Gain Distribution
480
+ COADO
481
+ CODOST
482
+ 0
483
+ 2
484
+ t
485
+ 8
486
+ 1f0.26
487
+ Without feedback
488
+ 0.24 -
489
+ Partial feedback
490
+ Partial constant gain
491
+ 0.22
492
+ 0.20
493
+ 0.16
494
+ 0.14
495
+ 0.12
496
+ 0.10
497
+ 0
498
+ 2400
499
+ 4000
500
+ 00
501
+ 00
502
+ betchesFeedback-Gated Rectified Linear Units
503
+ Figure 8. Comparison of a standard autoencoder, an autoencoder
504
+ with comprehensive feedback, and an autoencoder with compre-
505
+ hensive gain (the gain of all layers is set to 10).
506
+ 4.1.4. NOISY ACTIVATIONS
507
+ While noisy signals are usually not an issue in artificial net-
508
+ works, noise in the brain is very prevalent (Faisal et al.,
509
+ 2008). To see whether feedback makes the model more
510
+ robust to noise, gaussian noise with zero mean and vari-
511
+ ous standard deviations is added to the (pre-)activations of
512
+ both the network with feedback and the one without it. The
513
+ networks are only evaluated with added noise, training is
514
+ performed without noise. Note that in the network with
515
+ feedback, noise is added to the activations in both passes.
516
+ h = f(W T x + b + N(0, σ2) )
517
+ (7)
518
+ As figure 9 shows, the use of feedback significantly in-
519
+ creases the network’s robustness to noise. While this is not
520
+ especially useful for machine learning models, it may be
521
+ part of the reason why the feedback path exists in the brain.
522
+ Figure 9. Gaussian noise with zero mean and standard deviation
523
+ σ = 2.0 is added to networks with and without feedback. The
524
+ top row shows input instances to the network, the middle and bot-
525
+ tom row show reconstructions of the network without and with
526
+ feedback (respectively).
527
+ 4.2. CIFAR-10
528
+ The CIFAR-10 dataset is composed of 32×32 pixel colour
529
+ images of various objects, split into 50000 training and
530
+ 10000 test instances. Each image belongs to one of the fol-
531
+ Figure 10. Gaussian noise with zero mean and varying standard
532
+ deviations (horizontal) is added to networks with and without
533
+ feedback. The quality of the reconstruction, as measured by the
534
+ loss function (vertical axis), with respect to the magnitude of the
535
+ standard deviation is shown for both networks.
536
+ lowing classes: airplane, automobile, bird, cat, deer, dog,
537
+ frog, horse, ship, truck (Krizhevsky et al., 2014).
538
+ 4.2.1. AUTOENCODER
539
+ Similarly to the MNIST experiments, an autoencoder is
540
+ trained on the CIFAR-10 dataset. Again, the architecture
541
+ consists of two encoding and two decoding layers. Con-
542
+ trary to MNIST, the encoding/decoding layers used here
543
+ are convolutional/transposed convolutional layers with 16
544
+ 5 × 5 filters.
545
+ As figure 11 shows, the autoencoder with feedback clearly
546
+ performs better than the one without it, although the differ-
547
+ ence between the two is not as pronounced as it is in the
548
+ MNIST experiments.
549
+ Curiously, if batch normalisation (Ioffe & Szegedy, 2015)
550
+ is used after the activation functions, feedback cannot im-
551
+ prove on the performance of the standard autoencoder. This
552
+ may suggest that somehow feedback and batch normalisa-
553
+ tion are interacting in such a way that the feedback is ren-
554
+ dered ineffective.
555
+ 4.2.2. NOISY ACTIVATIONS
556
+ The experiment from section 4.1.4 is repeated on the
557
+ CIFAR-10 dataset. The network employed is the autoen-
558
+ coder without batch normalisation from the previous ex-
559
+ periment.
560
+ Since feedback increased the robustness to noise in the
561
+ MNIST autoencoder, the same behaviour would be ex-
562
+ pected here. However, as apparent in figure 13, the net-
563
+ work with feedback is much more sensitive to (even small
564
+ amounts of) noise than the one without feedback.
565
+ This may be an indication that the feedback learned by
566
+
567
+ 0.250
568
+ Without feedback
569
+ Comprehensive feedback
570
+ 0.225
571
+ Comprehensive constant gain
572
+ 0.200
573
+ 0.175
574
+ 0.150
575
+ 0.125
576
+ 0
577
+ 2400
578
+ 4000
579
+ 00
580
+ 00
581
+ # betches7210414a5965ahthoez225
582
+ Without Feedback
583
+ With Feedback
584
+ 2D -
585
+ 15
586
+ B80]
587
+ LD
588
+ 0.5 -
589
+ 0.D
590
+ i
591
+ 2
592
+ 3
593
+ 4
594
+ 5
595
+ 6
596
+ 8
597
+ standard deviationFeedback-Gated Rectified Linear Units
598
+ Figure 11. Test set loss of autoencoders with and without feed-
599
+ back on the CIFAR-10 dataset. Neither model makes use of batch
600
+ normalisation.
601
+ Figure 12. Test set loss of autoencoders with and without feed-
602
+ back on the CIFAR-10 dataset. Both models make use of batch
603
+ normalisation.
604
+ Figure 13. Gaussian noise with zero mean and varying standard
605
+ deviations is added to the CIFAR-10 autoencoders with and with-
606
+ out feedback. Although this is not apparent due to the scale of the
607
+ plot, the data for the network without feedback follows a similar
608
+ shape to the one with feedback.
609
+ the network is fundamentally different from the feedback
610
+ learned in the MNIST experiments, such that it has a com-
611
+ pounding effect on noise, rather than a rectifying one.
612
+ 4.2.3. CLASSIFICATION
613
+ Classification on the CIFAR-10 dataset is performed using
614
+ a convolutional neural network. The network consists of
615
+ two convolutional layers with 64 filters of size 5 × 5, each
616
+ followed by a max pooling (Zhou & Chellappa, 1988) layer
617
+ with a 2×2 window and a stride of 2. The convolution and
618
+ pooling layers are followed by a fully connected layer (200
619
+ units) and a softmax (Bridle, 1990) layer. Batch normali-
620
+ sation is applied after the pooling layers and dropout with
621
+ a rate of 0.5 is applied after the pooling and the fully con-
622
+ nected layers.
623
+ To test whether feedback can improve classification per-
624
+ formance, the network is trained with (comprehensive) and
625
+ without feedback. Figure 14 shows only a marginal per-
626
+ formance difference between the two networks, with the
627
+ feedback network being slightly better. At the end of train-
628
+ ing, the classification accuracy over the complete test set is
629
+ about 0.7% higher for the network with feedback.
630
+ Note that the network employed here makes use of batch
631
+ normalisation, which, as shown in the previous sec-
632
+ tion, may be problematic in combination with feedback.
633
+ Whether this is the case here is not clear, since this particu-
634
+ lar network does not converge when batch normalisation is
635
+ disabled (be it with or without feedback).
636
+ 5. Conclusion
637
+ The feedback mechanism presented here is able to im-
638
+ prove performance of conventional networks both in terms
639
+
640
+ Without feedback
641
+ 0.10
642
+ With feedback
643
+ 0.08
644
+ 0.04
645
+ 0.02
646
+ 0
647
+ 1400
648
+ 2400
649
+ 3000
650
+ 4000
651
+ 50i00
652
+ # betchesWithout feedback
653
+ 0.10 -
654
+ With feedback
655
+ 0.08
656
+ 0.D2
657
+ 0.D0
658
+ DOZ
659
+ 4000
660
+ 8000
661
+ 1000
662
+ # babches0.35
663
+ Without feedback
664
+ 0.30
665
+ With feedback
666
+ 0.25
667
+ 0.20
668
+ B80]
669
+ 0.15
670
+ 0.10
671
+ 0.05
672
+ 0.00
673
+ 0.00
674
+ 0.02
675
+ 0.04
676
+ 0.05
677
+ 0.08
678
+ 0.10
679
+ standard deviationFeedback-Gated Rectified Linear Units
680
+ Figure 14. Classification loss on the CIFAR-10 test set. The train-
681
+ ing time of 200000 batches corresponds to 512 epochs.
682
+ of convergence speed and performance of the trained net-
683
+ work when applied on the MNIST dataset. The benefits
684
+ of feedback are less clear, however, when applied on the
685
+ CIFAR-10 dataset. In principle, an autoencoder with feed-
686
+ back can outperform a corresponding autoencoder without
687
+ feedback to a small degree, but this positive effect of feed-
688
+ back is negated when batch normalisation is utilised in the
689
+ autoencoders. Understanding this unfavourable interaction
690
+ between feedback and batch normalisation may be an op-
691
+ portunity to gain a deeper understanding on how feedback
692
+ works and what role it fulfils.
693
+ Feedback appears to have some positive effect when per-
694
+ forming classification on CIFAR-10, although this effect
695
+ is so small that drawing any firm conclusions seems ill-
696
+ advised.
697
+ When investigating the networks robustness to noise, an
698
+ even larger divide between performance on MNIST and
699
+ CIFAR-10 can be observed. On CIFAR-10, feedback is not
700
+ only not beneficial, it actually heavily increases the net-
701
+ work’s sensitivity to noise, while the MNIST autoencoder
702
+ becomes more robust when feedback is present.
703
+ A possible explanation for this difference across datasets
704
+ could be that the effectiveness of the feedback mechanism
705
+ is data-dependent, i.e. it may be leveraging the highly regu-
706
+ lar structure of the MNIST dataset and is thus not as useful
707
+ on the less regularly structured CIFAR-10 dataset.
708
+ A further general difference between the experiments on
709
+ the two different datasets is the use of convolutional lay-
710
+ ers, which were used in all of the CIFAR-10 experiments,
711
+ but not in any of the MNIST experiments. It may be that
712
+ providing feedback on a filter-wise basis is too simplistic,
713
+ or that some other aspect related to convolution is not con-
714
+ ducive to the feedback mechanism. Further research on the
715
+ combination of feedback and convolutional networks may
716
+ lead to some configuration that allows for more clear bene-
717
+ fits of feedback.
718
+ Naturally, it might also be the case that the results on
719
+ MNIST are merely an outlier, which somehow defies a
720
+ more fundamental problem with the usage of feedback in
721
+ current ANNs, e.g. it may be that backpropagation is not
722
+ an ideal learning algorithm for feedback, or that feedback
723
+ relies on more realistic models such as spiking neural net-
724
+ works (Ghosh-Dastidar & Adeli, 2009).
725
+ Should clear evidence arise that feedback is useful beyond
726
+ MNIST, an interesting avenue of future research would be
727
+ the creation of feedback based multi-modal models, where
728
+ sensory inputs from multiple different sources are com-
729
+ bined to perform e.g. a classification task. For instance,
730
+ if a network receives both visual and auditory input, the
731
+ barking of a dog may result (mediated by feedback) in a
732
+ higher expectation to observe a dog in the visual input.
733
+ Acknowledgements
734
+ I want to thank Kurt Driessens, Mario Senden, and Alexan-
735
+ der Kroner for their supervision during this project.
736
+ References
737
+ Bridle, John S. Probabilistic interpretation of feedforward
738
+ classification network outputs, with relationships to sta-
739
+ tistical pattern recognition. In Neurocomputing, pp. 227–
740
+ 236. Springer, 1990.
741
+ Brodmann, Korbinian.
742
+ Vergleichende Lokalisationslehre
743
+ der Grosshirnrinde in ihren Prinzipien dargestellt auf
744
+ Grund des Zellenbaues. Barth, 1909.
745
+ DeFelipe, Javier and Fari˜nas, Isabel. The pyramidal neu-
746
+ ron of the cerebral cortex: Morphological and chemical
747
+ characteristics of the synaptic inputs. Progress in Neu-
748
+ robiology, 39(6):563–607, 1992.
749
+ Faisal, A. Aldo, Selen, Luc P. J., and Wolpert, Daniel M.
750
+ Noise in the nervous system.
751
+ Nature Reviews Neuro-
752
+ science, 9(4):292–303, 2008.
753
+ Ghosh-Dastidar, Samanwoy and Adeli, Hojjat.
754
+ Spiking
755
+ neural networks. International journal of neural systems,
756
+ 19(04):295–308, 2009.
757
+ Goodhill, Geoffrey J and Carreira-Perpi˜n´an, Miguel ´A.
758
+ Cortical columns.
759
+ Encyclopedia of cognitive science,
760
+ 2002.
761
+ Hinton, Geoffrey, Deng, Li, Yu, Dong, Dahl, George E,
762
+ Mohamed, Abdel-rahman, Jaitly, Navdeep, Senior, An-
763
+ drew, Vanhoucke, Vincent, Nguyen, Patrick, Sainath,
764
+ Tara N, et al. Deep neural networks for acoustic mod-
765
+ eling in speech recognition: The shared views of four
766
+ research groups. IEEE Signal Processing Magazine, 29
767
+ (6):82–97, 2012.
768
+
769
+ 225
770
+ Without feedback
771
+ With feedback
772
+ 200
773
+ 175
774
+ 150 -
775
+ 125
776
+ 1D0
777
+ 0.75
778
+ 0.50
779
+ 0
780
+ 25000 50000 75000 140000125000150000175000 240000
781
+ # betchesFeedback-Gated Rectified Linear Units
782
+ Hochreiter, Sepp and Schmidhuber, J¨urgen. Long short-
783
+ term memory.
784
+ Neural computation, 9(8):1735–1780,
785
+ 1997.
786
+ Ioffe, Sergey and Szegedy, Christian. Batch normalization:
787
+ Accelerating deep network training by reducing internal
788
+ covariate shift. In International Conference on Machine
789
+ Learning, pp. 448–456, 2015.
790
+ Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E.
791
+ Imagenet classification with deep convolutional neural
792
+ networks. In Advances in neural information processing
793
+ systems, pp. 1097–1105, 2012.
794
+ Krizhevsky, Alex, Nair, Vinod, and Hinton, Geoffrey.
795
+ The cifar-10 dataset.
796
+ online: http://www. cs. toronto.
797
+ edu/kriz/cifar. html, 2014.
798
+ Larkum, M. E. Top-down dendritic input increases the gain
799
+ of layer 5 pyramidal neurons. Cerebral Cortex, 14(10):
800
+ 1059–1070, 2004.
801
+ Larkum, Matthew. A cellular mechanism for cortical asso-
802
+ ciations: an organizing principle for the cerebral cortex.
803
+ Trends in neurosciences, 36(3):141–151, 2013.
804
+ LeCun, Yann. Generalization and network design strate-
805
+ gies. Connectionism in perspective, pp. 143–155, 1989.
806
+ LeCun, Yann, Cortes, Corinna, and Burges, Christo-
807
+ pher JC. Mnist handwritten digit database. AT&T Labs
808
+ [Online]. Available: http://yann. lecun. com/exdb/mnist,
809
+ 2, 2010.
810
+ Markram, Henry, Toledo-Rodriguez, Maria, Wang, Yun,
811
+ Gupta, Anirudh, Silberberg, Gilad, and Wu, Caizhi. In-
812
+ terneurons of the neocortical inhibitory system. Nature
813
+ Reviews Neuroscience, 5(10):793–807, 2004.
814
+ Nair, Vinod and Hinton, Geoffrey E. Rectified linear units
815
+ improve restricted boltzmann machines. In Proceedings
816
+ of the 27th international conference on machine learning
817
+ (ICML-10), pp. 807–814, 2010.
818
+ Shipp, Stewart. Structure and function of the cerebral cor-
819
+ tex. Current Biology, 17(12):R443–R449, 2007.
820
+ Srivastava, Nitish, Hinton, Geoffrey E, Krizhevsky, Alex,
821
+ Sutskever, Ilya, and Salakhutdinov, Ruslan. Dropout: a
822
+ simple way to prevent neural networks from overfitting.
823
+ Journal of machine learning research, 15(1):1929–1958,
824
+ 2014.
825
+ Sutskever, Ilya, Vinyals, Oriol, and Le, Quoc V.
826
+ Se-
827
+ quence to sequence learning with neural networks. In
828
+ Advances in neural information processing systems, pp.
829
+ 3104–3112, 2014.
830
+ Zhou, YT and Chellappa, R. Computation of optical flow
831
+ using a neural network.
832
+ In IEEE International Con-
833
+ ference on Neural Networks, volume 1998, pp. 71–78,
834
+ 1988.
835
+
836
+ Feedback-Gated Rectified Linear Units
837
+ 6. Appendix
838
+ 6.1. Hyperparameter Tuning
839
+ As mention in section 4.1, optimal values for βmax and η
840
+ are determined by a grid search. The initial grid is defined
841
+ by η = [5, 10, 15, . . . , 50] and βmax = [0.1, 0.2, . . . , 0.8].
842
+ The highest value for βmax (0.8) consistently shows the
843
+ best performance regardless of η’s values, as exemplified
844
+ by figure 15. Note that a high constant value of η with
845
+ varying values of βmax will generally lead to less spread
846
+ between the loss curves, since the activation function will
847
+ be more sensitive to βmax when η is low.
848
+ Figure 15. Autoencoder performance with varying hyperparame-
849
+ ters. Top: η is fixed at 5 and βmax is varied, bottom: η is fixed at
850
+ 50 and βmax is varied.
851
+ While higher values of βmax lead to better performance,
852
+ the inverse relationship can be seen with η, i.e. lower values
853
+ of η lead to better performance. This is illustrated in figure
854
+ 16.
855
+ Figure 16. Autoencoder performance when βmax is fixed at 0.8
856
+ and η is varied.
857
+ A second grid search with η = [1, 2, 3, 4, 5], βmax =
858
+ [0.8, 0.85, 0.9, 0.95] is performed to determine whether
859
+ even lower/higher values can further improve performance.
860
+ Indeed, increasing βmax to 0.95 leads to better perfor-
861
+ mance, but further decreasing η is not advantegeous.
862
+ 6.2. Feedback-Controlled Threshold
863
+ Equation 1 describes not only gain modulation through
864
+ feedback, but also an adjustment of the activation functions
865
+ threshold, i.e. αµD is one of the terms in the summation.
866
+ While gain modulation is the main property of interest in
867
+ this paper, it is conceivable that the change in threshold
868
+ plays a significant part in this mechanism as well.
869
+ Incorporating this threshold mechanism into equation 6
870
+ leads to:
871
+ f =
872
+ max(0, µS + αµD)
873
+ 1 − min( βmax
874
+ η
875
+ µD, βmax)
876
+ (8)
877
+ where α is a parameter to be learned by the network. While
878
+ α could also be set to a constant (tuned) value, prior exper-
879
+ iments suggest that it is beneficial to let the network adjust
880
+ alpha during the course of training.
881
+ As can be seen in figure 17, the added threshold mecha-
882
+ nism is not able to improve upon the network implementing
883
+ the gain mechanism. Although the models with feedback-
884
+ controlled threshold both perform better than the standard
885
+ autoencoder, the model with only gain and no threshold
886
+ mechanism still has the overall best performance.
887
+
888
+ Eta: 5
889
+ 0.26 -
890
+ betamax: 0.1
891
+ 0.24
892
+ betamax: 0.2
893
+ betamax: 0.3
894
+ 0.22
895
+ -betamax:0.4
896
+ betamax: 0.5
897
+ 0.20
898
+ betamax:0.6
899
+ betamax: 0.7
900
+ betamax: 0.8
901
+ 0.16
902
+ 0.14
903
+ 0.12
904
+ OT'O
905
+ DOEZ
906
+ 4000
907
+ DOt8
908
+ # betchesEta: 50
909
+ 0.26 -
910
+ betamax: 0.1
911
+ 0.24 -
912
+ betamax: 0.2
913
+ betamax: 0.3
914
+ 0.22
915
+ betamax: 0.4
916
+ betamax: 0.5
917
+ 0.20
918
+ betamax: 0.6
919
+ betamax: 0.7
920
+ betamax: 0.8
921
+ 0.16
922
+ 0.14 -
923
+ 0.12
924
+ O1O
925
+ 0
926
+ DOEZ
927
+ 4000
928
+ 00
929
+ DOt8
930
+ # betchesBeta max: 0.B
931
+ 0.26
932
+ Eta: 5
933
+ Eta: 10
934
+ 0.24
935
+ Eta: 15
936
+ 0.22
937
+ Eta: 20
938
+ Eta: 25
939
+ 0.20
940
+ Eta: 30
941
+ Eta: 35
942
+ Eta: 40
943
+ 0.16
944
+ Eta: 45
945
+ Eta: 50
946
+ 0.14
947
+ 0.12
948
+ OT'O
949
+ 0
950
+ DOZ
951
+ 4000
952
+ 00
953
+ DOt8
954
+ # bebchesFeedback-Gated Rectified Linear Units
955
+ Figure 17. Performance of the standard autoencoder, an autoen-
956
+ coder with feedback-controlled threshold, an autoencoder with
957
+ feedback-controlled gain, and an autoencoder with both feedback-
958
+ controlled threshold and gain on the MNIST test set.
959
+ 6.3. Input With Reduced Contrast
960
+ Images with reduced contrast are presented to the trained
961
+ (on regular contrast images) network, to see if the second
962
+ pass can reconstruct an image that is more akin to a regular
963
+ contrast image. To reduce the contrast, each pixel of the
964
+ image is multiplied by some contrast factor 0 ≤ c ≤ 1.
965
+ Figure 19 shows the absolute difference in mean pixel value
966
+ between the first and second pass reconstructions for a
967
+ number of different contrast factors. A high contrast in-
968
+ put image leads to a larger difference in mean pixel value,
969
+ while a low contrast image leads to a smaller difference
970
+ between first and second pass reconstructions.
971
+ Figure 18. Absolute difference in mean pixel value between first
972
+ and second pass reconstructions as a function of different contrast
973
+ factors (from 0.0 to 1.0 in 0.1 increments). A contrast factor of
974
+ 1.0 corresponds to no reduction in contrast, while a contrast factor
975
+ of 0.0 means the input images are entirely black.
976
+ Figure 19. From top to bottom: original image, contrast reduced
977
+ image, first pass reconstruction, second pass reconstruction. The
978
+ contrast reduced image was produced by multiplying the original
979
+ image with a contrast factor of 0.5, i.e. each pixel in the con-
980
+ trast reduced image has values in the range [0.0, 0.5] instead of
981
+ [0.0, 1.0]
982
+ 6.4. Additional Figures
983
+ The following figures contain additional data that was col-
984
+ lected as part of the experiments in section 4.
985
+
986
+ Test loss
987
+ Standard AE
988
+ 0.250
989
+ Only threshold
990
+ Only Gain
991
+ 0.225
992
+ Threshold + Gain
993
+ 0.200
994
+ 0.150
995
+ 0.125
996
+ 0.100
997
+ 0
998
+ 2500
999
+ 5000
1000
+ 7500
1001
+ 10000 1250015000 17500 24000
1002
+ # bebches0.030
1003
+ 2nd pa
1004
+ 0.025
1005
+ 1st &
1006
+ 0.020
1007
+ betw.
1008
+ 0.D15
1009
+ Difference
1010
+ 0.D10
1011
+ 0.D05
1012
+ 0.0O0
1013
+ 0.D
1014
+ t0
1015
+ 0.6
1016
+ 0.B
1017
+ 1D
1018
+ conbrast fectarFeedback-Gated Rectified Linear Units
1019
+ Figure 20. Visualisation of activations in the MNIST autoencoder
1020
+ for one particular test instance. The leftmost column corresponds
1021
+ to the input layer and the remaining columns correspond to the
1022
+ first encoding layer, the second encoding layer, the first decoding
1023
+ layer, and the second decoding layer, respectively. The number of
1024
+ rectangles in each column corresponds to the number of units in
1025
+ that layer. Larger values are represented by green coloured rect-
1026
+ angles, and smaller values by white ones. Top: first pass, bottom:
1027
+ second pass.
1028
+ Figure 21. T-SNE visualisation of the second encoding layer of
1029
+ the autoencoder over the whole MNIST test set. From top to bot-
1030
+ tom: first pass, second pass, first pass with noise (as described in
1031
+ section 4.1.4), second pass with noise.
1032
+
1033
+ 50
1034
+ 25
1035
+ 0
1036
+ 25
1037
+ 50
1038
+ 75
1039
+ 100
1040
+ 75
1041
+ 50
1042
+ -25
1043
+ 0
1044
+ 25
1045
+ 5050
1046
+ 25
1047
+ 0
1048
+ 25
1049
+ 50
1050
+ 75
1051
+ 60
1052
+ 40
1053
+ -20
1054
+ 0
1055
+ 21
1056
+ 4025
1057
+ +
1058
+ 25
1059
+ 50
1060
+ 75
1061
+ 60
1062
+ 40
1063
+ -20
1064
+ 0
1065
+ 24
1066
+ 40
1067
+ 824
1068
+ 0
1069
+ -20
1070
+ 40
1071
+ 80
1072
+ 80
1073
+ 60
1074
+ 40
1075
+ -20
1076
+ 0
1077
+ 2
1078
+ 40
1079
+ 84Feedback-Gated Rectified Linear Units
1080
+ Figure 22. Histograms as seen in section 4.1.3, but for the autoencoder with comprehensive feedback.
1081
+
1082
+ 1
1083
+ Ho
1084
+ 1 - min(e μo.βmax
1085
+ COIDODE
1086
+ 1250001
1087
+ 2500000
1088
+ Encoder
1089
+ OADOSE
1090
+ 150000
1091
+ ODOS
1092
+ CODO
1093
+ 2500D0
1094
+ 500000
1095
+ 0
1096
+ 0
1097
+ 2
1098
+ 4
1099
+ 6
1100
+ 14
1101
+ 15000
1102
+ 000
1103
+ 12500
1104
+ Encoder
1105
+ 7500
1106
+ 40000
1107
+ 5000
1108
+ 2500
1109
+ DO
1110
+ 5
1111
+ 15
1112
+ 253035
1113
+ 40
1114
+ 2
1115
+ 3
1116
+ 4
1117
+ 5
1118
+ 7
1119
+ 9
1120
+ ONDO
1121
+ CODODE
1122
+ 240000
1123
+ DOIDOEL
1124
+ 0
1125
+ 500
1126
+ 400
1127
+ DOE-
1128
+ 200
1129
+ DOL-
1130
+ 0
1131
+ 0.
1132
+ 0
1133
+ 4
1134
+ 6
1135
+ 8
1136
+ 1Feedback-Gated Rectified Linear Units
1137
+ Figure 23. Different gain values are manually fed into the second encoding layer of the network and the resulting reconstruction is
1138
+ visualised. In each of the above images, one specific input image is presented to the network, but the gain is varied. In row i of each
1139
+ image, every unit of the second encoding layer receives a gain of 10, except for unit i, which receives a gain between 0 and 10, depending
1140
+ on the column it is in. When using the MNIST autoencoder with comprehensive feedback, it can be observed that only one unit in the
1141
+ second encoding layer has any variation in gain (the remaining ones have a constant gain of 10 regardless of the input). This one unit
1142
+ corresponds to the fourth row from the bottom of each image and seems to be responsible for setting the ‘intensity‘ of the reconstruction.
1143
+
1144
+ 77777777
1145
+ 7777777
1146
+ 777777
1147
+ 777777
1148
+ 7
1149
+ 7
1150
+ 7
1151
+ 7
1152
+ 7
1153
+ Z
1154
+ 7777777
1155
+ 7
1156
+ 7
1157
+ 7777777
1158
+ 7
1159
+ 7
1160
+ 777777777
1161
+ 7
1162
+ 7777777777722222271
1163
+ 222222222
1164
+ 3333222222
1165
+ ZZZZZEEEE1
1166
+ 3
1167
+ 222222222
1168
+ 222222222
1169
+ 22222222222hhhhhhhhhhh
1170
+ hhhtttt
1171
+ 4
1172
+ 44444
1173
+ hhhhh
1174
+ 4
1175
+ hhhhh
1176
+ 4
1177
+ 4
1178
+ 4
1179
+ 4
1180
+ hhhhhbbbt
1181
+ 44444444444G
1182
+ G
1183
+ 799977
1184
+ G6666665555Feedback-Gated Rectified Linear Units
1185
+ Figure 24. CIFAR-10 classification as seen in section 4.2.3. From
1186
+ top to bottom: test set accuracy, training set loss, training set accu-
1187
+ racy, training set loss after applying a moving average filter (win-
1188
+ dow size 100).
1189
+
1190
+ 0.B
1191
+ 0.7
1192
+ 0.6 -
1193
+ 0.4
1194
+ 0.3 -
1195
+ 0.2
1196
+ Without feedback
1197
+ 0.1
1198
+ With feedback
1199
+ 0
1200
+ 25000 50000 75000 140000125000150000175000240000
1201
+ #betches225
1202
+ Without feedback
1203
+ With feedback
1204
+ 200
1205
+ 175
1206
+ 150
1207
+ LDO -
1208
+ 0.75
1209
+ 0.50
1210
+ 0
1211
+ 25000 50000 75000 140000125000150000175000240000
1212
+ # babches0.9
1213
+ 0.B
1214
+ 0.7 -
1215
+ 0.6
1216
+ 0.4
1217
+ 0.3
1218
+ 0.2
1219
+ Without feedback
1220
+ 0.1
1221
+ With feedback
1222
+ 0
1223
+ 25000 50000 75000 140000125000150000175000240000
1224
+ # babches13
1225
+ Without feedback
1226
+ 12
1227
+ With feedback
1228
+ 11
1229
+ LD
1230
+ 0.9
1231
+ 0.B
1232
+ 0.7
1233
+ 0.6
1234
+ 0
1235
+ 75000 140000 125000 150000 175000
1236
+ # betches
3NE0T4oBgHgl3EQfuwHF/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
4tA0T4oBgHgl3EQfNf_3/content/2301.02149v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb51439cc3829145a3ce0dd987b84eaea7287d77061740c63b26abc3e1242dd8
3
+ size 600062
4tA0T4oBgHgl3EQfNf_3/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fad4cfe1776d7a9fbcf5b8ca78f7ca85143c3172a490f836eb5f87186595af66
3
+ size 4522029
4tA0T4oBgHgl3EQfNf_3/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37eb21c848c9cf7f9b1f539e1459f4e8134ab905f1416f7a8a0b797d55f3ef5a
3
+ size 189141
5tAzT4oBgHgl3EQfu_3x/content/tmp_files/2301.01701v1.pdf.txt ADDED
@@ -0,0 +1,1558 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Extending Source Code Pre-Trained Language
2
+ Models to Summarise Decompiled Binaries
3
+ Ali Al-Kaswan
4
+ Delft University of Technology
5
+ Delft, The Netherlands
6
+ a.al-kaswan@tudelft.nl
7
+ Toufique Ahmed
8
+ University of California, Davis
9
+ Davis, California, USA
10
+ tfahmed@ucdavis.edu
11
+ Maliheh Izadi
12
+ Delft University of Technology
13
+ Delft, The Netherlands
14
+ m.izadi@tudelft.nl
15
+ Anand Ashok Sawant
16
+ University of California, Davis
17
+ Davis, California, USA
18
+ asawant@ucdavis.edu
19
+ Prem Devanbu
20
+ University of California, Davis
21
+ Davis, California, USA
22
+ ptdevanbu@ucdavis.edu
23
+ Arie van Deursen
24
+ Delft University of Technology
25
+ Delft, The Netherlands
26
+ arie.vandeursen@tudelft.nl
27
+ Abstract—Binary reverse engineering is used to understand
28
+ and analyse programs for which the source code is unavailable.
29
+ Decompilers can help, transforming opaque binaries into a
30
+ more readable source code-like representation. Still, reverse
31
+ engineering is difficult and costly, involving considering effort
32
+ in labelling code with helpful summaries. While the automated
33
+ summarisation of decompiled code can help reverse engineers
34
+ understand and analyse binaries, current work mainly focuses on
35
+ summarising source code, and no suitable dataset exists for this
36
+ task. In this work, we extend large pre-trained language models of
37
+ source code to summarise de-compiled binary functions. Further-
38
+ more, we investigate the impact of input and data properties on the
39
+ performance of such models. Our approach consists of two main
40
+ components; the data and the model. We first build CAPYBARA,
41
+ a dataset of 214K decompiled function-documentation pairs
42
+ across various compiler optimisations. We extend CAPYBARA
43
+ further by removing identifiers, and deduplicating the data.
44
+ Next, we fine-tune the CodeT5 base model with CAPYBARA to
45
+ create BinT5. BinT5 achieves the state-of-the-art BLEU-4 score
46
+ of 60.83, 58.82 and, 44.21 for summarising source, decompiled,
47
+ and obfuscated decompiled code, respectively. This indicates that
48
+ these models can be extended to decompiled binaries successfully.
49
+ Finally, we found that the performance of BinT5 is not heavily
50
+ dependent on the dataset size and compiler optimisation level.
51
+ We recommend future research to further investigate transferring
52
+ knowledge when working with less expressive input formats such
53
+ as stripped binaries.
54
+ Index Terms—Decompilation, Binary, Reverse Engineering,
55
+ Summarization, Deep Learning, Pre-trained Language Models,
56
+ CodeT5, Transformers
57
+ I. INTRODUCTION
58
+ Reverse engineering binary programs has many applica-
59
+ tions, in particular, software security [1]. Binary reverse
60
+ engineering is a hard task, requiring highly skilled reverse
61
+ engineers [1, 2]. Disassemblers and decompilers can help
62
+ in this process. Disassemblers transform the binary into a
63
+ low-level intermediate representation, and decompilers lift
64
+ the representation to a high-level programming language-like
65
+ representation. But the output of decompilers is still difficult
66
+ to read and understand [1, 3]. Much of the work that goes
67
+ into reverse engineering a binary is spent labelling functions
68
+ with semantic descriptions [1]. Current approaches [4–10]
69
+ mainly focus on recovering aspects lost in the compilation
70
+ and decompilation process, such as names and types. Existing
71
+ works fail to address the inherent difficulties in binary code
72
+ comprehensibility, namely, the need for a high-level overview
73
+ of the code.
74
+ For source code, methods exist to automatically generate
75
+ summaries from code [11, 12]. Source code summarisation
76
+ is used to automatically generate short natural language de-
77
+ scriptions of code, which support program comprehension
78
+ and aid maintenance [12, 13]. While these methods have
79
+ been successfully applied to programming languages such as
80
+ Python, Java and PHP [14–16], using pre-trained language
81
+ models [14–16], none of these methods has been applied to
82
+ the relatively syntactically-poor output of decompilers (see
83
+ Figures
84
+ 1a and
85
+ 1b). Being able to quickly determine the
86
+ context and application of a function, can save valuable
87
+ analysis time, and greatly benefit reverse engineers. Function
88
+ and variable names alone, are inadequate representations of the
89
+ source code [12], which is why having descriptive summaries
90
+ of binaries is desirable.
91
+ Following [17], source code can be described as having
92
+ two information channels: the algorithmic channel and the
93
+ natural language channel. The algorithmic channel specifies
94
+ the execution of a program (semantics), while the natural
95
+ language channel explains the purpose and context of the
96
+ program to humans [17]. The natural channel includes function
97
+ and variable names, code comments and the specific human-
98
+ readable structure of programs. Processors only consider the
99
+ algorithmic channel to execute a program, while humans use
100
+ both the algorithmic channel and the natural channel to under-
101
+ stand a piece of code [17]. Furthermore, code is very regular
102
+ and predictable, even more so than natural languages [18].
103
+ The compilation process, which transforms readable code
104
+ into executable binaries, removes much of the information
105
+ contained in the natural channel. Especially stripped binaries
106
+ — binaries of which the symbol table is removed — are
107
+ challenging, since they have almost no identifiers at all as
108
+ arXiv:2301.01701v1 [cs.CR] 4 Jan 2023
109
+
110
+ can be observed in Figure 1c.
111
+ The goal of this paper is to advance the field of binary
112
+ reverse engineering by exploring the application of code
113
+ summarisation to decompiled binaries by taking advantage of
114
+ source code pre-trained language models.
115
+ However, there exists no dataset of aligned binaries and
116
+ source code summaries since this is a new and unexplored
117
+ task. As pointed out by LeClair and McMillan, the lack of
118
+ standardised datasets is a major barrier to ongoing research,
119
+ which we will address for this task [19]. In this paper, we
120
+ create a dataset containing pairs of decompiled and stripped-
121
+ decompiled functions and summaries of these functions. Dur-
122
+ ing the creation of this dataset, we conform to the current best
123
+ practices for dataset construction [19, 20].
124
+ We apply this dataset to an existing pre-trained language
125
+ model using transfer learning, by fine-tuning this pre-trained
126
+ model on our dataset. For this task, we selected a pre-trained
127
+ CodeT5 model, which was only trained on source code [14].
128
+ We perform experiments on this model to explore the
129
+ impact of decompilation, and the importance of identifiers.
130
+ Furthermore, we explore the impact of compiler optimisation
131
+ levels, the dataset size and the level of duplication.
132
+ Our findings are that the decompilation and alignment
133
+ of stripped functions has a very high failure rate; and the
134
+ resulting stripped model has low performance. But, we found
135
+ that the model shows state-of-the-art performance with both
136
+ decompiled code as well as demi-stripped stripped code, code
137
+ of which the identifiers were removed after decompilation. Our
138
+ experiments on data duplication and dataset size further show
139
+ that these models can be trained with few data, and that while
140
+ duplicates have a high impact on performance, their presence
141
+ is not paramount to model performance.
142
+ Our key result: language models pre-trained on source code
143
+ can be fine-tuned on binaries, opening up a range of new
144
+ possibilities for the automated analysis of binaries.
145
+ To summarise, the main contributions of this paper are:
146
+ • CAPYBARA1, a dataset of Combined Aligned de-
147
+ comPiled BinarY code And Related Annotations. A novel
148
+ dataset of aligned, C, decompiled, stripped-decompiled
149
+ and demi-stripped summary pairs2 (Section III);
150
+ • BinT53, a Binary summarisation CodeT5 model, a simple
151
+ and straightforward adaptation of a source code trained
152
+ code summarisation model to decompiled code using
153
+ CAPYBARA (Section IV);
154
+ • An empirical investigation on the impact of the properties
155
+ of decompiled code and the properties of CAPYBARA
156
+ (Sections V and VI);
157
+ The materials, including the processed and raw data, the
158
+ trained model checkpoints and steps to replicate our exper-
159
+ iments, are openly available in our replication package4.
160
+ 1CAPYBARA: https://doi.org/10.5281/zenodo.7229809
161
+ 2Decompiled code with strip-like obfuscation applied
162
+ 3BinT5: https://doi.org/10.5281/zenodo.7229913
163
+ 4Replication package: https://github.com/AISE-TUDelft/Capybara-BinT5
164
+ II. BACKGROUND
165
+ In this section, we introduce the background of compilers,
166
+ binary reverse engineering, transfer learning and the code
167
+ summarisation task.
168
+ A. Compilers and Optimisation Levels
169
+ Compilers are programs that convert source code from one
170
+ programming language to another, but generally, and in the
171
+ context of this work, the term is used to refer to programs
172
+ that translate high-level code, like C, to a lower-level language
173
+ such as machine code or bytecode. For our work, we focus
174
+ on the GNU Compiler Collection (GCC)5 and Clang/LLVM
175
+ (Clang).6
176
+ Compilers feature optimisation levels. Generally, the goal of
177
+ optimisations is the improvement of runtime performance or
178
+ program size at the expense of compilation time and the ability
179
+ to debug [21]. Compilers use optimisation flags, grouped into
180
+ optimisation levels, where each level uses a different set of
181
+ optimisation flags.
182
+ By default, if GCC is invoked without any optimisation
183
+ options, the program will be compiled with -O0. -O1, -O2
184
+ and -O3 incrementally apply more optimisation to the binary
185
+ at the expense of a higher compilation time [22]. Optimisations
186
+ can restructure and transform the program in relation to the
187
+ source code, by changing the control flow or the data of the
188
+ program [23]. This obfuscation can complicate the reverse
189
+ engineering process by reducing the accuracy of tools [23].
190
+ B. Ghidra
191
+ Ghidra7 is a free and open-source reverse engineering
192
+ toolkit developed by the US National Security Agency. Ghidra
193
+ contains many separate analysis modules that allow a reverse
194
+ engineer to analyse binaries. Ghidra features a disassembler,
195
+ which assembles binaries back into an intermediate represen-
196
+ tation. In the case of x86-x64 binaries like the binaries this
197
+ work focuses on, the intermediate representation will be the
198
+ Assembly language. The decompiler, on the other hand, is a
199
+ processor language-agnostic transformation engine that takes
200
+ the disassembled code and creates a source code representa-
201
+ tion, namely pseudo-C. Pseudo-C follows the general language
202
+ conventions of C, but it cannot be compiled.
203
+ Observe the relatively simple rtp sess ssrc function from
204
+ creytiv/re8 shown in Figure 1a. We compile the project using
205
+ the -O3 compiler level as defined in the project. We decompile
206
+ the binaries using Ghidra’s decompiler using the standard
207
+ configuration, the resulting pseudo-code is shown in Figure 1b.
208
+ We observe that aside from the function name, almost the
209
+ entire natural channel has been destroyed by the compilation
210
+ and decompilation process. The parameter and variable names
211
+ are gone, any documentation is removed and the relatively
212
+ simple logic has been unrolled to a much more difficult-
213
+ to-understand representation. Ghidra also incorrectly labelled
214
+ 5GCC: https://gcc.gnu.org/
215
+ 6Clang: https://clang.llvm.org/
216
+ 7Ghidra: https://ghidra-sre.org/
217
+ 8re: https://github.com/creytiv/re
218
+ 2
219
+
220
+ /**
221
+ * Get the Synchronizing source for an RTP/RTCP
222
+ Socket
223
+ �→
224
+ * @param rs RTP Socket
225
+ * @return Synchronizing source
226
+ */
227
+ uint32_t rtp_sess_ssrc(const struct rtp_sock *rs){
228
+ return rs ? rs -> enc.ssrc : 0;}
229
+ (a) Source rtp sess ssrc function
230
+ ulong rtp_sess_ssrc(long param_1){
231
+ uint local_14 ;
232
+ if (param_1 == 0){
233
+ local_14 = 0;
234
+ } else {
235
+ local_14 = * (uint *) (param_1 + 4);}
236
+ return (ulong) local_14;
237
+ }
238
+ (b) Decompiled rtp sess ssrc function
239
+ ulong FUN_00100d30 ( long param_1 ){
240
+ uint local_14 ;
241
+ if (param_1 == 0) {
242
+ local_14 = 0 ;
243
+ } else {
244
+ local_14 = * (uint *) (param_1 + 4);}
245
+ return ( ulong ) local_14 ;}
246
+ (c) Stripped decompiled rtp sess ssrc function
247
+ Fig. 1: Example source, decompiled and stripped code snippet
248
+ many of the variable types and failed to identify the struct
249
+ datatype.
250
+ Using our trained BinT5 model we can summarise the
251
+ decompiled code and generate the following summary: Get
252
+ the source for an RTP/RTCP Socket. This summary gives us
253
+ an indication of the purpose of the function. Integrating this
254
+ generated summary into Ghidra increases the readability of
255
+ the entire binary. Keep in mind that a reverse engineer has
256
+ to understand not just this function, but hundreds of different
257
+ functions in a single binary.
258
+ C. Stripping
259
+ Aside from compiling with higher optimisation levels, bi-
260
+ naries can also be stripped to obfuscate the underlying code
261
+ and to resist analysis [24]. Commercial off-the-shelf software
262
+ is often stripped to reduce the memory and storage footprint
263
+ of the binaries, and to resist analysis to protect the intellectual
264
+ property of the creator. Many vulnerable and malicious bina-
265
+ ries are, unfortunately, also stripped to resist security analysis
266
+ and hide their faults [5].
267
+ Unix and Unix-like operating systems include a strip utility.
268
+ The strip utility removes any operands that are not nec-
269
+ essary for the execution of the binary while ensuring that
270
+ the execution of the binary remains unchanged. The exact
271
+ implementation and what constitutes unnecessary operands are
272
+ left to the implementor.9 The strip utility as implemented in
273
+ GNU/Linux removes the symbol table from the binary. The
274
+ symbol table contains each symbol’s location, type and name.
275
+ Like higher optimisation levels, the use of stripping can
276
+ greatly complicate the efforts to reverse engineer a binary,
277
+ as well as reduce the accuracy and effectiveness of reverse
278
+ engineering tools [24].
279
+ For example, we compile, strip and decompile the function
280
+ in Figure 1a, and the resulting stripped decompiled function
281
+ is shown in Figure 1c. In addition to the details lost by the
282
+ decompilation process, the stripper removed all symbols, like
283
+ the function names.
284
+ D. Code Summarisation Task:
285
+ Code summarisation (also referred to as source code sum-
286
+ marisation) is the task of writing short descriptions from
287
+ source code, usually a single-sentence summary of the source
288
+ code. The main use is for software documentation, like the
289
+ one-sentence JavaDoc description used in Java [19]. This
290
+ documentation is important for program comprehension and
291
+ maintenance. But the process of writing and maintaining
292
+ these descriptions is a labour-intensive and time-consuming
293
+ task, which is where the benefits of automating that process
294
+ arise. Automatic code summarisation is an active and popular
295
+ research problem in the field of software engineering [19].
296
+ E. Transformer-based Models
297
+ Transformers were originally proposed by Vaswani et al.
298
+ as a sequence-to-sequence architecture [25]. Unlike the Re-
299
+ current Neural Networks [26] (RNN), the Long Short-Term
300
+ Memory [27] (LSTM) variant of RNNs [26] and Convolutional
301
+ Neural Networks [28] (CNN), Transformers only use a mecha-
302
+ nism called self-attention to capture dependencies between the
303
+ input and output. The current state-of-the-art NLP models for
304
+ programming languages such as CodeT5 [14], CodeBERT [15]
305
+ and PolyGlotCodeBERT [16] are all based on the Transformer
306
+ architecture [25].
307
+ F. Transfer Learning
308
+ Pre-trained Transformers-based language models, such as
309
+ RoBERTa [29], CodeBERT [15] and CodeT5 [14] utilise
310
+ a pre-train then fine-tune paradigm. The bespoke paradigm
311
+ was initially introduced by Kenton and Toutanova. In this
312
+ paradigm, the models are first trained in an unsupervised
313
+ manner on a large unlabelled dataset. These pre-trained models
314
+ can then be fine-tuned to perform a more specialised task,
315
+ such as summarisation. Transfer learning uses the knowledge
316
+ that is obtained in one task to solve a different task. It
317
+ allows the creation of general models that are trained once
318
+ on massive datasets. These general models, which contain
319
+ general domain knowledge can then be fine-tuned for a specific
320
+ downstream task. This approach is quicker and requires less
321
+ training data than training a model on the downstream task
322
+ from scratch [30].
323
+ 9strip: https://pubs.opengroup.org/onlinepubs/7908799/xcu/strip.html
324
+ 3
325
+
326
+ Source
327
+ Code
328
+ Compilation
329
+ Decompilation
330
+ Decompiled
331
+ </>
332
+ Stripping
333
+ Decompilation
334
+ Function
335
+ Extraction
336
+ </>
337
+ Comment
338
+ Alignment
339
+ Comment
340
+ Alignment
341
+ Stripped
342
+ Comment
343
+ Extraction
344
+ Demi-Stripped
345
+ Comment
346
+ Alignment
347
+ Demi
348
+ Stripping
349
+ Fig. 2: Data Collection Pipeline
350
+ III. CAPYBARA DATASET
351
+ We require a dataset of decompiled functions labelled with
352
+ a descriptive summary to create and assess our solution. This
353
+ dataset should be relatively large to suit the ‘data-hungry’
354
+ nature of deep-learning models. Furthermore, the dataset needs
355
+ to feature a diverse set of data representative of our solution’s
356
+ actual real-life use case.
357
+ A. Data Collection
358
+ To create such a large and diverse dataset we made use
359
+ of BinSwarm [7], an existing dataset of aligned decompiled
360
+ and stripped decompiled functions10. BinSwarm collects C-
361
+ based projects from Github. The projects are filtered to only
362
+ include those that are actively being developed, using Travis
363
+ CI and built for Ubuntu Linux. The projects are built using
364
+ Docker. The resulting binaries are then copied and stripped,
365
+ and both the stripped and unstripped binaries are decompiled
366
+ using Ghidra. The functions are extracted from the stripped
367
+ and unstripped decompiled code and aligned with the source
368
+ code. The BinSwarm dataset only contains aligned tuples of
369
+ source code and (stripped-) decompiled functions. We extract
370
+ documentation from the original source code files to add
371
+ descriptive comments to this dataset. To that end, we depend
372
+ on the documentation included in the source code by the
373
+ original authors in the form of single and multiline comments.
374
+ We locate the functions in the unbuilt project files and align the
375
+ decompiled functions with the comments in the source code
376
+ using srcML11 to extract any documentation located directly
377
+ before a function signature. A high-level overview of the entire
378
+ process is shown in Figure 2.
379
+ A function’s documentation often also contains other details
380
+ besides the descriptive summary. We found that C projects
381
+ do not follow a single documentation standard. For example,
382
+ Javadoc for Java has a short one-line description or summary
383
+ for each method at the beginning of the multiline comment
384
+ 10BinSwarm: https://hub.docker.com/r/binswarm/cbuilds
385
+ 11srcML: https://www.srcml.org/
386
+ /** @brief Select the source of Microcontroller
387
+ Clock Output
388
+ �→
389
+ * Exact sources available depend on your target.
390
+ * On devices with multiple MCO pins, this function
391
+ controls MCO1
392
+ �→
393
+ * @param[in] mcosrc the unshifted source bits
394
+ */
395
+ Fig. 3: Example of documentation from jeanthom/ DirtyJTAG:
396
+ rcc set mco
397
+ block. In C, there is no singular documentation standard, so
398
+ there might not be a single-line summary, and we will need
399
+ to locate it in the comment block automatically.
400
+ a) Summary Extraction Rules: We observe that the ma-
401
+ jority of single-line data are descriptive summaries, so we
402
+ extract the first sentence. We identify many documentation
403
+ styles in our multi-line data, we define some automated rules
404
+ to extract summaries from the documentation:
405
+ • @brief or @purpose: If the documentation contains a
406
+ ‘@brief’ or ‘@purpose’ tag, we extract the first sentence
407
+ after the tag. The ‘brief‘ tag is part of the Doxygen docu-
408
+ mentation standard12, an example is shown in Figure 313.
409
+ • Description: If the documentation contains a line with
410
+ ‘Description:‘, we extract the following sentence.
411
+ • @param or @v: Documentation that contains an ‘@v’
412
+ or ‘@param’ tag, usually has a summary in the sentence
413
+ before the tag. We extract that sentence.
414
+ b) Filtering Rules: To improve the quality of the dataset
415
+ we filter out samples based on the rules used by the Code-
416
+ SearchNet dataset [20] included in the CodeXGlue benchmark
417
+ for the summarisation task [31]:
418
+ • Documentation length: We remove any summaries that
419
+ are too long or too short and remove anything shorter
420
+ than 3 or longer than 256 tokens.
421
+ • Special tokens: We follow the example of the Code-
422
+ SearchNet [20] and remove all documentation that con-
423
+ tains special tokens. We scan for web tokens (like
424
+ ‘http://’), HTML tokens (like ‘<head>’), paths (like
425
+ ‘C://Users/..’), since this documentation usually refers to
426
+ external resources. We additionally filter any developer
427
+ tokens (like ‘FIXME:’), as these documents do not pro-
428
+ vide meaningful information about the function itself, but
429
+ contain comments about the development process.
430
+ • Language: We filter out any documentation that was not
431
+ written in English using the FastText language identifica-
432
+ tion algorithm [32]. Around 92.19% of the documentation
433
+ is in English.
434
+ • Empty documentation: We find that a large number of
435
+ functions did not have any documentation associated with
436
+ them at all. We simply remove these samples from the
437
+ dataset.
438
+ 12Doxygen:https://doxygen.nl/manual/docblocks.html
439
+ 13jeanthom/DirtyJTAG:rcc set mco:https://gitlab.com/
440
+ insane-adding-machines/unicore-mx/-/blob/master/lib/stm32/common/
441
+ rcc common all.c#L192
442
+ 4
443
+
444
+ GCC000• Abstract Syntax Tree: The authors of the CodeSearch-
445
+ Net dataset [20] additionally, remove any samples that do
446
+ not parse into an AST. We choose to omit this step since
447
+ all of our samples have been successfully compiled and
448
+ have thus at one point been parsed into an AST by the
449
+ compiler.
450
+ B. Dataset Preparation
451
+ a) Synthesis of Demi-stripped Code: From the dataset
452
+ of decompiled functions, we also create another dataset. We
453
+ emulate the process of stripping by removing all the iden-
454
+ tifiers from the decompiled code and replacing them with
455
+ placeholders. For clarity, we call this demi-stripped data. Like
456
+ the stripped dataset, the identifiers are all removed, but this is
457
+ only done after the decompilation process. The decompiler still
458
+ had access to the identifiers and could use the symbol table
459
+ during decompilation. Most importantly, this demi-stripped
460
+ dataset still has the same structure and control flow as the
461
+ unstripped decompiled dataset and avoids any decompilation
462
+ issues arising from stripping.
463
+ b) Data Split: The dataset is split into a train, test and
464
+ validation set. These sets constitute approximately, 80%, 10%
465
+ and 10%
466
+ [19] of the complete dataset. As recommended
467
+ by Shi et al. and LeClair and McMillan, we prevent leakage
468
+ of vocabulary and code patterns between the sets, by sampling
469
+ the sets in a cross-project manner [13, 19]. This means that an
470
+ entire project gets assigned to one of the sets, and functions
471
+ from the same project cannot be assigned to different sets. The
472
+ projects in the test and validation set are the same across all
473
+ datasets.
474
+ c) Duplication: Large corpora of code, like the cor-
475
+ pus gathered by BinSwarm, tend to have a high degree
476
+ of duplication [19]. As a result, snippets of code that are
477
+ relatively unchanged appear in multiple parts of the corpus.
478
+ This can be in the form of copied, generic or auto-generated
479
+ functions. These functions will appear in multiple repositories
480
+ and might be duplicated across the training and testing data.
481
+ Besides exact duplicates, near-duplicates can also occur. Near-
482
+ duplicates differ in a few minor aspects like additional code
483
+ comments or different function names. While removing exact
484
+ duplicates is relatively fast and straightforward, removing
485
+ near-duplicates is much more challenging and computationally
486
+ intensive [33]. The issue with code duplication in classical
487
+ code summarisation is that the models and tools are supposed
488
+ to be used to generate summaries for new and unseen code.
489
+ The evaluation metrics should therefore measure the gener-
490
+ alisation of the tool on new samples [33]. Duplicates and
491
+ near-duplicates are not defined as new samples. A user of
492
+ such a tool could simply look these samples up. Furthermore,
493
+ large, high-capacity models like CodeT5 with 220M [14] or
494
+ CodeBERT with 128M [15] parameters, have a large capacity
495
+ to memorise duplicated code [33].
496
+ However, the use case outlined in this work is more akin
497
+ to deobfuscation. As explained by Allamanis, deobfuscation
498
+ could be a use case where duplicates are valid and part of the
499
+ true distribution of the problem [33]. Compiled code contains
500
+ 0
501
+ 200
502
+ 400
503
+ 600
504
+ 800
505
+ 1000
506
+ 1200
507
+ 1400
508
+ Token count
509
+ 0.000
510
+ 0.001
511
+ 0.002
512
+ 0.003
513
+ 0.004
514
+ 0.005
515
+ Density
516
+ Source code
517
+ Decompiled code
518
+ Fig. 4: Tokens in source C and decompiled code
519
+ a lot of duplicate code, and understanding this code is still
520
+ difficult and essential for understanding the binary. While
521
+ regular source code allows the reader to look up code snippets,
522
+ decompiled binaries have an additional obfuscation applied.
523
+ We, therefore, focus on the model’s performance on code
524
+ with duplicates as we believe duplicates to be part of the true
525
+ distribution of the data, but we also report the deduplicated
526
+ results.
527
+ C. Dataset Properties
528
+ Table I shows the size of the processed dataset. Of the 2.1M
529
+ aligned decompiled functions, we extract documentation for
530
+ 215k of them, and we found that the majority of samples, 1.5M
531
+ did not have any documentation at all. Furthermore, BinSwarm
532
+ only provided us with 415k aligned stripped samples, and we
533
+ can extract documentation for only 14k of these samples.
534
+ Dataset
535
+ Including duplicates
536
+ Deduplicated
537
+ C/Demi/Decom
538
+ 214,587
539
+ 79,673
540
+ Stripped
541
+ 14,245
542
+ 7,826
543
+ TABLE I: Number of functions in dataset
544
+ The vast majority of documentation is in the form of
545
+ multi-line comments as opposed to single-line or double-slash
546
+ comments. We found that the documentation and comments
547
+ had a mean length of 42.60 and 8.14 tokens, respectively.
548
+ Figure 4 shows the distribution of the number of tokens in
549
+ source code and decompiled code. The source and decompiled
550
+ code have a mean length of 399 and 779 tokens, respectively.
551
+ Figure 5, shows that decompiled code also has close to double
552
+ the LOC of source code, with means of 30.77 and 53.42 lines
553
+ for source and decompiled, respectively.
554
+ The majority of decompiled functions are compiled with
555
+ optimisation level -O2, with a similar number of -O1 and -
556
+ O3 samples and relatively few -O0 samples. Stripped data has
557
+ a very even distribution of optimisation levels, with only -
558
+ O0 having significantly fewer samples. Note that there are
559
+ more optimisation levels than shown in Figure 6, for brevity
560
+ the different levels are grouped into their base optimisation
561
+ level. -Oa is grouped with -O0, -Of and -Og are grouped
562
+ with -O1, -Os is grouped with -O2. We also observe some
563
+ 5
564
+
565
+ 0
566
+ 25
567
+ 50
568
+ 75
569
+ 100
570
+ 125
571
+ 150
572
+ 175
573
+ 200
574
+ LOC
575
+ 0.00
576
+ 0.01
577
+ 0.02
578
+ 0.03
579
+ 0.04
580
+ 0.05
581
+ 0.06
582
+ Density
583
+ Source code
584
+ Decompiled code
585
+ Fig. 5: LOC in source C and decompiled code
586
+ 0
587
+ 1
588
+ 2
589
+ 3
590
+ Optimisation level
591
+ 0
592
+ 20000
593
+ 40000
594
+ 60000
595
+ 80000
596
+ 100000
597
+ 120000
598
+ Decompiled
599
+ 0
600
+ 1000
601
+ 2000
602
+ 3000
603
+ 4000
604
+ Stripped
605
+ Decompiled
606
+ Stripped
607
+ Fig. 6: Distribution of optimisation levels in decompiled (left)
608
+ and stripped (right)
609
+ samples with an optimisation level higher than -O3 (-O8 and
610
+ -O7), as specified by the GCC documentation, these levels are
611
+ equivalent to -O314.
612
+ IV. BINT5
613
+ We select CodeT5 [14] as the base-model for our experi-
614
+ ments since it is the highest-scoring publicly-available model
615
+ on the CodeXGLUE [31] Code Summarisation benchmark15.
616
+ CodeT5 is a programming language model built on the T5
617
+ (Text-to-text Transfer Transformer) architecture [34] and pre-
618
+ trained on a mix of supervised and unsupervised tasks. CodeT5
619
+ employs an encoder-decoder architecture. In contrast to other
620
+ models, CodeT5 is trained using both unimodal (PL only) and
621
+ bimodal (NL-to-PL) tasks in eight programming languages.
622
+ This bimodal training allows CodeT5 to perform strong cross-
623
+ modal tasks such as code summarisation and code generation
624
+ (PL-to-NL). Many other models only use the data and lan-
625
+ guages included in the CodeXGlue dataset [15, 16, 31], while
626
+ CodeT5 also uses a mined dataset of C and C++ code for
627
+ its pre-training objectives [14]. The inclusion of C training
628
+ data should help the model with the CAPYBARA dataset.
629
+ There could be some overlap in the training data between
630
+ CAPYBARA and the dataset used by Wang et al. which would
631
+ cause leakage, we address these concerns in Section VII.
632
+ 14GCC optimisation levels: https://gcc.gnu.org/onlinedocs/gcc-4.4.2/gcc/
633
+ Optimize-Options.html#Optimize-Options
634
+ 15CodeXGLUE benchmark: https://microsoft.github.io/CodeXGLUE/
635
+ Fine-Tuning
636
+ Base
637
+ Model
638
+ BinT5
639
+ Evaluation
640
+ Results
641
+ CAPYBARA
642
+ training & validation data
643
+ CAPYBARA
644
+ test data
645
+ Fig. 7: BinT5 fine-tuning pipeline
646
+ CodeT5 also utilises the transfer learning paradigm, which
647
+ allows us to train the model with relatively little data. In
648
+ this case, we make use of the CodeT5-base model, which
649
+ was trained on mixed upstream tasks by the authors [14]. An
650
+ overview of how we applied the model to create BinT5 is
651
+ provided in Figure 7.
652
+ V. EXPERIMENTAL SETUP
653
+ To assess the effectiveness of our approach, we first evaluate
654
+ the performance of the model, we then identify the aspects of
655
+ the data that make this task inherently difficult, and we finally
656
+ investigate aspects of the datasets and their influence on the
657
+ complexity of the task.
658
+ A. Research Questions
659
+ In the context of the study, we thereby formulate the
660
+ Research Questions (RQ) as follows.
661
+ RQ1: How effective are fine-tuned Transformer-based models
662
+ at decompiled code summarisation? To investigate the
663
+ application of existing models to binaries using CAPY-
664
+ BARA, we set a baseline by training a model on the code
665
+ summarisation task on the source C-code dataset. We then
666
+ train a summarisation model on both the decompiled and
667
+ the stripped dataset. We use the evaluation metrics to
668
+ compare the performance of the different models.
669
+ RQ2: Which aspects of the input contribute most to model per-
670
+ formance? We investigate which aspects of decompiled
671
+ code increase the difficulty of the task. We, therefore,
672
+ look at the impact of the symbol table on decompilation,
673
+ for this, we fine-tune a model on the demi-stripped dataset
674
+ and compare it to the other models. We also investigate
675
+ the importance of the function name by removing just the
676
+ function name from the decompiled code. Furthermore,
677
+ we investigate the impact of the optimisation level by
678
+ exploring the performance per optimisation level.
679
+ RQ3: What is the impact of dataset properties on model per-
680
+ formance? We finally investigate how the construction
681
+ of CAPYBARA influences the models. To answer the
682
+ final research question we remove the duplicates from
683
+ the datasets and retrain the models, after which we
684
+ compare the performance to the baselines. Furthermore,
685
+ we investigate the impact of dataset size, by incrementally
686
+ reducing the size of the training sets.
687
+ 6
688
+
689
+ "Summarize Python: def inc_value(x):
690
+ "increment value"
691
+ "Generate Python: increment value'
692
+ 'def inc_value(x)...
693
+ CodeT5
694
+ "Defect: if x=0: x += 1
695
+ "true"
696
+ "Refine: if x=0: x += 1'
697
+ "if x == 0: x += 1"
698
+ "Translate Python to C: if x==O: x += 1
699
+ "if (x==0) {x += 1;}"B. Baselines
700
+ To first establish a performance baseline, we train a CodeT5-
701
+ base model on the summarisation task on source C. Note
702
+ that only samples which are aligned with decompiled code
703
+ are included in the source C dataset. The baseline is used to
704
+ compare the decompiled C, stripped decompiled C and the
705
+ demi-stripped datasets to the source code.
706
+ C. Evaluation Metrics
707
+ We evaluate the performance between the reference sum-
708
+ mary from CAPYBARA and the candidate summary produced
709
+ by BinT5 using the EM, BLEU-4 [35], ROUGE-L [36] and,
710
+ METEOR [37] metrics.
711
+ a) Exact Match (EM): The simplest metric is the EM
712
+ which scores a prediction one if it matches its reference exactly
713
+ and zero otherwise.
714
+ b) BLEU-4: The most widely used metric in the code
715
+ summarisation task is the Bilingual Evaluation Understudy
716
+ Score (BLEU) [13]. BLEU-4 produces a percentage number
717
+ between 0 and 100, which defines the similarity between a
718
+ candidate and a set of reference sentences. BLEU-4 calculates
719
+ the cumulative 4-gram precision scores, the number of match-
720
+ ing 4-grams divided by the total number of 4-grams in the
721
+ candidate sentence [35]. The unigrams and bigrams account
722
+ for the adequacy of the candidate while the longer three and
723
+ 4-grams account for fluency. To prevent short sentences the
724
+ result is multiplied by a brevity penalty as well. A smoothing
725
+ function is applied to prevent sequences with no matching 4-
726
+ grams to score zero [38]. While Shi et al. recommend BLEU-4
727
+ with smoothing method 4 [13], we opted to use the Moses [39]
728
+ implementation of BLEU-4 which uses smoothing method 2
729
+ since this is also utilised by CodeSearchNet, CodeXGlue and
730
+ CodeT5 [14, 20, 31].
731
+ c) ROUGE-L: ROUGE or Recall-Oriented Understudy
732
+ for Gisting Evaluation, is a package which includes several
733
+ metrics, the most popular among them is ROUGE-L [36].
734
+ ROUGE-L is more recall oriented than BLEU-4. ROUGE-L
735
+ simply finds the longest common subsequence (LCS) between
736
+ the reference and the candidate. Note that the words do not
737
+ need to be consecutive but they have to be in order.
738
+ d) METEOR: METEOR or Metric for Evaluation for
739
+ Translation with Explicit Ordering [37] uses word lists and
740
+ stemming to also take synonyms into account and calculates
741
+ the harmonic mean of the unigram precision and recall. Similar
742
+ to ROUGE-L, METEOR is more recall-focused. METEOR has
743
+ a higher correlation with human judgement than BLEU-4 [19]
744
+ at the sentence level.
745
+ D. CodeT5 finetuning and testing
746
+ The concept of transfer learning, which is utilised in BinT5,
747
+ depends on the use of a fine-tuning step to train the pre-trained
748
+ model on the downstream task. We fine-tune a pre-trained
749
+ CodeT5-base model on the constructed dataset. The model is
750
+ trained on the summarisation task as defined in the model. We
751
+ train the model on the train set, then evaluate it after every
752
+ epoch on the validation set and finally test on the test set.
753
+ During training, we measure the model performance using the
754
+ BLEU-4 metric.
755
+ E. Data deduplication
756
+ To create a deduplicated version of the CAPYBARA
757
+ dataset we make use of a fork16 of the near-duplicate-code-
758
+ detector [33]. We use this tool to compare all the datasets’
759
+ functions and find clusters of near-duplicate functions. We
760
+ randomly select one function per cluster and discard the rest
761
+ from the dataset. We use the standard tool configuration as
762
+ recommended by Allamanis. Of the removed duplicates, we
763
+ observe that a relatively large number originates from common
764
+ libraries, such as SQLite17, that are packaged with binary
765
+ programs. Thus a certain amount of duplication is also likely
766
+ to occur “in the wild”.
767
+ F. Configuration
768
+ We process and visualise the data with Pandas 1.4.3 and
769
+ Ghidra 10.0.418. FastText 1.0.3 with the largest lid.176.bin
770
+ model is used to detect languages. We train the model using
771
+ Transformers version 4.16.2 running on Torch 1.9.0+cu111 in
772
+ the nvidia/cuda:11.4.0-base docker container image. We share
773
+ a Docker image with all the libraries required to run BinT5
774
+ pre-installed on DockerHub19.
775
+ A grid search of the optimal settings was infeasible from a
776
+ time perspective, so we performed training mainly using the
777
+ recommended settings from the CodeT5-base model [14]. We
778
+ double the source length for the decompiled, stripped, and
779
+ demi-stripped code to 512 tokens instead of the standard 256
780
+ tokens used for the source code to compensate for the fact
781
+ that the average length of decompiled code is almost twice as
782
+ long as the source code. We trained the model on a machine
783
+ with an NVIDIA GeForce RTX3080 with 10GB of VRAM
784
+ and an AMD Ryzen Threadripper 3990X 64-Core Processor
785
+ with 192GB of RAM running Ubuntu 20.04.4 LTS. The GPU
786
+ is running Nvidia driver version 510.60.02 with Cuda 11.6.
787
+ The authors of CodeT5 used an NVIDIA A100 GPU with
788
+ 40GB of VRAM for fine-tuning [14]. To compensate for the
789
+ lack of memory, we reduced the batch size to 2, which was the
790
+ maximum length that could still fit in the VRAM, we increase
791
+ the ‘gradient accumulation steps’ to 24 to still achieve the
792
+ effective standard batch size of 48.
793
+ VI. RESULTS
794
+ We present the results of our experiments to answer the
795
+ research questions, results are grouped per research question.
796
+ The metrics are calculated for each sample from the test set,
797
+ and the average scores are presented.
798
+ A. RQ1: Model Effectiveness
799
+ The performance of the CodeT5-base model on each of the
800
+ datasets is presented in table II.
801
+ 16Near
802
+ Duplicate
803
+ Code
804
+ Detector:
805
+ https://github.com/SERG-Delft/
806
+ near-duplicate-code-remover
807
+ 17SQLite: https://www.sqlite.org/index.html
808
+ 18It is not recommended to use Ghidra versions before 10.1 since these
809
+ versions have not been patched against a Log4J RCE
810
+ 19BinT5 Docker Image: https://hub.docker.com/r/aalkaswan/bint5/tags
811
+ 7
812
+
813
+ BLEU-4
814
+ EM
815
+ METEOR
816
+ ROUGE-L
817
+ C
818
+ 60.83
819
+ 52.19
820
+ 65.33
821
+ 66.51
822
+ DecomC
823
+ 58.82
824
+ 48.92
825
+ 63.14
826
+ 64.51
827
+ Stripped
828
+ 11.26
829
+ 1.85
830
+ 14.50
831
+ 17.25
832
+ TABLE II: Result of fine-tuning CodeT5-base on mined
833
+ datasets
834
+ BLEU-4
835
+ EM
836
+ METEOR
837
+ ROUGE-L
838
+ DecomC
839
+ 58.82
840
+ 48.92
841
+ 58.4
842
+ 60.32
843
+ Demi
844
+ 44.21
845
+ 35.10
846
+ 47.89
847
+ 49.59
848
+ NoFunName
849
+ 46.99
850
+ 37.12
851
+ 45.92
852
+ 48.07
853
+ TABLE III: Result of fine-tuning CodeT5-base on synthetic
854
+ data
855
+ We found that the decompiled code model generally pro-
856
+ duced good summaries, evidenced by the BLEU-4 score of
857
+ 58.82, which is slightly lower than the baseline set by the
858
+ source code. The stripped model mainly produced unusable
859
+ summaries, as evidenced by the BLEU-4 score of 11. The
860
+ high EM score could be an indication of a high duplication
861
+ factor.
862
+ Initial experiments with GraphCodeBERT [40] and Poly-
863
+ glotGraphCodeBERT [16] base models fine-tuned on CAPY-
864
+ BARA show performance around 5 and 3 BLEU-4 lower,
865
+ respectively. This is a relatively small difference, especially
866
+ considering the model size. This shows that the performance of
867
+ BinT5 does not heavily depend on the additional pre-training
868
+ on C and C# performed by Wang et al.. Furthermore, this result
869
+ shows that it is improbable that significant dataset leakage has
870
+ taken place.
871
+ We found a relatively large difference between the number
872
+ of recovered decompiled and stripped decompiled functions.
873
+ This can likely be attributed to the fact that Ghidra struggles
874
+ a lot more with recovering stripped functions. Recall that the
875
+ symbol table commonly contains information regarding the
876
+ location and name of functions. When this table is dropped,
877
+ the start- and endpoints of functions are hard to infer by
878
+ automatic tools, especially since many functions get inlined,
879
+ and JUMP instructions replace CALL instructions. Aside from
880
+ difficulties in demarcating functions, it is also difficult to
881
+ align the associated source code function with the decompiled
882
+ function. With unstripped code, the function name remains,
883
+ meaning the functions can be aligned using the name. We
884
+ attempted to utilise an existing solution by Alves-Foss and
885
+ Song called Jima [41] to find function boundaries. Jima is the
886
+ current state-of-the-art tool for function boundary detection
887
+ in stripped binaries. The tool is implemented as a plugin for
888
+ Ghidra, but in our experiments, we find no statistical difference
889
+ between the base performance of Ghidra and Jima on our
890
+ dataset. The difficulties in extracting stripped functions, make
891
+ training and applying a model to stripped binaries challenging.
892
+ Opt level
893
+ BLEU-4
894
+ EM
895
+ METEOR
896
+ ROUGE-L
897
+ -O0
898
+ 72.88
899
+ 34.18
900
+ 73.19
901
+ 74.84
902
+ -O1
903
+ 50.30
904
+ 59.84
905
+ 55.36
906
+ 54.84
907
+ -O2
908
+ 62.31
909
+ 46.23
910
+ 64.50
911
+ 66.05
912
+ -O3
913
+ 54.68
914
+ 54.99
915
+ 58.25
916
+ 59.28
917
+ TABLE IV: Average BLEU-4 score of decompiled code per
918
+ optimisation level
919
+ B. RQ2: Input Properties
920
+ As can be observed in Table III, the summaries produced
921
+ by the demi-stripped model were substantially worse than the
922
+ decompiled model, but most were still very usable, evident
923
+ by the BLEU-4 score above 44. Just removing the function
924
+ name gave quite similar results to demi-stripping. We find that
925
+ the loss of identifiers significantly lowers the performance of
926
+ the model, but stripped code also suffers from decompilation
927
+ faults, which seem to have a much larger impact on the model
928
+ performance. Hence, the performance of BinT5 on demi-
929
+ stripped code can be viewed as more representative of the
930
+ actual model and not impacted by faults introduced by Ghidra.
931
+ Table IV shows the average score per optimisation level. We
932
+ can observe that -O0 and -O2 perform better than -O1 and -
933
+ O3. Recall that -O0 is completely unoptimised, and that the
934
+ vast majority of our decompiled dataset is compiled with -O2,
935
+ which would explain why those optimisation levels perform
936
+ better.
937
+ C. RQ3: Dataset Properties
938
+ The performance of the base model on each of the dedupli-
939
+ cated datasets is presented in table V:
940
+ BLEU-4
941
+ EM
942
+ METEOR
943
+ ROUGE-L
944
+ ∆BLEU-4
945
+ C
946
+ 45.86
947
+ 32.87
948
+ 46.06
949
+ 47.53
950
+ 14.97
951
+ DecomC
952
+ 42.48
953
+ 28.08
954
+ 25.23
955
+ 27.66
956
+ 16.34
957
+ Demi
958
+ 25.38
959
+ 14.51
960
+ 42.47
961
+ 44.47
962
+ 18.83
963
+ Stripped
964
+ 7.19
965
+ 0.00
966
+ 4.75
967
+ 5.50
968
+ 4.07
969
+ TABLE V: Result of fine-tuning CodeT5-base on the dedupli-
970
+ cated datasets and the difference with the baseline
971
+ We find that the influence of deduplication on our model’s
972
+ performance is relatively small on source code, at only 24%.
973
+ Duplicates have a relatively large impact on the decompiled
974
+ (28%) and demi-stripped (43%) code. Deduplication also
975
+ greatly decreases the EM rate across the board. Duplicates
976
+ have a relatively large impact on performance, but even with
977
+ the duplicates removed the model still produces many high-
978
+ quality summaries. The experiments on deduplication show
979
+ that the model seems to have a deeper understanding of the
980
+ data and is not simply reproducing previously seen samples.
981
+ As can be seen in Figure 8, the dataset size does not
982
+ have much of an impact, the model can be trained with
983
+ half or a quarter of the training samples without suffering
984
+ a considerable hit to performance. This could be attributed
985
+ to the high duplication factor of our dataset. It could also be
986
+ 8
987
+
988
+ 0
989
+ 20
990
+ 40
991
+ 60
992
+ 80
993
+ 100
994
+ Fraction of train set
995
+ 25
996
+ 30
997
+ 35
998
+ 40
999
+ 45
1000
+ 50
1001
+ 55
1002
+ 60
1003
+ BLEU4
1004
+ Decompiled
1005
+ Deduplicated
1006
+ Fig. 8: BLEU-4 per trainset size for decompiled code and
1007
+ deduplicated decompiled code
1008
+ because the model was already pre-trained well by Wang et al.
1009
+ and requires very little data for fine-tuning. This is a testament
1010
+ to the relative ease with which these models could be extended
1011
+ to decompiled code.
1012
+ We also performed experiments where we did not apply the
1013
+ filtering rules provided by CodeXGlue and where we always
1014
+ mined the first sentence of any type of documentation. While
1015
+ we were able to collect around 480K decompiled samples, the
1016
+ model performed substantially worse, only scoring 36.97 and
1017
+ 33.26 BLEU-4 on C and decompiled code, respectively. These
1018
+ results show that the dataset quality also heavily impacts the
1019
+ model performance.
1020
+ VII. DISCUSSION
1021
+ In the previous section, we found that BinT5 shows con-
1022
+ siderable performance for decompiled code and demi-stripped
1023
+ code on both regular as well as deduplicated data. While
1024
+ this is a promising result, we conduct a small investigation
1025
+ of the decompiled samples. We will put our observations on
1026
+ identifiers into the context of the extreme summarisation task.
1027
+ Based on this we discuss the implications of our work. Finally,
1028
+ we will close this section by discussing the threats to validity.
1029
+ A. Exploration of Results
1030
+ To explore the results of BinT5 we pick 25 high and 25
1031
+ low-scoring samples from the test set of the deduplicated
1032
+ decompiled dataset. High samples have a BLEU-4 score higher
1033
+ than 75 while low-scoring samples have a score lower than 25.
1034
+ a) High Samples: With the high-performing samples
1035
+ BinT5 tends to produce summaries which are very close to
1036
+ the references. For instance, BinT5 produced Print description
1037
+ of a datatype in XML against the baseline Dump description of
1038
+ a datatype in XML. Of the 25 high-scoring samples we found
1039
+ that all have counterparts with a similar function summary
1040
+ in the training set. These functions also tend to have similar
1041
+ names, but their decompiled function body was significantly
1042
+ different, which is likely why deduplication didn’t remove
1043
+ these functions.
1044
+ b) Low Samples: From the low-performing samples we
1045
+ observe that many summaries produced by BinT5 are seman-
1046
+ tically very similar to the reference. For instance, the function
1047
+ vl set simd enabled20, has the reference Toggle usage of
1048
+ SIMD instructions while BinT5 produced Enable or Disable
1049
+ the Simd Channel. This sample scores a BLEU-4 score of 0.0,
1050
+ because of the limitations around the BLEU-4 metric, while
1051
+ for a human evaluator the output is still very usable. Similarly,
1052
+ for some samples, BinT5 produces shorter summaries contain-
1053
+ ing shorthands. The reference Check if the given nickname is
1054
+ blocked for ”normal client” use against Check whether nick is
1055
+ blocked, also scores poorly. Of the 25 low-scoring samples
1056
+ we observe that around 11 are semantically similar to the
1057
+ reference and likely very useful for understanding the function.
1058
+ B. Identifiers and Extreme Summarisation
1059
+ We find a relatively small difference in performance be-
1060
+ tween source code and decompiled code. This indicates that
1061
+ in-function comments and variable names are relatively unim-
1062
+ portant for the model performance. Although Ahmed and
1063
+ Devanbu observed that identifiers might be more important
1064
+ than syntax in the code-summarisation task [16], we can
1065
+ further conclude that the function name is explicitly essential
1066
+ for model performance. Removing just the function name from
1067
+ the decompiled samples, as opposed to removing all identifiers
1068
+ in demi-stripping, results in slightly higher performance than
1069
+ demi-stripped code, which indicates a very high dependence
1070
+ on the name of the function in the code summarisation task,
1071
+ which is a logical finding in the context of the extreme code
1072
+ summarisation task.
1073
+ The extreme code summarisation task, as proposed by Al-
1074
+ lamanis et al. aims to reproduce the function name given
1075
+ a function body [16, 42]. It is framed as a summarisation
1076
+ problem where the output is around 3 tokens in length, instead
1077
+ of the 10+ tokens that regular code summarisation targets.
1078
+ We found similar results when performing this task with
1079
+ our dataset, namely, high performance on regular decompiled
1080
+ code (with function names removed) and low performance on
1081
+ stripped code.
1082
+ A manual assessment of the stripped data shows that many
1083
+ of the aligned functions were not decompiled properly. We
1084
+ find that many functions are cut-off after a few instructions
1085
+ because the decompiler did not recover the full control flow.
1086
+ Other functions are missing side effects, like changes to global
1087
+ variables.
1088
+ C. Implications
1089
+ We propose a novel solution to aid reverse engineers in
1090
+ their work. Among many use cases, this solution could help
1091
+ malware analysts to understand novel malware and its weak-
1092
+ nesses quickly. The software can be analysed to find possible
1093
+ vulnerabilities and malicious payloads. The source code can
1094
+ 20Colmap/Colmap:vl set simd enabled:
1095
+ https://github.com/colmap/
1096
+ colmap/blob/87b3aa325bd8e5fb913788e29e9ac1e085e28b67/lib/VLFeat/
1097
+ generic.c#L1070
1098
+ 9
1099
+
1100
+ be reconstructed for old binaries for which the source code is
1101
+ lost.
1102
+ If the application of NLP to binaries gets significantly better,
1103
+ and the limitations around stripping and other obfuscation
1104
+ techniques get resolved, it would have serious implications
1105
+ for the cybersecurity domain. On one hand, it would assist
1106
+ defenders, but on the other hand, attackers can leverage
1107
+ these same methods to find and exploit vulnerabilities, build
1108
+ malicious payloads and lift intellectual property from binaries.
1109
+ CAPYBARA itself could be used to create and assess
1110
+ neural decompilation, to perform a deeper investigation into
1111
+ the extreme summarisation task, or to simply train a code
1112
+ summarisation model on C code. CAPYBARA consists of a
1113
+ large corpus of C and decompiled C code, which could be used
1114
+ to pre-train language models, such that these models could
1115
+ support decompiled code out-of-the-box.
1116
+ While our work focused on decompiled code, our observa-
1117
+ tions show some limits of transformer-based models and their
1118
+ applicability to different data. Our dataset can help and inspire
1119
+ other researchers to improve upon our work. We hope other
1120
+ researchers use this dataset to train and evaluate their own
1121
+ models. Furthermore, the process outlined in Chapter III could
1122
+ help others construct standardised datasets for other tasks. The
1123
+ steps outlined for the creation of this dataset can be followed
1124
+ to create other datasets for other languages as well.
1125
+ D. Threats to Validity
1126
+ Internal Validity questions if other factors could have
1127
+ affected the outcome. The training and evaluation data contains
1128
+ a significant amount of noise, either in the form of badly de-
1129
+ compiled functions or incorrect documentation. We carefully
1130
+ collect and process the data, but we are unable to know to
1131
+ which extent the documentation matches the original code.
1132
+ While machine learning models (and specifically NLP models)
1133
+ should be able to handle noisy data, this might introduce some
1134
+ bias into the models. CodeT5 was also pre-trained on a C and
1135
+ C# dataset, this dataset is unpublished and we were unable to
1136
+ reach the authors. Some data leakage might have taken place,
1137
+ but it is unlikely that it had much of an impact. The data
1138
+ was only used for pre-training and would only have included
1139
+ source code. To prevent this threat from arising in any future
1140
+ studies, we make CAPYBARA publicly available.
1141
+ External Validity refers to the generalisability of our
1142
+ results. This work only focuses on stripping and compiler
1143
+ optimisations as a means of resisting binary analysis, other
1144
+ techniques like control flow obfuscation and packing are
1145
+ also used to prevent reverse engineering. Other works focus
1146
+ on unpacking and deobfuscation, so we consider our work
1147
+ orthogonal to theirs. The data gathered for CAPYBARA were
1148
+ exclusively from open-source projects. Decompiling closed-
1149
+ source projects is explicitly forbidden by some EULAs and the
1150
+ lack of source code documentation makes it difficult to evalu-
1151
+ ate using reference summaries. However, reverse engineering
1152
+ open-source software is not very useful in practice, since the
1153
+ source code is readily available. Closed-source software might
1154
+ have different data distribution and will present other chal-
1155
+ lenges like obfuscation. Finally, only functions that decompile
1156
+ (Ghidra produces any output) and that are documented, are
1157
+ represented in CAPYBARA. This is most apparent in the
1158
+ stripped dataset, where we can only recover a small fraction
1159
+ of the total number of functions. A deeper investigation into
1160
+ new decompilation techniques for stripped code, specifically
1161
+ into the aspect of function boundary detection is left as future
1162
+ work.
1163
+ Construct Validity relates to the adequacy of the theoretical
1164
+ constructs and the use of appropriate evaluation metrics. The
1165
+ leading metric in our evaluations does not capture semantic
1166
+ meaning. While BLEU-4 is the most popular metric for this
1167
+ task, its reliability has been called into question [43, 44]. We,
1168
+ therefore, included other metrics, which do take semantics into
1169
+ account, in our evaluation. Finally, our entire approach hinges
1170
+ on the assumption that function summaries, as they are used
1171
+ for source code, are useful for binary analysis. Whether or not
1172
+ this is actually the case, should be further investigated with a
1173
+ qualitative study.
1174
+ VIII. RELATED WORK
1175
+ Binary reverse engineering and the use of NLP for software
1176
+ engineering are vast and active fields, so we select and discuss
1177
+ the closest state-of-the-art works in the field. We categorise the
1178
+ studies into identifier recovery and binary translation. Finally,
1179
+ we will discuss the open challenges and the relation of our
1180
+ own work to these challenges.
1181
+ a) Recovering Identifiers from Stripped Binaries: De-
1182
+ bin [5] aims to recover debug information from stripped
1183
+ binaries. The authors use a tree-based classification and a
1184
+ probabilistic graph-based model. All the variable names and
1185
+ types are jointly recovered using a maximum a posteriori
1186
+ probability inference. VarBERT [45] uses a Transformer-
1187
+ based NLP model for the task of variable name recovery. The
1188
+ authors pre-trained a BERT model which is then fine-tuned to
1189
+ predict the names and types from unstripped binaries.
1190
+ FUNCRE
1191
+ [7]
1192
+ uses
1193
+ a
1194
+ pre-trained
1195
+ and
1196
+ fine-tuned
1197
+ ROBERTA [29] model to predict usages of inlined library
1198
+ functions. Recall that compilers with optimisations enabled
1199
+ can inline functions in the binary (Chapter II). The authors
1200
+ use indelible markers, which do not get destroyed by the
1201
+ compiler, to mark usages of library functions and to construct
1202
+ a dataset and train a model.
1203
+ b) Binary Translation: Neutron [10] frames decompila-
1204
+ tion as a neural machine translation problem and utilises an
1205
+ Attention-LSTM-based neural translation network to translate
1206
+ disassembled binaries back to C source code. The binaries
1207
+ are not stripped and do not have any optimisations enabled.
1208
+ The translations created by Neutron can contain syntax errors,
1209
+ so the authors apply regular expressions to create a tailor-
1210
+ made syntax checker. Neutron achieves high accuracy on the
1211
+ translation task, but only on unstripped and non-optimised
1212
+ code.
1213
+ 10
1214
+
1215
+ c) Our Novelty: Several aspects have not been properly
1216
+ addressed and investigated. The application of code summari-
1217
+ sation methods to decompiled code has not been addressed
1218
+ by any work at all. Furthermore, some works on binary code
1219
+ fail to take compiler optimisations into account [10]. We,
1220
+ therefore, investigate the application of code summarisation
1221
+ methods to decompiled code and we enable compiler optimi-
1222
+ sations.
1223
+ IX. CONCLUSION
1224
+ In this paper, we proposed a new automatic binary code
1225
+ summarisation task. With this new task, we also introduce
1226
+ CAPYBARA, a novel dataset to train and evaluate models
1227
+ on this task, with both mined as well as synthetic data.
1228
+ Paired with this dataset, we train BinT5, a Transformer-
1229
+ based code summarisation model to show the effectiveness of
1230
+ CAPYBARA. We used BinT5 to further explore the datasets,
1231
+ outlining the inherent difficulties in the data.
1232
+ We found that while BinT5 shows considerable performance
1233
+ on regular decompiled code, but its performance is being
1234
+ hampered by the decompiler on stripped code, evidenced by
1235
+ BinT5s strong performance on demi-stripped code. Further-
1236
+ more, we found that while duplicates have a large impact
1237
+ on the model, their presence is not paramount to the model’s
1238
+ performance. Finally, we observe that BinT5 could be trained
1239
+ with just a fraction of the samples in CAPYBARA.
1240
+ Our work has shown that a well-known and well-studied
1241
+ task from the source code domain [13], namely source code
1242
+ summarisation, can be applied to binary code. This is only one
1243
+ of the many different applications of NLP for code. Our paper
1244
+ constitutes the first step in the application of source code NLP
1245
+ methods to such tasks on binary code.
1246
+ REFERENCES
1247
+ [1] D. Votipka, S. Rabin, K. Micinski, J. S. Foster,
1248
+ and M. L. Mazurek, “An observational investigation
1249
+ of reverse engineers’ process and mental models,”
1250
+ in Extended Abstracts of the 2019 CHI Conference
1251
+ on Human Factors in Computing Systems, ser. CHI
1252
+ EA
1253
+ ’19.
1254
+ New
1255
+ York,
1256
+ NY,
1257
+ USA:
1258
+ Association
1259
+ for
1260
+ Computing Machinery, 2019, p. 1–6. [Online]. Available:
1261
+ https://doi.org/10.1145/3290607.3313040
1262
+ [2] Y. David, U. Alon, and E. Yahav, “Neural reverse
1263
+ engineering of stripped binaries using augmented control
1264
+ flow graphs,” Proceedings of the ACM on Programming
1265
+ Languages, vol. 4, no. OOPSLA, nov 2020. [Online].
1266
+ Available: https://doi.org/10.1145/3428293
1267
+ [3] J. Caballero and Z. Lin, “Type inference on executables,”
1268
+ ACM Comput. Surv., vol. 48, no. 4, May 2016. [Online].
1269
+ Available: https://doi.org/10.1145/2896499
1270
+ [4] L. Chen, Z. He, and B. Mao, “Cati: Context-assisted type
1271
+ inference from stripped binaries,” in 2020 50th Annual
1272
+ IEEE/IFIP International Conference on Dependable Sys-
1273
+ tems and Networks (DSN), 2020, pp. 88–98.
1274
+ [5] J. He, P. Ivanov, P. Tsankov, V. Raychev, and M. Vechev,
1275
+ “Debin: Predicting debug information in stripped bina-
1276
+ ries,” in Proceedings of the 2018 ACM SIGSAC Confer-
1277
+ ence on Computer and Communications Security, 2018,
1278
+ pp. 1667–1680.
1279
+ [6] J.
1280
+ Lacomis,
1281
+ P.
1282
+ Yin,
1283
+ E.
1284
+ Schwartz,
1285
+ M.
1286
+ Allamanis,
1287
+ C. Le Goues, G. Neubig, and B. Vasilescu, “Dire: A neu-
1288
+ ral approach to decompiled identifier naming,” in 2019
1289
+ 34th IEEE/ACM International Conference on Automated
1290
+ Software Engineering (ASE).
1291
+ IEEE, 2019, pp. 628–639.
1292
+ [7] T. Ahmed, P. Devanbu, and A. A. Sawant, “Learning to
1293
+ find usage of library functions in optimized binaries,”
1294
+ IEEE Transactions on Software Engineering, pp. 1–1,
1295
+ 2021.
1296
+ [8] X. Jin, K. Pei, J. Y. Won, and Z. Lin, “Symlm: Predicting
1297
+ function names in stripped binaries via context-sensitive
1298
+ execution-aware code embeddings,” 2022.
1299
+ [9] D. Lehmann and M. Pradel, “Finding the dwarf: Recov-
1300
+ ering precise types from webassembly binaries,” 2022.
1301
+ [10] R. Liang, Y. Cao, P. Hu, and K. Chen, “Neutron: an
1302
+ attention-based neural decompiler,” Cybersecurity, vol. 4,
1303
+ p. 5, 03 2021.
1304
+ [11] C. Zhang, J. Wang, Q. Zhou, T. Xu, K. Tang, H. Gui,
1305
+ and F. Liu, “A survey of automatic source code summa-
1306
+ rization,” Symmetry, vol. 14, no. 3, p. 471, 2022.
1307
+ [12] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and
1308
+ K. Vijay-Shanker, “Towards automatically generating
1309
+ summary comments for java methods,” ser. ASE ’10.
1310
+ New York, NY, USA: Association for Computing
1311
+ Machinery, 2010, p. 43–52. [Online]. Available: https:
1312
+ //doi.org/10.1145/1858996.1859006
1313
+ [13] Shi, E. Wang, Y. Du, L. Chen, J. Han, S. Zhang,
1314
+ H. Zhang, D. Sun, and H. Sun, “On the evaluation of
1315
+ neural code summarization.”
1316
+ ICSE, 2022.
1317
+ [14] Y.
1318
+ Wang,
1319
+ W.
1320
+ Wang,
1321
+ S.
1322
+ Joty,
1323
+ and
1324
+ S.
1325
+ C.
1326
+ Hoi,
1327
+ “Codet5: Identifier-aware unified pre-trained encoder-
1328
+ decoder models for code understanding and generation,”
1329
+ in Proceedings of the 2021 Conference on Empirical
1330
+ Methods in Natural Language Processing, 2021, pp.
1331
+ 8696–8708.
1332
+ [15] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong,
1333
+ L. Shou, B. Qin, T. Liu, D. Jiang et al., “Codebert: A pre-
1334
+ trained model for programming and natural languages,”
1335
+ in Findings of the Association for Computational Lin-
1336
+ guistics: EMNLP 2020, 2020, pp. 1536–1547.
1337
+ [16] T. Ahmed and P. Devanbu, “Multilingual training for
1338
+ software engineering,” in 2022 IEEE/ACM 44th Inter-
1339
+ national Conference on Software Engineering (ICSE).
1340
+ IEEE, 2022, pp. 1443–1455.
1341
+ [17] C. Casalnuovo, E. T. Barr, S. K. Dash, P. Devanbu,
1342
+ and E. Morgan, “A theory of dual channel constraints,”
1343
+ in Proceedings of the ACM/IEEE 42nd International
1344
+ Conference on Software Engineering: New Ideas and
1345
+ Emerging Results, 2020, pp. 25–28.
1346
+ [18] A. Hindle, E. T. Barr, M. Gabel, Z. Su, and P. Devanbu,
1347
+ “On the naturalness of software,” Commun. ACM,
1348
+ vol.
1349
+ 59,
1350
+ no.
1351
+ 5,
1352
+ p.
1353
+ 122–131,
1354
+ apr
1355
+ 2016.
1356
+ [Online].
1357
+ Available: https://doi.org/10.1145/2902362
1358
+ 11
1359
+
1360
+ [19] A. LeClair and C. McMillan, “Recommendations for
1361
+ datasets for source code summarization,” in Proceedings
1362
+ of the 2019 Conference of the North American Chapter
1363
+ of
1364
+ the
1365
+ Association
1366
+ for
1367
+ Computational
1368
+ Linguistics:
1369
+ Human Language Technologies, Volume 1 (Long and
1370
+ Short Papers). Minneapolis, Minnesota: Association for
1371
+ Computational Linguistics, Jun. 2019, pp. 3931–3937.
1372
+ [Online]. Available: https://aclanthology.org/N19-1394
1373
+ [20] H. Husain, H.-H. Wu, T. Gazit, M. Allamanis, and
1374
+ M. Brockschmidt, “CodeSearchNet challenge: Evaluat-
1375
+ ing the state of semantic code search,” arXiv preprint
1376
+ arXiv:1909.09436, 2019.
1377
+ [21] K. Hoste and L. Eeckhout, “Cole: compiler optimization
1378
+ level exploration,” in Proceedings of the 6th annual
1379
+ IEEE/ACM international symposium on Code generation
1380
+ and optimization, 2008, pp. 165–174.
1381
+ [22] M. T. Jones, “Optimization in gcc,” Linux journal, vol.
1382
+ 2005, no. 131, p. 11, 2005.
1383
+ [23] S. Blazy and S. Riaud, “Measuring the robustness
1384
+ of source program obfuscation: Studying the impact
1385
+ of compiler optimizations on the obfuscation of c
1386
+ programs,” in Proceedings of the 4th ACM Conference
1387
+ on Data and Application Security and Privacy, ser.
1388
+ CODASPY ’14.
1389
+ New York, NY, USA: Association
1390
+ for Computing Machinery, 2014, p. 123–126. [Online].
1391
+ Available: https://doi.org/10.1145/2557547.2557577
1392
+ [24] Z. Zhang, W. You, G. Tao, Y. Aafer, X. Liu, and
1393
+ X. Zhang, “Stochfuzz: Sound and cost-effective fuzzing
1394
+ of stripped binaries by incremental and stochastic rewrit-
1395
+ ing,” in 2021 IEEE Symposium on Security and Privacy
1396
+ (SP).
1397
+ IEEE, 2021, pp. 659–676.
1398
+ [25] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
1399
+ L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin,
1400
+ “Attention is all you need,” in Proceedings of the 31st
1401
+ International Conference on Neural Information Process-
1402
+ ing Systems, 2017, pp. 6000–6010.
1403
+ [26] D. E. Rumelhart, G. E. Hinton, and R. J. Williams,
1404
+ Learning Representations by Back-Propagating Errors.
1405
+ Cambridge, MA, USA: MIT Press, 1988, p. 696–699.
1406
+ [27] J. Schmidhuber, S. Hochreiter et al., “Long short-term
1407
+ memory,” Neural Comput, vol. 9, no. 8, pp. 1735–1780,
1408
+ 1997.
1409
+ [28] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.
1410
+ Howard, W. Hubbard, and L. D. Jackel, “Backpropaga-
1411
+ tion applied to handwritten zip code recognition,” Neural
1412
+ computation, vol. 1, no. 4, pp. 541–551, 1989.
1413
+ [29] L. Zhuang, L. Wayne, S. Ya, and Z. Jun, “A robustly
1414
+ optimized
1415
+ BERT
1416
+ pre-training
1417
+ approach
1418
+ with
1419
+ post-
1420
+ training,” in Proceedings of the 20th Chinese National
1421
+ Conference on Computational Linguistics.
1422
+ Huhhot,
1423
+ China:
1424
+ Chinese
1425
+ Information
1426
+ Processing
1427
+ Society
1428
+ of
1429
+ China, Aug. 2021, pp. 1218–1227. [Online]. Available:
1430
+ https://aclanthology.org/2021.ccl-1.108
1431
+ [30] J. D. M.-W. C. Kenton and L. K. Toutanova, “Bert: Pre-
1432
+ training of deep bidirectional transformers for language
1433
+ understanding,” in Proceedings of NAACL-HLT, 2019,
1434
+ pp. 4171–4186.
1435
+ [31] S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy,
1436
+ A. Blanco, C. Clement, D. Drain, D. Jiang, D. Tang,
1437
+ G. Li, L. Zhou, L. Shou, L. Zhou, M. Tufano, M. Gong,
1438
+ M. Zhou, N. Duan, N. Sundaresan, S. K. Deng, S. Fu,
1439
+ and S. Liu, “Codexglue: A machine learning benchmark
1440
+ dataset for code understanding and generation,” 2021.
1441
+ [Online]. Available: https://arxiv.org/abs/2102.04664
1442
+ [32] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. J´egou,
1443
+ and T. Mikolov, “Fasttext.zip: Compressing text classifi-
1444
+ cation models,” arXiv preprint arXiv:1612.03651, 2016.
1445
+ [33] M. Allamanis, “The adverse effects of code duplication
1446
+ in machine learning models of code,” in Proceedings
1447
+ of the 2019 ACM SIGPLAN International Symposium
1448
+ on
1449
+ New
1450
+ Ideas,
1451
+ New
1452
+ Paradigms,
1453
+ and
1454
+ Reflections
1455
+ on
1456
+ Programming
1457
+ and
1458
+ Software.
1459
+ Athens
1460
+ Greece:
1461
+ ACM, Oct. 2019, pp. 143–153. [Online]. Available:
1462
+ https://dl.acm.org/doi/10.1145/3359591.3359735
1463
+ [34] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang,
1464
+ M. Matena, Y. Zhou, W. Li, and P. J. Liu, “Exploring
1465
+ the limits of transfer learning with a unified text-to-text
1466
+ transformer,” Journal of Machine Learning Research,
1467
+ vol. 21, no. 140, pp. 1–67, 2020. [Online]. Available:
1468
+ http://jmlr.org/papers/v21/20-074.html
1469
+ [35] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a
1470
+ method for automatic evaluation of machine translation,”
1471
+ in Proceedings of the 40th Annual Meeting of the
1472
+ Association for Computational Linguistics. Philadelphia,
1473
+ Pennsylvania,
1474
+ USA:
1475
+ Association
1476
+ for
1477
+ Computational
1478
+ Linguistics, Jul. 2002, pp. 311–318. [Online]. Available:
1479
+ https://aclanthology.org/P02-1040
1480
+ [36] C.-Y. Lin, “ROUGE: A package for automatic evaluation
1481
+ of
1482
+ summaries,”
1483
+ in
1484
+ Text
1485
+ Summarization
1486
+ Branches
1487
+ Out.
1488
+ Barcelona, Spain: Association for Computational
1489
+ Linguistics, Jul. 2004, pp. 74–81. [Online]. Available:
1490
+ https://aclanthology.org/W04-1013
1491
+ [37] A. Lavie and M. J. Denkowski, “The meteor metric for
1492
+ automatic evaluation of machine translation,” Machine
1493
+ translation, vol. 23, no. 2, pp. 105–115, 2009.
1494
+ [38] B. Chen and C. Cherry, “A systematic comparison
1495
+ of smoothing techniques for sentence-level BLEU,”
1496
+ in Proceedings of the Ninth Workshop on Statistical
1497
+ Machine
1498
+ Translation.
1499
+ Baltimore,
1500
+ Maryland,
1501
+ USA:
1502
+ Association for Computational Linguistics, Jun. 2014,
1503
+ pp. 362–367. [Online]. Available: https://aclanthology.
1504
+ org/W14-3346
1505
+ [39] H. Hoang and P. Koehn, “Design of the moses de-
1506
+ coder for statistical machine translation,” in Software
1507
+ Engineering, Testing, and Quality Assurance for Natural
1508
+ Language Processing, 2008, pp. 58–65.
1509
+ [40] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou,
1510
+ N. Duan, A. Svyatkovskiy, S. Fu et al., “Graphcodebert:
1511
+ Pre-training code representations with data flow,” in
1512
+ ICLR, 2021.
1513
+ [41] J. Alves-Foss and J. Song, “Function boundary detection
1514
+ in
1515
+ stripped
1516
+ binaries,”
1517
+ in
1518
+ Proceedings
1519
+ of
1520
+ the
1521
+ 35th
1522
+ 12
1523
+
1524
+ Annual Computer Security Applications Conference,
1525
+ ser. ACSAC ’19.
1526
+ New York, NY, USA: Association
1527
+ for Computing Machinery, 2019, p. 84–96. [Online].
1528
+ Available: https://doi.org/10.1145/3359789.3359825
1529
+ [42] M. Allamanis, H. Peng, and C. Sutton, “A convolutional
1530
+ attention network for extreme summarization of source
1531
+ code,”
1532
+ in
1533
+ Proceedings
1534
+ of
1535
+ The
1536
+ 33rd
1537
+ International
1538
+ Conference on Machine Learning, ser. Proceedings of
1539
+ Machine Learning Research, M. F. Balcan and K. Q.
1540
+ Weinberger, Eds., vol. 48.
1541
+ New York, New York, USA:
1542
+ PMLR, 20–22 Jun 2016, pp. 2091–2100. [Online].
1543
+ Available: https://proceedings.mlr.press/v48/allamanis16.
1544
+ html
1545
+ [43] D. Roy, S. Fakhoury, and V. Arnaoudova, Reassessing
1546
+ Automatic Evaluation Metrics for Code Summarization
1547
+ Tasks. New York, NY, USA: Association for Computing
1548
+ Machinery, 2021, p. 1105–1116. [Online]. Available:
1549
+ https://doi.org/10.1145/3468264.3468588
1550
+ [44] S. Haque, Z. Eberhart, A. Bansal, and C. McMillan,
1551
+ “Semantic similarity metrics for evaluating source code
1552
+ summarization,” arXiv e-prints, pp. arXiv–2204, 2022.
1553
+ [45] P. Banerjee, K. K. Pal, F. Wang, and C. Baral, “Vari-
1554
+ able name recovery in decompiled binary code using
1555
+ constrained masked language modeling,” arXiv preprint
1556
+ arXiv:2103.12801, 2021.
1557
+ 13
1558
+
5tAzT4oBgHgl3EQfu_3x/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
6dE1T4oBgHgl3EQfmwTN/content/2301.03302v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:25435fa4d9d82f1fa89cb82c0a3d3fa4400ffe7f1db68e799f8eefaaba5e2b53
3
+ size 457104
6dE1T4oBgHgl3EQfmwTN/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:709916aaa0d6ec48522b3e13bdbcf8ce239b2cf63220da6bea665f0369621b0b
3
+ size 4849709
6dE1T4oBgHgl3EQfmwTN/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ffeae8e2e63c8dab07d72efeae6ff127f5bbc24cec0ef38a121829b62eec64a
3
+ size 192524
6tFKT4oBgHgl3EQfTy2d/content/tmp_files/2301.11781v1.pdf.txt ADDED
@@ -0,0 +1,1761 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Aleatoric and Epistemic Discrimination in Classification
2
+ Hao Wang 1 Luxi He 2 Rui Gao 3 Flavio P. Calmon 4
3
+ Abstract
4
+ Machine learning (ML) models can underperform
5
+ on certain population groups due to choices made
6
+ during model development and bias inherent in
7
+ the data. We categorize sources of discrimina-
8
+ tion in the ML pipeline into two classes: aleatoric
9
+ discrimination, which is inherent in the data distri-
10
+ bution, and epistemic discrimination, which is due
11
+ to decisions during model development. We quan-
12
+ tify aleatoric discrimination by determining the
13
+ performance limits of a model under fairness con-
14
+ straints, assuming perfect knowledge of the data
15
+ distribution. We demonstrate how to characterize
16
+ aleatoric discrimination by applying Blackwell’s
17
+ results on comparing statistical experiments. We
18
+ then quantify epistemic discrimination as the gap
19
+ between a model’s accuracy given fairness con-
20
+ straints and the limit posed by aleatoric discrimi-
21
+ nation. We apply this approach to benchmark ex-
22
+ isting interventions and investigate fairness risks
23
+ in data with missing values. Our results indi-
24
+ cate that state-of-the-art fairness interventions are
25
+ effective at removing epistemic discrimination.
26
+ However, when data has missing values, there is
27
+ still significant room for improvement in handling
28
+ aleatoric discrimination.
29
+ 1. Introduction
30
+ Algorithmic discrimination may occur in different stages of
31
+ the machine learning (ML) pipeline. For example, histori-
32
+ cal biases in the data-generating process can propagate to
33
+ downstream tasks; human biases can influence a ML model
34
+ through inductive bias; optimizing solely for accuracy can
35
+ lead to disparate model performance across groups in the
36
+ data (Suresh & Guttag, 2019; Mayson, 2019). The past
37
+ years have seen a rapid increase in algorithmic interventions
38
+ that aim to mitigate biases in ML models (see e.g., Zemel
39
+ 1MIT-IBM
40
+ Watson
41
+ AI
42
+ Lab
43
+ 2Harvard
44
+ College
45
+ 3UT-
46
+ Austin
47
+ 4Harvard University.
48
+ Hao Wang <hao@ibm.com>,
49
+ Luxi
50
+ He
51
+ <luxihe@college.harvard.edu>,
52
+ Rui
53
+ Gao
54
+ <rui.gao@mccombs.utexas.edu>,
55
+ Flavio
56
+ P.
57
+ Calmon
58
+ <flavio@seas.harvard.edu>.
59
+ et al., 2013; Feldman et al., 2015; Calmon et al., 2017;
60
+ Menon & Williamson, 2018; Zhang et al., 2018; Zafar et al.,
61
+ 2019; Friedler et al., 2019; Bellamy et al., 2019; Kim et al.,
62
+ 2019; Celis et al., 2019; Yang et al., 2020; Jiang & Nachum,
63
+ 2020; Jiang et al., 2020; Martinez et al., 2020; Lowy et al.,
64
+ 2021; Alghamdi et al., 2022). A recent survey (Hort et al.,
65
+ 2022) found nearly 400 fairness-intervention algorithms,
66
+ including 123 pre-processing, 212 in-processing, and 56
67
+ post-processing algorithms introduced in the past decade.
68
+ Which sources of biases are (the hundreds of) existing fair-
69
+ ness interventions trying to control? In order to create effec-
70
+ tive strategies for reducing algorithmic discrimination, it is
71
+ critical to disentangle where biases in model performance
72
+ originate. For instance, if the training set contains few sam-
73
+ ples from a given population group, then increasing sample
74
+ diversity is a more effective strategy than selecting a more
75
+ complex model class or training strategy. Conversely, if a
76
+ model class does not accurately represent the underlying
77
+ distribution of a certain population group, then increasing
78
+ sample size for that group will not resolve performance
79
+ disparities.
80
+ We divide algorithmic discrimination into two categories:
81
+ aleatoric and epistemic discrimination.1 Aleatoric discrimi-
82
+ nation captures inherent biases in the data distribution that
83
+ can lead to unfair decisions in downstream tasks. Epistemic
84
+ discrimination, in turn, is due to algorithmic choices made
85
+ during model development and lack of knowledge about the
86
+ optimal “fair” predictive model.
87
+ In this paper, we provide methods for measuring aleatoric
88
+ and epistemic discrimination in classification task for group
89
+ fairness metrics. Since aleatoric discrimination only de-
90
+ pends on properties of the data distribution and the fairness
91
+ measure of choice, we quantify it by asking a fundamental
92
+ question:
93
+ For a given data distribution, what would be the best achiev-
94
+ able performance (e.g., accuracy) under a group fairness
95
+ constraint?
96
+ 1We borrow this notion from ML uncertainty literature (see
97
+ H¨ullermeier & Waegeman, 2021, for a survey). Therein, aleatoric
98
+ uncertainty refers to the variability in the outcome of an experiment
99
+ resulting from inherently random effects; epistemic uncertainty
100
+ refers to uncertainty caused by a lack of knowledge about the best
101
+ predictive model.
102
+ arXiv:2301.11781v1 [cs.LG] 27 Jan 2023
103
+
104
+ Aleatoric and Epistemic Discrimination in Classification
105
+ We refer to the answer as the fairness Pareto frontier. This
106
+ frontier delineates the optimal performance achievable by
107
+ a classifier when unlimited data and computing power are
108
+ available. For a fixed data distribution, the fairness Pareto
109
+ frontier represents the ultimate, information-theoretic limit
110
+ for accuracy and group fairness beyond which no model can
111
+ achieve. Characterizing this limit enables us to (i) separate
112
+ sources of discrimination and create strategies to control
113
+ them accordingly; (ii) evaluate the effectiveness of existing
114
+ fairness interventions for reducing epistemic discrimination;
115
+ and (iii) inform the development of data collection methods
116
+ that promote fairness in downstream tasks.
117
+ At first, computing the fairness Pareto frontier can appear to
118
+ be an intractable problem since it requires searching over all
119
+ possible classifiers—even if the data distribution is known
120
+ exactly. Our main technical contribution is to provide a pre-
121
+ cise characterization of this frontier by solving a sequence of
122
+ optimization problems. Our main proof technique is based
123
+ on Blackwell’s seminal results (Blackwell, 1953), which
124
+ proposed the notion of comparisons of statistical experi-
125
+ ments and inspired a line of works introducing alternative
126
+ comparison criteria (see e.g., Shannon, 1958; Cam, 1964;
127
+ Torgersen, 1991; Cohen et al., 1998; Raginsky, 2011). Here,
128
+ we apply these results to develop an algorithm that itera-
129
+ tively refines the achievable fairness Pareto frontier. We also
130
+ prove convergence guarantees for our algorithm and demon-
131
+ strate how it can be used to benchmark existing fairness
132
+ interventions.
133
+ We quantify epistemic discrimination by comparing a clas-
134
+ sifier’s performance with the information-theoretic optimal
135
+ given by the fairness Pareto frontier. Our experiments indi-
136
+ cate that given sufficient data, state-of-the-art fairness inter-
137
+ ventions are effective at reducing epistemic discrimination
138
+ as their gap to the information-theoretic limit is small (see
139
+ Figure 1). Existing interventions do not eliminate aleatoric
140
+ discrimination as this type of discrimination is not caused
141
+ by choice of learning algorithm or model class, and is due
142
+ to the data distribution.
143
+ We further analyze the fairness Pareto frontier to show that
144
+ factors such as data missing values can significantly con-
145
+ tribute to aleatoric discrimination. We observe that when
146
+ population groups have disparate missing patterns, aleatoric
147
+ discrimination escalates, leading to a sharp decline in the
148
+ effectiveness of fairness intervention algorithms (see Fig-
149
+ ure 2).
150
+ Related Work
151
+ There is significant work analyzing the tension between
152
+ group fairness measures and model performance metrics
153
+ (Kleinberg et al., 2016; Chouldechova, 2017; Corbett-
154
+ Davies et al., 2017; Chen et al., 2018; Dutta et al., 2020;
155
+ Wang et al., 2021). We recast the fairness Pareto frontier
156
+ in terms of the conditional distribution PˆY|Y,S of predicted
157
+ outcome ˆY given true label Y and group attributes S. This
158
+ conditional distribution is related to confusion matrices2
159
+ conditioned on each subgroup (see Remark 1 for detailed
160
+ discussion). In this regard, our work is related to Verma &
161
+ Rubin (2018); Alghamdi et al. (2020); Kim et al. (2020);
162
+ Yang et al. (2020); Berk et al. (2021), which observed that
163
+ many group fairness metrics can be written in terms of the
164
+ confusion matrices for each subgroup. Among them, the
165
+ closest work to ours is Kim et al. (2020), which optimized
166
+ accuracy and fairness objectives over these confusion matri-
167
+ ces and proposed a post-processing technique for training
168
+ fair classifiers. However, they only imposed marginal sum
169
+ constraints for the confusion matrices. We demonstrate
170
+ that the feasible region of confusion matrices can be much
171
+ smaller (see Remark 2 for an example), leading to a tighter
172
+ approximation of the fairness Pareto frontier.
173
+ Recently, many strategies have been proposed to reduce
174
+ the tension between group fairness and model performance
175
+ by investigating properties of the data distribution. For ex-
176
+ ample, Blum & Stangl (2019); Suresh & Guttag (2019);
177
+ Fogliato et al. (2020); Wang et al. (2020); Mehrotra &
178
+ Celis (2021); Fernando et al. (2021); Wang & Singh (2021);
179
+ Zhang & Long (2021); Kallus et al. (2022); Jeong et al.
180
+ (2022) studied how noisy or missing data affect fairness and
181
+ model accuracy. Dwork et al. (2018); Ustun et al. (2019);
182
+ Wang et al. (2021) considered training a separate classifier
183
+ for each subgroup when their data distributions are differ-
184
+ ent. Another line of research introduces data pre-processing
185
+ techniques that manipulate data distribution for reducing its
186
+ bias (e.g., Calmon et al., 2017; Kamiran & Calders, 2012).
187
+ Among all these works, the closest one to ours is Chen
188
+ et al. (2018), which decomposed group fairness measures
189
+ into bias, variance, and noise (see their Theorem 1) and pro-
190
+ posed strategies for reducing each term. The main difference
191
+ compared with Chen et al. (2018) is that we characterize
192
+ a fairness Pareto frontier that depends on not only fairness
193
+ metrics but also on a performance measure. This effort gives
194
+ a complete picture of how data distribution influences the
195
+ fairness-accuracy tension and is more technically involved.
196
+ Also, the fairness Pareto frontier only depends on the data
197
+ distribution and fairness metrics of choice so it cannot be
198
+ improved by adding more data or altering the model class.
199
+ 2. Preliminaries
200
+ Next, we introduce notation, overview the key results in
201
+ Blackwell (1953) on comparisons of experiments, and out-
202
+ line the fair classification setup considered in this paper.
203
+ 2A confusion matrix (Kulkarni et al., 2020) is a table that
204
+ measures the performance of a given ML model. In binary classi-
205
+ fication, a confusion matrix reports the number of true positives,
206
+ false negatives, false positives, and true negatives.
207
+
208
+ Aleatoric and Epistemic Discrimination in Classification
209
+ Notation.
210
+ For a positive integer n, let [n] ≜ {1, · · · , n}.
211
+ We denote all probability distributions on the set X by
212
+ P(X). Moreover, we define the probability simplex ∆m ≜
213
+ P([m]). When random variables A, X, Z form a Markov
214
+ chain, we write A → X → Z. We write the mutual infor-
215
+ mation between A, X as I(A; X) ≜ EPA,X
216
+
217
+ log
218
+ PA,X(A,X)
219
+ PA(A)PX(X)
220
+
221
+ .
222
+ Since I(A; X) is determined by the marginal distribution
223
+ PA and the conditional distribution PX|A, we also write
224
+ I(A; X) as I(PA; PX|A). When A, X are independent, we
225
+ write A
226
+ |=
227
+ X.
228
+ If a random variable A ∈ [n] has finite support, the condi-
229
+ tional distribution PX|A : [n] → P(X) can be equivalently
230
+ written as P ≜ (P1, · · · , Pn) where each Pi = PX|A=i ∈
231
+ P(X). Additionally, if X is a finite set [m], then PX|A
232
+ can be fully characterized by a transition matrix. We use
233
+ T (m|n) to denote all transition matrices from [n] to [m]:
234
+
235
+
236
+ �P ∈ Rn×m ��� 0 ≤ Pi,j ≤ 1,
237
+ m
238
+
239
+ j=1
240
+ Pi,j = 1, ∀i ∈ [n]
241
+
242
+
243
+ � .
244
+ Comparisons of Experiments
245
+ Given two statistical experiments (i.e., conditional distribu-
246
+ tions) P and Q, is there a way to decide which one is more
247
+ informative? Here P and Q have the common input alpha-
248
+ bet [n] and potentially different output spaces. Blackwell
249
+ gave an answer in his seminal work (Blackwell, 1953) from
250
+ a decision-theoretic perspective. We review these results
251
+ next.
252
+ Let A be a closed, bounded, convex subset of Rn. A deci-
253
+ sion function f(x) = (a1(x), · · · , an(x)) is any mapping
254
+ from X to A. It is associated a loss vector:
255
+ v(f) =
256
+ ��
257
+ a1(x)dP1(x), · · · ,
258
+
259
+ an(x)dPn(x)
260
+
261
+ . (1)
262
+ The collection of all v(f) is denoted by B(P , A). Black-
263
+ well defined that P is more informative than Q if for every
264
+ A, B(P , A) ⊇ B(Q, A). Intuitively, this result means any
265
+ risk achievable with Q is also achievable with P . Moreover,
266
+ Blackwell considered the standard measure P ∗ which is the
267
+ probability distribution of p(¯X) where p(x) : X → ∆n is a
268
+ function defined as
269
+
270
+ dP1
271
+ dP1 + · · · + dPn
272
+ , · · · ,
273
+ dPn
274
+ dP1 + · · · + dPn
275
+
276
+ .
277
+ (2)
278
+ and ¯X follows the probability distribution P1+···+Pn
279
+ n
280
+ . One
281
+ of the most important findings by Blackwell in his paper is
282
+ to discover the following equivalent conditions.
283
+ Lemma 1 (Blackwell (1951; 1953)). The following three
284
+ conditions are equivalent:
285
+ • P is more informative than Q;
286
+ • for any continuous and convex function φ : ∆n → R,
287
+
288
+ φ(p)dP ∗(p) ≥
289
+
290
+ φ(p)dQ∗(p);
291
+ • there is a stochastic transformation T such that TPi =
292
+ Qi. In other words, there exists a Markov chain A →
293
+ X → Z for any distributions on A such that P = PX|A
294
+ and Q = PZ|A.
295
+ Additionally, if P and Q can be characterized by transition
296
+ matrices, the above conditions are also equivalent to:
297
+ • there exists a transition matrix M such that Q =
298
+ P M.
299
+ If P = PX|A is more informative than Q = PZ|A, by the
300
+ third condition of Lemma 1 and the data processing inequal-
301
+ ity,
302
+ I(PA; PX|A) ≥ I(PA; PZ|A)
303
+ (3)
304
+ holds for any marginal distribution PA. However, the con-
305
+ verse does not hold in general—even if (3) holds for any PA,
306
+ P is not necessarily more informative than Q (see Rauh et al.
307
+ (2017) for a counter-example). In this regard, Blackwell’s
308
+ conditions are “stronger” than mutual information-based
309
+ form of the data processing inequality.
310
+ Fair Classification
311
+ Consider a multi-class classification task, where the goal is
312
+ to train a probabilistic classifier h : X → ∆C that uses input
313
+ features X to predict their true label Y ∈ [C]. Additionally,
314
+ assume the classifier produces a predicted outcome ˆY ∈ [C]
315
+ and let S ∈ [A] represent group attributes (e.g., race and
316
+ sex). Our framework can be easily extended to the setting
317
+ where multiple subgroups overlap (Kearns et al., 2018).
318
+ Throughout this paper, we focus on three standard group
319
+ fairness measures: statistical parity (SP) (Feldman et al.,
320
+ 2015), equalized odds (EO) (Hardt et al., 2016; Pleiss et al.,
321
+ 2017), and overall accuracy equality (OAE) (Berk et al.,
322
+ 2021) (see Table 1 for their definitions) but our analysis can
323
+ be extended to many other group fairness metrics, including
324
+ the ones in Table 1 of Kim et al. (2020).
325
+ We use Blackwell’s conditions to provide a precise charac-
326
+ terization of fairness Pareto frontier in multi-class classifica-
327
+ tion. In brief, Blackwell’s conditions allow us to approxi-
328
+ mate the set of achievable joint distributions PˆY|S,Y across
329
+ all classifiers h. Since both accuracy and the group fairness
330
+ criteria in Table 1 can be cast in terms of PˆY|S,Y, this ap-
331
+ proximation can then be used to bound the best achievable
332
+ accuracy under a group fairness constraint. We will develop
333
+ this procedure in detail in the next section.
334
+
335
+ Aleatoric and Epistemic Discrimination in Classification
336
+ FAIRNESS METRIC
337
+ ABBR.
338
+ DEFINITION
339
+ EXPRESSION W.R.T. P
340
+ Statistical Parity
341
+ SP ≤ αSP
342
+ | Pr(ˆY = ˆy|S = s) − Pr(ˆY = ˆy|S = s′)| ≤ αSP
343
+ ���
344
+ �C
345
+ y=1
346
+
347
+ µs,y
348
+ µs P(s,y),ˆy −
349
+ µs′,y
350
+ µs′ P(s′,y),ˆy
351
+ ���� ≤ αSP
352
+ Equalized Odds
353
+ EO ≤ αEO
354
+ | Pr(ˆY = ˆy|S = s, Y = y) − Pr(ˆY = ˆy|S = s′, Y = y)| ≤ αEO
355
+ ��P(s,y),ˆy − P(s′,y),ˆy
356
+ �� ≤ αEO
357
+ Overall Accuracy Equality
358
+ OAE ≤ αOAE
359
+ | Pr(ˆY = Y |S = s) − Pr(ˆY = Y |S = s′)| ≤ αOAE
360
+ ����C
361
+ y=1
362
+
363
+ µs,y
364
+ µs P(s,y),y −
365
+ µs′,y
366
+ µs′ P(s′,y),y
367
+ ���� ≤ αOAE
368
+ Table 1. Standard group fairness metrics under multi-group and multi-class classification task. Here αSP, αEO, αOAE, ∈ [0, 1] are threshold
369
+ parameters, ˆy, y ∈ [C], s, s′ ∈ [A], and µs,y, µs are defined in Proposition 1. Our analysis can be extended to many other group fairness
370
+ metrics (see e.g., Table 1 in Kim et al., 2020).
371
+ 3. Fairness Pareto Frontier
372
+ In this section, we introduce our main concept—fairness
373
+ Pareto frontier (FairFront). We use it to measure aleatoric
374
+ discrimination and quantify epistemic discrimination by
375
+ comparing a classifier’s performance to the FairFront. We
376
+ recast FairFront in terms of the conditional distribution
377
+ PˆY|S,Y and apply Blackwell’s conditions to characterize the
378
+ feasible region of this conditional distribution. This effort
379
+ converts a functional optimization problem into a convex
380
+ program with a small number of variables. However, this
381
+ convex program may involve infinitely many constraints.
382
+ Hence, we introduce a greedy improvement algorithm that
383
+ iteratively computes FairFront and tightens the feasible re-
384
+ gion of PˆY|S,Y. We end this section by establishing a con-
385
+ vergence guarantee for our algorithm.
386
+ Recall that we refer to aleatoric discrimination as the inher-
387
+ ent biases of the data distribution that can lead to an unfair
388
+ or inaccurate classifier. As its definition suggests, aleatoric
389
+ discrimination only relies on properties of the data distri-
390
+ bution and fairness metric of choice—it does not depend
391
+ on the hypothesis class nor optimization method. Below
392
+ we introduce FairFront that delineates a curve of optimal
393
+ accuracy over all probabilistic classifiers under certain fair-
394
+ ness constraints. We use FairFront to quantify aleatoric
395
+ discrimination.
396
+ Definition 1. For αSP, αEO, αOAE
397
+
398
+ [0, 1], we define
399
+ FairFront(αSP, αEO, αOAE) as the solution of the following
400
+ optimization problem:
401
+ max
402
+ h
403
+ E
404
+
405
+ IˆY=Y
406
+
407
+ (4a)
408
+ s.t. SP ≤ αSP, EO ≤ αEO, OAE ≤ αOAE
409
+ (4b)
410
+ where ˆY is produced by applying the classifier h to X; the
411
+ maximum is taken over all measurable h; and the definitions
412
+ of SP, EO, and OAE are in Table 1.
413
+ Solving this functional optimization problem is difficult
414
+ since it optimizes over all measurable classifiers. There is a
415
+ line of works that proposed different fairness-intervention al-
416
+ gorithms for training group-fair classifiers (see e.g., Menon
417
+ & Williamson, 2018; Zhang et al., 2018; Zafar et al., 2019;
418
+ Celis et al., 2019; Yang et al., 2020; Wei et al., 2021; Al-
419
+ ghamdi et al., 2022). They restrict the model class and
420
+ vary loss functions and optimizers to find classifiers that
421
+ approach FairFront as close as possible. However, these
422
+ algorithms only describe a lower bound for FairFront. They
423
+ do not determine what is the best achievable accuracy for a
424
+ given fairness constraint.
425
+ We circumvent the above-mentioned challenges by rewrit-
426
+ ing FairFront in terms of the conditional distribution PˆY|S,Y.
427
+ The caveat is that although each classifier yields a PˆY|S,Y,
428
+ not every conditional distribution corresponds to a valid
429
+ classifier (see an example in Remark 2). Hence, we intro-
430
+ duce the following definition which characterizes all feasible
431
+ PˆY|S,Y.
432
+ Definition 2. Given PX|S,Y, we define C as the set of all
433
+ conditional distributions PˆY|S,Y where ˆY is produced by
434
+ some probabilistic classifier h. In other words,
435
+ C ≜
436
+
437
+ PˆY|S,Y | (S, Y) → X → ˆY
438
+
439
+ .
440
+ (5)
441
+ Throughout this paper, we write PˆY|S,Y or its corresponding
442
+ transition matrix P interchangeably.
443
+ Remark 1. We demonstrate the connection between the
444
+ conditional distribution PˆY|S,Y and confusion matrices in the
445
+ setting of binary classification with binary subgroups. We
446
+ define ˆC as the counterpart of C when we replace PX|S,Y with
447
+ an empirical distribution ˆPX|S,Y computed from a dataset.
448
+ The confusion matrix for group s ∈ {0, 1} consists of four
449
+ numbers: True Positive (TPs), False Positive (FPs), False
450
+ Negative (FNs), True Negative (TNs). Assume that the num-
451
+ ber of positive-label data n+
452
+ s = TPs + FNs and negative-
453
+ label data n−
454
+ s = TNs + FPs are given—these numbers do
455
+ not depend on the classifier. Then there is a one-to-one
456
+
457
+ Aleatoric and Epistemic Discrimination in Classification
458
+ mapping from each element in ˆC to a confusion matrix:
459
+ ˆPˆY|S=s,Y=+(+) = 1
460
+ n+
461
+ s
462
+ TPs,
463
+ ˆPˆY|S=s,Y=−(+) = 1
464
+ n−
465
+ s
466
+ FPs,
467
+ ˆPˆY|S=s,Y=+(−) = 1
468
+ n+
469
+ s
470
+ FNs,
471
+ ˆPˆY|S=s,Y=−(−) = 1
472
+ n−
473
+ s
474
+ TNs.
475
+ Hence, ˆC essentially characterizes all feasible confusion
476
+ matrices and C is the population counterpart of ˆC. Note
477
+ that C is determined by the data distribution while ˆC (and
478
+ confusion matrices) are tailored to a specific dataset.
479
+ We
480
+ establish
481
+ basic
482
+ properties
483
+ of
484
+ C
485
+ and
486
+ FairFront(αSP, αEO, αOAE) in the following lemma. Then we
487
+ demonstrate how to use C for characterizing the fairness
488
+ Pareto frontier.
489
+ Lemma 2. C is a convex subset of T (C|AC) and
490
+ FairFront(αSP, αEO, αOAE) is a concave function w.r.t.
491
+ αSP, αEO, αOAE.
492
+ Proposition 1. FairFront(αSP, αEO, αOAE) in (4) is equal to
493
+ the solution of the following convex optimization:
494
+ max
495
+ P ∈RAC×C
496
+ A
497
+
498
+ s=1
499
+ C
500
+
501
+ y=1
502
+ µs,yP(s,y),y
503
+ (6a)
504
+ s.t. SP ≤ αSP, EO ≤ αEO, OAE ≤ αOAE
505
+ (6b)
506
+ P ∈ C.
507
+ (6c)
508
+ Here the constants µs,y ≜ Pr(S = s, Y = y) and µs ≜
509
+ Pr(S = s) for s ∈ [A], y ∈ [A] and P(s,y),ˆy denotes the
510
+ (C(s − 1) + y)-th row, ˆy-th column of P .
511
+ For example, in the setting of binary classification with
512
+ binary group attribute, the above optimization only has 8
513
+ variables, 14 linear constraints + a single convex constraint
514
+ P ∈ C. Hence, its optimal value can be directly computed
515
+ by standard convex optimization solvers as long as we know
516
+ how to characterize C. Next, we discuss two special cases—
517
+ X is independent of (S, Y) or X is discrete—under which C
518
+ has a simple characterization.
519
+ Remark 2. Note that Kim et al. (2020) investigated fairness
520
+ Pareto frontiers via confusion matrices. The main difference
521
+ is that Definition 1 in Kim et al. (2020) relaxed the constraint
522
+ (6c) to P ∈ T (C|AC) where T (C|AC) represents all
523
+ transition matrices from [AC] to [C]. This leads to a loose
524
+ approximation of the frontier because C is often a strict
525
+ subset of T (C|AC). To demonstrate this point, consider
526
+ the scenario where X
527
+ |=
528
+ (S, Y). Then ˆY
529
+ |=
530
+ (S, Y) by data
531
+ processing inequality so
532
+ C = {P ∈ T (C|AC) | each row of P is the same} . (7)
533
+ Optimizing over C rather than T (C|AC) can significantly
534
+ tighten the fairness Pareto frontier.
535
+ Remark 3. If X is a discrete variable with a finite sup-
536
+ port [D], we can write PX|S,Y as a transition matrix Φ ∈
537
+ T (D|AC). By introducing an auxiliary variable M ∈
538
+ T (C|D), we can write P ∈ C equivalently as linear con-
539
+ straints: P = ΦM by using the last condition of Lemma 1.
540
+ Consequently, Proposition 1 boils down to a linear program.
541
+ However, this characterization fails to generalize to continu-
542
+ ous data because Φ and M will have an infinite dimension;
543
+ for categorical data, this characterization suffers from the
544
+ curse of dimensionality since the support size of X grows
545
+ exponentially fast w.r.t. the number of features.
546
+ The above two remarks provide precise characterizations of
547
+ C under specific assumptions. In what follows, we consider
548
+ a more general setting by leveraging Blackwell’s conditions
549
+ (Section 2). Before diving into the analysis, we first intro-
550
+ duce a function g : X → ∆AC defined as
551
+ g(x) =
552
+
553
+ PS,Y|X(1, 1|x), · · · , PS,Y|X(A, C|x)
554
+
555
+ .
556
+ (8)
557
+ To obtain this function in practice, one can train a probabilis-
558
+ tic classifier that uses input features X to predict (S, Y). We
559
+ use this classifiers’ output probability as an approximation
560
+ of the function g.
561
+ The following theorem is the main theoretical result in this
562
+ paper. It provides a precise characterization of the set C
563
+ through a series of convex constraints.
564
+ Theorem 1. The set C is the collection of all transition
565
+ matrices P ∈ T (C|AC) such that the following condition
566
+ holds:
567
+ For any k ∈ N and any {ai | ai ∈ [−1, 1]AC, i ∈ [k]},
568
+ C
569
+
570
+ ˆy=1
571
+ max
572
+ i∈[k]
573
+
574
+ aT
575
+ i ΛΛΛµpˆy
576
+
577
+ ≤ E
578
+
579
+ max
580
+ i∈[k]{aT
581
+ i g(X)}
582
+
583
+ ,
584
+ (9)
585
+ where pˆy
586
+ is the
587
+ ˆy-th column of P
588
+ and ΛΛΛµ
589
+ =
590
+ diag(µ1,1, · · · , µA,C).
591
+ Intuitively, (9) uses piece-wise linear functions to approx-
592
+ imate the boundary of C where k represents the num-
593
+ ber of linear pieces.
594
+ Unfortunately, replacing P ∈ C
595
+ with this series of constraints in (6) may result in an in-
596
+ tractable problem since standard duality-based approaches
597
+ will lead to infinitely many dual variables.
598
+ To resolve
599
+ this issue, we first fix k and let Ck be the set of P such
600
+ that (9) holds under this fixed k. Accordingly, we define
601
+ FairFrontk(αSP, αEO, αOAE) as the optimal value of (6) when
602
+ replacing C with Ck. Since C1 ⊇ C2 ⊇ · · · ⊇ C, we have
603
+ FairFront1(αSP, αEO, αOAE) ≥ FairFront2(αSP, αEO, αOAE) ≥
604
+ · · ·
605
+
606
+ FairFront(αSP, αEO, αOAE). However, computing
607
+ FairFrontk(αSP, αEO, αOAE) still involves infinitely many con-
608
+ straints.
609
+ Next, we introduce a greedy improvement algorithm that
610
+ consists of solving a sequence of tractable optimization
611
+
612
+ Aleatoric and Epistemic Discrimination in Classification
613
+ Algorithm 1 Approximate the fairness Pareto frontier.
614
+ Input: D = {(xi, yi, si)}N
615
+ i=1, maximum number of iterations
616
+ T; maximum pieces k; classifier g(x); threshold parameters
617
+ αSP, αEO, αOAE.
618
+ Initialize: set A = ∅; µs,y = |{i|si=s,yi=y}|
619
+ N
620
+ ; t = 1.
621
+ Repeat:
622
+ Solve a convex program:
623
+ max
624
+ P
625
+ A
626
+
627
+ s=1
628
+ C
629
+
630
+ y=1
631
+ µs,yP(s,y),y
632
+ s.t. P ∈ T (C|AC)
633
+ SP ≤ αSP, EO ≤ αEO, OAE ≤ αOAE
634
+ C
635
+
636
+ ˆy=1
637
+ max
638
+ i∈[k]
639
+
640
+ aT
641
+ i ΛΛΛµpˆy
642
+
643
+ ≤ E
644
+
645
+ max
646
+ i∈[k]{aT
647
+ i g(X)}
648
+
649
+ ∀(a1, · · · , ak) ∈ A.
650
+ Let vt and P t be the optimal value and optimal solution.
651
+ Solve a DC program:
652
+ min
653
+ ai∈[−1,1]AC
654
+ i∈[k]
655
+ E
656
+
657
+ max
658
+ i∈[k]{aT
659
+ i g(X)}
660
+
661
+
662
+ C
663
+
664
+ ˆy=1
665
+ max
666
+ i∈[k]
667
+
668
+ aT
669
+ i ΛΛΛµpt
670
+ ˆy
671
+
672
+ .
673
+ If the optimal value is ≥ 0 or t = T,
674
+ stop;
675
+ otherwise,
676
+ add the optimal (a1, · · · , ak) to A and t = t + 1.
677
+ return: vt, P t, A.
678
+ problems for approximating FairFrontk(αSP, αEO, αOAE). We
679
+ use A to collect the constraints of P and set A = ∅ initially.
680
+ At each iteration, our algorithm solves a convex program
681
+ to find an optimal P that maximizes the accuracy while
682
+ satisfying the desired group fairness constraints and the con-
683
+ straints in A; then we verify if this P is within the set Ck by
684
+ solving a DC (difference of convex) program (Shen et al.,
685
+ 2016; Horst & Thoai, 1999). If P ∈ Ck, then the algo-
686
+ rithm stops; otherwise, the algorithm will find the constraint
687
+ that is mostly violated by P and add this constraint to A.
688
+ We describe our algorithm in Algorithm 1 and establish a
689
+ convergence guarantee in the following theorem.
690
+ Theorem 2. Let T = ∞. If Algorithm 1 stops, its output P t
691
+ is an optimal solution of FairFrontk(αSP, αEO, αOAE). Other-
692
+ wise, any convergent sub-sequence of {P t}∞
693
+ t=1 converges
694
+ to an optimal solution of FairFrontk(αSP, αEO, αOAE).
695
+ Note that the output vt from Algorithm 1 is always an up-
696
+ per bound for FairFront(αSP, αEO, αOAE), assuming the es-
697
+ timation error is sufficiently small. The tightness of this
698
+ upper bound is determined by k (i.e., how well the piece-
699
+ wise linear functions approximate the boundary of C), T
700
+ (i.e., the total number of iterations). On the other hand,
701
+ running off-the-shelf in-processing and post-processing
702
+ fairness interventions can only yield lower bounds for
703
+ FairFront(αSP, αEO, αOAE). In the next section, we compare
704
+ our upper bound given by Algorithm 1 with the lower
705
+ bounds given by some state-of-the-art methods to demon-
706
+ strate the tightness of our algorithm.
707
+ 4. Numerical Experiments
708
+ Recall that FairFront in Definition 1 characterizes the high-
709
+ est achievable accuracy under a fairness constraint. We use
710
+ it to quantify aleatoric discrimination and measure epistemic
711
+ discrimination by comparing a classifier’s accuracy and fair-
712
+ ness violation with FairFront. In this section, we apply
713
+ FairFront to analyze the performance of existing fairness in-
714
+ terventions and how data biases, specifically missing values,
715
+ impact their effectiveness. We find that given sufficient data,
716
+ state-of-the-art fairness interventions are successful at reduc-
717
+ ing epistemic discrimination as their gap to the FairFront is
718
+ small. However, we also discover that when different popu-
719
+ lation groups have varying missing data patterns, aleatoric
720
+ discrimination increases, which diminishes the performance
721
+ of fairness intervention algorithms. We provide additional
722
+ experimental results and details in Appendix C.
723
+ 4.1. Benchmark Fairness Interventions
724
+ Setup.
725
+ We evaluate our results on the UCI Adult dataset
726
+ (Bache & Lichman, 2013), the ProPublica COMPAS dataset
727
+ (Angwin et al., 2016), and the German Credit dataset (Bache
728
+ & Lichman, 2013).3 We consider a binary classification
729
+ problem with binary groups since most existing fairness
730
+ interventions are designed for this scenario. For the Adult
731
+ dataset, we choose sex (female or male) as the group at-
732
+ tribute and income (> 50K or <= 50K) as the target for pre-
733
+ diction; for the COMPAS dataset, we choose race (African-
734
+ American or Caucasian) as the group attribute and is recid
735
+ (recid. or no recid.) as the target for prediction. The details
736
+ about how we pre-process these datasets are deferred to Ap-
737
+ pendix C. We measure fairness violations via Max equalized
738
+ odds:
739
+ max | Pr(ˆY = ˆy|S = s, Y = y) − Pr(ˆY = ˆy|S = s′, Y = y)|
740
+ where the max is taken over y, ˆy, s, s′. We run Algorithm 1
741
+ with k = 6 pieces, 20 iterations, and varying αEO to get
742
+ FairFront on each dataset. We compute the expectations
743
+ and the g function from the empirical distributions and solve
744
+ the DC program by using the DCCP package provided by
745
+ Shen et al. (2016).
746
+ Fairness
747
+ interventions.
748
+ We
749
+ consider
750
+ five
751
+ existing
752
+ fairness-intervention algorithms:
753
+ Reduction (Agar-
754
+ wal
755
+ et
756
+ al.,
757
+ 2018),
758
+ EqOdds
759
+ (Hardt
760
+ et
761
+ al.,
762
+ 2016),
763
+ CalEqOdds (Pleiss et al., 2017), LevEqOpp (Chzhen
764
+ 3We defer the experimental results on the German Credit
765
+ dataset to Appendix C.
766
+
767
+ Aleatoric and Epistemic Discrimination in Classification
768
+ Figure 1. Comparing existing fairness interventions with FairFront on the Adult (Left) and COMPAS (Right) datasets. We use FairFront
769
+ to quantify aleatoric discrimination and measure epistemic discrimination by comparing a classifier’s accuracy and fairness violation
770
+ with FairFront. As shown, SOTA fairness interventions are effective at reducing epistemic discrimination as their gap to the FairFront is
771
+ small.
772
+ et al., 2019), and FairProjection (Alghamdi et al.,
773
+ 2022).
774
+ Among them, Reduction is an in-processing
775
+ method and the rest are all post-processing methods. For
776
+ the first three benchmarks, we use the implementations
777
+ from IBM AIF360 library (Bellamy et al., 2018); for
778
+ LevEqOpp and FairProjection, we use the Python
779
+ implementations from the Github repo in Alghamdi et al.
780
+ (2022). For Reduction and FairProjection, we
781
+ can vary their tolerance of fairness violations to produce a
782
+ fairness-accuracy curve; for EqOdds, CalEqOdds, and
783
+ LevEqOpp, each of them produces a single point since
784
+ they only allow hard equality constraint. We note that
785
+ FairProjection is optimized for transforming prob-
786
+ abilistic classifier outputs (see also Wei et al., 2021), but
787
+ here we threshold the probabilistic outputs to generate bi-
788
+ nary predictions which may limit its performance. Finally,
789
+ we train a random forest as the Baseline classifier. In
790
+ order to emulate the setting where the data distribution is
791
+ known exactly, we train models using the entire dataset and
792
+ resample 30% data as the test set.
793
+ Results.
794
+ We benchmark fairness interventions against
795
+ FairFront in Figure 1. First, we observe that if we run
796
+ Algorithm 1 for a single iteration, which is equivalent to
797
+ solving Proposition 1 without (6c), its solution is very close
798
+ to 1 for all αEO. This demonstrates the benefits of incorporat-
799
+ ing Blackwell’s conditions into the fairness Pareto frontier.
800
+ Second, we observe that fairness-accuracy curves given
801
+ by state-of-the-art (SOTA) fairness interventions are very
802
+ close to the fairness Pareto frontier. This result not only
803
+ demonstrates the tightness of our approximation (recall
804
+ that Algorithm 1 gives an upper bound of FairFront and
805
+ benchmarks give a lower bound) but also shows that SOTA
806
+ fairness interventions have already achieved near-optimal
807
+ fairness-accuracy curves—their epistemic discrimination
808
+ is small since they approach the FairFront limit. In what
809
+ follows, we demonstrate how missing values in data can
810
+ increase aleatoric discrimination and dramatically reduce
811
+ the effectiveness of fairness interventions.
812
+ 4.2. Fairness Risks in Missing Values
813
+ Real-world data often have missing values and the missing
814
+ patterns can be different across different protected groups
815
+ (see Jeong et al., 2022, for some examples). There is a grow-
816
+ ing line of research (see e.g., Jeong et al., 2022; Fernando
817
+ et al., 2021; Wang & Singh, 2021; Subramonian et al., 2022;
818
+ Caton et al., 2022; Zhang & Long, 2021; Schelter et al.,
819
+ 2019) studying the fairness risks of data with missing val-
820
+ ues. In this section, we apply our result to demonstrate how
821
+ disparate missing patterns influence the fairness-accuracy
822
+ curves.
823
+ Setup.
824
+ We choose sex (group 0: female, group 1: male) as
825
+ the group attribute for the Adult dataset, and race (group 0:
826
+ African-American, group 1: Caucasian) for the COMPAS
827
+ dataset. To investigate the impact of disparate missing pat-
828
+ terns on aleatoric discrimination, we artificially generate
829
+ missing values in both datasets. This is necessary as the
830
+ datasets do not contain sufficient missing data. The miss-
831
+ ing values are generated according to different probabilities
832
+ for different population groups. For each data point from
833
+ group 0, we erase each input feature with a varying proba-
834
+ bility p0 ∈ {10%, 50%, 70%}, while for group 1, we erase
835
+
836
+ Adult
837
+ Aleatoric
838
+ 84.5
839
+ Epistemic
840
+ discrimination,
841
+ discrimination
842
+ 84.0
843
+ (%)
844
+ 83.5
845
+ Accuracy (
846
+ 83.0
847
+ FairFront
848
+ Baseline
849
+ 82.5
850
+ FairProjection
851
+ Reduction
852
+ 82.0
853
+ LevEqOpp
854
+ CalEqOdds
855
+ EqOdds
856
+ 81.5
857
+ 0
858
+ 2.5
859
+ 5.0
860
+ 7.50
861
+ 10.0
862
+ 12.5
863
+ Max equalized odds (%)COMPAS
864
+ 77.0
865
+ 76.0
866
+ (%)
867
+ Accuracy
868
+ 75.0
869
+ 74.0
870
+ FairFront
871
+ Baseline
872
+ FairProjection
873
+ Reduction
874
+ 73.0
875
+ LevEqOpp
876
+ CalEqOdds
877
+ EqOdds
878
+ 72.0
879
+ 0
880
+ 5.0
881
+ 10.0
882
+ 15.0
883
+ 20.0
884
+ Max equalized odds (%)Aleatoric and Epistemic Discrimination in Classification
885
+ Figure 2. We demonstrate the fairness risks of disparate missing patterns. We vary missing probability of group 0 (female in Adult/African-
886
+ American in COMPAS) among {10%, 50%, 70%} and let the missing probability of group 1 (male in Adult/Caucasian in COMPAS) be
887
+ 10%. We use mode imputation to pre-process missing data. We apply Reduction to the imputed data and plot its fairness-accuracy
888
+ curve against the FairFront with the level of transparency representing the degree of disparity in the missing patterns.
889
+ each input feature with a fixed probability p1 = 10%. We
890
+ then apply mode imputation to the missing values, replacing
891
+ them with the mode of non-missing values for each feature.
892
+ Finally, we apply Algorithm 1 along with Reduction and
893
+ Baseline to the imputed data. The experimental results
894
+ are shown in Figure 2.
895
+ Results.
896
+ As we increase the missing probability of
897
+ group 0, FairFront decreases since it becomes more difficult
898
+ to accurately predict outcomes for group 0. This in turn
899
+ affects the overall model performance, since the fairness
900
+ constraint requires that the model performs similarly for
901
+ both groups. We also observe the fairness-accuracy curves
902
+ of Reduction decrease as the missing data for group 0
903
+ become more prevalent. In other words, as the missing data
904
+ for group 0 increase, it becomes more difficult to maintain
905
+ both high accuracy and fairness in the model’s prediction.
906
+ 5. Final Remarks and Limitations
907
+ The past years have witnessed a growing line of research in-
908
+ troducing various fairness-intervention algorithms. Most of
909
+ these interventions focus on optimizing model performance
910
+ subject to group fairness constraints. Though comparing
911
+ and benchmarking these methods on various datasets is valu-
912
+ able (e.g., see benchmarks in Friedler et al., 2019; Bellamy
913
+ et al., 2019; Wei et al., 2021), this does not reveal if there is
914
+ still room for improvement in their fairness-accuracy curves,
915
+ or if existing methods approach the information-theoretic
916
+ optimal limit when infinite data is available. Our results
917
+ address this gap by introducing the fairness Pareto frontier,
918
+ which measures the highest possible accuracy under a group
919
+ fairness constraint. We precisely characterize the fairness
920
+ Pareto frontier using Blackwell’s conditions and present a
921
+ greedy improvement algorithm that approximates it from
922
+ data. Our results show that the fairness-accuracy curves
923
+ produced by state-of-the-art fairness interventions are very
924
+ close to the fairness Pareto frontier on standard datasets.
925
+ Additionally, we demonstrate that when data are biased
926
+ due to missing values, the fairness Pareto frontier degrades.
927
+ Although existing fairness interventions can still reduce per-
928
+ formance disparities, they come at the cost of significantly
929
+ lowering overall model accuracy. The methods we present
930
+ for computing the fairness Pareto frontier can also be ap-
931
+ plied to analyze other sources of aleatoric discrimination,
932
+ such as when individuals may misreport their data or when
933
+ there are measurement errors. Overall, the fairness Pareto
934
+ frontier can serve as a valuable framework for guiding data
935
+ collection and cleaning.
936
+ Our results indicate that existing fairness interventions can
937
+ be effective in reducing epistemic discrimination, and there
938
+ are diminishing returns in developing new fairness inter-
939
+ ventions focused solely on optimizing accuracy for a given
940
+ group fairness constraint on pristine data. However, existing
941
+ fairness interventions have yet to effectively provide both
942
+ fair and accurate classification when additional sources of
943
+ aleatoric discrimination are present (such as missing values
944
+ in data). This suggests that there is still significant need for
945
+ research on handling aleatoric sources of discrimination that
946
+ appear throughout the data collection process.
947
+
948
+ Adult
949
+ 84.5
950
+ 84.0
951
+ Accuracy (%)
952
+ 83.5
953
+ 83.0
954
+ 82.5
955
+ 82.0
956
+ FairFront
957
+ Baseline
958
+ Reduction
959
+ 81.5
960
+ 0
961
+ 10.0
962
+ 20.0
963
+ 30.0
964
+ 40.0
965
+ 50.0
966
+ Max equalized odds (%)COMPAS
967
+ 76.0
968
+ 74.0
969
+ 72.0
970
+ %)
971
+ 70.0
972
+ Accuracy (
973
+ 68.0
974
+ 65.9
975
+ 63.9
976
+ 62.0
977
+ FairFront
978
+ Baseline
979
+ 60.0
980
+ Reduction
981
+ 0
982
+ 20.0
983
+ 40.0
984
+ 60.0
985
+ Max equalized odds (%)Aleatoric and Epistemic Discrimination in Classification
986
+ References
987
+ Agarwal, A., Beygelzimer, A., Dud´ık, M., Langford, J., and
988
+ Wallach, H. A reductions approach to fair classification.
989
+ In International Conference on Machine Learning, pp.
990
+ 60–69. PMLR, 2018.
991
+ Alghamdi, W., Asoodeh, S., Wang, H., Calmon, F. P., Wei,
992
+ D., and Ramamurthy, K. N. Model projection: Theory
993
+ and applications to fair machine learning. In 2020 IEEE
994
+ International Symposium on Information Theory (ISIT),
995
+ pp. 2711–2716. IEEE, 2020.
996
+ Alghamdi, W., Hsu, H., Jeong, H., Wang, H., Michalak,
997
+ P. W., Asoodeh, S., and Calmon, F. P. Beyond Adult and
998
+ COMPAS: Fair multi-class prediction via information
999
+ projection. In Advances in Neural Information Processing
1000
+ Systems, 2022.
1001
+ Angwin, J., Larson, J., Mattu, S., and Kirchner, L. Machine
1002
+ bias. ProPublica, 2016.
1003
+ Bache, K. and Lichman, M. UCI Machine Learning Reposi-
1004
+ tory, 2013.
1005
+ Bellamy, R. K., Dey, K., Hind, M., Hoffman, S. C., Houde,
1006
+ S., Kannan, K., Lohia, P., Martino, J., Mehta, S., Mo-
1007
+ jsilovic, A., et al. Ai fairness 360: An extensible toolkit
1008
+ for detecting, understanding, and mitigating unwanted
1009
+ algorithmic bias. arXiv preprint arXiv:1810.01943, 2018.
1010
+ Bellamy, R. K., Dey, K., Hind, M., Hoffman, S. C., Houde,
1011
+ S., Kannan, K., Lohia, P., Martino, J., Mehta, S., Mo-
1012
+ jsilovi´c, A., et al. Ai fairness 360: An extensible toolkit
1013
+ for detecting and mitigating algorithmic bias. IBM Jour-
1014
+ nal of Research and Development, 63(4/5):4–1, 2019.
1015
+ Berk, R., Heidari, H., Jabbari, S., Kearns, M., and Roth, A.
1016
+ Fairness in criminal justice risk assessments: The state of
1017
+ the art. Sociological Methods & Research, 50(1):3–44,
1018
+ 2021.
1019
+ Blackwell, D. Comparison of experiments. Proceedings of
1020
+ the Second Berkeley Symposium on Mathematical Statis-
1021
+ tics and Probability, pp. 93–102, 1951.
1022
+ Blackwell, D. Equivalent comparisons of experiments. The
1023
+ annals of mathematical statistics, pp. 265–272, 1953.
1024
+ Blum, A. and Stangl, K. Recovering from biased data: Can
1025
+ fairness constraints improve accuracy? arXiv preprint
1026
+ arXiv:1912.01094, 2019.
1027
+ Calmon, F., Wei, D., Vinzamuri, B., Natesan Ramamurthy,
1028
+ K., and Varshney, K. R. Optimized pre-processing for dis-
1029
+ crimination prevention. Advances in neural information
1030
+ processing systems, 30, 2017.
1031
+ Cam, L. L. Sufficiency and approximate sufficiency. The
1032
+ Annals of Mathematical Statistics, pp. 1419–1455, 1964.
1033
+ Caton, S., Malisetty, S., and Haas, C. Impact of imputation
1034
+ strategies on fairness in machine learning. Journal of
1035
+ Artificial Intelligence Research, 74:1011–1035, 2022.
1036
+ Celis, L. E., Huang, L., Keswani, V., and Vishnoi, N. K.
1037
+ Classification with fairness constraints: A meta-algorithm
1038
+ with provable guarantees. In Proceedings of the confer-
1039
+ ence on fairness, accountability, and transparency, pp.
1040
+ 319–328, 2019.
1041
+ Chen, I., Johansson, F. D., and Sontag, D. Why is my
1042
+ classifier discriminatory? Advances in neural information
1043
+ processing systems, 31, 2018.
1044
+ Chouldechova, A. Fair prediction with disparate impact: A
1045
+ study of bias in recidivism prediction instruments. Big
1046
+ data, 5(2):153–163, 2017.
1047
+ Chzhen, E., Denis, C., Hebiri, M., Oneto, L., and Pontil, M.
1048
+ Leveraging labeled and unlabeled data for consistent fair
1049
+ binary classification. Advances in Neural Information
1050
+ Processing Systems, 32, 2019.
1051
+ Cohen, J., Kempermann, J. H., and Zbaganu, G. Com-
1052
+ parisons of stochastic matrices with applications in in-
1053
+ formation theory, statistics, economics and population.
1054
+ Springer Science & Business Media, 1998.
1055
+ Corbett-Davies, S., Pierson, E., Feller, A., Goel, S., and
1056
+ Huq, A. Algorithmic decision making and the cost of fair-
1057
+ ness. In Proceedings of the 23rd acm sigkdd international
1058
+ conference on knowledge discovery and data mining, pp.
1059
+ 797–806, 2017.
1060
+ Dutta, S., Wei, D., Yueksel, H., Chen, P.-Y., Liu, S., and
1061
+ Varshney, K. Is there a trade-off between fairness and
1062
+ accuracy? a perspective using mismatched hypothesis
1063
+ testing. In International Conference on Machine Learn-
1064
+ ing, pp. 2803–2813. PMLR, 2020.
1065
+ Dwork, C., Immorlica, N., Kalai, A. T., and Leiserson, M.
1066
+ Decoupled classifiers for group-fair and efficient machine
1067
+ learning. In Conference on fairness, accountability and
1068
+ transparency, pp. 119–133. PMLR, 2018.
1069
+ Feldman, M., Friedler, S. A., Moeller, J., Scheidegger, C.,
1070
+ and Venkatasubramanian, S. Certifying and removing dis-
1071
+ parate impact. In proceedings of the 21th ACM SIGKDD
1072
+ international conference on knowledge discovery and
1073
+ data mining, pp. 259–268, 2015.
1074
+ Fernando, M.-P., C`esar, F., David, N., and Jos´e, H.-O. Miss-
1075
+ ing the missing values: The ugly duckling of fairness in
1076
+ machine learning. International Journal of Intelligent
1077
+ Systems, 36(7):3217–3258, 2021.
1078
+
1079
+ Aleatoric and Epistemic Discrimination in Classification
1080
+ Fogliato, R., Chouldechova, A., and G’Sell, M. Fairness
1081
+ evaluation in presence of biased noisy labels. In Interna-
1082
+ tional Conference on Artificial Intelligence and Statistics,
1083
+ pp. 2325–2336. PMLR, 2020.
1084
+ Friedler, S. A., Scheidegger, C., Venkatasubramanian, S.,
1085
+ Choudhary, S., Hamilton, E. P., and Roth, D. A compara-
1086
+ tive study of fairness-enhancing interventions in machine
1087
+ learning. In Proceedings of the conference on fairness,
1088
+ accountability, and transparency, pp. 329–338, 2019.
1089
+ Hardt, M., Price, E., and Srebro, N. Equality of opportunity
1090
+ in supervised learning. In Advances in Neural Informa-
1091
+ tion Processing Systems, volume 29, 2016.
1092
+ Horst, R. and Thoai, N. V. Dc programming: overview.
1093
+ Journal of Optimization Theory and Applications, 103(1):
1094
+ 1–43, 1999.
1095
+ Hort, M., Chen, Z., Zhang, J. M., Sarro, F., and Harman,
1096
+ M. Bia mitigation for machine learning classifiers: A
1097
+ comprehensive survey. arXiv preprint arXiv:2207.07068,
1098
+ 2022.
1099
+ H¨ullermeier, E. and Waegeman, W. Aleatoric and epistemic
1100
+ uncertainty in machine learning: An introduction to con-
1101
+ cepts and methods. Machine Learning, 110(3):457–506,
1102
+ 2021.
1103
+ Jeong, H., Wang, H., and Calmon, F. P. Fairness without
1104
+ imputation: A decision tree approach for fair prediction
1105
+ with missing values. In Proceedings of the AAAI Confer-
1106
+ ence on Artificial Intelligence, volume 36, pp. 9558–9566,
1107
+ 2022.
1108
+ Jiang, H. and Nachum, O. Identifying and correcting label
1109
+ bias in machine learning. In International Conference on
1110
+ Artificial Intelligence and Statistics, pp. 702–712. PMLR,
1111
+ 2020.
1112
+ Jiang, R., Pacchiano, A., Stepleton, T., Jiang, H., and Chi-
1113
+ appa, S. Wasserstein fair classification. In Uncertainty in
1114
+ Artificial Intelligence, pp. 862–872. PMLR, 2020.
1115
+ Kallus, N., Mao, X., and Zhou, A. Assessing algorithmic
1116
+ fairness with unobserved protected class using data com-
1117
+ bination. Management Science, 68(3):1959–1981, 2022.
1118
+ Kamiran, F. and Calders, T. Data preprocessing techniques
1119
+ for classification without discrimination. Knowledge and
1120
+ information systems, 33(1):1–33, 2012.
1121
+ Kearns, M., Neel, S., Roth, A., and Wu, Z. S. Preventing
1122
+ fairness gerrymandering: Auditing and learning for sub-
1123
+ group fairness. In International Conference on Machine
1124
+ Learning, pp. 2564–2572. PMLR, 2018.
1125
+ Kim, J. S., Chen, J., and Talwalkar, A. Fact: A diagnostic
1126
+ for group fairness trade-offs. In International Conference
1127
+ on Machine Learning, pp. 5264–5274. PMLR, 2020.
1128
+ Kim, M. P., Ghorbani, A., and Zou, J. Multiaccuracy: Black-
1129
+ box post-processing for fairness in classification. In Pro-
1130
+ ceedings of the 2019 AAAI/ACM Conference on AI, Ethics,
1131
+ and Society, pp. 247–254, 2019.
1132
+ Kleinberg, J., Mullainathan, S., and Raghavan, M. Inherent
1133
+ trade-offs in the fair determination of risk scores. arXiv
1134
+ preprint arXiv:1609.05807, 2016.
1135
+ Kulkarni, A., Chong, D., and Batarseh, F. A. Foundations
1136
+ of data imbalance and solutions for a data democracy. In
1137
+ data democracy, pp. 83–106. Elsevier, 2020.
1138
+ Lowy, A., Pavan, R., Baharlouei, S., Razaviyayn, M., and
1139
+ Beirami, A. Fermi: Fair empirical risk minimization via
1140
+ exponential R´enyi mutual information. arXiv preprint
1141
+ arXiv:2102.12586, 2021.
1142
+ Martinez, N., Bertran, M., and Sapiro, G. Minimax pareto
1143
+ fairness: A multi objective perspective.
1144
+ In Interna-
1145
+ tional Conference on Machine Learning, pp. 6755–6764.
1146
+ PMLR, 2020.
1147
+ Mayson, S. G. Bias in, bias out. The Yale Law Journal, 128
1148
+ (8):2218–2300, 2019.
1149
+ Mehrotra, A. and Celis, L. E. Mitigating bias in set selection
1150
+ with noisy protected attributes. In Proceedings of the
1151
+ 2021 ACM Conference on Fairness, Accountability, and
1152
+ Transparency, pp. 237–248, 2021.
1153
+ Menon, A. K. and Williamson, R. C. The cost of fairness in
1154
+ binary classification. In Conference on Fairness, Account-
1155
+ ability and Transparency, pp. 107–118. PMLR, 2018.
1156
+ Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
1157
+ Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
1158
+ Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
1159
+ napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
1160
+ Scikit-learn: Machine learning in Python. Journal of
1161
+ Machine Learning Research, 12:2825–2830, 2011.
1162
+ Pleiss, G., Raghavan, M., Wu, F., Kleinberg, J., and Wein-
1163
+ berger, K. Q. On fairness and calibration. Advances in
1164
+ neural information processing systems, 30, 2017.
1165
+ Raginsky, M. Shannon meets blackwell and le cam: Chan-
1166
+ nels, codes, and statistical experiments. In 2011 IEEE
1167
+ International Symposium on Information Theory Proceed-
1168
+ ings, pp. 1220–1224. IEEE, 2011.
1169
+ Rauh, J., Banerjee, P. K., Olbrich, E., Jost, J., Bertschinger,
1170
+ N., and Wolpert, D. Coarse-graining and the blackwell
1171
+ order. Entropy, 19(10):527, 2017.
1172
+
1173
+ Aleatoric and Epistemic Discrimination in Classification
1174
+ Schelter, S., He, Y., Khilnani, J., and Stoyanovich, J. Fair-
1175
+ prep: Promoting data to a first-class citizen in stud-
1176
+ ies on fairness-enhancing interventions. arXiv preprint
1177
+ arXiv:1911.12587, 2019.
1178
+ Shannon, C. E. A note on a partial ordering for communi-
1179
+ cation channels. Information and control, 1(4):390–397,
1180
+ 1958.
1181
+ Shen, X., Diamond, S., Gu, Y., and Boyd, S. Disciplined
1182
+ convex-concave programming. In 2016 IEEE 55th Con-
1183
+ ference on Decision and Control (CDC), pp. 1009–1014.
1184
+ IEEE, 2016.
1185
+ Subramonian, A., Chang, K.-W., and Sun, Y. On the dis-
1186
+ crimination risk of mean aggregation feature imputation
1187
+ in graphs. Advances in Neural Information Processing
1188
+ Systems, 2022.
1189
+ Suresh, H. and Guttag, J. V. A framework for understanding
1190
+ unintended consequences of machine learning. arXiv
1191
+ preprint arXiv:1901.10002, 2:8, 2019.
1192
+ Torgersen, E. Comparison of statistical experiments, vol-
1193
+ ume 36. Cambridge University Press, 1991.
1194
+ Ustun, B., Liu, Y., and Parkes, D. Fairness without harm:
1195
+ Decoupled classifiers with preference guarantees. In In-
1196
+ ternational Conference on Machine Learning, pp. 6373–
1197
+ 6382. PMLR, 2019.
1198
+ Verma, S. and Rubin, J. Fairness definitions explained.
1199
+ In 2018 ieee/acm international workshop on software
1200
+ fairness (fairware), pp. 1–7. IEEE, 2018.
1201
+ Wang, H., Hsu, H., Diaz, M., and Calmon, F. P. To split or
1202
+ not to split: The impact of disparate treatment in classi-
1203
+ fication. IEEE Transactions on Information Theory, 67
1204
+ (10):6733–6757, 2021.
1205
+ Wang, S., Guo, W., Narasimhan, H., Cotter, A., Gupta, M.,
1206
+ and Jordan, M. Robust optimization for fairness with
1207
+ noisy protected groups. Advances in Neural Information
1208
+ Processing Systems, 33:5190–5203, 2020.
1209
+ Wang, Y. and Singh, L. Analyzing the impact of missing val-
1210
+ ues and selection bias on fairness. International Journal
1211
+ of Data Science and Analytics, 12(2):101–119, 2021.
1212
+ Wei, D., Ramamurthy, K. N., and Calmon, F. P. Optimized
1213
+ score transformation for consistent fair classification. J.
1214
+ Mach. Learn. Res., 22:258–1, 2021.
1215
+ Yang, F., Cisse, M., and Koyejo, S. Fairness with overlap-
1216
+ ping groups; a probabilistic perspective. In Advances in
1217
+ Neural Information Processing Systems, volume 33, pp.
1218
+ 4067–4078, 2020.
1219
+ Zafar, M. B., Valera, I., Gomez-Rodriguez, M., and Gum-
1220
+ madi, K. P. Fairness constraints: A flexible approach
1221
+ for fair classification. The Journal of Machine Learning
1222
+ Research, 20(1):2737–2778, 2019.
1223
+ Zemel, R., Wu, Y., Swersky, K., Pitassi, T., and Dwork, C.
1224
+ Learning fair representations. In International conference
1225
+ on machine learning, pp. 325–333. PMLR, 2013.
1226
+ Zhang, B. H., Lemoine, B., and Mitchell, M. Mitigating un-
1227
+ wanted biases with adversarial learning. In Proceedings
1228
+ of the 2018 AAAI/ACM Conference on AI, Ethics, and
1229
+ Society, pp. 335–340, 2018.
1230
+ Zhang, Y. and Long, Q. Assessing fairness in the presence of
1231
+ missing data. Advances in neural information processing
1232
+ systems, 34:16007–16019, 2021.
1233
+
1234
+ Aleatoric and Epistemic Discrimination in Classification
1235
+ A. Technical Background
1236
+ In this section, we extend some results in Blackwell (1951; 1953) to our setting. For a random variable X, we denote
1237
+ its probability distribution by L(X). A conditional distribution PX|A : [n] → P(X) can be equivalently written as
1238
+ P ≜ (P1, · · · , Pn) where each Pi = PX|A=i ∈ P(X). Let A be a closed, bounded, convex subset of Rn. A decision
1239
+ function is a mapping f : X → A, which can also be written as f(x) = (a1(x), · · · , an(x)). A decision function is
1240
+ associated a loss vector:
1241
+ v(f) =
1242
+ ��
1243
+ a1(x)dP1(x), · · · ,
1244
+
1245
+ an(x)dPn(x)
1246
+
1247
+ .
1248
+ (11)
1249
+ The collection of all v(f) is denoted by B(PX|A, A) or B(P , A).
1250
+ For a vector λλλ ∈ ∆n such that λλλ > 0, we define a function pλλλ(x) : X → ∆n:
1251
+ pλλλ(x) =
1252
+
1253
+ λ1dP1
1254
+ λ1dP1 + · · · + λndPn
1255
+ , · · · ,
1256
+ λndPn
1257
+ λ1dP1 + · · · + λndPn
1258
+
1259
+ .
1260
+ (12)
1261
+ Note that pλλλ(X) is a sufficient statistic for X, considering A as the parameter (it can be proved by Fisher-Neyman factorization
1262
+ theorem). In other words, two Markov chains hold: A → pλλλ(X) → X and A → X → pλλλ(X) for any distribution on A.
1263
+ Consider a new set of probability distributions P ∗
1264
+ λλλ ≜ (L(pλλλ(X1)), · · · , L(pλλλ(Xn))) where L(Xi) = Pi. Here P ∗
1265
+ λλλ can be
1266
+ viewed as a conditional distribution from [n] to P(∆n) since each L(pλλλ(Xi)) is a probability distribution over ∆n. The
1267
+ following lemma follows from the sufficiency of pλλλ(X).
1268
+ Lemma 3 (Adaptation of Theorem 3 in Blackwell (1951)). For any A, B(P , A) = B(P ∗
1269
+ λλλ, A).
1270
+ Proof. Suppose that f ∗(p) = (a∗
1271
+ 1(p), · · · , a∗
1272
+ n(p)) is a decision function for (P ∗
1273
+ λλλ, A). Accordingly, we define f(x) =
1274
+ (a∗
1275
+ 1(pλλλ(x)), · · · , an(pλλλ(x))) where the function pλλλ is defined in (12). Then it is clear that f is a decision function for
1276
+ (P , A). By the law of unconscious statistician, we have
1277
+
1278
+ a∗
1279
+ i (p)dP ∗
1280
+ λ
1281
+ λ
1282
+ λ,i(p) = E [a∗
1283
+ i (pλλλ(Xi))] =
1284
+
1285
+ a∗
1286
+ i (pλλλ(x))dPi(x).
1287
+ (13)
1288
+ Hence, v(f ∗) = v(f), which implies B(P ∗
1289
+ λλλ, A) ⊆ B(P , A). For the other direction, suppose f(x) = (a1(x), · · · , an(x))
1290
+ is a decision function for (P , A). Let f ∗(p) = (a∗
1291
+ 1(p), · · · , a∗
1292
+ n(p)) where a∗
1293
+ i (p) ≜ E [ai(Xi) | pλλλ(Xi) = p]. Since pλλλ(X)
1294
+ is a sufficient statistics, for any i ∈ [n]
1295
+ L(Xi|pλλλ(Xi) = p) = L(X1|pλλλ(X1) = p).
1296
+ (14)
1297
+ Therefore, f ∗(p) = E [f(X1)|pλλλ(X1) = p]. Since A is a convex set, f ∗ is a decision function for (P ∗, A). By the law of
1298
+ total expectation, we have
1299
+
1300
+ a∗
1301
+ i (p)dP ∗
1302
+ λλλ,i(p) =
1303
+
1304
+ ai(x)dPi(x).
1305
+ (15)
1306
+ Hence, v(f) = v(f ∗), which implies B(P , A) ⊆ B(P ∗
1307
+ λλλ, A).
1308
+ For a vector λλλ ∈ ∆n such that λλλ > 0, the condition distribution PX|A induces a weighted standard measure P ∗
1309
+ λλλ ≜ L (pλλλ(¯X))
1310
+ where L(¯X) = λ1P1 + · · · + λnPn.
1311
+ Theorem 3 (Adaptation of Theorem 4 in Blackwell (1951)). For any two conditional distributions PX|A and QY|A, let
1312
+ P ∗
1313
+ λλλ and Q∗
1314
+ λλλ be their weighted standard measures, respectively. Then B(PX|A, A) ⊇ B(QY|A, A) for any closed, bounded,
1315
+ convex set A if and only if for any continuous convex φ : ∆n → R,
1316
+
1317
+ φ(p)dP ∗
1318
+ λλλ(p) ≥
1319
+
1320
+ φ(p)dQ∗
1321
+ λλλ(p)
1322
+ Proof. First, by Lemma 3, we know B(PX|A, A) = B(P ∗
1323
+ λλλ, A) and B(QY|A, A) = B(Q∗
1324
+ λλλ, A).
1325
+ We denote ΛΛΛ =
1326
+ diag(λ1, · · · , λn). Consider any A = conv(a1, · · · , ak). Let
1327
+ f ∗(p) = argmin
1328
+ a∈A
1329
+ pTΛΛΛ−1a.
1330
+ (16)
1331
+
1332
+ Aleatoric and Epistemic Discrimination in Classification
1333
+ Note that f ∗(p) ∈ {a1, · · · , ak} since this set contains all the extreme points of A.4 By definition, for any decision function
1334
+ w.r.t. (P ∗
1335
+ λλλ, A), we have
1336
+ pTΛΛΛ−1f(p) ≥ pTΛΛΛ−1f ∗(p),
1337
+ ∀p.
1338
+ (17)
1339
+ Let v = v(f). By the same reason with (13), we have
1340
+ vj =
1341
+
1342
+ aj(pλλλ(x))dPj(x)
1343
+ (18)
1344
+ = 1
1345
+ λj
1346
+
1347
+ aj(pλλλ(x))
1348
+ λjdPj
1349
+ λ1dP1 + · · · + λndPn
1350
+ (x)(λ1dP1 + · · · + λndPn)(x)
1351
+ (19)
1352
+ = 1
1353
+ λj
1354
+
1355
+ aj(pλλλ(x))[pλλλ(x)]j(λ1dP1 + · · · + λndPn)(x)
1356
+ (20)
1357
+ = 1
1358
+ λj
1359
+ E [aj(pλλλ(¯X))[pλλλ(¯X)]j]
1360
+ (21)
1361
+ = 1
1362
+ λj
1363
+
1364
+ aj(p)pjdP ∗
1365
+ λλλ(p),
1366
+ (22)
1367
+ where the last step is due to the law of unconscious statistician. Therefore,
1368
+ n
1369
+
1370
+ j=1
1371
+ vj =
1372
+
1373
+ pTΛΛΛ−1f(p)dP ∗
1374
+ λλλ(p)
1375
+ (23)
1376
+
1377
+
1378
+ pTΛΛΛ−1f ∗(p)dP ∗
1379
+ λλλ(p)
1380
+ (24)
1381
+ =
1382
+
1383
+ min
1384
+ i {pTΛΛΛ−1ai}dP ∗
1385
+ λλλ(p).
1386
+ (25)
1387
+ The equality is achieved by v(f ∗). Hence, for any A = conv(a1, · · · , ak)
1388
+ min
1389
+ v∈B(PX|A,A)
1390
+ n
1391
+
1392
+ j=1
1393
+ vj =
1394
+
1395
+ min
1396
+ i {aT
1397
+ i ΛΛΛ−1p}dP ∗
1398
+ λλλ(p).
1399
+ (26)
1400
+ Recall that Theorem 2.(3) in Blackwell (1951) states
1401
+ B(PX|A, A) ⊇ B(PY|A, A)
1402
+ for every closed, bounded, convex A
1403
+
1404
+ min
1405
+ v∈B(PX|A,A)
1406
+ n
1407
+
1408
+ j=1
1409
+ vj ≤
1410
+ min
1411
+ v∈B(PY|A,A)
1412
+ n
1413
+
1414
+ j=1
1415
+ vj
1416
+ for every closed, bounded, convex A.
1417
+ By approximation theory, the second condition can be relaxed to any A that is a convex hull of a finite set. By (26), this
1418
+ relaxed condition is equivalent to
1419
+
1420
+ φ(p)dP ∗
1421
+ λλλ(p) ≥
1422
+
1423
+ φ(p)dQ∗
1424
+ λλλ(p)
1425
+ (27)
1426
+ for all φ(p) that are the maximum of finitely many linear functions. By approximation theory again, the above condition is
1427
+ equivalent to the one holding for any continuous convex function φ.
1428
+ B. Omitted Proofs
1429
+ B.1. Proof of Lemma 2
1430
+ Proof. Clearly, C is a subset of T (C|AC). Let λ ∈ (0, 1) and PˆY0|S,Y, PˆY1|S,Y ∈ C. Now we introduce a Bernoulli random
1431
+ variable B such that Pr(B = 0) = λ. Finally, we define ˆYλ = BˆY1 +(1−B)ˆY0. By definition, we have (S, Y) → X → ˆYλ
1432
+ 4If (16) has multiple optimal solutions, we always choose the one from {a1, · · · , ak}.
1433
+
1434
+ Aleatoric and Epistemic Discrimination in Classification
1435
+ so PˆYλ|S,Y ∈ C. Moreover,
1436
+ PˆYλ|S,Y = λPˆY0|S,Y + (1 − λ)PˆY1|S,Y.
1437
+ Hence, C is convex.
1438
+ Let λ ∈ (0, 1). Assume P and ¯P achieve the maximal values of Proposition 1 under (αSP, αEO, αOAE) and (¯αSP, ¯αEO, ¯αOAE),
1439
+ respectively. We define Pλ = λP + (1 − λ) ¯P , which satisfies the constraints of Proposition 1 with thresholds (λαSP + (1 −
1440
+ λ)¯αSP, λαEO + (1 − λ)¯αEO, λαOAE + (1 − λ)¯αOAE). Finally, since the objective function of Proposition 1 is a linear function, it
1441
+ is equal to λFairFront(αSP, αEO, αOAE) + (1 − λ)FairFront(¯αSP, ¯αEO, ¯αOAE) under Pλ.
1442
+ B.2. Proof of Theorem 1
1443
+ Proof. The proof relies on Theorem 3 and Lemma 1. For simplicity, we write the conditional PˆY|S,Y as its corresponding
1444
+ transition matrix P . Let µµµ = (Pr(S = 1, Y = 1), · · · , Pr(S = A, Y = C)). The function (12) in our setting can be written
1445
+ as:
1446
+ pµµµ(ˆy) =
1447
+
1448
+ µ1,1P(1,1),ˆy
1449
+
1450
+ s,y µs,yP(s,y),ˆy
1451
+ , · · · ,
1452
+ µA,CP(A,C),ˆy
1453
+
1454
+ s,y µs,yP(s,y),ˆy
1455
+
1456
+ .
1457
+ (28)
1458
+ pµµµ(x) =
1459
+
1460
+ µ1,1dPX|S=1,Y=1
1461
+
1462
+ s,y µs,ydPX|S=s,Y=y
1463
+ (x), · · · ,
1464
+ µA,CdPX|S=A,Y=C
1465
+
1466
+ s,y µs,ydPX|S=s,Y=y
1467
+ (x)
1468
+
1469
+ .
1470
+ (29)
1471
+ Note that pµµµ(x) = g(x) due to Bayes’ rule (see (8) for the definition of g). By Lemma 1, we can rewrite C in Definition 2 as
1472
+ C =
1473
+
1474
+ P | PˆX|S,Y is more informative than P
1475
+
1476
+ .
1477
+ (30)
1478
+ By Lemma 1 and Theorem 3, the above set is further equivalent to all transition matrices P ∈ T (C|AC) satisfying
1479
+ C
1480
+
1481
+ ˆy=1
1482
+ φ
1483
+
1484
+ µ1,1P(1,1),ˆy
1485
+
1486
+ s,y µs,yP(s,y),ˆy
1487
+ , · · · ,
1488
+ µA,CP(A,C),ˆy
1489
+
1490
+ s,y µs,yP(s,y),ˆy
1491
+ � �
1492
+ s,y
1493
+ µs,yP(s,y),ˆy ≤ E [φ(g(X))]
1494
+ (31)
1495
+ for any function φ : ∆AC → R which is the maximum of finitely many linear functions. Now we can write φ(p) =
1496
+ maxi∈[k]
1497
+
1498
+ aT
1499
+ i p
1500
+
1501
+ —we ignore the bias term because aT
1502
+ i p+bi = (ai +bi1)T p. Then the inequality in (31) can be simplified
1503
+ as
1504
+ C
1505
+
1506
+ ˆy=1
1507
+ max
1508
+ i∈[k]
1509
+
1510
+ aT
1511
+ i ΛΛΛµpˆy
1512
+
1513
+ ≤ E
1514
+
1515
+ max
1516
+ i∈[k]{aT
1517
+ i g(X)}
1518
+
1519
+ ,
1520
+ (32)
1521
+ where pˆy is the ˆy-th column of P and ΛΛΛµ = diag(µ1,1, · · · , µA,C). Finally, we can always normalize the above inequality
1522
+ so that each ai ∈ [−1, 1]AC.
1523
+ B.3. Proof of Theorem 2
1524
+ Proof. We denote
1525
+ f(P ) ≜
1526
+ A
1527
+
1528
+ s=1
1529
+ C
1530
+
1531
+ y=1
1532
+ µs,yP(s,y),y,
1533
+ g(P ; a1, · · · , ak) ≜
1534
+ C
1535
+
1536
+ ˆy=1
1537
+ max
1538
+ i∈[k]
1539
+
1540
+ aT
1541
+ i ΛΛΛµpˆy
1542
+
1543
+ − E
1544
+
1545
+ max
1546
+ i∈[k]{aT
1547
+ i g(X)}
1548
+
1549
+ ,
1550
+ F ≜ Ck ∩ {P ∈ T (C|AC) | SP ≤ αSP, EO ≤ αEO, OAE ≤ αOAE} .
1551
+ Let Ft be the constraint set of P at the t-th iteration of our algorithm. Note that F ⊆ Ft by definition. If the algorithm
1552
+ stops at the t-th iteration, then for any {ai | ai ∈ [−1, 1]AC, i ∈ [k]}, P t satisfies
1553
+ g(P t; a1, · · · , ak) ≤ 0,
1554
+
1555
+ Aleatoric and Epistemic Discrimination in Classification
1556
+ which implies P t ∈ F. Consequently,
1557
+ f(P t) = max
1558
+ P ∈Ft f(P ) ≥ max
1559
+ P ∈F f(P ) ≥ f(P t).
1560
+ As a result, f(P t) = maxP ∈F f(P ) so P t is an optimal solution of FairFrontk(αSP, αEO, αOAE).
1561
+ If the algorithm never stops, consider any convergent sub-sequence of P t that converges to a limit point P ∗ ∈ T (C|AC).
1562
+ To simplify our notation, we assume P t → P ∗ as t → ∞. Since {Ft}t≥1 is non-increasing and they all contain F, there
1563
+ exists a set F∗ such that
1564
+ lim
1565
+ t→∞ Ft = F∗,
1566
+ F ⊆ F∗.
1567
+ Therefore, we have
1568
+ f(P ∗) = lim
1569
+ t→∞ f(P t) = lim
1570
+ t→∞ max
1571
+ P ∈Ft f(P ) = max
1572
+ P ∈F∗ f(P ).
1573
+ Since F ⊆ F∗, we have
1574
+ f(P ∗) = max
1575
+ P ∈F∗ f(P ) ≥ max
1576
+ P ∈F f(P ).
1577
+ If P ∗ ̸∈ F, then there exists a (¯a1, · · · , ¯ak), such that g(P ∗; ¯a1, · · · , ¯ak) > 0. Let (a1,t, · · · , ak,t) be the output of Step
1578
+ 2 at t-th iteration. Since P ∗ ∈ Ft for all t, we have
1579
+ g(P ∗; a1,t, · · · , ak,t) ≤ 0.
1580
+ (33)
1581
+ By the optimality of (a1,t, · · · , ak,t), we have
1582
+ g(P t; a1,t, · · · , ak,t) ≥ g(P t; ¯a1, · · · , ¯ak).
1583
+ (34)
1584
+ Suppose that some sub-sequence of (a1,t, · · · , ak,t) converges to a vector (a∗
1585
+ 1, · · · , a∗
1586
+ k). For the sake of simplicity, we
1587
+ assume (a1,t, · · · , ak,t) → (a∗
1588
+ 1, · · · , a∗
1589
+ k) as t → ∞. On the one hand, taking limit of t → ∞ on both sides of (34) leads to
1590
+ g(P ∗; a∗
1591
+ 1, · · · , a∗
1592
+ k) ≥ g(P ∗; ¯a1, · · · , ¯ak).
1593
+ On the other hand, taking limit of t → ∞ on both sides of (33) leads to
1594
+ g(P ∗; a∗
1595
+ 1, · · · , a∗
1596
+ k) ≤ 0.
1597
+ Therefore,
1598
+ 0 ≥ g(P ∗; a∗
1599
+ 1, · · · , a∗
1600
+ k) ≥ g(P ∗; ¯a1, · · · , ¯ak) > 0,
1601
+ which is impossible. Therefore, P ∗ ∈ F and, as a result, we have
1602
+ f(P ∗) = max
1603
+ P ∈F∗ f(P ) ≥ max
1604
+ P ∈F f(P ) ≥ f(P ∗) =⇒ max
1605
+ P ∈F f(P ) = f(P ∗).
1606
+ C. Details on the Experimental Results
1607
+ C.1. Additional Experiments
1608
+ In this section, we present additional experimental results to further support our findings. First, we reproduce our ex-
1609
+ perimental results on the German Credit dataset (Bache & Lichman, 2013). We compare existing fairness interventions
1610
+ with FairFront in Figure 3. Our observation is consistent with those on the previous two datasets—the fairness-
1611
+ accuracy curves given by SOTA fairness interventions, such as Reduction and FairProjection, are close to the
1612
+ information-theoretic limit.
1613
+ As previously demonstrated in Figure 1 and 3, the fairness-accuracy curves generated by Reduction and
1614
+ FairProjection are close to FairFront. To further evaluate the performance of these methods, we train a classifier that
1615
+ approximates the Bayes optimal and feed it to Reduction and FairProjection. The results are shown in Figure 4,
1616
+ which demonstrates that the (training) accuracy-fairness curves generated by Reduction and FairProjection can
1617
+ approach FairFront when using the Bayes optimal baseline classifier.
1618
+
1619
+ Aleatoric and Epistemic Discrimination in Classification
1620
+ Figure 3. Comparing existing fairness interventions with FairFront on the German Credit dataset.
1621
+ C.2. Dataset
1622
+ Adult.
1623
+ We use sex (female or male) as the group attribute and income (> 50K or <= 50K) as the target for
1624
+ prediction.
1625
+ We use sex, hours-per-week, education-num, age, marital status, relationship status (husband or wife)
1626
+ as the input features—we include the group attribute as an input feature.
1627
+ We group age into a total of 12 dis-
1628
+ joint intervals: [0, 20), [20, 25), · · · , [65, 70), [70, ∞); we group hours-per-week into a total of 14 disjoint intervals:
1629
+ [0, 10), [10, 15), · · · , [65, 70), [70, ∞).
1630
+ COMPAS.
1631
+ We use race (African-American or Caucasian) as the group attribute and is recid (recid. or no recid.) as the
1632
+ target for prediction. We use race, age, c charge degree, sex, priors count, c jail in, c jail out as the input features—we
1633
+ include the group attribute as an input feature. We use the last two features by taking their difference to be their length of stay.
1634
+ We remove entries where COMPAS case could not be found (is recid = -1) and entries with inconsistent arrest information.
1635
+ We also binarize sex and remove traffic offenses. We quantize age the same way we do in the Adult dataset and quantize
1636
+ length of stay by every 30 days and let 0 be a separate category.
1637
+ German Credit.
1638
+ We use age (below or above 25 years old) as the group attribute and the credit column, which represents
1639
+ whether the loan was a good decision, as the target for prediction. We use loan duration in month, credit amount, age,
1640
+ number of existing credits at this bank, sex, credit history, savings, and length of present employment as input features. We
1641
+ include the group attribute age as an input feature. We group credit amount into three disjoint intervals: [0, 5000), [5000,
1642
+ 10000),[10000,∞). We group duration of loan into two categories: under 36 months and over 36 months.
1643
+ C.3. Benchmark
1644
+ Each benchmark method’s hyper-parameter values are provided below. Each point in Figure 1 for Baseline, EqOdds,
1645
+ CalEqOdds, Reduction, LevEqOpp, and FairProjection is obtained by applying the obtained classifier to 10
1646
+ different test sets. For the Adult dataset, we use Random Forest with n estimators=15, min samples leaf=3, criterion =
1647
+ log loss, bootstrap = False as our baseline classifier; for the COMPAS dataset, we use Random Forest with n estimators = 17
1648
+ as our baseline classifier. For the German Credit dataset, we use Random Forest with n estimators=100,min samples split
1649
+ =2,min samples leaf=1 as our baseline classifier. They are all implemented by Scikit-learn (Pedregosa et al., 2011).
1650
+ EqOdds (Hardt et al., 2016).
1651
+ We use AIF360 implementation of EqOddsPostprocessing and the default hyper-
1652
+ parameter setup.
1653
+ CalEqOdds (Pleiss et al., 2017).
1654
+ We use AIF360 implementation of CalibratedEqOddsPostprocessing and
1655
+ the default hyper-parameter setup.
1656
+
1657
+ German Credit
1658
+ 86.0
1659
+ 85.5
1660
+ 85.0
1661
+ %)
1662
+ 84.5
1663
+ Accuracy (
1664
+ 84.0
1665
+ 83.5
1666
+ FairFront
1667
+ Baseline
1668
+ FairProjection
1669
+ 83.0
1670
+ Reduction
1671
+ LevEqOpp
1672
+ 82.5
1673
+ CalEqOdds
1674
+ EqOdds
1675
+ 0
1676
+ 5.0
1677
+ 10.0
1678
+ 15.0
1679
+ 20.0
1680
+ Max equalized odds (%)Aleatoric and Epistemic Discrimination in Classification
1681
+ Figure 4. Comparing Reduction and FairProjection with FairFront on the Adult (Left), COMPAS (Middle), and German Credit
1682
+ (Right) datasets. We train a baseline classifier that approximates the Bayes optimal and feed it into the two fairness interventions. As
1683
+ shown, their fairness-accuracy curves are very close to the FairFront in this case.
1684
+ Reduction (Agarwal et al., 2018).
1685
+ We use AIF360 implementation of ExponentiatedGradientReduction.
1686
+ We vary the allowed fairness constraint violation ϵ ∈ {0.001, 0.01, 0.2, 0.5, 1, 2, 5, 10, 15} for Adult dataset and ϵ ∈
1687
+ {0.001, 0.01, 0.2, 0.5, 1, 2, 5, 10, 15} for Adult with missing values. We vary ϵ ∈ {0.001, 2, 5, 10, 15, 20, 25, 30, 35, 40} for
1688
+ COMPAS to obtain a fairness-accuracy curve, and ϵ ∈ {0.001, 0.1, 0.5, 1, 2, 7, 8, 10, 15, 20, 25, 30} for COMPAS with 50%
1689
+ missing values in the minority group. We use ϵ ∈ {20, 50, 80, 95} for German Credit dataset and ϵ ∈ {5, 8, 10, 20, 23}
1690
+ when using Bayes Optimal classifier.
1691
+ LevEqOpp (Chzhen et al., 2019).
1692
+ We use the Python implementation of LevEqopp from the Github repo in Alghamdi
1693
+ et al. (2022). We follow the same hyperparameters setup as in the original method.
1694
+ FairProjection (Alghamdi et al., 2022).
1695
+ We use the implementation from the Github repo in Alghamdi et al. (2022)
1696
+ and set use protected = True. We use Random Forest with n estimators = 17 as the baseline classifier to predict S from
1697
+ (X, Y). We set the list of fairness violation tolerance to be {0.07, 0.075, 0.08, 0.085, 0.09, 0.095, 0.1, 0.5, 0.75, 1.0} for
1698
+ Adult dataset and {0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.1, 0.5, 1.0} for COMPAS dataset to obtain a fairness-accuracy
1699
+ curve. We set the list of fairness violation tolerance to be {0.005, 0.01, 0.02, 0.07, 0.1, 0.15} on the German Credit dataset
1700
+ experiment, and {0.0001, 0.001, 0.005, 0.01, 0.015, 0.02, 0.05} when using a Bayes optimal baseline classifier.
1701
+
1702
+ Adult
1703
+ 84.5
1704
+ 84.2
1705
+ %)
1706
+ 84.0
1707
+ Accuracy
1708
+ 83.7
1709
+ 83.5
1710
+ 83.2
1711
+ FairFront
1712
+ 83.0
1713
+ Baseline
1714
+ FairProjection
1715
+ Reduction
1716
+ 82.7
1717
+ 0
1718
+ 2.5
1719
+ 5.00
1720
+ 7.50
1721
+ 10.0
1722
+ 12.5
1723
+ Max equalized odds (%)COMPAS
1724
+ 77.0
1725
+ 76.8
1726
+ Accuracy
1727
+ 76.6
1728
+ 76.4
1729
+ FairFront
1730
+ Baseline
1731
+ FairProjection
1732
+ 76.2
1733
+ Reduction
1734
+ 0
1735
+ 5.0
1736
+ 10.0
1737
+ 15.0
1738
+ 20.0
1739
+ Max equalized odds (%)German Credit
1740
+ 86.0
1741
+ 85.9
1742
+ 85.9
1743
+ (%)
1744
+ 85.8
1745
+ Accuracy (
1746
+ 85.8
1747
+ 85.7
1748
+ 85.7
1749
+ FairFront
1750
+ 85.6
1751
+ Baseline
1752
+ FairProjection
1753
+ 85.6
1754
+ Reduction
1755
+ 0
1756
+ 5.0
1757
+ 10.0
1758
+ 15.0
1759
+ 20.0
1760
+ 25.0
1761
+ Max equalized odds (%)
6tFKT4oBgHgl3EQfTy2d/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
8NAyT4oBgHgl3EQf2_mV/content/2301.00761v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9cc102a11f8a23358401b929357f49bd5476e52dc11f299210e5291af85cd47
3
+ size 586137
8NAyT4oBgHgl3EQf2_mV/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d257c077c6962f7804e2a5a9b2480fecab5626f9e0f7380c887370ca62362a91
3
+ size 5308461
8NAyT4oBgHgl3EQf2_mV/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:796995701fcefe8822b2d80d60f0f1ec76d30c2effa914d799a42b44ae5cd7dc
3
+ size 215882
9dE5T4oBgHgl3EQfRA7S/content/tmp_files/2301.05518v1.pdf.txt ADDED
@@ -0,0 +1,553 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Two-link Staggered Quark Smearing in QUDA
2
+ Steven Gottlieb,𝑎 Hwancheol Jeong𝑎,∗ and Alexei Strelchenko𝑏
3
+ 𝑎Department of Physics, Indiana University, Bloomington, Indiana 47405, USA
4
+ 𝑏Scientific Computing Division, Fermi National Accelerator Laboratory, Batavia, Illinois, 60510, USA
5
+ E-mail: sg@indiana.edu, sonchac@gmail.com, astrel@fnal.gov
6
+ Gauge covariant smearing based on the 3D lattice Laplacian can be used to create extended op-
7
+ erators that have better overlap with hadronic ground states. For staggered quarks, we make use
8
+ of two-link parallel transport to preserve taste properties. We have implemented the procedure
9
+ in QUDA. We present the performance of this code on the NVIDIA A100 GPUs in Indiana Uni-
10
+ versity’s Big Red 200 supercomputer and on the AMD MI250X GPUs in Oak Ridge Leadership
11
+ Computer Facility’s (OLCF’s) Crusher and discuss its scalability. We also study the performance
12
+ improvement from using NVSHMEM on OLCF’s Summit. Reusing precomputed two-link prod-
13
+ ucts for all sources and sinks, it reduces the total smearing time for a baryon correlator measurement
14
+ by a factor of 100–120 as compared with the original MILC code and reduces the overall time by
15
+ 60–70%.
16
+ The 39th International Symposium on Lattice Field Theory (Lattice2022),
17
+ 8-13 August, 2022
18
+ Bonn, Germany
19
+ ∗Speaker
20
+ © Copyright owned by the author(s) under the terms of the Creative Commons
21
+ Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).
22
+ https://pos.sissa.it/
23
+ arXiv:2301.05518v1 [hep-lat] 13 Jan 2023
24
+
25
+ Two-link Staggered Quark Smearing in QUDA
26
+ Hwancheol Jeong
27
+ 1.
28
+ Introduction
29
+ Lattice QCD calculations require operators that have a strong overlap with particular hadronic
30
+ states. For example, lattice QCD calculations that study the low energy hadron spectrum benefit
31
+ from extended operators that have better overlap with the ground state than local operators at a
32
+ single lattice site. Decomposing a correlation function in terms of energy eigenstates, a two-point
33
+ correlation function 𝐶(𝑡) = �
34
+ x
35
+
36
+ O(𝑡, x) O†(0, 0)
37
+
38
+ can be expressed as
39
+ 𝐶(𝑡) =
40
+ ∑︁
41
+ 𝑛
42
+ | ⟨0|O|𝑛⟩|2 𝑒−𝐸𝑛𝑡 ,
43
+ (1)
44
+ where 𝐸𝑛 is the energy of the 𝑛-th energy eigenstate. We can extract some low energy properties
45
+ from it, including the mass from the ground state contribution. If the configuration is gauge-
46
+ fixed, one can use extended operators without concern about parallel transport; however, by using
47
+ gauge-covariant smearing of the source one can avoid having to fix the gauge.
48
+ There are two popular kinds of gauge covariant smearing: Jacobi smearing and Gaussian
49
+ smearing. Jacobi smearing is an iterative version of Wuppertal smearing which takes the three-
50
+ dimensional scalar propagator as a smeared source [1–4]. The smeared source follows the ex-
51
+ ponential distribution on a free gauge configuration. Alternatively, Gaussian smearing applies a
52
+ hopping operator iteratively to the given source. The resulting smeared source follows the Gaussian
53
+ distribution on a free gauge configuration [2, 3, 5].
54
+ In this paper, we are interested in a variant of Gaussian smearing, which replaces the hopping
55
+ operator with the three-dimensional lattice Laplacian operator for staggered quarks [6]. To preserve
56
+ the taste symmetry of staggered quarks, the Laplacian should extend to the next-to-nearest-neighbor
57
+ sites.
58
+ We define the two-link products joining the next-to-nearest-neighbor sites and call this
59
+ smearing method two-link staggered quark smearing.
60
+ The MILC code with which we started was doing two-site parallel transport by applying
61
+ single-site parallel transport twice in the same direction. This requires two communications and
62
+ two matrix-vector multiplies per direction. We found that this smearing was taking an inordinate
63
+ amount of time when done on the CPU. The situation is even worse when other parts of the
64
+ calculation run on the GPU, because one allocates only one MPI rank per GPU, requiring multi-
65
+ threading using OpenMP to use more than one CPU core per rank. Hence, we have implemented
66
+ the procedure in QUDA [7–9]. The exascale computers in the U.S. all make use of GPUs, so more
67
+ and more of our projects will make use of this timely addition to our codes.
68
+ Section 2 briefly describes the two-link staggered quark smearing. Section 3 describes our GPU
69
+ implementation and algorithmic improvement. In Secs. 4 and 5, we present benchmark results on
70
+ some (recent or latest) NVIDIA and AMD GPUs, respectively. We also apply our QUDA smearing
71
+ routine to a baryon correlator measurement in Sec. 6 to show how our code performs in a production
72
+ job. We summarize our conclusions in Sec. 7.
73
+ 2.
74
+ Two-link staggered quark smearing
75
+ Let us consider a hopping operator 𝐻 defined by
76
+ 𝐻(𝑥, 𝑦) =
77
+ 3
78
+ ∑︁
79
+ 𝜇=1
80
+ 𝑈𝜇(𝑥) 𝛿𝑥+ ˆ𝜇, 𝑦 + 𝑈†
81
+ 𝜇(𝑥 − ˆ𝜇) 𝛿𝑥− ˆ𝜇, 𝑦 ,
82
+ (2)
83
+ 2
84
+
85
+ Two-link Staggered Quark Smearing in QUDA
86
+ Hwancheol Jeong
87
+ x
88
+ 0
89
+ 5
90
+ 10
91
+ 15
92
+ 20
93
+ y
94
+ 0
95
+ 5
96
+ 10
97
+ 15
98
+ 20
99
+ |h(x, y)|z = 0, t = 0
100
+ 0.00
101
+ 0.05
102
+ 0.10
103
+ 0.15
104
+ 0.20
105
+ 0.25
106
+ 0.30
107
+ 0.35
108
+ 0.40
109
+ (a) Free gauge (𝑈 = 1)
110
+ x
111
+ 0
112
+ 5
113
+ 10
114
+ 15
115
+ 20
116
+ y
117
+ 0
118
+ 5
119
+ 10
120
+ 15
121
+ 20
122
+ |h(x, y)|z = 0, t = 0
123
+ 0.00
124
+ 0.05
125
+ 0.10
126
+ 0.15
127
+ 0.20
128
+ 0.25
129
+ 0.30
130
+ 0.35
131
+ 0.40
132
+ (b) HISQ gauge
133
+ Figure 1: Example distributions of a point source smeared by the two-link staggered quark smearing on a
134
+ free gauge configuration (left) and a HISQ gauge configuration (right). Red data points represent norms of
135
+ smeared quark field at (𝑥, 𝑦, 𝑧, 𝑡) = (𝑥, 𝑦, 0, 0). Contours are drawn by connecting these points.
136
+ where 𝑥, 𝑦 are space-time coordinates and 𝑈𝜇(𝑥) is the gauge field. An iterative Gaussian smearing
137
+ operation to a quark field 𝜓(𝑦) can be written as
138
+ �𝜓 = 𝐶(1 + 𝛼𝐻)𝑛𝜓 ,
139
+ (3)
140
+ where 𝐶, 𝛼 ∈ R and 𝑛 ∈ Z are tuning parameters. For the unit gauge configuration 𝑈𝜇(𝑥) = 1, the
141
+ smeared field �𝜓(𝑥) approaches the Gaussian distribution as the iteration count 𝑛 grows [2, 3, 5].
142
+ The 3D lattice Laplacian ∇2 is defined by
143
+ ∇2(𝑥, 𝑦) =
144
+ 3
145
+ ∑︁
146
+ 𝜇=1
147
+
148
+ 𝑈𝜇(𝑥) 𝛿𝑥+ ˆ𝜇, 𝑦 + 𝑈†
149
+ 𝜇(𝑥 − ˆ𝜇) 𝛿𝑥− ˆ𝜇, 𝑦
150
+
151
+ − 6 𝛿𝑥,𝑦
152
+ = 𝐻(𝑥, 𝑦) − 6 𝛿𝑥,𝑦 .
153
+ (4)
154
+ Replacing 𝑈𝜇(𝑥) with the two-link product 𝑉𝜇(𝑥) ≡ 𝑈𝜇(𝑥)𝑈𝜇(𝑥 + ˆ𝜇) and adjusting the coordinate,
155
+ we define (ignoring factors of 𝑎) the two-link 3D lattice Laplacian ∇2
156
+ two:
157
+ 4∇2
158
+ two(𝑥, 𝑦) ≡
159
+ 3
160
+ ∑︁
161
+ 𝜇=1
162
+
163
+ 𝑉𝜇(𝑥) 𝛿𝑥+2 ˆ𝜇, 𝑦 + 𝑉†
164
+ 𝜇(𝑥 − 2 ˆ𝜇) 𝛿𝑥−2 ˆ𝜇, 𝑦
165
+
166
+ − 6 𝛿𝑥,𝑦
167
+ (5)
168
+ =
169
+ 3
170
+ ∑︁
171
+ 𝜇=1
172
+
173
+ 𝑈𝜇(𝑥) 𝑈𝜇(𝑥 + ˆ𝜇) 𝛿𝑥+2 ˆ𝜇, 𝑦 + 𝑈†
174
+ 𝜇(𝑥 − ˆ𝜇) 𝑈†
175
+ 𝜇(𝑥 − 2 ˆ𝜇) 𝛿𝑥−2 ˆ𝜇, 𝑦
176
+
177
+ − 6 𝛿𝑥,𝑦 .
178
+ (6)
179
+ Note that ∇2
180
+ two preserves taste properties for staggered quarks.
181
+ If we rewrite Eq. (3) in terms of the Laplacian ∇2,
182
+ �𝜓 = 𝐶(1 + 𝛼(∇2 + 6))𝑛𝜓 ≡ 𝐶′(1 + 𝛼′∇2)𝑛𝜓 ,
183
+ (7)
184
+ 3
185
+
186
+ Two-link Staggered Quark Smearing in QUDA
187
+ Hwancheol Jeong
188
+ where 𝐶′ ≡ 𝐶(1 + 6𝛼)𝑛 and 𝛼′ ≡
189
+ 𝛼
190
+ 1 + 6𝛼. Now, we define the two-link staggered quark smearing
191
+ as
192
+ �𝜓 =
193
+
194
+ 1 + 𝜎
195
+ 𝑛 ∇2
196
+ two
197
+ �𝑛
198
+ 𝜓 ,
199
+ (8)
200
+ where 𝜎 and 𝑛 are tuning parameters. This is a taste-preserving gauge covariant smearing for
201
+ staggered quarks. Figure 1 shows the distributions of a point source after this smearing is applied
202
+ on the free gauge configuration (Fig. 1a) and a HISQ gauge configuration (Fig. 1b). Although the
203
+ latter is distorted by the existence of the gauge field, these results imply we can get a better overlap
204
+ with hadronic ground states with a suitable choice of tuning parameters 𝜎 and 𝑛 [2, 4, 10]. Using a
205
+ gauge-smeared link in the place of 𝑈𝜇 can relax the distortion as well as increase the overlap with
206
+ the ground state [11]. There are also other approaches that enhance the overlap with some good
207
+ properties [5, 12].
208
+ 3.
209
+ GPU implementation
210
+ Before this project began, the MILC code library [13] provided a CPU based routine for the
211
+ two-link staggered quark smearing. In need of the GPU equivalent, we have implemented it in
212
+ QUDA. We have also added an interface for this QUDA smearing in the MILC code, which runs
213
+ all QUDA benchmarks in this paper.1
214
+ We also improved upon the CPU algorithm in the MILC code. Instead of carrying out two
215
+ consecutive parallel transports (as in Eq. (6)) at each smearing iteration, we precompute the two-link
216
+ product 𝑉𝜇 in advance of smearing, and every iteration just loads it from the memory and uses
217
+ Eq. (5). This two-link product can even be reused for different sources or sinks. In the GPU
218
+ algorithm, we perform the smearing with significantly less memory traffic, fewer floating point
219
+ operations, and less communication between MPI ranks.
220
+ In Fig. 2, we compare the smearing time required by the MILC code to that of our QUDA
221
+ code using all CPUs and GPUs, respectively, on Big Red 200 at Indiana University. Big Red 200 is
222
+ similar to Perlmutter at NERSC in that it has a CPU partition in which each node contains two AMD
223
+ 64-core EPYC 7742 processors and a GPU partition in which each node contains an AMD processor
224
+ and four NVIDIA A100 GPUs. Big Red 200 has a Slingshot 10 network, whereas Perlmutter was
225
+ upgraded from Slingshot 10 to 11. We ran benchmarks for four different lattice volumes on either
226
+ two CPU or two GPU nodes. For production jobs, we like to run with a local volume of at least 244
227
+ per GPU and 324 or larger is preferred. Thus, these tests with a fixed number of nodes were not
228
+ designed for maximum efficiency. In the case of QUDA runs, we also measure the second source
229
+ smearing that reuses the precomputed two-link product. The first source smearing includes the
230
+ computation of the two-link product and 𝑛 iterations of smearing, while the second source smearing
231
+ does only 𝑛 iterations of smearing. Typical computations make use of multiple sources and sinks on
232
+ the same gauge configuration, so the second source smearing result is quite pertinent. The results
233
+ show that the first source smearing by QUDA on the GPU takes from 0.79 to 0.15 times as long as
234
+ the MILC code smearing on the CPU, and the second source smearing by QUDA takes from 0.16
235
+ 1We are working on merging the QUDA code and the MILC code interface into the main (develop) branches of
236
+ QUDA and the MILC code’s GitHub repositories, respectively[7, 13].
237
+ 4
238
+
239
+ Two-link Staggered Quark Smearing in QUDA
240
+ Hwancheol Jeong
241
+ 243 × 64
242
+ 323 × 96
243
+ 403 × 96
244
+ Lattice volume
245
+ 0
246
+ 2
247
+ 4
248
+ 6
249
+ 8
250
+ Runtime (s)
251
+ 0.19
252
+ 0.80
253
+ 1.48
254
+ 0.15
255
+ 0.34
256
+ 0.49
257
+ 0.03
258
+ 0.09
259
+ 0.15
260
+ MILC code
261
+ (2-node×2×64-core AMD EPYC 7742)
262
+ QUDA 1st source (2-node×4×A100)
263
+ QUDA 2nd source (2-node×4×A100)
264
+ 643 × 96
265
+ 7.49
266
+ 1.15
267
+ 0.42
268
+ Figure 2: Time taken by smearing a source quark field with 𝑛 = 50 two-link staggered quark smearing
269
+ by the MILC code and QUDA. They are measured on two nodes of Big Red 200. The MILC code is run
270
+ with one MPI rank per CPU core (total peak double precision FLOPS ≈ 14 TFLOPS), and QUDA is run
271
+ with one MPI rank per GPU (total peak double precision FLOPS ≈ 80 TFLOPS). Lattices are divided by
272
+ (𝑥, 𝑦, 𝑧, 𝑡) = (8, 8, 4, 1) for MILC code runs and (𝑥, 𝑦, 𝑧, 𝑡) = (2, 2, 2, 1) for QUDA runs. Note that splitting
273
+ in 𝑡-dimension does not improve the performance of 3D Gaussian smearing applied to fixed time sources
274
+ such as point sources or wall sources.
275
+ to 0.06 times as long as the MILC code. The improvement increases for larger lattice volumes, as
276
+ the smaller cases are too small for the GPU code to run efficiently.
277
+ In this section, we have compared the maximum — from the point of view of using all available
278
+ CPU/GPU resources — performances of the MILC code smearing and the QUDA smearing on
279
+ two nodes of a computer with both CPU and GPU nodes. In practice, however, our primary goal
280
+ is to implement the QUDA smearing in measurements running on GPU nodes. In this situation,
281
+ smearing running on the CPU can become a severe bottleneck. Section 6 discusses an example.
282
+ 4.
283
+ Performance on NVDIA GPU
284
+ In this section, we report the performance of the two-link staggered quark smearing in QUDA
285
+ (QUDA two-link smearing) on two NVIDIA GPU based systems. We smear three different color
286
+ wall sources in succession. Only the first color source smearing computes the two-link product,
287
+ while the others reuse it.
288
+ In Fig. 3, we measure the performance and scalability of the QUDA two-link smearing on
289
+ NVIDIA A100 GPUs in Big Red 200. The total runtime includes one run of two-link computation
290
+ (unshaded) and three 𝑛 = 50 smearing iterations (shaded).
291
+ We find that the single two-link
292
+ computation takes around 10–40% of the time. This indicates the advantage of reusing the two-link
293
+ product.
294
+ Figure 3a presents the smearing time by varying the lattice volume. While the lattice volume
295
+ increases geometrically by a factor of 16, the total smearing time increases by factors of 2.75, 5.45,
296
+ and 7.53, respectively. This indicates the computation has not been saturated yet up to the largest
297
+ lattice volume, so its performance (FLOPS) would be better for a bigger lattice. Still, for small
298
+ lattices, it would be a fraction of time compared to typical lattice simulation scales. Figure 3b
299
+ presents the smearing time by varying the number of nodes and GPUs. Note that the two-node run
300
+ 5
301
+
302
+ Two-link Staggered Quark Smearing in QUDA
303
+ Hwancheol Jeong
304
+ 124
305
+ 244
306
+ 484
307
+ 964
308
+ Lattice volume
309
+ 0
310
+ 2
311
+ 4
312
+ Runtime (s)
313
+ 0.04
314
+ 0.11
315
+ 0.60
316
+ 4.52
317
+ 8 × A100
318
+ (a) Volume scalability
319
+ 1(4)
320
+ 2(8)
321
+ 4(16)
322
+ 8(32)
323
+ # of nodes (# of GPUs)
324
+ 0.0
325
+ 0.2
326
+ 0.4
327
+ 0.6
328
+ 0.8
329
+ Runtime (s)
330
+ 0.43
331
+ 0.60
332
+ 0.50
333
+ 0.39
334
+ 484, A100
335
+ (b) Strong scalability
336
+ Figure 3: Time taken by smearing three color sources with 𝑛 = 50 QUDA two-link smearing on NVIDIA
337
+ A100 GPUs in Big Red 200. The unshaded region represents the time taken by the two-link computation,
338
+ and the shaded region represents the time taken by 3 × 𝑛 iterations of smearing. Lattices are divided by
339
+ (𝑥, 𝑦, 𝑧, 𝑡) = (2, 2, 1, 1) for 4 GPUs, (2, 2, 2, 1) for 8 GPUs, (4, 2, 2, 1) for 16 GPUs, and (4, 4, 2, 1) for 32
340
+ GPUs.
341
+ 243 × 64
342
+ 323 × 96
343
+ 403 × 96
344
+ Lattice volume
345
+ 0.0
346
+ 0.5
347
+ 1.0
348
+ 1.5
349
+ Runtime (s)
350
+ 0.19
351
+ 0.45
352
+ 0.71
353
+ 0.14
354
+ 0.36
355
+ 0.53
356
+ 8 × V100 (w/o NVSHMEM)
357
+ 8 × V100 (w/ NVSHMEM)
358
+ 643 × 96
359
+ 1.55
360
+ 1.36
361
+ Figure 4: Time taken by smearing three color sources with 𝑛 = 50 QUDA two-link smearing on NVIDIA
362
+ V100 GPUs in Summit with/without NVSHMEM support enabled in QUDA. The unshaded (shaded) region
363
+ represents the time taken by the two-link computation (smearing iterations). Here, we use two Summit nodes,
364
+ but only four V100 GPUs out of six per node, because six is not suitable for dividing the spatial dimension
365
+ of some representative lattices. All lattices are divided by (𝑥, 𝑦, 𝑧, 𝑡) = (2, 2, 2, 1).
366
+ is slower than the one-node run. Even the two-link computation taking three times longer. This
367
+ implies the communication between off-nodes affects the performance significantly, and it is more
368
+ prominent for the two-link computation. Excluding the one-node result, the performance improves
369
+ as the number of nodes increases, but it scales very poorly. Figure 3a and 3b imply that this routine
370
+ is a communication-intensive calculation.
371
+ The observation above suggests that the QUDA two-link smearing may perform better with a
372
+ faster communication environment. Summit at OLCF supports NVIDIA NVSHMEM technology.
373
+ NVSHMEM improves strong scaling of GPU operations by enabling direct communication between
374
+ GPUs with shared memory space [14]. QUDA supports NVSHMEM [15]. Figure 4 shows the
375
+ performance improvement of the QUDA two-link smearing on Summit by enabling NVSHMEM.
376
+ Here, the two-link computation takes more than half of the total runtime. We find that NVSHMEM
377
+ reduces the two-link computation time by around 30–50%.
378
+ 6
379
+
380
+ Two-link Staggered Quark Smearing in QUDA
381
+ Hwancheol Jeong
382
+ 244
383
+ 484
384
+ 964
385
+ Lattice volume
386
+ 0
387
+ 2
388
+ 4
389
+ Runtime (s)
390
+ 0.22
391
+ 0.41
392
+ 2.25
393
+ 8 × MI250X
394
+ (16 GPUs)
395
+ (a) Volume scalability
396
+ 1(8)
397
+ 2(16)
398
+ 4(32)
399
+ 8(64)
400
+ # of nodes (# of GPUs)
401
+ 0.0
402
+ 0.2
403
+ 0.4
404
+ 0.6
405
+ 0.8
406
+ Runtime (s)
407
+ 0.37
408
+ 0.41
409
+ 0.44
410
+ 0.38
411
+ 484, MI250X
412
+ (b) Strong scalability
413
+ Figure 5: Time taken by smearing three color sources with 𝑛 = 50 QUDA two-link smearing on AMD
414
+ MI250X GPUs on Crusher. Note that each MI250X contains two GCDs, so the actual number of GPUs used
415
+ is twice of the number of MI250Xs. The unshaded (shaded) region represents the time taken by the two-link
416
+ computation (smearing iterations). Lattices are divided by (𝑥, 𝑦, 𝑧, 𝑡) = (2, 2, 2, 1) for 8 GPUs, (4, 2, 2, 1) for
417
+ 16 GPUs, (4, 4, 2, 1) for 32 GPUs, and (4, 4, 4, 1) for 64 GPUs.
418
+ Big Red 200
419
+ Crusher
420
+ GPU
421
+ 4 × NVIDIA A100
422
+ 4 × AMD MI250X (=8 GPUs)
423
+ (≈ 40 TFLOPS)
424
+ (≈ 210 TFLOPS)
425
+ GPU
426
+ 1555 GB/s
427
+ 3277 GB/s
428
+ Mem. BW
429
+ NIC
430
+ 2 HPE × Slingshot-10
431
+ 4 × HPE Slingshot-11
432
+ (200 Gbps)
433
+ (800 Gbps)
434
+ Table 1: GPU and NIC specification of Big Red 200 and Crusher [17–20]. FLOPS numbers represent the
435
+ double precision peak performance.
436
+ 5.
437
+ Performance on AMD GPU
438
+ QUDA also supports HIP on AMD ROCm platform [16], allowing it to run on AMD GPUs.
439
+ In this section, we report the performance of the QUDA two-link smearing on Crusher at OLCF, an
440
+ AMD GPU-based system containing hardware identical to that on Frontier. As in Sec. 4, we smear
441
+ three different color wall sources in order, where the two-link product is computed only at the first
442
+ smearing and reused for others.
443
+ In Fig. 5, we measure the performance and scalability of the QUDA two-link smearing on
444
+ the AMD MI250X GPUs in Crusher in the same manner as in Fig. 3.2 Figure 5a and 5b plot the
445
+ volume and strong scalabilities, respectively. The y-axis ranges are the same as in Fig. 3a and 3b for
446
+ easy comparison. The smearing iteration performs approximately twice faster here with MI250X
447
+ compared to that with A100. This result agrees with our expectation that the bottleneck of this
448
+ 2These plots are updated from the ones we presented in the poster, where we observed an abnormal slowdown in
449
+ the two-link computation on AMD GPUs. It turned out the culprit was a HIP API which was not directly related to the
450
+ two-link computation. We found a way to avoid this problem and reran the benchmark. We are also working on resolving
451
+ the issue.
452
+ 7
453
+
454
+ Two-link Staggered Quark Smearing in QUDA
455
+ Hwancheol Jeong
456
+ 243 × 64
457
+ 323 × 96
458
+ Lattice volume
459
+ 0
460
+ 500
461
+ 1000
462
+ Runtime (s)
463
+ 301
464
+ 1126
465
+ 105
466
+ 420
467
+ 197
468
+ 717
469
+ 2
470
+ 6
471
+ w/o QUDA smearing
472
+ w/ QUDA smearing
473
+ Figure 6: Total time taken by a baryon correlator measurement employing 72 source/sinks which are smeared
474
+ by the 𝑛 = 30 QUDA two-link smearing. The measurement is carried out on two nodes of Big Red 200’s
475
+ GPU partition using four CPU cores and GPUs per node. With or without the QUDA two-link smearing
476
+ enabled, all other QUDA-supported calculations are performed on the GPU. The shaded region represents
477
+ the total smearing time.
478
+ calculation is the GPU memory bandwidth because its compute-to-communication ratio is similar
479
+ to a typical dslash routine (see Eq. (5)), and a MI250X has twice faster memory bandwidth than
480
+ A100 (see Table 1). On the other hand, the two-link computation performs similarly or slower on
481
+ the MI250X compared to the A100. The only exception is the 964 lattice result, where we observe
482
+ the expected twice faster performance. Regarding the scalability, we observe a poor scaling as we
483
+ observed from the A100 GPU.
484
+ 6.
485
+ Application: Baryon correlator measurement
486
+ Our baryon correlator calculations include many sources and sinks. Figure 6 shows the total
487
+ runtime taken by an example baryon correlator measurement. Most parts of the calculation were
488
+ already implemented in QUDA. With the QUDA smearing disabled, the smearing is carried out
489
+ on the CPU by the MILC code smearing routine while other major calculations are carried out on
490
+ the GPU by QUDA. Note that here we use only the same number of CPUs as of GPUs. The result
491
+ shows that the source/sink smearing takes up around 60–70% of the total measurement time when
492
+ it is run on the CPU. However, enabling the QUDA smearing reduces the smearing time by a factor
493
+ of 100–120, requiring only around 1–2% of the total measurement time. Thus, the total time for
494
+ the job is reduced to about 30–40% of the original time.
495
+ 7.
496
+ Conclusion
497
+ We have implemented two-link staggered quark smearing in QUDA. When run on eight
498
+ NVIDIA A100 GPUs, it performs up to six times faster than the MILC code run on total 256 cores
499
+ of four AMD EPYC 7742 CPUs. Reusing the precomputed two-link product for another source on
500
+ the same gauge field increases the difference up to 18 times.
501
+ The scaling behavior of this routine on both NVIDIA A100 and AMD MI250X is rather poor,
502
+ especially for the two-link computation part. NVSHMEM can improve the performance of the
503
+ 8
504
+
505
+ Two-link Staggered Quark Smearing in QUDA
506
+ Hwancheol Jeong
507
+ two-link computation by 30–50%. For a baryon correlator measurement, reusing the two-link
508
+ product for all 72 sources/sinks reduces the total smearing time from 60–70% to 1–2% of the total
509
+ measurement time. Thus, even without further optimization, this code can be useful for GPU jobs
510
+ that require many smearings for sources or sinks.
511
+ Acknowledgments
512
+ This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative
513
+ effort of the U.S. Department of Energy Office of Science and the National Nuclear Security
514
+ Administration. We gratefully acknowledge support by the U.S. Department of Energy, Office of
515
+ Science under award DE-SC0010120. This research was supported in part by Lilly Endowment, Inc.,
516
+ through its support for the Indiana University Pervasive Technology Institute. This research used
517
+ resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory,
518
+ which is supported by the Office of Science of the U.S. Department of Energy under Contract No.
519
+ DE-AC05-00OR22725. We thank the QUDA [8, 9] developers whose names can be found at their
520
+ website[7] .
521
+ References
522
+ [1] S. Gusken, U. Low, K.H. Mutter, R. Sommer, A. Patel and K. Schilling, Phys. Lett. B 227
523
+ (1989) 266.
524
+ [2] S. Gusken, Nucl. Phys. B Proc. Suppl. 17 (1990) 361.
525
+ [3] C. Alexandrou, F. Jegerlehner, S. Gusken, K. Schilling and R. Sommer, Phys. Lett. B 256
526
+ (1991) 60.
527
+ [4] UKQCD collaboration, Phys. Rev. D 47 (1993) 5128 [hep-lat/9303009].
528
+ [5] G.M. von Hippel, B. Jäger, T.D. Rae and H. Wittig, JHEP 09 (2013) 014 [1306.1440].
529
+ [6] Hadron Spectrum collaboration, Phys. Rev. D 80 (2009) 054506 [0905.2160].
530
+ [7] https://github.com/lattice/quda.
531
+ [8] M.A. Clark, R. Babich, K. Barros, R.C. Brower and C. Rebbi, Comput. Phys. Commun. 181
532
+ (2010) 1517 [0911.3191].
533
+ [9] R. Babich, M.A. Clark, B. Joo, G. Shi, R.C. Brower and S. Gottlieb, 9, 2011, DOI
534
+ [1109.2935].
535
+ [10] T.A. DeGrand and R.D. Loft, Comput. Phys. Commun. 65 (1991) 84.
536
+ [11] S.N. Syritsyn et al., Phys. Rev. D 81 (2010) 034507 [0907.4194].
537
+ [12] G.S. Bali, B. Lang, B.U. Musch and A. Schäfer, Phys. Rev. D 93 (2016) 094515
538
+ [1602.05525].
539
+ 9
540
+
541
+ Two-link Staggered Quark Smearing in QUDA
542
+ Hwancheol Jeong
543
+ [13] https://github.com/milc-qcd/milc_qcd/tree/develop.
544
+ [14] https://developer.nvidia.com/nvshmem.
545
+ [15] https://github.com/lattice/quda/wiki/Multi-GPU-with-NVSHMEM.
546
+ [16] https://github.com/lattice/quda/wiki/Building-QUDA-With-HIP.
547
+ [17] https://kb.iu.edu/d/brcc.
548
+ [18] https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/
549
+ pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf.
550
+ [19] https://docs.olcf.ornl.gov/systems/crusher_quick_start_guide.html.
551
+ [20] https://www.amd.com/en/products/server-accelerators/instinct-mi250x.
552
+ 10
553
+
9dE5T4oBgHgl3EQfRA7S/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,381 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf,len=380
2
+ page_content='Two-link Staggered Quark Smearing in QUDA Steven Gottlieb,𝑎 Hwancheol Jeong𝑎,∗ and Alexei Strelchenko𝑏 𝑎Department of Physics, Indiana University, Bloomington, Indiana 47405, USA 𝑏Scientific Computing Division, Fermi National Accelerator Laboratory, Batavia, Illinois, 60510, USA E-mail: sg@indiana.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
3
+ page_content='edu, sonchac@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
4
+ page_content='com, astrel@fnal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
5
+ page_content='gov Gauge covariant smearing based on the 3D lattice Laplacian can be used to create extended op- erators that have better overlap with hadronic ground states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
6
+ page_content=' For staggered quarks, we make use of two-link parallel transport to preserve taste properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
7
+ page_content=' We have implemented the procedure in QUDA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
8
+ page_content=' We present the performance of this code on the NVIDIA A100 GPUs in Indiana Uni- versity’s Big Red 200 supercomputer and on the AMD MI250X GPUs in Oak Ridge Leadership Computer Facility’s (OLCF’s) Crusher and discuss its scalability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
9
+ page_content=' We also study the performance improvement from using NVSHMEM on OLCF’s Summit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
10
+ page_content=' Reusing precomputed two-link prod- ucts for all sources and sinks, it reduces the total smearing time for a baryon correlator measurement by a factor of 100–120 as compared with the original MILC code and reduces the overall time by 60–70%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
11
+ page_content=' The 39th International Symposium on Lattice Field Theory (Lattice2022), 8-13 August, 2022 Bonn, Germany ∗Speaker © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
12
+ page_content='0 International License (CC BY-NC-ND 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
13
+ page_content='0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
14
+ page_content=' https://pos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
15
+ page_content='sissa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
16
+ page_content='it/ arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
17
+ page_content='05518v1 [hep-lat] 13 Jan 2023 Two-link Staggered Quark Smearing in QUDA Hwancheol Jeong 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
18
+ page_content=' Introduction Lattice QCD calculations require operators that have a strong overlap with particular hadronic states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
19
+ page_content=' For example, lattice QCD calculations that study the low energy hadron spectrum benefit from extended operators that have better overlap with the ground state than local operators at a single lattice site.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
20
+ page_content=' Decomposing a correlation function in terms of energy eigenstates, a two-point correlation function 𝐶(𝑡) = � x � O(𝑡, x) O†(0, 0) � can be expressed as 𝐶(𝑡) = ∑︁ 𝑛 | ⟨0|O|𝑛⟩|2 𝑒−𝐸𝑛𝑡 , (1) where 𝐸𝑛 is the energy of the 𝑛-th energy eigenstate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
21
+ page_content=' We can extract some low energy properties from it, including the mass from the ground state contribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
22
+ page_content=' If the configuration is gauge- fixed, one can use extended operators without concern about parallel transport;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
23
+ page_content=' however, by using gauge-covariant smearing of the source one can avoid having to fix the gauge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
24
+ page_content=' There are two popular kinds of gauge covariant smearing: Jacobi smearing and Gaussian smearing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
25
+ page_content=' Jacobi smearing is an iterative version of Wuppertal smearing which takes the three- dimensional scalar propagator as a smeared source [1–4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
26
+ page_content=' The smeared source follows the ex- ponential distribution on a free gauge configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
27
+ page_content=' Alternatively, Gaussian smearing applies a hopping operator iteratively to the given source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
28
+ page_content=' The resulting smeared source follows the Gaussian distribution on a free gauge configuration [2, 3, 5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
29
+ page_content=' In this paper, we are interested in a variant of Gaussian smearing, which replaces the hopping operator with the three-dimensional lattice Laplacian operator for staggered quarks [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
30
+ page_content=' To preserve the taste symmetry of staggered quarks, the Laplacian should extend to the next-to-nearest-neighbor sites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
31
+ page_content=' We define the two-link products joining the next-to-nearest-neighbor sites and call this smearing method two-link staggered quark smearing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
32
+ page_content=' The MILC code with which we started was doing two-site parallel transport by applying single-site parallel transport twice in the same direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
33
+ page_content=' This requires two communications and two matrix-vector multiplies per direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
34
+ page_content=' We found that this smearing was taking an inordinate amount of time when done on the CPU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
35
+ page_content=' The situation is even worse when other parts of the calculation run on the GPU, because one allocates only one MPI rank per GPU, requiring multi- threading using OpenMP to use more than one CPU core per rank.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
36
+ page_content=' Hence, we have implemented the procedure in QUDA [7–9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
37
+ page_content=' The exascale computers in the U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
38
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
39
+ page_content=' all make use of GPUs, so more and more of our projects will make use of this timely addition to our codes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
40
+ page_content=' Section 2 briefly describes the two-link staggered quark smearing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
41
+ page_content=' Section 3 describes our GPU implementation and algorithmic improvement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
42
+ page_content=' In Secs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
43
+ page_content=' 4 and 5, we present benchmark results on some (recent or latest) NVIDIA and AMD GPUs, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
44
+ page_content=' We also apply our QUDA smearing routine to a baryon correlator measurement in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
45
+ page_content=' 6 to show how our code performs in a production job.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
46
+ page_content=' We summarize our conclusions in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
47
+ page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
48
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
49
+ page_content=' Two-link staggered quark smearing Let us consider a hopping operator 𝐻 defined by 𝐻(𝑥, 𝑦) = 3 ∑︁ 𝜇=1 𝑈𝜇(𝑥) 𝛿𝑥+ ˆ𝜇, 𝑦 + 𝑈† 𝜇(𝑥 − ˆ𝜇) 𝛿𝑥− ˆ𝜇, 𝑦 , (2) 2 Two-link Staggered Quark Smearing in QUDA Hwancheol Jeong x 0 5 10 15 20 y 0 5 10 15 20 |h(x, y)|z = 0, t = 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
50
+ page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
51
+ page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
52
+ page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
53
+ page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
54
+ page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
55
+ page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
56
+ page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
57
+ page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
58
+ page_content='40 (a) Free gauge (𝑈 = 1) x 0 5 10 15 20 y 0 5 10 15 20 |h(x, y)|z = 0, t = 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
59
+ page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
60
+ page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
61
+ page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
62
+ page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
63
+ page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
64
+ page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
65
+ page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
66
+ page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
67
+ page_content='40 (b) HISQ gauge Figure 1: Example distributions of a point source smeared by the two-link staggered quark smearing on a free gauge configuration (left) and a HISQ gauge configuration (right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
68
+ page_content=' Red data points represent norms of smeared quark field at (𝑥, 𝑦, 𝑧, 𝑡) = (𝑥, 𝑦, 0, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
69
+ page_content=' Contours are drawn by connecting these points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
70
+ page_content=' where 𝑥, 𝑦 are space-time coordinates and 𝑈𝜇(𝑥) is the gauge field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
71
+ page_content=' An iterative Gaussian smearing operation to a quark field 𝜓(𝑦) can be written as �𝜓 = 𝐶(1 + 𝛼𝐻)𝑛𝜓 , (3) where 𝐶, 𝛼 ∈ R and 𝑛 ∈ Z are tuning parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
72
+ page_content=' For the unit gauge configuration 𝑈𝜇(𝑥) = 1, the smeared field �𝜓(𝑥) approaches the Gaussian distribution as the iteration count 𝑛 grows [2, 3, 5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
73
+ page_content=' The 3D lattice Laplacian ∇2 is defined by ∇2(𝑥, 𝑦) = 3 ∑︁ 𝜇=1 � 𝑈𝜇(𝑥) 𝛿𝑥+ ˆ𝜇, 𝑦 + 𝑈† 𝜇(𝑥 − ˆ𝜇) 𝛿𝑥− ˆ𝜇, 𝑦 � − 6 𝛿𝑥,𝑦 = 𝐻(𝑥, 𝑦) − 6 𝛿𝑥,𝑦 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
74
+ page_content=' (4) Replacing 𝑈𝜇(𝑥) with the two-link product 𝑉𝜇(𝑥) ≡ 𝑈𝜇(𝑥)𝑈𝜇(𝑥 + ˆ𝜇) and adjusting the coordinate, we define (ignoring factors of 𝑎) the two-link 3D lattice Laplacian ∇2 two: 4∇2 two(𝑥, 𝑦) ≡ 3 ∑︁ 𝜇=1 � 𝑉𝜇(𝑥) 𝛿𝑥+2 ˆ𝜇, 𝑦 + 𝑉† 𝜇(𝑥 − 2 ˆ𝜇) 𝛿𝑥−2 ˆ𝜇, 𝑦 � − 6 𝛿𝑥,𝑦 (5) = 3 ∑︁ 𝜇=1 � 𝑈𝜇(𝑥) 𝑈𝜇(𝑥 + ˆ𝜇) 𝛿𝑥+2 ˆ𝜇, 𝑦 + 𝑈† 𝜇(𝑥 − ˆ𝜇) 𝑈† 𝜇(𝑥 − 2 ˆ𝜇) 𝛿𝑥−2 ˆ𝜇, 𝑦 � − 6 𝛿𝑥,𝑦 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
75
+ page_content=' (6) Note that ∇2 two preserves taste properties for staggered quarks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
76
+ page_content=' If we rewrite Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
77
+ page_content=' (3) in terms of the Laplacian ∇2, �𝜓 = 𝐶(1 + 𝛼(∇2 + 6))𝑛𝜓 ≡ 𝐶′(1 + 𝛼′∇2)𝑛𝜓 , (7) 3 Two-link Staggered Quark Smearing in QUDA Hwancheol Jeong where 𝐶′ ≡ 𝐶(1 + 6𝛼)𝑛 and 𝛼′ ≡ 𝛼 1 + 6𝛼.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
78
+ page_content=' Now, we define the two-link staggered quark smearing as �𝜓 = � 1 + 𝜎 𝑛 ∇2 two �𝑛 𝜓 , (8) where 𝜎 and 𝑛 are tuning parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
79
+ page_content=' This is a taste-preserving gauge covariant smearing for staggered quarks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
80
+ page_content=' Figure 1 shows the distributions of a point source after this smearing is applied on the free gauge configuration (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
81
+ page_content=' 1a) and a HISQ gauge configuration (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
82
+ page_content=' 1b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
83
+ page_content=' Although the latter is distorted by the existence of the gauge field, these results imply we can get a better overlap with hadronic ground states with a suitable choice of tuning parameters 𝜎 and 𝑛 [2, 4, 10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
84
+ page_content=' Using a gauge-smeared link in the place of 𝑈𝜇 can relax the distortion as well as increase the overlap with the ground state [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
85
+ page_content=' There are also other approaches that enhance the overlap with some good properties [5, 12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
86
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
87
+ page_content=' GPU implementation Before this project began, the MILC code library [13] provided a CPU based routine for the two-link staggered quark smearing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
88
+ page_content=' In need of the GPU equivalent, we have implemented it in QUDA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
89
+ page_content=' We have also added an interface for this QUDA smearing in the MILC code, which runs all QUDA benchmarks in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
90
+ page_content='1 We also improved upon the CPU algorithm in the MILC code.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
91
+ page_content=' Instead of carrying out two consecutive parallel transports (as in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
92
+ page_content=' (6)) at each smearing iteration, we precompute the two-link product 𝑉𝜇 in advance of smearing, and every iteration just loads it from the memory and uses Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
93
+ page_content=' (5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
94
+ page_content=' This two-link product can even be reused for different sources or sinks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
95
+ page_content=' In the GPU algorithm, we perform the smearing with significantly less memory traffic, fewer floating point operations, and less communication between MPI ranks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
96
+ page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
97
+ page_content=' 2, we compare the smearing time required by the MILC code to that of our QUDA code using all CPUs and GPUs, respectively, on Big Red 200 at Indiana University.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
98
+ page_content=' Big Red 200 is similar to Perlmutter at NERSC in that it has a CPU partition in which each node contains two AMD 64-core EPYC 7742 processors and a GPU partition in which each node contains an AMD processor and four NVIDIA A100 GPUs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
99
+ page_content=' Big Red 200 has a Slingshot 10 network, whereas Perlmutter was upgraded from Slingshot 10 to 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
100
+ page_content=' We ran benchmarks for four different lattice volumes on either two CPU or two GPU nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
101
+ page_content=' For production jobs, we like to run with a local volume of at least 244 per GPU and 324 or larger is preferred.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
102
+ page_content=' Thus, these tests with a fixed number of nodes were not designed for maximum efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
103
+ page_content=' In the case of QUDA runs, we also measure the second source smearing that reuses the precomputed two-link product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
104
+ page_content=' The first source smearing includes the computation of the two-link product and 𝑛 iterations of smearing, while the second source smearing does only 𝑛 iterations of smearing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
105
+ page_content=' Typical computations make use of multiple sources and sinks on the same gauge configuration, so the second source smearing result is quite pertinent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
106
+ page_content=' The results show that the first source smearing by QUDA on the GPU takes from 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
107
+ page_content='79 to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
108
+ page_content='15 times as long as the MILC code smearing on the CPU, and the second source smearing by QUDA takes from 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
109
+ page_content='16 1We are working on merging the QUDA code and the MILC code interface into the main (develop) branches of QUDA and the MILC code’s GitHub repositories, respectively[7, 13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
110
+ page_content=' 4 Two-link Staggered Quark Smearing in QUDA Hwancheol Jeong 243 × 64 323 × 96 403 × 96 Lattice volume 0 2 4 6 8 Runtime (s) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
111
+ page_content='19 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
112
+ page_content='80 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
113
+ page_content='48 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
114
+ page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
115
+ page_content='34 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
116
+ page_content='49 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
117
+ page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
118
+ page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
119
+ page_content='15 MILC code (2-node×2×64-core AMD EPYC 7742) QUDA 1st source (2-node×4×A100) QUDA 2nd source (2-node×4×A100) 643 × 96 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
120
+ page_content='49 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
121
+ page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
122
+ page_content='42 Figure 2: Time taken by smearing a source quark field with 𝑛 = 50 two-link staggered quark smearing by the MILC code and QUDA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
123
+ page_content=' They are measured on two nodes of Big Red 200.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
124
+ page_content=' The MILC code is run with one MPI rank per CPU core (total peak double precision FLOPS ≈ 14 TFLOPS), and QUDA is run with one MPI rank per GPU (total peak double precision FLOPS ≈ 80 TFLOPS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
125
+ page_content=' Lattices are divided by (𝑥, 𝑦, 𝑧, 𝑡) = (8, 8, 4, 1) for MILC code runs and (𝑥, 𝑦, 𝑧, 𝑡) = (2, 2, 2, 1) for QUDA runs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
126
+ page_content=' Note that splitting in 𝑡-dimension does not improve the performance of 3D Gaussian smearing applied to fixed time sources such as point sources or wall sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
127
+ page_content=' to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
128
+ page_content='06 times as long as the MILC code.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
129
+ page_content=' The improvement increases for larger lattice volumes, as the smaller cases are too small for the GPU code to run efficiently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
130
+ page_content=' In this section, we have compared the maximum — from the point of view of using all available CPU/GPU resources — performances of the MILC code smearing and the QUDA smearing on two nodes of a computer with both CPU and GPU nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
131
+ page_content=' In practice, however, our primary goal is to implement the QUDA smearing in measurements running on GPU nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
132
+ page_content=' In this situation, smearing running on the CPU can become a severe bottleneck.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
133
+ page_content=' Section 6 discusses an example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
134
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
135
+ page_content=' Performance on NVDIA GPU In this section, we report the performance of the two-link staggered quark smearing in QUDA (QUDA two-link smearing) on two NVIDIA GPU based systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
136
+ page_content=' We smear three different color wall sources in succession.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
137
+ page_content=' Only the first color source smearing computes the two-link product, while the others reuse it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
138
+ page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
139
+ page_content=' 3, we measure the performance and scalability of the QUDA two-link smearing on NVIDIA A100 GPUs in Big Red 200.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
140
+ page_content=' The total runtime includes one run of two-link computation (unshaded) and three 𝑛 = 50 smearing iterations (shaded).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
141
+ page_content=' We find that the single two-link computation takes around 10–40% of the time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
142
+ page_content=' This indicates the advantage of reusing the two-link product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
143
+ page_content=' Figure 3a presents the smearing time by varying the lattice volume.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
144
+ page_content=' While the lattice volume increases geometrically by a factor of 16, the total smearing time increases by factors of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
145
+ page_content='75, 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
146
+ page_content='45, and 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
147
+ page_content='53, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
148
+ page_content=' This indicates the computation has not been saturated yet up to the largest lattice volume, so its performance (FLOPS) would be better for a bigger lattice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
149
+ page_content=' Still, for small lattices, it would be a fraction of time compared to typical lattice simulation scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
150
+ page_content=' Figure 3b presents the smearing time by varying the number of nodes and GPUs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
151
+ page_content=' Note that the two-node run 5 Two-link Staggered Quark Smearing in QUDA Hwancheol Jeong 124 244 484 964 Lattice volume 0 2 4 Runtime (s) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
152
+ page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
153
+ page_content='11 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
154
+ page_content='60 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
155
+ page_content='52 8 × A100 (a) Volume scalability 1(4) 2(8) 4(16) 8(32) # of nodes (# of GPUs) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
156
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
157
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
158
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
159
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
160
+ page_content='8 Runtime (s) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
161
+ page_content='43 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
162
+ page_content='60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
163
+ page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
164
+ page_content='39 484, A100 (b) Strong scalability Figure 3: Time taken by smearing three color sources with 𝑛 = 50 QUDA two-link smearing on NVIDIA A100 GPUs in Big Red 200.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
165
+ page_content=' The unshaded region represents the time taken by the two-link computation, and the shaded region represents the time taken by 3 × 𝑛 iterations of smearing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
166
+ page_content=' Lattices are divided by (𝑥, 𝑦, 𝑧, 𝑡) = (2, 2, 1, 1) for 4 GPUs, (2, 2, 2, 1) for 8 GPUs, (4, 2, 2, 1) for 16 GPUs, and (4, 4, 2, 1) for 32 GPUs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
167
+ page_content=' 243 × 64 323 × 96 403 × 96 Lattice volume 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
168
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
169
+ page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
170
+ page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
171
+ page_content='5 Runtime (s) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
172
+ page_content='19 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
173
+ page_content='45 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
174
+ page_content='71 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
175
+ page_content='14 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
176
+ page_content='36 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
177
+ page_content='53 8 × V100 (w/o NVSHMEM) 8 × V100 (w/ NVSHMEM) 643 × 96 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
178
+ page_content='55 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
179
+ page_content='36 Figure 4: Time taken by smearing three color sources with 𝑛 = 50 QUDA two-link smearing on NVIDIA V100 GPUs in Summit with/without NVSHMEM support enabled in QUDA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
180
+ page_content=' The unshaded (shaded) region represents the time taken by the two-link computation (smearing iterations).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
181
+ page_content=' Here, we use two Summit nodes, but only four V100 GPUs out of six per node, because six is not suitable for dividing the spatial dimension of some representative lattices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
182
+ page_content=' All lattices are divided by (𝑥, 𝑦, 𝑧, 𝑡) = (2, 2, 2, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
183
+ page_content=' is slower than the one-node run.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
184
+ page_content=' Even the two-link computation taking three times longer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
185
+ page_content=' This implies the communication between off-nodes affects the performance significantly, and it is more prominent for the two-link computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
186
+ page_content=' Excluding the one-node result, the performance improves as the number of nodes increases, but it scales very poorly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
187
+ page_content=' Figure 3a and 3b imply that this routine is a communication-intensive calculation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
188
+ page_content=' The observation above suggests that the QUDA two-link smearing may perform better with a faster communication environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
189
+ page_content=' Summit at OLCF supports NVIDIA NVSHMEM technology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
190
+ page_content=' NVSHMEM improves strong scaling of GPU operations by enabling direct communication between GPUs with shared memory space [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
191
+ page_content=' QUDA supports NVSHMEM [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
192
+ page_content=' Figure 4 shows the performance improvement of the QUDA two-link smearing on Summit by enabling NVSHMEM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
193
+ page_content=' Here, the two-link computation takes more than half of the total runtime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
194
+ page_content=' We find that NVSHMEM reduces the two-link computation time by around 30–50%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
195
+ page_content=' 6 Two-link Staggered Quark Smearing in QUDA Hwancheol Jeong 244 484 964 Lattice volume 0 2 4 Runtime (s) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
196
+ page_content='22 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
197
+ page_content='41 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
198
+ page_content='25 8 × MI250X (16 GPUs) (a) Volume scalability 1(8) 2(16) 4(32) 8(64) # of nodes (# of GPUs) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
199
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
200
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
201
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
202
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
203
+ page_content='8 Runtime (s) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
204
+ page_content='37 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
205
+ page_content='41 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
206
+ page_content='44 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
207
+ page_content='38 484, MI250X (b) Strong scalability Figure 5: Time taken by smearing three color sources with 𝑛 = 50 QUDA two-link smearing on AMD MI250X GPUs on Crusher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
208
+ page_content=' Note that each MI250X contains two GCDs, so the actual number of GPUs used is twice of the number of MI250Xs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
209
+ page_content=' The unshaded (shaded) region represents the time taken by the two-link computation (smearing iterations).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
210
+ page_content=' Lattices are divided by (𝑥, 𝑦, 𝑧, 𝑡) = (2, 2, 2, 1) for 8 GPUs, (4, 2, 2, 1) for 16 GPUs, (4, 4, 2, 1) for 32 GPUs, and (4, 4, 4, 1) for 64 GPUs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
211
+ page_content=' Big Red 200 Crusher GPU 4 × NVIDIA A100 4 × AMD MI250X (=8 GPUs) (≈ 40 TFLOPS) (≈ 210 TFLOPS) GPU 1555 GB/s 3277 GB/s Mem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
212
+ page_content=' BW NIC 2 HPE × Slingshot-10 4 × HPE Slingshot-11 (200 Gbps) (800 Gbps) Table 1: GPU and NIC specification of Big Red 200 and Crusher [17–20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
213
+ page_content=' FLOPS numbers represent the double precision peak performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
214
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
215
+ page_content=' Performance on AMD GPU QUDA also supports HIP on AMD ROCm platform [16], allowing it to run on AMD GPUs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
216
+ page_content=' In this section, we report the performance of the QUDA two-link smearing on Crusher at OLCF, an AMD GPU-based system containing hardware identical to that on Frontier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
217
+ page_content=' As in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
218
+ page_content=' 4, we smear three different color wall sources in order, where the two-link product is computed only at the first smearing and reused for others.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
219
+ page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
220
+ page_content=' 5, we measure the performance and scalability of the QUDA two-link smearing on the AMD MI250X GPUs in Crusher in the same manner as in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
221
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
222
+ page_content='2 Figure 5a and 5b plot the volume and strong scalabilities, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
223
+ page_content=' The y-axis ranges are the same as in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
224
+ page_content=' 3a and 3b for easy comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
225
+ page_content=' The smearing iteration performs approximately twice faster here with MI250X compared to that with A100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
226
+ page_content=' This result agrees with our expectation that the bottleneck of this 2These plots are updated from the ones we presented in the poster, where we observed an abnormal slowdown in the two-link computation on AMD GPUs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
227
+ page_content=' It turned out the culprit was a HIP API which was not directly related to the two-link computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
228
+ page_content=' We found a way to avoid this problem and reran the benchmark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
229
+ page_content=' We are also working on resolving the issue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
230
+ page_content=' 7 Two-link Staggered Quark Smearing in QUDA Hwancheol Jeong 243 × 64 323 × 96 Lattice volume 0 500 1000 Runtime (s) 301 1126 105 420 197 717 2 6 w/o QUDA smearing w/ QUDA smearing Figure 6: Total time taken by a baryon correlator measurement employing 72 source/sinks which are smeared by the 𝑛 = 30 QUDA two-link smearing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
231
+ page_content=' The measurement is carried out on two nodes of Big Red 200’s GPU partition using four CPU cores and GPUs per node.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
232
+ page_content=' With or without the QUDA two-link smearing enabled, all other QUDA-supported calculations are performed on the GPU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
233
+ page_content=' The shaded region represents the total smearing time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
234
+ page_content=' calculation is the GPU memory bandwidth because its compute-to-communication ratio is similar to a typical dslash routine (see Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
235
+ page_content=' (5)), and a MI250X has twice faster memory bandwidth than A100 (see Table 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
236
+ page_content=' On the other hand, the two-link computation performs similarly or slower on the MI250X compared to the A100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
237
+ page_content=' The only exception is the 964 lattice result, where we observe the expected twice faster performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
238
+ page_content=' Regarding the scalability, we observe a poor scaling as we observed from the A100 GPU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
239
+ page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
240
+ page_content=' Application: Baryon correlator measurement Our baryon correlator calculations include many sources and sinks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
241
+ page_content=' Figure 6 shows the total runtime taken by an example baryon correlator measurement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
242
+ page_content=' Most parts of the calculation were already implemented in QUDA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
243
+ page_content=' With the QUDA smearing disabled, the smearing is carried out on the CPU by the MILC code smearing routine while other major calculations are carried out on the GPU by QUDA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
244
+ page_content=' Note that here we use only the same number of CPUs as of GPUs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
245
+ page_content=' The result shows that the source/sink smearing takes up around 60–70% of the total measurement time when it is run on the CPU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
246
+ page_content=' However, enabling the QUDA smearing reduces the smearing time by a factor of 100–120, requiring only around 1–2% of the total measurement time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
247
+ page_content=' Thus, the total time for the job is reduced to about 30–40% of the original time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
248
+ page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
249
+ page_content=' Conclusion We have implemented two-link staggered quark smearing in QUDA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
250
+ page_content=' When run on eight NVIDIA A100 GPUs, it performs up to six times faster than the MILC code run on total 256 cores of four AMD EPYC 7742 CPUs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
251
+ page_content=' Reusing the precomputed two-link product for another source on the same gauge field increases the difference up to 18 times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
252
+ page_content=' The scaling behavior of this routine on both NVIDIA A100 and AMD MI250X is rather poor, especially for the two-link computation part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
253
+ page_content=' NVSHMEM can improve the performance of the 8 Two-link Staggered Quark Smearing in QUDA Hwancheol Jeong two-link computation by 30–50%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
254
+ page_content=' For a baryon correlator measurement, reusing the two-link product for all 72 sources/sinks reduces the total smearing time from 60–70% to 1–2% of the total measurement time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
255
+ page_content=' Thus, even without further optimization, this code can be useful for GPU jobs that require many smearings for sources or sinks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
256
+ page_content=' Acknowledgments This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
257
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
258
+ page_content=' Department of Energy Office of Science and the National Nuclear Security Administration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
259
+ page_content=' We gratefully acknowledge support by the U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
260
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
261
+ page_content=' Department of Energy, Office of Science under award DE-SC0010120.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
262
+ page_content=' This research was supported in part by Lilly Endowment, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
263
+ page_content=', through its support for the Indiana University Pervasive Technology Institute.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
264
+ page_content=' This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
265
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
266
+ page_content=' Department of Energy under Contract No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
267
+ page_content=' DE-AC05-00OR22725.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
268
+ page_content=' We thank the QUDA [8, 9] developers whose names can be found at their website[7] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
269
+ page_content=' References [1] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
270
+ page_content=' Gusken, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
271
+ page_content=' Low, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
272
+ page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
273
+ page_content=' Mutter, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
274
+ page_content=' Sommer, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
275
+ page_content=' Patel and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
276
+ page_content=' Schilling, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
277
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
278
+ page_content=' B 227 (1989) 266.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
279
+ page_content=' [2] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
280
+ page_content=' Gusken, Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
281
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
282
+ page_content=' B Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
283
+ page_content=' Suppl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
284
+ page_content=' 17 (1990) 361.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
285
+ page_content=' [3] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
286
+ page_content=' Alexandrou, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
287
+ page_content=' Jegerlehner, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
288
+ page_content=' Gusken, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
289
+ page_content=' Schilling and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
290
+ page_content=' Sommer, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
291
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
292
+ page_content=' B 256 (1991) 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
293
+ page_content=' [4] UKQCD collaboration, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
294
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
295
+ page_content=' D 47 (1993) 5128 [hep-lat/9303009].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
296
+ page_content=' [5] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
297
+ page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
298
+ page_content=' von Hippel, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
299
+ page_content=' Jäger, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
300
+ page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
301
+ page_content=' Rae and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
302
+ page_content=' Wittig, JHEP 09 (2013) 014 [1306.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
303
+ page_content='1440].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
304
+ page_content=' [6] Hadron Spectrum collaboration, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
305
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
306
+ page_content=' D 80 (2009) 054506 [0905.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
307
+ page_content='2160].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
308
+ page_content=' [7] https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
309
+ page_content='com/lattice/quda.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
310
+ page_content=' [8] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
311
+ page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
312
+ page_content=' Clark, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
313
+ page_content=' Babich, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
314
+ page_content=' Barros, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
315
+ page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
316
+ page_content=' Brower and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
317
+ page_content=' Rebbi, Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
318
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
319
+ page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
320
+ page_content=' 181 (2010) 1517 [0911.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
321
+ page_content='3191].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
322
+ page_content=' [9] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
323
+ page_content=' Babich, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
324
+ page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
325
+ page_content=' Clark, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
326
+ page_content=' Joo, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
327
+ page_content=' Shi, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
328
+ page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
329
+ page_content=' Brower and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
330
+ page_content=' Gottlieb, 9, 2011, DOI [1109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
331
+ page_content='2935].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
332
+ page_content=' [10] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
333
+ page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
334
+ page_content=' DeGrand and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
335
+ page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
336
+ page_content=' Loft, Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
337
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
338
+ page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
339
+ page_content=' 65 (1991) 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
340
+ page_content=' [11] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
341
+ page_content='N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
342
+ page_content=' Syritsyn et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
343
+ page_content=', Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
344
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
345
+ page_content=' D 81 (2010) 034507 [0907.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
346
+ page_content='4194].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
347
+ page_content=' [12] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
348
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
349
+ page_content=' Bali, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
350
+ page_content=' Lang, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
351
+ page_content='U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
352
+ page_content=' Musch and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
353
+ page_content=' Schäfer, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
354
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
355
+ page_content=' D 93 (2016) 094515 [1602.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
356
+ page_content='05525].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
357
+ page_content=' 9 Two-link Staggered Quark Smearing in QUDA Hwancheol Jeong [13] https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
358
+ page_content='com/milc-qcd/milc_qcd/tree/develop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
359
+ page_content=' [14] https://developer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
360
+ page_content='nvidia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
361
+ page_content='com/nvshmem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
362
+ page_content=' [15] https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
363
+ page_content='com/lattice/quda/wiki/Multi-GPU-with-NVSHMEM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
364
+ page_content=' [16] https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
365
+ page_content='com/lattice/quda/wiki/Building-QUDA-With-HIP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
366
+ page_content=' [17] https://kb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
367
+ page_content='iu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
368
+ page_content='edu/d/brcc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
369
+ page_content=' [18] https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
370
+ page_content='nvidia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
371
+ page_content='com/content/dam/en-zz/Solutions/Data-Center/a100/ pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
372
+ page_content='pdf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
373
+ page_content=' [19] https://docs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
374
+ page_content='olcf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
375
+ page_content='ornl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
376
+ page_content='gov/systems/crusher_quick_start_guide.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
377
+ page_content='html.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
378
+ page_content=' [20] https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
379
+ page_content='amd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
380
+ page_content='com/en/products/server-accelerators/instinct-mi250x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
381
+ page_content=' 10' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf'}
A9E1T4oBgHgl3EQfpAX1/content/tmp_files/2301.03328v1.pdf.txt ADDED
@@ -0,0 +1,836 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Forecasting Natural Gas Prices with Spatio-Temporal
2
+ Copula-based Time Series Models
3
+ Sven Papperta,∗, Antonia Arsovaa,b
4
+ aChair of Econometrics, Department of Statistics, TU Dortmund University, Germany
5
+ bRWI – Leibniz Institute for Economic Research, Germany
6
+ Abstract
7
+ Commodity price time series possess interesting features, such as heavy-tailedness,
8
+ skewness, heteroskedasticity, and non-linear dependence structures. These features
9
+ pose challenges for modeling and forecasting. In this work, we explore how spatio-
10
+ temporal copula-based time series models can be effectively employed for these purposes.
11
+ We focus on price series for fossil fuels and carbon emissions. Further, we illustrate
12
+ how the t-copula may be used in conditional heteroskedasticity modeling.
13
+ The
14
+ possible emergence of non-elliptical probabilistic forecasts in this context is examined
15
+ and visualized. The problem of finding an appropriate point forecast given a non-
16
+ elliptical probabilistic forecast is discussed. We propose a solution where the forecast
17
+ is augmented with an artificial neural network (ANN). The ANN predicts the best (in
18
+ MSE sense) quantile to use as point forecast. In a forecasting study, we find that the
19
+ copula-based models are competitive.
20
+ Keywords:
21
+ Commoditiy Prices, Copula-based time series, Conditional Volatility,
22
+ Forecasting, Vine Copula
23
+ ∗Corresponding author
24
+ Email addresses: pappert@statistik.tu-dortmund.de (Sven Pappert),
25
+ arsova@statistik.tu-dortmund.de (Antonia Arsova)
26
+ Preprint submitted to Contributions to Statistics
27
+ January 10, 2023
28
+ arXiv:2301.03328v1 [stat.AP] 9 Jan 2023
29
+
30
+ 1. Introduction
31
+ Modeling and forecasting commodity prices is important for trading, political
32
+ decision making and economic adjustments. Especially in recent times, forecasting
33
+ natural gas prices has gained importance following the russian invasion of Ukraine. In
34
+ this work we focus on modeling and forecsting short-term natural gas future prices
35
+ jointly with related commodity prices. We model the time series jointly to exploit the
36
+ additional information carried by their mutual dependence. To this aim we employ
37
+ spatio-temporal copula based time series models.
38
+ Copulas are popular choices to model the cross-sectional dependence in time series
39
+ with the copula-GARCH approach in financial markets [16, 18] as well as in energy
40
+ markets [2, 7]. In the copula-GARCH approach the temporal dependence of each
41
+ time series is modeled by typical time series models, such as ARMA-GARCH. The
42
+ cross-sectional dependence structure of the time series can be captured by finding the
43
+ copula of the standardized residuals of the univariate time series model. However, such
44
+ models are only able to allow for flexible dependence structures in the cross-sectional
45
+ dimension. The mean process is modeled linearly.
46
+ On the other hand, temporal copula modeling (or ’copula-based time series modeling’)
47
+ as well as spatio-temporal copula time series modeling offers an alternative to classical
48
+ linear time series approaches. The models are able to flexibly model cross-sectional as
49
+ well as temporal dependencies. There is emerging literature on the topic. Chen & Fan
50
+ [8] investigate the estimation of copula-based semiparametric time series models. The
51
+ authors provide conditions for β-mixing and prove consistency as well as asymptotic
52
+ normality using the Delta method. Beare [4] further investigates mixing conditions.
53
+ Smith et al. [23] decompose serial dependence of intraday electricity load using pair
54
+ copula constructions. Simard and Rémillard [21] investigate the forecasting perfor-
55
+ mance of the spatio-temporal t-copula dependent on the strength and structure of the
56
+ dependence as well as the marginal distributions. Beare & Seo [5] as well as Nagler et
57
+ al. [19] examine spatio-temporal vine copula models.
58
+ Examples where flexible dependence modeling can be important are the following. The
59
+ cross-sectional dependence between international stock markets can be asymmetric
60
+ with dominant lower tail dependence, indicating the phenomenon of contagion in
61
+ financial markets. This was investigated by Hu [16]. It was found that the asymmetric
62
+ dependence dominates. With regard to energy markets it was found by Aloui et al.
63
+ [2] that crude oil and gas markets rather comove during bullish periods. Thereby also
64
+ 2
65
+
66
+ displaying an asymmetric cross-sectional dependence structure. A concise example
67
+ for a possible emergence of non-linear dependence structures in the temporal domain
68
+ and hence requiring sophisticated dependence modeling is given in the introduction of
69
+ the work by Beare [4]. The continous growth of financial time series contrasted with
70
+ their sudden and quick decrease represent an asymmetric temporal relation. Thus
71
+ cross-sectional as well as temporal dependence modeling can be important in many
72
+ fields.
73
+ In this paper we explore the possibilities and performances of spatio-temporal copula
74
+ models for modeling energy market time series. The basic idea underlying spatio-
75
+ temporal time series modeling with copulas is a decomposition of the joint distribution.
76
+ Using Sklars theorem, [22] the joint distribution of consecutive observations is decom-
77
+ posed into dependence and marginal structure, FXt,Xt−1(a, b) = C
78
+
79
+ FXt(a), FXt−1(b)
80
+
81
+ .
82
+ Various copula specifications can be employed. In this work, the t-copula [11] and the
83
+ gaussian copula are considered as basic copula models for spatio-temporal time series
84
+ modeling. Vine copula models [1, 9] are also considered. Spatio-temporal forecasting
85
+ with the t-copula was examined in [21]. The spatio-temporal vine copula modeling of
86
+ multivariate time series is, among others, explored in [5, 19, 23].
87
+ Using the notion of conditional copulas, the models can be used for forecasting. The
88
+ resulting probabilistic forecasts can be non-elliptical. It is not obvious what constitutes
89
+ a sensible point forecast in this case. The expectation value is a sensible point forecast
90
+ for elliptical or almost elliptical probabilistic forecasts. For non-elliptical forecasts,
91
+ e.g. a bimodular probabilistic forecast, the expecation value predicts points that are
92
+ unlikely. One possible solution to this problem would be to take the mode of the
93
+ probabilistic forecast as the point forecast. Another possibility is to augment the
94
+ forecasting procedure by an artificial neural network (ANN)1 The ANN predicts which
95
+ quantile of the probabilistic forecast is optimal (in MSE sense) as point forecast. The
96
+ inputs of the ANN are past values of the times series and the last optimal quantiles.
97
+ One advantage of the ANN-augmented forecast is that the ANN can be estimated and
98
+ used for prediction completely independent from the probabilistic time series model
99
+ estimation and forecast. It is well known that ANNs are very powerful with regards
100
+ to point forecasting. In this approach the ANN point forecasts are also equipped
101
+ with an underlying probabilistic distribution, enabling the calculation of confidence
102
+ 1We refer to [14] for a concise introduction.
103
+ 3
104
+
105
+ intervals and other distributional properties. The models performances are examined
106
+ in a forecasting study. A model closely related to the model from [6], which was shown
107
+ to outperform other popular models, is considered as benchmark. We find that the
108
+ spatio-temporal copula time series modeling with ANN-augmented point forecasts are
109
+ competitive for natural gas and related commoditiy prices forecasting.
110
+ The main contributions of this paper are two-fold. The first contribution is the appli-
111
+ cation oriented exploration of spatio-temporal (vine) copula time series models for the
112
+ energy market. We evaluate the performance of the models in a forecasting study and
113
+ find that they perform well. The second contribution is the methological exploration
114
+ of point forecasting from non-elliptical probabilistic forecasts and the inclusion of
115
+ ANN-augmented forecasts.
116
+ In the next Section, Sect. 2, the data used in this work is introduced briefly. Sect. 3
117
+ describes the statistical methods used in this work. The empirical results of the
118
+ forecasting study are presented in Sect. 4, while Sect. 5 summarizes the results and
119
+ outlines some avenues for future research.
120
+ 2. Data description
121
+ The time series analyzed in this work are extracted from the web-platform
122
+ investing.com using the Python package investpy [10]. We analyze month-ahead
123
+ natural gas futures (NGas) from the Netherlands (TTF Hub). The related commodities
124
+ used for modeling are short-term carbon emission futures (CEF), short term brent oil
125
+ futures (oil) and short term coal futures (coal). The analyzed time series are comprised
126
+ of daily observations. The obervation period spans from March 2010 to February 2021.
127
+ In total, the time series comprises 2861 observations. Missing values, which occur
128
+ especially during the holidays are trivially imputated as the last known value. The
129
+ original time series are non-stationary. To obtain stationarity, which is necessary for
130
+ the methods used in this report, the time series are differenced once. The differenced
131
+ time series are displayed in Fig. 1. The hypothesis of non-stationarity in the first
132
+ differences is rejected by the Dickey-Fuller test at the level α = 0.01 for all time series.
133
+ 3. Statistical Methods
134
+ This section comprises the description of the methods used in this report. First
135
+ copulas and related notions are introduced. The copula specifications used in the
136
+ 4
137
+
138
+ analysis are presented and discussed. The application of copulas to time series modeling
139
+ follows. The emergence of non-elliptical probabilistic forecasts is examined with regard
140
+ to the t-copula. It is shown how the t-copula may be used to model conditional
141
+ heteroskedasticity. The need for new point forecast methods is presented.
142
+ 3.1. Copulas
143
+ Copulas are distribution functions on the unit cube with uniform marginals:
144
+ C : [0, 1]d → [0, 1].
145
+ (1)
146
+ Copulas gain their relevance by Sklars Theorem [22]. It states that every multivari-
147
+ ate distribution can be decomposed into a copula and marginal distributions. Let
148
+ X1, . . . , Xd be real valued random variables with joint distribution FX1,...,Xd and
149
+ marginal distributions FX1, . . . , FXd. Then it holds that there exists a copula C such
150
+ that
151
+ FX1,...,Xd(x1, . . . , xd) = CU1,...,Ud [FX1(x1), . . . , FXd(xd)] ,
152
+ (2)
153
+ where (U1, . . . , Ud) := (FX1(X1), . . . , FXd(Xd)). In the following the indices of the cop-
154
+ ula will be dropped. If the random variables X1, . . . , Xd are continous then the decom-
155
+ position is unique [17]. The pseudo-observation (u1, . . . , ud) := FX1(x1), . . . , FXd(xd)
156
+ are, by virtue of the probability integral transformation, realizations from a uniform
157
+ distribution, Ui = FXi(Xi) ∼ U[0, 1], i ∈ {1, . . . , d} [3]. This permits the copula to
158
+ be interpreted as the dependence structure of the random variables X1, . . . , Xd. The
159
+ −5.0
160
+ −2.5
161
+ 0.0
162
+ 2.5
163
+ 5.0
164
+ Natural Gas
165
+ −5.0
166
+ −2.5
167
+ 0.0
168
+ 2.5
169
+ 5.0
170
+ Oil
171
+ −5.0
172
+ −2.5
173
+ 0.0
174
+ 2.5
175
+ 5.0
176
+ Coal
177
+ −5.0
178
+ −2.5
179
+ 0.0
180
+ 2.5
181
+ 5.0
182
+ 2010
183
+ 2015
184
+ 2020
185
+ Date
186
+ Carbon
187
+ Figure 1: First differences of the respective commodity price time series.
188
+ 5
189
+
190
+ copula density, c which couples the joint density fX1,...,Xd and marginal densities
191
+ fX1, . . . , fXd can be derived directly from Eq. 2 by taking derivatives,
192
+ fX1,...,Xd(x1, . . . , xd) =
193
+ c [FX1(x1), . . . , FXd(xd)] fX1(x1) . . . fXd(xd),
194
+ (3)
195
+ c[u1, . . . , ud] =
196
+ ∂dC[u1,...,ud]
197
+ ∂u1...∂ud
198
+ .
199
+ (4)
200
+ The copula density is important for estimation via maximum likelihood as well as for
201
+ the visualization of dependence structures. In this paper the copula density will also
202
+ be used to introduce the notion of vine copula models. Another important notion
203
+ for dependence modeling is the conditional copula of U1, . . . , Ui given Ui+1, . . . , Ud,
204
+ respectively the conditional copula density. The conditional copula (density) can also
205
+ be derived from Eq. 2. It is given by [21],
206
+ C[u1, . . . , ui|ui+1, . . . , ud] =
207
+ ∂ui+1...∂udC[u1,...,ud]
208
+ c[ui+1,...,ud]
209
+ ,
210
+ (5)
211
+ c[u1, . . . , ui|ui+1, . . . , ud] =
212
+ c[u1,...,ud]
213
+ c[ui+1,...,ud].
214
+ (6)
215
+ Conditional copulas are especially relevant for conditional time series models as
216
+ presented in this paper. The relation between the conditional density and the copula
217
+ is as follows,
218
+ fX1,...,Xi|Xi+1...Xd(x1, . . . , xi|xi+1, . . . , xd) =
219
+ c[FX1(x1),...,FXd(xd)]
220
+ c[ui+1,...,ud]
221
+ (7)
222
+ ×fX1(x1) . . . fXi(xi).
223
+ The copula approach to multivariate modeling allows for separate modeling of marginal
224
+ properties and dependence structure. This feature renders the approach far more
225
+ flexible than standard multivaritate modeling. Joint distributions such as the multi-
226
+ variate normal or students t-distribution restrict the choice of marginal distributions.
227
+ In the copula approach, marginal distributions can be arbitrary. Also the dependence
228
+ structure of random variables can have various features, that have to be accounted for
229
+ by choosing an appropriate copula specification. In this work, the gaussian, Clayton,
230
+ Gumbel and t-copula are utilized. In the following they will be introduced briefly as
231
+ the joint distribution of random variables Ui ∼ U[0, 1], i ∈ {1, . . . , d}. The gaussian
232
+ copula is a popular choice for the modeling of linear dependence structures. The gaus-
233
+ sian copula is constructed by extracting the dependence structure of the multivariate
234
+ 6
235
+
236
+ normal distribution and filtering the marginal influences,
237
+ Cgaussian[u1, . . . , ud] = ΦΣ[φ−1(u1), . . . , φ−1(ud)],
238
+ (8)
239
+ where φ is the cumulative distribution function of the standard normal distribution
240
+ and ΦΣ is the d-variate cumulative distribution function of the normal distribution
241
+ with correlation matrix Σ.
242
+ The correlation matrix Σ ∈ [0, 1]d×d contains
243
+ d(d−1)
244
+ 2
245
+ dependence parameters, ρ1, . . . , ρ d(d−1)
246
+ 2
247
+ , governing the linear dependencies among
248
+ the random variables U1, . . . , Ud. The density of a bivariate gaussian copula with
249
+ dependence parameter ρ = 0.4 is displayed in the upper left panel of Fig. 2. The
250
+ density only displays a linear relation between the variables. Similar to recovering
251
+ linear dependence structures from the multivariate normal distribution, heavy-tailed
252
+ dependence structures can be recovered from the multivariate students t-distribution
253
+ using the t-copula
254
+ Ct[u1, . . . , ud] = tΣ,ν[t−1
255
+ ν (u1), . . . , t−1
256
+ ν (ud)].
257
+ (9)
258
+ where tν is the cumulative distribution function of the students t-distribution with
259
+ degree of freedom ν and tΣ,ν is the cumulative distribution function of the multivariate
260
+ t-distribution with correlation matrix Σ and degree of freedom ν. Incorporating
261
+ the degree of freedom ν ∈ (0, ∞) permits heavy tailed dependence structures. The
262
+ heavy-tailedness can be interpreted as extreme events coinciding. A lower degree of
263
+ freedom ν implies heavier tails. The density of a bivariate t-copula with dependence
264
+ parameter ρ = 0.4 and degree of freedom ν = 4 is displayed in the upper right panel
265
+ of Fig. 2. The density displays the linear relation between the variables as well as
266
+ the coincidence of extreme events. Another class of dependence structures can be
267
+ described as asymmetric dependence structures. Two relevant copulas are the Gumbel
268
+ and Clayton copula. The Gumbel copula exhibits dominant upper tail dependence
269
+ while the Clayton copula exhibits dominant lower tail dependence. Their bivariate
270
+ densities are displayed in the lower left, respectively lower right panel of Fig. 2. Both
271
+ copulas are part of the archimedean copula family. Hence they are constructed as
272
+ C[u1, . . . , ud] = Ψ−1 (Ψ(u1) + . . . + Ψ(ud)) with a suitable generator function Ψ [12],
273
+ 7
274
+
275
+ [15]. The generators for the Gumbel, respectively Clayton copula are given by
276
+ ΨClayton(t) =
277
+ (1 + t)− 1
278
+ θ ,
279
+ (10)
280
+ ΨGumbel(t) =
281
+ e−t
282
+ 1
283
+ θ .
284
+ (11)
285
+ The dominant lower tail dependence of the Clayton copula can be interpreted as lower
286
+ tail events coinciding more often than upper tail events and vice versa for the dominant
287
+ upper tail dependence of the Gumbel copula. An even more flexible copula model is
288
+ the vine copula model. Vine copula models will be explained next.
289
+ 3.2. Vine Copulas
290
+ Vine copulas are special pair copula constructions.
291
+ The idea of pair copula
292
+ constructions amounts to decomposing a d-variate dependence structure into a product
293
+ of bivariate copulas. The joint density of d random variables can, by virtue of the
294
+ law of total probability, be decomposed into a product of conditional densities. Using
295
+ the relation between conditional densities and copula densities (Eq. 8), one possible
296
+ decomposition can be derived as [1, 9],
297
+ c[u1, . . . , ud] =
298
+ d−1
299
+
300
+ j=1
301
+ d−j
302
+
303
+ i=1
304
+ c[ui, ui+j|ui+1, . . . , uj−1].
305
+ (12)
306
+ 0.00
307
+ 0.25
308
+ 0.50
309
+ 0.75
310
+ 1.00
311
+ 0.00
312
+ 0.25
313
+ 0.50
314
+ 0.75
315
+ 1.00
316
+ u1
317
+ u2
318
+ 0.00
319
+ 0.25
320
+ 0.50
321
+ 0.75
322
+ 1.00
323
+ 0.00
324
+ 0.25
325
+ 0.50
326
+ 0.75
327
+ 1.00
328
+ u1
329
+ u2
330
+ 0.00
331
+ 0.25
332
+ 0.50
333
+ 0.75
334
+ 1.00
335
+ 0.00
336
+ 0.25
337
+ 0.50
338
+ 0.75
339
+ 1.00
340
+ u1
341
+ u2
342
+ 0.00
343
+ 0.25
344
+ 0.50
345
+ 0.75
346
+ 1.00
347
+ 0.00
348
+ 0.25
349
+ 0.50
350
+ 0.75
351
+ 1.00
352
+ u1
353
+ u2
354
+ Figure 2: Simulated density plots of four different two-dimensional copula specifications. The upper
355
+ left plot shows the gaussian copula density with dependence parameter set to ρ = 0.4. Upper right
356
+ shows the t-copula density with dependence parameter ρ = 0.4 and degree of freedom ν = 4. The
357
+ lower left plot displays the Gumbel copula density with dependence parameter θ = 2. The lower right
358
+ plot displays the Clayton copula density with dependence parameter θ = 2. All plots were created
359
+ with simulations with 2000 samples.
360
+ 8
361
+
362
+ The decomposition is not unique. The decomposition in Eq. 12 is called drawable
363
+ vine (D-vine). The unconditional copulas in the product all capture the dependence
364
+ structure of neighboring variables, e.g. c[ui, ui+1], c[ui+1, ui+2] and so forth. In a
365
+ graphical representation, the connection between the variables resembles a straight
366
+ line, hence the name D-vine.2 The vine copula approach allows for flexible dependence
367
+ modeling. It is advantageous in contexts where the bivariate dependence structures
368
+ between variables can take different shapes, e.g. the dependence structure between
369
+ variable U1 and U2 is linear whereas the dependence structure between U2 and U3
370
+ is heavy-tailed and so forth. Vine copula models can be estimated by maximum
371
+ likelihood, we refer to [1] for details.
372
+ 3.3. Modeling Time Series with Spatio-Temporal Copulas
373
+ In this subsection, the copula-based time series models will be reviewed and
374
+ summarized. It will be explained how these models can be used for forecasting. First,
375
+ the temporal copula modeling (see for example [8], [4]) will be introduced. Eventually
376
+ the combination of cross-sectional and temporal copula modeling, the spatio-temporal
377
+ copula modeling, will be introduced. The exposition is based on the spatio-temporal
378
+ t-copula modeling from [21] and vine copula modeling from [5, 19, 23]. Further it
379
+ will be examined how conditional temporal copula models offer a new approach to
380
+ conditional heteroskedasticity modeling. The emergence of non-elliptical conditional
381
+ distributions, respectively probabilistic forecasts, will be exemplified. The consequences
382
+ for forecasting and the need for new point forecasting methods will be discussed.
383
+ Let Xt be a univariate stationary Markov(1) time series. The temporal evolution of
384
+ the time series is completely specified by the joint distribution of random variables
385
+ from consecutive time points i.e. FXt,Xt−1. Using Sklars theorem (Eq. 2), the joint
386
+ distribution can be decomposed into copula and marginal distributions,
387
+ FXt,Xt−1(a, b) = C
388
+
389
+ FXt(a), FXt−1(b)
390
+
391
+ .
392
+ (13)
393
+ By the stationarity of Xt, FXt = FXt−1 =: FX. Hence the model can be determined
394
+ by choosing an appropriate marginal distribution FX and an appropriate copula
395
+ specification. Note that the marginal distribution FX is the unconditional distribution
396
+ 2Another special class of decompositions are canonical vines (C-vine). In this decomposition, the un-
397
+ conditional dependence structures are all centered around one variable, e.g. c[ui, ui+1], c[ui, ui+2], . . ..
398
+ In a graphical representation, the unconditional connection between variables resembles a star. In
399
+ this work only D-vines are used.
400
+ 9
401
+
402
+ of Xt. Conditional properties of the time series are completely determined by the
403
+ conditional copula. The conditional density of Xt|Xt−1 is given by
404
+ fXt|Xt−1(a|b) = c [FX(a), FX(b)] fX(a).
405
+ (14)
406
+ Hence, for forecasting, the conditional density of Xt|Xt−1 = xt−1 can be used as
407
+ probabilistic forecast.
408
+ This model can be understood as a generalization of the
409
+ AR(1) model [23]3. The gaussian autoregressive model can be recovered by choosing
410
+ C = Cgaussian and FX = Φ. When allowing other dependence structures, any temporal
411
+ dependency representable by a copula can be reproduced. The concept of the copula
412
+ based time series models can be further illustrated by its conditional model equation,
413
+ Xt|(Xt−1 = xt−1) = F −1
414
+ X (C−1 [ut|FX(xt−1)]),
415
+ ut ∼ U[0, 1].
416
+ (15)
417
+ In this formulation, the non-linear connection between Xt and Xt−1 becomes obvious.
418
+ The generalization of the temporal copula time series model to d-variate time series,
419
+ hence spatio-temporal time series models, is straight forward. Let Xt = (X1,t, . . . , Xd,t)
420
+ be stationary Markov(1) time series. The structure of the time series is completely
421
+ captured by the joint distribution of Xt and Xt−1,
422
+ FXt,Xt−1(a, b) = C [FX1(a1), . . . , FXd(ad), FX1(b1), . . . , FXd(bd)] .
423
+ (16)
424
+ The conditional density given observations from time point t − 1 is as follows,
425
+ fXt|Xt−1(a|b) =
426
+ c[FX1(a1),...,FXd(ad),FX1(b1),...,FXd(bd)]
427
+ c[FX1(b1),...,FXd(bd)]
428
+ (17)
429
+ ×fX1(a1) · . . . · fXd(ad).
430
+ To sample from the conditional distribution, as necessary for Monte-Carlo approx-
431
+ imations of conditional forecasts, the following procedure is employed [21]. First
432
+ transform the observations at time t − 1 to pseudo-observations. This is done by
433
+ applying the probability integral transform to the observations, (ut−1,1, . . . , ut−1,d) :=
434
+ (FX1(xt−1,1), . . . , FXd(xt−1,d)). Then sample n d-dimensional realizations from the
435
+ conditional copula, Eq. 5. (Details on how to sample from the t-copula can be found
436
+ 3The generalization to AR(p) models can be achieved by permiting the time series to be a
437
+ Markov(p) process.
438
+ 10
439
+
440
+ in [21]. Details to sampling from vine copulas can be found in [1]). At last, the n
441
+ realizations have to be quantile transformed with their respective marginal distri-
442
+ bution, yielding the n samples of the conditional distribution. Relevant models for
443
+ this work are the following. First, the spatio-temporal time series model where the
444
+ copula is specified as the gaussian copula (Eq. 8). The marginals are approximated
445
+ non-parametrically by the empirical distribution.
446
+ FXt,Xt−1(a, b) =
447
+ ΦΣ[φ−1(F emp
448
+ X1 (a1)), . . . φ−1(F emp
449
+ Xd (ad)),
450
+ (18)
451
+ φ−1(F emp
452
+ X1 (b1)), . . . , φ−1(F emp
453
+ Xd (bd))].
454
+ This model is sensible to use when the dependence structure between the variables as
455
+ well as the temporal dependence is linear. When the dependence strucure exhibits
456
+ heavy-tailedness, the spatio-temporal t-copula model with non-parametric marginals
457
+ poses a viable option,
458
+ FXt,Xt−1(a, b) =
459
+ tν,Σ[t−1
460
+ ν (F emp
461
+ X1 (a1)), . . . t−1
462
+ ν (F emp
463
+ Xd (ad)),
464
+ (19)
465
+ t−1
466
+ ν (F emp
467
+ X1 (b1)), . . . , t−1
468
+ ν (F emp
469
+ Xd (bd))].
470
+ For more flexible modeling, the spatio-temporal D-vine copula with non-parametric
471
+ marginals can be utilized. For convenience, the model is presented in terms of its joint
472
+ density and with variables (a, b) =: p
473
+ fXt,Xt−1(p) =
474
+ �2d−1
475
+ j=1
476
+ �2d−j
477
+ i=1 c[FXi(pi), FXi+j(pi+j)|FXi+1(pi+1), . . . , FXj−1(pj−1)]
478
+ ×fX1(p1) · . . . · fXd(pd)fX1(pd+1) · . . . · fXd(p2d).
479
+ (20)
480
+ This model is sensible to use when the dependence between variables differs in its
481
+ structure or when the temporal dependence differs from the cross-sectional dependence.
482
+ As for solely temporal modeling, the temporal t-copula is employed,
483
+ FXt,Xt−1(a, b) = tν,Σ[t−1
484
+ ν (F emp
485
+ X
486
+ (a)), t−1
487
+ ν (F emp
488
+ X
489
+ (b))].
490
+ (21)
491
+ The heavy-tailed temporal dependence that this model exhibits is suitable for condi-
492
+ tional heteroskedasticity modeling as will be discussed next.
493
+ The conditional distributions, respectively probabilistic forecasts from (spatio)-temporal
494
+ copula time series models can be non-elliptical because of non-linear influences of the
495
+ 11
496
+
497
+ conditioning variable. In the following the behavior of the conditional distributions
498
+ will be examined with regard to the temporal t-copula with standard normal marginal
499
+ distribution4. The emergence of non-elliptical conditional densities from the heavy-
500
+ tailed t-copula is visualized in Fig. 3. When the conditioning variable takes moderate
501
+ values around u1 = 0.5 the resulting conditional density is approximately elliptical.
502
+ However, when the conditioning variable takes extreme values e.g. u1 = 0.03 and
503
+ u1 = 0.97, the conditional density becomes bimodular. Thus, depending on the value
504
+ of the conditioning variable, the resulting conditional density can have fundamentally
505
+ different structures. This behavior offers a new approach to conditional heteroskedas-
506
+ ticity modeling. Instead of widening the conditional density as in GARCH models,
507
+ the density gets bimodular. This can be viewed as a sensible approach to volatility
508
+ because the extreme behavior in volatile phases is mirrored in this model: When the
509
+ time series takes a very low value at time point t − 1 it can be expected that the value
510
+ at time point t will either be also very low or very high. The variance at time point t
511
+ is increased nevertheless, but the mechanism for the increased variance is a new one.
512
+ The temporal t-copula approach to conditional volatility, however, holds a problem.
513
+ When the conditional density is non-elliptical it is not clear what constitutes a sensible
514
+ point forecast. The expectation value may not be suitable in extreme cases where the
515
+ conditional density is bimodular because the expectation value will take a value which
516
+ is less probable than e.g. the modes. Taking the mode as point forecast could be a
517
+ solution. Another possible solution to the problem of point forecasting is to augment
518
+ the forecast by a artificial neural network (ANN). The ANN predicts which quantile
519
+ of the conditional distribution is best (in terms of MSE) to use as point forecast. The
520
+ inputs of the ANN are past values of the time series and the last optimal quantiles.
521
+ The ANN architecture used in this work is the basic multi-layer perceptron (MLP)
522
+ structure. We refer to [14] for an introduction to the topic.
523
+ 4. Results
524
+ This section comprises the results of the expanding window forecasting study,
525
+ investigating the performance of different models. The first 1000 observations (ranging
526
+ 4The choice of the standard normal distribution is just for convenience. The example would still
527
+ be valid with other marginal distributions, e.g. students t-distribution.
528
+ 12
529
+
530
+ from 2010-03-16 to 2013-12-08) are used as training data set. The following models
531
+ are considered for evaluation.
532
+ 1) The temporal t-copula model with non-parametric marginals, Eq. 21, henceforth
533
+ denoted by Tem-t,
534
+ 2) The spatio-temporal D-vine copula model Eq. 20, henceforth denoted by S-Tem
535
+ D-vine,
536
+ 3) The spatio-temporal t-copula model, Eq. 20, henceforth denoted by S-Tem-t,
537
+ 4) The spatio-temporal gaussian copula model, Eq. 19, henceforth denoted by
538
+ S-Tem-gaussian,
539
+ 5) The Autoregressive moving average model with external regressors and absolute
540
+ value, threshhold generalized autoregressive conditional heteroskedasticity model,
541
+ henceforth denoted by ARMAX-AVTGARCH (closely related to the model from
542
+ [6]).
543
+ The models distributional forecasting performance is examined by the continous ranked
544
+ probability score (CRPS) [13]. Further, the ANN assisted point forecasts of the S-Tem
545
+ 0.00
546
+ 0.25
547
+ 0.50
548
+ 0.75
549
+ 1.00
550
+ 0.00
551
+ 0.25
552
+ 0.50
553
+ 0.75
554
+ 1.00
555
+ u1
556
+ u2
557
+ 0.0
558
+ 0.1
559
+ 0.2
560
+ 0.3
561
+ −2
562
+ 0
563
+ 2
564
+ Φ−1(u2|u1=0.03)
565
+ density
566
+ 0.0
567
+ 0.1
568
+ 0.2
569
+ 0.3
570
+ −3
571
+ −2
572
+ −1
573
+ 0
574
+ 1
575
+ 2
576
+ 3
577
+ Φ−1(u2|u1=0.97)
578
+ density
579
+ 0.0
580
+ 0.2
581
+ 0.4
582
+ 0.6
583
+ −2
584
+ −1
585
+ 0
586
+ 1
587
+ Φ−1(u2|u1=0.5)
588
+ density
589
+ Figure 3: Visualization of the conditional density structure depending on the value of the conditioning
590
+ variable. The underlying model assumes the t-copula with dependence parameter ρ = 0.4 and degree
591
+ of freedom ν = 2. The marginal distribution is assumed as the standard normal distribution. The
592
+ upper left panel shows the copula density of 2000 realizations of the before mentioned t-copula. The
593
+ three lines indicate the three cases where the conditinal density is examined. The conditional density
594
+ is calculated by aggregating all values in the neighborhood (u1 ± 0.025) of the conditioning variable
595
+ and quantile-transforming them. The density in the upper right panel displays the conditional density
596
+ given u1 = 0.03. The lower panels display the conditional densities given u1 = 0.5, respectively
597
+ u1 = 0.97.
598
+ 13
599
+
600
+ Table 1: Aggregated CRPS values of the competing models for their one day-ahead probabilistic
601
+ forecast for the four commodities. The CRPS is evaluated for the period 2013-12-19 – 2021-02-23,
602
+ comprising 1861 obervations.
603
+ Model/
604
+ Commodity
605
+ S-Tem
606
+ D-Vine
607
+ ARMAX-
608
+ AVTGARCH
609
+ Tem-t
610
+ S-Tem-t
611
+ S-Tem-
612
+ gaussian
613
+ Natural Gas
614
+ 0.236
615
+ 0.227
616
+ 0.230
617
+ 0.234
618
+ 0.234
619
+ Oil
620
+ 0.564
621
+ 0.548
622
+ 0.551
623
+ 0.559
624
+ 0.558
625
+ Coal
626
+ 0.400
627
+ 0.389
628
+ 0.392
629
+ 0.398
630
+ 0.397
631
+ CEF
632
+ 0.236
633
+ 0.222
634
+ 0.229
635
+ 0.234
636
+ 0.234
637
+ D-vine model and the Tem-t model are compared with the point forecasts from the
638
+ ARMAX-AVTGARCH model. For each time series the ARMAX-AVTGARCH model
639
+ is fitted individually. All models are estimated via Maximum Likelihood. However, the
640
+ marginals of the copula models are estimated non-parametrically to avoid transmitting
641
+ estimation errors [20]. The order of the variables in the S-Tem D-vine copula model is
642
+ fixed as
643
+ CEF – coal – oil – NGas – NGas lag – oil lag – coal lag – CEF lag.
644
+ (22)
645
+ This order is chosen to enable the lagged natural gas price to directly interact with
646
+ the non-lagged natural gas price. The gaussian, Gumbel, Clayton and t-copula are
647
+ allowed as bivariate copulas in the D-vine decomposition (Eq. 12). The probabilistic
648
+ forecasts of all models are approximated by Monte-Carlo simulations with 1000
649
+ samples for each forecast. Table 1 displays the models performances in terms of the
650
+ CRPS. The ARMAX-AVTGARCH model performs best with regard to univariate
651
+ distributional forecasting. However, the S-Tem D-vine model, the S-Tem-t and the
652
+ Tem-t model are competitive. The performance of the copula models may be enhanced,
653
+ when the marginal distributions are modeled parametrically. The empirical marginal
654
+ distributions of the copula may not capture all marginal features of the time series.
655
+ More versatile copula models could be used to enhance the forecast. The conditional
656
+ dependence modeling may only be able to capture parts of the conditional effects. The
657
+ probabilistic forecasts from the Tem-t model during a volatile period is displayed in
658
+ Fig. 4. During volatile times the probabilistic forecasts are non-elliptical. During these
659
+ times the ANN-augmented point forecasts can be valuable. The point forecasting
660
+ performance of the models can be found in Table 2. The evaluation starts at the
661
+ 2001st observation, because the first 1000 probabilist forecasts are used to train the
662
+ ANN. The hybrid, ANN-augmented S-Tem vine and the ANN-augmented Tem-t model
663
+ 14
664
+
665
+ Table 2: Aggregated RMSE values of the competing point forecasting procedures for the four
666
+ commodities.
667
+ The RMSE is evaluated for the period 2017-10-23 – 2021-02-23, comprising 861
668
+ observations.
669
+ Model/
670
+ Commodity
671
+ S-Tem
672
+ D-Vine
673
+ ANN
674
+ ARMAX-
675
+ AVTGARCH
676
+ S-Tem
677
+ D-Vine
678
+ Mean
679
+ S-Tem
680
+ D-Vine
681
+ Mode
682
+ Tem-t
683
+ ANN
684
+ Gas
685
+ 0.594
686
+ 0.600
687
+ 0.599
688
+ 0.597
689
+ 0.589
690
+ oil
691
+ 1.222
692
+ 1.222
693
+ 1.236
694
+ 1.246
695
+ 1.220
696
+ coal
697
+ 1.000
698
+ 0.999
699
+ 1.009
700
+ 1.002
701
+ 0.997
702
+ CEF
703
+ 0.605
704
+ 0.608
705
+ 0.614
706
+ 0.604
707
+ 0.607
708
+ generate the best point forecasts. The point forecasts of the ARMAX-AVTGARCH
709
+ model are competitive though. Note that the ANN model used for forecasting is build
710
+ according to the basic multi-layer perceptron architecture. It is not perfectly suitable
711
+ for catching sequential patterns. Using recurrent neural networks, especially long
712
+ short-term memory architectures could enhance the performance even more and could
713
+ be subject to future research. Also incorporating a measure for the structure of the
714
+ probabilistic forecast could enhance the performance. However, this would requiere
715
+ more advanced architectures.
716
+ 5. Conclusion
717
+ The application of copula-based time series models to natural gas and related
718
+ commoditiy prices is explored in this work. An expanding window forecasting study
719
+ is conducted. The time series used for analysis are extracted from investing.com
720
+ Aug 15
721
+ Sep 01
722
+ Sep 15
723
+ −2
724
+ −1
725
+ 0
726
+ 1
727
+ 2
728
+ density
729
+ Figure 4: Probabilistic forecasts for natural gas futures generated from the temporal t-copula model.
730
+ The forecast densities can be non-elliptical during volatile times (August 2019 – September 2019)
731
+ 15
732
+
733
+ via the Python package investpy. The time series comprises short term future price
734
+ series of natural gas, crude oil, coal and carbon emissions.
735
+ After introducing the basic notions of dependence modeling with copulas and the
736
+ D-Vine copula, the copula based time series models from the literature are reviewed.
737
+ The emergence of non-elliptical probabilistic forecasts is exemplified using the tem-
738
+ poral t-copula. It is visualized how the temporal t-copula offers a new approach to
739
+ conditional heteroskedasticity modeling. It is not clear what constitutes a sensible
740
+ point forecast when the probabilistic forecast is non-elliptic. To this end a artificial
741
+ neural network is employed to predict what quantile of the probabilistic forecast is
742
+ best to use as point forecast. The inputs of the artificial neural network are past values
743
+ of the multivariate time series and the last best quantiles of the probabilistic forecast.
744
+ In the forecasting study, the predictive performance of the temporal t-copula, the
745
+ spatio-temporal t-copula and the spatio-temporal D-Vine copula is examined. The
746
+ marginal distributions are estimated by the respective empirical distribution. The per-
747
+ formance is compared with the performance of an autoregressive moving-average model
748
+ with external regressors and absolute value, threshhold generalized autoregressive
749
+ conditional heteroskedasticity modeling (ARMAX-AVTGARCH). A closely related
750
+ model was recently shown to be the best model for natural gas forecasting. Hence
751
+ it is understood as benchmark model. The distributional predicitive performance
752
+ is examined by the continious ranked probability score (CRPS). We find that the
753
+ copula-based time series models are competitive with the ARMAX-AVTGARCH
754
+ model. The point forecasts are evaluated by the root mean squared error (RMSE).
755
+ The ANN-augmented point forecasts perform best, although the forecasts from the
756
+ ARMAX-AVTGARCH model are still competitive.
757
+ The performance of the copula-based time series models could be enhanced by mod-
758
+ eling the marginal distributions parametrically. The non-parametric modeling may
759
+ not catch all marginal features of the time series. However, this procedure requieres
760
+ the estimation to be conducted in one step to guarantee efficient estimation. Another
761
+ possibility to enhance the performance is to consider more versatile copula models.
762
+ The current modeling may not capture all conditional features of the time series.
763
+ Another possibility, with regard to the vine copula model, is to consider other vine
764
+ structures. In this work the D-vine structure was imposed. Other structures may
765
+ be able to capture the dependencies better. As for the point forecasts, it was shown
766
+ that the ANN-augmented forecasts perform well. Even though we choose to utilize
767
+ 16
768
+
769
+ the standard multi-layer perceptron architecture, which can not model sequential
770
+ information perfectly well, the precision was increased. Using more sophisticated
771
+ architectures that are more suited to catch sequential information will be subject to
772
+ future research. It would also be interesting to use other models to predict the best
773
+ quantile for point forecasting.
774
+ Acknowledgement:
775
+ The authors gratefully acknowledge the computing time provided on the Linux HPC
776
+ cluster at Technical University Dortmund (LiDO3), partially funded in the course of
777
+ the Large-Scale Equipment Initiative by the German Research Foundation (DFG) as
778
+ project 271512359.
779
+ References
780
+ [1] Aas, K., Czado, C., Frigessi, A. & Bakken, H. (2009). Pair-copula construtions
781
+ of multiple dependence. Insurance: Mathematics and economics, 44(2):182-198,
782
+ 2009.
783
+ [2] Aloui, R., Aïssa, M. S. B., Hammoudeh, S. & Nguyen D. K. (2014). Dependence
784
+ and extreme dependence of crude oil and natural gas prices with applications to
785
+ risk management. Energy Economics, 42:332-243, 2014.
786
+ [3] Angus, J. E. (1994). The probability integral transform and related results. SIAM
787
+ review, 36(4), 652-654.
788
+ [4] Beare, B. K. (2010). Copulas and temporal dependence. Econometrica, 78(1),
789
+ 395-410.
790
+ [5] Beare, B. K., & Seo, J. (2015). Vine copula specifications for stationary multi-
791
+ variate Markov chains. Journal of Time Series Analysis, 36(2), 228-246.
792
+ [6] Berrisch, J., & Ziel, F. (2022). Distributional modeling and forecasting of natural
793
+ gas prices. Journal of Forecasting.
794
+ [7] Berrisch, J., Pappert, S., Ziel, F., & Arsova, A. (2022). Modeling Volatil-
795
+ ity and Dependence of European Carbon and Energy Prices. arXiv preprint
796
+ arXiv:2208.14311.
797
+ 17
798
+
799
+ [8] Chen, X., & Fan, Y. (2006). Estimation of copula-based semiparametric time
800
+ series models. Journal of Econometrics, 130(2), 307-335.
801
+ [9] Czado, C. (2010). Pair-copula constructions of multivariate copulas. In Copula
802
+ theory and its applications (pp. 93-109). Springer, Berlin, Heidelberg.
803
+ [10] Del Canto, A. (2021). Investpy–Financial Data Extraction from Investing. com
804
+ with Python. GitHub Repository.
805
+ [11] Demarta, S., & McNeil, A. J. (2005). The t copula and related copulas. Interna-
806
+ tional statistical review, 73(1), 111-129.
807
+ [12] Genest, C., & Rivest, L. P. (1993). Statistical inference procedures for bivariate
808
+ Archimedean copulas. Journal of the American statistical Association, 88(423),
809
+ 1034-1043.
810
+ [13] Gneiting, T., & Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and
811
+ estimation. Journal of the American statistical Association, 102(477), 359-378.
812
+ [14] Higham, C. F., & Higham, D. J. (2019). Deep learning: An introduction for
813
+ applied mathematicians. Siam review, 61(4), 860-891.
814
+ [15] Hofert, M. (2008). Sampling archimedean copulas. Computational Statistics &
815
+ Data Analysis, 52(12), 5163-5174.
816
+ [16] Hu, L. (2006). Dependence patterns across financial markets: a mixed copula
817
+ approach. Applied financial economics, 16(10), 717-729.
818
+ [17] Joe, H. (2014). Dependence modeling with copulas. CRC press.
819
+ [18] Jondeau, E., & Rockinger, M. (2006). The copula-garch model of conditional
820
+ dependencies: An international stock market application. Journal of international
821
+ money and finance, 25(5), 827-853.
822
+ [19] Nagler, T., Krüger, D., & Min, A. (2022). Stationary vine copula models for
823
+ multivariate time series. Journal of Econometrics, 227(2), 305-324.
824
+ [20] Patton, A. (2013). Copula methods for forecasting multivariate time series.
825
+ Handbook of economic forecasting, 2, 899-960.
826
+ [21] Simard, C., & Rémillard, B. (2015). Forecasting time series with multivariate
827
+ copulas. Dependence modeling, 3(1).
828
+ 18
829
+
830
+ [22] Sklar, M. (1959). Fonctions de repartition an dimensions et leurs marges. Publ.
831
+ inst. statist. univ. Paris, 8, 229-231.
832
+ [23] Smith, M., Min, A., Almeida, C., & Czado, C. (2010). Modeling longitudinal data
833
+ using a pair-copula decomposition of serial dependence. Journal of the American
834
+ Statistical Association, 105(492), 1467-1479.
835
+ 19
836
+
A9E1T4oBgHgl3EQfpAX1/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
AtE4T4oBgHgl3EQfEwyK/content/tmp_files/2301.04880v1.pdf.txt ADDED
@@ -0,0 +1,1463 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.04880v1 [gr-qc] 12 Jan 2023
2
+ Relaxation-Time Model for the Post-Newtonian Boltzmann Equation
3
+ Gilberto M. Kremer1, ∗
4
+ 1Departamento de F´ısica, Universidade Federal do Paran´a, Curitiba 81531-980, Brazil
5
+ The non-equilibrium contributions to the post-Newtonian hydrodynamic equations are deter-
6
+ mined from a relaxation-time model of the post-Newtonian Boltzmann equation. The Chapman-
7
+ Enskog method is used to calculate the non-equilibrium distribution function. The components of
8
+ the energy-momentum tensor are found from the knowledge of the non-equilibrium and the post-
9
+ Newtonian equilibrium Maxwell-J¨uttner distribution functions. The linearized field equations for
10
+ the mass, momentum and internal energy densities coupled with the three Poisson equations of the
11
+ post-Newtonian approximation are investigated by considering a plane wave representation of the
12
+ fields. The constitutive equations for the viscous stress and heat flux vector are obtained and it
13
+ is shown that the transport coefficients of shear viscosity and heat conductivity do depend on the
14
+ Newtonian gravitational potential.
15
+ I.
16
+ INTRODUCTION
17
+ In the seminal work of Einstein, Infeld and Hoffman [1] it was proposed a method of successive
18
+ approximations in powers of 1/c2 for the solution of Einstein’s field equations, which become the basis of
19
+ the post-Newtonian approximation for the determination of the energy-momentum tensor components
20
+ as well as the Eulerian hydrodynamic equations in the first [2, 3] and second [4] approximations.
21
+ The post-Newtonian version of the Boltzmann equation in the first and in the second approximations
22
+ were determined in [5, 6] and [7, 8], respectively. In [7, 8] the energy-momentum tensor components
23
+ were obtained from the equilibrium Maxwell-J¨uttner distribution function [9] in the first and second
24
+ post-Newtonian approximations and the Eulerian hydrodynamic equations from a collisionless post-
25
+ Newtonian Boltzmann equation were determined.
26
+ The inclusion of non-equilibrium terms in the post-Newtonian theory was investigated in [10, 11]
27
+ within the framework of a phenomenological theory of a viscous, heat conducting and compressible
28
+ fluid.
29
+ On the other hand, the inclusion of non-equilibrium terms in the hydrodynamic equations
30
+ which follow from the post-Newtonian Boltzmann equation was considered in [12]. In this work the
31
+ hydrodynamic equations resulted from a post-Newtonian Maxwell-Enskog transfer equation together
32
+ with a post-Newtonian Grad’s distribution function which takes into account the non-equilibrium fields
33
+ of viscous stress and heat flux vector.
34
+ One interesting subject to be investigate is the determination of the post-Newtonian hydrodynamic
35
+ equations for a viscous and heat conducting fluid from the post-Newtonian Boltzmann equation where
36
+ the particle collisions are taken into account through the collision operator of the Boltzmann equation.
37
+ Here we shall adopt a relaxation-time model for the collision operator which is known in the non-
38
+ relativistic framework as the Bhatnagar-Gross-Krook (BGK) model (see e.g.
39
+ [13, 14]) and in the
40
+ relativistic one as the Marle model [15, 16].
41
+ We use the Chapman-Enskog method to determine the non-equilibrium distribution function from
42
+ the post-Newtonian BGK (Marle) model of the Boltzmann equation and the post-Newtonian Maxwell-
43
+ J¨uttner distribution function. From the knowledge of the non-equilibrium distribution function the
44
+ non-equilibrium contributions to the energy-momentum tensor are calculated.
45
+ The linearized field
46
+ equations for the mass, momentum and internal energy densities are determined from the particle four-
47
+ flow and energy-momentum tensor conservation laws. These linearized field equations are coupled with
48
+ three Poisson equations from the post-Newtonian approximation and a solution of the coupled system of
49
+ equations is found in terms of a plane wave representation of the fields. Furthermore, the constitutive
50
+ equations for the viscous stress and heat flux vector – which correspond to the Navier-Stokes and
51
+ Fourier laws, respectively – are obtained from the Eckart decomposition [17] of the energy-momentum
52
+ tensor. It is shown that the transport coefficients of shear viscosity and heat conductivity do depend
53
+ on the Newtonian gravitational potential.
54
+ The paper is structured as follows: in Section II we introduce the relaxation-time model of the
55
+ post-Newtonian Boltzmann equation and determine the non-equilibrium distribution function. The
56
+ ∗ kremer@fisica.ufpr.br
57
+
58
+ 2
59
+ particle four-flow and the energy-momentum tensor components are calculated on the basis of the
60
+ equilibrium Maxwell-J¨uttner and non-equilibrium distribution functions in Section III. The linearized
61
+ field equations are determined in Section IV and a plane wave solution of the linearized field equations
62
+ coupled with the three Poisson equations of the post-Newtonian approximation is analyzed. In Section
63
+ V the constitutive equations for the viscous stress and heat flux vector are obtained and the transport
64
+ coefficients of shear viscosity and thermal conductivity are identified. In the last section the conclusions
65
+ of the work are stated.
66
+ II.
67
+ RELAXATION-TIME MODEL
68
+ In the phase space spanned by the space coordinates x and velocity of the particles v a state of
69
+ a monatomic gas is characterized by the one-particle distribution function f(x, v, t) and its space-
70
+ time evolution is governed by Boltzmann equation. In the first post-Newtonian approximation the
71
+ Boltzmann equation is given by [5, 7, 8]
72
+ �∂f
73
+ ∂t + vi
74
+ ∂f
75
+ ∂xi + ∂f
76
+ ∂vi
77
+ ∂U
78
+ ∂xi
79
+ ��
80
+ 1 + 1
81
+ c2
82
+ �v2
83
+ 2 + U
84
+ � �
85
+ + 1
86
+ c2
87
+ ∂f
88
+ ∂vi
89
+
90
+ vj
91
+ �∂Πi
92
+ ∂xj − ∂Πj
93
+ ∂xi
94
+
95
+ −3vi
96
+ ∂U
97
+ ∂t + ∂Πi
98
+ ∂t + 2 ∂Φ
99
+ ∂xi − 4U ∂U
100
+ ∂xi − 4vivj
101
+ ∂U
102
+ ∂xj + v2 ∂U
103
+ ∂xi
104
+
105
+ = Q(f, f).
106
+ (1)
107
+ Here Q(f, f) denotes the collision operator of the Boltzmann equation which takes into account the
108
+ binary collisions of the particles and refers to an integral of the product of two particle distribution
109
+ functions at collision. Furthermore, the Newtonian gravitational potential U, the scalar gravitational
110
+ potential Φ and the vector gravitational potential Πi satisfy Poisson equations, which are obtained
111
+ from the first post-Newtonian approximation of Einstein’s field equations and read [2, 8]
112
+ ∇2U = −4πGρ,
113
+ ∇2Φ = −4πGρ
114
+
115
+ V 2 + U + ε
116
+ 2 + 3p
117
+
118
+
119
+ ,
120
+ (2)
121
+ ∇2Πi = −16πGρVi + ∂2U
122
+ ∂t∂xi .
123
+ (3)
124
+ Above V denotes the hydrodynamic three-velocity, G the universal gravitational constant and ε, p
125
+ the specific internal energy and hydrostatic pressure of the gas, respectively. The gauge condition
126
+ 3∂U/∂t + ∂Πi/∂xi = 0 for the gravitational potentials U and Πi holds.
127
+ In the BGK (Marle) model the collision operator is replaced by the difference between the one-
128
+ particle distribution function and its equilibrium value multiplied by a frequency ν which is of order
129
+ of the collision frequency.
130
+ The one-particle distribution function at equilibrium is determined from the relativistic Boltzmann
131
+ equation by considering that the collision operator vanishes at equilibrium. In the relativistic theory
132
+ the equilibrium distribution function is the Maxwell-J¨uttner distribution function (see e.g [16]) and its
133
+ first post-Newtonian approximation was determined in [9] and reads
134
+ fMJ = f0
135
+
136
+ 1 − 1
137
+ c2
138
+ �15kT
139
+ 8m + m(ViVi)2
140
+ 2kT
141
+ + 2mUV2
142
+ kT
143
+ + 3mV4
144
+ 8kT
145
+ + mV 2V2
146
+ 2kT
147
+ + m(ViVi)V2
148
+ kT
149
+ ��
150
+ ,
151
+ (4)
152
+ where f0 denotes the non-relativistic Maxwellian distribution function, namely
153
+ f0 =
154
+ ρ e− mV2
155
+ 2kT
156
+ (2πm
157
+ 5
158
+ 3 kT )
159
+ 3
160
+ 2 .
161
+ (5)
162
+ In the above equation ρ is the mass density, T the absolute temperature, m the rest mass of a gas
163
+ particle and k the Boltzmann constant. Furthermore, Vi = vi − Vi is the so-called peculiar velocity
164
+ which is the difference of the particle velocity vi and the hydrodynamic velocity Vi.
165
+ By considering that the relativistic equilibrium distribution function is the Maxwell-J¨uttner distri-
166
+ bution fMJ, the collision operator is written as
167
+ Q(f, f) = −ν(f − fMJ) = −νfNE,
168
+ (6)
169
+ where fNE is the non-equilibrium distribution function.
170
+
171
+ 3
172
+ For the determination of the non-equilibrium distribution function we shall rely on the Chapman-
173
+ Enskog method (see e.g. [13, 14] and insert the equilibrium Maxwell-J¨uttner distribution function (4)
174
+ into the left-hand side of the Boltzmann equation (1) and compute the non-equilibrium distribution
175
+ function by considering the BGK (Marle) model (6). Hence it follows
176
+
177
+ 1 + 1
178
+ c2
179
+ �v2
180
+ 2 + U
181
+ � ��∂fMJ
182
+ ∂ρ
183
+ �dρ
184
+ dt + Vi
185
+ ∂ρ
186
+ ∂xi
187
+
188
+ + ∂fMJ
189
+ ∂T
190
+ �dT
191
+ dt + Vi
192
+ ∂T
193
+ ∂xi
194
+
195
+ + ∂fMJ
196
+ ∂Vi
197
+ �dVi
198
+ dt + Vj
199
+ ∂Vi
200
+ ∂xj
201
+
202
+ +∂fMJ
203
+ ∂U
204
+ �dU
205
+ dt + Vi
206
+ ∂U
207
+ ∂xi
208
+
209
+ + ∂fMJ
210
+ ∂vi
211
+ ∂U
212
+ ∂xi
213
+
214
+ + 1
215
+ c2
216
+ ∂fMJ
217
+ ∂vi
218
+
219
+ vj
220
+ �∂Πi
221
+ ∂xj − ∂Πj
222
+ ∂xi
223
+
224
+ − 3vi
225
+ ∂U
226
+ ∂t + ∂Πi
227
+ ∂t
228
+ +2 ∂Φ
229
+ ∂xi − 4U ∂U
230
+ ∂xi − 4vivj
231
+ ∂U
232
+ ∂xj + v2 ∂U
233
+ ∂xi
234
+
235
+ = −νfNE,
236
+ (7)
237
+ where d/dt = ∂/∂t + Vi∂/∂xi denotes the material time derivative and
238
+ ∂fMJ
239
+ ∂ρ
240
+ = fMJ
241
+ ρ ,
242
+ ∂fMJ
243
+ ∂U
244
+ = −f0
245
+ 2mV2
246
+ kT c2 ,
247
+ (8)
248
+ ∂fMJ
249
+ ∂T
250
+ = f0
251
+ T
252
+ �mV2
253
+ 2kT − 3
254
+ 2 + 1
255
+ c2
256
+ �15kT
257
+ 16m
258
+
259
+ 1 − mV2
260
+ kT
261
+ + m2V4
262
+ k2T 2
263
+
264
+ + 5m
265
+ 2kT
266
+
267
+ 2UV2 + (ViVi)2
268
+ 2
269
+ +V 2V2
270
+ 2
271
+ + (ViVi)V2
272
+
273
+
274
+ m2
275
+ 2k2T 2
276
+
277
+ 2UV4 + (ViVi)2V2
278
+ 2
279
+ + V 2V4
280
+ 2
281
+ + (ViVi)V4 + 3V6
282
+ 8
283
+ ���
284
+ ,
285
+ (9)
286
+ ∂fMJ
287
+ ∂V i
288
+ = mf0
289
+ kT
290
+
291
+ Vi + 1
292
+ c2
293
+
294
+ 4UVi
295
+
296
+ 1 − mV2
297
+ 2kT
298
+
299
+ − 15kT
300
+ 8m Vi + (VjVj)Vi + ViV 2
301
+
302
+ 1 − mV2
303
+ 2kT
304
+
305
+ +(VjVj)Vi
306
+
307
+ 1 − mV2
308
+ kT
309
+
310
+ + ViV2
311
+ 2
312
+
313
+ 1 − 3mV2
314
+ 4kT
315
+
316
+ − m(VjVj)2
317
+ 2kT
318
+ Vi
319
+ ��
320
+ ,
321
+ (10)
322
+ ∂fMJ
323
+ ∂vi
324
+ = −mf0
325
+ kT
326
+
327
+ Vi + 1
328
+ c2
329
+
330
+ 4UVi
331
+
332
+ 1 − mV2
333
+ 2kT
334
+
335
+ + Vi(V2 + VjVj) − 15kT
336
+ 8m Vi
337
+ +Vi
338
+
339
+ V 2 + 2VjVj + 3V2
340
+ 2
341
+
342
+ − mVi
343
+ kT
344
+ �(VjVj)2
345
+ 2
346
+ + V 2V2
347
+ 2
348
+ + (VjVj)V2 + 3V4
349
+ 8
350
+ ���
351
+ .
352
+ (11)
353
+ As usual in the Chapman-Enskog method the material time derivatives are eliminated from the
354
+ non-equilibrium distribution function by using the Eulerian balance equations for the mass density ρ,
355
+ hydrodynamic velocity Vi and absolute temperature T .
356
+ The Eulerian mass density and the momentum density balance equations in the first post-Newtonian
357
+ approximation are [2, 8]
358
+
359
+
360
+ 1 + 1
361
+ c2
362
+
363
+ V 2
364
+ 2 + 3U
365
+ ��
366
+ dt
367
+ + ρ
368
+
369
+ 1 + 1
370
+ c2
371
+ �V 2
372
+ 2 + 3U
373
+ �� ∂Vi
374
+ ∂xi = 0,
375
+ (12)
376
+ ρdVi
377
+ dt + ∂p
378
+ ∂xi
379
+
380
+ 1 − 1
381
+ c2
382
+
383
+ V 2 + 4U + ε + p
384
+ ρ
385
+ ��
386
+ − ρ ∂U
387
+ ∂xi
388
+
389
+ 1 + 1
390
+ c2 (V 2 − 4U)
391
+
392
+ + ρ
393
+ c2
394
+ ��1
395
+ ρ
396
+ ∂p
397
+ ∂t − ∂U
398
+ ∂t + 4dU
399
+ dt
400
+
401
+ Vi − 2 ∂Φ
402
+ ∂xi − dΠi
403
+ dt + Vj
404
+ ∂Πj
405
+ ∂xi
406
+
407
+ = 0.
408
+ (13)
409
+ For the determination of the Eulerian internal energy density balance equation ρε in the first post-
410
+ Newtonian approximation one has to go to the second post-Newtonian approximation, since within
411
+ the framework of the first post-Newtonian approximation one recover only its Newtonian expression.
412
+ The Eulerian internal energy density balance equation reads1
413
+
414
+ dt + p
415
+ ρ
416
+ ∂Vi
417
+ ∂xi + 3p
418
+ ρc2
419
+ dU
420
+ dt + pVi
421
+ ρc2
422
+ � ∂U
423
+ ∂xi − 1
424
+ ρ
425
+ ∂p
426
+ ∂xi
427
+
428
+ = 0.
429
+ (14)
430
+ From the above equation follows the expression for the material time derivative of the absolute temper-
431
+ ature, if we take into account the relationship for the specific internal energy in the first post-Newtonian
432
+ approximation which comes from the relativistic kinetic theory of gases (see e.g. [16])
433
+ ε = 3kT
434
+ 2m
435
+
436
+ 1 + 5kT
437
+ 4mc2
438
+
439
+ .
440
+ (15)
441
+ 1 This equation corrects some misprints in [7, 8]
442
+
443
+ 4
444
+ III.
445
+ PARTICLE FOUR-FLOW AND ENERGY-MOMENTUM TENSOR COMPONENTS
446
+ In the relativistic kinetic theory of gases the particle four-flow N µ and the energy-momentum tensor
447
+ T µν are given in terms of the one-particle distribution function f(x, v, t) by [8, 16]
448
+ N µ = m4c
449
+
450
+ uµf
451
+ √−g d3u
452
+ u0
453
+ ,
454
+ T µν = m4c
455
+
456
+ uµuνf
457
+ √−g d3u
458
+ u0
459
+ .
460
+ (16)
461
+ Here uµ = pµ/m (with uµuµ = c2) denotes the gas particle four-velocity whose components in the first
462
+ post-Newtonian approximation read [2, 3, 8]
463
+ u0 = c
464
+
465
+ 1 + 1
466
+ c2
467
+ �v2
468
+ 2 + U
469
+ ��
470
+ ,
471
+ ui = vi
472
+ u0
473
+ c ,
474
+ (17)
475
+ where v is the particle three-velocity. Furthermore, √−g d3u/u0 is an invariant integration element
476
+ whose first post-Newtonian approximation was determined in [9] and is given by
477
+ √−g d3u
478
+ u0
479
+ =
480
+
481
+ 1 + 1
482
+ c2
483
+
484
+ 2v2 + 6U
485
+ �� d3v
486
+ c .
487
+ (18)
488
+ Once the one-particle distribution function f = fMJ + fNE and the invariant integration element
489
+ are known, one can determine the components of the particle four-flow N µ and energy-momentum
490
+ tensor T µν. Indeed, if we insert (4), (7), (17) and (18) into (16) and integrate the resulting equations
491
+ we get
492
+ N 0 = ρc
493
+ m
494
+
495
+ 1 + 1
496
+ c2
497
+ �V 2
498
+ 2 + U
499
+ ��
500
+ ,
501
+ N i = N 0 Vi
502
+ c ,
503
+ (19)
504
+ T 00 = ρc2
505
+
506
+ 1 + 1
507
+ c2
508
+
509
+ V 2 + 3kT
510
+ 2m + 2U
511
+
512
+ + O(c−4)
513
+
514
+ ,
515
+ (20)
516
+ T i0 = cρVi
517
+
518
+ 1 + 1
519
+ c2
520
+
521
+ V 2 + 2U + 5kT
522
+ 2m
523
+ ��
524
+ + T i0
525
+ NE,
526
+ (21)
527
+ T ij = ρViVj
528
+
529
+ 1 + 1
530
+ c2
531
+
532
+ V 2 + 2U + 5kT
533
+ 2m
534
+ ��
535
+ + p
536
+
537
+ 1 − 2U
538
+ c2
539
+
540
+ δij + T ij
541
+ NE.
542
+ (22)
543
+ Note that there are no non-equilibrium contributions to the components of the particle four-flow (19.
544
+ The non-equilibrium contribution to T 00 is of order O(c−4) (the order of the nth inverse power of light
545
+ speed is denoted by O(c−n)) while the non-equilibrium contributions to the energy-momentum tensor
546
+ components T 0i
547
+ NE and T ij
548
+ NE are associate with terms related with the collision frequency ν and read
549
+ T i0
550
+ NE = −p
551
+ νc
552
+ � 5k
553
+ 2m
554
+ ∂T
555
+ ∂xi + ∆ijklVj
556
+ ∂Vk
557
+ ∂xl
558
+
559
+ ,
560
+ (23)
561
+ T ij
562
+ NE = − p
563
+ ν
564
+ ��
565
+ 1 + 1
566
+ c2
567
+ �5kT
568
+ 2m − U + V 2
569
+ 2
570
+ ��
571
+ ∆ijklVj
572
+ ∂Vk
573
+ ∂xl + 1
574
+ c2 ∆ijklVk
575
+ � ∂U
576
+ ∂xl − 1
577
+ ρ
578
+ ∂p
579
+ ∂xl
580
+
581
+ − 2
582
+ 3c2 ViVj
583
+ ∂Vk
584
+ ∂xk + 1
585
+ c2
586
+
587
+ Vj
588
+
589
+ ∂xi + Vi
590
+
591
+ ∂xj
592
+ ��5kT
593
+ 2m + V 2
594
+ 2
595
+ ��
596
+ .
597
+ (24)
598
+ Here we have introduced the fourth-order tensor
599
+ ∆ijkl = δikδjl + δilδjk − 2
600
+ 3δijδkl.
601
+ (25)
602
+ IV.
603
+ LINEARIZED FIELD EQUATIONS
604
+ The thermodynamic theory of a single relativistic fluid is described by the fields of particle four-flow
605
+ N µ and energy-momentum tensor T µν where their hydrodynamic equations follow from the conserva-
606
+ tion laws
607
+ N µ;µ = ∂N µ
608
+ ∂xµ + ΓµµσN σ = 0,
609
+ T µν;ν = ∂T µν
610
+ ∂xν + ΓµνσT σν + ΓννσT µσ = 0.
611
+ (26)
612
+
613
+ 5
614
+ Above the semicolon refers to the covariant derivative and Γµνσ to the Christoffel symbols.
615
+ From the knowledge of the expressions of the particle four-flow and energy momentum tensor com-
616
+ ponents (19) – (24) and the conservation laws (26) one can obtain the field equations for the particle
617
+ number density, momentum density and specific internal energy for a viscous and heat conducting
618
+ fluid in the first post-Newtonian approximation.
619
+ Here we are interested in determining the linearized field equations and for that end we consider
620
+ a background state of constant values for the mass density, absolute temperature and Newtonian
621
+ gravitational potential denoted by ρ0, T0 and U0, respectively, which are superposed by linear perturbed
622
+ fields denoted by ρ1, T1, U1, V 1
623
+ i , Φ1, Π1
624
+ i , namely
625
+ ρ(x, t) = ρ0 + ρ1(x, t),
626
+ T (x, t) = T0 + T1(x, t),
627
+ U(x, t) = U0 + U1(x, t),
628
+ (27)
629
+ Vi(x, t) = V 1
630
+ i (x, t),
631
+ Φ(x, t) = Φ1(x, t),
632
+ Πi(x, t) = Π1
633
+ i (x, t).
634
+ (28)
635
+ From the insertion of (19) into (26)1 follows the linearized field equation for the mass density, by tak-
636
+ ing into account the expressions of the Christoffel symbols in the first post-Newtonian approximation
637
+ – which can be found in [2, 7, 8] – and of the representations (27), yielding
638
+ ∂ρ1
639
+ ∂t + ρ0
640
+ ∂V 1
641
+ i
642
+ ∂xi + 3ρ0
643
+ c2
644
+ ∂U1
645
+ ∂t = 0,
646
+ (29)
647
+ The linearized field equations for the mass-energy and momentum densities are obtained from the
648
+ time and spatial components of (26)2, respectively, by considering the expressions (19) – (24), the
649
+ representations (27), (28) and the Christoffel symbols in the first post-Newtonian approximation.
650
+ Hence it follows
651
+ ∂ρ1
652
+ ∂t + ρ0
653
+
654
+ 1 + kT0
655
+ mc2
656
+ � ∂V 1
657
+ i
658
+ ∂xi + ρ0
659
+ c2
660
+ �3kT0
661
+ 2m
662
+ ∂T1
663
+ ∂t + 3∂U1
664
+ ∂t
665
+
666
+ − 5k2ρ0T0
667
+ 2m2c2ν0
668
+ ∂2T1
669
+ ∂xi∂xi = 0,
670
+ (30)
671
+ ρ0
672
+ ∂V 1
673
+ i
674
+ ∂t + k
675
+ m
676
+
677
+ 1 − 1
678
+ c2
679
+ �5kT0
680
+ 2m + 4U0
681
+ �� �
682
+ T0
683
+ ∂ρ1
684
+ ∂xi + ρ0
685
+ ∂T1
686
+ ∂xi
687
+
688
+ − ρ0
689
+
690
+ 1 − 4U0
691
+ c2
692
+ � ∂U1
693
+ ∂xi
694
+ − 5k2ρ0T0
695
+ 2m2c2ν0
696
+ ∂2T1
697
+ ∂t∂xi − kρ0T0
698
+ mν0
699
+
700
+ 1 − 3U0
701
+ c2
702
+ � �
703
+ ∂2V 1
704
+ i
705
+ ∂xj∂xj + 1
706
+ 3
707
+ ∂2V 1
708
+ j
709
+ ∂xj∂xi
710
+
711
+ − ρ0
712
+ c2
713
+
714
+ 2∂Φ1
715
+ ∂xi + ∂Π1
716
+ i
717
+ ∂t
718
+
719
+ = 0.
720
+ (31)
721
+ Since the constant values of the background state does not satisfy the Poisson equations (2) and (3)
722
+ it is usual to take into account the ”Jeans swindle” (see e.g. [18–20]) which requires that the Poisson
723
+ equations are valid only for the perturbed fields. Hence, by considering that ε = 3kT/2m = 3p/2ρ,
724
+ the linearized Poisson equations become
725
+ ∇2U1 = −4πGρ1,
726
+ ∇2Φ1 = −4πGρ1
727
+
728
+ U0 + 9k
729
+ 4mT0
730
+
731
+ − 4πGρ0
732
+
733
+ U1 + 9k
734
+ 4mT1
735
+
736
+ ,
737
+ (32)
738
+ ∇2Π1
739
+ i = −16πGρ0V 1
740
+ i + ∂2U1
741
+ ∂t∂xi .
742
+ (33)
743
+ Let us find a solution of the coupled system of partial differential equations (29) – (33) in terms of
744
+ a plane wave representation of the perturbed fields, namely
745
+ ρ1(x, t) = ρe[i(κixi−ωt)],
746
+ T1(x, t) = Te[i(κixi−ωt)],
747
+ U1(x, t) = Ue[i(κixi−ωt)],
748
+ (34)
749
+ V 1
750
+ i (x, t) = Vie[i(κixi−ωt)],
751
+ Φ1(x, t) = Φe[i(κixi−ωt)],
752
+ Π1
753
+ i (x, t) = Πie[i(κixi−ωt)],
754
+ (35)
755
+ where κi denotes the wavenumber vector, ω the angular frequency and the overlined quantities the
756
+ small amplitudes of the wave.
757
+ We insert the plane wave representations (34) and (35) into the coupled system of partial differential
758
+
759
+ 6
760
+ equations (29) – (33) and get a linearized system of algebraic equations for the amplitudes which reads
761
+ ω∗ρ∗ − V∗ + 3U0
762
+ c2 U∗ = 0,
763
+ (36)
764
+ ω∗ρ∗ −
765
+
766
+ 1 + 3c2
767
+ s
768
+ 5c2
769
+
770
+ V∗ + 3U0
771
+ c2 U∗ + 9c2
772
+ s
773
+ 10c2
774
+
775
+ ω∗ + iκ∗
776
+ ν∗
777
+
778
+ T∗ = 0,
779
+ (37)
780
+
781
+ ω∗ +
782
+ 4
783
+ 5ν∗
784
+
785
+ 1 − 3U0
786
+ c2
787
+
788
+ iκ2
789
+
790
+
791
+ V∗ − 3
792
+ 5κ2
793
+
794
+
795
+ 1 − c2
796
+ s
797
+ c2
798
+ �3
799
+ 2 + 4U0
800
+ c2s
801
+ ��
802
+ [ρ∗ + T∗]
803
+ +κ2
804
+
805
+ U0
806
+ c2s
807
+
808
+ 1 − 4U0
809
+ c2
810
+
811
+ U∗ −
812
+ 3c2
813
+ s
814
+ 2c2ν∗
815
+ iω∗κ2
816
+ ∗T∗ + c2
817
+ s
818
+ c2
819
+
820
+ 2κ2
821
+ ∗Φ∗ − ω∗Π∗
822
+
823
+ = 0,
824
+ (38)
825
+ κ2
826
+
827
+ U0
828
+ c2s
829
+ U∗ = ρ∗,
830
+ (39)
831
+ κ2
832
+ ∗Φ∗ =
833
+ �U0
834
+ c2s
835
+ + 27
836
+ 20
837
+
838
+ ρ∗ +
839
+ �U0
840
+ c2s
841
+ U∗ + 27
842
+ 20T∗
843
+
844
+ ,
845
+ (40)
846
+ κ2
847
+ ∗Π∗ = 4V∗ − ω∗κ2
848
+
849
+ U0
850
+ c2s
851
+ U∗.
852
+ (41)
853
+ Equations (38) and (41) result from the scalar product with κi. Furthermore, the above equations
854
+ were written in terms of the dimensionless quantities
855
+ κ∗
856
+ i = κi
857
+ κJ
858
+ ,
859
+ ω∗ =
860
+ ω
861
+ √4πGρ0
862
+ ,
863
+ ν∗ =
864
+ ν0
865
+ √4πGρ0
866
+ ,
867
+ (42)
868
+ ρ∗ = ρ
869
+ ρ0
870
+ ,
871
+ T∗ = T
872
+ T0
873
+ ,
874
+ V∗ = V iκi
875
+ csκJ
876
+ ,
877
+ U∗ = U
878
+ U0
879
+ ,
880
+ Φ∗ = Φ
881
+ c4s
882
+ ,
883
+ Π∗ = Πiκi
884
+ c3sκJ
885
+ ,
886
+ (43)
887
+ where κJ = √4πGρ0/cs denotes the Jeans wavelength, cs =
888
+
889
+ 5kT0/3m the sound speed and κ∗ =
890
+ �κ∗
891
+ i κ∗
892
+ i .
893
+ The system of algebraic equations for the amplitudes (36) – (41) admits a non-trivial solution
894
+ if the determinant of the coefficients which correspond to the amplitudes vanish. Hence it follows
895
+ the dispersion relation which connect the dimensionless angular frequency ω∗ with the dimensionless
896
+ wavenumber κ∗, namely
897
+ ω3
898
+ ∗ + 9i
899
+ 5ν∗
900
+
901
+ κ2
902
+ ∗ + 4
903
+ 3
904
+
905
+ 1 − κ2
906
+
907
+ � 5
908
+ 12 + U0
909
+ c2s
910
+ � c2
911
+ s
912
+ c2
913
+ ��
914
+ ω2
915
+ ∗ +
916
+
917
+ 1 − κ2
918
+ ∗ − 4κ4
919
+
920
+ 5ν∗
921
+ +
922
+ �33
923
+ 10 + 2
924
+ κ2∗
925
+ +3κ2
926
+
927
+ 2
928
+ − 2U0
929
+ c2s
930
+ (1 − 2κ2
931
+ ∗) − 12κ2
932
+
933
+ 5ν2∗
934
+
935
+ 1 − U0κ2
936
+
937
+ c2s
938
+ ��c2
939
+ s
940
+ c2
941
+
942
+ ω∗ + i
943
+ ν∗
944
+
945
+ κ2
946
+
947
+
948
+ 1 − 3κ2
949
+
950
+ 5
951
+
952
+ +
953
+
954
+ 2 + 27κ2
955
+
956
+ 10
957
+
958
+ 1 + κ2
959
+
960
+ 3
961
+
962
+ − 2κ2
963
+ ∗U0
964
+ c2s
965
+
966
+ 1 − 6κ2
967
+
968
+ 5
969
+ ��c2
970
+ s
971
+ c2
972
+
973
+ = 0.
974
+ (44)
975
+ Here terms up to the order O(c−2) were taken into account.
976
+ In the case of a non relativistic and collisionless Boltzmann equation we have that cs/c → 0 and
977
+ ν∗ → ∞ and we obtain from (44) Jeans solution [18]
978
+ ω∗ = ±
979
+
980
+ λ2
981
+ J
982
+ λ2 − 1.
983
+ (45)
984
+ Above we have introduced the wavelengths λ and λJ (Jeans wavelength) through the relationship
985
+ κ∗ = κ/κJ = λJ/λ. In the case of small wavelengths with respect to Jeans wavelength λJ/λ > 1 the
986
+ dimensionless angular frequency is a real quantity and the perturbations propagate as harmonic waves
987
+ in time. On the other hand, for big wavelengths λJ/λ < 1 the angular frequency becomes a pure
988
+ imaginary quantity and the perturbations will grow or decay in time, which will depend on the sign
989
+ of the solution (45). The perturbations which grow in time are referred as Jeans instability, which is
990
+ associated with the gravitational collapse of self-gravitating gas clouds.
991
+ The analysis of Jeans instability within the first and second post-Newtonian approximation by
992
+ considering the Eulerian hydrodynamic equations were investigated in [21–23] and [24], respectively.
993
+ Here if we consider a collisionless Boltzmann equation where ν∗ → ∞ (44) reduces to
994
+ ω3
995
+ ∗ +
996
+
997
+ 1 − κ2
998
+ ∗ +
999
+ �33
1000
+ 10 + 2
1001
+ κ2∗
1002
+ + 3κ2
1003
+
1004
+ 2
1005
+ − 2U0
1006
+ c2s
1007
+ (1 − 2κ2
1008
+ ∗)
1009
+ �c2
1010
+ s
1011
+ c2
1012
+
1013
+ ω∗ = 0,
1014
+ (46)
1015
+
1016
+ 7
1017
+ which is the dispersion relation in the first post-Newtonian approximation where dissipative effects
1018
+ are not considered. There is a difference of this expression with the one in [8], since here the constant
1019
+ value is 33/10 while there is 9/2. The reason of this difference is that here we have considered the
1020
+ mass, mass-energy and momentum densities hydrodynamic equations while in the former work only
1021
+ the mass and momentum densities hydrodynamic equations were taken into account.
1022
+ For big wavelengths with respect to Jeans wavelength λJ/λ < 1 three different values associated with
1023
+ the dimensionless angular frequencies can be obtained from (44) which correspond to the growth/decay
1024
+ of the perturbations:
1025
+ ω∗ = − i
1026
+ ν∗
1027
+ λ2
1028
+ J
1029
+ λ2
1030
+
1031
+ 1 − 7c2
1032
+ s
1033
+ 5c2
1034
+
1035
+ + . . . ,
1036
+ (47)
1037
+ ω∗ = i
1038
+
1039
+ 1 − 1
1040
+ 2
1041
+ λ2
1042
+ J
1043
+ λ2
1044
+
1045
+ 1 +
1046
+ 4
1047
+ 5ν∗
1048
+
1049
+ +
1050
+ �43
1051
+ 20 − U0
1052
+ c2s
1053
+ + λ2
1054
+ λ2
1055
+ J
1056
+
1057
+ 6
1058
+ 5ν∗
1059
+ � c2
1060
+ s
1061
+ c2
1062
+
1063
+ + . . . ,
1064
+ (48)
1065
+ ω∗ = −i
1066
+
1067
+ 1 − 1
1068
+ 2
1069
+ λ2
1070
+ J
1071
+ λ2
1072
+
1073
+ 1 −
1074
+ 4
1075
+ 5ν∗
1076
+
1077
+ +
1078
+ �43
1079
+ 20 − U0
1080
+ c2s
1081
+ + λ2
1082
+ λ2
1083
+ J
1084
+ +
1085
+ 6
1086
+ 5ν∗
1087
+ � c2
1088
+ s
1089
+ c2
1090
+
1091
+ + . . . .
1092
+ (49)
1093
+ On the other hand, if we expand the dimensionless wavenumber in power series of the reduced
1094
+ angular frequency κ∗ = a0 + a1ω∗ + . . . we get from the dispersion relation (44) the solution where
1095
+ the perturbations propagate as harmonic waves
1096
+ κ∗ =
1097
+
1098
+ 5
1099
+ 3
1100
+
1101
+ 1 +
1102
+ �27
1103
+ 10 + U
1104
+ � c2
1105
+ s
1106
+ c2
1107
+
1108
+ + 2i
1109
+ 3ν∗
1110
+
1111
+ 5
1112
+ 3
1113
+
1114
+ 1 + 3ν2
1115
+
1116
+ 10 +
1117
+ �24
1118
+ 5 + 2U − ν2
1119
+
1120
+ �3U
1121
+ 10 + 36
1122
+ 25
1123
+ �� c2
1124
+ s
1125
+ c2
1126
+
1127
+ ω∗+. . . . (50)
1128
+ V.
1129
+ CONSTITUTIVE EQUATIONS
1130
+ As was previously said the thermodynamic theory of a single relativistic fluid is characterized by
1131
+ the fields of particle four-flow N µ and energy-momentum tensor T µν whose hydrodynamic equations
1132
+ are the conservation laws (26).
1133
+ The representation of the particle four-flow and energy-momentum tensor in terms of non-relativistic
1134
+ quantities makes use of the four-velocity U µ –where U µUµ = c2 – and of the projector ∆µν =
1135
+ gµν − U µU ν/c2 – where gµν denotes the metric tensor. The projector has the properties ∆µνUν = 0,
1136
+ ∆µν∆νσ = ∆µσ and in a local Minkowski rest frame where U µ = (c, 0) it reduces to ∆µν =
1137
+ diag(0, −1, −1, −1).
1138
+ Two representations for the particle four-flow and energy-momentum tensor in terms of non-
1139
+ relativistic quantities are the Eckart [17] and the Landau-Lifshitz [25] decompositions. Here we shall
1140
+ use the Eckart decomposition where the particle four-flow and energy-momentum tensor are written
1141
+ as
1142
+ N µ = nU µ,
1143
+ (51)
1144
+ T µν = p⟨µν⟩ − (p + ̟) ∆µν + ǫ
1145
+ c2 U µU ν + 1
1146
+ c2
1147
+
1148
+ U µq(ν) + U νq(µ)
1149
+
1150
+ .
1151
+ (52)
1152
+ Above n is the particle number density, p the hydrostatic pressure, ̟ the non-equilibrium pressure,
1153
+ p⟨µν⟩ the pressure deviator, q(µ) the heat flux and ǫ the energy density. The energy density is a sum
1154
+ of two terms one related with the internal energy density ρε while the other with the mass density ρ,
1155
+ namely ǫ = ρc2(1 + ε/c2). The following projections of the particle four-flow and energy-momentum
1156
+ tensor define the non-relativistic quantities (see e.g [16]):
1157
+ n = 1
1158
+ c2 N µUµ,
1159
+ ǫ = 1
1160
+ c2 UµT µνUν,
1161
+ (p + ̟) = −1
1162
+ 3∆µνT µν
1163
+ (53)
1164
+ p⟨µν⟩ =
1165
+
1166
+ ∆µ
1167
+ σ∆ν
1168
+ τ − 1
1169
+ 3∆µν∆στ
1170
+
1171
+ T στ,
1172
+ q(µ) = ∆µ
1173
+ νUσT νσ,
1174
+ (54)
1175
+ In the first post-Newtonian approximation the components of the four-velocity read [2, 3, 8]
1176
+ U 0 = c
1177
+
1178
+ 1 + 1
1179
+ c2
1180
+ �V 2
1181
+ 2 + U
1182
+ ��
1183
+ ,
1184
+ U i = ViU 0
1185
+ c
1186
+ ,
1187
+ (55)
1188
+ where V denotes the hydrodynamic three velocity.
1189
+
1190
+ 8
1191
+ From the knowledge of the components of the metric tensor in the first post-Newtonian approxima-
1192
+ tion
1193
+ g00 = 1 − 2U
1194
+ c2 + 2
1195
+ c4
1196
+
1197
+ U 2 − 2Φ
1198
+
1199
+ ,
1200
+ g0i = Πi
1201
+ c3 ,
1202
+ gij = −
1203
+
1204
+ 1 + 2U
1205
+ c2
1206
+
1207
+ δij,
1208
+ (56)
1209
+ and of the four-velocity components (55) we can determine the components of the projector, which
1210
+ read
1211
+ ∆00 = −V 2
1212
+ c2 − 1
1213
+ c4
1214
+
1215
+ 6UV 2 + V 4 − 2ΠiVi
1216
+
1217
+ ,
1218
+ ∆0i = −Vi
1219
+ c − 1
1220
+ c3
1221
+
1222
+ 2UVi + V 2Vi − Πi
1223
+
1224
+ ,
1225
+ (57)
1226
+ ∆ij = −
1227
+
1228
+ 1 − 2U
1229
+ c2
1230
+
1231
+ δij − ViVj
1232
+ c2 .
1233
+ (58)
1234
+ Now we introduce the non-relativistic pressure deviator
1235
+ pij = pij − pkkδij/3
1236
+ whit
1237
+ δijpij = 0,
1238
+ (59)
1239
+ so that the components of the pressure deviator p⟨µν⟩ become [12]
1240
+ p⟨ij⟩ = pij + 1
1241
+ 2c2 (pikVkVj + pjkVkVi) ,
1242
+ (60)
1243
+ p⟨00⟩ = pij
1244
+ ViVj
1245
+ c2 ,
1246
+ p⟨0i⟩ = pij
1247
+ Vj
1248
+ c .
1249
+ (61)
1250
+ In terms of the non-relativistic heat flux vector qi the components of the heat flux q(µ) are
1251
+ q(i) = qi,
1252
+ q(0) = qi
1253
+ Vi
1254
+ c .
1255
+ (62)
1256
+ In the five field thermodynamic theory – where the basic fields are the mass density, momentum
1257
+ density and internal energy density – the pressure deviator, the dynamic pressure and the heat flux
1258
+ vector are given by constitutive equations.
1259
+ Here we can obtain the desired constitutive equations
1260
+ from the components of the energy-momentum tensor (19) – (24) combined with the decomposition
1261
+ expressions (53) and (54) and the components of the projection (57) and (58). Hence it follows the
1262
+ constitutive equations for the non-relativistic heat flux vector and pressure deviator
1263
+ qi = − 5kp
1264
+ 2mν
1265
+
1266
+ 1 − c2
1267
+ s
1268
+ c2
1269
+ U
1270
+ c2s
1271
+ � ∂T
1272
+ ∂xi +
1273
+ p
1274
+ νc2 ∆ijkl
1275
+ ∂Vk
1276
+ ∂xl
1277
+ ��5kT
1278
+ 2m + 3U + V 2
1279
+ 2
1280
+
1281
+ Vj − Πj
1282
+
1283
+ + p
1284
+ νc2 (V 2δij − ViVj)
1285
+
1286
+ Vk
1287
+ ∂Vk
1288
+ ∂xj − ∂T
1289
+ ∂xj
1290
+
1291
+ +
1292
+ p
1293
+ νc2
1294
+
1295
+ V 2δij + ViVj
1296
+ 3
1297
+ �� ∂U
1298
+ ∂xj − 1
1299
+ ρ
1300
+ ∂p
1301
+ ∂xj
1302
+
1303
+ ,
1304
+ (63)
1305
+ pij = − p
1306
+ ν
1307
+
1308
+ 1 + c2
1309
+ s
1310
+ c2
1311
+ �3
1312
+ 2 − U
1313
+ c2s
1314
+ ��
1315
+ ∆ijkl
1316
+ ∂Vk
1317
+ ∂xl +
1318
+ 2p
1319
+ 3νc2
1320
+ ∂Vk
1321
+ ∂xk
1322
+
1323
+ ViVj − 1
1324
+ 3V 2δij
1325
+
1326
+ − p
1327
+ νc2 ∆ijkl
1328
+ �1
1329
+ 2
1330
+ ∂V 2Vk
1331
+ ∂xl
1332
+ + Vk
1333
+ � ∂U
1334
+ ∂xl − 1
1335
+ ρ
1336
+ ∂p
1337
+ ∂xl
1338
+ ��
1339
+ .
1340
+ (64)
1341
+ The constitutive equation for the dynamic pressure ̟ does not show up in the first post-Newtonian
1342
+ approximation and it is known that in the kinetic theory of relativistic gases the coefficient of bulk
1343
+ viscosity – which relates the dynamic pressure with the velocity divergent – is of order O(c−4) (see
1344
+ e.g. [16]).
1345
+ Let us fix our attention in the underlined linearized terms in (63) and (64). Without the relativistic
1346
+ corrections they reduce to the non-relativistic constitutive equations of a viscous and heat conducting
1347
+ gas, namely
1348
+ qi = − 5kp
1349
+ 2mν
1350
+ ∂T
1351
+ ∂xi ,
1352
+ pij = − p
1353
+ ν ∆ijkl
1354
+ ∂Vk
1355
+ ∂xl ,
1356
+ (65)
1357
+ where the thermal conductivity λ and the shear viscosity µ coefficients are those of the non-relativistic
1358
+ BGK model
1359
+ λ = 5kp
1360
+ 2mν ,
1361
+ µ = p
1362
+ ν .
1363
+ (66)
1364
+
1365
+ 9
1366
+ With the first post-Newtonian correction these coefficients read
1367
+ λ = 5kp
1368
+ 2mν
1369
+
1370
+ 1 − c2
1371
+ s
1372
+ c2
1373
+ U
1374
+ c2s
1375
+
1376
+ ,
1377
+ µ = p
1378
+ ν
1379
+
1380
+ 1 + c2
1381
+ s
1382
+ c2
1383
+ �3
1384
+ 2 − U
1385
+ c2s
1386
+ ��
1387
+ .
1388
+ (67)
1389
+ We note that the coefficients of shear viscosity and thermal conductivity do depend on the Newtonian
1390
+ gravitational potential. On the basis of a non-relativistic kinetic theory the influence the gravity on the
1391
+ thermal coefficient was first reported in [26, 27]. Within the framework of a relativistic kinetic theory
1392
+ the transport coefficients of shear viscosity, thermal conductivity and bulk viscosity were obtained by
1393
+ considering a Schwarzschild metric in [28] and the diffusion coefficient in [29].
1394
+ VI.
1395
+ CONCLUSIONS
1396
+ In this work we have examined a relaxation-time model for the post-Newtonian Boltzmann equation
1397
+ and determined the non-equilibrium distribution function by using the Chapman-Enskog method and
1398
+ the equilibrium post-Newtonian Maxwell-J¨uttner distribution function. The components of the energy-
1399
+ momentum tensor were calculated by using the equilibrium and non-equilibrium distribution functions.
1400
+ From the conservation laws of the particle four-flow and energy-momentum tensor the linearized field
1401
+ equations for the mass, momentum and internal energy densities were determined.
1402
+ A plane wave
1403
+ solution of these linearized field equations coupled with the three post-Newtonian Poisson equations was
1404
+ found. By using the Eckart decomposition of the energy-momentum tensor the constitutive equations
1405
+ for the viscous stress and heat flux vector were obtained and it was shown that the transport coefficients
1406
+ of shear viscosity and heat conductivity do depend on the Newtonian gravitational potential.
1407
+ ACKNOWLEDGMENTS
1408
+ This work was supported by Conselho Nacional de Desenvolvimento Cient´ıfico e Tecnol´ogico (CNPq),
1409
+ grant No. 304054/2019-4.
1410
+ [1] A. Einstein, L. Infeld and B. Hoffmann, The gravitational equations and the problem of motion, Ann. of
1411
+ Math. 39, 65 (1938).
1412
+ [2] S. Chandrasekhar, The post-Newtonian equations of hydrodynamics in general relativity, Ap. J. 142, 1488
1413
+ (1965).
1414
+ [3] S. Weinberg, Gravitation and cosmology. Principles and applications of the theory of relativity (Wiley, New
1415
+ York, 1972).
1416
+ [4] S. Chandrasekhar and Y. Nutku, The second post-Newtonian equations of hydrodynamics in general
1417
+ relativity. Ap. J. 158, 55 (1969).
1418
+ [5] C. A. Ag´on, J. F. Pedraza and J. Ramos-Caro, Kinetic theory of collisionless self-gravitating gases: Post-
1419
+ Newtonian polytropes, Phys. Rev. D 83, 123007 (2011).
1420
+ [6] V. Rezania and Y. Sobouti, Liouville’s equation in post Newtonian approximation I. Static solutions,
1421
+ Astron. Astrophys. 354, 1110 (2000).
1422
+ [7] G.M. Kremer, Post-Newtonian kinetic theory, Ann. Phys. 426, 168400 (2021).
1423
+ [8] G. M. Kremer, Post-Newtonian hydrodynamics: theory and applications, (Cambridge Scholars Publishing,
1424
+ Newcastle upon Tyne, 2022).
1425
+ [9] G. M. Kremer, M. G. Richarte and K. Weber, Self-gravitating systems of ideal gases in the 1PN approxi-
1426
+ mation, Phys. Rev. D 93, 064073 (2016).
1427
+ [10] P. J. Greenberg, The post-Newtonian equations of hydrodynamics for a thermally conducting, viscous,
1428
+ compressible fluid in general relativity, Ap. J. 164, 569 (1971).
1429
+ [11] J.-C. Hwang and H. Noh, Special relativistic hydrodynamics with gravitation, Ap. J. 833, 180 (2016).
1430
+ [12] G.M. Kremer, Post-Newtonian non-equilibrium kinetic theory, Ann. Phys. 441, 168865 (2022).
1431
+ [13] S. Chapman and T. G. Cowling, The mathematical theory of non-uniform gases 3rd. (Cambridge University
1432
+ Press, Cambridge, 1970).
1433
+ [14] G. M. Kremer, An introduction to the Boltzmann equation and transport processes in gases (Springer,
1434
+ Berlin, 2010).
1435
+ [15] C. Marle, Mod`ele cin´etique pour l’´etablissement des lois de la conduction de la chaleur et de la viscosit´e
1436
+ en th´eorie de la relativit´e, C. R. Acad. Sc. Paris 260, 6539 (1965).
1437
+
1438
+ 10
1439
+ [16] C. Cercignani and G. M. Kremer, The relativistic Boltzmann equation:
1440
+ theory and applications
1441
+ (Birkh¨auser, Basel, 2002)
1442
+ [17] C. Eckart, The thermodynamics of irreversible processes, III. Relativistic theory of a simple fluid, Phys.
1443
+ Rev. 58, 919 (1940).
1444
+ [18] J. H. Jeans, The stability of a spherical nebula. Philos. Trans. R. Soc. A, 199, 1 (1902).
1445
+ [19] P. Coles and F. Lucchin, Cosmology. The origin and evolution of cosmic structures, 2nd, edn. (John Wiley,
1446
+ Chichester, 2002).
1447
+ [20] J. Binney and S. Tremaine, Galactic Dynamics, 2nd. edn. (Princeton University Press, Princeton, 2008).
1448
+ [21] E. Nazari, A. Kazemi, M. Roshan and S. Abbassi, Post-Newtonian Jeans analysis. Ap. J. 839, 75 (2017).
1449
+ [22] H. Noh and J.-C. Hwang, Gravitomagnetic instabilities of relativistic magnetohydrodynamics. Ap. J. 906,
1450
+ 22 (2021).
1451
+ [23] G. M. Kremer, Jeans instability from post-Newtonian Boltzmann equation. Eur. Phys. J. C 81, 927
1452
+ (2021).
1453
+ [24] G. M. Kremer, Plane wave analysis of the second post-Newtonian hydrodynamic equations, Int. J. Geom.
1454
+ Methods Mod. Phys. 2350039 (2023).
1455
+ [25] L. D. Landau and E. M. Lifshitz, Fluid mechanics, 2nd ed. (Pergamon Press, Oxford, 1987).
1456
+ [26] T. Doi T, A. Santos and M. Tij M, Numerical study of the influence of gravity on the heat conductivity on
1457
+ the basis of kinetic theory Phys. Fluids 11, 3553 (1999).
1458
+ [27] M. Tij, V. Garz´o and A. Santos, On the influence of gravity on the thermal conductivity, in Rarefied Gas
1459
+ Dynamics, R. Brun , R. Campargue, R. Gatignol and J.-C. Lengrand , eds. 1999 (Toulouse: C´epadu`es) p.
1460
+ 239
1461
+ [28] G. M. Kremer, Relativistic gas in a Schwarzschild metric, J. Stat. Mech. P04016 (2013).
1462
+ [29] G. M. Kremer, Diffusion of relativistic gas mixtures in gravitational field, Physica A 393 76 (2014).
1463
+
AtE4T4oBgHgl3EQfEwyK/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,359 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf,len=358
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
3
+ page_content='04880v1 [gr-qc] 12 Jan 2023 Relaxation-Time Model for the Post-Newtonian Boltzmann Equation Gilberto M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
4
+ page_content=' Kremer1, ∗ 1Departamento de F´ısica, Universidade Federal do Paran´a, Curitiba 81531-980, Brazil The non-equilibrium contributions to the post-Newtonian hydrodynamic equations are deter- mined from a relaxation-time model of the post-Newtonian Boltzmann equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
5
+ page_content=' The Chapman- Enskog method is used to calculate the non-equilibrium distribution function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
6
+ page_content=' The components of the energy-momentum tensor are found from the knowledge of the non-equilibrium and the post- Newtonian equilibrium Maxwell-J¨uttner distribution functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
7
+ page_content=' The linearized field equations for the mass, momentum and internal energy densities coupled with the three Poisson equations of the post-Newtonian approximation are investigated by considering a plane wave representation of the fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
8
+ page_content=' The constitutive equations for the viscous stress and heat flux vector are obtained and it is shown that the transport coefficients of shear viscosity and heat conductivity do depend on the Newtonian gravitational potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
9
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
10
+ page_content=' INTRODUCTION In the seminal work of Einstein, Infeld and Hoffman [1] it was proposed a method of successive approximations in powers of 1/c2 for the solution of Einstein’s field equations, which become the basis of the post-Newtonian approximation for the determination of the energy-momentum tensor components as well as the Eulerian hydrodynamic equations in the first [2, 3] and second [4] approximations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
11
+ page_content=' The post-Newtonian version of the Boltzmann equation in the first and in the second approximations were determined in [5, 6] and [7, 8], respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
12
+ page_content=' In [7, 8] the energy-momentum tensor components were obtained from the equilibrium Maxwell-J¨uttner distribution function [9] in the first and second post-Newtonian approximations and the Eulerian hydrodynamic equations from a collisionless post- Newtonian Boltzmann equation were determined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
13
+ page_content=' The inclusion of non-equilibrium terms in the post-Newtonian theory was investigated in [10, 11] within the framework of a phenomenological theory of a viscous, heat conducting and compressible fluid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
14
+ page_content=' On the other hand, the inclusion of non-equilibrium terms in the hydrodynamic equations which follow from the post-Newtonian Boltzmann equation was considered in [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
15
+ page_content=' In this work the hydrodynamic equations resulted from a post-Newtonian Maxwell-Enskog transfer equation together with a post-Newtonian Grad’s distribution function which takes into account the non-equilibrium fields of viscous stress and heat flux vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
16
+ page_content=' One interesting subject to be investigate is the determination of the post-Newtonian hydrodynamic equations for a viscous and heat conducting fluid from the post-Newtonian Boltzmann equation where the particle collisions are taken into account through the collision operator of the Boltzmann equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
17
+ page_content=' Here we shall adopt a relaxation-time model for the collision operator which is known in the non- relativistic framework as the Bhatnagar-Gross-Krook (BGK) model (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
18
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
19
+ page_content=' [13, 14]) and in the relativistic one as the Marle model [15, 16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
20
+ page_content=' We use the Chapman-Enskog method to determine the non-equilibrium distribution function from the post-Newtonian BGK (Marle) model of the Boltzmann equation and the post-Newtonian Maxwell- J¨uttner distribution function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
21
+ page_content=' From the knowledge of the non-equilibrium distribution function the non-equilibrium contributions to the energy-momentum tensor are calculated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
22
+ page_content=' The linearized field equations for the mass, momentum and internal energy densities are determined from the particle four- flow and energy-momentum tensor conservation laws.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
23
+ page_content=' These linearized field equations are coupled with three Poisson equations from the post-Newtonian approximation and a solution of the coupled system of equations is found in terms of a plane wave representation of the fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
24
+ page_content=' Furthermore, the constitutive equations for the viscous stress and heat flux vector – which correspond to the Navier-Stokes and Fourier laws, respectively – are obtained from the Eckart decomposition [17] of the energy-momentum tensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
25
+ page_content=' It is shown that the transport coefficients of shear viscosity and heat conductivity do depend on the Newtonian gravitational potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
26
+ page_content=' The paper is structured as follows: in Section II we introduce the relaxation-time model of the post-Newtonian Boltzmann equation and determine the non-equilibrium distribution function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
27
+ page_content=' The ∗ kremer@fisica.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
28
+ page_content='ufpr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
29
+ page_content='br 2 particle four-flow and the energy-momentum tensor components are calculated on the basis of the equilibrium Maxwell-J¨uttner and non-equilibrium distribution functions in Section III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
30
+ page_content=' The linearized field equations are determined in Section IV and a plane wave solution of the linearized field equations coupled with the three Poisson equations of the post-Newtonian approximation is analyzed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
31
+ page_content=' In Section V the constitutive equations for the viscous stress and heat flux vector are obtained and the transport coefficients of shear viscosity and thermal conductivity are identified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
32
+ page_content=' In the last section the conclusions of the work are stated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
33
+ page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
34
+ page_content=' RELAXATION-TIME MODEL In the phase space spanned by the space coordinates x and velocity of the particles v a state of a monatomic gas is characterized by the one-particle distribution function f(x, v, t) and its space- time evolution is governed by Boltzmann equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
35
+ page_content=' In the first post-Newtonian approximation the Boltzmann equation is given by [5, 7, 8] �∂f ∂t + vi ∂f ∂xi + ∂f ∂vi ∂U ∂xi �� 1 + 1 c2 �v2 2 + U � � + 1 c2 ∂f ∂vi � vj �∂Πi ∂xj − ∂Πj ∂xi � −3vi ∂U ∂t + ∂Πi ∂t + 2 ∂Φ ∂xi − 4U ∂U ∂xi − 4vivj ∂U ∂xj + v2 ∂U ∂xi � = Q(f, f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
36
+ page_content=' (1) Here Q(f, f) denotes the collision operator of the Boltzmann equation which takes into account the binary collisions of the particles and refers to an integral of the product of two particle distribution functions at collision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
37
+ page_content=' Furthermore, the Newtonian gravitational potential U, the scalar gravitational potential Φ and the vector gravitational potential Πi satisfy Poisson equations, which are obtained from the first post-Newtonian approximation of Einstein’s field equations and read [2, 8] ∇2U = −4πGρ, ∇2Φ = −4πGρ � V 2 + U + ε 2 + 3p 2ρ � , (2) ∇2Πi = −16πGρVi + ∂2U ∂t∂xi .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
38
+ page_content=' (3) Above V denotes the hydrodynamic three-velocity, G the universal gravitational constant and ε, p the specific internal energy and hydrostatic pressure of the gas, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
39
+ page_content=' The gauge condition 3∂U/∂t + ∂Πi/∂xi = 0 for the gravitational potentials U and Πi holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
40
+ page_content=' In the BGK (Marle) model the collision operator is replaced by the difference between the one- particle distribution function and its equilibrium value multiplied by a frequency ν which is of order of the collision frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
41
+ page_content=' The one-particle distribution function at equilibrium is determined from the relativistic Boltzmann equation by considering that the collision operator vanishes at equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
42
+ page_content=' In the relativistic theory the equilibrium distribution function is the Maxwell-J¨uttner distribution function (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
43
+ page_content='g [16]) and its first post-Newtonian approximation was determined in [9] and reads fMJ = f0 � 1 − 1 c2 �15kT 8m + m(ViVi)2 2kT + 2mUV2 kT + 3mV4 8kT + mV 2V2 2kT + m(ViVi)V2 kT �� , (4) where f0 denotes the non-relativistic Maxwellian distribution function, namely f0 = ρ e− mV2 2kT (2πm 5 3 kT ) 3 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
44
+ page_content=' (5) In the above equation ρ is the mass density, T the absolute temperature, m the rest mass of a gas particle and k the Boltzmann constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
45
+ page_content=' Furthermore, Vi = vi − Vi is the so-called peculiar velocity which is the difference of the particle velocity vi and the hydrodynamic velocity Vi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
46
+ page_content=' By considering that the relativistic equilibrium distribution function is the Maxwell-J¨uttner distri- bution fMJ, the collision operator is written as Q(f, f) = −ν(f − fMJ) = −νfNE, (6) where fNE is the non-equilibrium distribution function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
47
+ page_content=' 3 For the determination of the non-equilibrium distribution function we shall rely on the Chapman- Enskog method (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
48
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
49
+ page_content=' [13, 14] and insert the equilibrium Maxwell-J¨uttner distribution function (4) into the left-hand side of the Boltzmann equation (1) and compute the non-equilibrium distribution function by considering the BGK (Marle) model (6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
50
+ page_content=' Hence it follows � 1 + 1 c2 �v2 2 + U � ��∂fMJ ∂ρ �dρ dt + Vi ∂ρ ∂xi � + ∂fMJ ∂T �dT dt + Vi ∂T ∂xi � + ∂fMJ ∂Vi �dVi dt + Vj ∂Vi ∂xj � +∂fMJ ∂U �dU dt + Vi ∂U ∂xi � + ∂fMJ ∂vi ∂U ∂xi � + 1 c2 ∂fMJ ∂vi � vj �∂Πi ∂xj − ∂Πj ∂xi � − 3vi ∂U ∂t + ∂Πi ∂t +2 ∂Φ ∂xi − 4U ∂U ∂xi − 4vivj ∂U ∂xj + v2 ∂U ∂xi � = −νfNE,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
51
+ page_content=' (7) where d/dt = ∂/∂t + Vi∂/∂xi denotes the material time derivative and ∂fMJ ∂ρ = fMJ ρ ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
52
+ page_content=' ∂fMJ ∂U = −f0 2mV2 kT c2 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
53
+ page_content=' (8) ∂fMJ ∂T = f0 T �mV2 2kT − 3 2 + 1 c2 �15kT 16m � 1 − mV2 kT + m2V4 k2T 2 � + 5m 2kT � 2UV2 + (ViVi)2 2 +V 2V2 2 + (ViVi)V2 � − m2 2k2T 2 � 2UV4 + (ViVi)2V2 2 + V 2V4 2 + (ViVi)V4 + 3V6 8 ��� ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
54
+ page_content=' (9) ∂fMJ ∂V i = mf0 kT � Vi + 1 c2 � 4UVi � 1 − mV2 2kT � − 15kT 8m Vi + (VjVj)Vi + ViV 2 � 1 − mV2 2kT � +(VjVj)Vi � 1 − mV2 kT � + ViV2 2 � 1 − 3mV2 4kT � − m(VjVj)2 2kT Vi �� ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
55
+ page_content=' (10) ∂fMJ ∂vi = −mf0 kT � Vi + 1 c2 � 4UVi � 1 − mV2 2kT � + Vi(V2 + VjVj) − 15kT 8m Vi +Vi � V 2 + 2VjVj + 3V2 2 � − mVi kT �(VjVj)2 2 + V 2V2 2 + (VjVj)V2 + 3V4 8 ��� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
56
+ page_content=' (11) As usual in the Chapman-Enskog method the material time derivatives are eliminated from the non-equilibrium distribution function by using the Eulerian balance equations for the mass density ρ, hydrodynamic velocity Vi and absolute temperature T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
57
+ page_content=' The Eulerian mass density and the momentum density balance equations in the first post-Newtonian approximation are [2, 8] dρ � 1 + 1 c2 � V 2 2 + 3U �� dt + ρ � 1 + 1 c2 �V 2 2 + 3U �� ∂Vi ∂xi = 0, (12) ρdVi dt + ∂p ∂xi � 1 − 1 c2 � V 2 + 4U + ε + p ρ �� − ρ ∂U ∂xi � 1 + 1 c2 (V 2 − 4U) � + ρ c2 ��1 ρ ∂p ∂t − ∂U ∂t + 4dU dt � Vi − 2 ∂Φ ∂xi − dΠi dt + Vj ∂Πj ∂xi � = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
58
+ page_content=' (13) For the determination of the Eulerian internal energy density balance equation ρε in the first post- Newtonian approximation one has to go to the second post-Newtonian approximation, since within the framework of the first post-Newtonian approximation one recover only its Newtonian expression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
59
+ page_content=' The Eulerian internal energy density balance equation reads1 dε dt + p ρ ∂Vi ∂xi + 3p ρc2 dU dt + pVi ρc2 � ∂U ∂xi − 1 ρ ∂p ∂xi � = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
60
+ page_content=' (14) From the above equation follows the expression for the material time derivative of the absolute temper- ature, if we take into account the relationship for the specific internal energy in the first post-Newtonian approximation which comes from the relativistic kinetic theory of gases (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
61
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
62
+ page_content=' [16]) ε = 3kT 2m � 1 + 5kT 4mc2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
63
+ page_content=' (15) 1 This equation corrects some misprints in [7, 8] 4 III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
64
+ page_content=' PARTICLE FOUR-FLOW AND ENERGY-MOMENTUM TENSOR COMPONENTS In the relativistic kinetic theory of gases the particle four-flow N µ and the energy-momentum tensor T µν are given in terms of the one-particle distribution function f(x, v, t) by [8, 16] N µ = m4c � uµf √−g d3u u0 , T µν = m4c � uµuνf √−g d3u u0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
65
+ page_content=' (16) Here uµ = pµ/m (with uµuµ = c2) denotes the gas particle four-velocity whose components in the first post-Newtonian approximation read [2, 3, 8] u0 = c � 1 + 1 c2 �v2 2 + U �� , ui = vi u0 c , (17) where v is the particle three-velocity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
66
+ page_content=' Furthermore, √−g d3u/u0 is an invariant integration element whose first post-Newtonian approximation was determined in [9] and is given by √−g d3u u0 = � 1 + 1 c2 � 2v2 + 6U �� d3v c .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
67
+ page_content=' (18) Once the one-particle distribution function f = fMJ + fNE and the invariant integration element are known, one can determine the components of the particle four-flow N µ and energy-momentum tensor T µν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
68
+ page_content=' Indeed, if we insert (4), (7), (17) and (18) into (16) and integrate the resulting equations we get N 0 = ρc m � 1 + 1 c2 �V 2 2 + U �� , N i = N 0 Vi c , (19) T 00 = ρc2 � 1 + 1 c2 � V 2 + 3kT 2m + 2U � + O(c−4) � , (20) T i0 = cρVi � 1 + 1 c2 � V 2 + 2U + 5kT 2m �� + T i0 NE, (21) T ij = ρViVj � 1 + 1 c2 � V 2 + 2U + 5kT 2m �� + p � 1 − 2U c2 � δij + T ij NE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
69
+ page_content=' (22) Note that there are no non-equilibrium contributions to the components of the particle four-flow (19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
70
+ page_content=' The non-equilibrium contribution to T 00 is of order O(c−4) (the order of the nth inverse power of light speed is denoted by O(c−n)) while the non-equilibrium contributions to the energy-momentum tensor components T 0i NE and T ij NE are associate with terms related with the collision frequency ν and read T i0 NE = −p νc � 5k 2m ∂T ∂xi + ∆ijklVj ∂Vk ∂xl � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
71
+ page_content=' (23) T ij NE = − p ν �� 1 + 1 c2 �5kT 2m − U + V 2 2 �� ∆ijklVj ∂Vk ∂xl + 1 c2 ∆ijklVk � ∂U ∂xl − 1 ρ ∂p ∂xl � − 2 3c2 ViVj ∂Vk ∂xk + 1 c2 � Vj ∂ ∂xi + Vi ∂ ∂xj ��5kT 2m + V 2 2 �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
72
+ page_content=' (24) Here we have introduced the fourth-order tensor ∆ijkl = δikδjl + δilδjk − 2 3δijδkl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
73
+ page_content=' (25) IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
74
+ page_content=' LINEARIZED FIELD EQUATIONS The thermodynamic theory of a single relativistic fluid is described by the fields of particle four-flow N µ and energy-momentum tensor T µν where their hydrodynamic equations follow from the conserva- tion laws N µ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
75
+ page_content='µ = ∂N µ ∂xµ + ΓµµσN σ = 0, T µν;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
76
+ page_content='ν = ∂T µν ∂xν + ΓµνσT σν + ΓννσT µσ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
77
+ page_content=' (26) 5 Above the semicolon refers to the covariant derivative and Γµνσ to the Christoffel symbols.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
78
+ page_content=' From the knowledge of the expressions of the particle four-flow and energy momentum tensor com- ponents (19) – (24) and the conservation laws (26) one can obtain the field equations for the particle number density, momentum density and specific internal energy for a viscous and heat conducting fluid in the first post-Newtonian approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
79
+ page_content=' Here we are interested in determining the linearized field equations and for that end we consider a background state of constant values for the mass density,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
80
+ page_content=' absolute temperature and Newtonian gravitational potential denoted by ρ0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
81
+ page_content=' T0 and U0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
82
+ page_content=' respectively,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
83
+ page_content=' which are superposed by linear perturbed fields denoted by ρ1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
84
+ page_content=' T1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
85
+ page_content=' U1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
86
+ page_content=' V 1 i ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
87
+ page_content=' Φ1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
88
+ page_content=' Π1 i ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
89
+ page_content=' namely ρ(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
90
+ page_content=' t) = ρ0 + ρ1(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
91
+ page_content=' t),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
92
+ page_content=' T (x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
93
+ page_content=' t) = T0 + T1(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
94
+ page_content=' t),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
95
+ page_content=' U(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
96
+ page_content=' t) = U0 + U1(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
97
+ page_content=' t),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
98
+ page_content=' (27) Vi(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
99
+ page_content=' t) = V 1 i (x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
100
+ page_content=' t),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
101
+ page_content=' Φ(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
102
+ page_content=' t) = Φ1(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
103
+ page_content=' t),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
104
+ page_content=' Πi(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
105
+ page_content=' t) = Π1 i (x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
106
+ page_content=' t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
107
+ page_content=' (28) From the insertion of (19) into (26)1 follows the linearized field equation for the mass density,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
108
+ page_content=' by tak- ing into account the expressions of the Christoffel symbols in the first post-Newtonian approximation – which can be found in [2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
109
+ page_content=' 7,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
110
+ page_content=' 8] – and of the representations (27),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
111
+ page_content=' yielding ∂ρ1 ∂t + ρ0 ∂V 1 i ∂xi + 3ρ0 c2 ∂U1 ∂t = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
112
+ page_content=' (29) The linearized field equations for the mass-energy and momentum densities are obtained from the time and spatial components of (26)2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
113
+ page_content=' respectively,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
114
+ page_content=' by considering the expressions (19) – (24),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
115
+ page_content=' the representations (27),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
116
+ page_content=' (28) and the Christoffel symbols in the first post-Newtonian approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
117
+ page_content=' Hence it follows ∂ρ1 ∂t + ρ0 � 1 + kT0 mc2 � ∂V 1 i ∂xi + ρ0 c2 �3kT0 2m ∂T1 ∂t + 3∂U1 ∂t � − 5k2ρ0T0 2m2c2ν0 ∂2T1 ∂xi∂xi = 0, (30) ρ0 ∂V 1 i ∂t + k m � 1 − 1 c2 �5kT0 2m + 4U0 �� � T0 ∂ρ1 ∂xi + ρ0 ∂T1 ∂xi � − ρ0 � 1 − 4U0 c2 � ∂U1 ∂xi − 5k2ρ0T0 2m2c2ν0 ∂2T1 ∂t∂xi − kρ0T0 mν0 � 1 − 3U0 c2 � � ∂2V 1 i ∂xj∂xj + 1 3 ∂2V 1 j ∂xj∂xi � − ρ0 c2 � 2∂Φ1 ∂xi + ∂Π1 i ∂t � = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
118
+ page_content=' (31) Since the constant values of the background state does not satisfy the Poisson equations (2) and (3) it is usual to take into account the ”Jeans swindle” (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
119
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
120
+ page_content=' [18–20]) which requires that the Poisson equations are valid only for the perturbed fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
121
+ page_content=' Hence, by considering that ε = 3kT/2m = 3p/2ρ, the linearized Poisson equations become ∇2U1 = −4πGρ1, ∇2Φ1 = −4πGρ1 � U0 + 9k 4mT0 � − 4πGρ0 � U1 + 9k 4mT1 � , (32) ∇2Π1 i = −16πGρ0V 1 i + ∂2U1 ∂t∂xi .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
122
+ page_content=' (33) Let us find a solution of the coupled system of partial differential equations (29) – (33) in terms of a plane wave representation of the perturbed fields, namely ρ1(x, t) = ρe[i(κixi−ωt)], T1(x, t) = Te[i(κixi−ωt)], U1(x, t) = Ue[i(κixi−ωt)], (34) V 1 i (x, t) = Vie[i(κixi−ωt)], Φ1(x, t) = Φe[i(κixi−ωt)], Π1 i (x, t) = Πie[i(κixi−ωt)], (35) where κi denotes the wavenumber vector, ω the angular frequency and the overlined quantities the small amplitudes of the wave.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
123
+ page_content=' We insert the plane wave representations (34) and (35) into the coupled system of partial differential 6 equations (29) – (33) and get a linearized system of algebraic equations for the amplitudes which reads ω∗ρ∗ − V∗ + 3U0 c2 U∗ = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
124
+ page_content=' (36) ω∗ρ∗ − � 1 + 3c2 s 5c2 � V∗ + 3U0 c2 U∗ + 9c2 s 10c2 � ω∗ + iκ∗ ν∗ � T∗ = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
125
+ page_content=' (37) � ω∗ + 4 5ν∗ � 1 − 3U0 c2 � iκ2 ∗ � V∗ − 3 5κ2 ∗ � 1 − c2 s c2 �3 2 + 4U0 c2s �� [ρ∗ + T∗] +κ2 ∗ U0 c2s � 1 − 4U0 c2 � U∗ − 3c2 s 2c2ν∗ iω∗κ2 ∗T∗ + c2 s c2 � 2κ2 ∗Φ∗ − ω∗Π∗ � = 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
126
+ page_content=' (38) κ2 ∗ U0 c2s U∗ = ρ∗,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
127
+ page_content=' (39) κ2 ∗Φ∗ = �U0 c2s + 27 20 � ρ∗ + �U0 c2s U∗ + 27 20T∗ � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
128
+ page_content=' (40) κ2 ∗Π∗ = 4V∗ − ω∗κ2 ∗ U0 c2s U∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
129
+ page_content=' (41) Equations (38) and (41) result from the scalar product with κi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
130
+ page_content=' Furthermore, the above equations were written in terms of the dimensionless quantities κ∗ i = κi κJ , ω∗ = ω √4πGρ0 , ν∗ = ν0 √4πGρ0 , (42) ρ∗ = ρ ρ0 , T∗ = T T0 , V∗ = V iκi csκJ , U∗ = U U0 , Φ∗ = Φ c4s , Π∗ = Πiκi c3sκJ , (43) where κJ = √4πGρ0/cs denotes the Jeans wavelength, cs = � 5kT0/3m the sound speed and κ∗ = �κ∗ i κ∗ i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
131
+ page_content=' The system of algebraic equations for the amplitudes (36) – (41) admits a non-trivial solution if the determinant of the coefficients which correspond to the amplitudes vanish.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
132
+ page_content=' Hence it follows the dispersion relation which connect the dimensionless angular frequency ω∗ with the dimensionless wavenumber κ∗,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
133
+ page_content=' namely ω3 ∗ + 9i 5ν∗ � κ2 ∗ + 4 3 � 1 − κ2 ∗ � 5 12 + U0 c2s � c2 s c2 �� ω2 ∗ + � 1 − κ2 ∗ − 4κ4 ∗ 5ν∗ + �33 10 + 2 κ2∗ +3κ2 ∗ 2 − 2U0 c2s (1 − 2κ2 ∗) − 12κ2 ∗ 5ν2∗ � 1 − U0κ2 ∗ c2s ��c2 s c2 � ω∗ + i ν∗ � κ2 ∗ � 1 − 3κ2 ∗ 5 � + � 2 + 27κ2 ∗ 10 � 1 + κ2 ∗ 3 � − 2κ2 ∗U0 c2s � 1 − 6κ2 ∗ 5 ��c2 s c2 � = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
134
+ page_content=' (44) Here terms up to the order O(c−2) were taken into account.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
135
+ page_content=' In the case of a non relativistic and collisionless Boltzmann equation we have that cs/c → 0 and ν∗ → ∞ and we obtain from (44) Jeans solution [18] ω∗ = ± � λ2 J λ2 − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
136
+ page_content=' (45) Above we have introduced the wavelengths λ and λJ (Jeans wavelength) through the relationship κ∗ = κ/κJ = λJ/λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
137
+ page_content=' In the case of small wavelengths with respect to Jeans wavelength λJ/λ > 1 the dimensionless angular frequency is a real quantity and the perturbations propagate as harmonic waves in time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
138
+ page_content=' On the other hand, for big wavelengths λJ/λ < 1 the angular frequency becomes a pure imaginary quantity and the perturbations will grow or decay in time, which will depend on the sign of the solution (45).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
139
+ page_content=' The perturbations which grow in time are referred as Jeans instability, which is associated with the gravitational collapse of self-gravitating gas clouds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
140
+ page_content=' The analysis of Jeans instability within the first and second post-Newtonian approximation by considering the Eulerian hydrodynamic equations were investigated in [21–23] and [24], respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
141
+ page_content=' Here if we consider a collisionless Boltzmann equation where ν∗ → ∞ (44) reduces to ω3 ∗ + � 1 − κ2 ∗ + �33 10 + 2 κ2∗ + 3κ2 ∗ 2 − 2U0 c2s (1 − 2κ2 ∗) �c2 s c2 � ω∗ = 0, (46) 7 which is the dispersion relation in the first post-Newtonian approximation where dissipative effects are not considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
142
+ page_content=' There is a difference of this expression with the one in [8], since here the constant value is 33/10 while there is 9/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
143
+ page_content=' The reason of this difference is that here we have considered the mass, mass-energy and momentum densities hydrodynamic equations while in the former work only the mass and momentum densities hydrodynamic equations were taken into account.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
144
+ page_content=' For big wavelengths with respect to Jeans wavelength λJ/λ < 1 three different values associated with the dimensionless angular frequencies can be obtained from (44) which correspond to the growth/decay of the perturbations: ω∗ = − i ν∗ λ2 J λ2 � 1 − 7c2 s 5c2 � + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
145
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
146
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
147
+ page_content=' , (47) ω∗ = i � 1 − 1 2 λ2 J λ2 � 1 + 4 5ν∗ � + �43 20 − U0 c2s + λ2 λ2 J − 6 5ν∗ � c2 s c2 � + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
148
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
149
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
150
+ page_content=' , (48) ω∗ = −i � 1 − 1 2 λ2 J λ2 � 1 − 4 5ν∗ � + �43 20 − U0 c2s + λ2 λ2 J + 6 5ν∗ � c2 s c2 � + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
151
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
152
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
153
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
154
+ page_content=' (49) On the other hand, if we expand the dimensionless wavenumber in power series of the reduced angular frequency κ∗ = a0 + a1ω∗ + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
155
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
156
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
157
+ page_content=' we get from the dispersion relation (44) the solution where the perturbations propagate as harmonic waves κ∗ = � 5 3 � 1 + �27 10 + U � c2 s c2 � + 2i 3ν∗ � 5 3 � 1 + 3ν2 ∗ 10 + �24 5 + 2U − ν2 ∗ �3U 10 + 36 25 �� c2 s c2 � ω∗+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
158
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
159
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
160
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
161
+ page_content=' (50) V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
162
+ page_content=' CONSTITUTIVE EQUATIONS As was previously said the thermodynamic theory of a single relativistic fluid is characterized by the fields of particle four-flow N µ and energy-momentum tensor T µν whose hydrodynamic equations are the conservation laws (26).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
163
+ page_content=' The representation of the particle four-flow and energy-momentum tensor in terms of non-relativistic quantities makes use of the four-velocity U µ –where U µUµ = c2 – and of the projector ∆µν = gµν − U µU ν/c2 – where gµν denotes the metric tensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
164
+ page_content=' The projector has the properties ∆µνUν = 0, ∆µν∆νσ = ∆µσ and in a local Minkowski rest frame where U µ = (c, 0) it reduces to ∆µν = diag(0, −1, −1, −1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
165
+ page_content=' Two representations for the particle four-flow and energy-momentum tensor in terms of non- relativistic quantities are the Eckart [17] and the Landau-Lifshitz [25] decompositions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
166
+ page_content=' Here we shall use the Eckart decomposition where the particle four-flow and energy-momentum tensor are written as N µ = nU µ, (51) T µν = p⟨µν⟩ − (p + ̟) ∆µν + ǫ c2 U µU ν + 1 c2 � U µq(ν) + U νq(µ) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
167
+ page_content=' (52) Above n is the particle number density, p the hydrostatic pressure, ̟ the non-equilibrium pressure, p⟨µν⟩ the pressure deviator, q(µ) the heat flux and ǫ the energy density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
168
+ page_content=' The energy density is a sum of two terms one related with the internal energy density ρε while the other with the mass density ρ, namely ǫ = ρc2(1 + ε/c2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
169
+ page_content=' The following projections of the particle four-flow and energy-momentum tensor define the non-relativistic quantities (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
170
+ page_content='g [16]): n = 1 c2 N µUµ, ǫ = 1 c2 UµT µνUν, (p + ̟) = −1 3∆µνT µν (53) p⟨µν⟩ = � ∆µ σ∆ν τ − 1 3∆µν∆στ � T στ, q(µ) = ∆µ νUσT νσ, (54) In the first post-Newtonian approximation the components of the four-velocity read [2, 3, 8] U 0 = c � 1 + 1 c2 �V 2 2 + U �� , U i = ViU 0 c , (55) where V denotes the hydrodynamic three velocity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
171
+ page_content=' 8 From the knowledge of the components of the metric tensor in the first post-Newtonian approxima- tion g00 = 1 − 2U c2 + 2 c4 � U 2 − 2Φ � , g0i = Πi c3 , gij = − � 1 + 2U c2 � δij, (56) and of the four-velocity components (55) we can determine the components of the projector, which read ∆00 = −V 2 c2 − 1 c4 � 6UV 2 + V 4 − 2ΠiVi � , ∆0i = −Vi c − 1 c3 � 2UVi + V 2Vi − Πi � , (57) ∆ij = − � 1 − 2U c2 � δij − ViVj c2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
172
+ page_content=' (58) Now we introduce the non-relativistic pressure deviator pij = pij − pkkδij/3 whit δijpij = 0, (59) so that the components of the pressure deviator p⟨µν⟩ become [12] p⟨ij⟩ = pij + 1 2c2 (pikVkVj + pjkVkVi) , (60) p⟨00⟩ = pij ViVj c2 , p⟨0i⟩ = pij Vj c .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
173
+ page_content=' (61) In terms of the non-relativistic heat flux vector qi the components of the heat flux q(µ) are q(i) = qi, q(0) = qi Vi c .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
174
+ page_content=' (62) In the five field thermodynamic theory – where the basic fields are the mass density, momentum density and internal energy density – the pressure deviator, the dynamic pressure and the heat flux vector are given by constitutive equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
175
+ page_content=' Here we can obtain the desired constitutive equations from the components of the energy-momentum tensor (19) – (24) combined with the decomposition expressions (53) and (54) and the components of the projection (57) and (58).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
176
+ page_content=' Hence it follows the constitutive equations for the non-relativistic heat flux vector and pressure deviator qi = − 5kp 2mν � 1 − c2 s c2 U c2s � ∂T ∂xi + p νc2 ∆ijkl ∂Vk ∂xl ��5kT 2m + 3U + V 2 2 � Vj − Πj � + p νc2 (V 2δij − ViVj) � Vk ∂Vk ∂xj − ∂T ∂xj � + p νc2 � V 2δij + ViVj 3 �� ∂U ∂xj − 1 ρ ∂p ∂xj � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
177
+ page_content=' (63) pij = − p ν � 1 + c2 s c2 �3 2 − U c2s �� ∆ijkl ∂Vk ∂xl + 2p 3νc2 ∂Vk ∂xk � ViVj − 1 3V 2δij � − p νc2 ∆ijkl �1 2 ∂V 2Vk ∂xl + Vk � ∂U ∂xl − 1 ρ ∂p ∂xl �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
178
+ page_content=' (64) The constitutive equation for the dynamic pressure ̟ does not show up in the first post-Newtonian approximation and it is known that in the kinetic theory of relativistic gases the coefficient of bulk viscosity – which relates the dynamic pressure with the velocity divergent – is of order O(c−4) (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
179
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
180
+ page_content=' [16]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
181
+ page_content=' Let us fix our attention in the underlined linearized terms in (63) and (64).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
182
+ page_content=' Without the relativistic corrections they reduce to the non-relativistic constitutive equations of a viscous and heat conducting gas, namely qi = − 5kp 2mν ∂T ∂xi , pij = − p ν ∆ijkl ∂Vk ∂xl , (65) where the thermal conductivity λ and the shear viscosity µ coefficients are those of the non-relativistic BGK model λ = 5kp 2mν , µ = p ν .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
183
+ page_content=' (66) 9 With the first post-Newtonian correction these coefficients read λ = 5kp 2mν � 1 − c2 s c2 U c2s � , µ = p ν � 1 + c2 s c2 �3 2 − U c2s �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
184
+ page_content=' (67) We note that the coefficients of shear viscosity and thermal conductivity do depend on the Newtonian gravitational potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
185
+ page_content=' On the basis of a non-relativistic kinetic theory the influence the gravity on the thermal coefficient was first reported in [26, 27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
186
+ page_content=' Within the framework of a relativistic kinetic theory the transport coefficients of shear viscosity, thermal conductivity and bulk viscosity were obtained by considering a Schwarzschild metric in [28] and the diffusion coefficient in [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
187
+ page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
188
+ page_content=' CONCLUSIONS In this work we have examined a relaxation-time model for the post-Newtonian Boltzmann equation and determined the non-equilibrium distribution function by using the Chapman-Enskog method and the equilibrium post-Newtonian Maxwell-J¨uttner distribution function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
189
+ page_content=' The components of the energy- momentum tensor were calculated by using the equilibrium and non-equilibrium distribution functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
190
+ page_content=' From the conservation laws of the particle four-flow and energy-momentum tensor the linearized field equations for the mass, momentum and internal energy densities were determined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
191
+ page_content=' A plane wave solution of these linearized field equations coupled with the three post-Newtonian Poisson equations was found.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
192
+ page_content=' By using the Eckart decomposition of the energy-momentum tensor the constitutive equations for the viscous stress and heat flux vector were obtained and it was shown that the transport coefficients of shear viscosity and heat conductivity do depend on the Newtonian gravitational potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
193
+ page_content=' ACKNOWLEDGMENTS This work was supported by Conselho Nacional de Desenvolvimento Cient´ıfico e Tecnol´ogico (CNPq), grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
194
+ page_content=' 304054/2019-4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
195
+ page_content=' [1] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
196
+ page_content=' Einstein, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
197
+ page_content=' Infeld and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
198
+ page_content=' Hoffmann, The gravitational equations and the problem of motion, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
199
+ page_content=' of Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
200
+ page_content=' 39, 65 (1938).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
201
+ page_content=' [2] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
202
+ page_content=' Chandrasekhar, The post-Newtonian equations of hydrodynamics in general relativity, Ap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
203
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
204
+ page_content=' 142, 1488 (1965).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
205
+ page_content=' [3] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
206
+ page_content=' Weinberg, Gravitation and cosmology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
207
+ page_content=' Principles and applications of the theory of relativity (Wiley, New York, 1972).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
208
+ page_content=' [4] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
209
+ page_content=' Chandrasekhar and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
210
+ page_content=' Nutku, The second post-Newtonian equations of hydrodynamics in general relativity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
211
+ page_content=' Ap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
212
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
213
+ page_content=' 158, 55 (1969).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
214
+ page_content=' [5] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
215
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
216
+ page_content=' Ag´on, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
217
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
218
+ page_content=' Pedraza and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
219
+ page_content=' Ramos-Caro, Kinetic theory of collisionless self-gravitating gases: Post- Newtonian polytropes, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
220
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
221
+ page_content=' D 83, 123007 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
222
+ page_content=' [6] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
223
+ page_content=' Rezania and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
224
+ page_content=' Sobouti, Liouville’s equation in post Newtonian approximation I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
225
+ page_content=' Static solutions, Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
226
+ page_content=' Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
227
+ page_content=' 354, 1110 (2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
228
+ page_content=' [7] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
229
+ page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
230
+ page_content=' Kremer, Post-Newtonian kinetic theory, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
231
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
232
+ page_content=' 426, 168400 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
233
+ page_content=' [8] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
234
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
235
+ page_content=' Kremer, Post-Newtonian hydrodynamics: theory and applications, (Cambridge Scholars Publishing, Newcastle upon Tyne, 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
236
+ page_content=' [9] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
237
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
238
+ page_content=' Kremer, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
239
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
240
+ page_content=' Richarte and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
241
+ page_content=' Weber, Self-gravitating systems of ideal gases in the 1PN approxi- mation, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
242
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
243
+ page_content=' D 93, 064073 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
244
+ page_content=' [10] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
245
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
246
+ page_content=' Greenberg, The post-Newtonian equations of hydrodynamics for a thermally conducting, viscous, compressible fluid in general relativity, Ap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
247
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
248
+ page_content=' 164, 569 (1971).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
249
+ page_content=' [11] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
250
+ page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
251
+ page_content=' Hwang and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
252
+ page_content=' Noh, Special relativistic hydrodynamics with gravitation, Ap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
253
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
254
+ page_content=' 833, 180 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
255
+ page_content=' [12] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
256
+ page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
257
+ page_content=' Kremer, Post-Newtonian non-equilibrium kinetic theory, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
258
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
259
+ page_content=' 441, 168865 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
260
+ page_content=' [13] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
261
+ page_content=' Chapman and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
262
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
263
+ page_content=' Cowling, The mathematical theory of non-uniform gases 3rd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
264
+ page_content=' (Cambridge University Press, Cambridge, 1970).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
265
+ page_content=' [14] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
266
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
267
+ page_content=' Kremer, An introduction to the Boltzmann equation and transport processes in gases (Springer, Berlin, 2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
268
+ page_content=' [15] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
269
+ page_content=' Marle, Mod`ele cin´etique pour l’´etablissement des lois de la conduction de la chaleur et de la viscosit´e en th´eorie de la relativit´e, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
270
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
271
+ page_content=' Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
272
+ page_content=' Sc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
273
+ page_content=' Paris 260, 6539 (1965).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
274
+ page_content=' 10 [16] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
275
+ page_content=' Cercignani and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
276
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
277
+ page_content=' Kremer, The relativistic Boltzmann equation: theory and applications (Birkh¨auser, Basel, 2002) [17] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
278
+ page_content=' Eckart, The thermodynamics of irreversible processes, III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
279
+ page_content=' Relativistic theory of a simple fluid, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
280
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
281
+ page_content=' 58, 919 (1940).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
282
+ page_content=' [18] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
283
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
284
+ page_content=' Jeans, The stability of a spherical nebula.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
285
+ page_content=' Philos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
286
+ page_content=' Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
287
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
288
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
289
+ page_content=' A, 199, 1 (1902).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
290
+ page_content=' [19] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
291
+ page_content=' Coles and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
292
+ page_content=' Lucchin, Cosmology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
293
+ page_content=' The origin and evolution of cosmic structures, 2nd, edn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
294
+ page_content=' (John Wiley, Chichester, 2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
295
+ page_content=' [20] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
296
+ page_content=' Binney and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
297
+ page_content=' Tremaine, Galactic Dynamics, 2nd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
298
+ page_content=' edn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
299
+ page_content=' (Princeton University Press, Princeton, 2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
300
+ page_content=' [21] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
301
+ page_content=' Nazari, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
302
+ page_content=' Kazemi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
303
+ page_content=' Roshan and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
304
+ page_content=' Abbassi, Post-Newtonian Jeans analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
305
+ page_content=' Ap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
306
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
307
+ page_content=' 839, 75 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
308
+ page_content=' [22] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
309
+ page_content=' Noh and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
310
+ page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
311
+ page_content=' Hwang, Gravitomagnetic instabilities of relativistic magnetohydrodynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
312
+ page_content=' Ap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
313
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
314
+ page_content=' 906, 22 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
315
+ page_content=' [23] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
316
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
317
+ page_content=' Kremer, Jeans instability from post-Newtonian Boltzmann equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
318
+ page_content=' Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
319
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
320
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
321
+ page_content=' C 81, 927 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
322
+ page_content=' [24] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
323
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
324
+ page_content=' Kremer, Plane wave analysis of the second post-Newtonian hydrodynamic equations, Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
325
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
326
+ page_content=' Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
327
+ page_content=' Methods Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
328
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
329
+ page_content=' 2350039 (2023).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
330
+ page_content=' [25] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
331
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
332
+ page_content=' Landau and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
333
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
334
+ page_content=' Lifshitz, Fluid mechanics, 2nd ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
335
+ page_content=' (Pergamon Press, Oxford, 1987).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
336
+ page_content=' [26] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
337
+ page_content=' Doi T, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
338
+ page_content=' Santos and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
339
+ page_content=' Tij M, Numerical study of the influence of gravity on the heat conductivity on the basis of kinetic theory Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
340
+ page_content=' Fluids 11, 3553 (1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
341
+ page_content=' [27] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
342
+ page_content=' Tij, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
343
+ page_content=' Garz´o and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
344
+ page_content=' Santos, On the influence of gravity on the thermal conductivity, in Rarefied Gas Dynamics, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
345
+ page_content=' Brun , R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
346
+ page_content=' Campargue, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
347
+ page_content=' Gatignol and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
348
+ page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
349
+ page_content=' Lengrand , eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
350
+ page_content=' 1999 (Toulouse: C´epadu`es) p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
351
+ page_content=' 239 [28] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
352
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
353
+ page_content=' Kremer, Relativistic gas in a Schwarzschild metric, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
354
+ page_content=' Stat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
355
+ page_content=' Mech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
356
+ page_content=' P04016 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
357
+ page_content=' [29] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
358
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
359
+ page_content=' Kremer, Diffusion of relativistic gas mixtures in gravitational field, Physica A 393 76 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf'}
BdE3T4oBgHgl3EQftAtl/content/2301.04672v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1469480e79438cdd4eb5d887a44631401a9a41dadbfa942675cb7743ba0f6682
3
+ size 9925429
CtE2T4oBgHgl3EQf9Ant/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6632e73c74530a7ed2988caa5832718a9c0a4bed08155a8a1bad7faeb945326f
3
+ size 7667757
CtFJT4oBgHgl3EQftS25/content/2301.11617v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fcb2e5da81d90f5f819ce44fa29af7a02740bf3cf5fe8f198bf01cc743a820b6
3
+ size 480079
E9E0T4oBgHgl3EQfhAEU/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce9d0ec2bae298e7233bdaa1621faeae5517b1197348e2a84238c2ac42ff116c
3
+ size 4325421
E9E0T4oBgHgl3EQfhAEU/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f3ab5f7b3508d82909706ab4c054459e9cf06dffdfc2b8fdc1a04732c3fbb65
3
+ size 148011
GNE4T4oBgHgl3EQfgA3B/content/tmp_files/2301.05113v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
GNE4T4oBgHgl3EQfgA3B/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
GNFIT4oBgHgl3EQfWStC/content/tmp_files/2301.11239v1.pdf.txt ADDED
@@ -0,0 +1,1404 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Collective Vortical Motion and Vorticity Reversals
2
+ of Self-Propelled Particles on Circularly Patterned Substrates∗
3
+ Haosheng Wen,1, 2 Yu Zhu,1 Chenhui Peng,1, 3 P.B. Sunil Kumar,4, 5 and Mohamed Laradji1, †
4
+ 1Department of Physics and Materials Science, The University of Memphis, Memphis, TN 38152, USA
5
+ 2Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
6
+ 3Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
7
+ 4Department of Physics, Indian Institute of Technology Palakkad, Palakkad 668557, Kerala, India
8
+ 5Department of Physics, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
9
+ The collective behavior of self-propelled particles (SPPs) under the combined effects of a circu-
10
+ larly patterned substrate and circular confinement is investigated through coarse-grained molecular
11
+ dynamics simulations of polarized and disjoint ring polymers.
12
+ The study is performed over a wide
13
+ range of values of the SPPs packing fraction ¯φ, motility force FD, and area fraction of the patterned
14
+ region. At low packing fractions, the SPPs are excluded from the system’s center and exhibit a
15
+ vortical motion that is dominated by the substrate at intermediate values of FD.
16
+ This exclusion
17
+ zone is due to the coupling between the driving force and torque induced by the substrate, which
18
+ induces an outward spiral motion of the SPPs.
19
+ For high values of FD, the SPPs exclusion from the
20
+ center is dominated by the confining boundary. At high values of ¯φ, the substrate pattern leads to
21
+ reversals in the vorticity, which become quasi-periodic with increasing ¯φ.
22
+ We also found that the
23
+ substrate pattern is able to separate SPPs based on their motilities.
24
+ I.
25
+ INTRODUCTION
26
+ Active matter systems, which are collections of individ-
27
+ ual self-driven units that consume energy from the envi-
28
+ ronment to move, have been the subject of a significant
29
+ amount of research over the last few decades [1–3]. Active
30
+ matter systems range widely from macroscopic systems,
31
+ including schools of fish [4], flocks of birds [5], and granu-
32
+ lar media [6–8], to microscopic systems including colonies
33
+ of bacteria, eukaryotic cells [9–12], actin filaments and
34
+ microtubules that are propelled by their respective mo-
35
+ tor proteins [13], and active colloids [14]. Active matter
36
+ systems often exhibit intriguing collective behavior char-
37
+ acterized by clustering of the units and large-scale col-
38
+ lective motion [15]. This collective behavior is used, for
39
+ example, in bacteria colonies to reduce competition for
40
+ nutrients, accelerate growth of the colony, or to increase
41
+ resilience in hostile environments [16]. Likewise, the col-
42
+ lective behavior of assemblies of eukaryotic cells, such as
43
+ epithelial monolayers and cancer cells, has physiological
44
+ and pathological implications. These include embryoge-
45
+ nesis, wound healing and tumor metastasis [17–19].
46
+ Many studies have shown that clustering and collec-
47
+ tive motion of self-propelled particles (SPPs) are influ-
48
+ enced by various physical factors, including the packing
49
+ fraction of the SPPs, nature of the coupling between
50
+ neighboring SPPs, and the type of motion of a single
51
+ SPP [20, 21]. Other physical factors include environmen-
52
+ tal constraints [3] such as anisotropy of the embedding
53
+ fluid [22, 23], geometric confinement [24–36] and obsta-
54
+ cles [37, 38]. An interesting effect of circular confinement,
55
+ for example, is an induced vortical motion of the SPPs
56
+ ∗ Physical Review E (in press)
57
+ † Corresponding author. mlaradji@memphis.edu
58
+ that is concentric with the boundary [26–28].
59
+ While in most studies of SPPs’ collective behavior, the
60
+ substrate is non-patterned, the effect of patterned sub-
61
+ strates on SPPs collective behavior has recently been in-
62
+ vestigated in a few studies. For example, it was shown
63
+ that patterning the substrate, into periodic linear fur-
64
+ rows, aligns Pseudomonas aeruginosa along the furrows
65
+ while greatly supresses their migration across them [39].
66
+ Likewise, collective migration of epithelial cells is sub-
67
+ stantially promoted by linear grooves of patterned sub-
68
+ strates [40, 41]. However, computational investigations
69
+ of the effect of patterned substrates on SPPs collective
70
+ behavior are lacking. In this article, we address the effect
71
+ of substrates, which are partially circularly patterned, on
72
+ the collective behavior of soft SPPs with the ability to
73
+ switch their polarity. In particular, we investigate how
74
+ a circular confinement that is concentric with the sub-
75
+ strate’s pattern further influences their collective motion.
76
+ II.
77
+ MODEL AND METHOD
78
+ We consider a total number of P SPPs in two dimen-
79
+ sions, each modeled as a semi-flexible ring polymer com-
80
+ posed of N beads in a good solvent.
81
+ This model was
82
+ recently introduced by us to investigate SPPs collective
83
+ behavior on a non-patterned substrate [42] and is a gen-
84
+ eralization of an earlier model for strongly adsorbed dis-
85
+ joint ring polymers [43].
86
+ The potential energy of the
87
+ arXiv:2301.11239v1 [cond-mat.soft] 26 Jan 2023
88
+
89
+ 2
90
+ SPPs is given by
91
+ Unet=
92
+ P
93
+
94
+ l=1
95
+ � N
96
+
97
+ i=1
98
+ Ubond
99
+
100
+ r(l)
101
+ i,i+1
102
+
103
+ +
104
+ N
105
+
106
+ i=1
107
+ Ubend(r(l)
108
+ i−1, r(l)
109
+ i , r(l)
110
+ i+1)
111
+ +
112
+ N
113
+
114
+ i=1
115
+ Uwall
116
+
117
+ r(l)
118
+ i
119
+
120
+ + Uarea
121
+
122
+ {r(l)
123
+ i }
124
+
125
+ + Usub
126
+
127
+ r(l)
128
+ p1 , r(l)
129
+ p2
130
+ � �
131
+ +
132
+
133
+ l1,l2
134
+
135
+ i,j
136
+ Urep
137
+
138
+ |r(l1)
139
+ i
140
+ − r(l2)
141
+ j
142
+ |
143
+
144
+ ,
145
+ (1)
146
+ where r(l)
147
+ i
148
+ is the coordinate of bead i belonging to SPP
149
+ l and r(l)
150
+ i
151
+ = |r(l)
152
+ i |. The lth SPP has two symmetrically
153
+ positioned poles with indices
154
+ p1 = 1 and p2 = N/2 +
155
+ 1. Ubond is a harmonic potential ensuring connectivity
156
+ between consecutive beads within an SPP and is given
157
+ by
158
+ Ubond
159
+
160
+ r(l)
161
+ i,i+1
162
+
163
+ = 1
164
+ 2k
165
+
166
+ r(l)
167
+ i,i+1 − rb
168
+ �2
169
+ ,
170
+ (2)
171
+ where k is the spring constant, r(l)
172
+ i,i+1 = |r(l)
173
+ i+1−r(l)
174
+ i | and rb
175
+ is the preferred bond length.
176
+ In Eq. (2), r(l)
177
+ N,N+1 = r(l)
178
+ N,1.
179
+ The semi-flexibility of an SPP’s boundary is maintained
180
+ through a three-body interaction
181
+ Ubend(r(l)
182
+ i−1, r(l)
183
+ i , r(l)
184
+ i+1) = κ
185
+
186
+ 1 − cos θ(l)
187
+ i
188
+
189
+ ,
190
+ (3)
191
+ where κ is the bending stiffness of the polymers and
192
+ cos θ(l)
193
+ i
194
+ = r(l)
195
+ i−1,i·r(l)
196
+ i+1,i/r(l)
197
+ i−1,ir(l)
198
+ i+1,i.
199
+ In Eq. (3), r(l)
200
+ 0
201
+ = r(l)
202
+ N
203
+ and r(l)
204
+ N+1 = r(l)
205
+ 1 . Eq. (3) implies that the preferred bend-
206
+ ing angle of a triplet is 180◦. To account for the polariza-
207
+ tion of the SPPs, triplets of beads centered at the pole
208
+ beads with indices p1 and p2 have a preferred bending
209
+ angle θp ≤ 180◦. Since Eq. (3) does not allow for pre-
210
+ ferred angles different from 180◦, beads p1 and p2 are
211
+ assigned the following slightly different three-body inter-
212
+ action, which allows for any arbitrary splay angle θs,
213
+ Ubend(r(l)
214
+ p−1, r(l)
215
+ p , r(l)
216
+ p+1) = 1
217
+ 2κ′ �
218
+ cos θ(l)
219
+ p − cos θs
220
+ �2
221
+ ,
222
+ (4)
223
+ where κ′ is the bending stiffness at the poles. Due to
224
+ the softness of the potential given by Eq. (4), we found
225
+ that achieving the same persistence length of the polymer
226
+ with this potential as with that given by Eq. (3) requires
227
+ κ′ ≈ 10κ.
228
+ The disjointness of the ring polymers is maintained
229
+ by the following fully repulsive two-body interaction be-
230
+ tween any two non-bonded beads
231
+ Urep (r) =
232
+
233
+ 1
234
+
235
+
236
+ 1 − r
237
+ rc
238
+ �2
239
+ if r ≤ rc,
240
+ 0
241
+ if r > rc,
242
+ (5)
243
+ where ζ and rc are the strength and range of the repulsive
244
+ interaction, respectively. Finally, the area constraint of
245
+ each SPP is maintained by the effective potential energy
246
+ Uarea
247
+
248
+ {r(l)
249
+ i }
250
+
251
+ = 1
252
+ 2χA0
253
+
254
+ �1 −
255
+ A
256
+
257
+ {r(l)
258
+ i }
259
+
260
+ A0
261
+
262
+
263
+ 2
264
+ ,
265
+ (6)
266
+ Pl
267
+ !"
268
+ !#
269
+ $%&%'
270
+ (%& + (%' /2
271
+ ,-
272
+ ,
273
+ Non-patterned
274
+ substrate
275
+ Patterned
276
+ substrate
277
+ Confining
278
+ wall
279
+ FIG. 1. Schematic of the system. Solid black circle of radius R
280
+ corresponds the confining wall of the system. The yellow disk
281
+ of radius Rp corresponds the region of the substrate that is
282
+ patterned. The green annulus corresponds to the region of the
283
+ substrate that is non-patterned. The mid-point of the polarity
284
+ vector Pl of an arbitrary SPP l is at a distance (rl1 + rl2)/2,
285
+ where rl1 and rl2 are the coordinates of the two poles (The
286
+ origin of the coordinate system is at the center of the system).
287
+ The effect of the patterned substrate is to reorient the SPP’s
288
+ polarity through a torque, whose forces are indicated by the
289
+ green vectors). In this schematic, the size of the SPP is not
290
+ to scale with the system size and the size of the patterned
291
+ region.
292
+ where χ is the area-stretch modulus, A0 is the SPP’s
293
+ preferred area, and
294
+ A
295
+
296
+ {r(l)
297
+ i }
298
+
299
+ is the area enclosed by
300
+ the SPP’s boundary and depends on the coordinates of
301
+ the beads belonging to the SPP through the shoelace
302
+ formula,
303
+ A
304
+
305
+ {r(l)
306
+ i }
307
+
308
+ = 1
309
+ 2
310
+ ����
311
+ N
312
+
313
+ i=1
314
+
315
+ x(l)
316
+ i y(l)
317
+ i+1 − x(l)
318
+ i+1y(l)
319
+ i
320
+ � ����,
321
+ (7)
322
+ with x(l)
323
+ N+1 = x(l)
324
+ 1
325
+ and y(l)
326
+ N+1 = y(l)
327
+ i .
328
+ Finally, the SPPs are confined within a circle of radius
329
+ R by the interaction potential
330
+ Uwall (r) =
331
+
332
+ εwall (r − R + a)n /an if R − a ≤ r < R,
333
+ 0
334
+ if
335
+ r < R − a,
336
+ (8)
337
+ where εwall and a are the strength and range of this
338
+ interaction, respectively.
339
+ We choose n = 4 since this
340
+ value is large enough to prevent the SPPs from crossing
341
+ the circular confining wall. The main difference between
342
+ this model and prior models for the collective behavior
343
+ of elongated self-propelled particles is that the present
344
+ model accounts for the elongation of the self-propelled
345
+ particles and their flexibility.
346
+ This is in contrast with
347
+ previous studies wherein particles are either rigid [44–46]
348
+ or deformable with high aspect ratio and with practically
349
+ no account for the enclosed volume of the particles [47].
350
+ We consider the case where a region of the substrate
351
+ is circularly patterned. Experimentally, this would cor-
352
+
353
+ 3
354
+ respond, for example, to a substrate that is circularly
355
+ grooved [40, 41].
356
+ The effect of the substrate’s pattern
357
+ on an SPP is to align it along the local direction of the
358
+ pattern. This is achieved by a simple effective potential
359
+ energy between the SPP’s poles that produces a torque
360
+ on the SPP,
361
+ Usub
362
+
363
+ r(l)
364
+ p1 , r(l)
365
+ p2
366
+
367
+ = ks
368
+ 2 sin2 ϕl,
369
+ (9)
370
+ where ks is the strength of the interaction and ϕl is the
371
+ angle between the polarity Pl = r(l)
372
+ p2 − r(l)
373
+ p1 and the local
374
+ tangent to a circle of radius (r(l)
375
+ p1 +r(l)
376
+ p2 )/2 centered at the
377
+ origin. This torque tends to align an SPP’s polarity with
378
+ the local tangent of a circle centered at the origin and
379
+ passing by the mid-point of the two poles, as schemati-
380
+ cally shown by Fig. 1. We focus on the case where the
381
+ substrate is patterned only within the region (r ≤ Rp).
382
+ Otherwise, the substrate is uniform (non-patterned) for
383
+ Rp < r ≤ R.
384
+ Each SPP is propelled by a motility force of magnitude
385
+ FD, along its polarity, that is given by
386
+ fl(t) = FD (Pl(t)/Pl(t)) g (¯vl(t), Pl(t)) ,
387
+ (10)
388
+ where g(A, B) = +1 or -1 if A·B > 0 or < 0, respectively,
389
+ and where ¯vl(t) is the SPP’s average velocity over the
390
+ time interval [t − τm, t], i.e.
391
+ ¯vl(t) = 1
392
+ τm
393
+ � t
394
+ t−τm
395
+ vl(t′)dt′,
396
+ (11)
397
+ with vl(t) = (1/N) �N
398
+ i=1 v(l)
399
+ i (t).
400
+ In Eq. (11), we take
401
+ τm = τ where τ = rb
402
+
403
+ µ/ε, rb is the preferred bond
404
+ length, ε is the energy scale and µ is the bead’s mass.
405
+ Beads are moved according to a molecular dynamics
406
+ scheme,
407
+ ˙r(l)
408
+ i (t) = v(l)
409
+ i (t), and
410
+ µ ˙v(l)
411
+ i (t) = −∇(l)
412
+ i Unet + fl(t)
413
+ N
414
+ − Γv(l)
415
+ i (t)
416
+
417
+
418
+ 2DΞ(l)
419
+ i (t),
420
+ (12)
421
+ where ∇(l)
422
+ i
423
+ = (∂x(l)
424
+ i , ∂y(l)
425
+ i , ∂z(l)
426
+ i ) and v(l)
427
+ i
428
+ is the instanta-
429
+ neous velocity of bead i belonging to SPP l. In Eq. (12),
430
+ Γ is the friction coefficient, D is the diffusion coefficient
431
+ of the beads in the ideal limit (i.e. in the absence of inter-
432
+ actions and beads connectivity), and Ξ(l)
433
+ i (t) is a random
434
+ vector that has zero-mean and is δ-correlated for the same
435
+ particle and same component, i.e. Ξ(l)
436
+ i (t) satisfies
437
+ ⟨Ξ(l)
438
+ i (t)⟩ = 0,
439
+ ⟨Ξ(l1)
440
+ i,α (t) Ξ(l2)
441
+ j,β (t′)⟩ = δl1l2δijδαβδ (t − t′) ,
442
+ (13)
443
+ where α, β = x or y, δnm is the Kronecker delta, and
444
+ δ(t) is the Dirac delta-function.
445
+ The equations of motion are integrated using the
446
+ velocity-Verlet algorithm with a time step ∆t = 0.01τ.
447
+ The numerical value of a component of the random force
448
+ is given by
449
+ Ξ(l)
450
+ i,α =
451
+ � 3
452
+ ∆t
453
+ �1/2
454
+ λ(l)
455
+ i,α,
456
+ (14)
457
+ where λ(l)
458
+ i,α is a random number generated from a uni-
459
+ form distribution in the interval [−1, 1].
460
+ Each SPP is
461
+ composed of N = 40 beads. The values of the param-
462
+ eters of the model SPPs,
463
+ which are kept fixed in the
464
+ present study, are given by
465
+ k = 100ε/r2
466
+ b, κ = 100ε, κ′ = 1000ε, θs = 120◦, ζ = 50ε,
467
+ rc = rb, χ = 1ε/r2
468
+ b, A0 = 100r2
469
+ b, τm = τ,
470
+ D = 1.0r2
471
+ b/τ, and Γ = 1.0µ/τ.
472
+ (15)
473
+ III.
474
+ RESULTS
475
+ A.
476
+ Effects of Patterned Substrate and Motility
477
+ Force on SPPs’ Collective Behavior
478
+ We first focus on the combined effect of the patterned
479
+ substrate and circular confining wall on the SPPs col-
480
+ lective behavior at an average packing fraction ¯φ =
481
+ PA0/πR2 = 0.398 with R = 200rb. This corresponds
482
+ to P = 500.
483
+ Steady-state snapshot (a) in Fig. 2(A)
484
+ and Movie 1, at FD = 20ε/rb and non-patterned sub-
485
+ strate (ks = 0), indicate a small amount of clustering
486
+ and a weak collective motion, in agreement with prior
487
+ results [42]. Fig. 2(C) shows that at these conditions, the
488
+ radial distribution of the SPPs packing fraction, φ(r), is
489
+ almost uniform. As FD is increased to 24ε/rb at ks = 0,
490
+ the motility force drives many SPPs to the boundary
491
+ leading to their accumulation as shown by snapshot (b)
492
+ in Fig. 2(A) and collective unidirectional vortical motion
493
+ (see Movie 2). This is also demonstrated by the time de-
494
+ pendence of the average tangential velocity of the SPPs
495
+ in an annulus of thickness 10rb near the boundary (red
496
+ graph in Fig. 2(B) at ks = 0 and FD = 24ε/rb). In con-
497
+ trast, the SPPs motion in an annulus close to the center
498
+ is fairly turbulent (blue graph in Fig. 2(B) at ks = 0 and
499
+ FD = 24ε/rb). SPPs accumulation at the boundary is
500
+ due to the asymmetry between the effect of the motil-
501
+ ity force, which drives the SPPs toward the boundary,
502
+ and thermal effects, which drive the SPPs away from the
503
+ boundary, and has been observed in earlier studies [3].
504
+ In contrast, although the SPPs that are away from the
505
+ boundary move collectively in clusters, they do not ex-
506
+ hibit a net vortical motion, as demonstrated by the fluc-
507
+ tuations around 0 of the average tangential velocity of
508
+ the SPPs in the annulus close to the center (blue graph
509
+ in Fig. 2(B) at ks = 0 and FD = 24ε/rb).
510
+ Interaction between the SPPs and the patterned sub-
511
+ strate leads to a much richer dynamical behavior. Snap-
512
+ shots (c) and (d) in Fig. 2(A) and their corresponding
513
+ tangential velocities vs.
514
+ time in Fig. 2(B) show that,
515
+ at ks = 100ε and FD = 18 or 20ε/rb, the patterned
516
+
517
+ 4
518
+ 0
519
+ 50
520
+ 100
521
+ 150
522
+ 200
523
+ 0.00
524
+ 0.25
525
+ 0.50
526
+ 0.75
527
+ 1.00
528
+ (A)
529
+ !" = 0, &'= 20)/+,
530
+ !" = 100), &'= 20)/+,
531
+ !" = 100), &'= 24)/+,
532
+ + [+,]
533
+ !" = 0, &'= 24)/+,
534
+ !" = 100), &'= 22)/+,
535
+ (C)
536
+ !" = 100), &'= 18)/+,
537
+ _.
538
+ 2[3]
539
+ 45 +,/3
540
+ b
541
+ !" = 0, &' = 24)/+,
542
+ c
543
+ !"= 100), &' = 18 )/+,
544
+ d
545
+ !" = 100), &' = 20 )/+,
546
+ (B)
547
+ e
548
+ !" = 100), &' = 22)/+,
549
+ a
550
+ !" = 0, &' = 20)/+,
551
+ ; +
552
+ &' = 24)/+,
553
+ f !" = 100)
554
+ (a)
555
+ (b)
556
+ (f)
557
+ (d)
558
+ (e)
559
+ (c)
560
+ FIG. 2.
561
+ Panel (A): Steady-state snapshots at (a) FD = 20ε/rb and ks = 0, (b) FD = 24ε/rb and ks = 0, (c) FD = 18ε/rb and
562
+ ks = 100ε, (d) FD = 20ε/rb and ks = 100ε, (e) FD = 22ε/rb and ks = 100ε, and (f) FD = 24ε/rb and ks = 100ε. Panel B: Time
563
+ dependence of the average tangential velocity for different values of ks and FD corresponding to those in Panel (A). The blue
564
+ (red) graphs correspond to SPPs in the blue (red) annulus, shown in snapshot (A). Shaded yellow (green) region corresponds to
565
+ the regime where the vortices in the patterned and non-patterned regions are in same (opposite) directions. Panel (C): Radial
566
+ profiles of the packing fraction, ¯φ at values of FD and ks corresponding to those in Panel (A). All data shown in this figure are
567
+ at ¯φ = 0.398, Rp = 100rb and R = 200rb.
568
+ substrate and the driving force collectively lead to (1)
569
+ a tangential alignment of the SPPs in the patterned re-
570
+ gion, (2) their accumulation at the periphery of the pat-
571
+ terned region, and (3) their exclusion from the center. At
572
+ ks = 100ε and FD = 20ε/rb, Fig. 2(B) and Movie 3 show
573
+ that the SPPs move as a vortex, in the patterned region of
574
+ the substrate, with very few reversals in its direction. In
575
+ contrast, the SPPs outside the patterned region exhibit
576
+ a weak collective behavior, as demonstrated by the fact
577
+ that the SPPs’ average tangential velocity in this region
578
+ fluctuates around 0 (red graph in Fig. 2(B) at ks = 100ε
579
+ and FD = 20ε/rb).
580
+ As FD is further increased to FD = 22 or 24ε/rb, at
581
+ ks = 100ε, the corresponding snapshots (d) or (e), re-
582
+ spectively, shown in Fig. 2(A), show that more SPPs are
583
+ driven to the confining wall. This is also demonstrated by
584
+ increased packing fraction next to the boundary at these
585
+ values of FD in Fig. 2(C). Fig. 2(B) shows that, at these
586
+ values of FD, the SPPs exhibit collective vortical motion
587
+ in both patterned and non-patterned regions. These vor-
588
+ tices can move either in the same direction (shaded yellow
589
+ regions in Fig. 2(B) and Movie 4) or opposite directions
590
+ (shaded green regions and Movie 5) with frequent rever-
591
+ sals. Inspection of the vorticity reversals indicates that
592
+ they are due to collectively moving clusters in the non-
593
+ patterned region, which collide with the vortices in the
594
+ patterned region or in the boundary layer.
595
+ The SPPs collectivity is quantified through the vortical
596
+ order parameter defined as
597
+ Sv = ⟨|
598
+ P
599
+
600
+ l=1
601
+ σl|⟩/P,
602
+ (16)
603
+ where σl = +1 (-1) if the direction of the tangential ve-
604
+ locity of SPP l is clockwise (counter-clockwise). Fig. 3,
605
+ which depicts Sv vs. FD at ¯φ = 0.398, shows that the
606
+ substrate pattern shifts the onset of vortical collective
607
+ motion to smaller values of FD. Four distinct regimes
608
+ in the case of ks = 100ε are identified.
609
+ In regime I
610
+ (FD ≲ 16ε/rb), there is no collective motion. In regime
611
+ II (16ε/rb ≲ FD ≲ 21ε/rb), the collective behavior is
612
+ dominated by the patterned region, and is characterized
613
+ by an almost unidirectional vortical motion. Fig. 2(C)
614
+ shows that regime II is also characterized by an in-
615
+ crease in the maximum of the SPPs packing fraction
616
+ in the patterned region with increasing FD. In regime
617
+ III (21ε/rb ≲ FD ≲ 25ε/rb), both patterned substrate
618
+ and confining wall independently promote SPPs collec-
619
+ 10
620
+ 15
621
+ 20
622
+ 25
623
+ 30
624
+ 35
625
+ 0
626
+ 0.2
627
+ 0.4
628
+ 0.6
629
+ 0.8
630
+ 1
631
+ !"
632
+ #$ = 0
633
+ #$ = 100( (opposite vorticities)
634
+ #$ = 100( (same vorticities)
635
+ I
636
+ II
637
+ III
638
+ IV
639
+ 67 (/9:
640
+ 0
641
+ 50
642
+ 100 150
643
+ 0
644
+ 0.1
645
+ 0.2
646
+ 0.3
647
+ 0.4
648
+ !"
649
+ #$ (
650
+ 67 = 20(/9:
651
+ FIG. 3.
652
+ SV vs. FD at ¯φ = 0.398, Rp = 100rb and R = 200rb
653
+ for ks = 0 (red circles) and ks = 100ε (blue circles).
654
+ Full
655
+ (open) blue circles correspond to Sv at ks = 100ε where the
656
+ vortices in the patterned and non-patterned regions have same
657
+ (opposite) directions.(Inset) Sv vs. ks at FD = 20ε/rb. The
658
+ solid lines are simply guides to the eye.
659
+
660
+ 0.4
661
+ 0
662
+ -0.4
663
+ 0.4
664
+ 0
665
+ -0.4
666
+ 0.4
667
+ 0
668
+ -0.4
669
+ 0.4
670
+ 0
671
+ -0.4
672
+ 0.4
673
+ 0
674
+ -0.4
675
+ 0.4
676
+ 0
677
+ -0.4
678
+ 20000
679
+ 25000
680
+ 30000
681
+ 35000
682
+ 40000800
683
+ Q05
684
+ 0
685
+ 50
686
+ 100
687
+ 150
688
+ 200
689
+ 0.00
690
+ 0.25
691
+ 0.50
692
+ 0.75
693
+ 1.00
694
+ 0
695
+ 50
696
+ 100
697
+ 150
698
+ 200
699
+ 0.00
700
+ 0.25
701
+ 0.50
702
+ 0.75
703
+ 1.00
704
+ 10
705
+ 15
706
+ 20
707
+ 25
708
+ 30
709
+ 35
710
+ 0
711
+ 0.2
712
+ 0.4
713
+ 0.6
714
+ 0.8
715
+ 1
716
+
717
+
718
+
719
+
720
+
721
+ 1 pt
722
+
723
+ 20
724
+ 32
725
+
726
+
727
+
728
+ (A)
729
+ Circular boundary
730
+ Periodic boundary
731
+ conditions
732
+ ! "
733
+ " ["$]
734
+ (C)
735
+ 0
736
+ 50
737
+ 100
738
+ 150
739
+ 200
740
+ 0.00
741
+ 0.02
742
+ 0.04
743
+ 0.06
744
+ 0.08
745
+ " ["$]
746
+ (B)
747
+ &' "
748
+ " ["$]
749
+ (D)
750
+ 125"$
751
+ 150"$
752
+ 175"$
753
+ 25"$
754
+ 50"$
755
+ 75"$
756
+ 100"$
757
+ FIG. 4. (A) trajectories of a single SPP starting from a po-
758
+ sition near the center, for differemt values of FD and ks. (B)
759
+ Radial profile of the radial velocity of the SPPs for the case
760
+ of a circular confining wall. (B) Radial profile of the packing
761
+ fraction for the case of a circular confining wall (solid line)
762
+ and PBC (dashed line). Data shown in (B) and (C) are in
763
+ the case of FD = 24ε/rb, ks = 100ε, ¯φ = 0.398, Rp = 100rb
764
+ and R = 200rb. (D) Radial profiles of the packing fraction for
765
+ different values of the radius of the patterned region, Rp, indi-
766
+ cated in the legend. These data correspond to FD = 22ε/rb,
767
+ ks = 100ε, R = 200rb and ¯φ = 0.398. The vertical dashed
768
+ lines in (B-D) indicate the location of the boundary between
769
+ the patterned (left) and non-patterned (right) regions of the
770
+ substrate.
771
+ tive motion, and lead to vortical motion in both regions
772
+ with same or opposite directions. This results in a bi-
773
+ furcation of Sv into two branches: one branch with high
774
+ values of Sv (solid blue circles in Fig. 3) where the two
775
+ vortices have same direction, and a second branch with
776
+ low values of Sv (open blue circles in Fig. 3) where the
777
+ two vortices have opposite directions. Regime III marks
778
+ the beginning of the decrease in the value of the maxi-
779
+ mum of the SPPs’ packing fraction in the patterned re-
780
+ gions. Finally, in regime IV (FD ≳ 24ε/rb), the major-
781
+ ity of the SPPs are accumulated near the confining wall,
782
+ where they move as a unidirectional vortex.
783
+ Interestingly, snapshots (c) to (f) of Fig. 2(A) and
784
+ Fig. 2(C) demonstrate that the patterned substrate in-
785
+ duces an exclusion zone in the center with a diameter
786
+ that increases with FD. This is contrasted with the case
787
+ of a non-patterned substrate, in which the radial profile
788
+ of the packing fraction is almost uniform, except at the
789
+ boundary. The source of this exclusion zone, is inferred
790
+ from simulations of a single SPP (dilute regime) at finite
791
+ values of ks and FD, starting from a location near the
792
+ center. Fig. 4(A) (see Movie 6 as well) shows that the
793
+ SPP’s trajectory is an outward spiral, with a number of
794
+ turns that increases with increasing ks or decreasing FD.
795
+ Hence, the motility force and the substrate’s pattern co-
796
+ operatively drive the SPPs away from the patterned re-
797
+ gion with a rate that increases with FD and decreases
798
+ with ks, leading to an exclusion zone in the center.
799
+ In addition to the exclusion zone in the center,
800
+ Fig. 2(C) shows that the radial profile of the packing
801
+ fraction exhibits a broad peak within the patterned re-
802
+ gion, and close to the boundary between the patterned
803
+ and non-patterned regions. The emergence of this peak
804
+ is understood as follows. The motion of the SPPs within
805
+ the patterned region is mainly tangential, while in the
806
+ non-patterned region (but away from the confining wall),
807
+ the motion is more turbulent.
808
+ As a result vp
809
+ ⊥ < vn
810
+ ⊥,
811
+ where vp
812
+ ⊥ and vn
813
+ ⊥ are the averages of the magnitudes of
814
+ the radial components of the SPPs velocities in the pat-
815
+ terned and non-patterned regions, respectively, as shown
816
+ in Fig. 4(B). Steady state requires that the outflux of
817
+ the SPPs from the patterned must be equal to the influx
818
+ of the SPPs from the non-patterned regions to the pat-
819
+ terned region, i.e. φpvp
820
+ ⊥,out = φnvn
821
+ ⊥,in, where φp (φn) is
822
+ the packing fractions of the SPPs in the patterned (non-
823
+ patterned) region, close the boundary between the pat-
824
+ terned and non-patterned regions.
825
+ vp
826
+ ⊥,out is the average
827
+ of the radial component of the velocity of the SPPs out-
828
+ going from the patterned region at the boundary between
829
+ the patterned and non-patterned regions. Likewise, vn
830
+ ⊥,in
831
+ is the average of the radial component of the velocity of
832
+ the SPPs incoming from the non-patterned region at the
833
+ boundary between the patterned and non-patterned re-
834
+ gions. Therefore, mass balance between the outflux and
835
+ influx of the SPPs across this boundary, at steady state,
836
+ imposes φp > φn. Combined with the fact that the inter-
837
+ play between the motility force and the torque induced
838
+ by the patterned substrate, which leads to SPPs exclu-
839
+ sion from the center, the argument above implies that the
840
+ radial packing fraction profile must exhibit a peak within
841
+ the patterned region, and close to the boundary between
842
+ the patterned and non-patterned regions, as shown by
843
+ Fig. 2(C). FD enhances the SPPs outflux from the pat-
844
+ terned region, i.e. it increases vp
845
+ ⊥, while it decreases the
846
+ influx from the non-patterned region, due to increased
847
+ accumulation of the SPPs near the confining wall. As
848
+ a result, the size of the exclusion zone increases with
849
+ FD (see Fig. 2(C)). Elimination of SPPs accumulation
850
+ at the boundary, through imposing periodic boundary
851
+ conditions (PBC), enhances SPPs influx from the non-
852
+ patterned region to the patterned region. This leads to
853
+ a decrease in the size of the exclusion zone, as demon-
854
+ strated by Fig. 4(C).
855
+ The results thus far presented correspond to the case
856
+ of a radius of the patterned region of the substrate,
857
+ Rp = 100rb. To infer the effect of the size of the patterned
858
+ region, we performed a series of simulations in the case
859
+ of ¯φ = 0.398, FD = 22ε/rb, ks = 100ε, and R = 200rb.
860
+ Fig. 4(D) shows the radial profile of the packing fraction
861
+ of these systems with Rp varying between 25rb and 175rb.
862
+ This figure demonstrates that the diameter of the deple-
863
+
864
+ /r;ks = 100
865
+ /rb; ks = 160c
866
+ ε/rb; ks = 100c32206
867
+ tion zone increases with Rp, which implies that the size
868
+ depletion of the SPPs from the middle is also affected
869
+ by the behavior of the SPPs in the non-patterned region
870
+ of the substrate, in line with the arguments presented in
871
+ the previous paragraph.
872
+ B.
873
+ Effect of SPPs’ Packing Fraction on their
874
+ Collective Behavior on a Patterned Substrate
875
+ We now turn to the effect of SPPs packing fraction
876
+ on their collective motion. We consider the case where
877
+ FD = 24ε/rb and ks = 100ε. The packing fraction is var-
878
+ ied by changing the number of SPPs from P = 59 to 540,
879
+ while the radius of the system is kept fixed at R = 138rb.
880
+ Corresponding Sv vs. ¯φ, shown in Fig. 5, reveals three
881
+ main regimes. For ¯φ ≲ 0.3, most SPPs accumulate at
882
+ the boundary where they move as a unidirectional vor-
883
+ tex (see Movie 7). For 0.3 ≲ ¯φ ≲ 0.8, the amount of SPPs
884
+ is increased in the patterned region, where they move as
885
+ a vortex with same direction as that in the boundary
886
+ layer (see Movie 8). Fig. 5 shows that for ¯φ ≲ 0.8, Sv in-
887
+ creases monotonically with ¯φ. Surprisingly, however, Sv
888
+ decreases with ¯φ for ¯φ ≳ 0.8. This decrease is interest-
889
+ ingly correlated with the disappearance of the exclusion
890
+ zone in the center as demonstrated by the profiles of the
891
+ packing fraction in the inset of Fig. 5. In fact, the inset
892
+ of Fig. 5 shows that an excess of SPPs at the center is
893
+ induced at ¯φ ≳ 0.8.
894
+ Inspection of movies at ¯φ ≳ 0.8 reveals an emergence
895
+ of reversals in the vorticity (demonstrated by SPPs ve-
896
+ locities snapshots in Fig. 6(A) and by Movie 9). These
897
+ reversals are quantified by the time dependence of vT (t),
898
+ defined as the average of the tangential velocity of the
899
+ SPPs in an annulus of thickness 10rb near the system’s
900
+ boundary.
901
+ Fig. 6(B) shows that vT is essentially con-
902
+ stant in the case of a non-patterned substrate (ks = 0)
903
+ at FD = 24ε/rb, indicating a unidirectional vortical mo-
904
+ tion. At ks = 40ε and same FD, Fig. 6(B) shows that
905
+ vT exhibits a single reversal during the time interval
906
+ [20 000τ, 40 000τ].
907
+ In stark contrast, however, vT ex-
908
+ hibits many reversals at ks = 100ε and same FD dur-
909
+ ing the same time interval. Therefore, at high packing
910
+ fractions, the rate of vorticity reversals (i.e., number of
911
+ reversals per unit of time), κ, increases with increasing ks
912
+ beyond some threshold value. Likewise, Fig. 6(C) shows
913
+ that κ increases with ¯φ for ¯φ ≳ 0.8. The decrease in Sv
914
+ at ¯φ ≳ 0.8, shown in Fig. 5(B), is simply due to coexis-
915
+ tence of two vortices with opposite directions during the
916
+ reversal events, as demonstrated by a series of snapshots
917
+ in Fig. S1 in Supplemental Information [48].
918
+ Correlations between reversal events are inferred from
919
+ the power spectrum F(ν), defined as the Fourier trans-
920
+ form of the velocity autocorrelation f(t) = ⟨vT (t0 +
921
+ t)vT (t0)⟩, where ν is frequency. Fig. 6(D) shows that,
922
+ at ¯φ = 0.836, F(ν) is peaked at ν ≈ 0.
923
+ This indi-
924
+ cates that reversal events are weakly correlated at pack-
925
+ ing fractions around this value of ¯φ.
926
+ Fig. 6(D) shows
927
+ 0
928
+ 0.2
929
+ 0.4
930
+ 0.6
931
+ 0.8
932
+ 1
933
+ 0.4
934
+ 0.5
935
+ 0.6
936
+ 0.7
937
+ 0.8
938
+ 0.9
939
+ 1
940
+ !"
941
+ #$
942
+ 0
943
+ 25
944
+ 50
945
+ 75
946
+ 100 125
947
+ 0.6
948
+ 0.7
949
+ 0.8
950
+ 0.9
951
+ " %
952
+ % [%']
953
+ " = 0.887
954
+ " = 0.861
955
+ " = 0.836
956
+ " = 0.803
957
+ " = 0.769
958
+ " = 0.736
959
+ FIG. 5.
960
+ Vortical order parameter vs. packing fraction at
961
+ ks = 100ε, FD = 24ε/rb, Rp = 100rb and R = 138rb. Vor-
962
+ tical motion is dominated by the circular confining wall at
963
+ low ¯φ (green region). Both circular confining wall and pat-
964
+ terned substrate contribute to vortical motion at intermediate
965
+ ¯φ (blue region). At high ¯φ, vortical motion exhibits reversals
966
+ (red region). Inset shows radial packing fraction profiles at
967
+ different values of ¯φ. Steady state snapshots at different pack-
968
+ ing fractions are shown at the top of the figure. The dashed
969
+ circles in these snapshots indicate the boundary of the pat-
970
+ terned region of the substrate.
971
+ that F(ν) exhibits a well-defined peak at ¯φ = 0.887.
972
+ Therefore, reversal events of the vorticity become inter-
973
+ estingly quasi-periodic with increasing ¯φ. The emergence
974
+ of quasi-periodic reversals at high densities is also demon-
975
+ strated by the time dependence of the tangential velocity
976
+ in Fig. 7.
977
+ Inspection of Movie 9 shows that vorticity reversals
978
+ always originate from the center of the system.
979
+ This
980
+ concurs with the fact that vorticity reversals are absent
981
+ at low packing fractions, i.e. when the exclusion zone is
982
+ present. To demonstrate that the geometry of the confin-
983
+ ing wall has a weak effect on vorticity reversals, we per-
984
+ formed a simulation on a system with a square boundary,
985
+ of linear size Lx = 400rb, and same circular pattern with
986
+ ks = 100ε, FD = 24ϵ/rb, ¯φ = 0.887 and Rp = 100rb,
987
+ and found reversals in the vorticity similar to the case
988
+ with circular boundary and with about same value of κ,
989
+ as demonstrated by Fig. S2 [48]. Likewise, Fig. S3 [48]
990
+ shows that systems with periodic boundary conditions,
991
+ at same values of FD, ks, ¯φ, Rp and Lx, also exhibit vor-
992
+ ticity reversals, albeit not as correlated as in the case of
993
+ circular or square boundary. This is due to the fact the
994
+ periodic boundary conditions induce more turbulent flow
995
+ of the SPPs in the non-patterned region.
996
+ As stated above, reversals in the vorticity are associ-
997
+ ated with an increase in SPPs packing fraction at the
998
+
999
+ 7
1000
+ 0
1001
+ 0.01
1002
+ 0.02
1003
+ 0.03
1004
+ 0.04
1005
+ 0
1006
+ 2
1007
+ 4
1008
+ 6
1009
+ 8
1010
+ 0.8
1011
+ 0.85
1012
+ 0.9
1013
+ 0
1014
+ 1
1015
+ 2
1016
+ 3
1017
+ 4
1018
+ 5
1019
+ 6
1020
+ 20000
1021
+ 25000
1022
+ 30000
1023
+ 35000
1024
+ 40000
1025
+ -0.6
1026
+ -0.4
1027
+ -0.2
1028
+ 0.0
1029
+ 0.2
1030
+ 0.4
1031
+ 0.6
1032
+ ks=0
1033
+ ks=40
1034
+ ks=100
1035
+ v (t)[rb/ ]
1036
+ t [ ]
1037
+ ! = 37000&
1038
+ 38000&
1039
+ 39000&
1040
+ 40000&
1041
+ B
1042
+ B
1043
+ B
1044
+ B
1045
+ (A)
1046
+ (B)
1047
+ (D)
1048
+ (C)
1049
+ *+
1050
+ , &-. (×10-2)
1051
+ 4(5)
1052
+ 5 &-.
1053
+ + = 0.836
1054
+ + = 0.887
1055
+ FIG. 6. (A) Time-sequence of velocity snapshots showing vorticity reversals at FD = 24ε/rb, ¯φ = 0.836, Rp = 100rb, R = 138rb
1056
+ and ks = 100ε. (B) Tangential velocity vT (t) vs. time at FD = 24ε/rb and ¯φ = 0.836. (C) Rate of vorticity reversals vs. ¯φ at
1057
+ ks = 100ε. (G) The Fourier transform, F(ν), of the velocity autocorrelation function f(t) = ⟨vT (t0 + t)vT (t0)⟩, vs. frequency
1058
+ at ks = 100ε at two high values of the packing fraction.
1059
+ center. This is found to also be associated with an in-
1060
+ crease in the misalignment between the SPPs polarities
1061
+ and velocities, as shown by Fig. S4 (A) [48]. This re-
1062
+ -0.6
1063
+ -0.4
1064
+ -0.2
1065
+ 0.0
1066
+ 0.2
1067
+ 0.4
1068
+ 0.6
1069
+ 35000
1070
+ 37500
1071
+ 40000
1072
+ 42500
1073
+ 45000
1074
+ -0.6
1075
+ -0.4
1076
+ -0.2
1077
+ 0.0
1078
+ 0.2
1079
+ 0.4
1080
+ 0.6
1081
+ ̅"# $ [&'/)]
1082
+ $[)]
1083
+ FIG. 7.
1084
+ Time dependence of the tangential velocity of an
1085
+ annulus of thickness 10rb near the system’s boundary for the
1086
+ case of FD = 24ε/rb, Rp = 100rb, R = 200rb and ks = 100ε.
1087
+ Top and bottom graphs correspond to ¯φ = 0.836 and 0.887,
1088
+ respectively.
1089
+ sults in a high degree of fluctuations in the average of
1090
+ the tangential velocity of the SPPs in the center as op-
1091
+ posed to those away from the center, as shown by Fig. S4
1092
+ (B) [48]. These increased fluctuations at the center leads
1093
+ some SPPs to move in a direction opposite to that of
1094
+ the vortex, and in some cases these SPPs force neighbor-
1095
+ ing SPPs to follow, leading to the observed intermittent
1096
+ vorticity reversals.
1097
+ C.
1098
+ Patterned-substrates induced segregation
1099
+ between fast and slow SPPs
1100
+ Our simulations show that at low and intermediate val-
1101
+ ues of the packing fraction, the SPPs spatial distribution
1102
+ depends on their motility force. One would therefore ex-
1103
+ pect that patterning the substrate may be used as a tool
1104
+ to spatially separate SPPs, based on their motility force.
1105
+ To verify this hypothesis, we performed a simulation of a
1106
+ binary system, at an average packing fraction ¯φ = 0.6, in
1107
+ which half of the SPPs are slow (with Fd = 20ε/rb) and
1108
+ the other half are fast (with FD = 24ε/rb). The two types
1109
+ of SPPs are otherwise identical.
1110
+ The packing fraction
1111
+ profiles of the two components and a steady-state snap-
1112
+ shot, depicted in Figs. 8(A) and (B), respectively, show
1113
+ that the fast and slow SPPs mostly segregate such that
1114
+ the fast SPPs are highly concentrated in the patterned
1115
+ region and the slow SPPs are more concentrated in the
1116
+ non-patterned region. In comparison, the two types of
1117
+ SPPs are mixed in the case where the substrate is fully
1118
+
1119
+ 8
1120
+ 0
1121
+ 25
1122
+ 50
1123
+ 75
1124
+ 100 125 150
1125
+ 0.00
1126
+ 0.25
1127
+ 0.50
1128
+ 0.75
1129
+ 1.00
1130
+ 0
1131
+ 25
1132
+ 50
1133
+ 75
1134
+ 100 125 150
1135
+ 0.00
1136
+ 0.25
1137
+ 0.50
1138
+ 0.75
1139
+ 1.00
1140
+ ! [!#]
1141
+ (A)
1142
+ (B)
1143
+ % !
1144
+ &' = 24+/!#
1145
+ &' = 20+/!#
1146
+ Overall packing
1147
+ fraction
1148
+ % !
1149
+ &' = 24+/!#
1150
+ &' = 20+/!#
1151
+ Overall packing
1152
+ fraction
1153
+ (C)
1154
+ (D)
1155
+ FIG. 8. (A) Radial profile of the packing fraction in the case
1156
+ of a binary system of fast SPPs, with FD = 24ε/rb (blue)
1157
+ and slow SPPs, with FD = 20ε/rb (red), in the case where
1158
+ the average packing fraction is 0.6, ks = 100ε, R = 162rb
1159
+ and Rp = 100rb.
1160
+ (B) A snapshot of the binary system at
1161
+ steady state. Blue and red SPPs correspond to fast and slow
1162
+ SPPs, respectively. The dashed vertical line and circle in (A)
1163
+ and (B), respectively, indicate the boundary of the patterned
1164
+ region. (C) and (D) same as in (A) and (B), respectively, but
1165
+ in the case of a non-patterned substrate (ks = 0).
1166
+ uniform, as shown by Figs. 8(C) and (D), except that the
1167
+ fast SPPs are more concentrated at the confining wall
1168
+ than the slow SPPs.
1169
+ The separation between the fast and slow SPPs shown
1170
+ in Figs. 8 (A) and (B) is counterintuitive in that the
1171
+ coupling between the pattern of the substrate and the
1172
+ motility force tend to expel the SPPs from the patterned
1173
+ region. Therefore, one would expect that the fast SPPs
1174
+ are more concentrated in the non-patterned region and
1175
+ that the slow SPPs are more present in the patterned
1176
+ region, as discussed earlier in Section III.A, which is op-
1177
+ posite to what is observed from Figs. 8 (A) and (B).
1178
+ The fact that the patterned substrate is able to segre-
1179
+ gate the SPPs based on their motilities is very interesting
1180
+ and potentially very useful. However, an explanation of
1181
+ this phenomenon is lacking at the moment and requires
1182
+ further systematic simulations. This segregation could
1183
+ be understood from a balance of the normal stresses ex-
1184
+ erted by the SPPs at the interface between the patterned
1185
+ and non-patterned regions, using for example the Irving-
1186
+ Kirkwood formalism [49]. This study is planned to be
1187
+ performed by the authors in the near future. Separation
1188
+ between SPPs may also be induced through differences in
1189
+ their interaction strength with the substrate and possibly
1190
+ the degree of their flexibility.
1191
+ IV.
1192
+ SUMMARY AND CONCLUSIONS
1193
+ We showed in this article that a complex collective be-
1194
+ havior is exhibited by SPPs that are confined in a circular
1195
+ geometry and that interact with a circularly patterned
1196
+ substrate, which tends to orient the SPPs polarities with
1197
+ the local tangent of the pattern. This collective behav-
1198
+ ior is characterized by SPPs vortical motion, accumula-
1199
+ tion in the outer portion of the patterned region and/or
1200
+ the system boundary, and SPPs exclusion from the cen-
1201
+ ter. This collective behavior is enhanced with increasing
1202
+ SPPs driving force. The size of the exclusion zone is de-
1203
+ termined by an interplay between, on one hand, the com-
1204
+ bined effects of the driving force and the patterned sub-
1205
+ strate, which tends to drive the SPPs outward, and, on
1206
+ the other hand, motion of the SPPs in the non-patterned
1207
+ region of the substrate which drives the SPPs into the
1208
+ patterned region. Interestingly, the vortices in the pat-
1209
+ terned and non-patterned regions, at intermediate values
1210
+ of the SPPs packing fraction, may have same or opposite
1211
+ directions.
1212
+ Another interesting feature of this system is that at
1213
+ intermediate packing fractions and intermediate values
1214
+ of the motility force, the radial profile of the packing
1215
+ fraction is non-monotonic, with a peak in the patterned
1216
+ region close to its boundary with the non-patterned re-
1217
+ gion. A simulation of a binary system, composed of slow
1218
+ and fast SPPs (i.e., SPPs with a low and motility forces,
1219
+ respectively) show that they can be segregated such that
1220
+ the fast SPPs are mostly trapped in the patterned region,
1221
+ while the fast SPPs are mainly in the non-patterned re-
1222
+ gion. This implies that SPPs can be segregated based on
1223
+ their motility.
1224
+ With increasing packing fraction, the exclusion zone in
1225
+ the center disappears. High misalignment between the
1226
+ SPPs polarities and tangential velocities, in the center of
1227
+ the system, leads to an increased degree of fluctuations
1228
+ in their tangential velocities and reversals in the vorticity
1229
+ that originate from the center. Interestingly, these rever-
1230
+ sals become quasi-periodic at high packing fractions. It
1231
+ is worth noting that while the system exhibits vorticity
1232
+ reversal at both intermediate and high packing fractions,
1233
+ the mechanisms leading to the two types of reversals are
1234
+ different. The results of the present work implies that
1235
+ circular patterning of the substrate can be used as a tool
1236
+ to guide the motion of SPPs into a collective vortical mo-
1237
+ tion, and that at high packing fractions, can be used to
1238
+ create quasi periodic reversals in their vortical motion.
1239
+ We also showed that the patterned substrate is able to
1240
+ segregate a binary mixture of slow and fast SPPs. We
1241
+ expect that SPPs can likewise be segregated based on
1242
+ their degrees of adhesion to the substrate. This segrega-
1243
+ tion can be enhanced by further increasing the adhesion
1244
+ strength of the fast SPPs to the substrate.
1245
+ We note that the present model of SPPs accounts for
1246
+ details often not accounted for in other models. These
1247
+ include elongation of the self-propelled particles, their
1248
+ flexibility, and enclosed area of the SPPs. It would of
1249
+
1250
+ 9
1251
+ course be very desirable to determine the effects of each
1252
+ of these ingredients on the details of the results. There is
1253
+ of course a close connection between the SPP dynamics
1254
+ described here with that of swimming bacteria.
1255
+ How-
1256
+ ever, it is important to note that the estimated value of
1257
+ the Reynolds number based on the parameters used in
1258
+ this study (Eq. (15)) is about 1, which is much larger
1259
+ than that of swimming bacteria. Using the present ap-
1260
+ proach to investigate the collective motion of cells such as
1261
+ bacteria requires a much smaller Reynolds number which
1262
+ can be achieved by increasing the value of the drag coef-
1263
+ ficient Γ in our model. We plan to investigate the effects
1264
+ of these parameters on the observed phenomena in the
1265
+ present study in the near future.
1266
+ V.
1267
+ ACKNOWLEDGEMENTS
1268
+ All simulations were performed on computers of the
1269
+ High Performance Computing Facility of the University
1270
+ of Memphis. This work was funded by the University of
1271
+ Memphis.
1272
+ [1] S. Ramaswamy, Annu. Rev. Condens. Matter Phys. 1,
1273
+ 323 (2010).
1274
+ [2] S. Ramaswamy, J. Stat. Mech.: Theory Exp. 5, 054002
1275
+ (2017).
1276
+ [3] C. Bechinger, R. Di Leonardo, H. L¨owen, C. Reichhardt,
1277
+ G. Volpe,
1278
+ and G. Volpe, Rev. Mod. Phys. 88, 045006
1279
+ (2016).
1280
+ [4] S. Camazine, J. Deneubourg, N. R. Franks, J. Sneyd,
1281
+ G. Theraula, and E. Bonabeau, Self-Organization in Bi-
1282
+ ological Systems (Princeton University Press, Princeton,
1283
+ NJ, USA, 2001).
1284
+ [5] C. K. Hemelrijk and H. Hildenbrandt, Int. Focus 2, 726
1285
+ (2012).
1286
+ [6] D. L. Blair, T. Neicu, and A. Kudrolli, Phys. Rev. E 67,
1287
+ 031303 (2003).
1288
+ [7] A. Kudrolli, G. Lumay, D. Volfson, and L. S. Tsimring,
1289
+ Phys. Rev. Lett. 100, 058001 (2008).
1290
+ [8] K.-D. N. T. Lam, M. Schindler,
1291
+ and O. Dauchot, New
1292
+ J. Phys. 17, 113056 (2015).
1293
+ [9] T. Vicsek, A. Czir´ok, E. Ben-Jacob, I. Cohen,
1294
+ and
1295
+ O. Shochet, Phys. Rev. Lett. 75, 1226 (1995).
1296
+ [10] B. Szabo, G. Sz¨oll¨osi, B. G¨onci, Z. Jur´anyi, D. Selmeczi,
1297
+ and T. Vicsek, Phys. Rev. E 74, 061908 (2006).
1298
+ [11] S. Wang and P. G. Wolynes, Proc. Natl. Acad. Sci. U.S.A.
1299
+ 108, 15184 (2011).
1300
+ [12] E. M´ehes and T. Vicsek, Integr. Biol. 6, 831 (2014).
1301
+ [13] D. Needleman and Z. Dogic, Nat. Rev. Mat. 2, 17048
1302
+ (2017).
1303
+ [14] I. Theurkauff, C. Cottin-Bizonne, J. Palacci, C. Ybert,
1304
+ and L. Bocquet, Phys. Rev. Lett. 108, 268303 (2012).
1305
+ [15] F. Schweitzer, Brownian Agents and Active Particles:
1306
+ Collective Dynamics in the Natural and Social Sciences
1307
+ (Springer-Verlag, Heidelberg, Germany, 2007).
1308
+ [16] D. Kaiser, Curr. Biol. R561, 2007.
1309
+ [17] N. S. Gov, Proc. Natl. Acad. Sci. U.S.A. 104, 15970
1310
+ (2007).
1311
+ [18] D. S. Li, J. Zimmermann, and H. Levine, Phys. Biol. 13,
1312
+ 016006 (2016).
1313
+ [19] M. Lintz, A. Mu˜noz, and C. A. Reinhart-King, J.
1314
+ Biomech. Eng. 139, 0210051 (2017).
1315
+ [20] M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B.
1316
+ Liverpool, J. Prost, M. Rao,
1317
+ and R. A. Simha, Rev.
1318
+ Mod. Phys. 85, 1143 (2013).
1319
+ [21] M. E. Cates and J. Tailleur, Annu. Rev. Condens. Matter
1320
+ Phys. 6, 219 (2015).
1321
+ [22] C. Peng, T. Turiv, Y. Guo, Q.-H. Wei, and O. D. Lavren-
1322
+ tovich, Science 354, 882 (2016).
1323
+ [23] S. Liu, S. Shankar, M. C. Marchetti, and Y. Wu, Nature
1324
+ 590, 80 (2021).
1325
+ [24] H. H. Wensink and H. L¨owen, Phys. Rev. E 78, 031409
1326
+ (2008).
1327
+ [25] S. R. K. Vedula, M. C. Leong, T. L. Lai, P. Hersen, A. J.
1328
+ Kabla, C. T. Lim, and B. Ladoux, Proc. Natl. Acad. Sci.
1329
+ U.S.A. 109, 12974 (2012).
1330
+ [26] H. Wioland, F. G. Woodhouse, J. Dunkel, J. O. Kessler,
1331
+ and R. E. Goldstein, Phys. Rev. Lett. 110, 268102
1332
+ (2013).
1333
+ [27] E. Lushi, H. Wioland, and R. E. Goldstein, Proc. Natl.
1334
+ Acad. Sci. U.S.A. 111, 9733 (2014).
1335
+ [28] B. C. van Zuiden, J. Paulose, W. T. M. Irvine, and V.
1336
+ Vitelli, Proc. Natl. Acad. Sci. U.S.A. 113, 12919 (2016).
1337
+ [29] J. Elgeti and G. Gompper, Europhys. Lett. 109, 58003
1338
+ (2015).
1339
+ [30] C. A. Velasco, S. D. Ghahnaviyeh, H. J. Pishkenari, T.
1340
+ Auth, and G. Gompper, Soft Matter 13, 5865 (2017).
1341
+ [31] H. Wioland, E. Lushi, and R. E. Goldstein, New J. Phys.
1342
+ 18, 075002 (2016).
1343
+ [32] G. Duclos, C. Blanch-Mercader, V. Yashunsky, G. Sal-
1344
+ breux, J. F. Joanny, J. Prost,
1345
+ and P. Silberzan, Nat.
1346
+ Phys. 14, 728 (2018).
1347
+ [33] F. Kempf, R. Mueller, E. Frey, J. M. Yeomans,
1348
+ and
1349
+ A. Doostmohammadi, Soft Matter 15, 7538 (2019).
1350
+ [34] S. Jain, V. M. L. Cachoux, G. H. N. S. Narayana,
1351
+ S. de Beco, J. D’Alessandro, V. Cellerin, T. Chen, M. L.
1352
+ Heuz´e, P. Marcq, R.-M. M`ege, A. J. Kabla, C. T. Lim,
1353
+ and B. Ladoux, Nat. Phys. 16, 802 (2020).
1354
+ [35] M. M. Norton, A. Baskaran, A. Opathalage, B. Langes-
1355
+ lay, S. Fraden, A. Baskaran,
1356
+ and M. F. Hagan, Phys.
1357
+ Rev. E 97, 012702 (2018).
1358
+ [36] J.-B. Gorce, H. Xia, N. Francois, and M. Shats, Proc.
1359
+ Natl. Acad. Sci. U.S.A. 116, 25424 (2019).
1360
+ [37] A. Kaiser, H. H. Wensink,
1361
+ and H. L¨owen, Phys. Rev.
1362
+ Lett. 108, 268307 (2012).
1363
+ [38] I. S. Aronson and A. Pikovsky, Phys. Rev. Lett. 128,
1364
+ 108001 (2022).
1365
+ [39] E.
1366
+ S.
1367
+ Gloag,
1368
+ C.
1369
+ Elbadawi,
1370
+ C.
1371
+ J.
1372
+ Zachreson,
1373
+ I. Aharonovich,
1374
+ M. Toth,
1375
+ I. G. Charles,
1376
+ L. Turn-
1377
+ bull,
1378
+ and C. B. Whitchurch, Front. Microbiol. 7, 2157
1379
+ (2017).
1380
+ [40] K.-H. Nam, P. Kim, D. K. Wood, S. Kwon, P. P. Proven-
1381
+ zano, and D.-H. Kim, Sci. Rep. 6, 29749 (2016).
1382
+
1383
+ 10
1384
+ [41] G. Lee, L. Atia, B. Lan, Y. Sharma, L. Nissim, M.-R.
1385
+ Wu, E. Pery, T. K. Lu, C. Y. Park, J. P. Butler, and J.
1386
+ J. Fredberg, Connect. Tissue Res. 59, 309 (2018).
1387
+ [42] H. Wen, Y. Zhu, C. Peng, P. B. S. Kumar,
1388
+ and
1389
+ M. Laradji, Soft Matter 18, 1228 (2022).
1390
+ [43] Y. Zhu, P.B. Sunil Kumar, and M. Laradji, Soft Matter
1391
+ 17, 5427 (2021).
1392
+ [44] F. Peruani, A. Deutsch, and M. B¨ar, Phys. Rev. E 74,
1393
+ 030904 (2006).
1394
+ [45] Y. Yang, V. Marceau, and G. Gompper, Phys. Rev. E
1395
+ 82, 031904 (2010).
1396
+ [46] M. Theers, E. Westphal, K. Qi, R.G. Winkler, and G.
1397
+ Gompper, Soft Matter 14, 8590 (2018).
1398
+ [47] ¨O. Duman, R. E. Isele-Holder, J. Elgeti, and G. Gomp-
1399
+ per, Soft Matter 14, 4483 (2018).
1400
+ [48] See Supplemental Material at [URL will be inserted by
1401
+ publisher] for further results.
1402
+ [49] J.H. Irving and J.G. Kirkwood, J. Chem. Phys. 18, 817
1403
+ (1950).
1404
+
GNFIT4oBgHgl3EQfWStC/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
LNE1T4oBgHgl3EQfswVe/content/2301.03369v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cea23b64c580813841a3ee5e7d6bf078d1864832405e01bf5c3a07b49781cd66
3
+ size 1067456