jackkuo commited on
Commit
bd5af05
·
verified ·
1 Parent(s): 0c2ead9

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. -NFIT4oBgHgl3EQf8ysQ/content/2301.11403v1.pdf +3 -0
  2. -NFIT4oBgHgl3EQf8ysQ/vector_store/index.pkl +3 -0
  3. -tE3T4oBgHgl3EQfrgrp/vector_store/index.faiss +3 -0
  4. -tE4T4oBgHgl3EQf4A1b/content/2301.05310v1.pdf +3 -0
  5. -tE4T4oBgHgl3EQf4A1b/vector_store/index.faiss +3 -0
  6. -tE4T4oBgHgl3EQf4A1b/vector_store/index.pkl +3 -0
  7. .gitattributes +84 -0
  8. 19FQT4oBgHgl3EQfFDWe/content/tmp_files/2301.13240v1.pdf.txt +0 -0
  9. 19FQT4oBgHgl3EQfFDWe/content/tmp_files/load_file.txt +0 -0
  10. 1tE0T4oBgHgl3EQfuQHv/content/2301.02604v1.pdf +3 -0
  11. 2dFQT4oBgHgl3EQfFzW1/content/tmp_files/2301.13242v1.pdf.txt +3565 -0
  12. 2dFQT4oBgHgl3EQfFzW1/content/tmp_files/load_file.txt +0 -0
  13. 4tE4T4oBgHgl3EQfBAt_/content/2301.04848v1.pdf +3 -0
  14. 4tE4T4oBgHgl3EQfBAt_/vector_store/index.faiss +3 -0
  15. 4tE4T4oBgHgl3EQfBAt_/vector_store/index.pkl +3 -0
  16. 5NE5T4oBgHgl3EQfPA41/vector_store/index.faiss +3 -0
  17. 5dE3T4oBgHgl3EQfpQo9/content/2301.04640v1.pdf +3 -0
  18. 5dE3T4oBgHgl3EQfpQo9/vector_store/index.faiss +3 -0
  19. 5dE3T4oBgHgl3EQfpQo9/vector_store/index.pkl +3 -0
  20. 5tE3T4oBgHgl3EQfQwkt/content/tmp_files/2301.04415v1.pdf.txt +2048 -0
  21. 5tE3T4oBgHgl3EQfQwkt/content/tmp_files/load_file.txt +0 -0
  22. 6NE4T4oBgHgl3EQfcAzU/content/tmp_files/2301.05080v1.pdf.txt +1161 -0
  23. 6NE4T4oBgHgl3EQfcAzU/content/tmp_files/load_file.txt +0 -0
  24. 6dE1T4oBgHgl3EQf7AUK/content/2301.03528v1.pdf +3 -0
  25. 6dE1T4oBgHgl3EQf7AUK/vector_store/index.faiss +3 -0
  26. 6tE1T4oBgHgl3EQfnAQs/content/tmp_files/2301.03303v1.pdf.txt +2259 -0
  27. 6tE1T4oBgHgl3EQfnAQs/content/tmp_files/load_file.txt +0 -0
  28. 89AzT4oBgHgl3EQfFPox/vector_store/index.faiss +3 -0
  29. 8tFAT4oBgHgl3EQfpB3g/content/tmp_files/2301.08638v1.pdf.txt +589 -0
  30. 8tFAT4oBgHgl3EQfpB3g/content/tmp_files/load_file.txt +355 -0
  31. ANAzT4oBgHgl3EQfTPxG/content/2301.01245v1.pdf +3 -0
  32. ANAzT4oBgHgl3EQfTPxG/vector_store/index.faiss +3 -0
  33. ANE3T4oBgHgl3EQfTQrd/content/tmp_files/2301.04441v1.pdf.txt +919 -0
  34. ANE3T4oBgHgl3EQfTQrd/content/tmp_files/load_file.txt +0 -0
  35. BdE5T4oBgHgl3EQfTA_5/vector_store/index.faiss +3 -0
  36. C9E0T4oBgHgl3EQfyQLe/vector_store/index.faiss +3 -0
  37. CdAzT4oBgHgl3EQfiP0X/content/2301.01495v1.pdf +3 -0
  38. CdAzT4oBgHgl3EQfiP0X/vector_store/index.faiss +3 -0
  39. CdAzT4oBgHgl3EQfiP0X/vector_store/index.pkl +3 -0
  40. CdE1T4oBgHgl3EQfpwUV/vector_store/index.faiss +3 -0
  41. DtAyT4oBgHgl3EQf4vpJ/content/2301.00791v1.pdf +3 -0
  42. DtAyT4oBgHgl3EQf4vpJ/vector_store/index.faiss +3 -0
  43. DtAyT4oBgHgl3EQf4vpJ/vector_store/index.pkl +3 -0
  44. DtFRT4oBgHgl3EQfATdu/content/tmp_files/2301.13461v1.pdf.txt +1353 -0
  45. DtFRT4oBgHgl3EQfATdu/content/tmp_files/load_file.txt +0 -0
  46. E9E5T4oBgHgl3EQfVA-E/vector_store/index.pkl +3 -0
  47. F9AyT4oBgHgl3EQfSveK/content/2301.00092v1.pdf +3 -0
  48. F9AyT4oBgHgl3EQfSveK/vector_store/index.pkl +3 -0
  49. F9E1T4oBgHgl3EQf-wbm/content/2301.03574v1.pdf +3 -0
  50. F9E1T4oBgHgl3EQf-wbm/vector_store/index.faiss +3 -0
-NFIT4oBgHgl3EQf8ysQ/content/2301.11403v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1933b3ba87c0903ae49421f0e29b18900f814201af6af1133ed9b22e4b820331
3
+ size 601372
-NFIT4oBgHgl3EQf8ysQ/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5bb315e469dd1352311830db577dd1c47e3368352e1cf7fba7b2d93c92400663
3
+ size 106596
-tE3T4oBgHgl3EQfrgrp/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db416830c04055c1d7813166480058675bc23c227597522185743942062adca8
3
+ size 6619181
-tE4T4oBgHgl3EQf4A1b/content/2301.05310v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c86025141869211b3e8cedec1f5a7afe9c84dd79d357c3e9fd82788cc5c9422
3
+ size 637122
-tE4T4oBgHgl3EQf4A1b/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:22c086fe7fccc11f111177055bd2201a9951e99b9e7990f9c068673189659345
3
+ size 2752557
-tE4T4oBgHgl3EQf4A1b/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4811f496c6824b559618794dd90bded27cbc824eaefe39997459a1b69029d8b7
3
+ size 121103
.gitattributes CHANGED
@@ -6481,3 +6481,87 @@ uNAyT4oBgHgl3EQf0fm1/content/2301.00720v1.pdf filter=lfs diff=lfs merge=lfs -tex
6481
  5NE5T4oBgHgl3EQfPA41/content/2301.05501v1.pdf filter=lfs diff=lfs merge=lfs -text
6482
  QdFJT4oBgHgl3EQf2y0y/content/2301.11657v1.pdf filter=lfs diff=lfs merge=lfs -text
6483
  QtE0T4oBgHgl3EQfkQGy/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6481
  5NE5T4oBgHgl3EQfPA41/content/2301.05501v1.pdf filter=lfs diff=lfs merge=lfs -text
6482
  QdFJT4oBgHgl3EQf2y0y/content/2301.11657v1.pdf filter=lfs diff=lfs merge=lfs -text
6483
  QtE0T4oBgHgl3EQfkQGy/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6484
+ otE1T4oBgHgl3EQfOwPh/content/2301.03020v1.pdf filter=lfs diff=lfs merge=lfs -text
6485
+ RdAyT4oBgHgl3EQft_l_/content/2301.00605v1.pdf filter=lfs diff=lfs merge=lfs -text
6486
+ b9E1T4oBgHgl3EQfKwO_/content/2301.02969v1.pdf filter=lfs diff=lfs merge=lfs -text
6487
+ UNE2T4oBgHgl3EQfXQdn/content/2301.03842v1.pdf filter=lfs diff=lfs merge=lfs -text
6488
+ 5NE5T4oBgHgl3EQfPA41/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6489
+ QNE0T4oBgHgl3EQf1QJC/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6490
+ ydE0T4oBgHgl3EQftQH5/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6491
+ ANAzT4oBgHgl3EQfTPxG/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6492
+ Q9E4T4oBgHgl3EQf_A6p/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6493
+ C9E0T4oBgHgl3EQfyQLe/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6494
+ d9AzT4oBgHgl3EQfn_2x/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6495
+ zdAzT4oBgHgl3EQfefwA/content/2301.01435v1.pdf filter=lfs diff=lfs merge=lfs -text
6496
+ 6dE1T4oBgHgl3EQf7AUK/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6497
+ UNE2T4oBgHgl3EQfXQdn/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6498
+ MtFOT4oBgHgl3EQf1jQj/content/2301.12939v1.pdf filter=lfs diff=lfs merge=lfs -text
6499
+ w9AzT4oBgHgl3EQfQftS/content/2301.01199v1.pdf filter=lfs diff=lfs merge=lfs -text
6500
+ QdFJT4oBgHgl3EQf2y0y/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6501
+ BdE5T4oBgHgl3EQfTA_5/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6502
+ WtAyT4oBgHgl3EQf8_rY/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6503
+ 6dE1T4oBgHgl3EQf7AUK/content/2301.03528v1.pdf filter=lfs diff=lfs merge=lfs -text
6504
+ 89AzT4oBgHgl3EQfFPox/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6505
+ LNE1T4oBgHgl3EQfGwM1/content/2301.02917v1.pdf filter=lfs diff=lfs merge=lfs -text
6506
+ ztAyT4oBgHgl3EQfPPYT/content/2301.00019v1.pdf filter=lfs diff=lfs merge=lfs -text
6507
+ ANAzT4oBgHgl3EQfTPxG/content/2301.01245v1.pdf filter=lfs diff=lfs merge=lfs -text
6508
+ F9E1T4oBgHgl3EQf-wbm/content/2301.03574v1.pdf filter=lfs diff=lfs merge=lfs -text
6509
+ udE0T4oBgHgl3EQfsQEM/content/2301.02575v1.pdf filter=lfs diff=lfs merge=lfs -text
6510
+ 5dE3T4oBgHgl3EQfpQo9/content/2301.04640v1.pdf filter=lfs diff=lfs merge=lfs -text
6511
+ 1tE0T4oBgHgl3EQfuQHv/content/2301.02604v1.pdf filter=lfs diff=lfs merge=lfs -text
6512
+ nNE2T4oBgHgl3EQfJgZo/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6513
+ 5dE3T4oBgHgl3EQfpQo9/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6514
+ -tE4T4oBgHgl3EQf4A1b/content/2301.05310v1.pdf filter=lfs diff=lfs merge=lfs -text
6515
+ -NFIT4oBgHgl3EQf8ysQ/content/2301.11403v1.pdf filter=lfs diff=lfs merge=lfs -text
6516
+ DtAyT4oBgHgl3EQf4vpJ/content/2301.00791v1.pdf filter=lfs diff=lfs merge=lfs -text
6517
+ uNAyT4oBgHgl3EQf0fm1/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6518
+ w9AzT4oBgHgl3EQfQftS/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6519
+ b9E1T4oBgHgl3EQfKwO_/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6520
+ zdAzT4oBgHgl3EQfefwA/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6521
+ N9AyT4oBgHgl3EQftPlh/content/2301.00591v1.pdf filter=lfs diff=lfs merge=lfs -text
6522
+ N9AyT4oBgHgl3EQftPlh/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6523
+ otE1T4oBgHgl3EQfOwPh/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6524
+ LNE1T4oBgHgl3EQfGwM1/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6525
+ -tE3T4oBgHgl3EQfrgrp/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6526
+ MtFOT4oBgHgl3EQf1jQj/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6527
+ CdE1T4oBgHgl3EQfpwUV/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6528
+ RdAyT4oBgHgl3EQft_l_/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6529
+ G9E2T4oBgHgl3EQfTge-/content/2301.03804v1.pdf filter=lfs diff=lfs merge=lfs -text
6530
+ FtE0T4oBgHgl3EQfRAB3/content/2301.02201v1.pdf filter=lfs diff=lfs merge=lfs -text
6531
+ mdFAT4oBgHgl3EQfcR2T/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6532
+ PtAzT4oBgHgl3EQfIvs5/content/2301.01066v1.pdf filter=lfs diff=lfs merge=lfs -text
6533
+ c9FKT4oBgHgl3EQfqS4B/content/2301.11873v1.pdf filter=lfs diff=lfs merge=lfs -text
6534
+ F9E1T4oBgHgl3EQf-wbm/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6535
+ 4tE4T4oBgHgl3EQfBAt_/content/2301.04848v1.pdf filter=lfs diff=lfs merge=lfs -text
6536
+ ZdE2T4oBgHgl3EQfEgbW/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6537
+ h9FAT4oBgHgl3EQf9h7F/content/2301.08757v1.pdf filter=lfs diff=lfs merge=lfs -text
6538
+ kdFLT4oBgHgl3EQfcy-f/content/2301.12084v1.pdf filter=lfs diff=lfs merge=lfs -text
6539
+ nNE2T4oBgHgl3EQfJgZo/content/2301.03692v1.pdf filter=lfs diff=lfs merge=lfs -text
6540
+ i9E2T4oBgHgl3EQfdAdf/content/2301.03901v1.pdf filter=lfs diff=lfs merge=lfs -text
6541
+ DtAyT4oBgHgl3EQf4vpJ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6542
+ VdFIT4oBgHgl3EQfgyug/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6543
+ F9AyT4oBgHgl3EQfSveK/content/2301.00092v1.pdf filter=lfs diff=lfs merge=lfs -text
6544
+ QNE0T4oBgHgl3EQf1QJC/content/2301.02696v1.pdf filter=lfs diff=lfs merge=lfs -text
6545
+ CdAzT4oBgHgl3EQfiP0X/content/2301.01495v1.pdf filter=lfs diff=lfs merge=lfs -text
6546
+ ZdE2T4oBgHgl3EQfEgbW/content/2301.03637v1.pdf filter=lfs diff=lfs merge=lfs -text
6547
+ y9FKT4oBgHgl3EQfMS25/content/2301.11750v1.pdf filter=lfs diff=lfs merge=lfs -text
6548
+ -tE4T4oBgHgl3EQf4A1b/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6549
+ 4tE4T4oBgHgl3EQfBAt_/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6550
+ h9FAT4oBgHgl3EQf9h7F/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6551
+ z9E1T4oBgHgl3EQfkwQJ/content/2301.03276v1.pdf filter=lfs diff=lfs merge=lfs -text
6552
+ CdAzT4oBgHgl3EQfiP0X/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6553
+ xdAzT4oBgHgl3EQfdvz8/content/2301.01427v1.pdf filter=lfs diff=lfs merge=lfs -text
6554
+ kdFLT4oBgHgl3EQfcy-f/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6555
+ j9E4T4oBgHgl3EQfTQyV/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6556
+ mdE2T4oBgHgl3EQfeQfB/content/2301.03915v1.pdf filter=lfs diff=lfs merge=lfs -text
6557
+ i9E2T4oBgHgl3EQfdAdf/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6558
+ U9FJT4oBgHgl3EQfNyw_/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6559
+ RtAzT4oBgHgl3EQf0P7C/content/2301.01782v1.pdf filter=lfs diff=lfs merge=lfs -text
6560
+ G9E2T4oBgHgl3EQfTge-/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6561
+ xdAzT4oBgHgl3EQfdvz8/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6562
+ o9FAT4oBgHgl3EQfeB1V/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6563
+ z9E1T4oBgHgl3EQfkwQJ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6564
+ Z9FQT4oBgHgl3EQffTZu/content/2301.13339v1.pdf filter=lfs diff=lfs merge=lfs -text
6565
+ g9E0T4oBgHgl3EQfXgDe/content/2301.02295v1.pdf filter=lfs diff=lfs merge=lfs -text
6566
+ y9FKT4oBgHgl3EQfMS25/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6567
+ z9AyT4oBgHgl3EQfPPZM/content/2301.00020v1.pdf filter=lfs diff=lfs merge=lfs -text
19FQT4oBgHgl3EQfFDWe/content/tmp_files/2301.13240v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
19FQT4oBgHgl3EQfFDWe/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
1tE0T4oBgHgl3EQfuQHv/content/2301.02604v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab19a58cf52a9a428b6d643708c5d6428fa8bb7402fd31550a4e7427d386654c
3
+ size 2272156
2dFQT4oBgHgl3EQfFzW1/content/tmp_files/2301.13242v1.pdf.txt ADDED
@@ -0,0 +1,3565 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Consensus based optimization with memory effects:
2
+ random selection and applications
3
+ Giacomo Borghi∗
4
+ Sara Grassi†
5
+ Lorenzo Pareschi†
6
+ February 1, 2023
7
+ Abstract
8
+ In this work we extend the class of Consensus-Based Optimization (CBO) metaheuris-
9
+ tic methods by considering memory effects and a random selection strategy. The proposed
10
+ algorithm iteratively updates a population of particles according to a consensus dynamics
11
+ inspired by social interactions among individuals. The consensus point is computed taking
12
+ into account the past positions of all particles. While sharing features with the popular Parti-
13
+ cle Swarm Optimization (PSO) method, the exploratory behavior is fundamentally different
14
+ and allows better control over the convergence of the particle system. We discuss some im-
15
+ plementation aspects which lead to an increased efficiency while preserving the success rate
16
+ in the optimization process. In particular, we show how employing a random selection strat-
17
+ egy to discard particles during the computation improves the overall performance. Several
18
+ benchmark problems and applications to image segmentation and Neural Networks training
19
+ are used to validate and test the proposed method. A theoretical analysis allows to recover
20
+ convergence guarantees under mild assumptions of the objective function. This is done by
21
+ first approximating the particles evolution with a continuous-in-time dynamics, and then by
22
+ taking the mean-field limit of such dynamics. Convergence to a global minimizer is finally
23
+ proved at the mean-field level.
24
+ Keywords: consensus-based optimization, stochastic particle methods, memory effects, ran-
25
+ dom selection, machine learning, mean-field limit
26
+ Contents
27
+ 1
28
+ Introduction
29
+ 2
30
+ 2
31
+ Consensus-based optimization with memory effects
32
+ 4
33
+ 2.1
34
+ Particles update rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
35
+ 4
36
+ 2.2
37
+ Random selection strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
38
+ 5
39
+ 2.3
40
+ Comparison with CBO and PSO . . . . . . . . . . . . . . . . . . . . . . . . . . .
41
+ 5
42
+ ∗RWTH
43
+ Aachen
44
+ University,
45
+ Institute
46
+ for
47
+ Geometry
48
+ and
49
+ Applied
50
+ Mathematics,
51
+ Aachen,
52
+ Germany
53
+ (borghi@eddy.rwth-aachen.de)
54
+ †University of Ferrara, Department of Mathematics and Computer Science & Center for Modelling Computing
55
+ and Statistics, Ferrara, Italy (sara.grassi@unife.it, lorenzo.pareschi@unife.it)
56
+ 1
57
+ arXiv:2301.13242v1 [math.OC] 30 Jan 2023
58
+
59
+ 3
60
+ Numerical results
61
+ 7
62
+ 3.1
63
+ Tests on benchmark problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
64
+ 8
65
+ 3.2
66
+ Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
67
+ 13
68
+ 3.2.1
69
+ Image segmentation
70
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
71
+ 13
72
+ 3.2.2
73
+ Approximating functions with NN . . . . . . . . . . . . . . . . . . . . . .
74
+ 16
75
+ 3.2.3
76
+ Application on MNIST dataset . . . . . . . . . . . . . . . . . . . . . . . .
77
+ 17
78
+ 4
79
+ Theoretical analysis
80
+ 19
81
+ 4.1
82
+ Mean-field approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
83
+ 19
84
+ 4.2
85
+ Convergence in mean-field law . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
86
+ 21
87
+ 4.3
88
+ Random selection analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
89
+ 23
90
+ 5
91
+ Conclusions
92
+ 25
93
+ A Proofs
94
+ 25
95
+ A.1 Notation and auxiliary lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . .
96
+ 25
97
+ A.2 Proof of Proposition 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
98
+ 27
99
+ A.3 Proof of Theorem 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
100
+ 28
101
+ A.4 Proof of Proposition 4.2 and Theorem 4.2 . . . . . . . . . . . . . . . . . . . . . .
102
+ 30
103
+ 1
104
+ Introduction
105
+ Meta-heuristic algorithms are recognized as trustworthy, easy to understand and to adapt op-
106
+ timization methods which have been widely applied to a several fields such as Machine Learn-
107
+ ing [28], path planning [29] and image processing [45], to name a few. Starting form a set of
108
+ possible solutions, a meta-heuristic algorithm typically updates such set iteratively by combining
109
+ deterministic and stochastic choices, often inspired by natural phenomena. Exploration of the
110
+ search space and exploitation of the current knowledge are the two fundamental mechanisms
111
+ driving the algorithm iteration [46]. Examples of established meta-heuristic algorithms are given
112
+ by Genetic Algorithm (GA) [17,42], Simulated Annealing (SA) [25], Particle Swarm Optimiza-
113
+ tion (PSO) [24] and Differential Evolution (DE) [40]. We refer to [21] for a complete literature
114
+ review.
115
+ Consensus-Based Optimization (CBO) is a class of gradient-free meta-heuristic algorithms
116
+ inspired by consensus dynamics among individuals. After its introduction [34] it has gained
117
+ popularity among the mathematical community due to its robust mathematical framework [3,9,
118
+ 16,19]. In CBO algorithms, a population of particles concentrates around a consensus point given
119
+ by a weighted average of the particles position. In the computation of such consensus point, more
120
+ importance is given to those particles attaining relatively low values of the objective function.
121
+ The exploration mechanism is introduced by randomly perturbing the particles positions at each
122
+ iteration. Particles which are close to the consensus point are subject to small perturbations,
123
+ while those that are far from it display a more exploratory behavior.
124
+ In this work, following the recent analysis in [14], we study a Consensus-Based Optimization
125
+ algorithm with Memory Effects (CBO-ME) where the consensus point is computed among the
126
+ whole history of the particles positions and not just on the positions of the current iteration, as
127
+ 2
128
+
129
+ in the original CBO method. This is done by keeping track of the best position found so far by
130
+ each particle, and computing the consensus point among these “personal” bests. While sharing
131
+ common elements with PSO, such as convergence to a promising point and the presence of
132
+ personal bests, CBO-ME differs in the way the exploration mechanism is implemented. Indeed,
133
+ in CBO-ME, as in CBO algorithms, the stochastic behavior is given by adding Gaussian noise to
134
+ the particles dynamics and can be tuned independently on the exploitation mechanisms, leading
135
+ to a better control over the particles convergence. Therefore, while in classical PSO methods it
136
+ is the balance between local best and global best that governs the optimization strategy, in CBO
137
+ methods it is the balance between exploration and exploitation mechanisms that determines the
138
+ choice of parameters. We recall that a generalization of PSO methods that allows leveraging
139
+ the same flexibility in searching the global minimum as in CBO algorithms has been recently
140
+ presented in [14].
141
+ Many real-life problems, especially those regarding Machine Learning, require to optimize a
142
+ large number of parameters. Therefore, it essential to design fast algorithm to save computa-
143
+ tional time and memory. This is a major weakness of swarm-based methods, which require a set
144
+ of particles to minimize the problem, unlike gradient-based methods that can work on a single
145
+ particle trajectory. For methods based on a collection of particles, existing algorithms can be
146
+ improved by discarding particles whenever the system has a prominent exploitative behavior.
147
+ This is sometimes referred as “natural selection strategy” in the DE literature [27,40] and aims
148
+ to discard the non-promising solutions. Inspired by particle simulations techniques where it
149
+ is important to preserve the particles distribution, we examine a “random selection strategy”
150
+ where particles are discarded randomly based on the local consensus achieved. We will discuss
151
+ such implementation aspects by testing CBO-ME against high-dimensional learning problems
152
+ and theoretically analyze the impact of the random selection strategy on the system. In partic-
153
+ ular, we prove that if the full particle system is expected to converge towards a solution to (2.1),
154
+ so will the reduce one, provided a sufficient number of particles remains active. Note that, such
155
+ analysis can be generalized to other particle dynamics and may be of independent interest.
156
+ Owing to the convergence analysis of CBO algorithms [3, 9, 10, 19] and recent analysis of
157
+ PSO [14, 20] we are able to prove convergence of the algorithm under mild assumption on the
158
+ objective function. This is done by first approximating the algorithm with a continuous-in-
159
+ time dynamics and secondly by giving a probabilistic description to the particles system. By
160
+ assuming propagation of chaos [41], particles are considered to behave independently according
161
+ to the same law. This allows to reduce the possible large system of equations to a single partial
162
+ differential equation: the so-called mean-field model. Such model is then analyzed to recover
163
+ convergence guarantees under precise assumption on the objective function. Developed in the
164
+ field of statistical physics, this approach has shown be fruitful in studying particle-based meta-
165
+ heuristic algorithms [9,10,20]. We note that convergence in mean-field law was recently proved
166
+ in [37] in an independent work.
167
+ The rest of the paper is organized as follows.
168
+ Section 2 is devoted to the introduction
169
+ of the CBO-ME algorithm with random selection and comparison with CBO methods without
170
+ memory effects and PSO. In Section 3 validate the proposed methods against several benchmark
171
+ problems and two Machine Learning tasks. Theoretical convergence guarantees and analysis of
172
+ the random selection strategy are summarized in Section 4. Some final remarks are given in
173
+ Section 5. Technical details of the theoretical analysis are given in Appendix A.
174
+ 3
175
+
176
+ 2
177
+ Consensus-based optimization with memory effects
178
+ In this section, we present the Consensus-Based Optimization algorithm with Memory Effects
179
+ (CBO-ME) to solve problems of the form
180
+ x∗ ∈ argmin
181
+ x∈Rd F(x) ,
182
+ (2.1)
183
+ where Rd, d ∈ N is the, possibly large, search domain for the continuous function F ∈ C(Rd, R).
184
+ We will do so by highlighting similarities and differences between classical CBO methods and
185
+ PSO algorithms.
186
+ 2.1
187
+ Particles update rule
188
+ At each iteration step k and for every particle i = 1, . . . , N, we store its position xk
189
+ i and its best
190
+ position found so far yk
191
+ i = argmin{F(xk
192
+ 1), . . . , F(xk
193
+ N)}. The best positions are used to compute
194
+ a consensus point
195
+ ¯yα,k =
196
+ N
197
+
198
+ i=1
199
+ ωk
200
+ i yk
201
+ i
202
+ with
203
+ ωk
204
+ i =
205
+ e−αF(yk
206
+ i )
207
+ �N
208
+ j=1 e−αF(yk
209
+ j )
210
+ (2.2)
211
+ which approximate the global best solution ¯yα,k among all particles and all times for α > 1.
212
+ Indeed, thanks to the choice of the weights ωk
213
+ i , we have that
214
+ ¯yα,k
215
+ −→
216
+ ¯y∞,k := argmin{F(yk
217
+ 1), . . . , F(yk
218
+ N)}
219
+ (2.3)
220
+ as α → ∞, provided that there is only one global best position among {yk
221
+ 1, . . . , yk
222
+ N}. Such ap-
223
+ proximation was first introduced for CBO methods [34] as it leads to more amenable theoretical
224
+ analysis, but it also allows more flexibility. Indeed, relatively small values of α are typically
225
+ used at the beginning of the computation to promote exploration. Large values of α, on the
226
+ other hand, lead to better exploitation of the computed solutions and to higher accuracy. We
227
+ note that the weights used in (2.2) correspond in statistical mechanics to the Boltzmann-Gibbs
228
+ distribution associated with the energy F. In this context, α plays the role of the inverse of the
229
+ system temperature T and the limit α → ∞ corresponds to T → 0.
230
+ Once the consensus point ¯yα,k is computed, the particle positions are then updated according
231
+ to the law
232
+ xk+1
233
+ i
234
+ = xk
235
+ i + λ
236
+
237
+ ¯yα,k − xk
238
+ i
239
+
240
+ + σ
241
+
242
+ ¯yα,k − xk
243
+ i
244
+
245
+ ⊗ θk
246
+ i
247
+ (2.4)
248
+ with θk
249
+ i ∈ Rd randomly sampled from the normal distribution (θk
250
+ i ∼ N(0, Id)) and where ⊗ is
251
+ the component-wise product.
252
+ The update rule is characterized by a deterministic component of strength λ ∈ (0, 1) promot-
253
+ ing concentration around the consensus point ¯yα,k and a stochastic component of strength σ > 0
254
+ promoting exploration of the search space. As the latter depends on the difference (¯yα,k − xk
255
+ i ),
256
+ the random behavior is stronger for particles which are far form the consensus point, whereas
257
+ it is weaker for those that are close to it. Also, such exploration resemble an anisotropic diffu-
258
+ sive behavior exploring every coordinate direction at a different rate. This approach was first
259
+ proposed in [4] in the context of CBO methods and has been proved to suffer less from the
260
+ curse of dimensionality with the respect to the originally proposed isotropic diffusion given by
261
+ σ∥¯yα,k − xk
262
+ i ∥2θk
263
+ i with θk
264
+ i being again a normally distributed d-dimensional vector [4].
265
+ 4
266
+
267
+ 2.2
268
+ Random selection strategy
269
+ When the particle system concentrates around the consensus point, showing a mostly exploita-
270
+ tive behavior, we employ a particle selection strategy. Discarding particles introduces additional
271
+ stochasticity to the system, while reducing the computational cost. Following the approach sug-
272
+ gested in [7], we check the evolution of the system variance to decide how many particles to
273
+ (eventually) discard.
274
+ For a given set of particles z = {zi}i∈J, the system variance is given by
275
+ var(z) := 1
276
+ |J|
277
+
278
+ j∈J
279
+ ∥zj − m(z)∥2
280
+ 2
281
+ with
282
+ m(z) := 1
283
+ |J|
284
+
285
+ i∈J
286
+ zi ,
287
+ (2.5)
288
+ where |J| indicates the cardinality of I, that is, the number of particles in this context.
289
+ Let Ik ⊆ {1, . . . , N} be the set of active particles at step k and Nk = |Ik|.
290
+ To decide
291
+ how many particles to select, we compare the variance of the particle system before the position
292
+ update (2.4), xk = {xk}i∈Ik and after it, ˜xk+1 = {xk+1
293
+ i
294
+ }i∈Ik. Then, the number Nk+1 of particles
295
+ we select for the next iteration is given by
296
+ ˜Nk+1 =
297
+
298
+ Nk
299
+
300
+ 1 + µ var(˜xk+1) − var(xk+1)
301
+ var(xk+1)
302
+ ��
303
+ Nk+1 = min
304
+
305
+ max
306
+ � ˜Nk+1, Nmin
307
+
308
+ , Nk
309
+
310
+ (2.6)
311
+ ⌊z⌋ being the integer part of a number z and Nmin ∈ N the smallest amount of particles we allow
312
+ to have. Then, a subset Ik+1 ⊂ Ik, |Ik+1| = Nk+1, of particles is randomly selected to continue
313
+ the computation. The parameter µ ∈ [0, 1] regulates the mechanism: for µ = 0 there is no
314
+ particle discarding, while for µ = 1 the maximum number of particles is discarded if the variance
315
+ is decreasing. As we will see in Section 3, this random selection mechanism dramatically reduces
316
+ the computational time without affecting the algorithm performance. We will also theoretically
317
+ analyze this aspect in Section 4.3, where we show that convergence properties are preserved.
318
+ As stopping criterion, we keep a counter n on how many times ∥¯yα,k+1 − ¯yα,k∥2 is smaller
319
+ than a certain tolerance δstall. If this happens for more than a given nstall number of times in a
320
+ row, we assume the particles system found a solution and stop the computation. A maximum
321
+ number of iteration kmax representing the computational budget is also given. The proposed
322
+ CBO-ME is summarized in Algorithm 1.
323
+ Remark 2.1. In the meta-heuristic literature, particles are usually discarded depending on their
324
+ objective value, in a way that particles with high values are more likely to be discarded [27,40].
325
+ The proposed strategy does not add a further heuristic strategy but simply cut down the algorithm
326
+ complexity. Also, the convergence properties are in this way expected to be preserved. We note
327
+ that, on the other hand, there is no straightforward way to generate particles and, at the same
328
+ time, preserve the particle system distribution.
329
+ 2.3
330
+ Comparison with CBO and PSO
331
+ What distinguishes CBO-ME from plain CBO, see e.g [4,34], is clearly the introduction of the
332
+ best positions {yk
333
+ i }N
334
+ i=1 and the fact that the consensus point is calculated among them and not
335
+ 5
336
+
337
+ Algorithm 1: Consensus-Based Optimization with Memory Effects (CBO-ME)
338
+ Input: F, N0, kmax, λ, σ, α, nstall and δstall;
339
+ 1 Inizialize N0 particle positions xi
340
+ 0, i = 1, . . . , N;
341
+ 2 y0
342
+ i ← x0
343
+ i for all i = 1, . . . , Nk;
344
+ 3 Compute yα,0 according to (2.2);
345
+ 4 k ← 0, n ← 0;
346
+ 5 while k < kmax and n < nstall do
347
+ 6
348
+ for i = 1 to Nk do
349
+ 7
350
+ θk
351
+ i ∼ N(0, Id);
352
+ 8
353
+ Compute xk+1
354
+ i
355
+ according to (2.4);
356
+ 9
357
+ if F(xk+1
358
+ i
359
+ ) < F(yk
360
+ i ) then
361
+ 10
362
+ yk+1
363
+ i
364
+ ← xk+1
365
+ i
366
+ ;
367
+ 11
368
+ else
369
+ 12
370
+ yk+1
371
+ i
372
+ ← yk
373
+ i ;
374
+ 13
375
+ end
376
+ 14
377
+ end
378
+ 15
379
+ Compute ¯yα,k+1 according to (2.2);
380
+ 16
381
+ if ∥¯yα,k+1 − ¯yα,k∥2 < δstall then
382
+ 17
383
+ n ← n + 1;
384
+ 18
385
+ else
386
+ 19
387
+ n ← 0;
388
+ 20
389
+ end
390
+ 21
391
+ Compute Nk+1 according to (2.6);
392
+ 22
393
+ if Nk+1 < Nk then
394
+ 23
395
+ Randomly discard Nk+1 − Nk particles;
396
+ 24
397
+ k ← k + 1;
398
+ 25 end
399
+ 26 return ¯yα,k, F(¯yα,k)
400
+ just among the particle positions {xk
401
+ i }N
402
+ i=1 at that given time k. Indeed, the classical CBO update
403
+ rule without memory effects (and with anisotropic diffusion and projection step) is given by
404
+ xk+1
405
+ i
406
+ = xk
407
+ i + λ
408
+
409
+ ¯xα,k − xk
410
+ i
411
+
412
+ + σ
413
+
414
+ ¯xα,k − xk
415
+ i
416
+
417
+ ⊗ θk
418
+ i
419
+ (2.7)
420
+ where ¯xα,k is defined consistently with (2.2) (by substituting yk
421
+ i with xk
422
+ i ). As we will see in the
423
+ numerical tests, the use of memory effects improves the algorithm performance.
424
+ Since alignment towards personal bests yk
425
+ i and towards the global best ¯y∞,k are also the
426
+ fundamental building blocks of PSO algorithms, we highlight now the main differences and
427
+ similarities between PSO and CBO-ME. For completeness, we recall the canonical PSO method,
428
+ see e.g. [36], using the notation of (2.4) for easier comparison
429
+
430
+ xk+1
431
+ i
432
+ = xk
433
+ i + vk+1
434
+ i
435
+ vk+1
436
+ i
437
+ = wvk
438
+ i + C1
439
+
440
+ yk
441
+ i − xk
442
+ i
443
+
444
+ ⊗ ˆθk
445
+ i,1 + C2
446
+
447
+ ¯y∞,k − xk
448
+ i
449
+
450
+ ⊗ ˆθk
451
+ i,2
452
+ (2.8)
453
+ 6
454
+
455
+ where vk
456
+ i are the particles velocities, w, C1, C2 > 0 are the algorithm parameters and θk
457
+ i,1, θk
458
+ i,2
459
+ are uniformly sampled from [0, 1]d (ˆθk
460
+ i,1, ˆθk
461
+ i,2) ∼ Unif([0, 1]d). Several variants and improvements
462
+ have been proposed starting from the above dynamics, but a complete review is beyond the
463
+ scope of this paper and we refer to the recent survey [47] for more references.
464
+ We are interested in highlighting the main differences between (2.4) and (2.8) regarding
465
+ the stochastic components: in CBO-ME deterministic and stochastic steps are de-coupled and
466
+ tuned by two different parameters (λ and σ), while in PSO they are coupled. Indeed, in (2.8),
467
+ deterministic and stochastic components are both controlled by the same parameter: C1 in
468
+ the case of personal best dynamics and C2 for the global best one.
469
+ By splitting the term
470
+ C2
471
+
472
+ ¯y∞,k − xk
473
+ i
474
+ � ˆθk
475
+ i,2 into a deterministic step and a zero-mean term we obtain
476
+ C2
477
+
478
+ ¯y∞,k − xk
479
+ i
480
+
481
+ ⊗ ˆθk
482
+ i,2 = C2
483
+ 2
484
+
485
+ ¯y∞,k − xk
486
+ i
487
+
488
+ + C2
489
+ 2
490
+
491
+ ¯y∞,k − xk
492
+ i
493
+
494
+ ⊗ θk
495
+ i,2
496
+ (2.9)
497
+ with θk
498
+ i,2 = 2ˆθk
499
+ i,2 − 1, θk
500
+ i,2 ∼ Unif([−1, 1]d). Suggested in [14], such rewriting highlights how
501
+ increasing the alignment strength towards the global best (by increasing C2) necessary increases
502
+ the stochasticity of the system as well. In (2.4) and (2.7), on the other hand, one is allowed to
503
+ tune the exploration and exploitation behaviors separately, by either changing parameters λ or
504
+ σ.
505
+ Clearly, CBO-ME also differs from PSO due to its first-order dynamics. Having the aim of
506
+ resembling birds flocking, the first PSO algorithm [24] was proposed as a second-order dynamics.
507
+ The inertia weight w, introduced later in [39], became an essential parameter to prevent early
508
+ convergence of the swarm and to increase the global exploration behavior, especially at the
509
+ beginning of the computation, see e.g. [31, 39] and reviews [18, 36, 47] for more references. We
510
+ note that several other strategies have proposed to improve PSO exploration behavior, see,
511
+ for example, [50]. As already mentioned, in CBO methods convergence and exploration are
512
+ de-coupled and can be tuned separately. Therefore, to keep the algorithm more amenable to
513
+ theoretical analysis, we consider a simpler first-order dynamics. We note that a CBO dynamics
514
+ with inertia mechanism was proposed in [5].
515
+ Similarly, we found the contribution given by the personal best alignment non-essential and
516
+ difficult to tune. Thus, the lack of alignment towards personal best in (2.4). Replacing alignment
517
+ towards personal best with gaussian noise was also suggested in [48] where authors proposed the
518
+ Accelerated PSO (APSO) algorithm. Further studied in [11,49], APSO also allows to de-couple
519
+ the stochastic component from the deterministic one and the noise is heuristically tuned to
520
+ decrease during the computation (as in Simulated Annealing [25]). In CBO methods, the noise
521
+ strength automatically adapts as it depends on the distance from the consensus point, which
522
+ is also different for every particle. For completeness, we note that many other variants of PSO
523
+ have been proposed to include the explorative behavior, see e.g. Chaotic PSO [30].
524
+ 3
525
+ Numerical results
526
+ Having discussed the fundamental features of the CBO dynamics with memory effects, we now
527
+ validate Algorithm 1 and compare its performance with plain CBO and PSO algorithms. We will
528
+ test the methods against several benchmark optimization problems and analyze the impact of the
529
+ 7
530
+
531
+ Name
532
+ Objective function F(x)
533
+ Search space
534
+ x∗
535
+ F(x∗)
536
+ Ackley
537
+ −20 exp
538
+
539
+ −0.2
540
+
541
+ 1
542
+ d
543
+ �d
544
+ i=1 (xi)2
545
+
546
+ − exp
547
+
548
+ 1
549
+ d
550
+ �d
551
+ i=1 cos (2π(xi))
552
+
553
+ + 20 + e
554
+ [−32, 32]d
555
+ (0, . . . , 0)
556
+ 0
557
+ Griewank
558
+ 1 + �d
559
+ i=1
560
+ (xi)2
561
+ 4000 − �d
562
+ i=1 cos
563
+ � xi
564
+ i
565
+
566
+ [−600, 600]d
567
+ (0, . . . , 0)
568
+ 0
569
+ Rastrigin
570
+ 10d + �d
571
+ i=1
572
+
573
+ (xi)2 − 10 cos (2π(xi))
574
+
575
+ [−5.12, 5.12]d
576
+ (0, . . . , 0)
577
+ 0
578
+ Rosenbrock
579
+ 1 − cos
580
+
581
+
582
+ ��d
583
+ i=1 (xi)2
584
+
585
+ + 0.1
586
+ ��d
587
+ i=1 (xi)2
588
+ [−5, 10]d
589
+ (1, . . . , 1)
590
+ 0
591
+ Salomon
592
+ 1 − cos
593
+
594
+
595
+ ��d
596
+ i=1 (xi)2
597
+
598
+ + 0.1
599
+ ��d
600
+ i=1 (xi)2
601
+ [−100, 100]d
602
+ (0, . . . , 0)
603
+ 0
604
+ Schwefel 2.20
605
+ �d
606
+ i=1 |xi|
607
+ [−100, 100]d
608
+ (0, . . . , 0)
609
+ 0
610
+ XSY random
611
+ �d
612
+ i=1 ηi|xi|i,
613
+ ηi ∼ Unif([0, 1])
614
+ [−5, 5]d
615
+ (0, . . . , 0)
616
+ 0
617
+ XSY 4
618
+ ��d
619
+ i=1 sin2(xi) − e − �d
620
+ i=1(xi)2�
621
+ e − �d
622
+ i=1 sin2 √
623
+ |xi|
624
+ [−10, 10]d
625
+ (0, . . . , 0)
626
+ −1
627
+ Table 1: Considered benchmark test functions for global optimization. For each function,
628
+ the corresponding search space and global solution is given.
629
+ random selection technique on the convergence speed. We also employ 1 to solve problems arising
630
+ form applications, such as image segmentation and training of a machine learning architectures
631
+ for function approximation and image recognition.
632
+ 3.1
633
+ Tests on benchmark problems
634
+ We test the proposed algorithm against different optimization problems, by considering 8 bench-
635
+ mark objective functions, see e.g. [22], which we report in Table 1 for completeness. The search
636
+ space dimension is set to d = 20.
637
+ As in plain CBO methods, we expect the most important parameters are those governing
638
+ the balance between the exploitative behavior (λ in this case) and the explorative one (σ). In
639
+ particular, we are interested in the algorithm performance as we change the ratio between λ
640
+ and σ. Therefore, in the first experiment we fix λ = 0.01, while considering different values of
641
+ σ. The parameter α is adapted during the computation: starting form α0 = 10, it increases
642
+ according to the law
643
+ α = α0 · k · log2(k) .
644
+ (3.1)
645
+ Fig. 1 shows the accuracy and the objective value reached for σ ∈ [0, 2] after kmax = 104
646
+ algorithm iterations with N = 200 particles, with no random selection. The optimal value for σ
647
+ is clearly problem-dependent, but we note that the optimal values for the problems considered
648
+ all fall within a relative small range (underlined in gray in Fig. 1).
649
+ From Fig.
650
+ 1 we infer that a good value for all benchmark problems considered is given
651
+ by σ = 0.8. Using this value, we now compare CBO-ME, with plain CBO and the standard
652
+ PSO (with and without alignment towards personal best) for different population sizes N =
653
+ 50, 100, 200. We keep the random selection mechanism off by setting µ = 0 and use the same
654
+ 8
655
+
656
+ 0
657
+ 0.5
658
+ 1
659
+ 1.5
660
+ 2
661
+ <
662
+ 10!10
663
+ 10!5
664
+ 100
665
+ 105
666
+ 1010
667
+ ky,;k ! x$k1
668
+ Rastrigin
669
+ Ackley
670
+ Griewank
671
+ Rosenbrock
672
+ Salomon
673
+ Schwefel
674
+ XSY 4
675
+ XSY random
676
+ (a) ∥¯yα,k − x∗∥∞
677
+ 0
678
+ 0.5
679
+ 1
680
+ 1.5
681
+ 2
682
+ <
683
+ 10!10
684
+ 10!5
685
+ 100
686
+ 105
687
+ 1010
688
+ F(7y,;k)
689
+ Rastrigin
690
+ Ackley
691
+ Griewank
692
+ Rosenbrock
693
+ Salomon
694
+ Schwefel
695
+ XSY 4
696
+ XSY random
697
+ (b) F(¯yα,k)
698
+ Figure 1: Optimization on benchmark functions using CBO-ME. Behavior of the expec-
699
+ tation error and fitness value for different values of σ. Here λ = 0.01 and α is adaptive,
700
+ with α0 = 10. The particle population is N = 200. Grey bands (of values [0.70, 1.05] for
701
+ the error and [0.65, 1] for the fitness) show the range in which the minima of the different
702
+ benchmark functions fall. The dotted line marks the visually estimate pseudo-optimal value
703
+ σ = 0.8. Results averaged on 250 runs, are obtained with kmax = 104 iterations and without
704
+ stopping criterion.
705
+ previously chosen parameters when memory effects are used. For plain CBO, without memory
706
+ effects, we set σ = 0.71 ≈
707
+
708
+ 2/2. Concerning PSO, we use the solver provided by the MATLAB
709
+ Global Optimisation Toolbox (particleswarm), changing the maximum number of iterations
710
+ and the stall condition to the one used for CBO methods, to make the results comparable.
711
+ The remaining parameters are kept as described in the relative documentation [33]. We set
712
+ kmax = 104, δstall = 10−4 and consider a run successful when either
713
+ ∥¯yα,k − x∗∥∞ < 0.1
714
+ or
715
+ |F(¯yα,k) − F(x∗)| < 0.01 .
716
+ (3.2)
717
+ Table 2 reports success rate, final error given by ∥¯yα,k −x∗∥∞, mean objective function value
718
+ and total number of iterations, averaged over 250 runs. In addition to the classic PSO method,
719
+ where the acceleration coefficients are chosen to be equal C1 = C2 = 1.49, Table 2 also shows
720
+ the results when only the alignment towards global best is considered in PSO (C1 = 0).
721
+ While CBO already manages to find the global minimizer in most of the problems considered,
722
+ we note that it fails when Rastrigin, Rosenbrock or XSY random functions are optimized. CBO-
723
+ ME, on the other hand, is able to solve the optimization problem correctly even in these cases
724
+ if the population size N is large enough. CBO seems to achieve greater accuracy in some cases,
725
+ such as with Schwefel 2.20 and Salomon objectives, at the cost of more iterations. Standard
726
+ PSO in many cases fails to solve the problem, see e.g. Rastrigin, Salomon or XSY 4 functions.
727
+ PSO success rate is also lower among all problems, with the exception of the Schwefel 2.20
728
+ benchmark problem. Considering only global adjustment seems to show advantages with respect
729
+ to the classical PSO method, except in the case of Ackley where setting C1 = 0 decreases the
730
+ success rate or, in the case of XSY 4, Salomon or Rastrigin, where convergence is not achieved
731
+ even for C1 = 0 Consensus methods, however, seem to perform better in terms of both success
732
+ 9
733
+
734
+ (a) Error: ∥¯yα,k − x∗∥∞
735
+ (b) Fitness Value: F(¯yα,k)
736
+ Figure 2: Optimization of Ackley function for different values of the random selection
737
+ parameter µ, where the initial particle population is N 0 = 104. We report error (on the
738
+ left) and fitness values (on the right) as the number of function evaluations increases.
739
+ Parameters are set as λ = 0.01, σ = 0.8, α adaptive starting from α0 = 10 and following
740
+ the law α = α0 · k · log2(k). Results are averaged over 250 runs.
741
+ rate and speed up. In addition, for most problems, the population size N seems not to play a
742
+ significant role in the algorithms performance. This further motivates the introduction of the
743
+ random selection strategy described in the Section 2.1 in order to save computational costs.
744
+ In the third experiment, we test the proposed random selection mechanism (2.6) for different
745
+ values of the parameter µ. We recall that with µ = 0 we have no particles removal, while as
746
+ µ increases, more particles are likely to be discarded when the system variance decreases. The
747
+ initial population is set to N0 = 200, while the minimum number of particles to Nmin = 10.
748
+ Results are reported in Tables 3 and 4 in terms of: success rate, error, objective value, weighted
749
+ number of iterations, given by
750
+ witer =
751
+ kend
752
+
753
+ k=1
754
+ Nk
755
+ N0
756
+ (3.3)
757
+ and percentage of Computational Time Saved (CTS). Results show that relative large values
758
+ of µ allow to reach fast convergence without affecting the algorithm performance. The values of
759
+ µ considered in Table 4 as different from those in Table 3 as in our experiments, the Rastrigin
760
+ problem allows for larger values of µ, while the Rosenbrock one seems to be more sensitive to
761
+ the selection mechanism with respect to the other objectives. In both cases, a suitable value of
762
+ µ reduces the computational time with almost no impact in terms of accuracy.
763
+ Fig.s 2 and 3 show error and fitness value as a function of the number of fitness evaluation
764
+ during the algorithm computation, for the Ackley and Rastrigin problem respectively. Several
765
+ values of µ are considered to display how the random selection mechanism affects the convergence
766
+ speed.
767
+ Initial particle population is set to N0 = 104 and particles evolve for kmax = 104
768
+ iterations. We note how convergence speed increases as µ increases.
769
+ 10
770
+
771
+ CBO (σ =
772
+
773
+ 2/2)
774
+ CBO-ME (σ = 0.8)
775
+ PSO
776
+ PSO (C1 = 0)
777
+ N = 50
778
+ N = 100
779
+ N = 200
780
+ N = 50
781
+ N = 100
782
+ N = 200
783
+ N = 50
784
+ N = 100
785
+ N = 200
786
+ N = 50
787
+ N = 100
788
+ N = 200
789
+ Ackley
790
+ Rate
791
+ 99.3%
792
+ 100.0%
793
+ 100.0%
794
+ 100.0%
795
+ 100.0%
796
+ 100.0%
797
+ 14.6%
798
+ 38.6%
799
+ 53.3%
800
+ 4.0%
801
+ 16.0%
802
+ 39.3%
803
+ Error
804
+ 4.11e-06
805
+ 2.03e-06
806
+ 2.55e-06
807
+ 2.39e-06
808
+ 1.73e-06
809
+ 1.74e-06
810
+ 6.97e-09
811
+ 8.56e-11
812
+ 2.16e-12
813
+ 2.30e-08
814
+ 1.90e-10
815
+ 8.96e-13
816
+ Favg
817
+ 1.18e-04
818
+ 5.81e-05
819
+ 7.30e-05
820
+ 1.54e-04
821
+ 4.96e-05
822
+ 4.99e-05
823
+ 6.24e-09
824
+ 7.65e-11
825
+ 1.94e-12
826
+ 2.06e-08
827
+ 1.70e-10
828
+ 8.01e-13
829
+ Iterations
830
+ 954.3
831
+ 778.2
832
+ 678.1
833
+ 997.7
834
+ 724.3
835
+ 626.9
836
+ 493.8
837
+ 420.6
838
+ 391.4
839
+ 502.0
840
+ 436.0
841
+ 390.1
842
+ Griewank
843
+ Rate
844
+ 100.0%
845
+ 100.0%
846
+ 100.0%
847
+ 100.0%
848
+ 100.0%
849
+ 100.0%
850
+ 46.0%
851
+ 48.6%
852
+ 55.3%
853
+ 50.0%
854
+ 58.7%
855
+ 78.0%
856
+ Error
857
+ 2.20e-02
858
+ 2.21e-02
859
+ 2.24e-02
860
+ 2.13e-02
861
+ 2.16e-02
862
+ 2.25e-02
863
+ 7.34e-02
864
+ 1.56e-02
865
+ 9.45e-03
866
+ 1.17e-01
867
+ 1.10e-01
868
+ 8.96e-02
869
+ Favg
870
+ 5.26e-02
871
+ 5.31e-02
872
+ 5.47e-02
873
+ 4.95e-02
874
+ 5.15e-02
875
+ 5.82e-02
876
+ 3.23e-03
877
+ 4.11e-03
878
+ 3.78-03
879
+ 3.73e-03
880
+ 3.71e-03
881
+ 2.90e-03
882
+ Iterations
883
+ 927.5
884
+ 777.0
885
+ 682.7
886
+ 891.9
887
+ 735.0
888
+ 635.4
889
+ 436.0
890
+ 394.5
891
+ 374.5
892
+ 427.2
893
+ 370.2
894
+ 345.5
895
+ Rastrigin
896
+ Rate
897
+ 9.3%
898
+ 27.3%
899
+ 60.7%
900
+ 26.0%
901
+ 68.7%
902
+ 89.3%
903
+ 0.0%
904
+ 0.0%
905
+ 0.0%
906
+ 0.0%
907
+ 0.0%
908
+ 0.0%
909
+ Error
910
+ 1.28e-04
911
+ 1.83e-04
912
+ 2.34e-04
913
+ 9.73e-05
914
+ 1.27e-04
915
+ 1.76e-04
916
+ -
917
+ -
918
+ -
919
+ -
920
+ -
921
+ -
922
+ Favg
923
+ 4.51e-06
924
+ 9.03e-06
925
+ 1.46e-05
926
+ 2.54e-06
927
+ 4.31e-06
928
+ 8.28e-06
929
+ -
930
+ -
931
+ -
932
+ -
933
+ -
934
+ -
935
+ Iterations
936
+ 1083.0
937
+ 933.7
938
+ 819.8
939
+ 1007.6
940
+ 922.5
941
+ 769.9
942
+ 10000.0
943
+ 10000.0
944
+ 10000.0
945
+ 10000.0
946
+ 10000.0
947
+ 10000.0
948
+ Rosenbrock
949
+ Rate
950
+ 65.3%
951
+ 86.7%
952
+ 97.3%
953
+ 72.7%
954
+ 98.0%
955
+ 100.0%
956
+ 9.3%
957
+ 22.6%
958
+ 36.6%
959
+ 46.7%
960
+ 60.7%
961
+ 76.7%
962
+ Error
963
+ 1.81e-02
964
+ 2.44e-02
965
+ 1.48e-02
966
+ 3.62e-02
967
+ 4.04e-02
968
+ 1.78e-02
969
+ 6.19e-04
970
+ 2.56e-04
971
+ 1.67e-04
972
+ 4.44e-02
973
+ 4.45e-02
974
+ 4.46e-02
975
+ Favg
976
+ 6.13e-03
977
+ 7.57e-03
978
+ 2.40e-03
979
+ 1.26e-02
980
+ 1.42e-02
981
+ 2.65e-03
982
+ 3.80e-02
983
+ 3.76e-02
984
+ 2.56e-02
985
+ 2.56e-03
986
+ 8.95e-04
987
+ 3.71e-04
988
+ Iterations
989
+ 5772.0
990
+ 5440.3
991
+ 5439.2
992
+ 5955.7
993
+ 4977.3
994
+ 4275.9
995
+ 4830.0
996
+ 3322.4
997
+ 2892.7
998
+ 5886.4
999
+ 3419.1
1000
+ 2164.2
1001
+ Schwefel 2.20
1002
+ Rate
1003
+ 100.0%
1004
+ 100.0%
1005
+ 100.0%
1006
+ 100.0%
1007
+ 100.0%
1008
+ 100.0%
1009
+ 100.0%
1010
+ 100.0%
1011
+ 100.0%
1012
+ 100.0%
1013
+ 100.0%
1014
+ 100.0%
1015
+ Error
1016
+ 5.79e-06
1017
+ 8.23e-07
1018
+ 2.44e-07
1019
+ 8.42e-06
1020
+ 1.03e-06
1021
+ 2.76e-07
1022
+ 8.34e-10
1023
+ 1.97e-12
1024
+ 4.58e-14
1025
+ 1.68e-07
1026
+ 3.41e-10
1027
+ 8.03e-14
1028
+ Favg
1029
+ 1.04e-03
1030
+ 2.15e-04
1031
+ 8.36e-05
1032
+ 1.50e-03
1033
+ 3.12e-04
1034
+ 9.37e-05
1035
+ 1.94e-09
1036
+ 6.36e-12
1037
+ 1.52e-13
1038
+ 2.44e-07
1039
+ 6.48e-10
1040
+ 2.46e-13
1041
+ Iterations
1042
+ 814.7
1043
+ 691.5
1044
+ 619.2
1045
+ 670.8
1046
+ 547.2
1047
+ 467.7
1048
+ 484.3
1049
+ 428.0
1050
+ 401.7
1051
+ 593.3
1052
+ 457.8
1053
+ 410.3
1054
+ Salomon
1055
+ Rate
1056
+ 100.0%
1057
+ 100.0%
1058
+ 100.0%
1059
+ 100.0%
1060
+ 100.0%
1061
+ 100.0%
1062
+ 0.0%
1063
+ 0.0%
1064
+ 0.0%
1065
+ 0.0%
1066
+ 0.0%
1067
+ 0.0%
1068
+ Error
1069
+ 3.12e-02
1070
+ 2.14e-02
1071
+ 1.87e-02
1072
+ 5.28e-02
1073
+ 4.49e-02
1074
+ 3.91e-02
1075
+ -
1076
+ -
1077
+ -
1078
+ -
1079
+ -
1080
+ -
1081
+ Favg
1082
+ 3.14e-01
1083
+ 2.15e-01
1084
+ 1.88e-01
1085
+ 2.44e-01
1086
+ 1.86e-01
1087
+ 1.91e-01
1088
+ -
1089
+ -
1090
+ -
1091
+ -
1092
+ -
1093
+ -
1094
+ Iterations
1095
+ 10000.0
1096
+ 10000.0
1097
+ 10000.0
1098
+ 8886.4
1099
+ 9296.2
1100
+ 2456.5
1101
+ 10000.0
1102
+ 10000.0
1103
+ 10000.0
1104
+ 10000.0
1105
+ 10000.0
1106
+ 10000.0
1107
+ XSY random
1108
+ Rate
1109
+ 55.3%
1110
+ 84.7%
1111
+ 92.0%
1112
+ 100.0%
1113
+ 100.0%
1114
+ 100.0%
1115
+ 1.2%
1116
+ 11.7%
1117
+ 21.0%
1118
+ 100.0%
1119
+ 100.0%
1120
+ 100.0%
1121
+ Error
1122
+ 2.64e-02
1123
+ 1.62e-02
1124
+ 9.80e-03
1125
+ 3.06e-02
1126
+ 1.86e-02
1127
+ 1.15e-02
1128
+ 2.25e-01
1129
+ 9.56e-02
1130
+ 8.42e-02
1131
+ 6.23e-02
1132
+ 5.12e-02
1133
+ 2.34e-02
1134
+ Favg
1135
+ 6.95e-08
1136
+ 3.54e-08
1137
+ 2.13e-08
1138
+ 2.21e-06
1139
+ 4.85e-08
1140
+ 3.17e-08
1141
+ 3.35e-04
1142
+ 2.28e-04
1143
+ 1.34e-04
1144
+ 8.22e-04
1145
+ 4.11e-04
1146
+ 3.45e-04
1147
+ Iterations
1148
+ 10000.0
1149
+ 10000.0
1150
+ 10000.0
1151
+ 10000.0
1152
+ 10000.0
1153
+ 10000.0
1154
+ 10000.0
1155
+ 10000.0
1156
+ 10000.0
1157
+ 10000.0
1158
+ 10000.0
1159
+ 10000.0
1160
+ XSY 4
1161
+ Rate
1162
+ 22.0%
1163
+ 87.3%
1164
+ 98.7%
1165
+ 23.3%
1166
+ 86.7%
1167
+ 100.0%
1168
+ 0.0%
1169
+ 0.0%
1170
+ 0.0%
1171
+ 0.0%
1172
+ 0.0%
1173
+ 0.0%
1174
+ Error
1175
+ 8.07e-01
1176
+ 7.48e-01
1177
+ 7.16e-01
1178
+ 8.44e-01
1179
+ 7.35e-01
1180
+ 6.95e-01
1181
+ -
1182
+ -
1183
+ -
1184
+ -
1185
+ -
1186
+ -
1187
+ Favg
1188
+ 4.79e-07
1189
+ 3.78e-07
1190
+ 3.46e-07
1191
+ 1.58e-06
1192
+ 8.56e-07
1193
+ 5.43e-07
1194
+ -
1195
+ -
1196
+ -
1197
+ -
1198
+ -
1199
+ -
1200
+ Iterations
1201
+ 10000.0
1202
+ 10000.0
1203
+ 10000.0
1204
+ 9677.5
1205
+ 9128.4
1206
+ 8943.2
1207
+ 10000.0
1208
+ 10000.0
1209
+ 10000.0
1210
+ 10000.0
1211
+ 10000.0
1212
+ 10000.0
1213
+ Table 2: Comparison between classical CBO, CBO-ME and standard PSO with and with-
1214
+ out alignment towards personal best on benchmark problems. The solver particleswarm
1215
+ available in the MATLAB Global Optimisation Toolbox was used for the results concerning
1216
+ the PSO method. Optimal choice of parameters, different for each method, are used for the
1217
+ CBO algorithms. Same stopping criterion and definition of success, see (3.2), were used.
1218
+ Performance metric considered: success rate (see (3.2)), error (∥¯yα,k−x∗∥∞), fitness value
1219
+ F(¯yα,k) and number of iterations. Results are averaged over 250 runs.
1220
+ 11
1221
+
1222
+ µ = 0
1223
+ µ = 0.05
1224
+ µ = 0.1
1225
+ µ = 0.2
1226
+ Ackley
1227
+ Rate
1228
+ 100.0%
1229
+ 100.0%
1230
+ 100.0%
1231
+ 100.0%
1232
+ Error
1233
+ 1.84e-06
1234
+ 2.16e-06
1235
+ 6.54e-06
1236
+ 1.34e-05
1237
+ Favg
1238
+ 7.30e-05
1239
+ 6.17e-05
1240
+ 1.87e-04
1241
+ 3.95e-04
1242
+ witer
1243
+ 674.2
1244
+ 505.2
1245
+ 357.2
1246
+ 182.1
1247
+ CTS
1248
+ -
1249
+ 31.1%
1250
+ 51.6 %
1251
+ 73.8%
1252
+ Griewank
1253
+ Rate
1254
+ 100.0%
1255
+ 100.0%
1256
+ 100.0%
1257
+ 100.0%
1258
+ Error
1259
+ 2.35e-02
1260
+ 2.22e-02
1261
+ 2.32e-02
1262
+ 2.28e-02
1263
+ Favg
1264
+ 5.82e-02
1265
+ 5.20e-02
1266
+ 5.72e-02
1267
+ 5.70e-02
1268
+ witer
1269
+ 635.4
1270
+ 395.9
1271
+ 204.6
1272
+ 184.6
1273
+ CTS
1274
+ -
1275
+ 31.8%
1276
+ 58.2%
1277
+ 73.3%
1278
+ Schwefel 2.20
1279
+ Rate
1280
+ 100.0%
1281
+ 100.0%
1282
+ 100.0%
1283
+ 100.0%
1284
+ Error
1285
+ 2.76e-07
1286
+ 9.08e-07
1287
+ 8.21e-07
1288
+ 2.73e-08
1289
+ Favg
1290
+ 9.37e-05
1291
+ 2.93e-05
1292
+ 1.58e-05
1293
+ 3.74e-05
1294
+ witer
1295
+ 467.7
1296
+ 359.8
1297
+ 318.7
1298
+ 172.4
1299
+ CTS
1300
+ -
1301
+ 24.4%
1302
+ 32.9%
1303
+ 64.1%
1304
+ Salomon
1305
+ Rate
1306
+ 100.0%
1307
+ 100.0%
1308
+ 100.0%
1309
+ 100.0%
1310
+ Error
1311
+ 4.11e-02
1312
+ 3.35e-02
1313
+ 2.74e-02
1314
+ 1.75e-02
1315
+ Favg
1316
+ 4.34e-01
1317
+ 4.43e-01
1318
+ 4.07e-01
1319
+ 3.26e-01
1320
+ witer
1321
+ 2456.5
1322
+ 1595.8
1323
+ 1289.2
1324
+ 913.0
1325
+ CTS
1326
+ -
1327
+ 36.7%
1328
+ 49.1%
1329
+ 63.7%
1330
+ XSY random
1331
+ Rate
1332
+ 100.0%
1333
+ 100.0%
1334
+ 100.0%
1335
+ 100.0%
1336
+ Error
1337
+ 1.50e-02
1338
+ 8.62e-02
1339
+ 8.89e-02
1340
+ 9.08e-02
1341
+ Favg
1342
+ 5.97e-07
1343
+ 1.75e-05
1344
+ 5.48e-05
1345
+ 1.06e-04
1346
+ witer
1347
+ 10000.0
1348
+ 2642.3
1349
+ 1755.7
1350
+ 1123.7
1351
+ CTS
1352
+ -
1353
+ 73.6%
1354
+ 82.4%
1355
+ 88.7%
1356
+ XSY 4
1357
+ Rate
1358
+ 100.0%
1359
+ 100.0%
1360
+ 100.0%
1361
+ 100.0%
1362
+ Error
1363
+ 5.30e-01
1364
+ 3.78e-01
1365
+ 1.35e-01
1366
+ 1.37e-01
1367
+ Favg
1368
+ 1.17e-05
1369
+ 6.28e-06
1370
+ 3.41e-06
1371
+ 3.55e-06
1372
+ witer
1373
+ 8943.2
1374
+ 3910.4
1375
+ 1890.2
1376
+ 1060.1
1377
+ CTS
1378
+ -
1379
+ 46.9%
1380
+ 68.1%
1381
+ 79.4%
1382
+ Table 3: CBO-ME algorithm with random selection of particles tested against different
1383
+ benchmark functions with different values of µ, which regulates the random selection mech-
1384
+ anism. The system is initialized with N0 = 200 particles and σ = 0.8. Performance metric
1385
+ considered: success rate (see (3.2)), error (∥¯yα,k − x∗∥∞), fitness value F(¯yα,k), weighted
1386
+ iteration (3.3), and Computational Time Saved (CTS). Results are averaged over 250 runs.
1387
+ µ = 0
1388
+ µ = 0.1
1389
+ µ = 0.2
1390
+ µ = 0.5
1391
+ Rastrigin
1392
+ Rate
1393
+ 100.0%
1394
+ 100.0%
1395
+ 100.0%
1396
+ 100.0%
1397
+ Error
1398
+ 9.14e-05
1399
+ 7.12e-05
1400
+ 3.77e-05
1401
+ 1.24e-05
1402
+ Favg
1403
+ 2.23e-06
1404
+ 2.19e-06
1405
+ 1.98e-06
1406
+ 1.27e-06
1407
+ witer
1408
+ 1161.1
1409
+ 719.6
1410
+ 256.5
1411
+ 111.2
1412
+ CTS
1413
+ -
1414
+ 38.1%
1415
+ 77.9%
1416
+ 90.4%
1417
+ µ = 0
1418
+ µ = 0.01
1419
+ µ = 0.02
1420
+ µ = 0.05
1421
+ Rosenbrock
1422
+ Rate
1423
+ 100.0%
1424
+ 100.0%
1425
+ 99.4%
1426
+ 99.0%
1427
+ Error
1428
+ 2.55e-02
1429
+ 2.23e-02
1430
+ 1.66e-02
1431
+ 1.341e-02
1432
+ Favg
1433
+ 4.20e-03
1434
+ 5.23e-03
1435
+ 4.10e-03
1436
+ 4.24e-03
1437
+ witer
1438
+ 3172.3
1439
+ 852.9
1440
+ 347.8
1441
+ 82.5
1442
+ CTS
1443
+ -
1444
+ 73.1%
1445
+ 89.1%
1446
+ 97.4%
1447
+ Table 4: CBO-ME algorithm with particle reduction tested against Rastrigin and Rosen-
1448
+ brock functions with an higher diffusion parameter σ = 1.1 and for different values of µ ,
1449
+ which regulates the random selection mechanism. The system is initialized with N0 = 200
1450
+ particles. Performance metric considered: success rate (see (3.2)), error (∥¯yα,k − x∗∥∞),
1451
+ fitness value F(¯yα,k), weighted iteration (3.3), and Computational Time Saved (CTS).
1452
+ 12
1453
+
1454
+ (a) Error: ∥¯yα,k − x∗∥∞
1455
+ (b) Fitness Value: F(¯yα,k)
1456
+ Figure 3: Optimization of Rastigin function for different values of the random selection
1457
+ parameter µ where the initial particle population is N0 = 104. We report error (on the
1458
+ left) and fitness values (on the right) as the number of function evaluations increases.
1459
+ Parameters are set as λ = 0.01, σ = 1.1, α adaptive starting from α0 = 10 and following
1460
+ the law α = α0 · k · log2(k). Results are averaged over 250 runs.
1461
+ 3.2
1462
+ Applications
1463
+ In this section, we propose some applications of the proposed optimization algorithm. First
1464
+ we consider a image segmentation problem using multi-thresholding, then we use the CBO-
1465
+ ME to train a Neural Network (NN) architecture to approximate functions and perform image
1466
+ classification on MNIST database of handwritten digits.
1467
+ 3.2.1
1468
+ Image segmentation
1469
+ To perform image segmentation, we use a threshold detection technique, namely, the multidimen-
1470
+ sional Otsu algorithm [32,44] in order to compare the results to similar optimization algorithm,
1471
+ such as the Modified PSO in [43].
1472
+ In the Otsu algorithm, every pixel of the image is assigned to one of the possible L grayscale
1473
+ values. We denote with ηi the number of pixel with gray level i, 1 ≤ i ≤ L and Npix = �L
1474
+ i=1 ηi
1475
+ the total number of pixels [32]. Then, the image is divided into object C0 with gray-level [1, . . . , l]
1476
+ and background C1 with gray-level [l + 1, . . . , L] by inserting a threshold l. The probabilities of
1477
+ class occurrence and the class mean level for the object, respectively, are given by
1478
+ ω0(l) =
1479
+ l
1480
+
1481
+ i=1
1482
+ pi,
1483
+ pi =
1484
+ ηi
1485
+ Npix
1486
+ µ0(l) =
1487
+ l
1488
+
1489
+ i=1
1490
+ ipi
1491
+ ω0(k) .
1492
+ For the background, the class occurrence probabilities and the class mean level are given by
1493
+ ω1(l) =
1494
+ L
1495
+
1496
+ i=l+1
1497
+ pi,
1498
+ pi =
1499
+ ηi
1500
+ Npix
1501
+ 13
1502
+
1503
+ µ1(l) =
1504
+ L
1505
+
1506
+ i=l+1
1507
+ ipi
1508
+ ω1(k) .
1509
+ As in [32], the best threshold l∗ is obtained when the variance formula
1510
+ f(l) = ω0(l) ω1(l) (µ0(l) − µ1(l))2
1511
+ (3.4)
1512
+ between object group and background reaches its maximum value, i.e. l∗ = argmaxlf(l). The
1513
+ problem is then reduced to a threshold problem, which we can solve with optimization methods.
1514
+ Since segmentation is a trivial one-dimensional problem, we consider an extension of Otsu’s
1515
+ technique to the multidimensional case [44] to test capabilities of method. Assuming we want to
1516
+ optimize the choice of d thresholds, we require d + 1 classes of different gray-scales (C0, . . . , Cd)
1517
+ with relative probabilities of occurrence classes defined as
1518
+ ω0(l1) =
1519
+ l1
1520
+
1521
+ i=1
1522
+ pi , . . . , ωd(ld) =
1523
+ L
1524
+
1525
+ i=ld+1
1526
+ pi,
1527
+ pi =
1528
+ ηi
1529
+ Npix
1530
+ and classes mean levels
1531
+ µ0(l1) =
1532
+ �l1
1533
+ i=1 ipi
1534
+ ω0
1535
+ , . . . , µd(ld) =
1536
+ �L
1537
+ i=ld+1 ipi
1538
+ ωd
1539
+ ,
1540
+ The optimal thresholds (ˆl1, . . . , ˆld) are those that satisfy ˆl1 < · · · < ˆld and maximise
1541
+ f(l1, . . . ld) =
1542
+ d
1543
+
1544
+ i=1
1545
+ ωi(li)µ2
1546
+ i (li)
1547
+ (3.5)
1548
+ For the experiment, we chose d = 5 thresholds and compare the segmentation performed by
1549
+ Otsu’s method, solved with both standard PSO and CBO-ME, with segmentation obtained by
1550
+ dividing the greyscale into d + 1 uniformly spaced intervals. For PSO, we use to the default
1551
+ parameters in the particleswarm function in the MATLAB Global Optimisation Toolbox, while
1552
+ for CBO-ME we used optimal parameters found in Section 3.1 and exploit the random selection
1553
+ technique to speed up the algorithm.
1554
+ We report the results on two sample images, Fig.s 4 and 5. We fix kmax = 103 and average
1555
+ results over 250 runs. As in [2], we evaluate multi-thresholding segmentation through the Peak
1556
+ Signal to Noise Ratio (PSNR) computed as:
1557
+ PSNR = 20 · log10
1558
+
1559
+ 255
1560
+ RMSE
1561
+
1562
+ where RMSE is the Root Mean-Squared Error, defined as
1563
+ RMSE =
1564
+
1565
+
1566
+
1567
+
1568
+ 1
1569
+ Npix
1570
+ Nrow
1571
+
1572
+ i=1
1573
+ Ncol
1574
+
1575
+ j=1
1576
+ [I(i, j) − S(i, j)]2
1577
+ where Npix = Nrow · Ncol, I is the original image and S is the associated segmented image.
1578
+ The higher the value of PSNR is, the greater the similarity between the clustered image and
1579
+ the original image is. From Fig.s 4,5, we note that the most accurate segmentation on details
1580
+ is obtained by the CBO-ME method. This is quantitatively confirmed by the PSNR values
1581
+ reported in Table 5.
1582
+ 14
1583
+
1584
+ (a) Original
1585
+ (b) Standard segmentation
1586
+ (c) Otsu seg. (PSO)
1587
+ (d) Otsu seg. (CBO-ME)
1588
+ Figure 4: Image segmentation of darkhair woman image (256 × 256 pixels) with standard
1589
+ segmentation and Otsu segmentation solved respectively by PSO (c) and by CBO-ME (d);
1590
+ results are averaged over 250 runs, with an initial population of N0 = 103 particles.
1591
+ (a) Original
1592
+ (b) Standard segmentation
1593
+ (c) Otsu seg. (PSO)
1594
+ (d) Otsu seg. (CBO-ME)
1595
+ Figure 5: Image segmentation of lake image (256×256 pixels) with standard segmentation
1596
+ and Otsu segmentation solved respectively by PSO (c) and by CBO-ME (d); results are
1597
+ averaged over 250 runs, with an initial population of N0 = 103 particles.
1598
+ cameraman
1599
+ lake
1600
+ lena
1601
+ peppers
1602
+ woman darkhair
1603
+ Standard segmentation
1604
+ 22.83
1605
+ 21.72
1606
+ 24.35
1607
+ 27.24
1608
+ 25.33
1609
+ Otsu segmentation
1610
+ (PSO)
1611
+ 34.62
1612
+ 32.33
1613
+ 38.19
1614
+ 38.03
1615
+ 37.14
1616
+ Otsu segmentation
1617
+ (CBO-ME)
1618
+ 37.22
1619
+ 35.44
1620
+ 38.72
1621
+ 38.28
1622
+ 39.57
1623
+ Table 5: PSNR values to evaluating the advantages of the method in optimising threshold
1624
+ values in 5 sample images known in literature. For these results, we compared the Otsu
1625
+ segmentation solved by the proposed CBO-ME method with the classical PSO method with
1626
+ equispaced thresholding segmentation. Experiments are performed with d = 5 thresholds.
1627
+ 15
1628
+
1629
+ -1
1630
+ -0.5
1631
+ 0
1632
+ 0.5
1633
+ 1
1634
+ -2
1635
+ -1
1636
+ 0
1637
+ 1
1638
+ 2
1639
+ (a) 2000 epochs
1640
+ -1
1641
+ -0.5
1642
+ 0
1643
+ 0.5
1644
+ 1
1645
+ -2
1646
+ -1
1647
+ 0
1648
+ 1
1649
+ 2
1650
+ (b) 3000 epochs
1651
+ -1
1652
+ -0.5
1653
+ 0
1654
+ 0.5
1655
+ 1
1656
+ -2
1657
+ -1
1658
+ 0
1659
+ 1
1660
+ 2
1661
+ (c) 5000 epochs
1662
+ -1
1663
+ -0.5
1664
+ 0
1665
+ 0.5
1666
+ 1
1667
+ -2
1668
+ -1
1669
+ 0
1670
+ 1
1671
+ 2
1672
+ (d) 8000 epochs
1673
+ Figure 6: Approximating smooth function u1 (3.8) using a network with n = 50 and m = 3.
1674
+ The learning rate is λ = 0.2 and we initially use N0 = 500 particles. The others parameters
1675
+ are set as λ = 1, σ = 0.8 and α adaptive starting from α0 = 10.
1676
+ 3.2.2
1677
+ Approximating functions with NN
1678
+ In this section, we use the proposed CBO-ME algorithm to train a NN architecture into approx-
1679
+ imating a function u : I → R, I ⊂ R with low regularity. As in [5], we use a fully-connected NN
1680
+ with m layers
1681
+ f(x; θ) = (Lm ◦ . . . L2 ◦ L1)(x)
1682
+ (3.6)
1683
+ where each layer is given by
1684
+ Li = σ(W ix + bi)
1685
+ with σ(x) = 1/(1+exp(−x)) being the sigmoid function. We use internal layers of dimension n,
1686
+ so W 1 ∈ Rn×1, b1 ∈ R, W m ∈ R1×n, bm ∈ Rd and W i ∈ Rn×n for all i = 2, . . . , m − 1. In (3.6),
1687
+ all DNN parameters are collected in θ = {W i, bi}m
1688
+ i=1.
1689
+ As loss function which need to be minimized, we consider the L2-norm between the target
1690
+ function u and its NN approximation f(· ; θ)
1691
+ F(θ) := ∥f(· ; θ) − u∥L2(I) .
1692
+ (3.7)
1693
+ Again, similarly to [5], we test the method against the following two functions:
1694
+ u1(x) = sin(2πx) + sin(8πx2)
1695
+ (3.8)
1696
+ 16
1697
+
1698
+ -1
1699
+ -0.5
1700
+ 0
1701
+ 0.5
1702
+ 1
1703
+ -2
1704
+ -1
1705
+ 0
1706
+ 1
1707
+ 2
1708
+ (a) 2000 epochs
1709
+ -1
1710
+ -0.5
1711
+ 0
1712
+ 0.5
1713
+ 1
1714
+ -2
1715
+ -1
1716
+ 0
1717
+ 1
1718
+ 2
1719
+ (b) 3000 epochs
1720
+ -1
1721
+ -0.5
1722
+ 0
1723
+ 0.5
1724
+ 1
1725
+ -2
1726
+ -1
1727
+ 0
1728
+ 1
1729
+ 2
1730
+ (c) 5000 epochs
1731
+ -1
1732
+ -0.5
1733
+ 0
1734
+ 0.5
1735
+ 1
1736
+ -2
1737
+ -1
1738
+ 0
1739
+ 1
1740
+ 2
1741
+ (d) 8000 epochs
1742
+ Figure 7:
1743
+ Approximating non-smooth u2 (3.9) function using a network with n = 50,
1744
+ m = 3. The learning rate is λ = 0.2 and we use initially N0 = 500 particles. The others
1745
+ parameters are set as λ = 1, σ = 0.8 and α adaptive starting from α0 = 10.
1746
+ u2(x) =
1747
+
1748
+
1749
+
1750
+
1751
+
1752
+ 1
1753
+ if x < − 7
1754
+ 8, − 1
1755
+ 8 < x < 1
1756
+ 8, x > 7
1757
+ 8
1758
+ −1
1759
+ if
1760
+ 3
1761
+ 8 < x < 5
1762
+ 8, − 5
1763
+ 8 < x < − 3
1764
+ 8,
1765
+ 0
1766
+ otherwise .
1767
+ (3.9)
1768
+ We note that u1 is smooth, while u2 is discontinuous. Parameters of the CBO-ME algorithm
1769
+ have been set to λ = 0.01, σ = 0.8, as in the previous sections. Parameter α is adapted during
1770
+ the computation as in 3.1 and random selection mechanism is used. We employ m = 3 layers
1771
+ with internal dimension n = 50. Results are displayed in Fig.s 6 and 7. We note that smooth
1772
+ function u1 is well-approximated already after 5000 epochs, while convergence is slower for the
1773
+ discontinuous step function u2.
1774
+ 3.2.3
1775
+ Application on MNIST dataset
1776
+ We now employ the proposed algorithm to train a NN architecture to solve a image classification
1777
+ tasks. We will consider the MNIST dataset [26] composed of handwritten digits in grayscale with
1778
+ 28 × 28 pixels. For better comparability with CBO methods without memory effects, we closely
1779
+ follow the experiment settings used in the literature [4,10,37], which we summarize below.
1780
+ We consider a 1-layer NN where input images x ∈ R28×28 are first vectorized x �→ vec(x) ∈
1781
+ R728 and then processed through a fully-connected layer with parameters θ = {W, b}, with
1782
+ 17
1783
+
1784
+ 10
1785
+ 20
1786
+ 30
1787
+ 40
1788
+ 50
1789
+ Epochs
1790
+ 0.4
1791
+ 0.6
1792
+ 0.8
1793
+ 1
1794
+ Accuracy on test data
1795
+ CBO-ME
1796
+ CBO
1797
+ 10
1798
+ 20
1799
+ 30
1800
+ 40
1801
+ 50
1802
+ Epochs
1803
+ 0.06
1804
+ 0.08
1805
+ 0.1
1806
+ 0.12
1807
+ 0.14
1808
+ 0.16
1809
+ 0.18
1810
+ Loss
1811
+ CBO-ME
1812
+ CBO
1813
+ Figure 8:
1814
+ Performance during training of shallow NN (3.10) on image classification
1815
+ (MNIST dataset) with CBO-ME optimizer and plain CBO without memory effects [10].
1816
+ Training is performed by Algorithm 1 with N = 100 particles and no particle selection.
1817
+ Cross-entropy loss function (3.11) and adaptive parameters strategy (3.12) were used in
1818
+ the training.
1819
+ W ∈ R10×728, b ∈ R10. That is, the network is given by
1820
+ fSNN(x; θ) = softmax (ReLU (Wvec(x) + b) ) ,
1821
+ (3.10)
1822
+ where ReLU(z) = max{z, 0} (component-wise) and softmax(z) = (ez1, . . . , ezn)/(�
1823
+ i ezi) are
1824
+ the commonly activation functions.
1825
+ During the training, batch regularization is performed
1826
+ after ReLU is applied in order to speed up convergence. Given a training set {(xm, ℓm)}M
1827
+ m=1,
1828
+ xm ∈ R28×28, ℓm ∈ {0, 1}10 made of M image-label tuples we train the model by minimizing the
1829
+ categorical cross-entropy loss
1830
+ F(θ) = 1
1831
+ M
1832
+ M
1833
+
1834
+ m=1
1835
+
1836
+
1837
+ 10
1838
+
1839
+ i=1
1840
+ ℓm
1841
+ i log(fi(xm, θ))
1842
+
1843
+ .
1844
+ (3.11)
1845
+ We employ a population on N = 100 particles throughout the entire computation, initially
1846
+ sampled from the standard normal distribution N(0, Id). Following the mini-batch approach
1847
+ suggested in [4], the consensus points ¯yα,k is computed only among a random subset of nN = 10
1848
+ particles, but all particles are updated at each step. The training data is divided in batches of
1849
+ nF = 60 images. The drift parameter is set to λ = 0.01, while σ and α are adapted during the
1850
+ computation after each epoch as
1851
+ σepoch = σ0/ log2 (epoch + 2)
1852
+ αepoch+1 = 2 · αepoch+1
1853
+ (3.12)
1854
+ starting form σ0 =
1855
+
1856
+ 0.04, and α0 = 50,
1857
+ Fig.
1858
+ 8 shows the results in terms of loss function (3.11) over the test data set and the
1859
+ accuracy reached in the classification task. While challenging state-of-the-art training methods
1860
+ 18
1861
+
1862
+ is beyond the scope of the experiment, we note how high-dimensional data optimization tasks
1863
+ can be solved with as little as N = 100 particles by the proposed method, obtaining results
1864
+ comparable with the literature on CBO methods [4, 10, 37]. Also, we remark that parameters
1865
+ have not been tuned extensively.
1866
+ 4
1867
+ Theoretical analysis
1868
+ A strength of CBO algorithms lays on the possibility of theoretically analyze the particle system
1869
+ by relying on a mean-field approximation of the dynamics. We will illustrate in this section how
1870
+ to derive such approximation and present the main theoretical result regarding the convergence
1871
+ of the particle system towards a solution to (2.1), in case of no selection mechanism. Next,
1872
+ we will study the impact of the random selection strategy on the convergence properties of the
1873
+ algorithm. Technical details are left to Appendix A.
1874
+ 4.1
1875
+ Mean-field approximation
1876
+ First, we note that a simple update rule for the personal bests yk
1877
+ i is given by
1878
+ yk+1
1879
+ i
1880
+ = yk
1881
+ i + 1
1882
+ 2
1883
+
1884
+ xk+1
1885
+ i
1886
+ − yk
1887
+ i
1888
+
1889
+ S(xk+1
1890
+ i
1891
+ , yk
1892
+ i ) ,
1893
+ with
1894
+ S(x, y) = 1 + sign (F(y) − F(x)) .
1895
+ (4.1)
1896
+ As in [14], we approximate it for β ≫ 1 as
1897
+ yk+1
1898
+ i
1899
+ = yk
1900
+ i + ν
1901
+ 2
1902
+
1903
+ xk+1
1904
+ i
1905
+ − yk
1906
+ i
1907
+
1908
+ Sβ(xk+1
1909
+ i
1910
+ , yk
1911
+ i ) ,
1912
+ (4.2)
1913
+ with Sβ(x, y) being a continuous approximation of S(x, y) as β → ∞. By choosing ν = 1 we
1914
+ get (4.1) with the only difference of having Sβ instead of S. As for ¯yα with respect to ¯y∞, this
1915
+ is needed to make the update rule easier to handle mathematically, but it does have an impact
1916
+ on the performance for large values of β.
1917
+ With the aim of deriving a continuous-in-time reformulation of (2.4) and (4.2), we introduce
1918
+ a single parameter ∆t > 0 which controls the step length of all involved update mechanisms.
1919
+ By performing the rescaling
1920
+ λ ← λ∆t ,
1921
+ σ ← σ
1922
+
1923
+ ∆t ,
1924
+ ν ← ν∆t
1925
+ to get the update rules
1926
+
1927
+ xk+1
1928
+ i
1929
+ = xk
1930
+ i + λ∆t
1931
+
1932
+ ¯yα,k − xk
1933
+ i
1934
+
1935
+ + σ
1936
+
1937
+ ∆t
1938
+
1939
+ ¯yα,k − xk
1940
+ i
1941
+
1942
+ ⊗ θk
1943
+ i
1944
+ yk+1
1945
+ i
1946
+ = yk
1947
+ i + (ν∆t/2)
1948
+
1949
+ xk+1
1950
+ i
1951
+ − yk
1952
+ i
1953
+
1954
+ Sβ(xk+1
1955
+ i
1956
+ , yk
1957
+ i )
1958
+ (4.3)
1959
+ which differ form the original formulation (2.4), (4.1) only due to the use of Sβ instead of S.
1960
+ As already noted in [14], the iterative process (4.3) corresponds to an Euler-Maruyama
1961
+ scheme applied to a system of Stochastic Differential Equations (SDEs). Indeed, (4.3) corre-
1962
+ sponds to a discretization of the system
1963
+
1964
+ dXi
1965
+ t
1966
+ = λ
1967
+
1968
+ ¯yα(ρN
1969
+ t ) − Xi
1970
+ t
1971
+
1972
+ dt + σ
1973
+
1974
+ ¯yα(ρN
1975
+ t ) − Xi
1976
+ t
1977
+
1978
+ ⊗ dBi
1979
+ t
1980
+ dY i
1981
+ t
1982
+ = ν(Xi
1983
+ t − Y i
1984
+ t )Sβ(Xi
1985
+ t, Y i
1986
+ t ) dt
1987
+ (4.4)
1988
+ 19
1989
+
1990
+ where, for convenience, we underlined above the dependence of the consensus point on the
1991
+ empirical distribution ρN
1992
+ t = �
1993
+ i δY i
1994
+ t (δy being the Dirac measure at y ∈ Rd) by using
1995
+ ¯yα(ρ) :=
1996
+
1997
+ ye−αF(y)dρ(y)
1998
+
1999
+ e−αF(y)dρ(y) ,
2000
+ (4.5)
2001
+ defined for any Borel probability measure ρ over Rd (ρ ∈ P(Rd)). In this way, we generalized
2002
+ the definition introduced in (2.2) to any ρ ∈ P(Rd), provided the above integrals exists. In (4.4),
2003
+ the random component of the dynamics is now described by N independent Wiener processes
2004
+ (Bi
2005
+ t)t>0. As before, we supplement the system with initial conditions Xi
2006
+ 0 ∼ ρ0, Y i
2007
+ 0 = Xi
2008
+ 0 for some
2009
+ ρ0 ∈ P(Rd).
2010
+ The continuous-in-time description (4.4) already simplifies the analytical analysis of the
2011
+ optimization algorithm, but still pays the price of a possible large number O(N) of equations.
2012
+ This issue is typically addressed by assuming that for large populations N, the particles become
2013
+ indistinguishable from one another and start behaving, in some sense, as a unique system.
2014
+ More precisely, let F N(t) ∈ P(R(2d)N) denote the joint probability distribution of N tuples
2015
+ (Xi
2016
+ t, Y i
2017
+ t ). We assume propagation of chaos [41] for large N ≫ 1, that is, we assume that the
2018
+ joint probability distribution decomposes as F N(t) = f(t)⊗N for some f(t) ∈ P(R2d). System
2019
+ (4.4) becomes independent on the index i and hence every particle moves according to the
2020
+ mono-particle process
2021
+ d ¯Xt = λ(¯yα(¯ρt) − ¯Xt) dt + σ (¯yα(¯ρt) �� ¯Xt) ⊗ d ¯Bt
2022
+ d ¯Yt = ν( ¯Xt − ¯Yt)Sβ( ¯Xt, ¯Yt) dt
2023
+ (4.6)
2024
+ where ¯ρt = Law( ¯Yt).
2025
+ Assume ( ¯Xt, ¯Yt) are initially distributed according to f0 = ρ⊗2
2026
+ 0 , by applying Itˆo formula we
2027
+ have that f(t) = Law( ¯Xi
2028
+ t, ¯Y i
2029
+ t ) satisfies
2030
+ ∂tf + ∇x · (λ(¯yα(¯ρ) − x)f) + ∇y ·
2031
+
2032
+ ν(x − y)Sβ(x, y)f
2033
+
2034
+ =
2035
+ d
2036
+
2037
+ ℓ=1
2038
+ ∂2
2039
+ xℓ
2040
+
2041
+ σ(¯yα(¯ρ) − x)2
2042
+ ℓf
2043
+
2044
+ (4.7)
2045
+ and initial data limt→0 f(t) = f0 in a weak sense.
2046
+ Dynamics (4.6), or, equivalently, (4.7),
2047
+ corresponds to the mean-field approximation of the particle system (4.4) as N → ∞. We remark
2048
+ that the above derivation has only been possible thanks to the approximations S ≈ Sβ and
2049
+ ¯y∞ ≈ ¯yα for large α and β. Well-posedness of the system is also granted by such approximations
2050
+ (proof details are given in Appendix A.2).
2051
+ Proposition 4.1 (well-posedness of (4.6)). There exists a unique process ( ¯X, ¯Y ) ∈ C([0, T], Rd),
2052
+ T > 0 satisfying (4.4) with initial conditions ( ¯X0, ¯Y0) with ¯X0 ∼ ρ0 ∈ P4(Rd) and ¯Y0 = ¯X0.
2053
+ Being mathematically tractable, we show next that the mean-field dynamics converges to a
2054
+ global solution to (2.1) if F, Sβ.
2055
+ 20
2056
+
2057
+ 4.2
2058
+ Convergence in mean-field law
2059
+ We start by enunciating the necessary assumptions to the convergence result.
2060
+ Assumption 4.1 (Assumptions on F). The objective function F ∈ C(Rd, R), satisfies:
2061
+ A1
2062
+ there exists some constant LF > 0 such that
2063
+ |F(x) − F(x′)| ≤ LF
2064
+
2065
+ ∥x∥2 + ∥x′∥2
2066
+
2067
+ ∥x − x′∥2,
2068
+ ∀ x, x′ ∈ Rd ;
2069
+ A2
2070
+ there exists uniquely x∗ ∈ Rd solution to (2.1);
2071
+ A3
2072
+ there exist η, R0 > 0 and γ ∈ (2, ∞) such that
2073
+ F(x) − inf F ≥ η ∥x − x∗∥γ
2074
+
2075
+ ∀x ∈ Rd , ∥x − x∗∥∞ ≤ R0
2076
+ F(x) − inf F ≥ η Rγ
2077
+ 0
2078
+ ∀x ∈ Rd , ∥x − x∗∥∞ > R0 .
2079
+ A4
2080
+ F is convex in a (possibly small) neighborhood {x ∈ Rd : ∥x − x∗∥∞ ≤ R1} of x∗ for
2081
+ some R1 < R0.
2082
+ A5
2083
+ There exists cg, R2 > 0 such that
2084
+ F(x) − inf F ≥ cg∥x − x∗∥2
2085
+ 2
2086
+ ∀x ∈ Rd , ∥x − x∗∥2 > R2 .
2087
+ Assumption 4.2 (Assumptions on Sβ). The function Sβ ∈ C(R2d, [0, 2]), with β > 0
2088
+ A6
2089
+ has the following structure
2090
+ Sβ(x, y) = 2ψ (β(F(y) − F(x))) ,
2091
+ (4.8)
2092
+ with ψ ∈ C1(R, [0, 1]) being an increasing function with Lipschitz constant Lψ = 1.
2093
+ A7
2094
+ The value Sβ(x, y) is positive only when x is strictly better than y in terms of objective
2095
+ value F:
2096
+ Sβ(x, y)
2097
+
2098
+ ≥ 0
2099
+ if
2100
+ F(x) < F(y)
2101
+ = 0
2102
+ else .
2103
+ Assuming uniqueness of global minimum is a typical assumption for analysis of CBO methods
2104
+ [9,10] and it is due to the definition of the consensus point ¯yα (or ¯xα in the case without memory
2105
+ mechanism). Indeed, in presence of two global minima, ¯yα may be placed between them, no
2106
+ matter how large α is. Assumption A2 ensure to avoid such situations. Furthermore, A3 also
2107
+ allows to give quantitative estimates on the difference between the global minimum and eventual
2108
+ local minima. In the literature, such property is known as conditioning [12]. Requirements A4
2109
+ and A7 ensure that if a personal best yk
2110
+ i enters such small neighborhood where F is convex, it
2111
+ will not leave it for the rest of the computation. Condition A5 (quadratic growth at infinity) is
2112
+ needed for the well-posedness of the mean-field mono-particle process (4.6), see also [3]. For an
2113
+ intuition of A3 and A4 we refer to Figure 9, where the Rastrigin function is considered.
2114
+ 21
2115
+
2116
+ x$ ! R0
2117
+ x$
2118
+ x$ + R0
2119
+ 0
2120
+ 20
2121
+ 40
2122
+ objective
2123
+ lower bound (A3)
2124
+ convex area (A4)
2125
+ Figure 9: Assumptions 4.1 illustrated for Rastrigin function. For example, such objective
2126
+ function satisfies A3 with η = 1, γ = 1.8, R0 = 1.42 and A4 with R1 = 0.25.
2127
+ Theorem 4.1 (Convergence in mean-field law). Assume F satisfies A1–A5, Sβ satisfies A6,
2128
+ A7 for some β > 0 fixed. Let ( ¯Xt, ¯Yt)t≥0 be a solution to (4.6) for t ∈ [0, T], with initial data
2129
+ ¯X0 ∼ ρ0 ∈ P4(Rd), Y0 = X0 such that x∗ ∈ supp(ρ0) .
2130
+ Fix an accuracy ε > 0. If 2λ > σ2, there exists a time T ∗ such that the expected ℓ2-error
2131
+ satisfies
2132
+ E
2133
+
2134
+ ∥ ¯XT ∗ − x∗∥2
2135
+ 2
2136
+
2137
+ ≤ ε
2138
+ (4.9)
2139
+ provided T, α > 0 are large enough.
2140
+ We refer to Appendix A for a proof.
2141
+ Remark 4.1. The mean-field mono-particle process (4.6) aims to approximate the algorithm
2142
+ iterative dynamics (4.3) for small time steps ∆t ≪ 1 and large particle populations N ≫ 1.
2143
+ Therefore, convergence of the algorithm dynamics towards the global solution x∗ can be proven
2144
+ by coupling Theorem 4.1 with error estimates of such approximation.
2145
+ For instance, assuming that all considered dynamics take place on a bounded set D ensures
2146
+ that the error introduced by the continuous-in-time particle system will be of order ∆t thanks to
2147
+ classical results on Euler-Maruyama schemes [35]. Likewise, considering a bounded dynamics
2148
+ allows to prove that the error introduced by the mean-field approximation is of order N−1 (see
2149
+ e.g. [8, Theorem 3.1], [9, Proposition 16]). Let {(xk
2150
+ i , yk
2151
+ i )}N
2152
+ i=1 be given by (4.3), {(Xi
2153
+ t, Y i
2154
+ t )}N
2155
+ i=1 be
2156
+ a solution (4.4) and {( ¯Xi
2157
+ t, ¯Y i
2158
+ t )}N
2159
+ i=1 be N-copies of a solution to (4.6). Altogether, one obtains
2160
+ the following error decomposition for K∆t = T ∗
2161
+ E
2162
+
2163
+ 1
2164
+ N
2165
+ N
2166
+
2167
+ i=1
2168
+ ∥xK
2169
+ i − x∗∥2
2170
+ 2
2171
+
2172
+ ≤ C
2173
+
2174
+ E
2175
+
2176
+ 1
2177
+ N
2178
+ N
2179
+
2180
+ i=1
2181
+ ∥xK
2182
+ i − Xi
2183
+ T ∗∥2
2184
+ 2
2185
+
2186
+ + E
2187
+
2188
+ 1
2189
+ N
2190
+ N
2191
+
2192
+ i=1
2193
+ ∥Xi
2194
+ T ∗ − ¯Xi
2195
+ T ∗∥2
2196
+ 2
2197
+
2198
+ + E
2199
+
2200
+ 1
2201
+ N
2202
+ N
2203
+
2204
+ i=1
2205
+ ∥ ¯Xi
2206
+ T ∗ − x∗∥2
2207
+ 2
2208
+ � �
2209
+ ≤ CEM∆t + CMFAN−1 + ε
2210
+ 22
2211
+
2212
+ where C, CEM, CMFA are positive constant independent on N, ∆t.
2213
+ 4.3
2214
+ Random selection analysis
2215
+ In this section, we analytically investigate the impact of randomly discarding particles during
2216
+ the computation. We are particularly interested in tracking the distance between a particle
2217
+ system {xk
2218
+ i , xk
2219
+ j }N0
2220
+ i=1 evolving according to (4.3) where no particles are discarded, and a second
2221
+ system {ˆxk
2222
+ i , ˆyk
2223
+ i }Ik, |Ik| = Nk where Nk − Nk+1 particles are discarded after update rule (4.3).
2224
+ Clearly, we have that Nk+1 ≤ Nk and Ik+1 ⊆ Ik ⊆ I0 = {1, . . . , N0} for all k. Similarly to the
2225
+ analysis carried out in [15,16], we restrict to the simpler dynamics where, at every step k, the
2226
+ random variables θk
2227
+ i and ˆθk
2228
+ i used to generate such systems are the same for all particles:
2229
+ θk
2230
+ i = ˆθk
2231
+ j = θk ∼ N(0, Id)
2232
+ for all
2233
+ i ∈ Ik, j ∈ I0.
2234
+ (4.10)
2235
+ To compare particle systems with a different number of particles, we rely on their represen-
2236
+ tation as empirical probability measures and the notion of 2-Wasserstein distance. For {ˆxk
2237
+ i }i∈Ik
2238
+ and {xk
2239
+ i }N0
2240
+ i=1 we consider, respectively, the following probability measures
2241
+ ρk
2242
+ Nk := 1
2243
+ Nk
2244
+
2245
+ i∈Ik
2246
+ δˆxk
2247
+ i
2248
+ and
2249
+ ρk
2250
+ N0 := 1
2251
+ N0
2252
+
2253
+ i∈I0
2254
+ δxk
2255
+ i .
2256
+ (4.11)
2257
+ Informally, the 2-Wasserstein distance W2(ρk
2258
+ Nk, ρk
2259
+ N0) quantifies the minimal effort needed to
2260
+ move the mass from distribution ρk
2261
+ Nk into ρk
2262
+ N0 (or vice versa) [38]. Let wij denote the amount
2263
+ of mass leaving particle xk
2264
+ i and going into ˆxk
2265
+ i : the cost of such movement is assumed to be given
2266
+ by wij∥xk
2267
+ i − ˆxk
2268
+ j ∥2
2269
+ 2. Therefore, if we indicate the set of all admissible couplings between the two
2270
+ discrete probability measures as
2271
+ Γ(ρk
2272
+ Nk, ρk
2273
+ N0) =
2274
+
2275
+
2276
+ �w ∈ RN0×Nk :
2277
+ Nk
2278
+
2279
+ j=1
2280
+ wij = 1
2281
+ N0
2282
+ ,
2283
+ N0
2284
+
2285
+ i=1
2286
+ wij = 1
2287
+ Nk
2288
+ , wij ≥ 0, ∀ i, j
2289
+
2290
+
2291
+ � ,
2292
+ (4.12)
2293
+ the 2- Wasserstein distance is defined as
2294
+ W2(ρk
2295
+ Nk, ρk
2296
+ N0) :=
2297
+ min
2298
+ w∈Γ(ρk
2299
+ Nk,ρk
2300
+ N0)
2301
+
2302
+ ��
2303
+ i,j
2304
+ wij∥xk
2305
+ i − ˆxk
2306
+ j ∥2
2307
+ 2
2308
+
2309
+
2310
+ 1
2311
+ 2
2312
+ (4.13)
2313
+ see, for instance, [38, Section 6.4.1].
2314
+ Before providing estimates on (4.12), let us present a more general result on the impact that
2315
+ the random selection strategy has on an arbitrary particle distribution.
2316
+ Proposition 4.2 (Stability of random selection procedure). Let z = {zi}i∈I, |I| = N be an
2317
+ ensemble of particles and {zi}j∈Isel with Isel ⊆ I, |I| = Nsel a random sub-set of such ensemble.
2318
+ Consider the associated empirical distributions µN and µNsel (defined consistently to (4.11)), it
2319
+ holds
2320
+ E
2321
+
2322
+ W 2
2323
+ 2 (µN, µNsel)
2324
+
2325
+ ≤ 2 var(z) N − Nsel
2326
+ N − 1
2327
+ (4.14)
2328
+ where the expectation is taken with respect to the random selection of Isel.
2329
+ 23
2330
+
2331
+ The proof is provided Appendix A.4. We note how the system variance var(z) enters the
2332
+ error estimate due to the randomness of the selection, similar to the Law of Large Number error
2333
+ for random variables. In particular, the smaller the particles variance is, the closer the reduced
2334
+ particle system will be to the original distribution. This justifies the choice of Nk+1 proposed
2335
+ in Section 2.2 where we are allowed to discard particles only if the system shows a contractive
2336
+ behavior, see (2.6).
2337
+ By iteratively applying Proposition 4.2 and by using suitable stability estimates of dynamics
2338
+ (4.3), we are able to bound the error introduced by the random selection procedure as follows.
2339
+ Proof details are a given in Appendix A.4.
2340
+ Theorem 4.2. Let {xk
2341
+ i , yk
2342
+ i }N0
2343
+ i=1 be constructed according to (4.3) were particles are not discarded,
2344
+ and {ˆxk
2345
+ i , ˆyk
2346
+ i }Ik, |Ik| = Nk where Nk−Nk+1 particles are discarded after update rule (4.3). Assume
2347
+ (4.10) is satisfied and consider the probability measures (4.11). If {xk
2348
+ i , yk
2349
+ i }N0
2350
+ i=1, {ˆxk
2351
+ i , ˆyk
2352
+ i }i∈Ik ⊂
2353
+ BM(0) at all step k for some M > 0, it holds
2354
+ E
2355
+
2356
+ W 2
2357
+ 2
2358
+
2359
+ ρk
2360
+ Nk, ρk
2361
+ N0
2362
+ ��
2363
+ ≤ C
2364
+ max
2365
+ h=1,...,k var
2366
+
2367
+ ˜zh� N0 − Nk
2368
+ Nk − 1
2369
+ (4.15)
2370
+ where C = C(∆t, λ, σ, ν, β, α, k, LF, M) and ˜zh = {(ˆxh
2371
+ i , ˆyh
2372
+ i )}i∈Ih−1 describes the particle system
2373
+ just before the random selection procedure at step h ≤ k. The expectation is taken with respect
2374
+ to the sampling of {θh}k
2375
+ h=1 and with respect to the selection procedure.
2376
+ We can directly apply the above result to relate the expected ℓ2-errors of the two particle
2377
+ system, which we define as
2378
+ Err(k) = E
2379
+
2380
+ � 1
2381
+ N0
2382
+
2383
+ i∈I0
2384
+ ∥xk
2385
+ i − x∗∥2
2386
+ 2
2387
+
2388
+ � ,
2389
+ Err(k) = E
2390
+
2391
+ � 1
2392
+ Nk
2393
+
2394
+ i∈Ik
2395
+ ∥ˆxk
2396
+ i − x∗∥2
2397
+ 2
2398
+
2399
+ � ,
2400
+ that is, the discrete counterpart of the mean-field error E[∥ ¯Xi
2401
+ t − x∗∥2
2402
+ 2] studied in Theorem 4.1.
2403
+ By definition of the Wasserstein-2 distance, we have
2404
+ Err(k) = E
2405
+
2406
+ W 2
2407
+ 2 (ρk
2408
+ N0, δx∗)
2409
+
2410
+ for any solution x∗ to (2.1), and the same holds of Errsel(k). We then apply inequality
2411
+ W 2
2412
+ 2 (ρk
2413
+ Nk, δx∗) ≤ 2
2414
+
2415
+ W 2
2416
+ 2 (ρk
2417
+ Nk, ρk
2418
+ N0) + W 2
2419
+ 2 (ρk
2420
+ N0, δx∗)
2421
+
2422
+ to obtain the following estimate.
2423
+ Corollary 4.1. Under the assumptions of Theorem 4.2, at all steps k, it holds
2424
+ Errsel(k) ≤ 2
2425
+
2426
+ Err(k) + C
2427
+ max
2428
+ h=1,...,k var(˜zh) N0 − Nk
2429
+ Nk − 1
2430
+
2431
+ .
2432
+ (4.16)
2433
+ Before concluding the section, let us report some remarks concerning the theoretical results
2434
+ just presented.
2435
+ 24
2436
+
2437
+ Remark 4.2.
2438
+ • Proof of Theorem 4.2 can be adapted to any other particle system with random selection,
2439
+ provided that the update rule is stable with respect to the 2-Wasserstein distance. In the
2440
+ proposed method, such stability was proved thanks to the approximation of the global best
2441
+ ¯y∞,k with ¯yα,k for α ≫ 1 (see (2.2)) and S(x, y) with Sβ(x, y) for β ≫ 1 in the personal
2442
+ best update (4.2).
2443
+ • Quantitative estimates on the variance decay can be used, if available, to improve the error
2444
+ bound in Theorem 4.2, see also proof in Appendix A.4.
2445
+ • The error introduced by a sub-sampling technique in a Monte Carlo integral approximation
2446
+ is expected to be of order
2447
+ 2 var(z)
2448
+
2449
+ 1
2450
+ N − 1 −
2451
+ 1
2452
+ Nsel − 1
2453
+
2454
+ = 2 var(z)
2455
+ N − Nsel
2456
+ (N − 1)(Nsel − 1) ,
2457
+ (4.17)
2458
+ see e.g. [23]. Therefore, an additional factor of order 1/(Nsel − 1) seems to be missing
2459
+ in Proposition 4.2. We remark, though, that Proposition 4.2 does not concern the Monte
2460
+ Carlo approximation of an integral quantity, but rather consider the 2-Wasserstein distance
2461
+ between discrete measures. Numerical simulations suggest that estimates of order (4.17)
2462
+ do not hold on in this case, see Fig.10.
2463
+ 5
2464
+ Conclusions
2465
+ In this work, we studied a Consensus-Based Optimization algorithm with Memory Effects (CBO-
2466
+ ME) and random selection for single objective optimization problems of the form (2.1). While
2467
+ sharing common features with Particle Swarm Optimization (PSO) methods, CBO-ME differs
2468
+ on the way the particle system explore the search space. Its structure provides greater flexi-
2469
+ bility in balancing the exploration and exploitation processes. In particular, we implemented
2470
+ and analytically investigates a random selection strategy which allows to reduce the algorithm
2471
+ computational complexity, without affecting convergence properties and overall accuracy. This
2472
+ analysis is entirely general and, in perspective, applicable to other particle swarm-based opti-
2473
+ mization methods as well. The convergence analysis to the global minimum is carried out by
2474
+ relying on a mean-field approximation of the particle system and error estimates are given un-
2475
+ der mild assumptions on the objective function. We compared CBO-ME against CBO without
2476
+ memory effects and PSO against several benchmark problem and showed how the introduction
2477
+ of memory effects and random selection improves the algorithm performance. Applications to
2478
+ image segmentation and machine learning problems are finally reported.
2479
+ A
2480
+ Proofs
2481
+ A.1
2482
+ Notation and auxiliary lemmas
2483
+ We will use the following notation. For any a ∈ R, |a| indicates the absolute value. For a given
2484
+ vector b ∈ Rd, ∥b∥p indicates its p-norm, p ∈ [1, ∞]; (b)ℓ its ℓ-th component; while diag(b) ∈ Rd×d
2485
+ 25
2486
+
2487
+ 0
2488
+ 20
2489
+ 40
2490
+ 60
2491
+ 80
2492
+ 100
2493
+ # particle selected
2494
+ !
2495
+ Nsel
2496
+ "
2497
+ 0
2498
+ 0.5
2499
+ 1
2500
+ 1.5
2501
+ 2
2502
+ N = 100; d = 3
2503
+ squared Wasserstein dist.
2504
+ estimate (4.18)
2505
+ estimate (4.21)
2506
+ 0
2507
+ 20
2508
+ 40
2509
+ 60
2510
+ 80
2511
+ 100
2512
+ # particle selected
2513
+ !
2514
+ Nsel
2515
+ "
2516
+ 0
2517
+ 1
2518
+ 2
2519
+ 3
2520
+ 4
2521
+ 5
2522
+ 6
2523
+ 7
2524
+ N = 100; d = 10
2525
+ squared Wasserstein dist.
2526
+ estimate (4.18)
2527
+ estimate (4.21)
2528
+ Figure 10: Numerical validation of Proposition 4.2 with different dimensions d = 3, 10.
2529
+ N = 100 points are randomly, uniformly sampled over [0, 1]d to construct the empirical
2530
+ distribution µN and Nsel ∈ [2, N − 1] are discarded to obtain µNsel. The experiment is
2531
+ repeated 500 times for all Nsel to obtain an approximation of E
2532
+
2533
+ W 2
2534
+ 2 (µN, µNsel)
2535
+
2536
+ (blue line).
2537
+ In red, estimate provided by Proposition 4.2 (RHS of (4.14)), in yellow the one given
2538
+ equation (4.17). Wasserstein distances are computed with the ot.emd function provided by
2539
+ the Python Optimal Transport library [6].
2540
+ is the diagonal matrix with elements of b on the main diagonal. Let a, b ∈ Rd, ⟨a, b⟩ denotes
2541
+ the scalar product in Rd. For a given closed convex set A ⊂ Rd, N(A, x), T (A, x) denote the
2542
+ normal and the tangential cone at x ∈ A respectively. The ball or radius r centered at x ∈ Rd
2543
+ is indicated with Br(x) = {x ∈ Rd | ∥x∥2 ≤ r}. All considered stochastic processes are assumed
2544
+ to take their realizations over the common probability space (Ω, ¯F, P). P(Rd) is the set of Borel
2545
+ probability measures over Rd and Pq(Rd) = {µ ∈ P(Rd) |
2546
+
2547
+ ∥x∥q
2548
+ 2dµ < ∞} which we equip with
2549
+ the Wasserstein distance Wq, q ≥ 1, see [38]. For a random variable X, X ∼ µ, µ ∈ P(Rd)
2550
+ indicates a sampling procedure such that P(X ∈ A) = µ(A) for any Borel set A ⊂ Rd. With
2551
+ Unif(A) ∈ P(Rd) we denote the uniform probability measure over a bounded Borel set A.
2552
+ Throughout the computations, C will denote an arbitrary positive constant, whose value may
2553
+ vary from line to line. Dependence on relevant parameters or variables, will be underlined.
2554
+ Lemma A.1 ( [3, Lemma 3.2]). Let F satisfy Assumption 4.1 (in particular the locally Lipschitz
2555
+ assumption A1) and ρ1, ρ2 ∈ P4(Rd) with
2556
+
2557
+ ∥x∥4
2558
+ 2dρ1 ,
2559
+
2560
+ ∥x∥4
2561
+ 2dρ2 ≤ M .
2562
+ Then, the following stability estimate holds
2563
+ ∥¯yα(ρ1) − ¯yα(ρ2)∥2 ≤ C W2(ρ1, ρ2)
2564
+ for a constant C = C(α, LF, M).
2565
+ 26
2566
+
2567
+ Lemma A.2. Under Assumptions A1 and A6, for any x1, x2, y1, y2 ∈ BM(0) and β > 0, it
2568
+ holds
2569
+ ∥(x1 − y1)Sβ(x1, y1) − (x2 − y2)Sβ(x2, y2)∥2 ≤ C (∥x1 − y1∥2 + ∥x2 − y2∥2)
2570
+ where C = C(β, LF, M).
2571
+ Proof. Thanks to the Lipschitz continuity of ψ, F and the choice of ψ (Assumptions A1 and
2572
+ A6), it holds
2573
+ |Sβ(x1, y1) − Sβ(x2, y2)| = |2ψ (β(F(y1) − F(x1)) − 2ψ(β(F(y2) − F(x2)) |
2574
+ ≤ 2β |F(y1) − F(x1) − F(y2) + F(x2)|
2575
+ ≤ 2βLF (∥x1 − x2∥2 + ∥y1 − y2∥2) .
2576
+ Next, we have
2577
+ ∥(x1 − y1)Sβ(x1, y1) − (x2 − y2)Sβ(x2, y2)∥2 ≤ ∥(x1 − y1)Sβ(x1, y1) − (x2 − y2)Sβ(x1, y1)∥2
2578
+ + (x2 − y2)Sβ(x1, y1) − (x2 − y2)Sβ(x2, y2)∥2
2579
+ ≤ ∥(x1 − x2 + y2 − y1)Sβ(x1, y1)∥2
2580
+ + ∥(x2 − y2)
2581
+
2582
+ Sβ(x1, y1) − Sβ(x2, y2)
2583
+
2584
+ ∥2
2585
+ ≤ 2 (∥x1 − x2∥2 + ∥y1 − y2∥2)
2586
+ + 2M|Sβ(x1, y1) − Sβ(x2, y2)|
2587
+ ≤ C (∥x1 − x2∥2 + ∥y1 − y2∥2)
2588
+ with C = C(β, LF, M), where we used the first estimate to conclude.
2589
+ A.2
2590
+ Proof of Proposition 4.1
2591
+ Proof of Proposition 4.1. The proof is based on the Leray–Schauder fixed point theorem [13,
2592
+ Chapter 11], and we follow closely the proof steps of [3].
2593
+ Step 1. For any ξ ∈ C([0, T], Rd) there exists a unique process ( ˆXt, ˆYt) ∈ C([0, T], Rd)
2594
+ satisfying
2595
+ d ˆXt = λ(ξ(t) − ˆXt) dt + σ(ξ(t) − ˆXt) ⊗ d ˆBt
2596
+ d ˆYt = ν( ˆXt − ˆYt)Sβ( ˆXt, ˆYt) dt
2597
+ with Law( ˆX0) = Law( ˆY0) = ρ0 ∈ Rd, by the Lipschitz continuity of the coefficients.
2598
+ As a
2599
+ consequence, we have that f(t) := Law( ˆXt, ˆYt) satisfies
2600
+ d
2601
+ dt
2602
+
2603
+ φ df(t) =
2604
+ � �
2605
+ −λ⟨∇xφ, ξ(t) − x⟩ +
2606
+
2607
+ ℓ=1
2608
+ ∂2φ
2609
+ ∂x2
2610
+
2611
+ (ξt) − y)2
2612
+ ℓ − νSβ⟨∇yφ, y − x⟩
2613
+
2614
+ df(t)
2615
+ for all φ ∈ C2
2616
+ b (R2d). Therefore, let ¯ρ(t) = Law( ˆYt), we can set T ξ := ¯yα(¯ρ(·)) ∈ C([0, T], Rd) to
2617
+ define
2618
+ T : C([0, T], Rd) → C([0, T], Rd).
2619
+ 27
2620
+
2621
+ Step 2. We prove now compactness of T . Thanks to ρ0 ∈ P4(Rd) and standard results for
2622
+ SDEs (see [1, Chapter 7]) we have boundedness of the forth moments
2623
+ E
2624
+
2625
+ ∥ ˆXt∥4
2626
+ 2 + ∥ ˆYt∥4
2627
+ 2
2628
+
2629
+ ≤ c1
2630
+
2631
+ 1 + E[∥ ˆX0∥4
2632
+ 2 + ∥ ˆY0∥4
2633
+ 2]ec2t�
2634
+ for some c1, c2 > 0. Therefore, we can apply Lemma A.1 to obtain for any 0 < s < t < T,
2635
+ ∥¯yα(¯ρ(t)) − ¯yα(¯ρ(s))∥2 ≤ CW2 (¯ρ(t), ¯ρ(s)) ≤ ˜C|t − s|1/2
2636
+ for some constants C, ˜C > 0, from which H¨older continuity of t �→ ¯yα(¯ρ(t) follows. Therefore,
2637
+ by
2638
+ T (C([0, T], Rd)) ⊂ C0, 1
2639
+ 2 ([0, T], Rd) �→ C([0, T], Rd)
2640
+ we get compactness of T .
2641
+ Step 3. Consider ξ ∈ C([0, T], Rd) satisfying ξ = τT ξ, for τ ∈ [0, 1]. Thanks to [3][Lemma
2642
+ 3.3] and boundedness of second moments, we obtain compactness of the set
2643
+ {ξ ∈ C([0, T], Rd) : ξ = τT ξ, τ ∈ [0, 1]}
2644
+ and by Leray–Schauder fixed point theorem there exists a fixed point for the mapping T and
2645
+ hence a solution to (4.6).
2646
+ Step 4. Assume now there exist two solutions, ( ¯X1
2647
+ t , ¯Y 1
2648
+ t ) and ( ¯X2
2649
+ t , ¯Y 2
2650
+ t ) to (4.6) with same
2651
+ Brownian process ¯Bt and initial conditions. Let ¯ρℓ = Law( ¯Y ℓ
2652
+ t ), ℓ = 1, 2, we have
2653
+ ∥ ¯X1
2654
+ t − ¯X2
2655
+ t ∥2
2656
+ 2 =
2657
+ � t
2658
+ 0
2659
+ � ¯X1
2660
+ s − ¯X2
2661
+ s , ¯yα(¯ρ1(s)) − ¯yα(¯ρ2(s)) − ¯X1
2662
+ s + ¯X2
2663
+ s
2664
+
2665
+ dt
2666
+ +
2667
+ � t
2668
+ 0
2669
+
2670
+ diag
2671
+
2672
+ ¯yα(¯ρ1(s)) − ¯X1
2673
+ s
2674
+
2675
+ − diag
2676
+
2677
+ ¯yα(¯ρ2(s)) − ¯X2
2678
+ s
2679
+ ��
2680
+ d ¯Bs .
2681
+ (A.1)
2682
+ We note that all terms can be estimated by means of W 2
2683
+ 2 (¯ρ1(s), ¯ρ2(s)) and ∥ ¯X1
2684
+ s − ¯X2
2685
+ s ∥2
2686
+ 2. Similarly,
2687
+ ∥ ¯Y 1
2688
+ t − ¯Y 2
2689
+ t ∥2
2690
+ 2 can be bounded in terms ∥ ¯X1
2691
+ s − ¯X2
2692
+ s ∥2
2693
+ 2 thanks to the Lipschitz continuity of Sβ and
2694
+ Lemma A.2. Therefore, for some constant C > 0
2695
+ ∥ ¯X1
2696
+ t − ¯X2
2697
+ t ∥2
2698
+ 2 + ∥ ¯Y 1
2699
+ t − ¯Y 2
2700
+ t ∥2
2701
+ 2 ≤ C
2702
+ � t
2703
+ 0
2704
+
2705
+ ∥ ¯X1
2706
+ s − ¯X2
2707
+ s ∥2
2708
+ 2 + ∥ ¯Y 1
2709
+ s − ¯Y 2
2710
+ s ∥2
2711
+ 2 + W 2
2712
+ 2 (¯ρ1(s), ¯ρ2(s))
2713
+
2714
+ ds
2715
+ from which, together with (A.1), follows for some ˜C > 0
2716
+ E
2717
+
2718
+ ∥ ¯X1
2719
+ t − ¯X2
2720
+ t ∥2
2721
+ 2 + ∥ ¯Y 1
2722
+ t − ¯Y 2
2723
+ t ∥2
2724
+ 2
2725
+
2726
+ ≤ E
2727
+
2728
+ ∥ ¯X1
2729
+ 0 − ¯X2
2730
+ 0∥2
2731
+ 2 + ∥ ¯Y 1
2732
+ 0 − ¯Y 2
2733
+ 0 ∥2
2734
+ 2
2735
+
2736
+ e
2737
+ ˜C t
2738
+ by Gr¨onwall’s inequality. Since E
2739
+
2740
+ ∥ ¯X1
2741
+ 0 − ¯X2
2742
+ 0∥2
2743
+ 2 + ∥ ¯Y 1
2744
+ 0 − ¯Y 2
2745
+ 0 ∥2
2746
+ 2
2747
+
2748
+ = 0, we proved uniqueness.
2749
+ A.3
2750
+ Proof of Theorem 4.1
2751
+ Having proved there exists a solution ( ¯Xt, ¯Yt)t∈[0,T] to the mean-field process (4.6) we are here
2752
+ interested in studying the expected ℓ2-error given by
2753
+ E∥ ¯Xt − x∗∥2
2754
+ 2
2755
+ where x∗ is the unique solution to the minimization problem (2.1), see Assumption 4.1. We do
2756
+ so by means of the following quantitative version of the Laplace principle.
2757
+ 28
2758
+
2759
+ Proposition A.1 (quantitative Laplace principle [10, Proposition 1]). Let ρ ∈ P(Rd) be such
2760
+ that x∗ ∈ supp(ρ) and fix α > 0. For any r > 0, define Fr = supx∈B∗r F(x) − F(x∗) with
2761
+ B∗
2762
+ r := {x | ∥x − x∗∥∞ ≤ r} .
2763
+ Then, under Assumption 4.1, for any r ∈ (0, R0] and q > 0 such that q + Fr ≤ F∞ = ηRγ
2764
+ 0,
2765
+ it holds
2766
+ ∥yα(ρ) − x∗∥2 ≤
2767
+
2768
+ d(q + Fr)γ
2769
+ η
2770
+ +
2771
+
2772
+ d exp(−αq)
2773
+ ρ(B∗r)
2774
+
2775
+ ∥x − x∗∥2 dρ(x).
2776
+ (A.2)
2777
+ We remark that RHS of (A.2) can be made arbitrary small by taking large values of α and
2778
+ small values of q, r. To apply Proposition A.1 to all ¯ρ(t) = Law( ¯Yt), we need though to provide
2779
+ lower bounds on ¯ρ(t)(B∗
2780
+ r) for any small radius r and times t ∈ [0, T].
2781
+ Lemma A.3. Let ¯ρ(t) = Law( ¯Yt), with ¯Yt evolving according to (4.6) and limt→0 ¯ρ(t) = ρ0 with
2782
+ x∗ ∈ supp(ρ0). Under Assumptions 4.1 and 4.2 , it holds ¯ρ(t)(B∗
2783
+ r) ≥ mr > 0, for all t ∈ [0, T]
2784
+ and for all r ≤ R0.
2785
+ Proof. Let δ = η min{R1, r}γ, we start by proving that the mass in the set
2786
+ Lδ = {x ∈ Rd | F(x) ≤ inf F + δ}
2787
+ is non-decreasing. We note that for this choice of δ, Lδ is convex due to Assumption 4.1. Consider
2788
+ now (Ω, ¯F, P) to be the common probability space over which the considered processes take
2789
+ their realization and define Ωδ = {ω : ¯Y0(ω) ∈ Lδ}. By Assumption 4.2, Sβ( ¯Xt(ω), ¯Yt(ω)) = 0
2790
+ whenever ¯Xt(ω) /∈ Lδ. Therefore, it holds
2791
+
2792
+ ( ¯Xt(ω) − ¯Yt(ω))Sβ( ¯Xt(ω), ¯Yt(ω)) , n( ¯Yt(ω))
2793
+ � �
2794
+ = 0
2795
+ if ¯Xt(ω) /∈ Lδ
2796
+ ≤ 0
2797
+ if ¯Xt(ω) ∈ Lδ
2798
+ for
2799
+ ¯Yt(ω) ∈ ∂Lδ
2800
+ for any n( ¯Yt(ω)) ∈ N(Lδ, x) from which follows that ¯Yt(ω) solves
2801
+ ¯Yt(ω) = ¯Y0(ω) +
2802
+ � t
2803
+ 0
2804
+ ΠT (Lδ, ¯Ys(ω))
2805
+
2806
+ ( ¯Xs(ω) − ¯Ys(ω))Sβ( ¯Xs(ω), ¯Ys(ω))
2807
+
2808
+ ds
2809
+ for all ω ∈ Ωδ. As a consequence, if ¯Y0(ω) ∈ Lδ, ¯Yt(ω) ∈ Lδ for all t ≥ 0 and so
2810
+ ¯ρ(t)(B∗
2811
+ r) = P( ¯Yt ∈ Lδ) ≥ P( ¯Y0 ∈ Lδ) =: mr
2812
+ for all t ≥ 0. We conclude by noting that mr > 0 since x∗ ∈ supp(ρ0).
2813
+ Next, we study the evolution of the error E∥ ¯Xt − x∗∥2
2814
+ 2 and, in particular, we try to bound it
2815
+ in terms of ∥¯yα(¯ρ(s)) − x∗∥2 and E∥ ¯Xt − x∗∥2 itself for s ∈ [0, t].
2816
+ 29
2817
+
2818
+ Proposition A.2.
2819
+ [10, Lemma 1] Let ( ¯Xt, ¯Yt) ∈ C([0, T], R2d) be the solution to (4.6) with
2820
+ initial datum ¯X0 ∼ ρ0, ¯Y0 = ¯X0 for some time horizon T > 0. For all t ∈ [0, T], it holds
2821
+ E∥ ¯Xt − x∗∥2
2822
+ 2 ≤
2823
+ � t
2824
+ 0
2825
+
2826
+ − (2λ − σ2)E∥ ¯Xs − x∗∥2
2827
+ 2 +
2828
+
2829
+ 2(λ + σ2)E∥ ¯Xs − x∗∥2∥¯yα(¯ρ(s)) − x∗∥2
2830
+ + σ2
2831
+ 2 ∥¯yα(¯ρ(s)) − x∗∥2
2832
+ 2
2833
+
2834
+ ds
2835
+ (A.3)
2836
+ where ¯ρ(t) = Law( ¯Yt).
2837
+ Proof of Theorem 4.1. The above result, together with Lemma A.3, leads to the convergence
2838
+ in mean-field law of the dynamics towards the solution to (2.1). The proof can be carried out
2839
+ exactly as in [10, Theorem 12].
2840
+ A.4
2841
+ Proof of Proposition 4.2 and Theorem 4.2
2842
+ We start by collecting a preliminary result.
2843
+ Lemma A.4. Let {xk
2844
+ 1,i, yk
2845
+ 1,i}N1
2846
+ i=1 and {xk
2847
+ 2,j, yk
2848
+ 2,j}N2
2849
+ j=1 be two particle populations generated through
2850
+ update rules (4.3) with θk
2851
+ 1,i = θk
2852
+ 2,j = θk for all i, j and k ∈ Z+. At any iteration step k and for
2853
+ any couple of indexes (i, j), it holds
2854
+ E
2855
+
2856
+ ∥xk+1
2857
+ 1,i
2858
+ − xk+1
2859
+ 2,j ∥2
2860
+ 2 + ∥yk+1
2861
+ 1,i
2862
+ − yk+1
2863
+ 2,j ∥2
2864
+ 2
2865
+
2866
+
2867
+ CE
2868
+
2869
+ ∥xk
2870
+ 1,i − xk
2871
+ 2,j∥2
2872
+ 2 + ∥yk
2873
+ 1,i − yk
2874
+ 2,j∥2
2875
+ 2 + ∥¯yα(¯ρk
2876
+ 1) − ¯yα(¯ρk
2877
+ 2)∥2
2878
+ 2
2879
+
2880
+ where C = C(∆t, λ, σ, ν, β) is a positive constant and ¯ρk
2881
+ 1, ¯ρk
2882
+ 2 are the empiricial distributions
2883
+ associated with {yk
2884
+ 1,i}N1
2885
+ i=1 and {yk
2886
+ 2,j}N2
2887
+ j=1 respectively.
2888
+ Proof. For all k ∈ Z+ and i, j
2889
+ E∥xk+1
2890
+ 1,i
2891
+ − xk+1
2892
+ 2,j ∥2
2893
+ 2 ≤ E
2894
+ ���xk
2895
+ 1,i + λ∆t
2896
+
2897
+ ¯yα(¯ρk
2898
+ 1) − xk
2899
+ 1,i
2900
+
2901
+ + σ
2902
+
2903
+ ∆t
2904
+
2905
+ ¯yα(¯ρk
2906
+ 1) − xk
2907
+ 1,i
2908
+
2909
+ ⊗ θk
2910
+ 1,i
2911
+
2912
+
2913
+ xk
2914
+ 2,j + λ∆t
2915
+
2916
+ ¯yα(¯ρk
2917
+ 2) − xk
2918
+ 2,j
2919
+
2920
+ + σ
2921
+
2922
+ ∆t
2923
+
2924
+ ¯yα(¯ρk
2925
+ 2) − xk
2926
+ 2,j
2927
+
2928
+ ⊗ θk
2929
+ 2,j
2930
+ � ���
2931
+ 2
2932
+ 2
2933
+ ≤ 2E
2934
+ ���
2935
+
2936
+ 1 − λ∆t − σ
2937
+
2938
+ ∆t diag(θk)
2939
+
2940
+ (xk
2941
+ 1,i − xk
2942
+ 2,j)
2943
+ ���
2944
+ 2
2945
+ 2
2946
+ + 2E
2947
+ ���
2948
+
2949
+ λ∆t + σ
2950
+
2951
+ ∆t diag(θk)
2952
+ � �
2953
+ ¯yα(¯ρk
2954
+ 1) − ¯yα(¯ρk
2955
+ 2)
2956
+ ����
2957
+ 2
2958
+ 2
2959
+ ≤ 2(1 + σ2∆t)E∥xk
2960
+ 1,i − xk
2961
+ 2,j∥2
2962
+ 2
2963
+ + 2(λ2∆t2 + σ2∆t)E∥¯yα(¯ρk
2964
+ 1) − ¯yα(¯ρk
2965
+ 2)∥2
2966
+ 2 ,
2967
+ (A.4)
2968
+ where we also used that E[(θk)2
2969
+ ℓ] = 1 for all ℓ = 1, . . . , d. We now bound ∥yk+1
2970
+ 1,i
2971
+ − yk+1
2972
+ 2,j ∥2
2973
+ 2 as
2974
+ E∥yk+1
2975
+ 1,i
2976
+ − yk+1
2977
+ 2,j ∥2
2978
+ 2 ≤ E
2979
+ ���yk
2980
+ 1,i + (ν∆t/2)
2981
+
2982
+ xk+1
2983
+ i,1
2984
+ − yk
2985
+ 1,i
2986
+
2987
+ Sβ(xk+1
2988
+ 1,i , yk
2989
+ 1,i)
2990
+ 30
2991
+
2992
+
2993
+
2994
+ yk
2995
+ 2,j + (ν∆t/2)
2996
+
2997
+ xk+1
2998
+ 2,j − yk
2999
+ 2,j
3000
+
3001
+ Sβ(xk+1
3002
+ 2,j , yk
3003
+ 2,j)
3004
+ � ���
3005
+ 2
3006
+ 2
3007
+ ≤ CE
3008
+
3009
+ ∥xk+1
3010
+ i,1
3011
+ − xk+1
3012
+ j,2 ∥2
3013
+ 2 + ∥yk
3014
+ i,1 − yk
3015
+ j,2∥2
3016
+ 2
3017
+
3018
+ (A.5)
3019
+ where we used Lemma A.2 and C = C(∆t, β, ν). By combining (A.4) and (A.5) we get the
3020
+ desired estimate.
3021
+ Next, we show how the particle update rule (4.3) is stable with respect to the 2-Wasserstein
3022
+ distance.
3023
+ Proposition A.3 (Stability of update rule (4.3)). Let {xk
3024
+ 1,i, yk
3025
+ 1,i}N1
3026
+ i=1, {xk
3027
+ 2,j, yk
3028
+ 2,j}N2
3029
+ j=1 ⊂ BM(0),
3030
+ for some M > 0, be two particle populations generated through the update rules (4.3) with
3031
+ θk
3032
+ 1,i = θk
3033
+ 2,j = θk for all i, j and k ∈ Z+. Let µk
3034
+ 1, µk
3035
+ 2 ∈ P(R2d) the empirical probability measures
3036
+ defined as
3037
+ µk
3038
+ 1 := 1
3039
+ N1
3040
+ N1
3041
+
3042
+ i=1
3043
+ δ(xk
3044
+ 1,i,yk
3045
+ 1,i) ,
3046
+ µk
3047
+ 2 := 1
3048
+ N2
3049
+ N2
3050
+
3051
+ j=1
3052
+ δ(xk
3053
+ 2,j,yk
3054
+ 2,j) ,
3055
+ it holds
3056
+ E
3057
+
3058
+ W 2
3059
+ 2 (µk+1
3060
+ 1
3061
+ , µk+1
3062
+ 2
3063
+ )
3064
+
3065
+ ≤ C1 E
3066
+
3067
+ W 2
3068
+ 2 (µk
3069
+ 1, µk
3070
+ 2)
3071
+
3072
+ ,
3073
+ where C1 = C1(∆, λ, σ, ν, α, β, LF, M) is positive constant.
3074
+ Proof. Let Eθk[·] denote the expectation taken with respect to the sampling of θk only and
3075
+ w ∈ RN1×N2 be the optimal coupling between µk
3076
+ 1, µk
3077
+ 2, see (4.12) and (4.13). Being w a sub-
3078
+ optimal coupling for µk+1
3079
+ 1
3080
+ , µk+1
3081
+ 2
3082
+ , it holds
3083
+ Eθk[W 2
3084
+ 2 (µk+1
3085
+ 1
3086
+ , µk+1
3087
+ 2
3088
+ )] ≤ Eθk
3089
+
3090
+ i,j
3091
+ wij
3092
+
3093
+ ∥xk+1
3094
+ 1,i
3095
+ − xk+1
3096
+ 2,j ∥2
3097
+ 2 + ∥yk+1
3098
+ 1,i
3099
+ − yk+1
3100
+ 2,j ∥2
3101
+ 2
3102
+
3103
+ ≤ C
3104
+
3105
+ i,j
3106
+ wij
3107
+
3108
+ ∥xk
3109
+ 1,i − xk
3110
+ 2,j∥2
3111
+ 2 + ∥yk
3112
+ 1,i − yk
3113
+ 2,j∥2
3114
+ 2
3115
+
3116
+ + ∥¯yα(¯ρk
3117
+ 1) − ¯yα(¯ρk
3118
+ 2)∥2
3119
+ 2
3120
+ where we used the linearity of the expectation, estimates given by Lemma A.4 and, to take the
3121
+ last term out of the sum, the fact that �
3122
+ ij wij = 1.
3123
+ To estimate the distance between the two consensus points, we use Lemma A.1 and note
3124
+ that the coupling w is sub-optimal for ¯ρk
3125
+ 1, ¯ρk
3126
+ 2. By Lemma A.1, it follows
3127
+ ∥¯yα(¯ρk
3128
+ 1) − ¯yα(¯ρk
3129
+ 2)∥2
3130
+ 2 ≤ CW 2
3131
+ 2 (¯ρk
3132
+ 1, ¯ρk
3133
+ 2) ≤ C
3134
+
3135
+ i,j
3136
+ wij∥yk
3137
+ 1,i − yk
3138
+ 2,j∥2 .
3139
+ Therefore,
3140
+ Eθk[W 2
3141
+ 2 (µk+1
3142
+ 1
3143
+ , µk+1
3144
+ 2
3145
+ )] ≤ C1
3146
+
3147
+ i,j
3148
+ wij
3149
+
3150
+ ∥xk
3151
+ 1,i − xk
3152
+ 2,j∥2
3153
+ 2 + ∥yk
3154
+ 1,i − yk
3155
+ 2,j∥2
3156
+ 2
3157
+
3158
+ = C1 W 2
3159
+ 2 (µk
3160
+ 1, µk
3161
+ 2) ,
3162
+ thanks to the optimality of w, with C1 = C1(∆, λ, σ, ν, α, β, LF, M) being a positive constant.
3163
+ One can conclude by taking the expectation of the above inequality with respect to the remaining
3164
+ sampling processes.
3165
+ 31
3166
+
3167
+ We now quantify the impact of the particle discarding step.
3168
+ Proof of Proposition 4.2. For notational simplicity, let us introduce zi = (xi, yi) ∈ R2d.
3169
+ As
3170
+ in (4.13), the 2-Wasserstein distance is given by an optimal coupling between the full particle
3171
+ system {zi}i∈I and the reduced one {zj}j∈Isel. We consider the following transportation of mass
3172
+ from µN to µNsel: if particle i has not been discarded, all its mass remains in xi, otherwise the
3173
+ mass is uniformly distributed among the selected particles to generate an admissible coupling
3174
+ w ∈ RN×Nsel. This means that w is given by
3175
+ wij =
3176
+
3177
+
3178
+
3179
+
3180
+
3181
+ 1/N
3182
+ if j = i, i ∈ Isel
3183
+ 1/(N · Nsel)
3184
+ if i ∈ I \ Isel, j ∈ Isel
3185
+ 0
3186
+ else .
3187
+ (A.6)
3188
+ We note that such coupling w satisfies the coupling conditions
3189
+
3190
+ j∈Isel
3191
+ wij = 1
3192
+ N
3193
+
3194
+ i∈I
3195
+ wij =
3196
+ 1
3197
+ Nsel
3198
+ ,
3199
+ ∀ i ∈ I, j ∈ Isel
3200
+ (A.7)
3201
+ and that this choice will be in general sub-optimal. Therefore, it holds
3202
+ W 2
3203
+ 2 (µN, µNsel) ≤
3204
+
3205
+ i∈I, j∈Isel
3206
+ wij∥zi − zj∥2
3207
+ 2
3208
+ = 1
3209
+ N
3210
+
3211
+ i∈Isel
3212
+ ∥zi − zi∥2
3213
+ 2 +
3214
+ 1
3215
+ N · Nsel
3216
+
3217
+ i∈I\Isel, j∈Isel
3218
+ ∥zi − zj∥2
3219
+ 2
3220
+ =
3221
+ 1
3222
+ N · Nsel
3223
+
3224
+ i,j∈I
3225
+ ∥zi − zj∥2
3226
+ 2 1i∈I\Isel 1j∈Isel
3227
+ where 1i∈I = 1 if i ∈ I and zero otherwise.
3228
+ Now, the probability of having i ∈ I \ Isel is given by (N − Nsel)/N, while the probability of
3229
+ having j ∈ Isel (condition i ∈ I \ Isel) is given by Nsel/(N − 1). Hence, we have
3230
+ E
3231
+
3232
+ 1i∈I\Isel 1j∈Isel
3233
+
3234
+ = P [i ∈ I \ Isel, j ∈ Isel] = (N − Nsel)Nsel
3235
+ N(N − 1)
3236
+ from which follows
3237
+ E
3238
+
3239
+ W 2
3240
+ 2 (µN, µNsel)
3241
+
3242
+
3243
+ 1
3244
+ N · Nsel
3245
+
3246
+ i,j∈I
3247
+ ∥zi − zj∥2
3248
+ 2 E
3249
+
3250
+ 1i∈I\Isel 1j∈Isel
3251
+
3252
+ =
3253
+ 1
3254
+ N · Nsel
3255
+ · (N − Nsel)Nsel
3256
+ N(N − 1)
3257
+
3258
+ i,j∈I
3259
+ ∥zi − zj∥2
3260
+ 2 .
3261
+ The desired estimates can finally be obtained by noting that the variance can be computed as
3262
+ var(z) = 1/(2N2) �
3263
+ i,j∈I ∥zi − zj∥2
3264
+ 2, see definition (2.5).
3265
+ 32
3266
+
3267
+ Finally, we are ready to provide a proof of Theorem 4.2.
3268
+ Proof of Theorem 4.2. Let {(xk
3269
+ i , yk
3270
+ i )}i∈Ik, |Ik| = Nk be the sequence of particles generated by
3271
+ iteration (4.3) where additionally Nk+1 − Nk particles are discarded after each step k ≥ 0. We
3272
+ denote with µk
3273
+ Nk ∈ P(R2d) the empirical measure associated with such particle system given by
3274
+ µk
3275
+ Nk = 1
3276
+ Nk
3277
+
3278
+ i∈Ik
3279
+ δ(xk
3280
+ i ,yk
3281
+ i ) .
3282
+ We also introduce the measures µk
3283
+ N0, k ≥ 0 corresponding to a particle system generated with
3284
+ the same initial conditions µ0
3285
+ N0 but where no particle reduction occurs. Consistently, we define
3286
+ µh
3287
+ Nk, h > k to represent the particle system generated starting from µk
3288
+ Nk, after h − k iterations,
3289
+ with no random selection. The relation between such measures is summarized in the following
3290
+ diagram
3291
+ µ0
3292
+ N0
3293
+
3294
+ µ1
3295
+ N0
3296
+
3297
+ µ2
3298
+ N0
3299
+
3300
+ . . .
3301
+
3302
+ µk
3303
+ N0
3304
+ ...
3305
+ ���
3306
+ µ1
3307
+ N1
3308
+
3309
+ µ2
3310
+ N1
3311
+
3312
+ . . .
3313
+
3314
+ µk
3315
+ N1
3316
+ ...
3317
+ ���
3318
+ µ2
3319
+ N2
3320
+
3321
+ . . .
3322
+
3323
+ µk
3324
+ N2
3325
+ ...
3326
+ ...
3327
+ ...
3328
+ µk
3329
+ Nk
3330
+ ...
3331
+ (A.8)
3332
+ where → indicates an iteration step (4.3) while ��� a particle reduction procedure. Therefore,
3333
+ we are interested in studying the distance between the main diagonal of such diagram µk
3334
+ Nk, cor-
3335
+ responding to the system with particle reduction, and the first line µk
3336
+ N0 where particle reduction
3337
+ is never performed.
3338
+ We note that the 2-Wasserstein distance between subsequent rows can be estimated thanks
3339
+ to Proposition A.3 and Proposition 4.2. Let ˜zh+1 denote the set of particles associated with
3340
+ the probability measure µh+1
3341
+ Nh , that is, the particle systems before the selection procedure (up-
3342
+ per diagonal elements in scheme (A.8)). By first applying Proposition A.3 and, subsequently,
3343
+ Proposition 4.2 to ˜zh+1, we obtain that for some constant C > 0
3344
+ E
3345
+
3346
+ W 2
3347
+ 2 (µk
3348
+ Nk, µk
3349
+ N0)
3350
+
3351
+ ≤ C
3352
+ k−1
3353
+
3354
+ h=0
3355
+ E
3356
+
3357
+ W 2
3358
+ 2
3359
+
3360
+ µk
3361
+ Nh, µk
3362
+ Nℓ+1
3363
+ ��
3364
+ ≤ C
3365
+ k−1
3366
+
3367
+ h=0
3368
+ Ck−h+1
3369
+ 1
3370
+ E
3371
+
3372
+ W 2
3373
+ 2
3374
+
3375
+ µh+1
3376
+ Nh , µh+1
3377
+ Nh+1
3378
+ ��
3379
+ ≤ 2 C
3380
+ k−1
3381
+
3382
+ h=0
3383
+ Ck−h+1
3384
+ 1
3385
+ var
3386
+
3387
+ ˜zh+1� Nh − Nh+1
3388
+ Nh − 1
3389
+ 33
3390
+
3391
+ ≤ C2
3392
+ max
3393
+ h=1,...,k var
3394
+
3395
+ ˜zh�
3396
+ 1
3397
+ Nk − 1
3398
+ k−1
3399
+
3400
+ h=0
3401
+ Nh − Nh+1
3402
+ = C2
3403
+ max
3404
+ h=1,...,k var
3405
+
3406
+ ˜zh� N0 − Nk
3407
+ Nk − 1
3408
+ with C2 = C2(∆t, λ, σ, ν, β, α, k, M). Finally, the desired estimate follows after noting that
3409
+ W 2
3410
+ 2 (ρk
3411
+ Nk, ρk
3412
+ N0) ≤ W 2
3413
+ 2 (µk
3414
+ Nk, µk
3415
+ N0)
3416
+ since ∥xk
3417
+ i − xk
3418
+ j ∥2
3419
+ 2 ≤ ∥(xk
3420
+ i , yk
3421
+ i ) − (xk
3422
+ j , yk
3423
+ j )∥2
3424
+ 2 for all couples of particles (i, j).
3425
+ Acknowledgments
3426
+ This work has been written within the activities of GNCS group of INdAM (National Institute
3427
+ of High Mathematics). L.P. acknowledges the partial support of MIUR-PRIN Project 2017,
3428
+ No. 2017KKJP4X “Innovative numerical methods for evolutionary partial differential equations
3429
+ and applications”. The work of G.B. is funded by the Deutsche Forschungsgemeinschaft (DFG,
3430
+ German Research Foundation) through 320021702/GRK2326 “Energy, Entropy, and Dissipative
3431
+ Dynamics (EDDy)” and SFB 1481 “Sparsity and Singular Structures”. S.G. acknowledges the
3432
+ support of the ESF PhD Grant “Mathematical and statistical methods for machine learning in
3433
+ biomedical and socio-sanitary applications”.
3434
+ References
3435
+ [1] L. Arnold. Stochastic Differential Equations: Theory and Applications. Wiley Interscience,
3436
+ first edition, 1974. Structure-preserving algorithms for ordinary differential equations.
3437
+ [2] S. Arora, J. Acharya, A. Verma, and P. K. Panigrahi. Multilevel thresholding for image
3438
+ segmentation through a fast statistical recursive algorithm. Pattern Recognition Letters,
3439
+ 29(2):119–125, 2008.
3440
+ [3] J. A. Carrillo, Y.-P. Choi, C. Totzeck, and O. Tse. An analytical framework for consensus-
3441
+ based global optimization method.
3442
+ Math. Models Methods Appl. Sci., 28(6):1037–1066,
3443
+ 2018.
3444
+ [4] J. A. Carrillo, S. Jin, L. Li, and Y. Zhu. A consensus-based global optimization method for
3445
+ high dimensional machine learning problems. ESAIM: COCV, 27:S5, 2021.
3446
+ [5] J. Chen, S. Jin, and L. Lyu. A consensus-based global optimization method with adaptive
3447
+ momentum estimation. Communications in Computational Physics, 31(4):1296–1316, 2022.
3448
+ [6] R. Flamary, N. Courty, A. Gramfort, M. Z. Alaya, A. Boisbunon, S. Chambon, L. Chapel,
3449
+ A. Corenflos, K. Fatras, N. Fournier, L. Gautheron, N. T. Gayraud, H. Janati, A. Rakotoma-
3450
+ monjy, I. Redko, A. Rolet, A. Schutz, V. Seguy, D. J. Sutherland, R. Tavenard, A. Tong,
3451
+ and T. Vayer. POT: Python Optimal Transport. Journal of Machine Learning Research,
3452
+ 22(78):1–8, 2021.
3453
+ 34
3454
+
3455
+ [7] M. Fornasier, H. Huang, L. Pareschi, and P. S¨unnen. Consensus-based optimization on
3456
+ the sphere: Convergence to global minimizers and machine learning. J. Machine Learning
3457
+ Research, 22(237):1–55, 2021.
3458
+ [8] M. Fornasier, H. Huang, L. Pareschi, and P. S¨unnen. Consensus-based optimization on
3459
+ hypersurfaces: Well-posedness and mean-field limit. Mathematical Models and Methods in
3460
+ Applied Sciences, 30(14):2725–2751, 2020.
3461
+ [9] M. Fornasier, T. Klock, and K. Riedl. Consensus-based optimization methods converge
3462
+ globally. arXiv:2103.15130, 2021.
3463
+ [10] M. Fornasier, T. Klock, and K. Riedl. Convergence of anisotropic consensus-based opti-
3464
+ mization in mean-field law. In J. L. Jim´enez Laredo, J. I. Hidalgo, and K. O. Babaagba,
3465
+ editors, Applications of Evolutionary Computation, pages 738–754, Cham, 2022. Springer
3466
+ International Publishing.
3467
+ [11] A. H. Gandomi, G. J. Yun, X.-S. Yang, and S. Talatahari. Chaos-enhanced accelerated
3468
+ particle swarm optimization. Communications in Nonlinear Science and Numerical Simu-
3469
+ lation, 18(2):327–340, 2013.
3470
+ [12] G. Garrigos, L. Rosasco, and S. Villa. Convergence of the forward-backward algorithm:
3471
+ beyond the worst-case with the help of geometry. Mathematical Programming, June 2022.
3472
+ [13] D. Gilbarg and N. Trudinger.
3473
+ Elliptic Partial Differential Equations of Second Order.
3474
+ Classics in Mathematics. Springer Berlin Heidelberg, 2001.
3475
+ [14] S. Grassi and L. Pareschi.
3476
+ From particle swarm optimization to consensus based opti-
3477
+ mization: Stochastic modeling and mean-field limit. Mathematical Models and Methods in
3478
+ Applied Sciences, 31(08):1625–1657, 2021.
3479
+ [15] S.-Y. Ha, S. Jin, and D. Kim. Convergence of a first-order consensus-based global optimiza-
3480
+ tion algorithm. Mathematical Models and Methods in Applied Sciences, 30(12):2417–2444,
3481
+ 2020.
3482
+ [16] S.-Y. Ha, S. Jin, and D. Kim. Convergence and error estimates for time-discrete consensus-
3483
+ based optimization algorithms. Numerische Mathematik, 147(2):255–282, Feb 2021.
3484
+ [17] J. H. Holland. Adaptation in natural and artificial systems: an introductory analysis with
3485
+ applications to biology, control, and artificial intelligence. MIT press, 1992.
3486
+ [18] E. H. Houssein, A. G. Gad, K. Hussain, and P. N. Suganthan. Major advances in particle
3487
+ swarm optimization: Theory, analysis, and application. Swarm and Evolutionary Compu-
3488
+ tation, 63:100868, 2021.
3489
+ [19] H. Huang and J. Qiu. On the mean-field limit for the consensus-based optimization. Math-
3490
+ ematical Methods in the Applied Sciences, 45(12):7814–7831, 2022.
3491
+ [20] H. Huang, J. Qiu, and K. Riedl. On the global convergence of particle swarm optimization
3492
+ methods. arXiv:2201.12460, 2022.
3493
+ 35
3494
+
3495
+ [21] K. Hussain, M. N. Mohd Salleh, S. Cheng, and Y. Shi. Metaheuristic research: a compre-
3496
+ hensive survey. Artificial Intelligence Review, 52(4):2191–2233, Dec 2019.
3497
+ [22] M. Jamil and X.-S. Yang. A literature survey of benchmark functions for global optimization
3498
+ problems. Int. Journal of Mathematical Modelling and Numerical Optimisation, 2(4):150–
3499
+ 194, 2013.
3500
+ [23] S. Jin, L. Li, and J.-G. Liu. Random Batch Methods (RBM) for interacting particle systems.
3501
+ Journal of Computational Physics, 400:108877, 2020.
3502
+ [24] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings of ICNN’95 -
3503
+ International Conference on Neural Networks, volume 4, pages 1942–1948 vol.4, 1995.
3504
+ [25] S. Kirkpatrick, C. D. Gelatt Jr, and M. P. Vecchi. Optimization by simulated annealing.
3505
+ science, 220(4598):671–680, 1983.
3506
+ [26] Y. LeCun and C. Cortes. MNIST handwritten digit database. 2010.
3507
+ [27] C. Li, Y. Liu, A. Zhou, L. Kang, and H. Wang. A fast particle swarm optimization algorithm
3508
+ with cauchy mutation and natural selection strategy. In L. Kang, Y. Liu, and S. Zeng,
3509
+ editors, Advances in Computation and Intelligence, pages 334–343, Berlin, Heidelberg, 2007.
3510
+ Springer Berlin Heidelberg.
3511
+ [28] J. Li, X. Dong, S. Ruan, and L. Shi. A parallel integrated learning technique of improved
3512
+ particle swarm optimization and bp neural network and its application. Scientific Reports,
3513
+ 12(1):19325, Nov 2022.
3514
+ [29] Y. Liang and L. Wang. Applying genetic algorithm and ant colony optimization algorithm
3515
+ into marine investigation path planning model. Soft Computing, 24(11):8199–8210, Jun
3516
+ 2020.
3517
+ [30] B. Liu, L. Wang, Y.-H. Jin, F. Tang, and D.-X. Huang. Improved particle swarm optimiza-
3518
+ tion combined with chaos. Chaos, Solitons & Fractals, 25(5):1261–1271, 2005.
3519
+ [31] A. Nickabadi, M. M. Ebadzadeh, and R. Safabakhsh. A novel particle swarm optimization
3520
+ algorithm with adaptive inertia weight. Applied Soft Computing, 11(4):3658–3670, 2011.
3521
+ [32] N. Otsu. A threshold selection method from gray-level histograms. IEEE transactions on
3522
+ systems, man, and cybernetics, 9(1):62–66, 1979.
3523
+ [33] M. E. H. Pedersen. Good parameters for particle swarm optimization. Hvass Lab., Copen-
3524
+ hagen, Denmark, Tech. Rep. HL1001, pages 1551–3203, 2010.
3525
+ [34] R. Pinnau, C. Totzeck, O. Tse, and S. Martin. A consensus-based model for global opti-
3526
+ mization and its mean-field limit. Math. Models Methods Appl. Sci., 27(1):183–204, 2017.
3527
+ [35] E. Platen. An introduction to numerical methods for stochastic differential equations. Acta
3528
+ Numerica, 8:197–246, 1999.
3529
+ 36
3530
+
3531
+ [36] R. Poli, J. Kennedy, and T. Blackwell. Particle swarm optimization. Swarm intelligence,
3532
+ 1(1):33–57, 2007.
3533
+ [37] K. Riedl. Leveraging memory effects and gradient information in consensus-based optimiza-
3534
+ tion: On global convergence in mean-field law. arXiv.2211.12184, 2022.
3535
+ [38] F. Santambrogio. Optimal Transport for Applied Mathematicians. Birkh¨auser, 2015.
3536
+ [39] Y. Shi and R. Eberhart. A modified particle swarm optimizer. In 1998 IEEE international
3537
+ conference on evolutionary computation proceedings. IEEE world congress on computational
3538
+ intelligence (Cat. No. 98TH8360), pages 69–73. IEEE, 1998.
3539
+ [40] R. Storn and K. Price. Differential evolution–a simple and efficient heuristic for global
3540
+ optimization over continuous spaces. Journal of global optimization, 11(4):341–359, 1997.
3541
+ [41] A.-S. Sznitman. Topics in propagation of chaos. In P.-L. Hennequin, editor, Ecole d’Et´e de
3542
+ Probabilit´es de Saint-Flour XIX — 1989, pages 165–251, Berlin, Heidelberg, 1991. Springer
3543
+ Berlin Heidelberg.
3544
+ [42] K.-S. Tang, K.-F. Man, S. Kwong, and Q. He. Genetic algorithms and their applications.
3545
+ IEEE signal processing magazine, 13(6):22–37, 1996.
3546
+ [43] D. Tian and Z. Shi. MPSO: Modified particle swarm optimization and its applications.
3547
+ Swarm and evolutionary computation, 41:49–68, 2018.
3548
+ [44] C.-Y. Tsai, T.-Y. Liu, and W.-C. Chen. A novel histogram-based multi-threshold searching
3549
+ algorithm for multilevel colour thresholding. International Journal of Advanced Robotic
3550
+ Systems, 9(5):223, 2012.
3551
+ [45] R. Tuli, H. N. Soneji, and P. Churi. Pixadapt: A novel approach to adaptive image encryp-
3552
+ tion. Chaos, Solitons & Fractals, 164:112628, 2022.
3553
+ [46] M. ˇCrepinˇsek, S.-H. Liu, and M. Mernik.
3554
+ Exploration and exploitation in evolutionary
3555
+ algorithms: A survey. ACM Comput. Surv., 45(3), jul 2013.
3556
+ [47] D. Wang, D. Tan, and L. Liu. Particle swarm optimization algorithm: an overview. Soft
3557
+ computing, 22(2):387–408, 2018.
3558
+ [48] X.-S. Yang. Nature-inspired optimization algorithms. Academic Press, 2020.
3559
+ [49] X.-S. Yang, S. Deb, and S. Fong. Accelerated particle swarm optimization and support
3560
+ vector machine for business optimization and applications. In S. Fong, editor, Networked
3561
+ Digital Technologies, pages 53–66, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.
3562
+ [50] Y. Zhang and X. Kong. A particle swarm optimization algorithm with empirical balance
3563
+ strategy. Chaos, Solitons & Fractals: X, 10:100089, 2023.
3564
+ 37
3565
+
2dFQT4oBgHgl3EQfFzW1/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
4tE4T4oBgHgl3EQfBAt_/content/2301.04848v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d90e0d0ec6ffc8a588bfede14d7074a701576ab0cdd32bf4ce3feca5f0c5600b
3
+ size 327460
4tE4T4oBgHgl3EQfBAt_/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8e86af0e363f1a7266bf91176b26d442006102ee793b170208fb7c84f6225f2
3
+ size 3342381
4tE4T4oBgHgl3EQfBAt_/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:525a1815d1c206677dfd4644f0a3bad1777b03c95dca8e62b4cf2b8e65a2e38b
3
+ size 131450
5NE5T4oBgHgl3EQfPA41/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bbeb7d2ee01f964382c16982bc08a5d830bf00637fb8a28757144824e30519df
3
+ size 5898285
5dE3T4oBgHgl3EQfpQo9/content/2301.04640v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a60dc765ccadd082daa5717be29f578f49c20e3a199df6ccfc1868ad30920da9
3
+ size 276756
5dE3T4oBgHgl3EQfpQo9/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57f364e4eef8a296aa89d839d540bedd6719d8ca9b500fcfa947ad8d29cad451
3
+ size 1900589
5dE3T4oBgHgl3EQfpQo9/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:284b67b07932f827ad2d805a37cab801366845866ec80e897df3974cf0348689
3
+ size 65747
5tE3T4oBgHgl3EQfQwkt/content/tmp_files/2301.04415v1.pdf.txt ADDED
@@ -0,0 +1,2048 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.04415v1 [hep-th] 11 Jan 2023
2
+ Charges for Hypertranslations and Hyperrotations
3
+ Chethan Krishnana and Jude Pereirab
4
+ aCentre for High Energy Physics, Indian Institute of Science,
5
+ C.V. Raman Road, Bangalore 560012, India.
6
+ Email: chethan.krishnan.physics@gmail.com
7
+ b Department of Physics, Arizona State University,
8
+ Tempe, Arizona 85287-1504, USA.
9
+ Email:
10
+ jude.pereira@asu.edu
11
+ Hypertranslations and hyperrotations are asymptotic symmetries of flat space, on top of the
12
+ familiar supertranslations and superrotations. They were discovered in arXiv:2205.01422 by working
13
+ in the Special Double Null (SDN) gauge, where I + and I − are approached along null directions. It
14
+ was observed there that while the hair degrees of freedom associated to these diffeomorphisms show
15
+ up in the covariant surfaces charges, the diffeomorphisms themselves do not. This made their status
16
+ intermediate in some ways between global symmetries and trivial gauge transformations, making
17
+ interpretation ambiguous.
18
+ In this paper, we revisit the fall-offs considered in arXiv:2205.01422
19
+ which were strictly subleading to Minkowski in conventional double null coordinates. We identify
20
+ a new class of fall-offs where this assumption is relaxed, but whose charges nonetheless remain
21
+ finite. Remarkably, the leading behavior is still Riemann flat, indicating that these are soft modes.
22
+ With this more refined definition of asymptotic flatness, we show that leading hypertranslations
23
+ and leading hyperrotations explicitly show up in the charges.
24
+ This makes them genuine global
25
+ symmetries of asymptotically flat Einstein gravity in the SDN gauge.
26
+ We write down the new
27
+ algebra of asymptotic Killing vectors that subsumes the BMS algebra.
28
+ Introduction:
29
+ When the cosmological constant Λ is
30
+ negative, it is widely believed that the radial direction of
31
+ the resulting anti-de Sitter (AdS) spacetime is holograph-
32
+ ically emergent [1]. When Λ is positive, less is known,
33
+ but there are many suggestions in the literature that the
34
+ timelike direction of de Sitter (dS) space may have a holo-
35
+ graphic origin [2]. These observations make one suspect
36
+ that it may be useful to view the holographic direction
37
+ for flat space, which has Λ = 0, as a null coordinate.
38
+ Historically however, the null boundary of flat space is
39
+ typically approached along a spacelike direction, eg., in
40
+ the famous Bondi gauge [3].
41
+ With quite different motivations, various aspects of flat
42
+ space were explored from a holographic perspective in [4–
43
+ 6]. Along the way, it was realized that a natural gauge
44
+ for asymptotically flat space is the Special Double Null
45
+ (SDN) gauge [7], defined by
46
+ guu = 0, gvv = 0, guA = gvA.
47
+ (1)
48
+ Here u and v are null coordinates and I + and I − are
49
+ covered (generically) by two separate patches around v →
50
+ ∞ and u → −∞ respectively. The holographic directions
51
+ are v and −u in these patches.
52
+ The notion of a double null coordinate system has been
53
+ explored in various contexts in the literature before, see
54
+ eg.
55
+ [8, 9].
56
+ But usually in these settings, not enough
57
+ constraints are imposed to fix all the coordinate free-
58
+ dom; they are therefore not genuine gauge choices. In
59
+ fact in the context of mathematical relativity, the form
60
+ of the double null metric that is sometimes written down
61
+ (see eg., eqn (70) of [10]) does not fall into the gauge we
62
+ have presented above. This reflects a difference in phi-
63
+ losophy. General relativists are interested in I + as the
64
+ eventual location of gravitational waves from localized
65
+ objects. But if one is interested in graviton scattering,
66
+ as perhaps necessary in quantum gravity, we need access
67
+ to both I + and I −. Our gauge has a natural u ↔ −v
68
+ symmetry which relates I + and I −. This manifests an
69
+ asymptotic CPT invariance [7], which is believed to be a
70
+ symmetry of quantum gravity in flat space [11].
71
+ In [12] we considered the most general asymptotic sym-
72
+ metry algebra in SDN gauge with fall-offs which are
73
+ power laws in the respective null coordinate. Minkowski
74
+ space in double null coordinates can be obtained by writ-
75
+ ing u = t − r and v = t + r:
76
+ ds2 = −du dv + 2
77
+ �v − u
78
+ 2
79
+ �2
80
+ γz¯zdzd¯z
81
+ (2)
82
+ which has guA
83
+ =
84
+ gvA
85
+ =
86
+ 0.
87
+ This suggested that
88
+ one should allow fall-offs where guA and gvA are at
89
+ most O(v−1) at I +.
90
+ The result was found to con-
91
+ tain new classes of non-trivial asymptotic diffeomor-
92
+
93
+ 2
94
+ phisms on top of the BMS symmetries [13]. These were
95
+ named hypertranslations, subleading hypertranslations
96
+ and subleading hyperrotations1. The algebra of asymp-
97
+ totic Killing vectors that extends the BMS algebra was
98
+ identified and the covariant surface charges [14, 15] were
99
+ computed.
100
+ It was noted that these charges had non-
101
+ trivial dependence on the corresponding “hair” (the met-
102
+ ric parameters affected by these asymptotic diffeomor-
103
+ phisms). But at the same time, they did not contain the
104
+ new asymptotic diffeomorphisms themselves, and there-
105
+ fore the interpretation of these charges was ambiguous.
106
+ Typically for global symmetries that emerge from an
107
+ asymptotic symmetry calculation, both the diffeomor-
108
+ phisms and the associated hair parameters appear in the
109
+ charge expression. On the other hand, for trivial diffeo-
110
+ morphisms, neither the diffeomorphisms nor the parame-
111
+ ters associated to them appear in the charges. This made
112
+ the status of hypertranslations and hyperrotations in-
113
+ termediate between global symmetries and trivial gauge
114
+ transformations, making them challenging to interpret.
115
+ Part of the problem here is that because we are working
116
+ with null directions, the formalism that is most suited
117
+ for our purposes is the covariant phase space approach of
118
+ Wald and followers [14, 15], while a more Hamiltonian-
119
+ like formalism is perhaps more suited for interpretational
120
+ purposes.
121
+ In this paper, we will bypass this problem by identify-
122
+ ing a new set of fall-offs which are not strictly subleading
123
+ to (2), but for which the charges are still finite. These
124
+ fall-offs are presented in (3) and also in more detail in the
125
+ Supplementary Material. In particular, our fall-offs will
126
+ allow guA = O(v0) = gvA. A key feature of these fall-offs
127
+ is that they can change the metric at an order more lead-
128
+ ing than (2), and yet remarkably, we are able to show that
129
+ their charges remain finite. In particular, a striking fact
130
+ that we note is that demanding Riemann flatness allows
131
+ these terms. This allows us to adopt the philosophy that
132
+ there is nothing too sacred about the specific form in ex-
133
+ pression (2), it is the demand of Riemann flatness that
134
+ should be respected in deciding the leading behavior. We
135
+ will find that Riemann flatness still leaves the possibility
136
+ that these modes can be functions of the angular coordi-
137
+ nates (z, ¯z). We will eventually identify these as related
138
+ to the hyperrotation hair. This should be compared to
139
+ the familiar fact that purely angle dependent shear modes
140
+ 1In [12], the latter were simply called hyperrotations. But in
141
+ the present paper we will find more leading counterparts to these
142
+ AKVs which are more naturally called (leading) hyperrotations.
143
+ Therefore the ones noted in [12] will be referred to as subleading
144
+ hyperrotations in this paper.
145
+ in Bondi gauge are soft hair associated to supertrans-
146
+ lations, and turning them on can still leave the metric
147
+ Riemann flat [16]. Similarly in SDN gauge, turning on
148
+ supertranslation hair or hypertranslation hair, leaves the
149
+ metric Riemann flat. But both in Bondi gauge as well as
150
+ in SDN gauge, the supertranslation and hypertranslation
151
+ soft modes were subleading to the corresponding conven-
152
+ tional form of the Minkowski metric. The new feature
153
+ of hyperrotation hair here is that it is more leading than
154
+ (2) while remaining Riemann flat. Riemann flatness in
155
+ SDN gauge has many remarkable properties, which will
156
+ be discussed in detail elsewhere [17].
157
+ Once we adopt these relaxed fall-offs the nature of the
158
+ calculation is parallel to that in [12], even though techni-
159
+ cally more involved due to the increased number of metric
160
+ functions that we start with. The result of this exercise is
161
+ that we find that (a) the charges are still finite, (b) there
162
+ is a new set of Diff(S2) transformations (the leading hy-
163
+ perrotations) that appear before subleading hyperrota-
164
+ tions but are subleading to superrotations, (c) both the
165
+ hair parameters as well as the diffeomorphisms associ-
166
+ ated to the leading hypertranslations and leading hyper-
167
+ rotations appear in the charge expressions, on top of the
168
+ conventional BMS quantities, (d) demanding Riemann
169
+ flatness still allows soft hair associated to these diffeo-
170
+ morphisms to appear in the metric, and (e) the algebra
171
+ of the asymptotic symmetries is enhanced with respect
172
+ to both the BMS algebra as well as the BBMS algebra of
173
+ [12].
174
+ The next section contains the main results of this pa-
175
+ per. To avoid repetition, we will only emphasize aspects
176
+ of the discussion that are distinct from those in [12]. In
177
+ particular, we will simply present the final algebra with-
178
+ out presenting the details of the derivation – the approach
179
+ is identical to that in [12], even though technically more
180
+ involved.
181
+ Results: We will work with SDN gauge discussed in [7].
182
+ The fall-offs are presented in great detail in the Supple-
183
+ mentary Material in terms of functions appearing in the
184
+ metric. Here we will write the fall-offs as
185
+ guv = −2 + O
186
+
187
+ v−1�
188
+ (3a)
189
+ gAB = 4γAB v−2 + O
190
+
191
+ v−3�
192
+ (3b)
193
+ guA = gvA = O
194
+
195
+ v−2�
196
+ (3c)
197
+ Even though technically this is a small change from our
198
+ previous paper, we emphasize that this is a pretty sub-
199
+ stantive departure from experience in other gauges. We
200
+ are demanding that the metric be distinct from the con-
201
+ ventional form Minkowski metric (2), already at leading
202
+ order.
203
+ There are three reasons why we believe this is
204
+
205
+ 3
206
+ reasonable. Firstly, the charges remain finite. Secondly,
207
+ demanding Riemann flatness does not force these terms
208
+ to be zero. Thirdly, with this choice, we get a perfectly
209
+ conventional structure for the leading hypertranslation
210
+ and hyperrotation charges.
211
+ The asymptotic Killing vector conditions take the
212
+ form:
213
+ Lξguv = O
214
+
215
+ v−1�
216
+ (4a)
217
+ LξguA = O
218
+
219
+ v−2�
220
+ (4b)
221
+ LξgvA = O
222
+
223
+ v−2�
224
+ (4c)
225
+ LξgAB = O
226
+
227
+ v−3�
228
+ (4d)
229
+ These and the exact Killing conditions (21), lead to the
230
+ solutions:
231
+ ξu = f +
232
+ ξu
233
+ (1)
234
+ v
235
+ +
236
+ ξu
237
+ (2)
238
+ v2 +
239
+ ξu
240
+ (3)
241
+ v3 + O
242
+
243
+ v−4�
244
+ (5a)
245
+ ξv = −ψ
246
+ 2 v + ξv
247
+ (0) +
248
+ ξv
249
+ (1)
250
+ v
251
+ +
252
+ ξv
253
+ (2)
254
+ v2 + O
255
+
256
+ v−3�
257
+ (5b)
258
+ ξA = Y A +
259
+ ξA
260
+ (1)
261
+ v
262
+ +
263
+ ξA
264
+ (2)
265
+ v2 +
266
+ ξA
267
+ (3)
268
+ v3 + O
269
+
270
+ v−4�
271
+ (5c)
272
+ where
273
+ f = ξu
274
+ (0) = ψ(z, ¯z) u/2 + T (z, ¯z),
275
+ with ψ(z, ¯z) = DAY A
276
+ (6a)
277
+ ξu
278
+ (1) = αA
279
+ 2 ∂Af
280
+ (6b)
281
+ ξu
282
+ (2) = 1
283
+ 2
284
+
285
+ αA
286
+ 3 ∂Af + αA
287
+ 2 ∂Aξu
288
+ (1)
289
+
290
+ (6c)
291
+ ξu
292
+ (3) = 1
293
+ 3
294
+
295
+ αA
296
+ 4 ∂Af + αA
297
+ 3 ∂Aξu
298
+ (1) + αA
299
+ 2 ∂Aξu
300
+ (2)
301
+
302
+ (6d)
303
+ Here T (z, ¯z) denotes supertranslations, and Y z(z), Y ¯z(¯z)
304
+ denote superrotations.
305
+ On top of the BMS diffeo-
306
+ morphisms, the ξv
307
+ (0), ξv
308
+ (1), ξA
309
+ (1) and ξA
310
+ (2) are also de-
311
+ termined by the exact and asymptotic Killing condi-
312
+ tions. The independent functions contained in them are
313
+ hypertranslations φ(z, ¯z), sub-leading hypertranslations
314
+ τ(z, ¯z), hyperrotations XA(z, ¯z) and sub-leading hyper-
315
+ rotations ZA(z, ¯z) respectively. They are related to the
316
+ ξv
317
+ (0), ξv
318
+ (1), ξA
319
+ (1), ξA
320
+ (2) via:
321
+ ξA
322
+ (1) = XA − 2 DAf
323
+ (7a)
324
+ ξv
325
+ (0) = φ + T + △γT − 1
326
+ 4aA
327
+ 2 DAψ − 1
328
+ 2DAXA
329
+ (7b)
330
+ ξv
331
+ (1) = ˜τ + 1
332
+ 2A A
333
+ 2 DAψ
334
+ (7c)
335
+ ξA
336
+ (2) = ˜ZA + C AB DBψ + A A
337
+ 2 ψ − u XA + 2 u DAξv
338
+ (0)
339
+ − u2 DAψ − L1 DAψ
340
+ We have introduced ˜τ and ˜ZA for convenience which are
341
+ related to the sub-leading hypertranslations τ and sub-
342
+ leading hyperrotations ZA via
343
+ ˜τ = τ − 1
344
+ 4 aA
345
+ 3 DAψ
346
+ +
347
+
348
+ D¯zcz¯z − Dzczz + γz¯zDzD¯zaz
349
+ 2 − γz¯zD2
350
+ ¯za¯z
351
+ 2
352
+
353
+ DzT
354
+ +
355
+
356
+ Dzcz¯z − D¯zc¯z¯z + γz¯zD¯zDza¯z
357
+ 2 − γz¯zD2
358
+ zaz
359
+ 2
360
+
361
+ D¯zT
362
+ + aA
363
+ 2 DAξv
364
+ (0) + aA
365
+ 2 DAT + 1
366
+ 4aA
367
+ 2 DA
368
+
369
+ aB
370
+ 2 DBψ
371
+
372
+ (8)
373
+ ˜Zz = Zz + czz DzT + cz¯z D¯zT + T Dzczz − T D¯zcz¯z
374
+ + az
375
+ 2 ξv
376
+ (0) − 1
377
+ 2XBDBaz
378
+ 2 + 1
379
+ 2aB
380
+ 2 DBXz − γz¯zD¯za¯z
381
+ 2D¯zT
382
+ − γz¯zD¯zaz
383
+ 2DzT + 1
384
+ 4az
385
+ 2a¯z
386
+ 2D¯zψ − γz¯za¯z
387
+ 2D2
388
+ ¯zT + 1
389
+ 4
390
+
391
+ az
392
+ 2
393
+ �2Dzψ
394
+ − 1
395
+ 2az
396
+ 2∆γT − γz¯zT DzD¯zaz
397
+ 2 + γz¯zT D2
398
+ ¯za¯z
399
+ 2
400
+ (9)
401
+ ˜Z ¯z = Z ¯z + c¯z¯z D¯zT + cz¯z DzT + T D¯zc¯z¯z − T Dzcz¯z
402
+ + a¯z
403
+ 2 ξv
404
+ (0) − 1
405
+ 2XBDBa¯z
406
+ 2 + 1
407
+ 2aB
408
+ 2 DBX ¯z − γz¯zDzaz
409
+ 2DzT
410
+ − γz¯zDza¯z
411
+ 2D¯zT + 1
412
+ 4a¯z
413
+ 2az
414
+ 2Dzψ − γz¯zaz
415
+ 2D2
416
+ zT + 1
417
+ 4
418
+
419
+ a¯z
420
+ 2
421
+ �2D¯zψ
422
+ − 1
423
+ 2a¯z
424
+ 2∆γT − γz¯zT D¯zDza¯z
425
+ 2 + γz¯zT D2
426
+ zaz
427
+ 2
428
+ (10)
429
+ These expressions are significantly more complicated
430
+ than those in [12], so let us pause to explain some of the
431
+ details.
432
+ The integration “constants” in the shear are2
433
+ introduced via
434
+ CAB(u, z, ¯z) = cAB(z, ¯z) +
435
+ � u
436
+ −∞
437
+ du′NAB(u′, z, ¯z)(11)
438
+ with NAB ≡ ∂uCAB, being the SDN news tensor. Sim-
439
+ ilarly, we have defined the integration “constant” in αA
440
+ 2
441
+ as
442
+ αA
443
+ 2 (u, z, ¯z) = aA
444
+ 2 (z, ¯z) +
445
+ � u
446
+ −∞
447
+ du′βA
448
+ 2 (u′, z, ¯z)
449
+ (12)
450
+ where βA
451
+ 2 ≡ ∂uαA
452
+ 2 . See [7, 18] for a discussion on integrals
453
+ of this type that are defined from I +
454
+ − to u. On shell (ie.,
455
+ when Einstein equations hold), we have Nz¯z = 0 and
456
+ βA
457
+ 2 = 0, so we will have
458
+ Cz¯z(u, z, ¯z) = cz¯z(z, ¯z)
459
+ αA
460
+ 2 (u, z, ¯z) = aA
461
+ 2 (z, ¯z)
462
+ (13)
463
+ In addition to this, the Einstein constraints also require
464
+ 2The notation here is slightly different from that in [12].
465
+
466
+ 4
467
+ that λ1 = 0. For ξA
468
+ (2), combining all the relevant equa-
469
+ tions, we can write [18]
470
+ ∂uξA
471
+ (2) = CAB DBψ − 2 u DAψ + 2 DAξv
472
+ (0) + αA
473
+ 2 ψ
474
+ − λ1DAψ − XA
475
+ =⇒ ξA
476
+ (2) = C AB DBψ − u2 DAψ + 2 u DAξv
477
+ (0) + A A
478
+ 2 ψ
479
+ − L1DAψ − u XA + ˜ZA(z, ¯z)
480
+ (14)
481
+ The u-independence of ψ, ξv
482
+ (0) and XA has been used in
483
+ writing the integrated version in the second step. Also
484
+ C AB, A A
485
+ 2
486
+ and L2 have been defined via
487
+ ∂uC AB = CAB(u, z, ¯z)
488
+ (15)
489
+ ∂uA A
490
+ 2 = αA
491
+ 2 (u, z, ¯z)
492
+ (16)
493
+ ∂uL1 = λ1(u, z, ¯z)
494
+ (17)
495
+ As in [12], ˜ZA(z, ¯z) is taken as the u-independent piece in
496
+ ξA
497
+ (2). The shift is done on ˜ZA via (9)-(10) and the result
498
+ is what we call sub-leading hyperrotations ZA.
499
+ The rest of the notation follows that of [12]. As empha-
500
+ sized there, the idea in (7) is to do certain shifts so that
501
+ the structure of the diffeomorphisms is cleanest.
502
+ This
503
+ “diagonalizes” the algebra of diffeomorphisms. The phi-
504
+ losophy here is identical, even though the expressions are
505
+ more complicated.
506
+ The hair associated to the various diffeomorphisms are
507
+ therefore as follows: supertranslations T (z, ¯z) are associ-
508
+ ated to the u-independent shifts in Czz and C¯z¯z, hyper-
509
+ translations φ(z, ¯z) are associated to the u-independent
510
+ shifts of Cz¯z, subleading hypertranslations τ(z, ¯z) are as-
511
+ sociated to u-independent shifts of λ2, hyperrotations
512
+ XA(z, ¯z) are associated to u-independent shifts of α A
513
+ 2
514
+ and sub-leading hyperrotations ZA(z, ¯z) are associated
515
+ to u-independent shifts of α A
516
+ 3 . As in Bondi gauge, we
517
+ also have superrotations Y z(z), Y ¯z(¯z).
518
+ The shifts in-
519
+ volved in the definitions of φ, τ, XA and ZA are detailed
520
+ in the Supplementary Material. As in [12], supertrans-
521
+ lations and leading-&-subleading hypertranslations are
522
+ diffeomorphisms of u and v respectively. Leading hyper-
523
+ rotations were not present in [12], but both leading and
524
+ subleading hyperrotations are subleading to superrota-
525
+ tions on the sphere.
526
+ We will define the “Beyond BBMS” algebra b2-bms4
527
+ as the asymptotic symmetry algebra of the nine non-
528
+ trivial diffeomorphisms – supertranslations, superrota-
529
+ tions, hypertranslations & subleading hypertranslations,
530
+ and hyperrotations & subleading hyperrotations. Follow-
531
+ ing [12, 13], we define the bracket
532
+ ��Y , �T, �φ, �τ, �
533
+ X, �Z
534
+
535
+ =
536
+
537
+ (Y1, T1, φ1, τ1, X1, Z1), (Y2, T2, τ2, φ2, X2, Z2)
538
+
539
+ (18)
540
+ The notation is the natural generalization of that in [12,
541
+ 13] and the reader should consult those papers for the
542
+ detailed definitions. The new algebra is defined via �Y ,
543
+ �T, �φ, �τ, �
544
+ X and �Z given by the following expressions:
545
+ �Y A = Y B
546
+ 1 ∂BY A
547
+ 2 − Y B
548
+ 2 ∂BY A
549
+ 1
550
+ (19a)
551
+ �T = Y A
552
+ 1 ∂AT2 − Y A
553
+ 2 ∂AT1 + 1
554
+ 2 (T1 ψ2 − T2 ψ1).
555
+ (19b)
556
+ �φ = 1
557
+ 2(ψ1φ2 − ψ2φ1) +
558
+
559
+ Y A
560
+ 1 ∂Aφ2 − Y A
561
+ 2 ∂Aφ1
562
+
563
+ (19c)
564
+ �τ = (ψ1τ2 − ψ2τ1) +
565
+
566
+ Y A
567
+ 1 ∂Aτ2 − Y A
568
+ 2 ∂Aτ1
569
+
570
+ (19d)
571
+
572
+ XA = 1
573
+ 2
574
+
575
+ ψ1XA
576
+ 2 − ψ2XA
577
+ 1
578
+
579
+ +
580
+
581
+ Y B
582
+ 1 ∂BXA
583
+ 2 − Y B
584
+ 2 ∂BXA
585
+ 1
586
+
587
+ +
588
+
589
+ XB
590
+ 1 ∂BY A
591
+ 2 − XB
592
+ 2 ∂BY A
593
+ 1
594
+
595
+ (19e)
596
+ �ZA =
597
+
598
+ ψ1ZA
599
+ 2 − ψ2ZA
600
+ 1
601
+
602
+ +
603
+
604
+ Y B
605
+ 1 ∂BZA
606
+ 2 − Y B
607
+ 2 ∂BZA
608
+ 1
609
+
610
+ +
611
+
612
+ ZB
613
+ 1 ∂BY A
614
+ 2 − ZB
615
+ 2 ∂BY A
616
+ 1
617
+
618
+ (19f)
619
+ This is what we call the b2-bms4 algebra. The fact that
620
+ these nine non-trivial diffeomorphisms form a closed al-
621
+ gebra is checked by the same procedure as outlined in
622
+ [12]. The calculations are straightforward but lengthier
623
+ variations of those there. In order to identify the capped
624
+ quantities, we need to consider the Barnich-Troessaert
625
+ bracket [ξ1, ξ2]M of two AKVs ξ1 and ξ2 [12, 13]. The
626
+ structure is parallel to that presented in [12], with a no-
627
+
628
+ 5
629
+ table difference in the A-component which takes the form
630
+ [ξ1, ξ2]A
631
+ M = �Y A +
632
+ �ξA
633
+ (1)
634
+ v
635
+ +
636
+ �ξA
637
+ (2)
638
+ v2 + O
639
+
640
+ v−3�
641
+ .
642
+ (20)
643
+ In computing all four components of the Barnich-
644
+ Troessaert bracket, we need �ξv
645
+ (0), �ξv
646
+ (1), �ξA
647
+ (1) and �ξA
648
+ (2), which
649
+ are defined as in (7) but with Y A, T, φ, τ, XA, ZA re-
650
+ placed by their capped versions, defined in (19).
651
+ Equations (19) define the b2-bms4 algebra. Setting the
652
+ hyperrotations XA to zero results in the BBMS algebra
653
+ of [12], and setting φ, τ and ZA as well to zero results in
654
+ the familiar BMS algebra [13].
655
+ Discussion: In this paper, we observed that demand-
656
+ ing finite covariant surface charges in Einstein gravity
657
+ allows fall-offs that are not necessarily subleading to (2).
658
+ Turning on the soft modes associated to supertransla-
659
+ tions and leading hypertranslations/hyperrotations takes
660
+ us beyond (2) even though the metric is still Riemann
661
+ flat. We exploited this fact to work with fall-offs that
662
+ allowed these modes, to show that the covariant surface
663
+ charges contain these diffeomorphisms as well as the as-
664
+ sociated soft hair. This places them on an equal footing
665
+ with conventional global symmetries (eg. supertransla-
666
+ tions), resolving some of the ambiguities pointed out in
667
+ [12].
668
+ Of course, these results open up further questions. Our
669
+ work strongly suggests that the charges associated to hy-
670
+ pertranslations should be interpreted as soft, so it would
671
+ be interesting to connect these results to soft theorems
672
+ (perhaps to the subsubleading soft graviton theorem of
673
+ [20]?) and also to new memory effects. Some of these
674
+ questions are currently under investigation. Hypertrans-
675
+ lations have many similarities to supertranslations, but
676
+ there are also crucial distinctions. The lowest modes of
677
+ supertranslations are simply the action of Poincare trans-
678
+ lations on the boundary (u, z, ¯z). Hypertranslations on
679
+ the other hand are truly distinct from bulk translations –
680
+ we have already subtracted out the supertranslations in
681
+ our shifted diffeomorphisms, when defining hypertransla-
682
+ tions. It should be clear from (5) that the interpretation
683
+ of hypertranslations is more like a bulk diffeomorphism
684
+ at infinity (note that infinity is along the null direction
685
+ v in SDN gauge). It is more naturally compared to ξr
686
+ than ξu in Bondi gauge.
687
+ A related interesting feature of hypertranslations and
688
+ their associated hair is that they can be spherically sym-
689
+ metric.
690
+ This raises a subtlety in the usual statement
691
+ of Birkhoff’s theorem, which will be discussed in an up-
692
+ coming work.
693
+ Note that while supertranslations allow
694
+ soft hair on Schwarzschild, the only spherically symmet-
695
+ ric supertranslation is a time translation, so this subtlety
696
+ does not arise for Schwarzschild in Bondi gauge. It is also
697
+ important to emphasize that hypertranslations should be
698
+ distinguished from the shifts in v at the past boundary
699
+ I −. The latter are simply supertranslations, but now
700
+ acting in the past. What we mean by hypertranslations
701
+ are shifts in v at I +. There is no obvious connection
702
+ between the two (other than the future-past matching at
703
+ i0 that was discussed in [7]) because these coordinates
704
+ live in different charts.
705
+ What about subleading hypertranslations and sublead-
706
+ ing hyperrotations? They do not show up in the charges
707
+ even with the new fall-offs, but their associated hair was
708
+ present both in [12] as well as here. So their interpre-
709
+ tation remains ambiguous. It is natural to consider the
710
+ sub-algebra obtained by setting the subleading hyper-
711
+ translations/hyperrotations to zero.
712
+ This would mean
713
+ that we are working with supertranslations, superrota-
714
+ tions, leading hypertranslations and leading hyperrota-
715
+ tions. This is a natural generalization of the conventional
716
+ BMS algebra in the SDN gauge; it is clearly of interest to
717
+ study it more closely. One could also consider the even
718
+ simpler generalization of BMS, obtained by adding only
719
+ the leading hypertranslations and suppressing the lead-
720
+ ing hyperrotations. This algebra has the advantage that
721
+ we are not turning on diffeomorphisms on the sphere,
722
+ but only the Virasoro (super)rotations.
723
+ While it may
724
+ be difficult to conclusively argue for such a choice from
725
+ a purely asymptotic symmetry perspective, it is natural
726
+ from a celestial holography perspective [19]. This is the
727
+ algebra of supertranslations, (leading) hypertranslations
728
+ and superrotations.
729
+ ACKNOWLEDGMENTS
730
+ We thank Sudip Ghosh and Sarthak Talukdar for dis-
731
+ cussions.
732
+ [1] E.
733
+ Witten,
734
+ “Anti-de
735
+ Sitter
736
+ space
737
+ and
738
+ hologra-
739
+ phy,”
740
+ Adv. Theor. Math. Phys. 2,
741
+ 253-291 (1998)
742
+ doi:10.4310/ATMP.1998.v2.n2.a2 [arXiv:hep-th/9802150
743
+ [hep-th]].
744
+ [2] See eg., V. Balasubramanian, J. de Boer and D. Minic,
745
+ “Notes on de Sitter space and holography,”
746
+ Class.
747
+ Quant. Grav. 19, 5655-5700 (2002) doi:10.1016/S0003-
748
+ 4916(02)00020-9 [arXiv:hep-th/0207245 [hep-th]], and
749
+ the first few references therein.
750
+ [3] H. Bondi, M. G. J. van der Burg and A. W. K. Met-
751
+ zner, “Gravitational waves in general relativity. 7. Waves
752
+ from axisymmetric isolated systems,” Proc. Roy. Soc.
753
+
754
+ 6
755
+ Lond. A 269, 21-52 (1962) doi:10.1098/rspa.1962.0161.
756
+ R. K. Sachs,
757
+ “Gravitational waves in general rela-
758
+ tivity. 8. Waves in asymptotically flat space-times,”
759
+ Proc.
760
+ Roy.
761
+ Soc.
762
+ Lond.
763
+ A
764
+ 270,
765
+ 103-126
766
+ (1962)
767
+ doi:10.1098/rspa.1962.0206; R. Sachs, “Asymptotic sym-
768
+ metries in gravitational theory,” Phys. Rev. 128, 2851-
769
+ 2864 (1962) doi:10.1103/PhysRev.128.2851
770
+ [4] B. Bhattacharjee and C. Krishnan, “A General Prescrip-
771
+ tion for Semi-Classical Holography,” [arXiv:1908.04786
772
+ [hep-th]].
773
+ [5] C. Krishnan, “Bulk Locality and Asymptotic Causal
774
+ Diamonds,”
775
+ SciPost
776
+ Phys.
777
+ 7,
778
+ no.4,
779
+ 057
780
+ (2019)
781
+ doi:10.21468/SciPostPhys.7.4.057
782
+ [arXiv:1902.06709
783
+ [hep-th]].
784
+ [6] C. Krishnan, V. Patil and J. Pereira, “Page Curve
785
+ and
786
+ the
787
+ Information
788
+ Paradox
789
+ in
790
+ Flat
791
+ Space,”
792
+ [arXiv:2005.02993 [hep-th]].
793
+ [7] C. Krishnan and J. Pereira, “A New Gauge for Asymp-
794
+ totically Flat Spacetime,” [arXiv:2112.11440 [hep-th]].
795
+ [8] R. M. Wald, “General Relativity,” Chicago Univ. Pr.,
796
+ 1984, doi:10.7208/chicago/9780226870373.001.0001
797
+ [9] P. R. Brady, S. Droz, W. Israel and S. M. Morsink,
798
+ “Covariant
799
+ double
800
+ null
801
+ dynamics:
802
+ (2+2)
803
+ splitting
804
+ of
805
+ the
806
+ Einstein
807
+ equations,”
808
+ Class.
809
+ Quant.
810
+ Grav.
811
+ 13, 2211-2230 (1996) doi:10.1088/0264-9381/13/8/015
812
+ [arXiv:gr-qc/9510040 [gr-qc]].
813
+ [10] M. Dafermos, G. Holzegel and I. Rodnianski, “The
814
+ linear stability of the Schwarzschild solution to gravi-
815
+ tational perturbations,” Acta Math. 222, 1-214 (2019)
816
+ doi:10.4310/ACTA.2019.v222.n1.a1
817
+ [arXiv:1601.06467
818
+ [gr-qc]].
819
+ [11] A.
820
+ Strominger,
821
+ “On
822
+ BMS
823
+ Invariance
824
+ of
825
+ Grav-
826
+ itational
827
+ Scattering,”
828
+ JHEP
829
+ 07,
830
+ 152
831
+ (2014)
832
+ doi:10.1007/JHEP07(2014)152
833
+ [arXiv:1312.2229
834
+ [hep-
835
+ th]].
836
+ [12] C. Krishnan and J. Pereira, “Hypertranslations and Hy-
837
+ perrotations,” [arXiv:2205.01422 [hep-th]].
838
+ [13] G.
839
+ Barnich
840
+ and
841
+ C.
842
+ Troessaert,
843
+ “Aspects
844
+ of
845
+ the
846
+ BMS/CFT
847
+ correspondence,”
848
+ JHEP 05,
849
+ 062
850
+ (2010)
851
+ doi:10.1007/JHEP05(2010)062
852
+ [arXiv:1001.1541
853
+ [hep-
854
+ th]].
855
+ [14] V.
856
+ Iyer
857
+ and
858
+ R.
859
+ M.
860
+ Wald,
861
+ “Some
862
+ properties
863
+ of
864
+ Noether charge and a proposal for dynamical black
865
+ hole
866
+ entropy,”
867
+ Phys.
868
+ Rev.
869
+ D
870
+ 50,
871
+ 846-864
872
+ (1994)
873
+ doi:10.1103/PhysRevD.50.846 [arXiv:gr-qc/9403028 [gr-
874
+ qc]].
875
+ [15] G. Barnich and F. Brandt, “Covariant theory of asymp-
876
+ totic symmetries, conservation laws and central charges,”
877
+ Nucl. Phys. B 633,
878
+ 3-82 (2002) doi:10.1016/S0550-
879
+ 3213(02)00251-1 [arXiv:hep-th/0111246 [hep-th]].
880
+ [16] A. Strominger, “Lectures on the Infrared Structure of
881
+ Gravity and Gauge Theory,” [arXiv:1703.05448 [hep-th]].
882
+ [17] C. Krishnan and J. Pereira, “Asymptotically Riemann-
883
+ flat Spacetimes,” to appear.
884
+ [18] C. Krishnan and J. Pereira,“A New Gauge for Flat Space
885
+ Holography,” to appear.
886
+ [19] J. H. Schwarz, “Diffeomorphism Symmetry in Two Di-
887
+ mensions and Celestial Holography,” [arXiv:2208.13304
888
+ [hep-th]].
889
+ [20] F. Cachazo and A. Strominger, “Evidence for a New Soft
890
+ Graviton Theorem,” [arXiv:1404.4091 [hep-th]].
891
+ [21] G. Barnich and C. Troessaert, “BMS charge algebra,”
892
+ JHEP 12,
893
+ 105 (2011) doi:10.1007/JHEP12(2011)105
894
+ [arXiv:1106.0213 [hep-th]].
895
+ Supplementary material
896
+ REFINED FALL-OFFS
897
+ In this section, we will present the falloffs in some detail. Our emphasis will be on the distinctions from those
898
+ presented in [12]. We start with a quick review of the notation: in d + 1 dimensions, the SDN gauge [7] is defined by
899
+ eqn (1). We will restrict ourselves to 3+1 dimensions here. The exact Killing vector equations are
900
+ Lξguu = 0, Lξgvv = 0, LξguA = LξgvA
901
+ (21)
902
+ and we will write the general metric in this gauge as
903
+ ds2 = −eλdu dv +
904
+ �v − u
905
+ 2
906
+ �2
907
+ ΩAB(dxA − αAdu − αAdv)(dxB − αBdu − αBdv)
908
+ (22)
909
+
910
+ 7
911
+ In [12], we presented a set of fall-offs in terms of the functions in this ansatz, which the reader should consult. The
912
+ fall-offs we consider in this paper are distinct in the following functions:
913
+ λ(u, v, z, ¯z) = λ1(u, z, ¯z)
914
+ v
915
+ + λ2(u, z, ¯z)
916
+ v2
917
+ + λ3(u, z, ¯z)
918
+ v3
919
+ + λ4(u, z, ¯z)
920
+ v4
921
+ + O
922
+
923
+ v−5�
924
+ (23a)
925
+ αz(u, v, z, ¯z) = αz
926
+ 2(u, z, ¯z)
927
+ v2
928
+ + αz
929
+ 3(u, z, ¯z)
930
+ v3
931
+ + αz
932
+ 4(u, z, ¯z)
933
+ v4
934
+ + αz
935
+ 5(u, z, ¯z)
936
+ v5
937
+ + O
938
+
939
+ v−6�
940
+ (23b)
941
+ α¯z(u, v, z, ¯z) = α¯z
942
+ 2(u, z, ¯z)
943
+ v2
944
+ + α¯z
945
+ 3(u, z, ¯z)
946
+ v3
947
+ + α¯z
948
+ 4(u, z, ¯z)
949
+ v4
950
+ + α¯z
951
+ 5(u, z, ¯z)
952
+ v5
953
+ + O
954
+
955
+ v−6�
956
+ (23c)
957
+ In terms of the metric, this results in the fall-offs:
958
+ guu = gvv = O
959
+
960
+ v−2�
961
+ (24a)
962
+ guv = −1
963
+ 2 + O
964
+
965
+ v−1�
966
+ (24b)
967
+ gAB = 1
968
+ 4 γAB v2 + O(v)
969
+ (24c)
970
+ guA = gvA = O
971
+
972
+ v0�
973
+ (24d)
974
+ Compared to the discussion in [12], we also allow αA
975
+ 2 as the O(1/v2) term in the αA fall-off. Just like Cz¯z, αA
976
+ 2 also
977
+ turns out to be u-independent once we demand Einstein equations. Hence it is an integration “constant” in Einstein
978
+ constraints in the language of [7, 12, 18].
979
+ Demanding Ricci (or Riemann) flatness forces λ1 to be zero and αA
980
+ 2 to be functions only of the angles. We have
981
+ kept them general in the discussions of the AKVs because they can be defined on arbitrary backgrounds, without
982
+ worrying about the equations satisfied by those backgrounds. But one can in principle start a-priori with fall-offs
983
+ (23) where λ1 is set to zero and αA
984
+ 2 are functions only of z and ¯z. Some of the expressions we have presented will
985
+ simplify somewhat in that case, but the main results do not change.
986
+ DIFFEOMORPHISM SHIFTS
987
+ As in [12] we will define the various diffeomorphisms after a suitable shift in the fall-off coefficient of ξ. This is more
988
+ elaborate in the present case, and we discuss them in detail below. The philosophy behind these shifts was discussed
989
+ in [12].
990
+ Hyperrotations: The simplest case arises for the leading hyperrotations XA(z, ¯z), so we start with them. From
991
+ the exact Lie derivative conditions, we obtain the following constraint on ξA
992
+ 1 ,
993
+ ∂uξA
994
+ 1 = −DAψ
995
+ (25)
996
+ which on integrating both sides becomes
997
+ ξA
998
+ 1 = ˜XA − u DAψ
999
+ (26)
1000
+ The metric function corresponding to leading hyperrotations is αA
1001
+ 2 . Under the action of AKVs, the transformation
1002
+ of αA
1003
+ 2 can be obtained by evaluating δξguA = LξguA at O(v−2) as follows
1004
+ δαA
1005
+ 2 =
1006
+
1007
+ f∂u + LY + ψ
1008
+ 2
1009
+
1010
+ αA
1011
+ 2 + ˜XA − u DAψ + 2 DAf
1012
+ (27)
1013
+ where
1014
+ LY αA
1015
+ 2 = Y B ∂BαA
1016
+ 2 − αB
1017
+ 2 ∂BY A.
1018
+ (28)
1019
+
1020
+ 8
1021
+ is the Lie derivative of αA
1022
+ 2 with respect to Y A. Recalling that on-shell αA
1023
+ 2 = aA
1024
+ 2 (z, ¯z) and substituting f = ψ(z, ¯z) u/2+
1025
+ T (z, ¯z), we obtain
1026
+ δaA
1027
+ 2 =
1028
+
1029
+ LY + ψ
1030
+ 2
1031
+
1032
+ aA
1033
+ 2 + ˜XA + 2 DAT
1034
+ (29)
1035
+ Next we would like to interpret XA(z, ¯z) as the diffeomorphism that causes αA
1036
+ 2 to be turned on if it was initially zero.
1037
+ This immediately suggests the following shift
1038
+ ˜XA = XA − 2 DAT
1039
+ (30)
1040
+ Substituting this in (26) and using f =
1041
+
1042
+ ψ/2
1043
+
1044
+ u + T yields
1045
+ ξA
1046
+ 1 = XA − 2 DAf
1047
+ (31)
1048
+ Hypertranslations: In the case of the leading hypertranslations φ(z, ¯z), the shift is of the form
1049
+ ξv
1050
+ (0) = φ + T + △γT − 1
1051
+ 4aA
1052
+ 2 DAψ − 1
1053
+ 2DAXA
1054
+ (32)
1055
+ This reduces to the form presented in [12] when the hyperrotations and their hair are set to zero. The change in Cz¯z
1056
+ can be computed by evaluating δξgz¯z = Lξgz¯z at O(v−3). The result is
1057
+ δCz¯z =
1058
+
1059
+ f ∂u + LY − 1
1060
+ 2 ψ
1061
+
1062
+ Cz¯z − 4 ∂z∂¯zf + 2 γz¯z
1063
+
1064
+ ξv
1065
+ (0) − f − u
1066
+ 2 ψ + 1
1067
+ 2DAXA + 1
1068
+ 4αA
1069
+ 2 DAψ
1070
+
1071
+ (33)
1072
+ Here LY is the Lie derivative of Cz¯z with respect to Y A defined as in [12]:
1073
+ LY Cz¯z = Y A∂ACz¯z +
1074
+
1075
+ ∂AY A�
1076
+ Cz¯z
1077
+ (34)
1078
+ On-shell we have Cz¯z = cz¯z(z, ¯z) and αA
1079
+ 2 = aA
1080
+ 2 (z, ¯z). Using these and substituting f = ψ(z, ¯z) u/2 + T (z, ¯z), we obtain
1081
+ δcz¯z =
1082
+
1083
+ LY − 1
1084
+ 2 ψ
1085
+
1086
+ cz¯z + 2γz¯z
1087
+
1088
+ ξv
1089
+ (0) − T − ∆γT + 1
1090
+ 2DAXA + 1
1091
+ 4aA
1092
+ 2 DAψ
1093
+
1094
+ (35)
1095
+ It is clear that ξv
1096
+ (0) mixes with supertranslations, superrotations and leading hyperrotations. We wish to remove
1097
+ this mixing, so that we can interpret φ(z, ¯z) as the diffeomorphism that causes cz¯z to be turned on if it was initially
1098
+ zero. From this it follows that the shift is ξv
1099
+ (0) = φ + T + △γT − 1
1100
+ 4aA
1101
+ 2 DAψ − 1
1102
+ 2DAXA, as we presented above. This
1103
+ defines hypertranslations, φ(z, ¯z). Note that in deriving the algebra for hypertranslations, we have made use of the
1104
+ identity
1105
+ δξξv
1106
+ (0) = −1
1107
+ 4
1108
+
1109
+ δaA
1110
+ 2
1111
+
1112
+ DAψ
1113
+ (36)
1114
+ where we have demanded that δξφ = 0 and δξXA = 0. This shifted definition above of the hypertranslations ensures
1115
+ the vanishing of the hatted �φ on the left hand side of algebra, when φ1 and φ2 are zero. As we pointed out in [12], this
1116
+ feature can be viewed as one of the motivations behind doing the shifts. This generalizes to the other diffeomorphisms
1117
+ as well.
1118
+ Subleading Hyperrotations: Now we turn to the case of subleading hyperrotations ZA(z, ¯z) and the correspond-
1119
+ ing metric functions αA
1120
+ 3 . The same procedure as in [12] now yields
1121
+ δαz
1122
+ 3 =
1123
+
1124
+ f ∂u + LY + ψ
1125
+
1126
+ αz
1127
+ 3 + 2 ξz
1128
+ (2) + 4 u Dzf − 2 CzB DBf − 2 αz
1129
+ 2 ξv
1130
+ (0) + XBDBαz
1131
+ 2 − αB
1132
+ 2 DBXz
1133
+ + 2 γz¯zD¯zα¯z
1134
+ 2D¯zf + 2 γz¯zD¯zαz
1135
+ 2DzT − 1
1136
+ 2αz
1137
+ 2α¯z
1138
+ 2D¯zψ + 2 γz¯zα¯z
1139
+ 2D2
1140
+ ¯zT + 2u γz¯zα¯z
1141
+ 2D2
1142
+ ¯zψ
1143
+ − u γz¯zDzαz
1144
+ 2D¯zψ − 1
1145
+ 2
1146
+
1147
+ αz
1148
+ 2
1149
+ �2Dzψ − 2u αz
1150
+ 2ψ + αz
1151
+ 2∆γT + 2 λ1Dzf + ∂uαz
1152
+ 2
1153
+
1154
+ αA
1155
+ 2 DAf
1156
+
1157
+ (37)
1158
+
1159
+ 9
1160
+ where the Lie derivative is defined as
1161
+ LY αA
1162
+ 3 = Y B ∂BαA
1163
+ 3 − αB
1164
+ 3 ∂BY A.
1165
+ (38)
1166
+ Note that in obtaining the above equation, we have used (27) along with
1167
+ δλ1 =
1168
+
1169
+ f ∂u + LY + 1
1170
+
1171
+
1172
+ λ1 + ∂uαA
1173
+ 2 DAf
1174
+ (39)
1175
+ which has been obtained by evaluating δξguv = Lξguv at O(v−1) where LY λ1 = Y A∂Aλ1 is the Lie derivative of λ1
1176
+ with respect to Y A. On-shell, we have [18]
1177
+ ∂uαz
1178
+ 3 = −2 DzCzz + 2 D¯zcz¯z + 2 γz¯zDzD¯zaz
1179
+ 2 − 2 γz¯zD2
1180
+ ¯za¯z
1181
+ 2
1182
+ =⇒ αz
1183
+ 3(u, z, ¯z) = −2 DzC zz + u
1184
+
1185
+ 2 D¯zcz¯z + 2 γz¯zDzD¯zaz
1186
+ 2 − 2 γz¯zD2
1187
+ ¯za¯z
1188
+ 2
1189
+
1190
+ + az
1191
+ 3(z, ¯z)
1192
+ (40)
1193
+ and a similar equation for α¯z
1194
+ 3(u, z, ¯z). Recalling that on-shell λ1 = 0, substituting (13), (40), (14) and (6a) into (37)
1195
+ and extracting the u-independent terms, we find
1196
+ δaz
1197
+ 3 =
1198
+
1199
+ LY + ψ
1200
+
1201
+ az
1202
+ 3 + 2 ˜Zz − 2 czz DzT − 2 cz¯z D¯zT − 2 T Dzczz + 2 T D¯zcz¯z − 2 az
1203
+ 2 ξv
1204
+ (0) + XB DBaz
1205
+ 2
1206
+ − aB
1207
+ 2 DBXz + 2 γz¯zD¯za¯z
1208
+ 2 D¯zT + 2 γz¯zD¯zaz
1209
+ 2 DzT − 1
1210
+ 2az
1211
+ 2a¯z
1212
+ 2 D¯zψ + 2 γz¯za¯z
1213
+ 2 D2
1214
+ ¯zT − 1
1215
+ 2
1216
+
1217
+ az
1218
+ 2
1219
+ �2 Dzψ
1220
+ + az
1221
+ 2 ∆γT + 2 γz¯zT DzD¯zaz
1222
+ 2 − 2 γz¯zT D2
1223
+ ¯za¯z
1224
+ 2
1225
+ (41)
1226
+ As in [12], the inhomogeneous part of the variation gives the shift:
1227
+ ˜Zz = Zz + czz DzT + cz¯z D¯zT + T Dzczz − T D¯zcz¯z + az
1228
+ 2 ξv
1229
+ (0) − 1
1230
+ 2XBDBaz
1231
+ 2
1232
+ + 1
1233
+ 2aB
1234
+ 2 DBXz − γz¯zD¯za¯z
1235
+ 2D¯zT − γz¯zD¯zaz
1236
+ 2DzT + 1
1237
+ 4az
1238
+ 2a¯z
1239
+ 2D¯zψ − γz¯za¯z
1240
+ 2D2
1241
+ ¯zT + 1
1242
+ 4
1243
+
1244
+ az
1245
+ 2
1246
+ �2Dzψ
1247
+ − 1
1248
+ 2az
1249
+ 2∆γT − γz¯zT DzD¯zaz
1250
+ 2 + γz¯zT D2
1251
+ ¯za¯z
1252
+ 2
1253
+ (42)
1254
+ For completeness, we also present the result for α¯z
1255
+ 3(u, z, ¯z), which gives an analogous shift for the ¯z-component of the
1256
+ subleading hyperrotations:
1257
+ ˜Z ¯z = Z ¯z + c¯z¯z D¯zT + cz¯z DzT + T D¯zc¯z¯z − T Dzcz¯z + a¯z
1258
+ 2 ξv
1259
+ (0) − 1
1260
+ 2XBDBa¯z
1261
+ 2
1262
+ + 1
1263
+ 2aB
1264
+ 2 DBX ¯z − γz¯zDzaz
1265
+ 2DzT − γz¯zDza¯z
1266
+ 2D¯zT + 1
1267
+ 4a¯z
1268
+ 2az
1269
+ 2Dzψ − γz¯zaz
1270
+ 2D2
1271
+ zT + 1
1272
+ 4
1273
+
1274
+ a¯z
1275
+ 2
1276
+ �2D¯zψ
1277
+ − 1
1278
+ 2a¯z
1279
+ 2∆γT − γz¯zT D¯zDza¯z
1280
+ 2 + γz¯zT D2
1281
+ zaz
1282
+ 2
1283
+ (43)
1284
+ The point of the shifts is that after doing them, the ZA’s are the independent diffeomorphisms. So it is natural to
1285
+ demand
1286
+ δξZA = 0.
1287
+ (44)
1288
+ This leads to
1289
+ δξ ˜Zz =
1290
+
1291
+ δczz�
1292
+ DzT +
1293
+
1294
+ δcz¯z�
1295
+ D¯zT + T
1296
+
1297
+ Dzδczz�
1298
+ − T
1299
+
1300
+ D¯zδcz¯z�
1301
+ +
1302
+
1303
+ δaz
1304
+ 2
1305
+
1306
+ ξv
1307
+ (0) + az
1308
+ 2
1309
+
1310
+ δξξv
1311
+ (0)
1312
+
1313
+ − 1
1314
+ 2XB�
1315
+ DBδaz
1316
+ 2
1317
+
1318
+ + 1
1319
+ 2
1320
+
1321
+ δaB
1322
+ 2
1323
+
1324
+ DBXz − γz¯z�
1325
+ D¯zδa¯z
1326
+ 2
1327
+
1328
+ D¯zT − γz¯z�
1329
+ D¯zδaz
1330
+ 2
1331
+
1332
+ DzT + 1
1333
+ 4a¯z
1334
+ 2
1335
+
1336
+ δaz
1337
+ 2
1338
+
1339
+ D¯zψ + 1
1340
+ 4az
1341
+ 2
1342
+
1343
+ δa¯z
1344
+ 2
1345
+
1346
+ D¯zψ − γz¯z�
1347
+ δa¯z
1348
+ 2
1349
+
1350
+ D2
1351
+ ¯zT
1352
+ + 1
1353
+ 2az
1354
+ 2
1355
+
1356
+ δaz
1357
+ 2
1358
+
1359
+ Dzψ − 1
1360
+ 2
1361
+
1362
+ δaz
1363
+ 2
1364
+
1365
+ ∆γT − γz¯zT
1366
+
1367
+ DzD¯zδaz
1368
+ 2
1369
+
1370
+ + γz¯zT
1371
+
1372
+ D2
1373
+ ¯zδa¯z
1374
+ 2
1375
+
1376
+ (45)
1377
+ with a similar expression for δξ ˜Z ¯z. When computing the algebra for the shifted subleading hyperrotations ZA, these
1378
+ expressions come in handy for cancelling out certain unpleasant pieces, and leading to the simple form of our final
1379
+
1380
+ 10
1381
+ algebra (19).
1382
+ Subleading Hypertranslations: Following the same procedure as in [12], we find
1383
+ δλ2 =
1384
+
1385
+ f∂u + LY + ψ
1386
+
1387
+ λ2 − 1
1388
+ 4 αA
1389
+ 3 DAψ + 1
1390
+ 2 ∂uαA
1391
+ 3 DAf − ξv
1392
+ (1) + αA
1393
+ 2 DAξv
1394
+ (0) + αA
1395
+ 2 DAT + 1
1396
+ 4αA
1397
+ 2 DA
1398
+
1399
+ αB
1400
+ 2 DBψ
1401
+
1402
+ − λ1 ξv
1403
+ (0) + ξA
1404
+ (1)DAλ1 + ∂uλ1 αA
1405
+ 2 DAf + 1
1406
+ 2∂u
1407
+
1408
+ αA
1409
+ 2 DAαB
1410
+ 2
1411
+
1412
+ DBf + αA
1413
+ 2 ∂uαB
1414
+ 2 DADBf
1415
+ (46)
1416
+ with LY λ2 = Y A∂Aλ2. By demanding the Einstein equations as in [12], we can write
1417
+ λ2 = λ0
1418
+ 2(z, ¯z) + u λ1
1419
+ 2(z, ¯z) + Λ2(u, z, ¯z)
1420
+ (47)
1421
+ where the form of Λ2(u, z, ¯z) will not be important in what follows. This leads to
1422
+ δλ0
1423
+ 2 =
1424
+
1425
+ ψ + LY
1426
+
1427
+ λ0
1428
+ 2 + T λ1
1429
+ 2 − ˜τ − 1
1430
+ 4 aA
1431
+ 3 DAψ +
1432
+
1433
+ D¯zcz¯z − Dzczz + γz¯zDzD¯zaz
1434
+ 2 − γz¯zD2
1435
+ ¯za¯z
1436
+ 2
1437
+
1438
+ DzT
1439
+ +
1440
+
1441
+ Dzcz¯z − D¯zc¯z¯z + γz¯zD¯zDza¯z
1442
+ 2 − γz¯zD2
1443
+ zaz
1444
+ 2
1445
+
1446
+ D¯zT + aA
1447
+ 2 DAξv
1448
+ (0) + aA
1449
+ 2 DAT + 1
1450
+ 4aA
1451
+ 2 DA
1452
+
1453
+ aB
1454
+ 2 DBψ
1455
+
1456
+ (48)
1457
+ The inhomogeneous part of this is the independent subleading hypertranslation, which takes the form
1458
+ ˜τ = τ − 1
1459
+ 4 aA
1460
+ 3 DAψ +
1461
+
1462
+ D¯zcz¯z − Dzczz + γz¯zDzD¯zaz
1463
+ 2 − γz¯zD2
1464
+ ¯za¯z
1465
+ 2
1466
+
1467
+ DzT
1468
+ +
1469
+
1470
+ Dzcz¯z − D¯zc¯z¯z + γz¯zD¯zDza¯z
1471
+ 2 − γz¯zD2
1472
+ zaz
1473
+ 2
1474
+
1475
+ D¯zT + aA
1476
+ 2 DAξv
1477
+ (0) + aA
1478
+ 2 DAT + 1
1479
+ 4aA
1480
+ 2 DA
1481
+
1482
+ aB
1483
+ 2 DBψ
1484
+
1485
+ (49)
1486
+ This results in the modified algebra we presented earlier.
1487
+ COVARIANT SURFACE CHARGES
1488
+ We will compute the covariant surface charges of [14] as in [12], see also [21]. For the set up in the present paper
1489
+ putting all the ingredients together leads to a potentially divergent term
1490
+ /δQξ[h; g] =
1491
+ 1
1492
+ 16πG lim
1493
+ v→∞
1494
+
1495
+ d2Ω
1496
+ �1
1497
+ 8
1498
+
1499
+ ψ DAδαA
1500
+ 2 − 2 YA δαA
1501
+ 2 − ψ γABδCAB − δαA
1502
+ 2 DAψ − YA ∂uδαA
1503
+ 3
1504
+
1505
+ v + O
1506
+
1507
+ v0��
1508
+ (50)
1509
+ This should be compared to eqn. (54) of [12]. Substituting
1510
+ ∂uδαz
1511
+ 3 = 2 D¯zδCz¯z − 2 DzδCzz + 2 γz¯zDzD¯zδαz
1512
+ 2 − 2 γz¯zD¯zD¯zδα¯z
1513
+ 2
1514
+ (51a)
1515
+ ∂uδα¯z
1516
+ 3 = 2 DzδCz¯z − 2 D¯zδC ¯z¯z + 2 γz¯zDzD¯zδα¯z
1517
+ 2 − 2 γz¯zDzDzδαz
1518
+ 2
1519
+ (51b)
1520
+ we obtain
1521
+ /δQξ[h; g] =
1522
+ 1
1523
+ 16πG lim
1524
+ v→∞
1525
+
1526
+ d2Ω
1527
+ �1
1528
+ 4γz¯z �
1529
+ Y z�
1530
+ D¯zδCzz − DzδCz¯z
1531
+
1532
+ + Y ¯z�
1533
+ DzδC¯z¯z − D¯zδCz¯z
1534
+
1535
+ − ψ δCz¯z
1536
+
1537
+ + 1
1538
+ 4
1539
+
1540
+ Y z DzDzδαz
1541
+ 2 − δαz
1542
+ 2 Dzψ + 1
1543
+ 2Dz
1544
+
1545
+ ψ δαz
1546
+ 2
1547
+
1548
+ − Y ¯z DzD¯zδαz
1549
+ 2 − γz¯zY ¯z δαz
1550
+ 2
1551
+ + Y ¯z D¯zD¯zδα¯z
1552
+ 2 − δα¯z
1553
+ 2 D¯zψ + 1
1554
+ 2D¯z
1555
+
1556
+ ψ δα¯z
1557
+ 2
1558
+
1559
+ − Y z D¯zDzδα¯z
1560
+ 2 − γz¯zY z δα¯z
1561
+ 2
1562
+
1563
+ v + O
1564
+
1565
+ v0��
1566
+ (52)
1567
+
1568
+ 11
1569
+ We will establish finiteness of the charges by showing that the O
1570
+
1571
+ v
1572
+
1573
+ term vanishes. The terms on the first line in the
1574
+ parenthesis at O
1575
+
1576
+ v
1577
+
1578
+ in the above expression can be rewritten as
1579
+ Y z�
1580
+ D¯zδCzz − DzδCz¯z
1581
+
1582
+ + Y ¯z�
1583
+ DzδC¯z¯z − D¯zδCz¯z
1584
+
1585
+ − ψ δCz¯z
1586
+ = Y z D¯zδCzz + Y ¯z DzδC¯z¯z − Y zDzδCz¯z − Y ¯zD¯zδCz¯z −
1587
+
1588
+ DzY z + D¯zY ¯z�
1589
+ δCz¯z
1590
+ = D¯z
1591
+
1592
+ Y z δCzz
1593
+
1594
+ + Dz
1595
+
1596
+ Y ¯z δC¯z¯z
1597
+
1598
+ − Dz
1599
+
1600
+ Y z δCz¯z
1601
+
1602
+ − D¯z
1603
+
1604
+ Y ¯z δCz¯z
1605
+
1606
+ = Dz
1607
+
1608
+ Y ¯z δC¯z¯z − Y z δCz¯z
1609
+
1610
+ + D¯z
1611
+
1612
+ Y z δCzz − Y ¯z δCz¯z
1613
+
1614
+ (53)
1615
+ Similarly, the terms on the second line in the parenthesis at O
1616
+
1617
+ v
1618
+
1619
+ can be rewritten as
1620
+ Y z DzDzδαz
1621
+ 2 − δαz
1622
+ 2 Dzψ + 1
1623
+ 2Dz
1624
+
1625
+ ψ δαz
1626
+ 2
1627
+
1628
+ − Y ¯z DzD¯zδαz
1629
+ 2 − γz¯zY ¯z δαz
1630
+ 2
1631
+ = Y z DzDzδαz
1632
+ 2 − δαz
1633
+ 2 DzDzY z − δαz
1634
+ 2 DzD¯zY ¯z + 1
1635
+ 2Dz
1636
+
1637
+ ψ δαz
1638
+ 2
1639
+
1640
+ − Y ¯z DzD¯zδαz
1641
+ 2 − γz¯zY ¯z δαz
1642
+ 2
1643
+ =
1644
+
1645
+ Y z DzDzδαz
1646
+ 2 + Dzδαz
1647
+ 2 DzY z�
1648
+ − Dz
1649
+
1650
+ δαz
1651
+ 2 DzY z�
1652
+ − δαz
1653
+ 2 DzD¯zY ¯z + 1
1654
+ 2Dz
1655
+
1656
+ ψ δαz
1657
+ 2
1658
+
1659
+ − Y ¯z DzD¯zδαz
1660
+ 2 − γz¯zY ¯z δαz
1661
+ 2
1662
+ = Dz(Y zDzδαz
1663
+ 2) − Dz
1664
+
1665
+ δαz
1666
+ 2DzY z�
1667
+
1668
+
1669
+ δαz
1670
+ 2 D¯zDzY ¯z − γz¯z δαz
1671
+ 2 Y ¯z�
1672
+ + 1
1673
+ 2Dz
1674
+
1675
+ ψ δαz
1676
+ 2
1677
+
1678
+ +
1679
+
1680
+ DzY ¯z D¯zδαz
1681
+ 2
1682
+ − Dz
1683
+
1684
+ Y ¯zD¯zδαz
1685
+ 2
1686
+ ��
1687
+ − γz¯zY ¯z δαz
1688
+ 2
1689
+ = Dz(Y zDzδαz
1690
+ 2) − Dz
1691
+
1692
+ δαz
1693
+ 2DzY z�
1694
+ + 1
1695
+ 2Dz
1696
+
1697
+ ψ δαz
1698
+ 2
1699
+
1700
+ − Dz
1701
+
1702
+ Y ¯zD¯zδαz
1703
+ 2
1704
+
1705
+ (54)
1706
+ Note that in writing down the third equality in the above expression, we have commuted the covariant derivatives
1707
+ acting on Y ¯z using the definition of the Riemann tensor. That is, we have evaluated [DA, DB]Y C = RC
1708
+ DABY D to
1709
+ obtain DzD¯zY ¯z − D¯zDzY ¯z = −γz¯zY ¯z. To simplify and obtain the final expression, we have made use of the fact
1710
+ that Y z and Y ¯z are holomorphic functions of z and ¯z respectively. A similar procedure can be implemented for δα¯z
1711
+ 2
1712
+ to rewrite the terms on the third line in the parenthesis at O
1713
+
1714
+ v
1715
+
1716
+ as follows
1717
+ Y ¯z D¯zD¯zδα¯z
1718
+ 2 − δα¯z
1719
+ 2 D¯zψ + 1
1720
+ 2D¯z
1721
+
1722
+ ψ δα¯z
1723
+ 2
1724
+
1725
+ − Y z D¯zDzδα¯z
1726
+ 2 − γz¯zY z δα¯z
1727
+ 2
1728
+ = D¯z(Y ¯zD¯zδα¯z
1729
+ 2) − D¯z
1730
+
1731
+ δα¯z
1732
+ 2D¯zY ¯z�
1733
+ + 1
1734
+ 2D¯z
1735
+
1736
+ ψ δα¯z
1737
+ 2
1738
+
1739
+ − D¯z
1740
+
1741
+ Y zDzδα¯z
1742
+ 2
1743
+
1744
+ (55)
1745
+ After integration over the 2-sphere, the “total” derivative terms disappear. The vanishing of O
1746
+
1747
+ v
1748
+
1749
+ terms guarantees
1750
+ that the surface charges remain finite in the limit v → ∞. This is one of our key results in this paper.
1751
+ Due to the vanishing of the O
1752
+
1753
+ v
1754
+
1755
+ terms, only the O
1756
+
1757
+ v0�
1758
+ terms remain in the v → ∞ limit. These constitute our
1759
+ charge expression and they can be evaluated to be
1760
+ /δQξ[h; g] =
1761
+ 1
1762
+ 16πG
1763
+
1764
+ d2Ω
1765
+
1766
+ u YA δαA
1767
+ 2 − 3
1768
+ 8YA δαA
1769
+ 3 − 1
1770
+ 4Y AαB
1771
+ 2 δCAB − f
1772
+ 2 γz¯z δCz¯z − 1
1773
+ 4γAB ξA
1774
+ (1) δαB
1775
+ 2 − ψ
1776
+ 8 γAB αA
1777
+ 2 δαB
1778
+ 2
1779
+ − ψ
1780
+ 4 δλ2 + u ψ
1781
+ 2 γz¯zδCz¯z − 3
1782
+ 8ψ γz¯zDz¯z − 1
1783
+ 4Y A δαB
1784
+ 2 CAB + 3
1785
+ 16ψ δCAB CAB + ψ γAC δCAB DCαB
1786
+ 2 + f
1787
+ 4 DA�A
1788
+ 2
1789
+ − 1
1790
+ 4ξv
1791
+ (0) DAδαA
1792
+ 2 − u
1793
+ 4 ψ DAδαA
1794
+ 2 + 1
1795
+ 4δαA
1796
+ 2 DAξv
1797
+ (0) + u
1798
+ 4 δαA
1799
+ 2 DAψ − 1
1800
+ 8δαA
1801
+ 3 DAψ + ψ
1802
+ 8 γz¯zCz¯z DAδαA
1803
+ 2
1804
+ + 1
1805
+ 4γz¯z ψ αA
1806
+ 2 DAδCz¯z − 1
1807
+ 4γz¯zδCz¯z αA
1808
+ 2 DAψ − 1
1809
+ 8γz¯zCz¯z δαA
1810
+ 2 DAψ + 1
1811
+ 8γz¯z ψ δαA
1812
+ 2 DACz¯z − 1
1813
+ 4δαA
1814
+ 2 DAf
1815
+ + ψ
1816
+ 8 DAδαA
1817
+ 3 + u ψ
1818
+ 4 γz¯zδCz¯z − ψ
1819
+ 8 γz¯zδDz¯z − 1
1820
+ 8Y A δCAB ∂uαB
1821
+ 3 + u
1822
+ 2 YA ∂uδαA
1823
+ 3 + f
1824
+ 2 γz¯z ∂uδDz¯z − f
1825
+ 8 N AB δCAB
1826
+ − 1
1827
+ 8γAB ξA
1828
+ (1) ∂uδαB
1829
+ 3 − ψ
1830
+ 16 γAB αA
1831
+ 2 ∂uδαB
1832
+ 3 − 1
1833
+ 8Y A CAB ∂uδαB
1834
+ 3 − 1
1835
+ 8YA ∂uδαA
1836
+ 4 − f
1837
+ 4 CAB δNAB
1838
+
1839
+ (56)
1840
+
1841
+ 12
1842
+ Further on, rearranging the terms and simplifying the above expression gives
1843
+ /δQξ[h; g] =
1844
+ 1
1845
+ 16πG
1846
+
1847
+ d2Ω
1848
+
1849
+ YA
1850
+
1851
+ u δαA
1852
+ 2 − 3
1853
+ 8δαA
1854
+ 3 + u
1855
+ 2 ∂uδαA
1856
+ 3 − 1
1857
+ 8∂uδαA
1858
+ 4 − 1
1859
+
1860
+
1861
+ CA
1862
+ B αB
1863
+ 2
1864
+
1865
+ − 1
1866
+
1867
+
1868
+ CA
1869
+ B ∂uαB
1870
+ 3
1871
+ ��
1872
+ + ψ
1873
+
1874
+ − u
1875
+ 2 DAδαA
1876
+ 2 + 1
1877
+ 4DAδαA
1878
+ 3 + 3
1879
+ 4u γz¯z δCz¯z − 1
1880
+ 2 γz¯z δDz¯z − 1
1881
+ 4δλ2 − 1
1882
+ 8γAB αA
1883
+ 2 δαB
1884
+ 2
1885
+ + 3
1886
+ 16CAB δCAB + DAαB
1887
+ 2 δCAB + 1
1888
+ 4γz¯z αA
1889
+ 2 DAδCz¯z + 1
1890
+
1891
+
1892
+ DA(γz¯z Cz¯z αA
1893
+ 2 )
1894
+
1895
+ − 1
1896
+ 16γAB αA
1897
+ 2 ∂uδαB
1898
+ 3
1899
+
1900
+ + f
1901
+ �1
1902
+ 2DAδαA
1903
+ 2 − 1
1904
+ 2γz¯z δCz¯z + 1
1905
+ 2γz¯z ∂uδDz¯z − 1
1906
+ 8N AB δCAB − 1
1907
+ 4 CAB δNAB
1908
+
1909
+ + ξA
1910
+ (1)
1911
+
1912
+ − 1
1913
+ 4γAB δαB
1914
+ 2 − 1
1915
+ 8γAB ∂uδαB
1916
+ 3
1917
+
1918
+ + ξv
1919
+ (0)
1920
+
1921
+ − 1
1922
+ 2DAδαA
1923
+ 2
1924
+ ��
1925
+ (57)
1926
+ Next we can substitute in the shifts that we obtained earlier, namely
1927
+ ξA
1928
+ (1) = XA − 2 DAf
1929
+ (58a)
1930
+ ξv
1931
+ (0) = φ + f + ∆γf + u
1932
+ 2 ψ − 1
1933
+ 2DAXA − 1
1934
+ 4αA
1935
+ 2 DAψ
1936
+ (58b)
1937
+ to write down the final form of the charge expression as follows:
1938
+ /δQξ[h; g] =
1939
+ 1
1940
+ 16πG
1941
+
1942
+ d2Ω
1943
+
1944
+ YA
1945
+
1946
+ u δαA
1947
+ 2 − 3
1948
+ 8δαA
1949
+ 3 + u
1950
+ 2 ∂uδαA
1951
+ 3 − 1
1952
+ 8∂uδαA
1953
+ 4 − 1
1954
+
1955
+
1956
+ CA
1957
+ B αB
1958
+ 2
1959
+
1960
+ − 1
1961
+
1962
+
1963
+ CA
1964
+ B ∂uαB
1965
+ 3
1966
+ ��
1967
+ + ψ
1968
+
1969
+ − 3
1970
+ 4u DAδαA
1971
+ 2 + 1
1972
+ 4DAδαA
1973
+ 3 + 3
1974
+ 4u γz¯z δCz¯z − 1
1975
+ 2 γz¯z δDz¯z − 1
1976
+ 4δλ2 − 1
1977
+ 8γAB αA
1978
+ 2 δαB
1979
+ 2 + 3
1980
+ 16CAB δCAB
1981
+ + DAαB
1982
+ 2 δCAB + 1
1983
+ 4γz¯z αA
1984
+ 2 DAδCz¯z + 1
1985
+
1986
+
1987
+ DA(γz¯z Cz¯z αA
1988
+ 2 )
1989
+
1990
+ − 1
1991
+ 16γAB αA
1992
+ 2 ∂uδαB
1993
+ 3 − 1
1994
+ 8DA
1995
+
1996
+ αA
1997
+ 2 DBδαB
1998
+ 2
1999
+ ��
2000
+ + f
2001
+
2002
+ − 1
2003
+ 2DAδαA
2004
+ 2 − 1
2005
+ 2γz¯z δCz¯z + 1
2006
+ 2γz¯z ∂uδDz¯z − 1
2007
+ 4∂uDAδαA
2008
+ 3 − 1
2009
+ 8N AB δCAB − 1
2010
+ 4 CAB δNAB
2011
+
2012
+ − 1
2013
+ 2∆γf DAδαA
2014
+ 2 + XA
2015
+
2016
+ − 1
2017
+ 4δαA
2018
+ 2 − 1
2019
+ 8∂uδαA
2020
+ 3 − 1
2021
+ 4DADBδαB
2022
+ 2
2023
+
2024
+ + φ
2025
+
2026
+ − 1
2027
+ 2DAδαA
2028
+ 2
2029
+ ��
2030
+ (59)
2031
+ This can be expanded further by substituting the Einstein constraints on the metric parameters
2032
+ ∂uαz
2033
+ 3 = 2 D¯zCz¯z − 2 DzCzz + 2 γz¯zDzD¯zαz
2034
+ 2 − 2 γz¯zD¯zD¯zα¯z
2035
+ 2
2036
+ (60a)
2037
+ ∂uα¯z
2038
+ 3 = 2 DzCz¯z − 2 D¯zC ¯z¯z + 2 γz¯zDzD¯zα¯z
2039
+ 2 − 2 γz¯zDzDzαz
2040
+ 2
2041
+ (60b)
2042
+ but we will not do so here.
2043
+ The key observation we take away from the final form of the charges is that both leading hypertranslations and
2044
+ leading hyperrotations show up in these charges. This should be contrasted to our previous paper [12] where only the
2045
+ metric parameters corresponding to these diffeomorphisms showed up, and not the diffeomorphisms themselves. We
2046
+ will investigate the physical significance of hypertranslations and their connections to new memory effects in follow
2047
+ up work.
2048
+
5tE3T4oBgHgl3EQfQwkt/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
6NE4T4oBgHgl3EQfcAzU/content/tmp_files/2301.05080v1.pdf.txt ADDED
@@ -0,0 +1,1161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Non-linear correlation analysis in financial markets using
2
+ hierarchical clustering
3
+ J. E. Salgado-Hern´andez and Manan Vyas
4
+ Instituto de Ciencias F´ısicas, Universidad Nacional
5
+ Aut´onoma de M´exico, 62210 Cuernavaca, M´exico
6
+ 1
7
+ arXiv:2301.05080v1 [q-fin.ST] 12 Jan 2023
8
+
9
+ Abstract
10
+ Distance correlation coefficient (DCC) can be used to identify new associations and correlations
11
+ between multiple variables. The distance correlation coefficient applies to variables of any dimen-
12
+ sion, can be used to determine smaller sets of variables that provide equivalent information, is zero
13
+ only when variables are independent, and is capable of detecting nonlinear associations that are
14
+ undetectable by the classical Pearson correlation coefficient (PCC). Hence, DCC provides more
15
+ information than the PCC. We analyze numerous pairs of stocks in S&P500 database with the
16
+ distance correlation coefficient and provide an overview of stochastic evolution of financial market
17
+ states based on these correlation measures obtained using agglomerative clustering.
18
+ I.
19
+ INTRODUCTION
20
+ Correlation coefficient is a number which is used to describe dependence between random
21
+ observations. Most popular correlation coefficient is the Pearson one which is defined on the
22
+ interval [−1, 1] [1]. For random variables X and Y , with finite and positive variances, Pearson
23
+ correlation coefficient (PCC) is defined as PCC(X, Y ) = cov(X, Y )/
24
+
25
+ var(X) var(Y ). If
26
+ Pearson correlation coefficient between two random variables is zero, it does not necessarily
27
+ mean that the variables are independent. Distance correlation coefficient does not suffer
28
+ from this drawback.
29
+ The distance correlation coefficient (DCC) is a product-moment correlation and a gener-
30
+ alized form of bivariate measures of dependency [2]. It is a very useful and unexplored area
31
+ for statistical inference. The range of the distance correlation is 0 ≤ DCC ≤ 1 [3]. For two
32
+ real random variables X and Y with finite variances, distance correlation coefficient is de-
33
+ fined as DCC(X, Y ) = dcov(X, Y )/
34
+
35
+ dcov(X, X) dcov(Y, Y ). Here, the distance covariance
36
+ dcov is defined in the following way. Let (X, Y ), (X′, Y ′) and (X′′, Y ′′) be i.i.d. copies, then
37
+ dcov2(X, Y ) = E(|X − X′||Y − Y ′|) + E(|X − X′|)E(|Y − Y ′|) − 2E(|X − X′||Y − Y ′′|) .
38
+ Thus, DCC is the correlation between the dot products which the ”double centered” (it
39
+ is the operation of converting the distances to the scalar products while placing the origin
40
+ at the geometric center) matrices are comprised of. It is important to mention that the
41
+ definition of distance correlation coefficient can be extended to variables with finite first
42
+ moments only and lack of DCC defines independence.
43
+ 2
44
+
45
+ As both PCC and DCC quantify strength of dependence, is important to understand
46
+ how large the differences between these two measures can possibly be. A natural question is
47
+ how large the DCC can be for variables for which PCC is zero, since uncorrelatedness only
48
+ means the lack of linear dependence. Importantly, nonlinear or nonmonotone dependence
49
+ may exist. The fact that PCC requires finite second moments while DCC requires finite
50
+ first moments implies that PCC is more sensitive to the tails of the distribution. Although
51
+ methods based on ranks (Spearman rank correlation) can be applied in some problems, these
52
+ methods are effective only for testing linear or monotone types of dependence. Importantly,
53
+ uncorrelatedness (PCC = 0) is too weak to imply a central limit theorem which requires
54
+ independence (DCC = 0) necessarily [4–7].
55
+ We have used stocks listed under S&P 500 for the time period August 2000 to August
56
+ 2022 and focus on financial market crisis that occurred in the years 2008 (subprime mortgage
57
+ crisis), 2010 (European debt crisis), 2011 (August 2011 stock market fall), 2015 (Great fall
58
+ of China), 2020 (COVID-19 recession) and 2022 (ongoing Russo-Ukrainian war) along with
59
+ bubble periods of 2002 (stock market downturn of 2002) and 2007 (Chinese stock bubble).
60
+ In order to point out the differences of using DCC, we will also focus on epochs for which
61
+ PCC ≈ 0.
62
+ We analyze the Pearson and Distance correlation matrices and their moments along with
63
+ eigenvalue distributions and participation ratios distribution. Participation ratios quantify
64
+ the number of components that participate significantly in each eigenvector [8, 9]. We show
65
+ that there are strong correlations in all these three measures at the times of crisis. Using
66
+ correlation matrices to represent market states [10–12], we employ agglomerative clustering
67
+ [13] to identify correlation matrices that act similarly and compare the clustering results for
68
+ the selected stocks using PCC and DCC.
69
+ II.
70
+ DATA SET
71
+ We use the 5552 daily closing prices of N = 370 stocks listed under S&P 500 for the
72
+ time period August 2000 to August 2022 downloaded freely from Yahoo finance webpage
73
+ [14]. The selected stocks are the ones that have been continuously traded for the chosen
74
+ time period. Using the daily closing prices Pi(t), with index i representing a given stock and
75
+ time t = 1, 2, . . . , T. daily returns ri(t) = [Pi(t) − Pi−1(t)]/Pi−1(t) are calculated. Here T is
76
+ 3
77
+
78
+ Sector
79
+ Ticker Stocks Weight
80
+ Communication Services
81
+ TS
82
+ 11
83
+ 0.03
84
+ Consumer Discretionary
85
+ CD
86
+ 38
87
+ 0.10
88
+ Consumer Staples
89
+ CS
90
+ 27
91
+ 0.07
92
+ Energy
93
+ EN
94
+ 18
95
+ 0.05
96
+ Financials
97
+ FI
98
+ 49
99
+ 0.13
100
+ Health Care
101
+ HC
102
+ 51
103
+ 0.14
104
+ Industrials
105
+ IN
106
+ 54
107
+ 0.15
108
+ Information Technology
109
+ IT
110
+ 49
111
+ 0.13
112
+ Materials
113
+ MA
114
+ 21
115
+ 0.06
116
+ Real Estate
117
+ RE
118
+ 25
119
+ 0.07
120
+ Utilities
121
+ UT
122
+ 27
123
+ 0.07
124
+ TABLE I. Distribution of the constituent sectors of selected stocks of financial market S&P 500.
125
+ total number of the trading days present in the considered time horizon. We then have 5551
126
+ daily returns and use these to compute the equal-time cross-correlation matrices based on
127
+ PCC and DCC. Table I gives the distribution of the sectors.
128
+ The disadvantage of working with long financial time series is the loss of information over
129
+ short periods of time, it is convenient to divide it into short time series (epochs). Computing
130
+ returns and dealing with epochs guarantees (weakly) stationary time series. With this, one
131
+ can study the evolution over time, for example, of the average correlations. This helps focus
132
+ on details in a given particular time interval as financial market is a dynamic entity.
133
+ First, we analyze the distribution of correlation matrix elements, eigenvalues and partici-
134
+ pation ratios obtained using both PCC and DCC for all the 138 time epochs (non-overlapping
135
+ epochs of size 40 days each). We show that there are strong correlations in all these three
136
+ measures at the times of crisis. In other words, there is collective motion during crashes.
137
+ III.
138
+ CORRELATIONS AND SPECTRAL ANALYSIS
139
+ To begin with, we plot the correlation matrices obtained using PCC and DCC in Fig.
140
+ 1. As expected, one loses the details due to long time averaging. We plot both PCC and
141
+ 4
142
+
143
+ FIG. 1. Correlation matrices for the total time horizon considered. Left panel shows the PCC
144
+ matrix and the right panel shows the DCC matrix. The minimum values for PCC and DCC are
145
+ 0.003 and 0.06 respectively. Similarly, the average PCC and DCC are 0.347 and 0.34.
146
+ DCC correlation matrices on the same scale as there are no negative correlations in the PCC
147
+ matrix computed for the total time horizon. Sectorial correlations are stronger for PCC in
148
+ comparison to DCC.
149
+ As one can not see any specific structures in the plots for the correlation matrices for
150
+ the complete time horizon, we study the distribution of correlation matrix elements for each
151
+ epoch as shown in Fig. 2. DCC and PCC both show a clear shift towards higher values
152
+ of correlation during the crisis periods of interest (2002, 2008, 2010, 2011, 2020 and 2022).
153
+ Also, DCC shows the peaks of distributions at lower values of correlation for the non-crisis
154
+ periods, unlike PCC. Notably, DCC ≥ 0.2 for the time horizon considered implying that
155
+ there are non-monotonic correlations present in financial markets at all times.
156
+ Next, we analyze the time evolution of distribution of eigenvalues of correlation matrices
157
+ as shown in Fig. 3; note that the plot is logarithmic. All the correlation matrices are singular
158
+ and thus, we have a delta peak at zero eigenvalues in addition to bulk distribution (which
159
+ follows random matrix theory predictions) and outliers that represent correlations [9, 15–
160
+ 19]. The largest eigenvalue, which is linearly correlated with average correlations, attains
161
+ very large values in crisis periods as seen from distribution of eigenvalues for both PCC and
162
+ DCC. Around end of 2016, the gap between the bulk eigenvalue distribution and outliers
163
+ for PCC is little. One can clearly see a comparatively broad bulk eigenvalue distribution
164
+ 5
165
+
166
+ PCC; August-2000 -- August-2022
167
+ TS
168
+ 1.0
169
+ CD
170
+ CS
171
+ 0.8
172
+ EN
173
+ FI
174
+ 0.6
175
+ HC
176
+ 0.4
177
+ IN
178
+ IT
179
+ 0.2
180
+ MA
181
+ RE
182
+ UT
183
+ 8
184
+ Z
185
+ 5DCC; August-2000 -- August-2022
186
+ TS
187
+ 1.0
188
+ CD
189
+ CS
190
+ 0.8
191
+ EN
192
+ FI
193
+ 一0.6
194
+ HC
195
+ 0.4
196
+ IN
197
+ JI
198
+ 0.2
199
+ MA
200
+ RE
201
+ UT
202
+ 0.0
203
+ Z
204
+ 5-1
205
+ -0.5
206
+ 0
207
+ 0.5
208
+ 1 2000-10-02
209
+ 2003-11-10
210
+ 2007-02-05
211
+ 2010-04-09
212
+ 2013-06-13
213
+ 2016-10-12
214
+ 2019-12-17
215
+ 2022-08-30
216
+ 0
217
+ 1
218
+ 2
219
+ 3
220
+ 4
221
+ Cij
222
+ P(Cij)
223
+ 0
224
+ 1
225
+ 2
226
+ 3
227
+ 4
228
+ Pearson Correlation
229
+ 0
230
+ 0.2
231
+ 0.4
232
+ 0.6
233
+ 0.8
234
+ 1
235
+ 2000-10-02
236
+ 2003-11-10
237
+ 2007-02-05
238
+ 2010-04-09
239
+ 2013-06-13
240
+ 2016-10-12
241
+ 2019-12-17
242
+ 2022-08-30
243
+ 0
244
+ 2
245
+ 4
246
+ 6
247
+ 8
248
+ Cij
249
+ P(Cij)
250
+ 0
251
+ 2
252
+ 4
253
+ 6
254
+ 8
255
+ Distance Correlation
256
+ 2003-11-10
257
+ 2007-02-05
258
+ 2010-04-09
259
+ 2013-06-13
260
+ 2016-10-12
261
+ 2019-12-17
262
+ 2022-08-30
263
+ Time (YYYY/MM/DD)
264
+ -1
265
+ -0.5
266
+ 0
267
+ 0.5
268
+ 1
269
+ Cij
270
+ 0
271
+ 1
272
+ 2
273
+ 3
274
+ 4
275
+ 2003-11-10
276
+ 2007-02-05
277
+ 2010-04-09
278
+ 2013-06-13
279
+ 2016-10-12
280
+ 2019-12-17
281
+ 2022-08-30
282
+ Time (YYYY/MM/DD)
283
+ 0
284
+ 0.2
285
+ 0.4
286
+ 0.6
287
+ 0.8
288
+ 1
289
+ Cij
290
+ 0
291
+ 2
292
+ 4
293
+ 6
294
+ 8
295
+ FIG. 2. Time evolution of the distribution of correlation matrix elements P(Cij). Left panel shows
296
+ the P(Cij) for PCC and the right panel shows P(Cij) for the DCC. Bottom panel shows the 2D
297
+ projection of the corresponding figures in the top panel.
298
+ for DCC beyond 2019. This feature is also seen in the plot for PCC, however it is equally
299
+ broad for 2001 when the largest eigenvalue is < 100. Like the distribution of correlation
300
+ matrix elements in Fig. 1, eigenvalue distributions for DCC and PCC both show a clear
301
+ shift towards higher values of outliers during the crisis periods of interest (2002, 2008, 2010,
302
+ 2011, 2015, 2020 and 2022).
303
+ We use participation ratio (PR) to quantify the number of components that participate
304
+ significantly in each eigenvector νi,
305
+ PRν =
306
+ � N
307
+
308
+ i=1
309
+ |νi|4
310
+ �−1
311
+ .
312
+ (1)
313
+ PR gives the number of elements of an eigenvector that are different from zero that contribute
314
+ significantly to the value of the eigenvector and thus, takes values between 1 (only one
315
+ 6
316
+
317
+ 2003-11-10 2007-02-05 2010-04-09 2013-06-13 2016-10-12 2019-12-172022-08-30
318
+ Time (YYYY/MM/DD)
319
+ 0
320
+ 50
321
+ 100
322
+ 150
323
+ 200
324
+ 250
325
+ 300
326
+ Eigenvalues
327
+ 10-6
328
+ 10-5
329
+ 10-4
330
+ 10-3
331
+ 10-2
332
+ 2003-11-10 2007-02-05 2010-04-09 2013-06-13 2016-10-12 2019-12-172022-08-30
333
+ Time (YYYY/MM/DD)
334
+ 0
335
+ 50
336
+ 100
337
+ 150
338
+ 200
339
+ 250
340
+ 300
341
+ Eigenvalues
342
+ 10-6
343
+ 10-5
344
+ 10-4
345
+ 10-3
346
+ 10-2
347
+ FIG. 3. Time evolution of the distribution of eigenvalues. Left panel shows the eigenvalue distri-
348
+ bution for PCC and the right panel shows for the DCC.
349
+ 2003-11-10
350
+ 2007-02-05
351
+ 2010-04-09
352
+ 2013-06-13
353
+ 2016-10-12
354
+ 2019-12-17
355
+ 2022-08-30
356
+ Time (YYYY/MM/DD)
357
+ 0
358
+ 50
359
+ 100
360
+ 150
361
+ 200
362
+ Participation ratios
363
+ 0
364
+ 0.005
365
+ 0.01
366
+ 0.015
367
+ 0.02
368
+ 0.025
369
+ 0.03
370
+ 2003-11-10
371
+ 2007-02-05
372
+ 2010-04-09
373
+ 2013-06-13
374
+ 2016-10-12
375
+ 2019-12-17
376
+ 2022-08-30
377
+ Time (YYYY/MM/DD)
378
+ 0
379
+ 50
380
+ 100
381
+ 150
382
+ 200
383
+ Participation ratios
384
+ 0
385
+ 0.005
386
+ 0.01
387
+ 0.015
388
+ 0.02
389
+ 0.025
390
+ 0.03
391
+ 0.035
392
+ FIG. 4. Time evolution of the distribution of participation ratios. Left panel shows the participation
393
+ ratios distribution for PCC and the right panel shows for the DCC. The horizontal line shows the
394
+ expectation value obtained from random matrix theory.
395
+ component) and N (all components contributing equally). The expectation value of PR for
396
+ a Gaussian Orthogonal Ensemble (classical random matrix ensemble) has the limiting value
397
+ of ⟨PR⟩ ≈ N/3 [8, 20]. We show the time evolution of distribution of PR for PCC and
398
+ DCC in Fig. 4. The horizontal line in the plots gives the average PR value estimated using
399
+ Gaussian Orthogonal Ensemble. As seen from the plots, the average PR for PCC is ≈ 160
400
+ while that for DCC is ≈ 110. The distribution of PR in case of PCC shows a slight upward
401
+ shift during crisis years of 2008, 2010 and 2011 while we see a slight downward shift in case
402
+ of DCC during the crisis years 2002, 2008, 2010, 2011 and 2020. The lesser the average
403
+ correlation, prominent is the downward shift in the distribution of PR in case of DCC.
404
+ Next we analyze the scatter plots between various moments [21] corresponding to PCC
405
+ and DCC and the results are presented in Fig. 5. Note that each point corresponds to an
406
+ 7
407
+
408
+ epoch and we represent the bubble and crisis periods of interest as solid circles. As seen in
409
+ Fig. 1, the crisis periods appear at higher values of mean correlations µ for both PCC and
410
+ DCC. For PCC, the crisis periods of 2008, 2010, 2011, 2015 and 2020 appear with largest µ
411
+ while the bubble periods of 2002 and 2007 alongwith the ongoing Russo-Ukrainian war have
412
+ relatively lower values of µ. Skewness is negative for all the crisis periods and the bubble
413
+ periods implying that the distribution has a longer left tail and bulk is concentrated towards
414
+ the right side. Kurtosis for the crisis periods of 2008, 2010, 2011, 2015 and 2020 is positive
415
+ implying the distributions are leptokurtic while distributions are platykurtic for the bubble
416
+ periods of 2002 and 2007, and the ongoing Russo-Ukrainian war. Emax reflects a similar
417
+ behavior as average correlations µ and PREmax is also maximum for crisis periods of 2008,
418
+ 2010, 2011, 2015 and 2020. In summary, PCC distinguishes the bubble periods of 2002 and
419
+ 2007, and the ongoing Russo-Ukrainian war from the crisis periods of 2008, 2010, 2011, 2015
420
+ and 2020 depending on kurtosis of the distribution of correlation matrix elements.
421
+ Similarly, in case of DCC: for µ < 0.5, σ increases with increasing µ and for µ > 0.5, σ
422
+ decreases with increasing µ. The crisis periods of 2008, 2010, 2011, 2015 and 2020 appear
423
+ with largest µ while the bubble periods of 2002 and 2007, and the ongoing Russo-Ukrainian
424
+ war have relatively lower values of µ. Skewness is negative for the crisis periods of 2008,
425
+ 2010, 2011, 2015 and 2020 implying that the distribution has a longer left tail and bulk
426
+ is concentrated towards the right side, while distribution has a longer right tail for the
427
+ bubble periods of 2002 and 2007, and distribution is symmetric for the ongoing Russo-
428
+ Ukrainian war. Kurtosis for the crisis periods of 2010, 2011 and 2020 is positive implying
429
+ the distributions are leptokurtic while distributions are platykurtic for the bubble periods
430
+ of 2002 and 2007, crisis periods of 2008 and 2015, and the ongoing Russo-Ukrainian war.
431
+ Emax reflects a similar behavior as average correlations µ and PREmax is constant around the
432
+ maximum value for all the epochs. In summary, DCC distinguishes the bubble periods from
433
+ the crisis periods depending on skewness of the distribution of correlation matrix elements.
434
+ Also, DCC distinguishes the bubble periods of 2002 and 2007, the crisis periods of 2008 and
435
+ 2015, and the ongoing Russo-Ukrainian war from the crisis periods of 2010, 2011 and 2020
436
+ depending on kurtosis of the distribution of correlation matrix elements.
437
+ 8
438
+
439
+ FIG. 5. Scatter plots corresponding to PCC (top panel) and DCC (bottom panel) between (a)
440
+ mean correlation µ and standard deviation σ, (b) skewness γ1 and σ, (c) excess kurtosis γ2 and σ,
441
+ (d) largest eigenvalue Emax and σ, (e) PR for the largest eigenvalues PREmax and σ, and (f) PR
442
+ for the largest eigenvalue PREmax and largest eigenvalues Emax.
443
+ 9
444
+
445
+ Pearsoncorrelation
446
+ 0.8F
447
+ (a)
448
+ 2
449
+ (b)
450
+ (c)
451
+ 1
452
+ 3
453
+ ≤ 0.4
454
+ 0
455
+ Y2
456
+ 0
457
+ -1
458
+ 0
459
+ 0
460
+ 0.1 0.2 0.3 0.4
461
+ 00.1 0.2 0.3 0.4
462
+ 0
463
+ 0.1 0.2 0.3 0.4
464
+ a
465
+ a
466
+ 300
467
+ 400
468
+ 400
469
+ (d)
470
+ (e)
471
+ 200
472
+ i300
473
+ 300
474
+ xeu
475
+ 100
476
+ 200
477
+ 008
478
+ 200
479
+ 98
480
+ (f)
481
+ 0
482
+ 100
483
+ 100
484
+ 0
485
+ 0.1 0.2 0.3 0.4
486
+ 0
487
+ 0.1 0.2 0.3 0.4
488
+ 0
489
+ 100
490
+ 200
491
+ 300
492
+ a
493
+ E
494
+ maxDistance correlation
495
+ 0.8
496
+ N
497
+ (a)
498
+ (b)
499
+ (c)
500
+ 1
501
+ ≤. 0.4
502
+ 0
503
+ 2
504
+ 0
505
+ -1
506
+ 0
507
+ 0
508
+ 0.1
509
+ 0.2
510
+ 0
511
+ 0.1
512
+ 0.2
513
+ 0
514
+ 0.1
515
+ 0.2
516
+ 300
517
+ 400
518
+ 400
519
+ 200
520
+ 300
521
+ 300
522
+ max
523
+ E
524
+ 100
525
+ 200
526
+ 200
527
+ (d)
528
+ (e)
529
+ ().
530
+ 0
531
+ 100
532
+ 0.1
533
+ 0.2
534
+ 0.1
535
+ 0.2
536
+ 100
537
+ 0
538
+ 100
539
+ 200
540
+ 300
541
+ a
542
+ a2000-10-02
543
+ 2003-11-10
544
+ 2007-02-05
545
+ 2010-04-09
546
+ 2013-06-13
547
+ 2016-10-12
548
+ 2019-12-17
549
+ 2022-08-30
550
+ 2000-10-02
551
+ 2003-11-10
552
+ 2007-02-05
553
+ 2010-04-09
554
+ 2013-06-13
555
+ 2016-10-12
556
+ 2019-12-17
557
+ 2022-08-30
558
+ 0
559
+ 50
560
+ 100
561
+ 150
562
+ 200
563
+ 250
564
+ 2000-10-02
565
+ 2003-11-10
566
+ 2007-02-05
567
+ 2010-04-09
568
+ 2013-06-13
569
+ 2016-10-12
570
+ 2019-12-17
571
+ 2022-08-30
572
+ 2000-10-02
573
+ 2003-11-10
574
+ 2007-02-05
575
+ 2010-04-09
576
+ 2013-06-13
577
+ 2016-10-12
578
+ 2019-12-17
579
+ 2022-08-30
580
+ 0
581
+ 20
582
+ 40
583
+ 60
584
+ 80
585
+ 100
586
+ 120
587
+ 140
588
+ 160
589
+ FIG. 6. Euclidean distance matrix obtained using Eq. (2) for PCC (left panel) and DCC (right
590
+ panel).
591
+ IV.
592
+ AGGLOMERATIVE CLUSTERING
593
+ In this section, we compare the clustering results for the selected stocks using PCC and
594
+ DCC. We employ agglomerative clustering that creates clusters by successively merging
595
+ epochs starting with singleton clusters. Using the linkage criterion in each iteration, the
596
+ clusters are joined together until obtaining a single cluster [13].
597
+ Dendrograms give the
598
+ representation of this hierarchy. Choosing the threshold value then decides the number of
599
+ clusters that will be obtained. We cluster similar correlation matrices into these optimized
600
+ n number of “market states”.
601
+ This is a variance-minimizing approach tackled with an
602
+ agglomerative hierarchical approach.
603
+ Dendrograms obtained for the PCC and DCC are
604
+ given in Appendix V.
605
+ In order to implement this algorithm, we need to compute the distance matrix ξ based
606
+ on correlation coefficients C’s,
607
+ ξ(ti, tj) = dE|C(ti) − C(tj)| ,
608
+ (2)
609
+ with dE representing the Euclidean norm and indices i, j = 1, 2, , . . . , 138 representing dif-
610
+ ferent epochs. Figure 6 gives the Euclidean matrices for PCC and DCC respectively. Note
611
+ that the crash periods of 2008, 2010, 2011 and 2020 are visible in these. Once the algorithm
612
+ was trained with its respective distance matrix, the average correlation coefficients PCC and
613
+ DCC were used as inputs to be able to group them into n = 5 clusters that were considered
614
+ 10
615
+
616
+ FIG. 7. Average correlation matrices for each market state obtained using agglomerative clustering
617
+ for PCC [(a)-(e)] and DCC [(f)-(j)]. The average correlation coefficients (from left to right) are
618
+ PCC: 0.12, 0.22, 0.37, 0.52, and 0.65; DCC: 0.35, 0.41, 0.46, 0.54, and 0.66, respectively.
619
+ adequate; see Figs. 10 and 11 for corresponding dendrograms.
620
+ The average correlation matrices of each market states corresponding to both (a) PCC
621
+ and (b) DCC are shown in Fig. 7. The correlation structures vary for each market state
622
+ corresponding to PCC and DCC. The average correlation coefficients (from left to right) are
623
+ (a) PCC: 0.12, 0.22, 0.37, 0.52, and 0.65, (b) DCC: 0.35, 0.41, 0.46, 0.54, and 0.66. The
624
+ number of matrices that are grouped together in each of the market states (from left to right)
625
+ are (a) PCC: 9, 49, 66, 7, and 7 and (b) DCC: 51, 23, 47, 10, and 7. The market states with
626
+ highest correlation coefficient are 7 for both PCC and DCC. For PCC, the market state
627
+ with highest average correlation includes the crash periods of 2008, 2010, 2015 and 2022
628
+ with two matrices not belonging to crash periods. For DCC, the market state with highest
629
+ average correlation includes the crash periods of 2008, 2010, 2011 and 2020. For PCC, the
630
+ market state with second highest average correlation includes epochs in the vicinity of the
631
+ crash periods of 2008, 2010, 2011 and 2020 and for DCC, the market state with second
632
+ highest average correlation includes epochs in the vicinity of the crash periods of 2015 and
633
+ 2022. The bubble periods of years 2002 and 2007 are included in the market state with third
634
+ highest average correlation for both PCC and DCC. There are two epochs for which PCC
635
+ 11
636
+
637
+ (a)PCC,mar-(b)PCC,mar-(c)PCC,mar-(
638
+ (d) PCC, mar- (e) PCC, mar-
639
+ ket state1
640
+ ket state 2
641
+ ket state 3
642
+ ket state 4
643
+ ketstate5
644
+ (f) DCC,mar-(g)DCC,mar-(h)DCC,mar-
645
+ (i) DCC, mar-
646
+ G) DCC,
647
+ mar-
648
+ ket state 1
649
+ ket state 2
650
+ ket state 3
651
+ ket state 4
652
+ ket state52000-10-02
653
+ 2003-11-10
654
+ 2007-02-05
655
+ 2010-04-09
656
+ 2013-06-13
657
+ 2016-10-12
658
+ 2019-12-17
659
+ 2022-08-30
660
+ 1
661
+ 2
662
+ 3
663
+ 4
664
+ 5
665
+ States
666
+ 2000-10-02
667
+ 2003-11-10
668
+ 2007-02-05
669
+ 2010-04-09
670
+ 2013-06-13
671
+ 2016-10-12
672
+ 2019-12-17
673
+ 2022-08-30
674
+ 1
675
+ 2
676
+ 3
677
+ 4
678
+ 5
679
+ States
680
+ FIG. 8. Dynamical evolution of financial market in time: PCC (top panel) and DCC (bottom
681
+ panel).
682
+ The market states 1, 2, . . . , 5 obtained using agglomerative clustering are arranged in
683
+ increasing order of average correlation coefficients for both PCC and DCC.
684
+ ≈ 0 and these epochs are in the market state corresponding to the lowest average correlation
685
+ coefficient both for PCC and DCC. Note that this market state has respectively 9 and 51
686
+ matrices in the cluster for PCC and DCC.
687
+ Dynamical evolution of the financial market can be studied by the transitions between
688
+ these market states. The financial market can remain in a particular market state, can
689
+ jump to another market state and bounce back or evolve to another market state. In Fig.
690
+ 8 the results of the temporal evolution of the market are shown based on both PCC and
691
+ DCC and Fig. 9 shows the corresponding transition matrices. For each market state, the
692
+ average correlation coefficients are ordered in ascending order. Transitions are counted when
693
+ changing epoch, either from one market state to another or if it remained in the same market
694
+ state. Most of the values stay close to the diagonal, this means that the transitions occur in
695
+ 12
696
+
697
+ 1
698
+ 2
699
+ 3
700
+ 4
701
+ 5
702
+ 1
703
+ 2
704
+ 3
705
+ 4
706
+ 5
707
+ 3
708
+ 5
709
+ 1
710
+ 0
711
+ 0
712
+ 4
713
+ 26
714
+ 16
715
+ 1
716
+ 2
717
+ 1
718
+ 16
719
+ 42
720
+ 4
721
+ 2
722
+ 0
723
+ 1
724
+ 5
725
+ 1
726
+ 0
727
+ 0
728
+ 1
729
+ 2
730
+ 1
731
+ 3
732
+ 1
733
+ 2
734
+ 3
735
+ 4
736
+ 5
737
+ 1
738
+ 2
739
+ 3
740
+ 4
741
+ 5
742
+ 31
743
+ 10
744
+ 7
745
+ 1
746
+ 2
747
+ 9
748
+ 5
749
+ 8
750
+ 1
751
+ 0
752
+ 8
753
+ 8
754
+ 26
755
+ 3
756
+ 1
757
+ 1
758
+ 0
759
+ 6
760
+ 2
761
+ 1
762
+ 1
763
+ 0
764
+ 0
765
+ 3
766
+ 3
767
+ FIG. 9. Transition matrices corresponding to PCC (left panel) and DCC (right panel) showing
768
+ transition between the five market states obtained using agglomerative clustering.
769
+ small jumps towards the closest market states or continue in itself and transitions between
770
+ states with low average correlation and high average correlations are avoided [12, 22].
771
+ In case of PCC, the state with lowest average correlation (1) never connects to state with
772
+ highest (5) or second highest (4) average correlation coefficient. There is a transition from
773
+ state state 2 to 5 and state 2 to 5 which are indirect transitions as they are in the sequence
774
+ 1 → 2 → 5 and 2 → 3 → 5 and these correspond to the crash periods of 2020 and 2011
775
+ respectively. Similarly, for DCC, the state with second lowest average correlation (2) never
776
+ connects to state with highest (5) average correlation coefficient. However, there are two
777
+ transitions between 5 and 1 and one transition from 1 to 5. These correspond to the crash
778
+ periods of 2010, 2020 and 2011 respectively. There is also a transition between 1 and 4 that
779
+ corresponds to the crash period of 2011. This is an indirect one as first transition happens
780
+ between 1 and 3 and then to 4.
781
+ V.
782
+ CONCLUSIONS
783
+ We analyzed correlations in S&P 500 market data for the time period August 2000 to
784
+ August 2022 using both PCC and DCC. Notably, DCC ≥ 0.2 for the time horizon considered
785
+ implying that there are non-monotonic correlations present in financial markets at all times.
786
+ Eigenvalue distributions for DCC and PCC both show a clear shift towards higher values of
787
+ 13
788
+
789
+ outliers during the crisis periods of interest (2002, 2008, 2010, 2011, 2015, 2020 and 2022).
790
+ The distribution of PR in case of PCC shows a slight upward shift during crisis years of
791
+ 2008, 2010 and 2011 while we see a slight downward shift in case of DCC during the bubble
792
+ period of 2002 and crisis years 2008, 2010, 2011 and 2020. The lesser the average correlation,
793
+ prominent is the downward shift in the distribution of PR in case of DCC.
794
+ PCC distinguishes the bubble periods of 2002 and 2007, and the ongoing Russo-Ukrainian
795
+ war from the crisis periods of 2008, 2010, 2011, 2015 and 2020 depending on kurtosis of the
796
+ distribution of correlation matrix elements.
797
+ DCC distinguishes the bubble periods from
798
+ the crisis periods depending on skewness of the distribution of correlation matrix elements.
799
+ Also, DCC distinguishes the bubble periods of 2002 and 2007, the crisis periods of 2008 and
800
+ 2015, and the ongoing Russo-Ukrainian war from the crisis periods of 2010, 2011 and 2020
801
+ depending on kurtosis of the distribution of correlation matrix elements.
802
+ Going further, we compare the clustering results for correlation matrices obtained for
803
+ the selected stocks using PCC and DCC. We employ agglomerative clustering that uses
804
+ Euclidean distances and minimizes the sum of squared differences within all clusters. We
805
+ obtain five market states corresponding to both PCC and DCC. The crisis periods are in
806
+ market states with largest and second largest average correlation coefficients. Bubble periods
807
+ are in the market state with third largest average correlation coefficient. The two epochs for
808
+ PCC ≈ 0 are in the market state with smallest average correlation coefficient; note that this
809
+ market state has respectively 9 and 51 matrices in the cluster for PCC and DCC. We also
810
+ compare the transitions between these market states for both PCC and DCC. In summary,
811
+ results for clustering depend upon the linear (PCC) and non-linear (DCC) nature of the
812
+ correlation coefficient employed. Preliminary results on financial markets can be viewed in
813
+ a bachelor thesis [23].
814
+ ACKNOWLEDGMENTS
815
+ Authors thank Harinder Pal for many useful discussions on clustering algorithms and
816
+ help with many figures. Authors acknowledge financial support from CONACYT project
817
+ 14
818
+
819
+ Fronteras 10872.
820
+ [1] R. N. Mantegna and H. E. Stanley, Introduction to Econophysics: Correlations and Complex-
821
+ ity in Finance, (Cambridge University Press, 1999).
822
+ [2] G. J. Sz´ekely and M. L. Rizzo, The Annals of Applied Statistics, 3, 1236 (2009).
823
+ [3] D. Edelmann, T. F. M´ori, G. J. Sz´ekely, Statistics and Probability Letters 169, 108960 (2021).
824
+ [4] R. C. Bradley, J. Multivariate Anal. 11, 1 (1981).
825
+ [5] R. C. Bradley, Ann. Probab. 16, 313 (1988).
826
+ [6] R. C. Bradley, Introduction to Strong Mixing Condition, 1–3, (Kendrick Press, , Heber City
827
+ (Utah), 2007).
828
+ [7] G. J. Sz´ekely and N. K. Bakirov, Brownian covariance and CLT for stationary sequences,
829
+ Technical Report No. 08-01, Dept. Mathematics and Statistics, Bowling Green State Univ.,
830
+ Bowling Green, OH (2008).
831
+ [8] T. Guhr, A. Mueller, H. A. Weidenmueller, Physics Reports 299, 189 (1998).
832
+ [9] V. Plerou, P. Gopikrishnan, B. Rosenow, L. A. Nunes Amaral, and H. E. Stanley, Phys. Rev.
833
+ Lett. 83, 1471 (1999).
834
+ [10] M. C. M¨unnix et. al. , Scientific Reports 2, 644 (2012).
835
+ [11] D. Chetalova, R Sch¨afer, and T. Guhr, J. Stat. Mech. 2015, P01029 (2015).
836
+ [12] H. K. Pharasi et. al. , New Journal of Physics 20, 103041 (2018).
837
+ [13] N. Musmeci, T. Aste, and T. Di Matteo, PLoS ONE 10, 1 (2015).
838
+ [14] Yahoo finance database, https://finance.yahoo.com/, accessed on 10 October, 2022 for S&P
839
+ 500.
840
+ [15] A. Edelman, SIAM Journal on Matrix Analysis and Applications, 9, 543 (1988).
841
+ [16] L. Laloux, P. Cizeau, J. -P. Bouchaud, and M. Potters, Phys. Rev. Lett. 83, 1467 (1999).
842
+ [17] M. Vyas, T. Guhr, and T. H. Seligman, Scientific reports 8, 1 (2018).
843
+ [18] P. Bhadola and N. Deo, ”Spectral and Network Method in Financial Time Series Analysis:
844
+ A Study on Stock and Currency Market”, in A. S. Chakrabarti et al. (eds.), Network Theory
845
+ and Agent-Based Modeling in Economics and Finance (2019) pp. 331-352.
846
+ [19] H. K. Pharasi, K. Sharma, A. Chakraborti, and T. H. Seligman, ”Complex market dynamics
847
+ in the light of random matrix theory”, in New Perspectives and Challenges in Econophysics
848
+ 15
849
+
850
+ and Sociophysics, edited by F. Abergel, B. K. Chakrabarti, A. Chakraborti, N. Deo, and K.
851
+ Sharma (Springer International Publishing, Cham, 2019) pp. 13–34.
852
+ [20] V. K. B. Kota, Embedded Random Matrix Ensembles in Quantum Physics (Springer, Heidel-
853
+ berg, 2014).
854
+ [21] A. Stuart and J. K. Ord, Kendall’s Advanced Theory of Statistics : Distribution Theory
855
+ (Oxford University Press, New York, 1987).
856
+ [22] A. J. Heckens and T. Guhr, J. Stat. Mech. 2022, 043401 (2022)
857
+ [23] J. E. Salgado-Hern´andez, (Licenciatura thesis, UNAM) Correlaci´on y agrupaciones de series
858
+ de tiempo financieras (2023).
859
+ 16
860
+
861
+ APPENDIX A: DENDROGRAMS OBTAINED USING PCC AND DCC
862
+ 114
863
+ 73
864
+ 136
865
+ 93
866
+ 62
867
+ 53
868
+ 61
869
+ 60
870
+ 70
871
+ 69
872
+ 50
873
+ 51
874
+ 68
875
+ 122
876
+ 22
877
+ 44
878
+ 28
879
+ 35
880
+ 75
881
+ 82
882
+ 87
883
+ 17
884
+ 24
885
+ 31
886
+ 36
887
+ 54
888
+ 55
889
+ 56
890
+ 63
891
+ 48
892
+ 46
893
+ 47
894
+ 13
895
+ 15
896
+ 16
897
+ 11
898
+ 14
899
+ 74
900
+ 76
901
+ 77
902
+ 79
903
+ 80
904
+ 81
905
+ 84
906
+ 90
907
+ 91
908
+ 49
909
+ 134
910
+ 130
911
+ 125
912
+ 133
913
+ 126
914
+ 99
915
+ 123
916
+ 83
917
+ 92
918
+ 95
919
+ 58
920
+ 65
921
+ 72
922
+ 94
923
+ 100
924
+ 135
925
+ 137
926
+ 110
927
+ 118
928
+ 12
929
+ 88
930
+ 89
931
+ 57
932
+ 40
933
+ 45
934
+ 42
935
+ 43
936
+ 67
937
+ 52
938
+ 78
939
+ 124
940
+ 96
941
+ 109
942
+ 120
943
+ 0
944
+ 107
945
+ 1
946
+ 2
947
+ 101
948
+ 112
949
+ 105
950
+ 108
951
+ 5
952
+ 7
953
+ 8
954
+ 3
955
+ 39
956
+ 33
957
+ 38
958
+ 127
959
+ 131
960
+ 121
961
+ 106
962
+ 103
963
+ 104
964
+ 111
965
+ 102
966
+ 115
967
+ 113
968
+ 117
969
+ 85
970
+ 97
971
+ 132
972
+ 128
973
+ 129
974
+ 6
975
+ 119
976
+ 98
977
+ 116
978
+ 59
979
+ 64
980
+ 66
981
+ 34
982
+ 26
983
+ 29
984
+ 19
985
+ 20
986
+ 23
987
+ 27
988
+ 25
989
+ 18
990
+ 21
991
+ 32
992
+ 30
993
+ 41
994
+ 71
995
+ 86
996
+ 37
997
+ 4
998
+ 9
999
+ 10
1000
+ Epochs
1001
+ 0
1002
+ 500
1003
+ 1000
1004
+ 1500
1005
+ 2000
1006
+ 2500
1007
+ 3000
1008
+ Euclidean distance
1009
+ Dendrogram (PCC)
1010
+ FIG. 10. Dendrogram obtained for PCC using agglomerative clustering.
1011
+ 17
1012
+
1013
+ 50
1014
+ 69
1015
+ 70
1016
+ 51
1017
+ 60
1018
+ 68
1019
+ 122
1020
+ 97
1021
+ 98
1022
+ 75
1023
+ 87
1024
+ 31
1025
+ 6
1026
+ 17
1027
+ 24
1028
+ 35
1029
+ 85
1030
+ 119
1031
+ 113
1032
+ 117
1033
+ 76
1034
+ 84
1035
+ 80
1036
+ 82
1037
+ 36
1038
+ 11
1039
+ 22
1040
+ 77
1041
+ 28
1042
+ 44
1043
+ 0
1044
+ 1
1045
+ 107
1046
+ 3
1047
+ 8
1048
+ 2
1049
+ 5
1050
+ 120
1051
+ 108
1052
+ 105
1053
+ 112
1054
+ 7
1055
+ 9
1056
+ 37
1057
+ 39
1058
+ 21
1059
+ 33
1060
+ 38
1061
+ 71
1062
+ 115
1063
+ 102
1064
+ 106
1065
+ 101
1066
+ 86
1067
+ 103
1068
+ 104
1069
+ 30
1070
+ 32
1071
+ 29
1072
+ 25
1073
+ 26
1074
+ 18
1075
+ 34
1076
+ 41
1077
+ 4
1078
+ 10
1079
+ 19
1080
+ 20
1081
+ 23
1082
+ 131
1083
+ 128
1084
+ 129
1085
+ 127
1086
+ 132
1087
+ 116
1088
+ 111
1089
+ 121
1090
+ 27
1091
+ 64
1092
+ 59
1093
+ 66
1094
+ 93
1095
+ 53
1096
+ 61
1097
+ 123
1098
+ 114
1099
+ 136
1100
+ 62
1101
+ 73
1102
+ 52
1103
+ 67
1104
+ 99
1105
+ 110
1106
+ 118
1107
+ 88
1108
+ 109
1109
+ 12
1110
+ 65
1111
+ 72
1112
+ 89
1113
+ 94
1114
+ 95
1115
+ 45
1116
+ 42
1117
+ 43
1118
+ 96
1119
+ 57
1120
+ 78
1121
+ 49
1122
+ 47
1123
+ 48
1124
+ 124
1125
+ 126
1126
+ 134
1127
+ 135
1128
+ 137
1129
+ 100
1130
+ 90
1131
+ 92
1132
+ 81
1133
+ 83
1134
+ 74
1135
+ 79
1136
+ 56
1137
+ 63
1138
+ 58
1139
+ 54
1140
+ 55
1141
+ 91
1142
+ 40
1143
+ 46
1144
+ 130
1145
+ 125
1146
+ 133
1147
+ 13
1148
+ 15
1149
+ 14
1150
+ 16
1151
+ Epochs
1152
+ 0
1153
+ 500
1154
+ 1000
1155
+ 1500
1156
+ 2000
1157
+ Euclidean Distance
1158
+ Dendrogram (DCC)
1159
+ FIG. 11. Dendrogram obtained for DCC using agglomerative clustering.
1160
+ 18
1161
+
6NE4T4oBgHgl3EQfcAzU/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
6dE1T4oBgHgl3EQf7AUK/content/2301.03528v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dfdbf0caa1502c6a7d92ebab18305b855dcf68a82e0fcbb7d605ec65cfc99ae6
3
+ size 1075593
6dE1T4oBgHgl3EQf7AUK/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f088b90fd6373a9ee176e8683716bf1098ded93806d8cfa29b84d086407520b
3
+ size 2097197
6tE1T4oBgHgl3EQfnAQs/content/tmp_files/2301.03303v1.pdf.txt ADDED
@@ -0,0 +1,2259 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+ 1
4
+ How Effective are COVID-19 Vaccine Health Messages in Reducing Vaccine Skepticism?
5
+ Heterogeneity in Messages’ Effectiveness by Just-World Beliefs
6
+
7
+
8
+
9
+ Juliane Wiese, corresponding author
10
+
11
+
12
+
13
+ Nattavudh Powdthavee
14
+
15
+ Warwick Business School
16
+
17
+
18
+
19
+ Nanyang Technological University
20
+ University of Warwick
21
+
22
+
23
+
24
+
25
+
26
+ 50 Nanyang Avenue
27
+ Scarman Road
28
+
29
+
30
+
31
+
32
+
33
+
34
+
35
+ 639798 Singapore
36
+ Coventry CV4 7AL
37
+
38
+
39
+
40
+
41
+
42
+
43
+
44
+ United Kingdom
45
+
46
+
47
+
48
+
49
+
50
+
51
+
52
+
53
+
54
+ ORCID ID : 0000-0002-4314-5934
55
+
56
+ ORCID ID: 0000-0002-9345-4882
57
+
58
+ juliane.wiese@warwick.ac.uk
59
+ +33 6 68 88 18 27
60
+
61
+
62
+ Declarations of interest: none.
63
+
64
+ Abstract
65
+
66
+ To end the COVID-19 pandemic, policymakers have relied on various public health messages to
67
+ boost vaccine take-up rates amongst people across wide political spectra, backgrounds, and
68
+ worldviews. However, much less is understood about whether these messages affect different
69
+ people in the same way. One source of heterogeneity is the belief in a just world (BJW), which is
70
+ the belief that in general, good things happen to good people, and bad things happen to bad people.
71
+ This study investigates the effectiveness of two common messages of the COVID-19 pandemic:
72
+ vaccinate to protect yourself and vaccinate to protect others in your community. We then examine
73
+ whether BJW moderates the effectiveness of these messages. We hypothesize that just-world
74
+ believers react negatively to the prosocial pro-vaccine message, as it charges individuals with the
75
+ responsibility to care for others around them. Using an unvaccinated sample of UK residents before
76
+ vaccines were made widely available (N=526), we demonstrate that the individual-focused
77
+ message significantly reduces overall vaccine skepticism, and that this effect is more robust for
78
+
79
+
80
+
81
+ 2
82
+ individuals with a low BJW, whereas the community-focused message does not. Our findings
83
+ highlight the importance of individual differences in the reception of public health messages to
84
+ reduce COVID-19 vaccine skepticism.
85
+
86
+ Keywords: vaccine skepticism; health messages; justice beliefs; individual differences; COVID-
87
+ 19
88
+
89
+
90
+
91
+
92
+
93
+ 3
94
+ 1. Introduction
95
+
96
+ Before the vaccine rollout in the UK, 28% of the British population, particularly those in Black
97
+ and South Asian minority ethnic groups, were skeptical about getting vaccinated (Robertson et al.,
98
+ 2021). To maximize vaccine take-up, governments have been delivering simple messages that
99
+ emphasize people’s responsibility to themselves and the community. For example, the National
100
+ Health Services in the UK urges the public to “join the millions already vaccinated, to protect
101
+ yourself and others” (NHS UK, 2021). These foci, given their central role in public health
102
+ messaging during the COVID-19 pandemic so far, have shaped the two themes of messages
103
+ examined in this study: individual and community responsibilities.
104
+
105
+ Despite the extensive literature on the framing approaches of public health messages around
106
+ vaccines (e.g., Gallagher & Updegraff, 2012; McPhee et al., 2003; Kelly & Kornik, 2016), the
107
+ overall effectiveness of COVID-19 vaccine messages on individual or community responsibility
108
+ is currently imperfectly understood. While recent evidence suggests that individual-focused
109
+ messages more effectively increase vaccine uptake and support for mandates than community-
110
+ focused messages, these effects are heterogeneous across individualistic and communitarian
111
+ worldviews (Yuan & Chu, 2022). Furthermore, we do not know which underlying beliefs about
112
+ the vaccine are best addressed by these messages. Nevertheless, they continue to be used by
113
+ public health officials worldwide.
114
+
115
+ In contexts of extreme urgency, who are the types of people who might respond poorly to these
116
+ messages and experience stronger vaccine skepticism? We build our investigation around the
117
+ strong theoretical link between belief in a just world (BJW) and vaccine skepticism. Just-world
118
+
119
+
120
+
121
+ 4
122
+ believers conceive a universal justice structure which holds that both normatively and positively
123
+ speaking, good things tend to happen to good people and vice versa (Furnham, 2003). This
124
+ adaptive function (Dalbert, 2009), manifesting at varying levels of intensity and therefore
125
+ influencing a large portion of the population (White et al., 2019), allows individuals to
126
+ rationalize negative consequences in the world as justified, predictable, and manageable. Doing
127
+ so promotes well-being and a sense of stability in the world (Correia et al., 2009; Jiang et al.,
128
+ 2016). In the context of the COVID-19 pandemic, where an unprecedented public health
129
+ emergency and sweeping government regulations significantly reduced individual freedoms,
130
+ just-world believers struggled to make sense of such undeserved restrictions. This sense of
131
+ unfairness fosters a resistance against the government-promoted solution to the problem:
132
+ specifically, a vaccine that has been developed in record speed. Suggestive evidence of this link
133
+ between just-world believers and anti-vaxxers is demonstrated by their numerous shared
134
+ psychological traits, including conspiracy thinking (Nestik et al., 2020; Jolley & Douglas, 2014)
135
+ and individualistic attitudes (Wenzel et al., 2017; Motta et al., 2021). Government-sponsored
136
+ pro-vaccine messages, particularly ones that focus on the responsibility we hold to our
137
+ communities, are therefore likely to threaten the just-world believers’ worldview, as their
138
+ personal role in the pandemic is limited, and others’ health outcomes are independent of their
139
+ own decision to get vaccinated. Their worldview threatened, just-world believers defensively
140
+ dismiss the message that threatens their BJW, and deny the existence of a problem in the first
141
+ place (Furnham, 2003).
142
+
143
+ This study makes two main contributions to the literature. First, we experimentally investigate the
144
+ effectiveness of two commonly used pro-vaccine messages. Second, we examine whether BJW
145
+
146
+
147
+
148
+ 5
149
+ moderates the effectiveness of each message. Given policymakers’ priority to increase COVID-19
150
+ vaccine uptake, understanding individual differences in the messages’ effectiveness by BJW is
151
+ critical to understanding the potential threats to their overall effectiveness on the entire population.
152
+
153
+ 2. Existing literature and hypotheses
154
+ Before the vaccine rollout, researchers’ main concern was whether the COVID-19 vaccines safely
155
+ reduce illness and transmissibility. Having established this (Katella, 2021; Pritchard et al., 2021),
156
+ vaccine uptake has emerged as a more enduring challenge for public health officials. A nationally
157
+ representative survey of 316 Americans shows that demonstrating its efficacy and emphasizing
158
+ the costs of the pandemic encourages vaccine uptake (Pogue et al., 2020). However, their survey
159
+ did not engage with messages that focus on the simple facts that give value to the vaccine: that it
160
+ protects its recipients and their community. These facts have been central to policymakers’
161
+ messaging during the COVID-19 pandemic, and there continues to be little empirical investigation
162
+ into their effectiveness in shifting public perception around the vaccine’s effectiveness.
163
+
164
+ The decision to vaccinate weighs the benefits against the risks of vaccination, which could range
165
+ from fears of side effects and needles to mistrust of healthcare authorities. Previous research
166
+ demonstrates the importance of highlighting vaccines’ protective benefits, as doing so can crowd
167
+ out concerns about risks (Porter et al., 2018). Similarly, a COVID-19 vaccine message highlighting
168
+ the vaccine’s protective benefits to the individual has been shown to increase intended vaccine
169
+ uptake (Yuan & Chu, 2022). Our work examines how such an individualistic message can drive
170
+ the underlying beliefs around the vaccine’s protective function to its recipients.
171
+
172
+
173
+
174
+
175
+ 6
176
+ In addition, researchers have found prosocial vaccine messages to have a positive impact on
177
+ vaccination rates (Betsch et al., 2017; Betsch & Böhm, 2018; McPhee et al., 2003). For example,
178
+ messages that emphasize the benefits of an avian flu vaccine to others significantly increase
179
+ vaccination intentions, compared to messages which emphasize its benefits to the individual (Kelly
180
+ & Hornick, 2016). While these findings link the community-oriented message to increased
181
+ vaccination intentions, they do not examine how such a message impacts beliefs around
182
+ transmission rates, which is the mechanism that connects the prosocial messages with increased
183
+ vaccine uptake. We aim to show experimentally that prosocial messages increase confidence in
184
+ the underlying belief that the vaccines reduce transmission.
185
+
186
+ Based on this evidence, we predict that the individual message will more effectively decrease
187
+ overall skepticism than the community message, and that this effect is driven by the fact that the
188
+ individual message shifts the underlying belief that the vaccine protects its recipients. The
189
+ prosocial messages will more moderately increase confidence that the vaccine reduces
190
+ transmission.
191
+
192
+ Despite the predicted overall success of the two messages, the question remains around
193
+ heterogeneous effects, specifically around moral worldviews that play a role in the decision to
194
+ vaccinate. While Devereux et al. (2021) discover a link between stronger BJW and a greater
195
+ likelihood to adhere to COVID-19 measures, such as social distancing, these measures come at
196
+ essentially zero risk, resulting in a very different cost-benefit analysis. In contrast, accepting a
197
+ vaccine requires accepting the risk of potential negative side-effects, and might therefore have a
198
+ different relationship with BJW.
199
+
200
+
201
+
202
+ 7
203
+
204
+ Demographic factors (Peretti-Watel et al., 2020; Khubchandani et al., 2021), psychological traits
205
+ (Browne et al., 2015; Jolley & Douglas, 2014), and beliefs about vaccine safety (Karlsson et al.,
206
+ 2021) predict vaccine attitudes. However, studies that examine how such traits, like BJW, interfere
207
+ with public health messages are scarce. While recent evidence has shown that people with more
208
+ individualistic, rather than communitarian, values respond more favorably to individual-centered
209
+ COVID-19 vaccine messages (Yuan & Chu, 2022), it remains unclear how such worldviews
210
+ moderate individuals’ understanding of the many ways in which the vaccine protects the public.
211
+ Furthermore, rather than simply capturing individualistic or community-oriented worldviews,
212
+ BJW contains a deeper moral around one’s deservingness of one’s place in the world, telling us
213
+ more about the reasoning behind an individual’s action (or inaction).
214
+
215
+ While people who see public health as a moral issue tend to consider prosocial (vs. self-centered)
216
+ social distancing messages more persuasive (Luttrell & Petty, 2020), BJW is not an altruistic moral
217
+ belief system. Instead, it holds individuals responsible for their own fate. BJW inherently commits
218
+ fundamental attribution error, in which individuals place more weight on dispositional, as opposed
219
+ to environmental or situational, factors (Ross, 1977). By further emphasising societal
220
+ responsibility as a motive to get vaccinated, public health officials transfer the responsibility for a
221
+ COVID patient’s health onto the community’s vaccination decision-making. This clashes with the
222
+ tendency of just-world believers to blame patients for their own misfortunes and to separate the
223
+ consequences of their own actions from the outcomes of others (Lerner & Simmons, 1966; Lucas
224
+ et al., 2009). Therefore, by asking people to take responsibility for others’ health and safety during
225
+ the COVID-19 pandemic, policymakers inevitably challenge the justice structure of the world in
226
+
227
+
228
+
229
+ 8
230
+ which individuals are responsible for their own fate. In response, just-world believers might
231
+ discredit the vaccine altogether. We therefore hypothesise that for individuals with a strong BJW,
232
+ the prosocial messages are less effective at reducing vaccine skepticism.
233
+
234
+ 3. Method
235
+ 3.1 Data
236
+ In this pre-registered experiment (tinyurl.com/bxv23), 600 UK-based Prolific (www.prolific.co)
237
+ users aged between 18 and 49 joined a longitudinal online study on attitudes towards COVID-19
238
+ and vaccination. At the time, the UK general public under 50 years of age was not yet eligible to
239
+ receive a COVID-19 vaccine. Just over a quarter of the UK population had received its first dose,
240
+ and only 1% of the population had received both doses (Vaccinations in United Kingdom, 30 April,
241
+ 2021).
242
+
243
+ Part one of the study (𝑇!) took place on 24 February 2021, and part two (𝑇") on 1 March 2021. We
244
+ collected data at two points in time to reduce the likelihood that (i) participants suspect the study
245
+ purpose and bias their responses, and (ii) participants’ responses to vaccine skepticism questions
246
+ are biased by exposure to questions around justice beliefs (Zizzo, 2010). Participants gave
247
+ informed consent and were compensated £0.25 at 𝑇! and £1.00 at 𝑇".
248
+
249
+ 527 participants (88%) remained at 𝑇" and were randomised evenly across Control, Individual-
250
+ Treatment, and Prosocial-Treatment (N = 172, 181, and 174, respectively). Only one participant
251
+ failed all three attention checks and was removed from the sample, resulting in 526 participants
252
+ with complete longitudinal data. This sample size (i) allowed sufficient power for a reasonable
253
+
254
+
255
+
256
+ 9
257
+ minimal detectable effect size and (ii) is slightly larger than what was used in a similar research
258
+ design studying BJW and climate change messaging (Feinberg & Willer, 2011). Of the final
259
+ sample of 526 individuals, 70% were females, 87% were ethnically White, and 59% have an annual
260
+ income of £30,000 or over. The mean age was 31. Balance checks confirm that our sample was
261
+ balanced on observable characteristics across all groups; see Table A.1 in the appendix.
262
+
263
+ 3.2 Measures and procedure
264
+ 3.2.1 BJW scales
265
+ Because vaccination evokes concepts of justice both for the individual and for society, participants
266
+ completed the general BJW scale, six questions about the justice structure in the world in general
267
+ (Dalbert et al., 1987), and the personal BJW scale, seven questions which posit that the world is
268
+ just for me personally but not for others (Dalbert, 1999) at 𝑇!. The two scales have a correlation
269
+ coefficient of 0.52. To attain a linear combination of BJW factors, we conducted a separate factor
270
+ analysis on each scale, yielding two distinct factors (a = 0.78 for general BJW and a = 0.88 for
271
+ personal BJW), and then conducted a factor analysis on these factors, resulting in a combined BJW
272
+ factor (a = 0.68); the factor analysis results are in Table A.2. The resulting combined BJW factor
273
+ was standardized to a mean of 0 and a standard deviation of 1. It was transformed into a dummy
274
+ variable which marks above- or below-median strength of BJW. This allows us to investigate the
275
+ differential effects of the treatments on vaccine skepticism by the strength of BJW.
276
+
277
+ 3.2.2 Vaccine skepticism
278
+
279
+
280
+
281
+ 10
282
+ At 𝑇! and 𝑇", participants completed four questions on COVID-19 vaccine skepticism, with
283
+ possible answers ranging from 0 (not at all certain/likely) to 100 (extremely certain/likely). The
284
+ precise wording of the questions was:
285
+ • “How certain are you that the COVID-19 vaccines are a useful tool in fighting the
286
+ pandemic?”
287
+ • “How likely are you to accept the COVID-19 vaccine when offered?”
288
+ • “How certain are you that the COVID-19 vaccine reduces transmission between
289
+ individuals?”
290
+
291
+ “How certain are you that the COVID-19 vaccine would prevent you personally from
292
+ getting very ill due to COVID-19?”
293
+ For simplicity, we reversed the responses so that higher values represent higher levels of vaccine
294
+ skepticism in each of the four outcomes. The baseline mean responses are 16.8, 13.0, 29.1, and
295
+ 22.4, respectively, which suggest that at 𝑇!, the study population was relatively prepared to take
296
+ the vaccine but was more skeptical of its illness and transmission prevention. These outcomes are
297
+ moderately correlated, with correlations ranging from 0.53 to 0.76. To circumvent the multiple
298
+ comparisons problem, we also derived an overall skepticism outcome by conducting a factor
299
+ analysis on the four reversed individual skepticism variables for both outcomes at 𝑇! (a = 0.87)
300
+ and 𝑇" (a = 0.89); see Tables A.3 and A.4 in the appendix for the estimates. All skepticism
301
+ variables were standardized to have a mean of 0 and a standard deviation of 1 and were included
302
+ in analysis.
303
+
304
+ At 𝑇", 5 days after 𝑇!, participants were randomised into one of three groups: control (no article),
305
+ individual, and community responsibility treatment. In both treatments, participants were asked to
306
+
307
+
308
+
309
+ 11
310
+ read a news-style article. The articles, Figure A.3.1 in the appendix, are identical in the first
311
+ paragraphs, which discuss the context of the pandemic and vaccine development at the time of
312
+ writing. They deviate towards the end by treatment group. The individual responsibility article
313
+ explains that the vaccine reduces the risk of severe COVID-19 illness to vaccine recipients, and
314
+ the prosocial article explains that to combat the virus, individuals must accept the vaccine to reduce
315
+ community transmission.
316
+
317
+ 3.2.3 Attention and manipulation check
318
+ Participants in the treatment groups were asked two fact-based questions from the article, as well
319
+ as whether taking the recommended steps during the pandemic will mainly protect them, or mainly
320
+ protect others, from COVID-19 illness. Amongst the final sample of participants who passed all
321
+ three attention checks, we find a significant difference between the two treatments on the
322
+ manipulation-check item, t(352) = 13.64, p = 0.000 for indicating that the vaccine protects
323
+ yourself, and t(352) = -13.07, p = 0.000 for indicating that the vaccine protects others.
324
+
325
+ 3.2.4 Sociodemographic controls
326
+ Participants also completed a post-experiment questionnaire, which elicited their ethnicity,
327
+ education level, region, income, political views, optimism, risk attitudes, COVID-19 history, and
328
+ adhesion to government guidelines. Age and gender were collected automatically by Prolific.
329
+
330
+ Figure A.1 shows the procedural flow of the experiment and consort diagram, and Figures A.2 and
331
+ A.3 present screenshots of the materials used.
332
+
333
+
334
+
335
+
336
+ 12
337
+ 3.3 Analysis
338
+ We conduct all analyses of vaccine skepticism using Ordinary Least Squares (OLS) regression
339
+ with robust standard errors clustered on the participant-level. Our primary analysis examines the
340
+ treatment effects on the overall vaccine skepticism factor. We regress Equation (1) and present the
341
+ results in column 3 of Table 1:
342
+ ∆𝑆#$ = 𝑎 + 𝛽"𝑇# + 𝑋#
343
+ %𝛾 + 𝛽&𝐵𝐽𝑊# + 𝛽'(𝑇# × 𝐵𝐽𝑊#) + 𝑒, (1)
344
+
345
+ where 𝑖 = 1, … , 𝑁; 𝑡 = 1, … ,2. ∆𝑆#$ represents the change in the overall vaccine skepticism factor
346
+ from t=0 to t=1, where a higher value represents greater vaccine skepticism; Ti represents the
347
+ treatment condition (control, individual, or community message) and 𝛽" is the effect of this
348
+ condition on skepticism; 𝑋#
349
+ % represents the matrix of covariates, including a standardized optimism
350
+ factor (a=0.8134), age, age-squared, gender dummy, £30,000+ annual income (vs. below £30,000
351
+ annual income) dummy, London (vs. non-London) dummy, undergraduate education (vs. non-
352
+ undergraduate education) dummy, white (vs. non-white) dummy, Labour party (vs. non-Labour)
353
+ dummy; 𝛽& is the effect of holding a strong (vs. weak) BJW; 𝛽' represents the interaction of
354
+ treatment and BJW, i.e. the differential effect of the treatment when participants have either a
355
+ stronger or a weaker BJW; and e is the error term. Columns 1 and 2 model the parsimonious
356
+ specifications of Eq. (1), with covariates excluding and including BJW, respectively.
357
+
358
+ Table 2 models the effects of the interaction between treatment and BJW on each of the four
359
+ skepticism outcomes. Their forms are identical to Eq. (1), with the exception that the outcome
360
+ variable is replaced by each of the four vaccine skepticism subscales, standardized to mean of 0
361
+ and standard deviation of 1.
362
+
363
+
364
+
365
+ 13
366
+ ∆𝑆()$
367
+ ; = 𝑎 + 𝛽"𝑇# + 𝑋#
368
+ %𝛾 + 𝛽&𝐵𝐽𝑊# + 𝛽'(𝑇# × 𝐵𝐽𝑊#) + 𝑒, (2)
369
+ where 𝑖 = 1, … , 𝑁; 𝑗 = 1, … ,4; 𝑡 = 1, … ,2. Here, ∆𝑆()
370
+ ; = 𝑆()$
371
+ ; − 𝑆()$*"
372
+ ? , where the notation j
373
+ represents different domains of beliefs, e.g., 𝑆"# represents the belief that the vaccine is not useful;
374
+ 𝑆&# represents the likelihood of not accepting the vaccine; 𝑆'# represents the belief that the vaccine
375
+ will not reduce transmission; and 𝑆+# represents the belief that the vaccine will not prevent serious
376
+ illness. The rest of the specification is identical to Eq. (1).
377
+
378
+ Note that we deviate from the pre-registered document in two respects. First, we include an overall
379
+ skepticism factor as an outcome variable in our primary analysis, circumventing the multiple
380
+ comparisons problem in our primary analysis. Second, we run OLS regressions with standard
381
+ errors clustered at the participant level as the primary analysis rather than using analysis of
382
+ variance (ANOVA). This change is made due to the inclusion of continuous independent variables
383
+ in the regression.
384
+
385
+ 4. Results
386
+ 4.1 Message effectiveness
387
+ We begin by examining the within-person changes in vaccine skepticism by treatment group. As
388
+ predicted, Figure 1 shows that the individual message significantly reduces overall skepticism by
389
+ 0.04 standard deviation, compared to the control group which increases overall skepticism by 0.07
390
+ standard deviation (Wilcoxon signed-rank test, p = 0.030). There is weaker evidence that the
391
+ community message also reduces overall skepticism, which decreased by 0.02 standard deviation
392
+ (Wilcoxon signed-rank test, p = 0.103). Figure 1 thus provides raw data evidence that individual-
393
+ focused public health message is most effective at reducing overall vaccine skepticism.
394
+
395
+
396
+
397
+ 14
398
+ [Figure 1 here]
399
+ To understand this result more thoroughly, Table 1 estimates regression equations that adjust for
400
+ other covariates, i.e., Eq.1. We find the regression results to be consistent with Figure 1’s findings.
401
+ The individual-focused message decreases overall skepticism more robustly than the community
402
+ message, b = -0.11, [95% C.I.: -0.20, -0.02], p = 0.014, versus b = -0.09, [95% C.I.: - 0.19, 0.01],
403
+ p = 0.083, respectively.
404
+ [Table 1 here]
405
+ 4.2 BJW as a moderator of pro-vaccine message impacts
406
+ To formally test for the heterogeneous effect of public health messages by BJW, Tables 1 and 2
407
+ include the interaction terms between treatment and a high BJW dummy. Column 3 of Table 1
408
+ shows that for people with a low BJW, the individual message is extremely effective at lowering
409
+ their overall skepticism factor, b = - 0.19, [95% C.I.: - 0.32, -0.06], p = 0.004. As discussed
410
+ earlier, columns 1 and 2 of Table 1 demonstrate a greater effectiveness of the individual message
411
+ on average. The results of column 3 suggest that the effectiveness of this individualistic message
412
+ is more robust for people with a low BJW, whereas we see no such differential effect for the
413
+ collective message. Figures 2 and 3 show this distinction visually, with the predictive margins
414
+ plots of the control and individual treatment overlapping (Figure 2), and the predictive margins
415
+ plots of the control and collective treatment (Figure 3) not overlapping. When examining the
416
+ interaction regressions for each sub-scale of vaccine skepticism (Table 2), we find that the strong
417
+ effect of the individual treatment on overall skepticism for people with a low BJW is driven by a
418
+ reduction in skepticism around the belief that the vaccine will not prevent illness, b = - 0.32,
419
+ [95% C.I.: - 0.50, -0.14], p < 0.001. This suggests that people with a low BJW, i.e. those who do
420
+ not believe that there is a justice system which ensures that overall good things happen to good
421
+
422
+
423
+
424
+ 15
425
+ people and bad things happen to bad people, are extremely reactive to the individualistic message.
426
+ It increases their confidence in the vaccine being able to protect them from serious illness. In other
427
+ words, receiving the individualistic message, which accurately highlights that receiving the
428
+ vaccine can prevent serious illness, correctly updates the beliefs around this issue for those with a
429
+ low BJW, but not for those with a strong BJW. This suggests that for someone with a strong BJW,
430
+ the belief in this just world order overpowers the belief in the science of the vaccine, as perhaps
431
+ the deservingness of a person to fall ill would govern their likelihood of sickness moreso than the
432
+ vaccine’s protective properties.
433
+ [Figures 2 and 3 here]
434
+ Furthermore, we do not find evidence that people with a strong BJW react particularly poorly to
435
+ the community message, b = 0.03, [95% C.I.: - 0.16, 0.22], p = 0.778. This suggests that a
436
+ message which urges the public to take care of its community does not come into strong conflict
437
+ with believers of a just world who may not feel responsible for the pandemic. This lack of
438
+ resistance is consistent with just world believers’ willingness to engage in other COVID-19
439
+ preventative measures (Devereux et al., 2021).
440
+ [Table 2 here]
441
+
442
+ 5. Discussions
443
+ Our findings that the individual and community messages concerning the COVID-19 vaccine can
444
+ shift beliefs around the vaccine’s various protective functions demonstrates an unsurprising link
445
+ between the presentation of fact and its influence on a corresponding attitude. Nevertheless, in
446
+ their desperate attempts to convince the public to get vaccinated, policymakers have sometimes
447
+ turned to extreme measures, such as million-dollar lotteries, rifle giveaways, and free beer and
448
+
449
+
450
+
451
+ 16
452
+ donuts (Lewis 2021). However, while policymakers may have expected a clear increase in uptake,
453
+ emerging evidence suggests that there is limited evidence in favor of these creative incentivizing
454
+ strategies (Walkey et al., 2022; Acharya & Dhakal, 2021), perhaps due to newfound suspicion of
455
+ such gimmicky programs. Instead, policymakers should provide truthful information about the
456
+ capacities of the COVID-19 vaccine, relying on existing evidence that these strategies effectively
457
+ lower vaccine skepticism (Pennycook et al., 2020; Yuan & Chu, 2022).
458
+
459
+ Our messages do not easily shift the belief that the vaccine reduces transmission of the virus. This
460
+ is especially important as new evidence emerges around the limited effectiveness of the vaccines
461
+ against mutations of the coronavirus and in preventing transmission. Early studies suggest that the
462
+ COVID-19 vaccines may not be as effective in preventing transmission as previously thought
463
+ (Reuters, 2021). While policymakers should highlight the protective benefits of the vaccine, they
464
+ must be cautious in not overstating the vaccine’s effectiveness around transmission. Doing so
465
+ could give vaccinated individuals a false sense of security, and ultimately reduced trust in public
466
+ health authorities, resulting in less social distancing and respect for COVID-19 guidelines. As new
467
+ scientific evidence about the vaccine emerges, officials must update their messaging content
468
+ accordingly.
469
+
470
+ The literature shows that prosocial messages play an important role in motivating COVID-19
471
+ preventative actions, like signing up for contact-tracing apps (Jordan et al., 2020). In contrast,
472
+ vaccine skepticism responds differently. Consistent with previous findings (Yuan & Chu, 2022),
473
+ we show that individual responsibility messages work as well, and sometimes better, than the
474
+ community messages in reducing vaccine skepticism, depending on the dimension of skepticism
475
+
476
+
477
+
478
+ 17
479
+ in question. This discrepancy between non-vaccine COVID-19 prevention and vaccine messages
480
+ could be because general preventative measures are perceived to be less risky than taking the
481
+ vaccine. Riskier behaviors require more self-gain, which explains why the individual message is
482
+ more successful.
483
+
484
+ Furthermore, the pro-vaccine messages used in this experiment affect different domains of vaccine
485
+ skepticism differently. More specifically, they do not convince the population that the vaccine is
486
+ useful to ending the pandemic, nor do they influence vaccination intentions. In the urgent
487
+ pandemic context, while attitudes matter, vaccination behaviors are even more critical. Alternative
488
+ strategies to motivate behavior must not be overlooked or confounded with strategies that target
489
+ attitudes in future research.
490
+
491
+ When further examining heterogeneous treatment affects by intensity of BJW, we find that the
492
+ overall success of the individual message is more robust among individuals with a low BJW,
493
+ compared to those with a high BJW. The individual message, which focusses on the primary effect
494
+ of the vaccine, may speak more particularly to people with a weak BJW because they see the world
495
+ in a more factual, cartesian way. Someone with a strong BJW, on the other hand, may consider
496
+ competing justice-related reasonings for the spread of or protection against COVID. The same is
497
+ not true of the effects of the community message. Individuals with a strong BJW were found to be
498
+ unmoved by the community message, possibly because this prosocial message sets an expectation
499
+ that challenges the distribution of responsibility in a just world, as previously discussed. While
500
+ individuals who see public health as a moral issue are more persuaded by other-focused (rather
501
+ than self-focused) social distancing messages (Luttrell & Petty, 2020), BJW is not a worldview
502
+
503
+
504
+
505
+ 18
506
+ based on altruistic morals. Rather, where others may fall ill due to COVID-19, strong believers of
507
+ a just world would blame the patients for their own misfortune, rather than assuming responsibility
508
+ over the pandemic via mass collective vaccination.
509
+
510
+ Our results suggest that evidence-based messages (e.g.: the vaccine will protect you) have
511
+ heterogeneous effects according to worldview. This heterogeneity replicates the findings of Yuan
512
+ & Chu, who recently demonstrate that the individual-centered COVID-19 vaccine message is more
513
+ impactful than a community-centered one, largely due to people whose worldview aligns with a
514
+ more individualistic outlook (2022). Our studies differ in that we examine BJW, rather than
515
+ individualism/communitarianism, and our sample was based in the UK, rather than the US.
516
+ However, broadly speaking, the results confirm one another’s findings, which is that the
517
+ individual-centered message works best overall, but that this effect is driven largely by people with
518
+ a worldview that places themselves, the individual, independent of a larger community or justice
519
+ structure, at the center. Authorities ought to take into consideration the extent to which their
520
+ vaccine messaging can have heterogeneous effects according to the worldviews of their
521
+ population, especially as they encourage vaccine take-up amongst people with more extreme
522
+ worldviews.
523
+
524
+ 6. Conclusions
525
+ Simple messages that promote the COVID-19 vaccine effectively reduce vaccine skepticism of
526
+ the corresponding beliefs around the vaccine’s effectiveness. This reassuringly highlights the
527
+ importance for policymakers to focus the information of their vaccination campaigns on the
528
+ specific concerns of the public. The differences we find in effectiveness by psychological outlook
529
+
530
+
531
+
532
+ 19
533
+ are important for policymakers to consider, especially as the remaining unvaccinated likely hold
534
+ more extreme world views. Messages that work well for people with low-level BJW evidently
535
+ work less well for those with a more extreme worldview, suggesting that policymakers must
536
+ reconsider how to motivate those harder-to-reach populations to get vaccinated. Custom messages
537
+ that directly target people with such views could be an interesting line of research to follow.
538
+
539
+ This research is not without limitations. First, the data is restricted to a specific age-group in the
540
+ United Kingdom and therefore has not been tested in other contexts, where just-world beliefs and
541
+ vaccine skepticism differ. For example, in the United States, conservatism links with both BJW
542
+ (Furnham, 2003) and COVID-19 vaccine skepticism (Latkin et al., 2021), suggesting that BJW
543
+ might be negatively correlated with pro-vaccine attitudes. Second, the sample in our study is not
544
+ quota matched to the U.K. population, nor was it obtained using probability sampling. Hence, the
545
+ results cannot be considered nationally representative, and there is likely a degree of selection bias
546
+ amongst users of Prolific. Third, our dataset does not capture whether participants ultimately took
547
+ up the vaccination, as it only captures attitudes and intentions. As previously discussed, behaviors
548
+ in this context are more important than attitudes, and would be valuable to follow up on.
549
+
550
+ The authors declare no conflicts of interest.
551
+
552
+
553
+
554
+
555
+
556
+ 20
557
+ References
558
+
559
+ Acharya, B., & Dhakal, C. (2021). Implementation of state vaccine incentive lottery programs
560
+ and uptake of COVID-19 vaccinations in the United States. JAMA Network Open, 4(12),
561
+ e2138238-e2138238.
562
+ Betsch, C., & Böhm, R. (2018). Moral values do not affect prosocial vaccination. Nature Human
563
+ Behaviour, 2(12), 881-882. https://doi.org/10.1038/s41562-018-0478-1.
564
+ Betsch, C., Böhm, R., Korn, L., & Holtmann, C. (2017). On the benefits of explaining herd
565
+ immunity in vaccine advocacy. Nature Human Behaviour, 1(3), 1-6.
566
+ https://doi.org/10.1038/s41562-017-0056.
567
+ Browne, M., Thomson, P., Rockloff, M. J., & Pennycook, G. (2015). Going against the herd:
568
+ psychological and cultural factors underlying the ‘vaccination confidence gap’. PLoS
569
+ one, 10(9). https://doi.org/10.1371/journal.pone.0132562.
570
+ Correia, I., Batista, M. T., & Lima, M. L. (2009). Does the belief in a just world bring happiness?
571
+ Causal relationships among belief in a just world, life satisfaction and mood. Australian
572
+ Journal of Psychology, 61(4), 220-227. https://doi.org/10.1080/00049530802579515.
573
+ Dalbert, C. (2009). Belief in a just world. Handbook of individual differences in social behavior,
574
+ 288-297.
575
+ Dalbert, C. (1999). The world is more just for me than generally: About the personal belief in a
576
+ just world scale's validity. Social justice research, 12(2), 79-98.
577
+ https://doi.org/10.1023/A:1022091609047
578
+ Dalbert, C., Montada, L., & Schmitt, M. (1987). Glaube an eine gerechte Welt als Motiv:
579
+ Validierungskorrelate zweier Skalen. Psychologische Beitrage.
580
+ Devereux, P. G., Miller, M. K., & Kirshenbaum, J. M. (2021). Moral disengagement, locus of
581
+
582
+
583
+
584
+ 21
585
+ control, and belief in a just world: Individual differences relate to adherence to COVID-
586
+ 19 guidelines. Personality and Individual Differences, 182, 111069.
587
+ https://doi.org/10.1016/j.paid.2021.111069
588
+ Feinberg, M., & Willer, R. (2011). Apocalypse soon? Dire messages reduce belief in global
589
+ warming by contradicting just-world beliefs. Psychological science, 22(1), 34-38.
590
+ https://doi.org/10.1177/0956797610391911.
591
+ Furnham, A. (2003). ‘Belief in a just world: Research progress over the past decade’, Personality
592
+ and Individual Differences, 34(5). https://doi.org/10.1016/S0191-8869(02)00072-7.
593
+ Gallagher, K. M., & Updegraff, J. A. (2012). Health message framing effects on attitudes,
594
+ intentions, and behavior: a meta-analytic review. Annals of Behavioral Medicine, 43(1),
595
+ 101-116. https://doi.org/10.1007/s12160-012-9446-6.
596
+ Jiang, F., Yue, X., Lu, S., Yu, G., & Zhu, F. (2016). How belief in a just world benefits mental
597
+ health: The effects of optimism and gratitude. Social Indicators Research, 126(1), 411-
598
+ 423. https://doi.org/10.1007/s11205-015-0877-x.
599
+ Jolley, D., & Douglas, K. M. (2014). The effects of anti-vaccine conspiracy theories on
600
+ vaccination intentions. PloS one, 9(2), e89177.
601
+ https://doi.org/10.1371/journal.pone.0089177
602
+ Jordan, J., Yoeli, E., & Rand, D. (2020). Don’t get it or don’t spread it? Comparing self-
603
+ interested versus prosocially framed COVID-19 prevention messaging. PsyArXiv, 10.
604
+ Karlsson, L. C., Soveri, A., Lewandowsky, S., Karlsson, L., Karlsson, H., Nolvi, S., ... &
605
+ Antfolk, J. (2021). Fearing the disease or the vaccine: The case of COVID-
606
+ 19. Personality and individual differences, 172, 110590.
607
+ https://doi.org/10.1016/j.paid.2020.110590.
608
+
609
+
610
+
611
+ 22
612
+ Katella, K. (2021). Comparing the COVID-19 Vaccines: How are They Different?. Yale
613
+ Medicine. Available at: http://www.yalemedicine.org/news/covid-19-vaccine-comparison
614
+ (Accessed: 30 April, 2021).
615
+ Kelly, B.J. and Hornik, R.C., 2016. Effects of framing health messages in terms of benefits to
616
+ loved ones or others: An experimental study. Health Communication, 31(10), pp.1284-
617
+ 1290. https://doi.org/10.1080/10410236.2015.1062976
618
+ Khubchandani, J., Sharma, S., Price, J. H., Wiblishauser, M. J., Sharma, M., & Webb, F. J.
619
+ (2021). COVID-19 vaccination hesitancy in the United States: a rapid national
620
+ assessment. Journal of Community Health, 46(2), 270-277.
621
+
622
+ https://doi.org/10.1007/s10900-020-00958-x.
623
+ Latkin, C. A., Dayton, L., Yi, G., Colon, B., & Kong, X. (2021). Mask usage, social distancing,
624
+ racial, and gender correlates of COVID-19 vaccine intentions among adults in the
625
+ US. PloS one, 16(2), e0246970. https://doi.org/10.1371/journal.pone.0246970.
626
+ Lerner, M. J., & Simmons, C. H. (1966). Observer's reaction to the" innocent victim":
627
+ Compassion or rejection?. Journal of Personality and social Psychology, 4(2), 203.
628
+ https://doi.org/10.1037/h0023562.
629
+ Lewis, T. (2021). From $1-Million Lotteries to Free Beer: Do COVID Vaccination Incentives
630
+ Work? Scientific American. https://www.scientificamerican.com/article/from-1-million-
631
+ lotteries-to-free-beer-do-covid-vaccination-incentives-work1/.
632
+ Lucas, T., Alexander, S., Firestone, I., & Lebreton, J. M. (2009). Belief in a just world, social
633
+ influence and illness attributions: Evidence of a just world boomerang effect. Journal of
634
+ Health Psychology, 14(2), 258-266. https://doi.org/10.1177/1359105308100210.
635
+ Luttrell, A., & Petty, R. E. (2021). Evaluations of self-focused versus other-focused arguments
636
+
637
+
638
+
639
+ 23
640
+ for social distancing: An extension of moral matching effects. Social Psychological and
641
+ Personality Science, 12(6), 946-954. https://doi.org/10.1177/1948550620947853.
642
+ McPhee, S.J., Nguyen, T., Euler, G.L., Mock, J., Wong, C., Lam, T., Nguyen, W., Nguyen, S.,
643
+ Ha, M.Q.H., Do, S.T. and Buu, C., 2003. Successful promotion of hepatitis B
644
+ vaccinations among Vietnamese-American children ages 3 to 18: results of a controlled
645
+ trial. Pediatrics, 111(6), pp.1278-1288. https://doi.org/10.1542/peds.111.6.1278.
646
+ Motta, M., Callaghan, T., Sylvester, S., & Lunz-Trujillo, K. (2021). Identifying the prevalence,
647
+ correlates, and policy consequences of anti-vaccine social identity. Politics, Groups, and
648
+ Identities, 1-15. https://doi.org/10.1080/21565503.2021.1932528.
649
+ Nestik, T. A., & Deyneka, O. S. (2020). Socio-psychological predictors of belief in conspiracy
650
+ theories of the origin of COVID-19 and involvement in social media. Social Psychology
651
+ and Society, 11(4), 87-104. https://doi.org/10.17759/sps.
652
+ NHS UK (2021) 25 April. Available at https://twitter.com/NHSuk (Accessed: 18 May 2021).
653
+ Pennycook, G., McPhetres, J., Zhang, Y., Lu, J. G., & Rand, D. G. (2020). Fighting COVID-19
654
+ misinformation on social media: Experimental evidence for a scalable accuracy-nudge
655
+ intervention. Psychological Science, 31(7), 770-780.
656
+ https://doi.org/10.1177/0956797620939054.
657
+ Peretti-Watel, P., Seror, V., Cortaredona, S., Launay, O., Raude, J., Verger, P., ... & Ward, J. K.
658
+ (2020). A future vaccination campaign against COVID-19 at risk of vaccine hesitancy
659
+
660
+ and politicisation. The Lancet Infectious Diseases, 20(7), 769-770.
661
+ https://doi.org/10.1016/S1473-3099(20)30426-6.
662
+ Pogue, K., Jensen, J. L., Stancil, C. K., Ferguson, D. G., Hughes, S. J., Mello, E. J., ... & Poole,
663
+ B. D. (2020). Influences on attitudes regarding potential COVID-19 vaccination in the
664
+
665
+
666
+
667
+ 24
668
+ United States. Vaccines, 8(4), 582. https://doi.org/10.3390/vaccines8040582.
669
+ Porter, R. M., Amin, A. B., Bednarczyk, R. A., & Omer, S. B. (2018). Cancer-salient messaging
670
+ for human papillomavirus vaccine uptake: A randomized controlled
671
+ trial. Vaccine, 36(18), 2494-2500. https://doi.org/10.1016/j.vaccine.2018.01.040.
672
+ Pritchard, E., Matthews, P. C., Stoesser, N., Eyre, D. W., Gethings, O., Vihta, K., ... & Pouwels,
673
+ K. (2021). Impact of vaccination on new SARS-CoV-2 infections in the UK. Nature
674
+ Medicine. https://doi.org/10.1038/s41591-021-01410-w
675
+ Reuters. (2021, August 6). Early signs COVID-19 vaccines may not stop Delta transmission,
676
+ England says. https://www.reuters.com/world/uk/england-says-delta-infections-produce-
677
+ similar-virus-levels-regardless-vaccine-2021-08-06/.
678
+ Robertson, E., Reeve, K. S., Niedzwiedz, C. L., Moore, J., Blake, M., Green, M., ... & Benzeval,
679
+ M. J. (2021). Predictors of COVID-19 vaccine hesitancy in the UK household
680
+ longitudinal study. Brain, Behavior, and Immunity, 94, 41-50.
681
+
682
+ https://doi.org/10.1016/j.bbi.2021.03.008.
683
+ Ross, L. (1977). The intuitive psychologist and his shortcomings: Distortions in the attribution
684
+ process. In Advances in experimental social psychology (Vol. 10, pp. 173-220).
685
+ Academic Press. https://doi.org/10.1016/S0065-2601(08)60357-3.
686
+ Vaccinations in United Kingdom (30 April, 2021). Gov.UK Coronavirus (COVID-10) in the UK.
687
+ Available at: https://coronavirus.data.gov.uk/details/vaccinations (Accessed: 30 April,
688
+
689
+ 2021).
690
+ Walkey, A. J., Law, A., & Bosch, N. A. (2021). Lottery-based incentive in Ohio and COVID-19
691
+ vaccination rates. JAMA, 326(8), 766-767.
692
+ Wenzel, K., Schindler, S., & Reinhard, M. A. (2017). General belief in a just world is positively
693
+
694
+
695
+
696
+ 25
697
+ associated with dishonest behavior. Frontiers in psychology, 8, 1770.
698
+ https://doi.org/10.3389/fpsyg.2017.01770.
699
+ White, C. J., Norenzayan, A., & Schaller, M. (2019). The content and correlates of belief in
700
+ Karma across cultures. Personality and Social Psychology Bulletin, 45(8), 1184-1201.
701
+ https://doi.org/10.1177/0146167218808502.
702
+ Yuan, S., & Chu, H. (2022). Vaccine for yourself, your community, or your country? Examining
703
+ audiences’ response to distance framing of COVID-19 vaccine messages. Patient
704
+ Education and Counseling, 105(2), 284-289.
705
+ Zizzo, D. J. (2010). Experimenter demand effects in economic experiments. Experimental
706
+ Economics, 13(1), 75-98. https://doi.org/10.1007/s10683-009-9230-z
707
+
708
+
709
+
710
+ 26
711
+
712
+ 1
713
+
714
+ How Effective are COVID-19 Vaccine Health Messages in Reducing Vaccine Skepticism?
715
+ Heterogeneity in Messages’ Effectiveness by Just-World Beliefs
716
+
717
+ Tables and Figures
718
+
719
+
720
+
721
+
722
+ Figure 1. Proportions of overall skepticism changes across control, individual, and community messages.
723
+
724
+
725
+
726
+
727
+
728
+
729
+
730
+
731
+
732
+
733
+
734
+
735
+
736
+
737
+ Change in standardized vaccine skepticism
738
+ Change in skepticism (SD) from T=0 to T=1
739
+ 5
740
+ .05
741
+ 0
742
+ Overall skepticism
743
+ Control
744
+ Individual
745
+ Community
746
+ 95% CI
747
+ n = 526Table 1: The effects of public health messages on overall vaccine skepticism factor
748
+ outcome: OLS regressions
749
+
750
+
751
+
752
+
753
+
754
+ (1)
755
+ (2)
756
+ (3)
757
+
758
+ ∆ Skepticism
759
+ factor (std)
760
+ ∆ Skepticism
761
+ factor (std)
762
+ ∆ Skepticism
763
+ factor (std)
764
+
765
+
766
+
767
+
768
+ Individual
769
+ -0.113**
770
+ -0.113**
771
+ -0.189***
772
+
773
+ (0.0453)
774
+ (0.0457)
775
+ (0.0657)
776
+ Community
777
+ -0.0872
778
+ -0.0872
779
+ -0.101
780
+
781
+ (0.0502)
782
+ (0.0502)
783
+ (0.0639)
784
+ High BJW
785
+
786
+ 0.000134
787
+ -0.0569
788
+
789
+
790
+ (0.0434)
791
+ (0.0658)
792
+ Individual x High BJW
793
+
794
+
795
+ 0.147
796
+
797
+
798
+
799
+ (0.0911)
800
+ Community x High BJW
801
+
802
+
803
+ 0.0274
804
+
805
+
806
+
807
+ (0.0969)
808
+ Optimism (std)
809
+ -0.00429
810
+ -0.00432
811
+ -0.00569
812
+
813
+ (0.0201)
814
+ (0.0215)
815
+ (0.0215)
816
+ Age
817
+ 0.00640
818
+ 0.00640
819
+ 0.00625
820
+
821
+ (0.0190)
822
+ (0.0191)
823
+ (0.0188)
824
+ Age squared
825
+ -8.56e-05
826
+ -8.56e-05
827
+ -8.20e-05
828
+
829
+ (0.000293)
830
+ (0.000294)
831
+ (0.000290)
832
+ Female
833
+ -0.000917
834
+ -0.000910
835
+ 0.00305
836
+
837
+ (0.0438)
838
+ (0.0440)
839
+ (0.0436)
840
+ £ 30k+
841
+ -0.0179
842
+ -0.0179
843
+ -0.0153
844
+
845
+ (0.0410)
846
+ (0.0414)
847
+ (0.0411)
848
+ London
849
+ -0.0313
850
+ -0.0313
851
+ -0.0292
852
+
853
+ (0.0635)
854
+ (0.0636)
855
+ (0.0633)
856
+ University+
857
+ 0.0467
858
+ 0.0467
859
+ 0.0431
860
+
861
+ (0.0430)
862
+ (0.0434)
863
+ (0.0429)
864
+ White
865
+ 0.0210
866
+ 0.0210
867
+ 0.0254
868
+
869
+ (0.0703)
870
+ (0.0705)
871
+ (0.0708)
872
+ Labour
873
+ -0.00769
874
+ -0.00768
875
+ -0.00469
876
+
877
+ (0.0375)
878
+ (0.0372)
879
+ (0.0378)
880
+ Constant
881
+ -0.0700
882
+ -0.0701
883
+ -0.0499
884
+
885
+ (0.303)
886
+ (0.307)
887
+ (0.300)
888
+ Cluster individuals
889
+ 526
890
+ 526
891
+ 526
892
+ R-squared
893
+ 0.024
894
+ 0.024
895
+ 0.029
896
+ Note: *** p<0.001, ** p<0.05. Robust standard errors clustered at the individual level and are in parentheses.
897
+ Dependent variables represent the change from #! to #" and are standardized to have a mean of 0 and a standard
898
+ deviation of 1.
899
+
900
+
901
+
902
+
903
+
904
+
905
+
906
+
907
+
908
+
909
+
910
+
911
+
912
+
913
+ Table 2: The effects of public health messages on individual skepticism outcomes: OLS
914
+ regressions with BJW interactions
915
+
916
+
917
+ (1)
918
+ (2)
919
+ (3)
920
+ (4)
921
+
922
+ ∆ Vaccine not
923
+ useful (std)
924
+ ∆ Not accept
925
+ vaccine (std)
926
+ ∆ Not reduce
927
+ transmission (std)
928
+ ∆ Not prevent
929
+ illness (std)
930
+
931
+
932
+
933
+
934
+
935
+ Individual
936
+ -0.166
937
+ -0.0212
938
+ -0.0458
939
+ -0.323***
940
+
941
+ (0.102)
942
+ (0.0466)
943
+ (0.107)
944
+ (0.0917)
945
+ Community
946
+ -0.101
947
+ 0.0175
948
+ -0.0904
949
+ -0.139
950
+
951
+ (0.0951)
952
+ (0.0545)
953
+ (0.110)
954
+ (0.0972)
955
+ High BJW
956
+ -0.0605
957
+ -0.00896
958
+ 0.0244
959
+ -0.103
960
+
961
+ (0.0951)
962
+ (0.0543)
963
+ (0.116)
964
+ (0.113)
965
+ Individual x High BJW
966
+ 0.147
967
+ 0.0565
968
+ 0.0416
969
+ 0.214
970
+
971
+ (0.135)
972
+ (0.0790)
973
+ (0.158)
974
+ (0.146)
975
+ Community x High BJW
976
+ 0.0651
977
+ -0.0288
978
+ -0.189
979
+ 0.0998
980
+
981
+ (0.134)
982
+ (0.0827)
983
+ (0.170)
984
+ (0.155)
985
+ Optimism (std)
986
+ -0.0281
987
+ -4.72e-05
988
+ 0.00949
989
+ 0.0194
990
+
991
+ (0.0253)
992
+ (0.0188)
993
+ (0.0378)
994
+ (0.0344)
995
+ Age
996
+ -0.00199
997
+ 0.0131
998
+ 0.0512
999
+ -0.00812
1000
+
1001
+ (0.0276)
1002
+ (0.0156)
1003
+ (0.0311)
1004
+ (0.0281)
1005
+ Age squared
1006
+ 5.24e-05
1007
+ -0.000208
1008
+ -0.000845
1009
+ 0.000158
1010
+
1011
+ (0.000424)
1012
+ (0.000227)
1013
+ (0.000481)
1014
+ (0.000433)
1015
+ Female
1016
+ 0.0213
1017
+ -0.0378
1018
+ 0.0621
1019
+ -0.0174
1020
+
1021
+ (0.0616)
1022
+ (0.0397)
1023
+ (0.0760)
1024
+ (0.0696)
1025
+ £ 30k+
1026
+ -0.00347
1027
+ 0.0365
1028
+ -0.0707
1029
+ -0.0745
1030
+
1031
+ (0.0606)
1032
+ (0.0381)
1033
+ (0.0706)
1034
+ (0.0662)
1035
+ London
1036
+ -0.00687
1037
+ -0.0415
1038
+ 0.00830
1039
+ -0.0467
1040
+
1041
+ (0.0989)
1042
+ (0.0448)
1043
+ (0.0875)
1044
+ (0.0791)
1045
+ University+
1046
+ 0.0975
1047
+ -0.0117
1048
+ -0.0588
1049
+ 0.0427
1050
+
1051
+ (0.0601)
1052
+ (0.0326)
1053
+ (0.0678)
1054
+ (0.0667)
1055
+ White
1056
+ 0.0705
1057
+ -0.0778
1058
+ 0.122
1059
+ -0.0191
1060
+
1061
+ (0.108)
1062
+ (0.0591)
1063
+ (0.118)
1064
+ (0.115)
1065
+ Labour
1066
+ -0.0578
1067
+ 0.0123
1068
+ -0.0130
1069
+ 0.0311
1070
+
1071
+ (0.0557)
1072
+ (0.0321)
1073
+ (0.0687)
1074
+ (0.0605)
1075
+ Constant
1076
+ -0.0239
1077
+ -0.114
1078
+ -0.716
1079
+ 0.284
1080
+
1081
+ (0.458)
1082
+ (0.259)
1083
+ (0.498)
1084
+ (0.444)
1085
+ Cluster individuals
1086
+ 526
1087
+ 526
1088
+ 526
1089
+ 526
1090
+ R-squared
1091
+ 0.023
1092
+ 0.021
1093
+ 0.032
1094
+ 0.034
1095
+ Note: *** p<0.001, ** p<0.05. Robust standard errors clustered at the individual level and are in parentheses.
1096
+ Dependent variables represent the change from #! to #" and are standardized to have a mean of 0 and a standard
1097
+ deviation of 1.
1098
+
1099
+
1100
+
1101
+
1102
+
1103
+
1104
+ Figure 2: Predictive margins of the individual treatment and control group, over the
1105
+ standardized BJW factor
1106
+
1107
+
1108
+
1109
+
1110
+ Predictive Margins of treat with 95% Cls
1111
+ 2
1112
+ Linear Prediction
1113
+ 0
1114
+ 2
1115
+ -4
1116
+ -2
1117
+ 0
1118
+ 2
1119
+ 4
1120
+ Standardized BJW Factor
1121
+ Control
1122
+ IndividualFigure 3: Predictive margins of the community treatment and control group, over the
1123
+ standardized BJW factor
1124
+
1125
+
1126
+
1127
+
1128
+
1129
+
1130
+ Predictive Margins of treat with 95% Cls
1131
+ Linear Prediction
1132
+ 2
1133
+ 0
1134
+ 2
1135
+ -4
1136
+ -2
1137
+ 0
1138
+ 2
1139
+ 4
1140
+ Standardized BJW Factor
1141
+ Control
1142
+ Community 1
1143
+ How Effective are COVID-19 Vaccine Health Messages in Reducing Vaccine Skepticism?
1144
+ Heterogeneity in Messages’ Effectiveness by Just-World Beliefs
1145
+
1146
+ Appendix
1147
+
1148
+
1149
+
1150
+ 2
1151
+ Table A.1: Balance checks on all observable characteristics amongst the final analysis sample.
1152
+
1153
+
1154
+ Control
1155
+ (0)
1156
+ Individual
1157
+ (1)
1158
+ Community
1159
+ (2)
1160
+ (0) vs. (1),
1161
+ p-value
1162
+ (0) vs. (2),
1163
+ p-value
1164
+ (1) vs. (2),
1165
+ p-value
1166
+ 𝑇!(baseline)
1167
+ Not vaccine useful
1168
+ 17.0
1169
+ 16.2
1170
+ 17.3
1171
+ 0.704
1172
+ 0.904
1173
+ 0.616
1174
+
1175
+ (1.5)
1176
+ (1.4)
1177
+ (1.6)
1178
+
1179
+
1180
+
1181
+
1182
+ 172
1183
+ 180
1184
+ 174
1185
+
1186
+
1187
+
1188
+ Not accept vaccine
1189
+ 12.5
1190
+ 12.6
1191
+ 13.9
1192
+ 0.988
1193
+ 0.628
1194
+ 0.625
1195
+
1196
+ (1.9)
1197
+ (1.7)
1198
+ (2.0)
1199
+
1200
+
1201
+
1202
+
1203
+ 172
1204
+ 180
1205
+ 174
1206
+
1207
+
1208
+
1209
+ Not reduce transmission
1210
+ 29.9
1211
+ 28.7
1212
+ 29.0
1213
+ 0.645
1214
+ 0.670
1215
+ 0.983
1216
+
1217
+ (1.9)
1218
+ (1.9)
1219
+ (2.0)
1220
+
1221
+
1222
+
1223
+
1224
+ 172
1225
+ 180
1226
+ 174
1227
+
1228
+
1229
+
1230
+ Not prevent illness
1231
+ 22.0
1232
+ 22.3
1233
+ 22.8
1234
+ 0.895
1235
+ 0.741
1236
+ 0.839
1237
+
1238
+ (1.8)
1239
+ (1.7)
1240
+ (1.8)
1241
+
1242
+
1243
+
1244
+
1245
+ 172
1246
+ 180
1247
+ 174
1248
+
1249
+
1250
+
1251
+ 𝑇" (endline)
1252
+ Not vaccine useful
1253
+ 15.6
1254
+ 13.5
1255
+ 14.5
1256
+ 0.253
1257
+ 0.615
1258
+ 0.566
1259
+
1260
+ (1.4)
1261
+ (1.2)
1262
+ (1.5)
1263
+
1264
+
1265
+
1266
+
1267
+ 172
1268
+ 180
1269
+ 174
1270
+
1271
+
1272
+
1273
+ Not accept vaccine
1274
+ 11.6
1275
+ 12.0
1276
+ 13.0
1277
+ 0.892
1278
+ 0.602
1279
+ 0.684
1280
+
1281
+ (1.8)
1282
+ (1.7)
1283
+ (1.8)
1284
+
1285
+
1286
+
1287
+
1288
+ 172
1289
+ 180
1290
+ 174
1291
+
1292
+
1293
+
1294
+ Not reduce transmission
1295
+ 30.7
1296
+ 29.0
1297
+ 25.0
1298
+ 0.548
1299
+ 0.039
1300
+ 0.124
1301
+
1302
+ (2.0)
1303
+ (1.9)
1304
+ (1.8)
1305
+
1306
+
1307
+
1308
+
1309
+ 172
1310
+ 180
1311
+ 174
1312
+
1313
+
1314
+
1315
+ Not prevent illness
1316
+ 22.1
1317
+ 17.8
1318
+ 20.8
1319
+ 0.054
1320
+ 0.581
1321
+ 0.187
1322
+
1323
+ (1.7)
1324
+ (1.5)
1325
+ (1.7)
1326
+
1327
+
1328
+
1329
+
1330
+ 172
1331
+ 180
1332
+ 174
1333
+
1334
+
1335
+
1336
+
1337
+ Quartile 1 BJW
1338
+ 0.3
1339
+ 0.2
1340
+ 0.3
1341
+ 0.626
1342
+ 0.671
1343
+ 0.358
1344
+
1345
+
1346
+ (0.0)
1347
+ (0.0)
1348
+ (0.0)
1349
+
1350
+
1351
+
1352
+
1353
+
1354
+ 172
1355
+ 180
1356
+ 174
1357
+
1358
+
1359
+
1360
+
1361
+ Quartile 4 BJW
1362
+ 0.2
1363
+ 0.3
1364
+ 0.3
1365
+ 0.529
1366
+ 0.352
1367
+ 0.756
1368
+
1369
+
1370
+ (0.0)
1371
+ (0.0)
1372
+ (0.0)
1373
+
1374
+
1375
+
1376
+
1377
+
1378
+ 172
1379
+ 180
1380
+ 174
1381
+
1382
+
1383
+
1384
+
1385
+ Optimism factor (Std)
1386
+ 0.0
1387
+ 0.0
1388
+ -0.0
1389
+ 0.928
1390
+ 0.779
1391
+ 0.850
1392
+
1393
+
1394
+ (0.1)
1395
+ (0.1)
1396
+ (0.1)
1397
+
1398
+
1399
+
1400
+
1401
+
1402
+ 172
1403
+ 180
1404
+ 174
1405
+
1406
+
1407
+
1408
+
1409
+ Age
1410
+ 30.4
1411
+ 31.0
1412
+ 31.5
1413
+ 0.479
1414
+ 0.231
1415
+ 0.600
1416
+
1417
+
1418
+ (0.7)
1419
+ (0.6)
1420
+ (0.7)
1421
+
1422
+
1423
+
1424
+
1425
+
1426
+ 172
1427
+ 180
1428
+ 174
1429
+
1430
+
1431
+
1432
+
1433
+ Female
1434
+ 0.7
1435
+ 0.8
1436
+ 0.7
1437
+ 0.309
1438
+ 0.459
1439
+ 0.781
1440
+
1441
+
1442
+ (0.0)
1443
+ (0.0)
1444
+ (0.0)
1445
+
1446
+
1447
+
1448
+
1449
+
1450
+ 166
1451
+ 171
1452
+ 170
1453
+
1454
+
1455
+
1456
+
1457
+ £30,000+
1458
+ 0.7
1459
+ 0.7
1460
+ 0.8
1461
+ 0.987
1462
+ 0.455
1463
+ 0.423
1464
+
1465
+
1466
+ (0.1)
1467
+ (0.0)
1468
+ (0.1)
1469
+
1470
+
1471
+
1472
+
1473
+
1474
+ 172
1475
+ 180
1476
+ 174
1477
+
1478
+
1479
+
1480
+
1481
+ London
1482
+ 0.1
1483
+ 0.1
1484
+ 0.2
1485
+ 0.652
1486
+ 0.248
1487
+ 0.472
1488
+
1489
+
1490
+ (0.0)
1491
+ (0.0)
1492
+ (0.0)
1493
+
1494
+
1495
+
1496
+
1497
+
1498
+ 172
1499
+ 180
1500
+ 174
1501
+
1502
+
1503
+
1504
+
1505
+ Undergraduate+
1506
+ 0.6
1507
+ 0.6
1508
+ 0.6
1509
+ 0.778
1510
+ 0.808
1511
+ 0.597
1512
+
1513
+
1514
+ (0.0)
1515
+ (0.0)
1516
+ (0.0)
1517
+
1518
+
1519
+
1520
+
1521
+
1522
+ 171
1523
+ 179
1524
+ 174
1525
+
1526
+
1527
+
1528
+
1529
+ White
1530
+ 0.9
1531
+ 0.9
1532
+ 0.9
1533
+ 0.525
1534
+ 0.724
1535
+ 0.779
1536
+
1537
+
1538
+ (0.0)
1539
+ (0.0)
1540
+ (0.0)
1541
+
1542
+
1543
+
1544
+
1545
+
1546
+ 172
1547
+ 180
1548
+ 174
1549
+
1550
+
1551
+
1552
+
1553
+ Labour party
1554
+ 0.3
1555
+ 0.4
1556
+ 0.4
1557
+ 0.825
1558
+ 0.438
1559
+ 0.578
1560
+
1561
+ 3
1562
+
1563
+
1564
+ (0.0)
1565
+ (0.0)
1566
+ (0.0)
1567
+
1568
+
1569
+
1570
+
1571
+
1572
+ 169
1573
+ 172
1574
+ 172
1575
+
1576
+
1577
+
1578
+ Note: standard deviations in parenthesis, sample size of respondents in italics.
1579
+
1580
+
1581
+
1582
+
1583
+
1584
+ 4
1585
+ Figure A.1: Experimental process and consort diagram
1586
+
1587
+
1588
+
1589
+
1590
+
1591
+
1592
+ T0
1593
+ 600participants
1594
+ Completed BJW scale and baseline
1595
+ skepticism outcomes
1596
+ T1
1597
+ 600 participants
1598
+ Invited to return for part 2
1599
+ Control
1600
+ Individual treatmentCollective treatment
1601
+ 172 participants
1602
+ 181 participants
1603
+ 174 participants
1604
+ Read article about
1605
+ Read article about
1606
+ individual benefits
1607
+ communitybenefits
1608
+ to vaccination
1609
+ tovaccination
1610
+ Passed attention
1611
+ Passed attention
1612
+ checks
1613
+ checks
1614
+ 180 participants
1615
+ 174 participants
1616
+ 526 participants
1617
+ Completed endline skepticism outcomes
1618
+ and demographic questions 5
1619
+ Figure A.2: Survey design: questions at 𝑇!.
1620
+
1621
+
1622
+
1623
+
1624
+
1625
+ Please read each statement carefully and indicate the extent to which you personally
1626
+ agree or disagree with it.
1627
+ Very
1628
+ Very
1629
+ strongly
1630
+ Slightly
1631
+ Slightly
1632
+ strongly
1633
+ disagree
1634
+ Disagree
1635
+ disagree
1636
+ agree
1637
+ Agree
1638
+ agree
1639
+ I think basically the
1640
+ 0
1641
+ 0
1642
+ 0
1643
+ 0
1644
+ 0
1645
+ 0
1646
+ world is a justplace.
1647
+ I believe that, by and
1648
+ large, people get what
1649
+ 0
1650
+ 0
1651
+ 0
1652
+ 0
1653
+ 0
1654
+ 0
1655
+ they deserve.
1656
+ Iam confidentthat
1657
+ justice always prevails
1658
+ 0
1659
+ 0
1660
+ 0
1661
+ 0
1662
+ 0
1663
+ over injustice.
1664
+ I am convinced that in
1665
+ the long run, people
1666
+ 0
1667
+ will be compensated
1668
+ for injustices.
1669
+ I firmly believe that
1670
+ injustices inallareas
1671
+ of life (e.g.
1672
+ professional, family,
1673
+ 0
1674
+ 0
1675
+ 0
1676
+ politics) are the
1677
+ exception rather than
1678
+ the rule.
1679
+ I think people try to be
1680
+ fair when making
1681
+ 0
1682
+ 0
1683
+ 0
1684
+ important decisions. 6
1685
+
1686
+
1687
+
1688
+
1689
+
1690
+
1691
+
1692
+
1693
+
1694
+
1695
+
1696
+
1697
+
1698
+
1699
+
1700
+
1701
+ Please read each statement carefully and indicate the extent to which you personally
1702
+ agree ordisagree with it.
1703
+ Very
1704
+ Very
1705
+ strongly
1706
+ Slightly
1707
+ Slightly
1708
+ strongly
1709
+ disagree
1710
+ Disagree
1711
+ disagree
1712
+ agree
1713
+ Agree
1714
+ agree
1715
+ I believe that, by and
1716
+ large, I deserve what
1717
+ 0
1718
+ 0
1719
+ 0
1720
+ 0
1721
+ 0
1722
+ 0
1723
+ happens to me.
1724
+ I am usually treated
1725
+ 0
1726
+ 0
1727
+ 0
1728
+ 0
1729
+ 0
1730
+ 0
1731
+ fairly.
1732
+ I believe that I usually
1733
+ 0
1734
+ 0
1735
+ 0
1736
+ 0
1737
+ 0
1738
+ 0
1739
+ get what I deserve.
1740
+ Overall, events in my
1741
+ 0
1742
+ 0
1743
+ 0
1744
+ 0
1745
+ 0
1746
+ 0
1747
+ life are just.
1748
+ In my life injustice is
1749
+ theexceptionrather
1750
+ 0
1751
+ 0
1752
+ 0
1753
+ 0
1754
+ 0
1755
+ 0
1756
+ than the rule.
1757
+ I believe that most of
1758
+ 0
1759
+ 0
1760
+ 0
1761
+ 0
1762
+ 0
1763
+ 0
1764
+ the things that happen
1765
+ in my life are fair.
1766
+ I think that important
1767
+ decisionsthatare
1768
+ 0
1769
+ made concerning me
1770
+ are usually just. 7
1771
+
1772
+
1773
+
1774
+
1775
+
1776
+
1777
+
1778
+
1779
+
1780
+
1781
+
1782
+
1783
+
1784
+
1785
+
1786
+
1787
+
1788
+
1789
+
1790
+
1791
+
1792
+
1793
+
1794
+
1795
+
1796
+
1797
+
1798
+
1799
+
1800
+
1801
+
1802
+
1803
+
1804
+
1805
+
1806
+
1807
+
1808
+
1809
+ How certainareyouthattheCOViD-19vaccinesare ausefultool infightingthepandemic?
1810
+ Not at all certain
1811
+ Extremelycertain
1812
+ 0
1813
+ 10
1814
+ 20
1815
+ 30
1816
+ 40
1817
+ 50
1818
+ 60
1819
+ 70
1820
+ 80
1821
+ 90
1822
+ 100
1823
+ How likelyareyouto accept the CovID-19vaccinewhen offered?
1824
+ Not at all likely
1825
+ Extremely likely
1826
+ 0
1827
+ 10
1828
+ 20
1829
+ 30
1830
+ 40
1831
+ 50
1832
+ 60
1833
+ 70
1834
+ 80
1835
+ 90
1836
+ 100
1837
+ HowcertainareyouthattheCOViD-19vaccinereducestransmissionbetweenindividuals?
1838
+ 0
1839
+ 10
1840
+ 20
1841
+ 30
1842
+ 40
1843
+ 50
1844
+ 60
1845
+ 70
1846
+ 80
1847
+ 90
1848
+ 100
1849
+ How certainareyouthattheCoviD-19vaccinewouldpreventyoupersonallyfromgettingveryill dueto
1850
+ COVID-19?
1851
+ 0
1852
+ 10
1853
+ 20
1854
+ 30
1855
+ 40
1856
+ 50
1857
+ 60
1858
+ 70
1859
+ 80
1860
+ 90
1861
+ 100 8
1862
+ Figure A.3.1: Survey design: treatment messages at 𝑇". Control participants were asked to
1863
+ respond to the same four skepticism outcomes shown in Figure A.2. Individual (left) and
1864
+ community (right) messages participants were first asked to read the following fictitious news
1865
+ articles and were then prompted to respond to the four skepticism outcomes.
1866
+
1867
+
1868
+
1869
+
1870
+
1871
+
1872
+ Belowisanewsstorysimilartoothernewsstoriesyoumighthavereadbefore.Please
1873
+ readthestoryandrespondtothequestionsthatfollow.
1874
+ BOsTON --"Coronavirus disease (COVID-19)is a highly contagious illness, caused bythe
1875
+ transmission of the SARS-CoV-2 virus. First identified in December 2019, the virus has
1876
+ causedapandemicthatresulted inshutdownsall aroundtheglobe.It wasfirst widely
1877
+ haswreakedhavocontheglobe.Claimingmillionsoflives,thispandemichascreateda
1878
+ cleardemarcationintime:pre-covid,andpost-covid,"says ProfessorArthurMichali,a
1879
+ publichealthexpertfromaleadingresearchuniversity."Beforethispandemic,Tcouldhave
1880
+ attendedaconferenceinTokyo oneday,ledaresearchcollaboration inGenevathenext,
1881
+ andarrivedback inBostonthethirdday.Thiskindoftravel issimplynolongerpossible
1882
+ under currentcircumstances,andit's likelythatthis sort ofbehaviourcontributedtothe
1883
+ rapidspreadofthediseaseworldwide."
1884
+ ProfessorMichali,whohaswonnumerousawardsforhis researchoverthelasttwo
1885
+ decades,ispartoftheCOViD-19EmergencyCommitteeattheWorldHealthOrganisation.
1886
+ Amongstothertopics,thiscommitteeisworkingtobetterunderstandthevarious
1887
+ responses and interventions that can help curb the spread of the disease.
1888
+ Michali is co-authoring a forthcoming pamphlet, entitled"The COViD-19Vaccine:what
1889
+ circulatingandforthcomingvaccines.ThepamphletdescribesCOviD-19as"adangerous
1890
+ disease,particularlyforthe elderlyand clinicallyvulnerable,astheyare more likelyto
1891
+ suffersevere,andpossiblyfatal,respiratoryillness.Nevertheless,anyone,regardlessof
1892
+ ageormedical background,isatriskof sufferingaharshillness.Michaliwishesto
1893
+ emphasisethatthebestthingyoucandotoprotectyourselffromthisdiseaseisto
1894
+ takeupthevaccinewhenyouareofferedit."Some ofthevaccinesonthemarketare
1895
+ boasting95%efficacyrates.Thismeansthatreceivingthevaccinedramaticallyreduces
1896
+ yourriskofdevelopingseriousCOViD-19symptomsifyouareexposedtotheviruslater
1897
+ downtheline."Althoughexpertsarecontinuingtoemphasisetheimportanceofsocial
1898
+ distancingandwearingmasks,thesemeasuresare notperfect,andthereremainsariskof
1899
+ inadvertentlycatchingthediseasethatcouldleaveyoubed-riddenforweeks,even
1900
+ months.Receivingthe vaccine isthesingle most important stepan individualcantaketo
1901
+ protect him orherself fromthe virus.Michali reflects intheconcludingthoughts of the
1902
+ pamphlet,"thereisnotmuchthatwecancontrolintimeslikethese,butyouneedto
1903
+ do whatyoucantoprotectyourself inthese uncertain times.Takingup thevaccine
1904
+ whenoffered isthebestactionyoucantaketokeepyourself safe!"Importantly,
1905
+ Michali wants individuals to rememberthat it is their personal responsibility to keep
1906
+ themselvesprotected.Below isanewsstorysimilartoothernewsstoriesyoumighthavereadbefore.Please
1907
+ readthestoryand respondtothequestionsthatfollow.
1908
+ BOsTON--“Coronavirus disease (COVID-19)is a highly contagious illness, caused bythe
1909
+ transmission oftheSARS-CoV-2 virus.First identified inDecember2019,the virushas
1910
+ caused apandemic that resulted in shutdowns all aroundtheglobe.Itwasfirst widely
1911
+ spreadbetweenhumansatawholesaleseafoodmarket inWuhan,China."Thisdisease
1912
+ haswreakedhavocontheglobe.Claimingmillionsof lives,thispandemichascreateda
1913
+ cleardemarcation intime:pre-covid,and post-covid,says ProfessorArthurMichali,a
1914
+ publichealthexpertfromaleadingresearchuniversity."Beforethispandemic,Icouldhave
1915
+ attendedaconference inTokyooneday,ledaresearchcollaboration inGenevathenext,
1916
+ andarrivedbackinBostonthethirdday.Thiskindoftravelissimplynolongerpossible
1917
+ undercurrentcircumstances,andit's likelythatthissortof behaviourcontributedtothe
1918
+ rapidspreadofthediseaseworldwide."
1919
+ ProfessorMichali,whohaswonnumerousawardsforhisresearchoverthelasttwo
1920
+ decades, is part of the COviD-19 Emergency Committee at the World Health Organisation.
1921
+ Amongstothertopics,thiscommitteeisworkingtobetterunderstandthevarious
1922
+ Michali is co-authoring a forthcoming pamphlet, entitled “"The COviD-19 Vaccine: what
1923
+ circulatingandforthcomingvaccines.ThepamphletdescribesCOviD-19as"adangerous
1924
+ disease,particularly forthe elderly and clinically vulnerable,as they are more likely to
1925
+ suffersevere,andpossiblyfatal,respiratoryillness.Nevertheless,anyone,regardlessof
1926
+ ageormedical background,is atrisk ofsufferingaharsh illness."Michali wishesto
1927
+ emphasisethatthebestthingyoucandotoprotectothersfromthisdiseaseisto
1928
+ takeupthevaccinewhenyouareoffered it."Someofthevaccinesonthemarketare
1929
+ boasting95%efficacyrates.Thismeansthatreceivingthevaccinedramaticallyreduces
1930
+ yourriskofdevelopingseriousCOviD-19symptomsifyouareexposedtotheviruslater
1931
+ downtheline.CommunitytransmissionhasbeenshowntobelowerwhensevereCOviD
1932
+ 19symptomsdonotpresent,soyouareprotectingyourneighbours,parents,
1933
+ grandparents,andfriendsbyreceivingthevaccine."Althoughexpertsarecontinuingto
1934
+ emphasisetheimportanceofsocialdistancingandwearingmasks,thesemeasuresare
1935
+ notperfect,astheviruscanstillspreadbetweenpeople.Theworryisnotsomuchabout
1936
+ individual cases, but rather, it is about reducing transmission in communities, as it is that
1937
+ type oftransmissionthat will preventus from everseeing anendtothispandemic.
1938
+ thecommunityfromthevirus.Michali reflectsintheconcludingthoughtsofthepamphlet,
1939
+ "thereisnotmuchthatwe can control intimes likethese,butweneedtotake
1940
+ collectiveactiontofightthispandemic!Takingupthevaccinewhenofferedisthe
1941
+ bestactionyoucantakeforyourfamily,friends,andforyourcommunity!
1942
+ Importantly,Michaliwantspeopletorememberthatitistheirresponsibilitytokeeppeople
1943
+ intheircommunity,especiallythosewhoarevulnerabletothedisease,protected 9
1944
+ Figure A.3.2: Survey design : manipulation check at 𝑇".
1945
+
1946
+
1947
+
1948
+
1949
+
1950
+
1951
+
1952
+
1953
+
1954
+
1955
+
1956
+
1957
+
1958
+
1959
+
1960
+
1961
+
1962
+
1963
+
1964
+
1965
+
1966
+
1967
+
1968
+
1969
+
1970
+
1971
+
1972
+
1973
+
1974
+
1975
+
1976
+
1977
+
1978
+
1979
+
1980
+
1981
+
1982
+
1983
+
1984
+
1985
+
1986
+ According to the article, where was the COVID-19 virus first widely spread?
1987
+ Geneva,Switzerland
1988
+ Boston, USA
1989
+ Wuhan, China
1990
+ Tokyo, Japan
1991
+ Accordingtothearticle,whatisProfessorArthurMichali currentlyworkingon?
1992
+ A strategy to liaise with journalists and media about COVID-19
1993
+ Apamphletto informthe average citizenaboutthe currentandforthcoming COviD-19vaccines
1994
+ Atravel itineraryfromTokyotoGenevato Boston
1995
+ Asociologicalstudyonthespreadof COviD-19
1996
+ According to the article, whom will you primarily protect by taking up a CoOVID-19 vaccine?
1997
+ Yourself
1998
+ Healthworkersinothercountries
1999
+ Peoplewho have justdiedofCOvID-19-related illness
2000
+ Others in your community 10
2001
+ Figure A.3.3: Survey design: demographic questions at 𝑇".
2002
+
2003
+
2004
+
2005
+
2006
+
2007
+
2008
+
2009
+
2010
+
2011
+
2012
+
2013
+
2014
+
2015
+
2016
+
2017
+
2018
+
2019
+
2020
+
2021
+
2022
+
2023
+
2024
+
2025
+
2026
+
2027
+
2028
+
2029
+
2030
+
2031
+
2032
+
2033
+
2034
+
2035
+
2036
+ Areyou generally aperson who tries to avoid taking risks orare youfully prepared to take
2037
+ risks?
2038
+ Won't take risks
2039
+ Ready to take risks
2040
+ 0
2041
+ 1
2042
+ 2
2043
+ 3
2044
+ 4
2045
+ 5
2046
+ 6
2047
+ 7
2048
+ 8
2049
+ 6
2050
+ 10
2051
+ HaveyoubeendiagnosedwithCovID-19atanypoint?
2052
+ Howfrequentlydoyoufollowgovernmentguidelinesonfacecoveringswheninshops?
2053
+ I neverwearafacecoveringbecauseIamexemptfromwearingone
2054
+ I neverwearafacecoveringand I amnotexemptfromwearingone.
2055
+ Most of the time I do not wear a face covering.
2056
+ HalfofthetimeIwearafacecovering,halfI donot.
2057
+ Most ofthe time I wearaface covering.
2058
+ Ialwayswearafacecovering
2059
+ How confident are you thatface coverings area useful tool in fighting the pandemic?
2060
+ Not at all confident
2061
+ Extremelyconfident
2062
+ 0
2063
+ 10
2064
+ 20
2065
+ 30
2066
+ 40
2067
+ 50
2068
+ 60
2069
+ 70
2070
+ 80
2071
+ 90
2072
+ 100What isyourethnicity?
2073
+ What is the highest level of education that you have completed?
2074
+ Inwhichregiondoyoucurrentlyreside?
2075
+ What is youryearlyhousehold incomebeforetax?
2076
+ V
2077
+ Whichpolitical party do you consideryourself to beclosest to?
2078
+ Please indicateyourattitudesto eachof thefollowingstatements.
2079
+ I neither
2080
+ I disagree a
2081
+ I disagree a
2082
+ agree nor
2083
+ Iagree a
2084
+ lot
2085
+ little
2086
+ disagree
2087
+ little
2088
+ I agree a lot
2089
+ In uncertain times,
2090
+ usuallyexpectthe
2091
+ 0
2092
+ 0
2093
+ 0
2094
+ 0
2095
+ 0
2096
+ best.
2097
+ I'm always optimistic
2098
+ 0
2099
+ 0
2100
+ 0
2101
+ 0
2102
+ 0
2103
+ aboutmy future.
2104
+ Overall,Iexpectmore
2105
+ good things to happen
2106
+ 0
2107
+ 0
2108
+ 0
2109
+ 0
2110
+ 0
2111
+ to me than bad. 11
2112
+ Table A.2: Factor analysis on the personal and general BJW factors, which produce the
2113
+ combined BJW factor.
2114
+
2115
+ Factor analysis/correlation
2116
+
2117
+
2118
+ Factor
2119
+ Eigenvalue
2120
+ Difference
2121
+ Proportion
2122
+ Cumulative
2123
+ Factor1
2124
+ 0.79 1.04
2125
+ 1.46
2126
+ 1.46
2127
+
2128
+ Factor loadings (pattern matrix) and unique variances
2129
+ Variable
2130
+ Factor1
2131
+ Uniqueness
2132
+ General BJW
2133
+ 0.63
2134
+ 0.61
2135
+ Personal BJW
2136
+ 0.63
2137
+ 0.61
2138
+
2139
+
2140
+ Scoring coefficients
2141
+ Variable
2142
+ Factor1
2143
+ General BJW
2144
+ 0.41
2145
+ Personal BJW
2146
+ 0.41
2147
+
2148
+ Cronbach’s alpha
2149
+ a
2150
+ 0.69
2151
+
2152
+
2153
+ Table A.3: Factor analysis on the skepticism outcomes at 𝑇!.
2154
+ Factor analysis/correlation
2155
+
2156
+
2157
+ Factor
2158
+ Eigenvalue
2159
+ Difference
2160
+ Proportion
2161
+ Cumulative
2162
+ Factor1
2163
+ 2.57
2164
+ 2.60
2165
+ 1.10
2166
+ 1.10
2167
+
2168
+ Factor loadings (pattern matrix) and unique variances
2169
+ Variable
2170
+ Factor1
2171
+ Uniqueness
2172
+ Vaccine Useful
2173
+ 0.86
2174
+ 0.26
2175
+ Accept Vaccine
2176
+ 0.83
2177
+ 0.31
2178
+ Reduce Transmission
2179
+ 0.64
2180
+ 0.59
2181
+ Prevent Illness
2182
+ 0.85
2183
+ 0.28
2184
+
2185
+
2186
+ Scoring coefficients
2187
+ Variable
2188
+ Factor1
2189
+ Vaccine Useful
2190
+ 0.35
2191
+ Accept Vaccine
2192
+ 0.28
2193
+ Reduce Transmission
2194
+ 0.12
2195
+ Prevent Illness
2196
+ 0.31
2197
+
2198
+
2199
+
2200
+ 12
2201
+ Cronbach’s alpha
2202
+ a
2203
+ 0.88
2204
+
2205
+
2206
+ Table A.4: Factor analysis on the skepticism outcomes at 𝑇".
2207
+
2208
+ Factor analysis/correlation
2209
+
2210
+
2211
+ Factor
2212
+ Eigenvalue
2213
+ Difference
2214
+ Proportion
2215
+ Cumulative
2216
+ Factor1
2217
+ 2.69
2218
+ 2.70
2219
+ 1.09
2220
+ 1.09
2221
+
2222
+ Factor loadings (pattern matrix) and unique variances
2223
+ Variable
2224
+ Factor1
2225
+ Uniqueness
2226
+ Vaccine Useful
2227
+ 0.88
2228
+ 0.22
2229
+ Accept Vaccine
2230
+ 0.82
2231
+ 0.33
2232
+ Reduce Transmission
2233
+ 0.70
2234
+ 0.51
2235
+ Prevent Illness
2236
+ 0.87
2237
+ 0.25
2238
+
2239
+
2240
+ Scoring coefficients
2241
+ Variable
2242
+ Factor1
2243
+ Vaccine Useful
2244
+ 0.37
2245
+ Accept Vaccine
2246
+ 0.23
2247
+ Reduce Transmission
2248
+ 0.13
2249
+ Prevent Illness
2250
+ 0.32
2251
+
2252
+
2253
+ Cronbach’s alpha
2254
+ a
2255
+ 0.89
2256
+
2257
+
2258
+
2259
+
6tE1T4oBgHgl3EQfnAQs/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
89AzT4oBgHgl3EQfFPox/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:00f5e27416d3d1332fb32baf50133b4dbf0e87bb8ffba6ef09da15ae82546e14
3
+ size 4063277
8tFAT4oBgHgl3EQfpB3g/content/tmp_files/2301.08638v1.pdf.txt ADDED
@@ -0,0 +1,589 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.08638v1 [hep-th] 20 Jan 2023
2
+ Enlarging the symmetry of pure R2 gravity, BRST invariance
3
+ and its spontaneaous breaking
4
+ Ariel Edery∗
5
+ Department of Physics and Astronomy, Bishop’s University, 2600 College Street,
6
+ Sherbrooke, Qu´ebec, Canada, J1M 1Z7.
7
+ Abstract
8
+ Pure R2 gravity was considered originally to possess only global scale symmetry. It was
9
+ later shown to have the larger restricted Weyl symmetry where it is invariant under the
10
+ Weyl transformation gµν → Ω2(x) gµν when the conformal factor Ω(x) obeys the harmonic
11
+ condition □Ω(x) = 0. Restricted Weyl symmetry has an analog in gauge theory. Under a
12
+ gauge transformation Aµ → Aµ + 1
13
+ e∂µf(x), the gauge-fixing term (∂µAµ)2 has a residual
14
+ gauge symmetry when □f = 0. In this paper, we consider scenarios where the symmetry
15
+ of pure R2 gravity can be enlarged even further. In one scenario, we add a massless scalar
16
+ field to the pure R2 gravity action and show that the action becomes on-shell Weyl invari-
17
+ ant when the equations of motion are obeyed. We then enlarge the symmetry to a BRST
18
+ symmetry where no on-shell or restricted Weyl condition is required. The BRST trans-
19
+ formations here are not associated with gauge transformations (such as diffeomorphisms)
20
+ but with Weyl (local scale) transformations where the conformal factor consists of a prod-
21
+ uct of Grassmann variables. BRST invariance in this context is a generalization of Weyl
22
+ invariance that is valid in the presence of the Weyl-breaking R2 term. In contrast to the
23
+ BRST invariance of gauge theories like QCD, it is not preserved after quantization since
24
+ renormalization introduces a scale (leading to the well-known Weyl (conformal) anomaly).
25
+ We show that the spontaneous breaking of the BRST symmetry yields an Einstein action;
26
+ this still has a symmetry which is also anomalous. This is in accord with previous work
27
+ that shows that there is conformal anomaly matching between the unbroken and broken
28
+ phases when conformal symmetry is spontaneously broken.
29
+ ∗aedery@ubishops.ca
30
+ 1
31
+
32
+ 1
33
+ Introduction
34
+ Pure R2 gravity (R2 alone with no additional R term) is unique among quadratic gravity the-
35
+ ories as it is unitary and moreover has been shown to be conformally equivalent to Einstein
36
+ gravity with non-zero cosmological constant and massless scalar field [1–5] (though in a Pala-
37
+ tini formalism one can avoid having a massless scalar [6]). It has been known for a long time
38
+ that it is invariant under the global scale transformation gµν → λ2 gµν where λ is a constant. It
39
+ was later discovered to possess a larger symmetry than global scale symmetry called restricted
40
+ Weyl symmetry [7] where it is invariant under the transformation gµν → Ω2(x) gµν when the
41
+ conformal factor Ω(x) obeys the harmonic condition □Ω = gµν∇µ∇νΩ = 0. The conformal
42
+ factor Ω(x) is therefore not limited to being a constant. The aforementioned equivalence be-
43
+ tween pure R2 gravity and Einstein gravity with cosmological constant was then interpreted
44
+ in a new light: it occurs when the restricted Weyl symmetry is spontaneously broken [3,5]. In
45
+ the broken sector, the Ricci scalar of the background (vacuum) spacetime has R ̸= 0 which
46
+ excludes a flat background. This is why the equivalence requires a non-zero cosmological con-
47
+ stant on the the Einstein side. The unbroken sector which has an R = 0 vacuum (background)
48
+ has no relation to Einstein gravity. In fact, it has been shown that a linearization of pure R2
49
+ gravity about Minkowski spacetime does not yield gravitons but only a propagating scalar [4];
50
+ simply put, pure R2 gravity does not gravitate about a flat background [4]. However, it was
51
+ later shown that if one includes a non-minimally coupled scalar field in the restricted Weyl-
52
+ invariant action and the field acquires a non-zero VEV, then the theory can gravitate about
53
+ flat spacetime [5,8]. Various aspects of restricted Weyl symmetry, it spontaneous breaking as
54
+ well as its role in critical gravity were then explored further in [5–7,9–11]
55
+ Restricted Weyl symmetry has an analog in gauge theory. The gauge-fixing term (∂µAµ)2
56
+ is invariant under the gauge transformation Aµ → Aµ + 1
57
+ e∂µf(x) only when the arbitrary
58
+ smooth function f(x) obeys the condition □f = 0 where □ here represents the flat space
59
+ d’Alembertian. Therefore, the gauge-fixing term has a residual gauge symmetry when □f = 0
60
+ is satisfied [12]. This is the analog to the restricted Weyl symmetry of pure R2 gravity when
61
+ the conformal factor Ω(x) satisfies □Ω = 0. As we will see, this analogy is fruitful as it provides
62
+ a bridge to the BRST symmetry of pure R2 gravity. Recent work on the BRST invariance of
63
+ other gravitational theories can be found in [13,14,16].
64
+ In this paper, we consider scenarios where the symmetry of pure R2 gravity is enlarged further.
65
+ We show that when a massless scalar field is added to pure R2 gravity, the action becomes Weyl
66
+ invariant when the equations of motion are satisfied. No separate external condition is required
67
+ to be imposed on the conformal factor Ω(x) as this occurs naturally via the equations of motion.
68
+ One passes from restricted Weyl invariance to on-shell Weyl invariance. One can then enlarge
69
+ the symmetry further to include BRST symmetry. In analogy with the BRST invariance in
70
+ gauge theories in the presence of a gauge-fixing term, we establish BRST invariance in the
71
+ 2
72
+
73
+ presence of the Weyl-breaking pure R2 gravity term. The BRST transformations here are
74
+ not associated with gauge transformations (such as diffeomorphisms) but are a generalization
75
+ of Weyl (local scale) transformations where the conformal factor is composed of Grassmann
76
+ variables. Therefore, in contrast to the BRST invariance in gauge theory, it is anomalous since
77
+ renormalization introduces a scale (leading to the well-known Weyl (conformal) anomaly). We
78
+ show that the spontaneous breaking of the BRST symmetry yields an Einstein action with its
79
+ own symmetry that is also anomalous. This is in agreement with previous work where it was
80
+ shown that when conformal symmetry is spontaneously broken there is conformal anomaly
81
+ matching in the unbroken and and broken phases [18,19].
82
+ The paper is organized as follows. In section 2, we obtain the on-shell Weyl invariance of pure
83
+ R2 gravity when a massless scalar field is included in the action. In section 3, we obtain the
84
+ BRST invariance of pure R2 gravity. In section 4, we show that the spontaneous breaking
85
+ of the BRST symmetry yields an Einstein action and that there is a quantum anomaly in
86
+ both the unbroken and broken sectors. We conclude with section 5 where we summarize our
87
+ results, provide further physical insights and discuss directions for future work. We relegate
88
+ to Appendix A some technical details on the symmetry of the Einstein action.
89
+ 2
90
+ Pure R2 gravity plus a massless scalar: from restricted to
91
+ on-shell Weyl invariance
92
+ The action of pure R2 gravity is given by
93
+ S =
94
+ � √−g d4x α R2
95
+ (1)
96
+ where R is the Ricci scalar and α a dimensionless constant. This action is restricted Weyl
97
+ invariant i.e. it is invariant under the Weyl transformation gµν → Ω2(x) gµν if the conformal
98
+ factor Ω(x) obeys the condition □Ω(x) = 0. This invariance stems from the fact that R →
99
+ R/Ω2 when □Ω(x) = 0. As already mentioned, this implies that pure R2 gravity has a greater
100
+ symmetry than global scale symmetry (where Ω(x) would have to be a constant).
101
+ We now show that pure R2 gravity can be Weyl-invariant on-shell when a minimally coupled
102
+ real massless scalar field is added to the action. Here, the condition □Ω(x) = 0 is not imposed
103
+ as an external condition but satisfied automatically by the equations of motion. The action of
104
+ pure R2 gravity with a minimally coupled real massless scalar field φ is given by
105
+ Sa =
106
+ � √−g d4x
107
+
108
+ α R2 − 1
109
+ 2 gµν ∂µφ ∂νφ
110
+
111
+ (2)
112
+ where φ(x) is a real scalar field. Under the Weyl transformation gµν → e−2 ǫ φ gµν, where ǫ is
113
+ 3
114
+
115
+ a real constant, the Ricci scalar transforms as
116
+ R → R e2ǫφ − 6 e3ǫ φ □(e−ǫ φ)
117
+ (3)
118
+ and √−g → e−4 ǫ φ √−g so that action (2) transforms to
119
+ Sb =
120
+ � √−g d4x
121
+
122
+ α
123
+
124
+ R2 − 12 R eǫ φ □(e−ǫ φ) + 36 e2ǫ φ (□(e−ǫ φ))2�
125
+ − 1
126
+ 2 e−2 ǫ φ gµν ∂µφ ∂νφ
127
+
128
+ .
129
+ (4)
130
+ The equations of motion yield □(e−ǫ φ) = 0. Therefore, when the equations of motion are
131
+ satisfied, the above action reduces to
132
+ Sc =
133
+ � √−g d4x
134
+
135
+ α R2 − 1
136
+ 2 gµν ∂µψ ∂νψ
137
+
138
+ (5)
139
+ where ψ is a real massless scalar field (related to the old scalar φ via ψ = e−ǫ φ/ǫ). Note that
140
+ the equation of motion for ψ is □ψ = 0 which is equivalent to □(e−ǫ φ) = 0 and consistent with
141
+ what we previously obtained. We therefore recover pure R2 gravity with a minimally coupled
142
+ real massless scalar field ψ. What happened here is that the restricted Weyl condition □ Ω = 0
143
+ with Ω = e−ǫ φ did not have to be imposed as a separate condition because it was satisfied
144
+ automatically by the equations of motion. In short, pure R2 gravity became Weyl invariant
145
+ on-shell in the presence of a massless scalar field. It passed from restricted Weyl invariance to
146
+ on-shell Weyl invariance.
147
+ 3
148
+ BRST invariance of pure R2 gravity
149
+ Before discussing BRST invariance in the case of pure R2 gravity, let us first recall how BRST
150
+ invariance works in gauge theories in Minkowski spacetime. For illustrative purposes, we will
151
+ consider the case of scalar QED. The Abelian version of the Faddeev-Popov Lagrangian is then
152
+ given by [12]
153
+ L = −1
154
+ 4 F 2
155
+ µν − (Dµφ∗
156
+ a)(Dµφa) − m2 φ∗
157
+ a φa − 1
158
+ 2 ξ (∂µ Aµ)2 + ¯c □c
159
+ (6)
160
+ where c(x) and ¯c(x) are independent Grassmann-valued fields, φa are a set of complex scalar
161
+ fields and Dµ is the usual covariant derivative. The gauge fixing term,
162
+ 1
163
+ 2 ξ(∂µ Aµ)2 breaks the
164
+ gauge symmetry since it is not invariant under the transformation Aµ → Aµ + 1
165
+ e ∂µf(x) where
166
+ f(x) is an arbitrary function. However, it has a residual symmetry: it is invariant if f(x)
167
+ obeys the condition □f = 0. As previously mentioned, this residual symmetry is the analog of
168
+ restricted Weyl symmetry in pure R2 gravity.
169
+ 4
170
+
171
+ The equation of motion for c(x) is □c = 0. Consider the gauge transformation with f(x) =
172
+ θ c(x) for arbitrary Grassmann number θ. Then, if the equation of motion for c is satisfied,
173
+ the scalar QED Lagrangian (6) is invariant under the following transformations
174
+ Aµ → Aµ + 1
175
+ e θ ∂µc(x)
176
+ φa(x) → eiθ c(x) φa(x) = φa(x) + iθ c(x)φa(x) .
177
+ (7)
178
+ In other words, the equation □f = θ □c = 0 is automatically satisfied on-shell and does not
179
+ have to be imposed as a separate condition. This is similar to what we saw in the previous
180
+ section for pure R2 gravity which was invariant under gµν → Ω2 gµν with Ω = e−ǫφ when the
181
+ equations of motion were satisfied.
182
+ If the equation of motion for c is not used, the only term in the Lagrangian (6) which is not
183
+ invariant under the transformation (7) is (∂µAµ)2 which transforms as
184
+ (∂µAµ)2 → (∂µAµ)2 + 2
185
+ e(∂µAµ)(θ□c)
186
+ (8)
187
+ where we used the fact that θ2 = 0 since θ is Grassmann. Now, if under (7) we also have ¯c
188
+ transforming as
189
+ ¯c(x) → ¯c(x) − θ
190
+ e ξ (∂µAµ)
191
+ (9)
192
+ then the scalar QED Lagrangian (6) is invariant without having to use the equation of motion
193
+ for c. This is BRST invariance. The crucial point is that under the BRST transformations
194
+ given by (7) and (9), the Lagrangian is invariant despite the presence of the gauge-fixing term
195
+ (∂µAµ)2.
196
+ We now turn to pure R2 gravity. Consider the action
197
+ S =
198
+
199
+ d4x√−g (α R2 + ¯c □c)
200
+ (10)
201
+ where again c(x) and ¯c(x) are independent Grassmann-valued fields. This action is not Weyl-
202
+ invariant i.e. it is not invariant under the transformation gµν → Ω2(x)gµν where Ω(x) is an
203
+ arbitrary smooth function. Consider now the Weyl transformation
204
+ gµν → e2 θ c(x)gµν = (1 + 2 θ c) gµν
205
+ (11)
206
+ where θ is again an arbitrary Grassmann number. Under this transformation we have
207
+ √−g α R2 → √−g (α R2 − 12 α R θ □c )
208
+ (12)
209
+ 5
210
+
211
+ where the following transformations were used: √−g → (1+4 θ c) √−g and R → (1−2 θ c) R−
212
+ 6 θ □c. Again, we used that θ2 = 0. Under the transformation (11), □c transforms as
213
+ □c → (1 − 2 θ c) □c
214
+ (13)
215
+ where gµν∂µc ∂νc = 0 was used (this stems from the fact that gµν is symmetric and c is
216
+ Grassmann). The equation of motion for c is □c = 0 and we see from (12) that √−g α R2 is
217
+ Weyl invariant on-shell. However, we can dispense with the on-shell condition if we also allow
218
+ ¯c to transform as
219
+ ¯c → (1 − 2 θ c) ¯c + 12 α R θ .
220
+ (14)
221
+ We then obtain
222
+ √−g ¯c □c → √−g (¯c □c + 12 α R θ □c) .
223
+ (15)
224
+ The last term on the right hand side of (15) above cancels precisely the last term on the right
225
+ hand side of (12). Therefore, the action (10) is invariant under the combined transformations
226
+ of (11) and (14) (which we refer to to as BRST transformations).
227
+ This is the BRST invariance
228
+ of pure R2 gravity. Note that BRST invariance does not require any on-shell or restricted Weyl
229
+ condition. It is a generalization of Weyl (conformal) invariance that is valid in the presence of
230
+ the Weyl-breaking R2 term.
231
+ Let us now take a closer look at what is common and what is different between the BRST
232
+ invariance of pure R2 gravity and the BRST invariance in the gauge theories of particle physics
233
+ (for concreteness and simplicity, we will consider scalar QED again but the main points apply
234
+ also to QCD). The BRST invariance in scalar QED can be viewed as a generalization of gauge
235
+ invariance in the presence of the gauge-fixing (and hence gauge-breaking) term (∂µ Aµ)2. The
236
+ are two points in common between the scalar QED and R2 cases. First, the Ricci scalar R under
237
+ a Weyl transformation and the term ∂µ Aµ under a gauge transformation both pick up an extra
238
+ □Φ(x) term (where Φ(x) represents either a conformal factor Ω(x) in a Weyl transformation
239
+ or a function f(x) in a gauge transformation). Recall that in a BRST transformation, Φ(x) is
240
+ a product of a Grassmann number θ with a Grassmann field (the product yields a commuting
241
+ (bosonic) quantity). The second point in common is that R and ∂µ Aµ are both squared. The
242
+ squaring yields a (□Φ(x))2 term which is zero since θ2 = 0. The squaring still leaves one
243
+ extra □Φ(x) term and this is cancelled out in both cases via the transformation property of a
244
+ Grassmann field. These two common points render the analogy between the two cases quite
245
+ strong. However, there is one important difference. In scalar QED (and in QCD) , the BRST
246
+ transformations are associated with gauge transformations. The BRST invariance of pure R2
247
+ gravity that we are considering here is not associated with gauge transformations (such as
248
+ diffeomorphisms) but with Weyl (local scale) transformations. We will see that this difference
249
+ plays an important role when the theory is quantized.
250
+ 6
251
+
252
+ 4
253
+ Spontaneous breaking of BRST symmetry
254
+ We now show that the BRST-invariant action
255
+ S =
256
+
257
+ d4x√−g (αR2 + ¯c □c)
258
+ (16)
259
+ is conformally equivalent to an action that involves the Einstein-Hilbert term; this will involve
260
+ the spontaneous breaking of BRST symmetry. The starting point is to introduce a auxiliary
261
+ field σ(x) to rewrite the above action into the equivalent form
262
+ S1 =
263
+
264
+ d4x√−g (−α(b σ + R)2 + αR2 + ¯c □c)
265
+
266
+ d4x√−g (−α b2 σ2 − 2 α b R σ + ¯c □c)
267
+ (17)
268
+ where b is a real non-zero constant with dimensions of mass squared and σ(x) is dimensionless.
269
+ Action (17) is equivalent to the original action (16) since adding the squared term in the first
270
+ line of (17) does not alter anything (classically, the equations of motion are unaffected and
271
+ quantum mechanically, the path integral over σ is a Gaussian which yields a constant). The
272
+ equivalent action (17) is also BRST invariant; it is invariant under the following transforma-
273
+ tions:
274
+ gµν → (1 + 2 θ c) gµν
275
+ ;
276
+ ¯c → (1 − 2 θ c) ¯c − 12 θ α b σ
277
+ ;
278
+ σ → (1 − 2θ c) σ
279
+ (18)
280
+ where θ is again a Grassmann number. Note that the BRST invariance requires the auxiliary
281
+ field σ to transform besides the fields gµν and ¯c. We now perform the following conformal
282
+ (Weyl) transformation:
283
+ gµν → σ−1 gµν
284
+ ¯c → σ ¯c
285
+ (19)
286
+ which leads to √−g → σ−2 √−g and R → σ R − 6 σ3/2□(σ−1/2). Under the above conformal
287
+ transformation, action (17) becomes
288
+ S2 =
289
+
290
+ d4x√−g (−α b2 − 2 α b R + 3α b
291
+ σ2 ∂µσ ∂µσ + ¯c □c − 1
292
+ σ ¯c ∂µc ∂µσ) .
293
+ (20)
294
+ The above action is no longer invariant under the BRST transformations given by (18). The
295
+ BRST symmetry has been spontaneously broken. The factor σ−1 appearing in the confor-
296
+ mal transformation (19) is valid only for non-zero σ so that the VEV (vacuum expectation
297
+ value) of the field σ must be non-zero. The VEV is therefore not invariant under the BRST
298
+ transformation σ → (1 − 2θ c) σ leading to the spontaneous breaking of the BRST symmetry.
299
+ 7
300
+
301
+ We can identify −2 α b R as an Einstein-Hilbert term if we equate −2 α b with
302
+ 1
303
+ 16π G where G
304
+ is Newton’s constant. The constant term −α b2 can then be associated with a cosmological
305
+ constant Λ = −b/4. Note that though −2 α b is positive, the constant b can be either positive
306
+ or negative (but not zero). This implies that the cosmological constant can be either positive
307
+ corresponding to a de Sitter (dS) background or negative corresponding to an anti-de Sitter
308
+ (AdS) background but it cannot be identically zero. We can then express (20) as the following
309
+ Einstein action,
310
+ SE =
311
+
312
+ d4x√−g
313
+
314
+ 1
315
+ 16π G(R − 2 Λ) + 3α b
316
+ σ2 ∂µσ ∂µσ + ¯c □c − 1
317
+ σ ¯c ∂µc ∂µσ)
318
+
319
+ .
320
+ (21)
321
+ We have left the constant 3 α b in the action for simplicity but it is not an independent constant;
322
+ it is equal to
323
+ −3
324
+ 32 πG. We therefore obtain an Einstein-Hilbert action with non-zero cosmological
325
+ constant, a kinetic term for the scalar σ (which we will express in canonical form later) and
326
+ an interaction term.
327
+ Recall that σ is non-zero so that divisions by σ pose no issue.
328
+ It is
329
+ well-known that in spontaneously broken theories, the vacuum breaks the symmetry but it is
330
+ not actually broken in the Lagrangian but manifested or realized in a different way [12]. It
331
+ can be directly verified (see Appendix A) that the Einstein action (21) is invariant under the
332
+ following transformations:
333
+ σ → (1 − 2θ c) σ , gµν → gµν and ¯c → ¯c − 12 θ α b .
334
+ (22)
335
+ The BRST symmetry of action (17) manifests itself in the Einstein action (21) via its symmetry
336
+ under the above transformations (22). We now show how transformation (22) stems from the
337
+ BRST transformations (18). In the Einstein action and transformation (22) label the metric
338
+ and the barred Grassmann field with a subscript E i.e.
339
+ gµνE and ¯cE.
340
+ In action (17) and
341
+ transformation (18) we leave gµν and ¯c as is. Then the conformal transformation (19) yields
342
+ gµνE = σ gµν and ¯cE = σ−1 ¯c. Under the BRST transformations (18) we obtain gµνE = σ gµν →
343
+ (1 − 2 θ c) σ (1 + 2 θ c) gµν = σ gµν = gµνE and ¯cE = σ−1 ¯c → (1 + 2 θ c) σ−1�
344
+ (1 − 2 θ c) ¯c −
345
+ 12 θ α b σ
346
+
347
+ = σ−1¯c − 12 θ α b = ¯cE − 12 θ α b. We have therefore obtained the transformations
348
+ gµνE → gµνE and ¯cE → ¯cE − 12 θ α b which correspond to those in (22). Note that we used
349
+ σ → (1 − 2θ c) σ in (18) to derive this, so the transformation of σ is also part of (22).
350
+ We can define a real massless scalar field ψ(x) =
351
+
352
+ −3α b ln σ(x) so that the kinetic term for
353
+ σ is expressed in canonical form. The Einstein action (21) expressed in terms of the field ψ is
354
+ S =
355
+
356
+ d4x√−g
357
+
358
+ 1
359
+ 16π G(R − 2 Λ) − ∂µψ ∂µψ + ¯c □c −
360
+ 1
361
+
362
+ −3α b ¯c ∂µc ∂µψ
363
+
364
+ .
365
+ (23)
366
+ The massless scalar field ψ corresponds to the Nambu-Goldstone boson of the broken sector.
367
+ Under transformation (22), the field ψ transforms as a shift ψ → ψ−
368
+
369
+ −3α b 2 θ c (whereas ¯c →
370
+ ¯c−12 θ α b and gµν → gµν). The above action (23) is invariant under those transformations (see
371
+ 8
372
+
373
+ Appendix A). This is in accord with what we expect from spontaneously broken theories: the
374
+ original symmetry in the Lagrangian manifests itself in the broken sector as a shift symmetry
375
+ of the Goldstone bosons [12].
376
+ 4.1
377
+ Quantum anomaly
378
+ We saw that the action (17) is BRST invariant under the following transformations:
379
+ gµν → (1 + 2 θ c) gµν , ¯c → (1 − 2 θ c) ¯c − 12 θ α b σ , σ → (1 − 2θ c) σ. Each transformation
380
+ involves a Weyl transformation where the conformal factor is expressed in terms of of a prod-
381
+ uct of two Grassmann variables The BRST symmetry is therefore a generalization of Weyl
382
+ (conformal) symmetry. After quantization, renormalization introduces a scale which breaks
383
+ the BRST symmetry since it automatically breaks Weyl symmetry (leading to the well-known
384
+ Weyl (conformal) anomaly). So the BRST symmetry of pure R2 gravity is anomalous. This is
385
+ in contrast to the BRST invariance of gauge theories like QCD which have no anomaly.
386
+ After the BRST symmetry is spontaneously broken and we obtain the Einstein action (21),
387
+ we saw that the BRST symmetry manifests itself now in the Einstein action as a symmetry
388
+ under the transformations (22). This symmetry is also anomalous since the transformation of
389
+ the field σ is a Weyl transformation and renormalization breaks this symmetry (leading again
390
+ to the Weyl (conformal anomaly). Another way to see this is to note that the only fields that
391
+ transform in (22) are ¯c and σ. The transformation for ¯c is simply a constant shift so that its
392
+ path integral measure D¯c is invariant. However, σ undergoes a Weyl transformation and this
393
+ introduces a non-trivial Jacobian J (i.e. J ̸= 1) to the measure Dσ. Since the measure is not
394
+ invariant, this implies there is an anomaly [17]. So the symmetry in the unbroken phase and
395
+ its associated symmetry in the broken phase are both anomalous. Our finding here is in accord
396
+ with previous work that shows that when the Weyl or conformal symmetry is spontaneously
397
+ broken there is conformal anomaly matching between the unbroken and broken phases [18,19].
398
+ 5
399
+ Conclusion
400
+ In the last six years or so, we have kept discovering new aspects of pure R2 gravity. A non-
401
+ exhaustive list includes its unitarity among quadratic gravity theories [4], its conformal equiv-
402
+ alence to Einstein gravity with non-zero cosmological constant and massless scalar field [1–5],
403
+ its restricted Weyl symmetry [7,10,11], its spontaneous symmetry breaking to Einstein grav-
404
+ ity [3,5] and the lack of a propagating graviton when the theory is linearized about a Minkowski
405
+ background [4] (where there is no Einstein equivalence since the cosmological constant is zero).
406
+ In this paper, we have gained further insights into this theory. We saw that pure R2 gravity
407
+ has an analog with the gauge-fixing term (∂µAµ)2 in gauge theory. R2 is not invariant under
408
+ 9
409
+
410
+ the Weyl transformation gµν → Ω2(x) gµν just like (∂µ Aµ)2 is not invariant under the gauge
411
+ transformation Aµ → Aµ + 1
412
+ e ∂µf(x). However, each have a residual symmetry (when □Ω = 0
413
+ is satisfied in the gravity case and □f = 0 is satisfied in the gauge case). This analogy opened
414
+ the door towards enlarging the symmetry of pure R2 gravity to include BRST symmetry.
415
+ We first showed that when a massless scalars field was included in the pure R2 action, the
416
+ condition □Ω = 0 could be met automatically when the equations of motion were satisfied
417
+ i.e. we went from restricted Weyl to on-shell Weyl invariance. Finally, we obtained the BRST
418
+ invariance of pure R2 gravity where no restricted Weyl or on-shell condition is required. The
419
+ BRST transformations involve Weyl transformations where the conformal factor is composed of
420
+ products of Grassmann variables (the conformal factor itself is commutative). The important
421
+ point is that the BRST invariance exists despite the Weyl-breaking R2 term.
422
+ There is one important difference between the BRST symmetry in gauge theories like QCD
423
+ and the BRST symmetry that we have considered here for pure R2 gravity. Gauge invari-
424
+ ance in particle physics is preserved after quantization. The BRST invariance of QCD is a
425
+ generalization of gauge invariance so that it is also preserved after quantization; there is no
426
+ anomaly. In contrast to gauge symmetry, global scale or Weyl (local scale) symmetry is broken
427
+ after quantization since renormalization introduces a scale. The BRST symmetry of pure R2
428
+ gravity is a generalization of Weyl (conformal) symmetry so that it is also broken after quan-
429
+ tization leading to the well-known Weyl (conformal) anomaly. After the spontaneous breaking
430
+ of the BRST symnmetry, we obtained an Einstein action. We showed that this action has
431
+ its own symmetry and that it is also anomalous. This is in accord with previous work that
432
+ shows that when the Weyl (conformal) symmetry is spontaneously broken there is conformal
433
+ anomaly matching between the unbroken and broken sectors [18,19].
434
+ The focus of this paper was pure R2 gravity because of its many special and attractive fea-
435
+ tures that we previously mentioned. All other quadratic gravity theories (like Weyl-squared,
436
+ Riemann-squared, etc.), apart from boundary terms, can be expressed as a linear combina-
437
+ tion of R2 and RµνRµν. The latter term, the square of the Ricci tensor, appears in quantum
438
+ corrections to General Relativity (GR) and even though it does not constitute a valid UV
439
+ completion of GR due to its non-unitarity (yields a massive spin two ghost [4, 20]), it still
440
+ makes a well-known calculable short-range correction to the Newtonian potential [12,21]. Like
441
+ R2, the term RµνRµν is not Weyl-invariant so it would be of interest to see if it can be BRST
442
+ invariant. It is not in the form of a scalar squared like (∂µAµ)2 or R2, so one may be inclined
443
+ to think that the BRST formalism would not apply here. However, like pure R2, it was shown
444
+ in [7] that RµνRµν is restricted Weyl invariant (up to a boundary term). This suggests that
445
+ the procedure used to establish the BRST invariance of pure R2 gravity might in the end also
446
+ work for this quadratic theory. It would therefore be worthwhile and interesting to investigate
447
+ this further.
448
+ 10
449
+
450
+ Acknowledgments
451
+ A.E. acknowledges support from a discovery grant of the National Science and Engineering
452
+ Research Council of Canada (NSERC).
453
+ A
454
+ Symmetry of Einsten Action
455
+ In this appendix we show that the Einstein action (21) given by
456
+ SE =
457
+
458
+ d4x√−g
459
+
460
+ 1
461
+ 16π G(R − 2 Λ) + 3α b
462
+ σ2 ∂µσ ∂µσ + ¯c □c − 1
463
+ σ ¯c ∂µc ∂µσ)
464
+
465
+ (A.1)
466
+ is invariant under the transformations (22) given by
467
+ σ → (1 − 2θ c) σ , gµν → gµν and ¯c → ¯c − 12 θ α b .
468
+ (A.2)
469
+ Under the above transformation, the metric gµν does not change so that √−g as well as the
470
+ term √−g
471
+ 1
472
+ 16π G(R − 2 Λ) does not change.
473
+ The other terms in the above Einstein action
474
+ transform as
475
+ 3α b
476
+ σ2 ∂µσ ∂µσ → 3α b
477
+ σ2 ∂µσ ∂µσ − 12 θ α b
478
+ σ
479
+ ∂µc ∂µσ
480
+ − 1
481
+ σ ¯c ∂µc ∂µσ) → − 1
482
+ σ ¯c ∂µc ∂µσ + 12 θ α b
483
+ σ
484
+ ∂µc ∂µσ
485
+ ¯c □c → ¯c □c − 12 θ α b □c
486
+ (A.3)
487
+ where we used that θ2 = 0 (since θ is a Grassmann number) and that gµν ∂µc ∂νc = 0 since gµν
488
+ is symmetric and c(x) and its derivatives are Grassmann fields. We see that the extra term
489
+ − 12 θ α b
490
+ σ
491
+ ∂µc ∂µσ in the first line of (A.3) is canceled exactly by the extra term in the second
492
+ line. The extra term in the third line, −12 θ α b □c, where −12 θ α b is a constant, does not
493
+ cancel out with any other extra term in (A.3). However, √−g □c is a total derivative that
494
+ yields an inconsequential boundary term in the action. We have therefore shown that action
495
+ (A.1) is invariant under transformations (A.2).
496
+ We saw in section 4 that the Einstein action (A.1) can be expressed in terms of a real massless
497
+ scalar field ψ(x) =
498
+
499
+ −3α b ln σ(x) as action (23):
500
+ S =
501
+
502
+ d4x√−g
503
+
504
+ 1
505
+ 16π G(R − 2 Λ) − ∂µψ ∂µψ + ¯c □c −
506
+ 1
507
+
508
+ −3α b ¯c ∂µc ∂µψ
509
+
510
+ (A.4)
511
+ where ψ was identified as the Nambu-Goldstone boson of the broken sector. We stated in
512
+ section 4 that the action (A.4) was invariant under the following transformations:
513
+ ψ → ψ −
514
+
515
+ −3α b 2 θ c , ¯c → ¯c − 12 θ α b and gµν → gµν .
516
+ (A.5)
517
+ 11
518
+
519
+ We now verify this statement. Under (A.5) the last three terms in action (A.4) transform as:
520
+ − ∂µψ ∂µψ → −∂µψ ∂µψ + 4 θ
521
+
522
+ −3 α b ∂µψ ∂µc
523
+
524
+ 1
525
+
526
+ −3α b ¯c ∂µc ∂µψ → −
527
+ 1
528
+
529
+ −3α b ¯c ∂µc ∂µψ − 4 θ
530
+
531
+ −3 α b ∂µψ ∂µc
532
+ ¯c □c → ¯c □c − 12 θ α b □c .
533
+ (A.6)
534
+ We see that the extra term +4 θ
535
+
536
+ −3 α b ∂µψ ∂µc in the first line above is cancelled by the
537
+ extra term on the second line which is equal to its negative.
538
+ The only extra term that is
539
+ not cancelled is the term −12 θ α b □c appearing in the last line. However, √−g □c is a total
540
+ derivative which yields a boundary term with no physical consequence. We have therefore
541
+ verified that the Einstein action (A.4) is indeed invariant under the transformations (A.5).
542
+ References
543
+ [1] C. Kounnas, D. L¨ust and N. Toumbas, R2 inflation from scale invariant supergravity and
544
+ anomaly free superstrings with fluxes, Fortsch. Phys. 63, 12 (2015) [arXiv:1409.7076].
545
+ [2] A. Kehagias, C. Kounnas, D. L¨ust and A. Riotto, Black Hole Solutions in R2 Gravity,
546
+ JHEP 05, 143 (2015)[arXiv:1502.04192].
547
+ [3] A. Edery and Y. Nakayama, Generating Einstein gravity, cosmological constant and
548
+ Higgs mass from restricted Weyl invariance, Mod. Phys. Lett. A 30, 1550152 (2015)
549
+ [arXiv:1502.05932].
550
+ [4] L. Alvarez-Gaume, A. Kehagias, C. Kounnas, D. L¨ust and A. Riotto, Aspects of Quadratic
551
+ Gravity, Fortsch. Phys. 64, 176 (2016) [arXiv:1505.07657].
552
+ [5] A. Edery and Y. Nakayama, Gravitating magnetic monopole via the spontaneous symmetry
553
+ breaking of pure R2 gravity, Phys. Rev. D 98 (2018) 064011 [arXiv:1807.07004].
554
+ [6] A. Edery and Y. Nakayama, Palatini formulation of pure R2 gravity yields Einstein gravity
555
+ with no massless scalar, Phys. Rev. D 99, 124018 (2019) [arXiv:1902.07876].
556
+ [7] A. Edery and Y. Nakayama, Restricted Weyl invariance in four-dimensional curved space-
557
+ time, Phys. Rev. D 90, 043007 (2014) [arXiv:1406.0060].
558
+ [8] A. Edery, Pure R2 gravity can gravitate about a flat background, J. Phys. Conf. Ser. 1956,
559
+ 012005 (2021).
560
+ [9] A. Edery and Y. Nakayama, Critical gravity from four dimensional scale invariant gravity,
561
+ JHEP 11, 169 (2019) [arXiv:1908.08778].
562
+ 12
563
+
564
+ [10] I. Oda, Restricted Weyl symmetry, Phys. Rev. D 102, 045008 (2020)[arXiv:2005.04771].
565
+ [11] I. Oda, Restricted Weyl Symmetry and Spontaneous Symmetry Breakdown of Conformal
566
+ Symmetry, Mod. Phys. Lett. A 36, 2150203 (2021) [arXiv:2104.04694].
567
+ [12] M. Schwartz, Quantum Field Theory and the Standard Model, (Cambridge University
568
+ Press, Cambridge, UK, 2014).
569
+ [13] I. Oda and P. Saake, BRST formalism of Weyl conformal gravity, Phys. Rev. D 106,
570
+ 106007 (2022) [arXiv:2209.14533].
571
+ [14] D. Prinz, The BRST Double Complex for the Coupling of Gravity to Gauge Theories,
572
+ [arXiv:2206.00780].
573
+ [15] T. Kugo, R. Nakayama and N.Ohta, Covariant BRST quantization of unimodular grav-
574
+ ity: Formulation with antisymmetric tensor ghosts, Phys. Rev. D 105, 086006 (2022),
575
+ [arXiv:2202.03626].
576
+ [16] L. Berezhiani, G. Dvali and O. Sakhelashvili, de Sitter space as a BRST invariant coherent
577
+ state of gravitons Phys. Rev. D 105, 025022 (2022) [arXiv:2111.12022].
578
+ [17] K. Fujikawa and H. Suzuki, Path Integrals and Quantum Anomalies, (Oxford University
579
+ Press, Oxford, UK, 2004).
580
+ [18] A. Schwimmer and S. Theisen, Spontaneous Breaking of Conformal Invariance and Trace
581
+ Anomaly Matching,Nucl. Phys. B 847, 590 (2011) [arXiv:1011.0696.
582
+ [19] A. Cabo-Bizet, E. Gava and K. S. Narain, Holography and Conformal Anomaly Matching,
583
+ JHEP 11,044 (2013) [arXiv:1307.3784].
584
+ [20] K. S. Stelle, Renormalization of Higher Derivative Quantum Gravity, Phys. Rev. D 16,
585
+ 953 (1977).
586
+ [21] J.F. Donoghue, Leading quantum correction to the Newtonian potential, Phys. Rev. Lett.
587
+ 72, 2996 (1994).
588
+ 13
589
+
8tFAT4oBgHgl3EQfpB3g/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,355 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf,len=354
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
3
+ page_content='08638v1 [hep-th] 20 Jan 2023 Enlarging the symmetry of pure R2 gravity, BRST invariance and its spontaneaous breaking Ariel Edery∗ Department of Physics and Astronomy, Bishop’s University, 2600 College Street, Sherbrooke, Qu´ebec, Canada, J1M 1Z7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
4
+ page_content=' Abstract Pure R2 gravity was considered originally to possess only global scale symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
5
+ page_content=' It was later shown to have the larger restricted Weyl symmetry where it is invariant under the Weyl transformation gµν → Ω2(x) gµν when the conformal factor Ω(x) obeys the harmonic condition □Ω(x) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
6
+ page_content=' Restricted Weyl symmetry has an analog in gauge theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
7
+ page_content=' Under a gauge transformation Aµ → Aµ + 1 e∂µf(x), the gauge-fixing term (∂µAµ)2 has a residual gauge symmetry when □f = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
8
+ page_content=' In this paper, we consider scenarios where the symmetry of pure R2 gravity can be enlarged even further.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
9
+ page_content=' In one scenario, we add a massless scalar field to the pure R2 gravity action and show that the action becomes on-shell Weyl invari- ant when the equations of motion are obeyed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
10
+ page_content=' We then enlarge the symmetry to a BRST symmetry where no on-shell or restricted Weyl condition is required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
11
+ page_content=' The BRST trans- formations here are not associated with gauge transformations (such as diffeomorphisms) but with Weyl (local scale) transformations where the conformal factor consists of a prod- uct of Grassmann variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
12
+ page_content=' BRST invariance in this context is a generalization of Weyl invariance that is valid in the presence of the Weyl-breaking R2 term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
13
+ page_content=' In contrast to the BRST invariance of gauge theories like QCD, it is not preserved after quantization since renormalization introduces a scale (leading to the well-known Weyl (conformal) anomaly).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
14
+ page_content=' We show that the spontaneous breaking of the BRST symmetry yields an Einstein action;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
15
+ page_content=' this still has a symmetry which is also anomalous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
16
+ page_content=' This is in accord with previous work that shows that there is conformal anomaly matching between the unbroken and broken phases when conformal symmetry is spontaneously broken.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
17
+ page_content=' ∗aedery@ubishops.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
18
+ page_content='ca 1 1 Introduction Pure R2 gravity (R2 alone with no additional R term) is unique among quadratic gravity the- ories as it is unitary and moreover has been shown to be conformally equivalent to Einstein gravity with non-zero cosmological constant and massless scalar field [1–5] (though in a Pala- tini formalism one can avoid having a massless scalar [6]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
19
+ page_content=' It has been known for a long time that it is invariant under the global scale transformation gµν → λ2 gµν where λ is a constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
20
+ page_content=' It was later discovered to possess a larger symmetry than global scale symmetry called restricted Weyl symmetry [7] where it is invariant under the transformation gµν → Ω2(x) gµν when the conformal factor Ω(x) obeys the harmonic condition □Ω = gµν∇µ∇νΩ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
21
+ page_content=' The conformal factor Ω(x) is therefore not limited to being a constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
22
+ page_content=' The aforementioned equivalence be- tween pure R2 gravity and Einstein gravity with cosmological constant was then interpreted in a new light: it occurs when the restricted Weyl symmetry is spontaneously broken [3,5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
23
+ page_content=' In the broken sector, the Ricci scalar of the background (vacuum) spacetime has R ̸= 0 which excludes a flat background.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
24
+ page_content=' This is why the equivalence requires a non-zero cosmological con- stant on the the Einstein side.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
25
+ page_content=' The unbroken sector which has an R = 0 vacuum (background) has no relation to Einstein gravity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
26
+ page_content=' In fact, it has been shown that a linearization of pure R2 gravity about Minkowski spacetime does not yield gravitons but only a propagating scalar [4];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
27
+ page_content=' simply put, pure R2 gravity does not gravitate about a flat background [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
28
+ page_content=' However, it was later shown that if one includes a non-minimally coupled scalar field in the restricted Weyl- invariant action and the field acquires a non-zero VEV, then the theory can gravitate about flat spacetime [5,8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
29
+ page_content=' Various aspects of restricted Weyl symmetry, it spontaneous breaking as well as its role in critical gravity were then explored further in [5–7,9–11] Restricted Weyl symmetry has an analog in gauge theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
30
+ page_content=' The gauge-fixing term (∂µAµ)2 is invariant under the gauge transformation Aµ → Aµ + 1 e∂µf(x) only when the arbitrary smooth function f(x) obeys the condition □f = 0 where □ here represents the flat space d’Alembertian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
31
+ page_content=' Therefore, the gauge-fixing term has a residual gauge symmetry when □f = 0 is satisfied [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
32
+ page_content=' This is the analog to the restricted Weyl symmetry of pure R2 gravity when the conformal factor Ω(x) satisfies □Ω = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
33
+ page_content=' As we will see, this analogy is fruitful as it provides a bridge to the BRST symmetry of pure R2 gravity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
34
+ page_content=' Recent work on the BRST invariance of other gravitational theories can be found in [13,14,16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
35
+ page_content=' In this paper, we consider scenarios where the symmetry of pure R2 gravity is enlarged further.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
36
+ page_content=' We show that when a massless scalar field is added to pure R2 gravity, the action becomes Weyl invariant when the equations of motion are satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
37
+ page_content=' No separate external condition is required to be imposed on the conformal factor Ω(x) as this occurs naturally via the equations of motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
38
+ page_content=' One passes from restricted Weyl invariance to on-shell Weyl invariance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
39
+ page_content=' One can then enlarge the symmetry further to include BRST symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
40
+ page_content=' In analogy with the BRST invariance in gauge theories in the presence of a gauge-fixing term, we establish BRST invariance in the 2 presence of the Weyl-breaking pure R2 gravity term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
41
+ page_content=' The BRST transformations here are not associated with gauge transformations (such as diffeomorphisms) but are a generalization of Weyl (local scale) transformations where the conformal factor is composed of Grassmann variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
42
+ page_content=' Therefore, in contrast to the BRST invariance in gauge theory, it is anomalous since renormalization introduces a scale (leading to the well-known Weyl (conformal) anomaly).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
43
+ page_content=' We show that the spontaneous breaking of the BRST symmetry yields an Einstein action with its own symmetry that is also anomalous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
44
+ page_content=' This is in agreement with previous work where it was shown that when conformal symmetry is spontaneously broken there is conformal anomaly matching in the unbroken and and broken phases [18,19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
45
+ page_content=' The paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
46
+ page_content=' In section 2, we obtain the on-shell Weyl invariance of pure R2 gravity when a massless scalar field is included in the action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
47
+ page_content=' In section 3, we obtain the BRST invariance of pure R2 gravity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
48
+ page_content=' In section 4, we show that the spontaneous breaking of the BRST symmetry yields an Einstein action and that there is a quantum anomaly in both the unbroken and broken sectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
49
+ page_content=' We conclude with section 5 where we summarize our results, provide further physical insights and discuss directions for future work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
50
+ page_content=' We relegate to Appendix A some technical details on the symmetry of the Einstein action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
51
+ page_content=' 2 Pure R2 gravity plus a massless scalar: from restricted to on-shell Weyl invariance The action of pure R2 gravity is given by S = � √−g d4x α R2 (1) where R is the Ricci scalar and α a dimensionless constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
52
+ page_content=' This action is restricted Weyl invariant i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
53
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
54
+ page_content=' it is invariant under the Weyl transformation gµν → Ω2(x) gµν if the conformal factor Ω(x) obeys the condition □Ω(x) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
55
+ page_content=' This invariance stems from the fact that R → R/Ω2 when □Ω(x) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
56
+ page_content=' As already mentioned, this implies that pure R2 gravity has a greater symmetry than global scale symmetry (where Ω(x) would have to be a constant).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
57
+ page_content=' We now show that pure R2 gravity can be Weyl-invariant on-shell when a minimally coupled real massless scalar field is added to the action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
58
+ page_content=' Here, the condition □Ω(x) = 0 is not imposed as an external condition but satisfied automatically by the equations of motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
59
+ page_content=' The action of pure R2 gravity with a minimally coupled real massless scalar field φ is given by Sa = � √−g d4x � α R2 − 1 2 gµν ∂µφ ∂νφ � (2) where φ(x) is a real scalar field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
60
+ page_content=' Under the Weyl transformation gµν → e−2 ǫ φ gµν, where ǫ is 3 a real constant, the Ricci scalar transforms as R → R e2ǫφ − 6 e3ǫ φ □(e−ǫ φ) (3) and √−g → e−4 ǫ φ √−g so that action (2) transforms to Sb = � √−g d4x � α � R2 − 12 R eǫ φ □(e−ǫ φ) + 36 e2ǫ φ (□(e−ǫ φ))2� − 1 2 e−2 ǫ φ gµν ∂µφ ∂νφ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
61
+ page_content=' (4) The equations of motion yield □(e−ǫ φ) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
62
+ page_content=' Therefore, when the equations of motion are satisfied, the above action reduces to Sc = � √−g d4x � α R2 − 1 2 gµν ∂µψ ∂νψ � (5) where ψ is a real massless scalar field (related to the old scalar φ via ψ = e−ǫ φ/ǫ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
63
+ page_content=' Note that the equation of motion for ψ is □ψ = 0 which is equivalent to □(e−ǫ φ) = 0 and consistent with what we previously obtained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
64
+ page_content=' We therefore recover pure R2 gravity with a minimally coupled real massless scalar field ψ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
65
+ page_content=' What happened here is that the restricted Weyl condition □ Ω = 0 with Ω = e−ǫ φ did not have to be imposed as a separate condition because it was satisfied automatically by the equations of motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
66
+ page_content=' In short, pure R2 gravity became Weyl invariant on-shell in the presence of a massless scalar field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
67
+ page_content=' It passed from restricted Weyl invariance to on-shell Weyl invariance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
68
+ page_content=' 3 BRST invariance of pure R2 gravity Before discussing BRST invariance in the case of pure R2 gravity, let us first recall how BRST invariance works in gauge theories in Minkowski spacetime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
69
+ page_content=' For illustrative purposes, we will consider the case of scalar QED.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
70
+ page_content=' The Abelian version of the Faddeev-Popov Lagrangian is then given by [12] L = −1 4 F 2 µν − (Dµφ∗ a)(Dµφa) − m2 φ∗ a φa − 1 2 ξ (∂µ Aµ)2 + ¯c □c (6) where c(x) and ¯c(x) are independent Grassmann-valued fields, φa are a set of complex scalar fields and Dµ is the usual covariant derivative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
71
+ page_content=' The gauge fixing term, 1 2 ξ(∂µ Aµ)2 breaks the gauge symmetry since it is not invariant under the transformation Aµ → Aµ + 1 e ∂µf(x) where f(x) is an arbitrary function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
72
+ page_content=' However, it has a residual symmetry: it is invariant if f(x) obeys the condition □f = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
73
+ page_content=' As previously mentioned, this residual symmetry is the analog of restricted Weyl symmetry in pure R2 gravity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
74
+ page_content=' 4 The equation of motion for c(x) is □c = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
75
+ page_content=' Consider the gauge transformation with f(x) = θ c(x) for arbitrary Grassmann number θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
76
+ page_content=' Then, if the equation of motion for c is satisfied, the scalar QED Lagrangian (6) is invariant under the following transformations Aµ → Aµ + 1 e θ ∂µc(x) φa(x) → eiθ c(x) φa(x) = φa(x) + iθ c(x)φa(x) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
77
+ page_content=' (7) In other words, the equation □f = θ □c = 0 is automatically satisfied on-shell and does not have to be imposed as a separate condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
78
+ page_content=' This is similar to what we saw in the previous section for pure R2 gravity which was invariant under gµν → Ω2 gµν with Ω = e−ǫφ when the equations of motion were satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
79
+ page_content=' If the equation of motion for c is not used, the only term in the Lagrangian (6) which is not invariant under the transformation (7) is (∂µAµ)2 which transforms as (∂µAµ)2 → (∂µAµ)2 + 2 e(∂µAµ)(θ□c) (8) where we used the fact that θ2 = 0 since θ is Grassmann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
80
+ page_content=' Now, if under (7) we also have ¯c transforming as ¯c(x) → ¯c(x) − θ e ξ (∂µAµ) (9) then the scalar QED Lagrangian (6) is invariant without having to use the equation of motion for c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
81
+ page_content=' This is BRST invariance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
82
+ page_content=' The crucial point is that under the BRST transformations given by (7) and (9), the Lagrangian is invariant despite the presence of the gauge-fixing term (∂µAµ)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
83
+ page_content=' We now turn to pure R2 gravity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
84
+ page_content=' Consider the action S = � d4x√−g (α R2 + ¯c □c) (10) where again c(x) and ¯c(x) are independent Grassmann-valued fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
85
+ page_content=' This action is not Weyl- invariant i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
86
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
87
+ page_content=' it is not invariant under the transformation gµν → Ω2(x)gµν where Ω(x) is an arbitrary smooth function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
88
+ page_content=' Consider now the Weyl transformation gµν → e2 θ c(x)gµν = (1 + 2 θ c) gµν (11) where θ is again an arbitrary Grassmann number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
89
+ page_content=' Under this transformation we have √−g α R2 → √−g (α R2 − 12 α R θ □c ) (12) 5 where the following transformations were used: √−g → (1+4 θ c) √−g and R → (1−2 θ c) R− 6 θ □c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
90
+ page_content=' Again, we used that θ2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
91
+ page_content=' Under the transformation (11), □c transforms as □c → (1 − 2 θ c) □c (13) where gµν∂µc ∂νc = 0 was used (this stems from the fact that gµν is symmetric and c is Grassmann).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
92
+ page_content=' The equation of motion for c is □c = 0 and we see from (12) that √−g α R2 is Weyl invariant on-shell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
93
+ page_content=' However, we can dispense with the on-shell condition if we also allow ¯c to transform as ¯c → (1 − 2 θ c) ¯c + 12 α R θ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
94
+ page_content=' (14) We then obtain √−g ¯c □c → √−g (¯c □c + 12 α R θ □c) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
95
+ page_content=' (15) The last term on the right hand side of (15) above cancels precisely the last term on the right hand side of (12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
96
+ page_content=' Therefore, the action (10) is invariant under the combined transformations of (11) and (14) (which we refer to to as BRST transformations).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
97
+ page_content=' This is the BRST invariance of pure R2 gravity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
98
+ page_content=' Note that BRST invariance does not require any on-shell or restricted Weyl condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
99
+ page_content=' It is a generalization of Weyl (conformal) invariance that is valid in the presence of the Weyl-breaking R2 term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
100
+ page_content=' Let us now take a closer look at what is common and what is different between the BRST invariance of pure R2 gravity and the BRST invariance in the gauge theories of particle physics (for concreteness and simplicity, we will consider scalar QED again but the main points apply also to QCD).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
101
+ page_content=' The BRST invariance in scalar QED can be viewed as a generalization of gauge invariance in the presence of the gauge-fixing (and hence gauge-breaking) term (∂µ Aµ)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
102
+ page_content=' The are two points in common between the scalar QED and R2 cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
103
+ page_content=' First, the Ricci scalar R under a Weyl transformation and the term ∂µ Aµ under a gauge transformation both pick up an extra □Φ(x) term (where Φ(x) represents either a conformal factor Ω(x) in a Weyl transformation or a function f(x) in a gauge transformation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
104
+ page_content=' Recall that in a BRST transformation, Φ(x) is a product of a Grassmann number θ with a Grassmann field (the product yields a commuting (bosonic) quantity).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
105
+ page_content=' The second point in common is that R and ∂µ Aµ are both squared.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
106
+ page_content=' The squaring yields a (□Φ(x))2 term which is zero since θ2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
107
+ page_content=' The squaring still leaves one extra □Φ(x) term and this is cancelled out in both cases via the transformation property of a Grassmann field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
108
+ page_content=' These two common points render the analogy between the two cases quite strong.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
109
+ page_content=' However, there is one important difference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
110
+ page_content=' In scalar QED (and in QCD) , the BRST transformations are associated with gauge transformations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
111
+ page_content=' The BRST invariance of pure R2 gravity that we are considering here is not associated with gauge transformations (such as diffeomorphisms) but with Weyl (local scale) transformations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
112
+ page_content=' We will see that this difference plays an important role when the theory is quantized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
113
+ page_content=' 6 4 Spontaneous breaking of BRST symmetry We now show that the BRST-invariant action S = � d4x√−g (αR2 + ¯c □c) (16) is conformally equivalent to an action that involves the Einstein-Hilbert term;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
114
+ page_content=' this will involve the spontaneous breaking of BRST symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
115
+ page_content=' The starting point is to introduce a auxiliary field σ(x) to rewrite the above action into the equivalent form S1 = � d4x√−g (−α(b σ + R)2 + αR2 + ¯c □c) � d4x√−g (−α b2 σ2 − 2 α b R σ + ¯c □c) (17) where b is a real non-zero constant with dimensions of mass squared and σ(x) is dimensionless.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
116
+ page_content=' Action (17) is equivalent to the original action (16) since adding the squared term in the first line of (17) does not alter anything (classically, the equations of motion are unaffected and quantum mechanically, the path integral over σ is a Gaussian which yields a constant).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
117
+ page_content=' The equivalent action (17) is also BRST invariant;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
118
+ page_content=' it is invariant under the following transforma- tions: gµν → (1 + 2 θ c) gµν ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
119
+ page_content=' ¯c → (1 − 2 θ c) ¯c − 12 θ α b σ ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
120
+ page_content=' σ → (1 − 2θ c) σ (18) where θ is again a Grassmann number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
121
+ page_content=' Note that the BRST invariance requires the auxiliary field σ to transform besides the fields gµν and ¯c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
122
+ page_content=' We now perform the following conformal (Weyl) transformation: gµν → σ−1 gµν ¯c → σ ¯c (19) which leads to √−g → σ−2 √−g and R → σ R − 6 σ3/2□(σ−1/2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
123
+ page_content=' Under the above conformal transformation, action (17) becomes S2 = � d4x√−g (−α b2 − 2 α b R + 3α b σ2 ∂µσ ∂µσ + ¯c □c − 1 σ ¯c ∂µc ∂µσ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
124
+ page_content=' (20) The above action is no longer invariant under the BRST transformations given by (18).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
125
+ page_content=' The BRST symmetry has been spontaneously broken.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
126
+ page_content=' The factor σ−1 appearing in the confor- mal transformation (19) is valid only for non-zero σ so that the VEV (vacuum expectation value) of the field σ must be non-zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
127
+ page_content=' The VEV is therefore not invariant under the BRST transformation σ → (1 − 2θ c) σ leading to the spontaneous breaking of the BRST symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
128
+ page_content=' 7 We can identify −2 α b R as an Einstein-Hilbert term if we equate −2 α b with 1 16π G where G is Newton’s constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
129
+ page_content=' The constant term −α b2 can then be associated with a cosmological constant Λ = −b/4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
130
+ page_content=' Note that though −2 α b is positive, the constant b can be either positive or negative (but not zero).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
131
+ page_content=' This implies that the cosmological constant can be either positive corresponding to a de Sitter (dS) background or negative corresponding to an anti-de Sitter (AdS) background but it cannot be identically zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
132
+ page_content=' We can then express (20) as the following Einstein action, SE = � d4x√−g � 1 16π G(R − 2 Λ) + 3α b σ2 ∂µσ ∂µσ + ¯c □c − 1 σ ¯c ∂µc ∂µσ) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
133
+ page_content=' (21) We have left the constant 3 α b in the action for simplicity but it is not an independent constant;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
134
+ page_content=' it is equal to −3 32 πG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
135
+ page_content=' We therefore obtain an Einstein-Hilbert action with non-zero cosmological constant, a kinetic term for the scalar σ (which we will express in canonical form later) and an interaction term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
136
+ page_content=' Recall that σ is non-zero so that divisions by σ pose no issue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
137
+ page_content=' It is well-known that in spontaneously broken theories, the vacuum breaks the symmetry but it is not actually broken in the Lagrangian but manifested or realized in a different way [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
138
+ page_content=' It can be directly verified (see Appendix A) that the Einstein action (21) is invariant under the following transformations: σ → (1 − 2θ c) σ , gµν → gµν and ¯c → ¯c − 12 θ α b .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
139
+ page_content=' (22) The BRST symmetry of action (17) manifests itself in the Einstein action (21) via its symmetry under the above transformations (22).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
140
+ page_content=' We now show how transformation (22) stems from the BRST transformations (18).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
141
+ page_content=' In the Einstein action and transformation (22) label the metric and the barred Grassmann field with a subscript E i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
142
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
143
+ page_content=' gµνE and ¯cE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
144
+ page_content=' In action (17) and transformation (18) we leave gµν and ¯c as is.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
145
+ page_content=' Then the conformal transformation (19) yields gµνE = σ gµν and ¯cE = σ−1 ¯c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
146
+ page_content=' Under the BRST transformations (18) we obtain gµνE = σ gµν → (1 − 2 θ c) σ (1 + 2 θ c) gµν = σ gµν = gµνE and ¯cE = σ−1 ¯c → (1 + 2 θ c) σ−1� (1 − 2 θ c) ¯c − 12 θ α b σ � = σ−1¯c − 12 θ α b = ¯cE − 12 θ α b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
147
+ page_content=' We have therefore obtained the transformations gµνE → gµνE and ¯cE → ¯cE − 12 θ α b which correspond to those in (22).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
148
+ page_content=' Note that we used σ → (1 − 2θ c) σ in (18) to derive this, so the transformation of σ is also part of (22).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
149
+ page_content=' We can define a real massless scalar field ψ(x) = √ −3α b ln σ(x) so that the kinetic term for σ is expressed in canonical form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
150
+ page_content=' The Einstein action (21) expressed in terms of the field ψ is S = � d4x√−g � 1 16π G(R − 2 Λ) − ∂µψ ∂µψ + ¯c □c − 1 √ −3α b ¯c ∂µc ∂µψ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
151
+ page_content=' (23) The massless scalar field ψ corresponds to the Nambu-Goldstone boson of the broken sector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
152
+ page_content=' Under transformation (22), the field ψ transforms as a shift ψ → ψ− √ −3α b 2 θ c (whereas ¯c → ¯c−12 θ α b and gµν → gµν).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
153
+ page_content=' The above action (23) is invariant under those transformations (see 8 Appendix A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
154
+ page_content=' This is in accord with what we expect from spontaneously broken theories: the original symmetry in the Lagrangian manifests itself in the broken sector as a shift symmetry of the Goldstone bosons [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
155
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
156
+ page_content='1 Quantum anomaly We saw that the action (17) is BRST invariant under the following transformations: gµν → (1 + 2 θ c) gµν , ¯c → (1 − 2 θ c) ¯c − 12 θ α b σ , σ → (1 − 2θ c) σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
157
+ page_content=' Each transformation involves a Weyl transformation where the conformal factor is expressed in terms of of a prod- uct of two Grassmann variables The BRST symmetry is therefore a generalization of Weyl (conformal) symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
158
+ page_content=' After quantization, renormalization introduces a scale which breaks the BRST symmetry since it automatically breaks Weyl symmetry (leading to the well-known Weyl (conformal) anomaly).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
159
+ page_content=' So the BRST symmetry of pure R2 gravity is anomalous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
160
+ page_content=' This is in contrast to the BRST invariance of gauge theories like QCD which have no anomaly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
161
+ page_content=' After the BRST symmetry is spontaneously broken and we obtain the Einstein action (21), we saw that the BRST symmetry manifests itself now in the Einstein action as a symmetry under the transformations (22).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
162
+ page_content=' This symmetry is also anomalous since the transformation of the field σ is a Weyl transformation and renormalization breaks this symmetry (leading again to the Weyl (conformal anomaly).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
163
+ page_content=' Another way to see this is to note that the only fields that transform in (22) are ¯c and σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
164
+ page_content=' The transformation for ¯c is simply a constant shift so that its path integral measure D¯c is invariant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
165
+ page_content=' However, σ undergoes a Weyl transformation and this introduces a non-trivial Jacobian J (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
166
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
167
+ page_content=' J ̸= 1) to the measure Dσ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
168
+ page_content=' Since the measure is not invariant, this implies there is an anomaly [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
169
+ page_content=' So the symmetry in the unbroken phase and its associated symmetry in the broken phase are both anomalous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
170
+ page_content=' Our finding here is in accord with previous work that shows that when the Weyl or conformal symmetry is spontaneously broken there is conformal anomaly matching between the unbroken and broken phases [18,19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
171
+ page_content=' 5 Conclusion In the last six years or so, we have kept discovering new aspects of pure R2 gravity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
172
+ page_content=' A non- exhaustive list includes its unitarity among quadratic gravity theories [4], its conformal equiv- alence to Einstein gravity with non-zero cosmological constant and massless scalar field [1–5], its restricted Weyl symmetry [7,10,11], its spontaneous symmetry breaking to Einstein grav- ity [3,5] and the lack of a propagating graviton when the theory is linearized about a Minkowski background [4] (where there is no Einstein equivalence since the cosmological constant is zero).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
173
+ page_content=' In this paper, we have gained further insights into this theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
174
+ page_content=' We saw that pure R2 gravity has an analog with the gauge-fixing term (∂µAµ)2 in gauge theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
175
+ page_content=' R2 is not invariant under 9 the Weyl transformation gµν → Ω2(x) gµν just like (∂µ Aµ)2 is not invariant under the gauge transformation Aµ → Aµ + 1 e ∂µf(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
176
+ page_content=' However, each have a residual symmetry (when □Ω = 0 is satisfied in the gravity case and □f = 0 is satisfied in the gauge case).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
177
+ page_content=' This analogy opened the door towards enlarging the symmetry of pure R2 gravity to include BRST symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
178
+ page_content=' We first showed that when a massless scalars field was included in the pure R2 action, the condition □Ω = 0 could be met automatically when the equations of motion were satisfied i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
179
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
180
+ page_content=' we went from restricted Weyl to on-shell Weyl invariance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
181
+ page_content=' Finally, we obtained the BRST invariance of pure R2 gravity where no restricted Weyl or on-shell condition is required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
182
+ page_content=' The BRST transformations involve Weyl transformations where the conformal factor is composed of products of Grassmann variables (the conformal factor itself is commutative).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
183
+ page_content=' The important point is that the BRST invariance exists despite the Weyl-breaking R2 term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
184
+ page_content=' There is one important difference between the BRST symmetry in gauge theories like QCD and the BRST symmetry that we have considered here for pure R2 gravity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
185
+ page_content=' Gauge invari- ance in particle physics is preserved after quantization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
186
+ page_content=' The BRST invariance of QCD is a generalization of gauge invariance so that it is also preserved after quantization;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
187
+ page_content=' there is no anomaly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
188
+ page_content=' In contrast to gauge symmetry, global scale or Weyl (local scale) symmetry is broken after quantization since renormalization introduces a scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
189
+ page_content=' The BRST symmetry of pure R2 gravity is a generalization of Weyl (conformal) symmetry so that it is also broken after quan- tization leading to the well-known Weyl (conformal) anomaly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
190
+ page_content=' After the spontaneous breaking of the BRST symnmetry, we obtained an Einstein action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
191
+ page_content=' We showed that this action has its own symmetry and that it is also anomalous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
192
+ page_content=' This is in accord with previous work that shows that when the Weyl (conformal) symmetry is spontaneously broken there is conformal anomaly matching between the unbroken and broken sectors [18,19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
193
+ page_content=' The focus of this paper was pure R2 gravity because of its many special and attractive fea- tures that we previously mentioned.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
194
+ page_content=' All other quadratic gravity theories (like Weyl-squared, Riemann-squared, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
195
+ page_content=' ), apart from boundary terms, can be expressed as a linear combina- tion of R2 and RµνRµν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
196
+ page_content=' The latter term, the square of the Ricci tensor, appears in quantum corrections to General Relativity (GR) and even though it does not constitute a valid UV completion of GR due to its non-unitarity (yields a massive spin two ghost [4, 20]), it still makes a well-known calculable short-range correction to the Newtonian potential [12,21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
197
+ page_content=' Like R2, the term RµνRµν is not Weyl-invariant so it would be of interest to see if it can be BRST invariant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
198
+ page_content=' It is not in the form of a scalar squared like (∂µAµ)2 or R2, so one may be inclined to think that the BRST formalism would not apply here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
199
+ page_content=' However, like pure R2, it was shown in [7] that RµνRµν is restricted Weyl invariant (up to a boundary term).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
200
+ page_content=' This suggests that the procedure used to establish the BRST invariance of pure R2 gravity might in the end also work for this quadratic theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
201
+ page_content=' It would therefore be worthwhile and interesting to investigate this further.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
202
+ page_content=' 10 Acknowledgments A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
203
+ page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
204
+ page_content=' acknowledges support from a discovery grant of the National Science and Engineering Research Council of Canada (NSERC).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
205
+ page_content=' A Symmetry of Einsten Action In this appendix we show that the Einstein action (21) given by SE = � d4x√−g � 1 16π G(R − 2 Λ) + 3α b σ2 ∂µσ ∂µσ + ¯c □c − 1 σ ¯c ∂µc ∂µσ) � (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
206
+ page_content='1) is invariant under the transformations (22) given by σ → (1 − 2θ c) σ , gµν → gµν and ¯c → ¯c − 12 θ α b .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
207
+ page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
208
+ page_content='2) Under the above transformation, the metric gµν does not change so that √−g as well as the term √−g 1 16π G(R − 2 Λ) does not change.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
209
+ page_content=' The other terms in the above Einstein action transform as 3α b σ2 ∂µσ ∂µσ → 3α b σ2 ∂µσ ∂µσ − 12 θ α b σ ∂µc ∂µσ − 1 σ ¯c ∂µc ∂µσ) → − 1 σ ¯c ∂µc ∂µσ + 12 θ α b σ ∂µc ∂µσ ¯c □c → ¯c □c − 12 θ α b □c (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
210
+ page_content='3) where we used that θ2 = 0 (since θ is a Grassmann number) and that gµν ∂µc ∂νc = 0 since gµν is symmetric and c(x) and its derivatives are Grassmann fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
211
+ page_content=' We see that the extra term − 12 θ α b σ ∂µc ∂µσ in the first line of (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
212
+ page_content='3) is canceled exactly by the extra term in the second line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
213
+ page_content=' The extra term in the third line, −12 θ α b □c, where −12 θ α b is a constant, does not cancel out with any other extra term in (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
214
+ page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
215
+ page_content=' However, √−g □c is a total derivative that yields an inconsequential boundary term in the action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
216
+ page_content=' We have therefore shown that action (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
217
+ page_content='1) is invariant under transformations (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
218
+ page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
219
+ page_content=' We saw in section 4 that the Einstein action (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
220
+ page_content='1) can be expressed in terms of a real massless scalar field ψ(x) = √ −3α b ln σ(x) as action (23): S = � d4x√−g � 1 16π G(R − 2 Λ) − ∂µψ ∂µψ + ¯c □c − 1 √ −3α b ¯c ∂µc ∂µψ � (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
221
+ page_content='4) where ψ was identified as the Nambu-Goldstone boson of the broken sector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
222
+ page_content=' We stated in section 4 that the action (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
223
+ page_content='4) was invariant under the following transformations: ψ → ψ − √ −3α b 2 θ c , ¯c → ¯c − 12 θ α b and gµν → gµν .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
224
+ page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
225
+ page_content='5) 11 We now verify this statement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
226
+ page_content=' Under (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
227
+ page_content='5) the last three terms in action (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
228
+ page_content='4) transform as: − ∂µψ ∂µψ → −∂µψ ∂µψ + 4 θ √ −3 α b ∂µψ ∂µc − 1 √ −3α b ¯c ∂µc ∂µψ → − 1 √ −3α b ¯c ∂µc ∂µψ − 4 θ √ −3 α b ∂µψ ∂µc ¯c □c → ¯c □c − 12 θ α b □c .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
229
+ page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
230
+ page_content='6) We see that the extra term +4 θ √ −3 α b ∂µψ ∂µc in the first line above is cancelled by the extra term on the second line which is equal to its negative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
231
+ page_content=' The only extra term that is not cancelled is the term −12 θ α b □c appearing in the last line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
232
+ page_content=' However, √−g □c is a total derivative which yields a boundary term with no physical consequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
233
+ page_content=' We have therefore verified that the Einstein action (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
234
+ page_content='4) is indeed invariant under the transformations (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
235
+ page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
236
+ page_content=' References [1] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
237
+ page_content=' Kounnas, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
238
+ page_content=' L¨ust and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
239
+ page_content=' Toumbas, R2 inflation from scale invariant supergravity and anomaly free superstrings with fluxes, Fortsch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
240
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
241
+ page_content=' 63, 12 (2015) [arXiv:1409.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
242
+ page_content='7076].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
243
+ page_content=' [2] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
244
+ page_content=' Kehagias, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
245
+ page_content=' Kounnas, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
246
+ page_content=' L¨ust and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
247
+ page_content=' Riotto, Black Hole Solutions in R2 Gravity, JHEP 05, 143 (2015)[arXiv:1502.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
248
+ page_content='04192].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
249
+ page_content=' [3] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
250
+ page_content=' Edery and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
251
+ page_content=' Nakayama, Generating Einstein gravity, cosmological constant and Higgs mass from restricted Weyl invariance, Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
252
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
253
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
254
+ page_content=' A 30, 1550152 (2015) [arXiv:1502.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
255
+ page_content='05932].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
256
+ page_content=' [4] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
257
+ page_content=' Alvarez-Gaume, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
258
+ page_content=' Kehagias, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
259
+ page_content=' Kounnas, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
260
+ page_content=' L¨ust and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
261
+ page_content=' Riotto, Aspects of Quadratic Gravity, Fortsch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
262
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
263
+ page_content=' 64, 176 (2016) [arXiv:1505.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
264
+ page_content='07657].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
265
+ page_content=' [5] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
266
+ page_content=' Edery and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
267
+ page_content=' Nakayama, Gravitating magnetic monopole via the spontaneous symmetry breaking of pure R2 gravity, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
268
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
269
+ page_content=' D 98 (2018) 064011 [arXiv:1807.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
270
+ page_content='07004].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
271
+ page_content=' [6] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
272
+ page_content=' Edery and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
273
+ page_content=' Nakayama, Palatini formulation of pure R2 gravity yields Einstein gravity with no massless scalar, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
274
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
275
+ page_content=' D 99, 124018 (2019) [arXiv:1902.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
276
+ page_content='07876].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
277
+ page_content=' [7] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
278
+ page_content=' Edery and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
279
+ page_content=' Nakayama, Restricted Weyl invariance in four-dimensional curved space- time, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
280
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
281
+ page_content=' D 90, 043007 (2014) [arXiv:1406.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
282
+ page_content='0060].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
283
+ page_content=' [8] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
284
+ page_content=' Edery, Pure R2 gravity can gravitate about a flat background, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
285
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
286
+ page_content=' Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
287
+ page_content=' Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
288
+ page_content=' 1956, 012005 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
289
+ page_content=' [9] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
290
+ page_content=' Edery and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
291
+ page_content=' Nakayama, Critical gravity from four dimensional scale invariant gravity, JHEP 11, 169 (2019) [arXiv:1908.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
292
+ page_content='08778].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
293
+ page_content=' 12 [10] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
294
+ page_content=' Oda, Restricted Weyl symmetry, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
295
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
296
+ page_content=' D 102, 045008 (2020)[arXiv:2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
297
+ page_content='04771].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
298
+ page_content=' [11] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
299
+ page_content=' Oda, Restricted Weyl Symmetry and Spontaneous Symmetry Breakdown of Conformal Symmetry, Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
300
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
301
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
302
+ page_content=' A 36, 2150203 (2021) [arXiv:2104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
303
+ page_content='04694].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
304
+ page_content=' [12] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
305
+ page_content=' Schwartz, Quantum Field Theory and the Standard Model, (Cambridge University Press, Cambridge, UK, 2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
306
+ page_content=' [13] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
307
+ page_content=' Oda and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
308
+ page_content=' Saake, BRST formalism of Weyl conformal gravity, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
309
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
310
+ page_content=' D 106, 106007 (2022) [arXiv:2209.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
311
+ page_content='14533].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
312
+ page_content=' [14] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
313
+ page_content=' Prinz, The BRST Double Complex for the Coupling of Gravity to Gauge Theories, [arXiv:2206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
314
+ page_content='00780].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
315
+ page_content=' [15] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
316
+ page_content=' Kugo, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
317
+ page_content=' Nakayama and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
318
+ page_content='Ohta, Covariant BRST quantization of unimodular grav- ity: Formulation with antisymmetric tensor ghosts, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
319
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
320
+ page_content=' D 105, 086006 (2022), [arXiv:2202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
321
+ page_content='03626].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
322
+ page_content=' [16] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
323
+ page_content=' Berezhiani, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
324
+ page_content=' Dvali and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
325
+ page_content=' Sakhelashvili, de Sitter space as a BRST invariant coherent state of gravitons Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
326
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
327
+ page_content=' D 105, 025022 (2022) [arXiv:2111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
328
+ page_content='12022].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
329
+ page_content=' [17] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
330
+ page_content=' Fujikawa and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
331
+ page_content=' Suzuki, Path Integrals and Quantum Anomalies, (Oxford University Press, Oxford, UK, 2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
332
+ page_content=' [18] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
333
+ page_content=' Schwimmer and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
334
+ page_content=' Theisen, Spontaneous Breaking of Conformal Invariance and Trace Anomaly Matching,Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
335
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
336
+ page_content=' B 847, 590 (2011) [arXiv:1011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
337
+ page_content='0696.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
338
+ page_content=' [19] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
339
+ page_content=' Cabo-Bizet, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
340
+ page_content=' Gava and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
341
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
342
+ page_content=' Narain, Holography and Conformal Anomaly Matching, JHEP 11,044 (2013) [arXiv:1307.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
343
+ page_content='3784].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
344
+ page_content=' [20] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
345
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
346
+ page_content=' Stelle, Renormalization of Higher Derivative Quantum Gravity, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
347
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
348
+ page_content=' D 16, 953 (1977).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
349
+ page_content=' [21] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
350
+ page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
351
+ page_content=' Donoghue, Leading quantum correction to the Newtonian potential, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
352
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
353
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
354
+ page_content=' 72, 2996 (1994).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
355
+ page_content=' 13' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFAT4oBgHgl3EQfpB3g/content/2301.08638v1.pdf'}
ANAzT4oBgHgl3EQfTPxG/content/2301.01245v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19e4ce288148d18f1bd09ca6825176f71c9a8680fbcc1fb616f5569120d1e6b6
3
+ size 3351789
ANAzT4oBgHgl3EQfTPxG/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6570720f44da280a375a564069c09602121a87ced5ae3be677e4d24faa28867f
3
+ size 2162733
ANE3T4oBgHgl3EQfTQrd/content/tmp_files/2301.04441v1.pdf.txt ADDED
@@ -0,0 +1,919 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Wasserstein Gradient Flows of the Discrepancy
2
+ with Distance Kernel on the Line⋆
3
+ Johannes Hertrich, Robert Beinert, Manuel Gräf, and Gabriele Steidl
4
+ TU Berlin, Institute of Mathematics, Straße des 17. Juni 136, 10623 Berlin, Germany
5
+ {hertrich,beinert, graef,steidl}@math.tu-berlin.de
6
+ https://tu.berlin/imageanalysis/
7
+ Abstract. This paper provides results on Wasserstein gradient flows between measures on
8
+ the real line. Utilizing the isometric embedding of the Wasserstein space P2(R) into the Hilbert
9
+ space L2((0, 1)), Wasserstein gradient flows of functionals on P2(R) can be characterized as
10
+ subgradient flows of associated functionals on L2((0, 1)). For the maximum mean discrepancy
11
+ functional Fν := D2
12
+ K(·, ν) with the non-smooth negative distance kernel K(x, y) = −|x − y|,
13
+ we deduce a formula for the associated functional. This functional appears to be convex,
14
+ and we show that Fν is convex along (generalized) geodesics. For the Dirac measure ν = δq,
15
+ q ∈ R as end point of the flow, this enables us to determine the Wasserstein gradient flows
16
+ analytically. Various examples of Wasserstein gradient flows are given for illustration.
17
+ Keywords: Maximum Mean Discrepancy · Wasserstein gradient flows · Riesz kernel.
18
+ 1
19
+ Introduction
20
+ Gradient flows provide a powerful tool for computing the minimizers of modeling functionals in
21
+ certain applications. In particular, gradient flows on the Wasserstein space are an interesting field
22
+ of research that combines optimization with (stochastic) dynamical systems and differential geom-
23
+ etry. For a good overview on the theory, we refer to the books of Ambrosio, Gigli and Savaré [3],
24
+ and Santambrogio [31]. Besides Wasserstein gradient flows of the Kullback–Leibler (KL) functional
25
+ KL(·, ν) and the associated Fokker–Planck equation related to the overdamped Langevin dynamics,
26
+ which were extensively examined in the literature, see, e.g., [19,26,28], flows of maximum mean
27
+ discrepancy (MMD) functionals Fν := D2
28
+ K(·, ν) became popular in machine learning [4] and image
29
+ processing [14]. On the other hand, MMDs were used as loss functions in generative adversarial
30
+ networks [6,13,22]. Wasserstein gradient flows of MMDs are not restricted to absolutely continuous
31
+ measures and have a rich structure depending on the kernel. So the authors of [4] showed that for
32
+ smooth kernels K, particle flows are indeed Wasserstein gradient flows meaning that Wasserstein
33
+ flows starting at an empirical measure remain empirical measures and coincide with usual gradi-
34
+ ent descent flows in Rd. The situation changes for non-smooth kernels like the negative distance,
35
+ where empirical measures can become absolutely continuous ones and conversely, i.e. particles may
36
+ explode. The concrete behavior of the flow depends also on the dimension, see [11,12,17,18]. The
37
+ crucial part is the treatment of the so-called interaction energy within the discrepancy, which is
38
+ repulsive and responsible for the proper spread of the measure. This nicely links to another field of
39
+ mathematics, namely potential theory [21,30].
40
+ ⋆ Supported by the German Research Foundation (DFG) [grant numbers STE571/14-1, STE 571/16-1]
41
+ and the Federal Ministry of Education and Research (BMBF, Germany) [grant number 13N15754].
42
+ arXiv:2301.04441v1 [math.OC] 11 Jan 2023
43
+
44
+ 2
45
+ J. Hertrich et al.
46
+ In this paper, we are just concerned with Wasserstein gradient flows on the real line. Optimal
47
+ transport techniques that reduce the original transport to those on the line were successfully used
48
+ in several applications [1,5,9,10,20,27]. When working on R, we can exploit quantile functions of
49
+ measures to embed the Wasserstein space P2(R) into the Hilbert space of (equivalence classes) of
50
+ square integrable functions L2((0, 1)). Then, instead of dealing with functionals on P2(R), we can
51
+ just work with associated functionals which are uniquely defined on a cone of L2((0, 1)). If the asso-
52
+ ciated functional is convex, we will see that the original one is convex along (generalized) geodesics,
53
+ which is a crucial property for the uniqueness of the Wasserstein gradient flow. Furthermore, we
54
+ can characterize Wasserstein gradient flows using regular subdifferentials in L2((0, 1)). Note that
55
+ the special case of Wasserstein gradient flows of the interaction energy was already considered in
56
+ [7]. We will have a special look at the Wasserstein gradient flow of Fδq := D2
57
+ K(·, δq) for the negative
58
+ distance kernel, i.e. flows ending in δq. We will deduce an analytic formula for this flow and provide
59
+ several examples to illustrate its behavior.
60
+ Outline of the paper. In Section 2, we recall the basic notation on Wasserstein gradient flows in d
61
+ dimensions. Then, in Section 3, we show how these flows can be simpler treated as gradient descent
62
+ flows of an associated function on the Hilbert space L2((0, 1)). MMDs are introduced in Section 4.
63
+ Then, in Section 5, we restrict our attention again to the real line and show how the associated
64
+ functional looks for the MMD with negative distance kernel. In particular, this functional is convex.
65
+ For the Dirac measure ν = δq, q ∈ R, we give an explicit formula for the Wasserstein gradient flow
66
+ of the MMD functional. Examples illustrating the behavior of the Wasserstein flows are provided
67
+ in Section 6. Finally, conclusions are drawn in Section 7.
68
+ 2
69
+ Wasserstein Gradient Flows
70
+ Let M(Rd) denote the space of σ-additive, signed measures and P(Rd) the set of probability
71
+ measures. For µ ∈ M(Rd) and measurable T : Rd → Rn, the push-forward of µ via T is given by
72
+ T#µ := µ ◦ T −1. We consider the Wasserstein space P2(Rd) := {µ ∈ P(Rd): �
73
+ Rd ∥x∥2
74
+ 2 dµ(x) < ∞}
75
+ equipped with the Wasserstein distance W2 : P2(Rd) × P2(Rd) → [0, ∞),
76
+ W 2
77
+ 2 (µ, ν) :=
78
+ min
79
+ π∈Γ (µ,ν)
80
+
81
+ Rd×Rd ∥x − y∥2
82
+ 2 dπ(x, y),
83
+ µ, ν ∈ P2(Rd),
84
+ (1)
85
+ where Γ(µ, ν) := {π ∈ P2(Rd × Rd) : (π1)#π = µ, (π2)#π = ν} and πi(x) := xi, i = 1, 2 for
86
+ x = (x1, x2). The set of optimal transport plans π realizing the minimum in (1) is denoted by
87
+ Γ opt(µ, ν). A curve γ : I → P2(Rd) on an interval I ⊂ R, is called a geodesic if there exists a
88
+ constant C ≥ 0 such that
89
+ W2(γ(t1), γ(t2)) = C|t2 − t1|,
90
+ for all t1, t2 ∈ I.
91
+ The Wasserstein space is a geodesic space, meaning that any two measures µ, ν ∈ P2(Rd) can be
92
+ connected by a geodesic. The regular tangent space at µ ∈ P2(Rd) is given by
93
+ TµP2(Rd) :=
94
+
95
+ λ(T − Id) : (Id, T)#µ ∈ Γ opt(µ, T#µ), λ > 0
96
+ �L2,µ.
97
+ Here L2,µ denotes the Bochner space of (equivalence classes of) functions ξ : Rd → Rd with
98
+ finite ∥ξ∥2
99
+ L2,µ :=
100
+
101
+ Rd ∥ξ(x)∥2
102
+ 2 dµ(x) < ∞. Note that TµP2(Rd) is not a “classical” tangent space, in
103
+
104
+ Wasserstein Gradient Flows of the Discrepancy with Distance Kernel on the Line
105
+ 3
106
+ particular it is an infinite dimensional subspace of L2,µ if µ is absolutely continuous and just Rd
107
+ if µ = δx, x ∈ Rd. In particular, this means that the Wasserstein space has only a “manifold-like”
108
+ structure.
109
+ For λ ∈ R, a function F : P2(Rd) → (−∞, +∞] is called λ-convex along geodesics if, for every
110
+ µ, ν ∈ dom F := {µ ∈ P2(Rd) : F(µ) < ∞}, there exists at least one geodesic γ : [0, 1] → P2(Rd)
111
+ between µ and ν such that
112
+ F(γ(t)) ≤ (1 − t) F(µ) + t F(ν) − λ
113
+ 2 t(1 − t) W 2
114
+ 2 (µ, ν),
115
+ t ∈ [0, 1].
116
+ In the case λ = 0, we just speak about convex functions. For a proper and lower semi-continuous
117
+ (lsc) function F : P2(Rd) → (−∞, ∞] and µ ∈ P2(Rd), the reduced Fréchet subdifferential at µ is
118
+ defined as
119
+ ∂F(µ) :=
120
+
121
+ ξ ∈ L2,µ : F(ν) − F(µ) ≥
122
+ inf
123
+ π∈Γ opt(µ,ν)
124
+
125
+ R2d
126
+ ⟨ξ(x), y − x⟩ dπ(x, y) + o(W2(µ, ν)) ∀ν ∈ P2(Rd)
127
+
128
+ . (2)
129
+ A curve γ : I → P2(Rd) is absolutely continuous, if there exists a Borel velocity field vt : Rd → Rd
130
+ with
131
+
132
+ I ∥vt∥L2,γ(t) dt < +∞ such that
133
+ ∂tγ(t) + ∇x · (vt γ(t)) = 0
134
+ (3)
135
+ on I × Rd in the distributive sense, i.e., for all ϕ ∈ C∞
136
+ c (I × Rd) it holds
137
+
138
+ I
139
+
140
+ Rd ∂tϕ(t, x) + vt(x) · ∇x ϕ(t, x) dγ(t) dt = 0.
141
+ A locally absolutely continuous curve γ : (0, +∞) → P2(Rd) with velocity field vt ∈ Tγ(t)P2(Rd) is
142
+ called a Wasserstein gradient flow with respect to F : P2(Rd) → (−∞, +∞] if
143
+ vt ∈ −∂F(γ(t)),
144
+ for a.e. t > 0.
145
+ (4)
146
+ 3
147
+ Wasserstein Gradient Flows on the Line
148
+ Now we restrict our attention to d = 1, i.e., we work on the real line. We will see that the above
149
+ notation simplifies since there is an isometric embedding of P2(R) into L2((0, 1)). To this end, we
150
+ consider the cumulative distribution function Rµ : R → [0, 1] of µ ∈ P2(R), which is defined by
151
+ Rµ(x) := µ((−∞, x]), x ∈ R. It is non-decreasing and right-continuous with limx→−∞ Rµ(x) = 0 as
152
+ well as limx→∞ Rµ(x) = 1. The quantile function Qµ : (0, 1) → R is the generalized inverse of Rµ
153
+ given by
154
+ Qµ(p) := min{x ∈ R: Rµ(x) ≥ p},
155
+ p ∈ (0, 1).
156
+ It is non-decreasing and left-continuous. The quantile functions form a convex cone C((0, 1)) :=
157
+ {Q ∈ L2((0, 1)) : Q nondecreasing} in L2((0, 1)). Note that both the distribution and quantile
158
+ functions are continuous except for at most countably many jumps. For a good overview see [29,
159
+ § 1.1]. By the following theorem, the mapping µ �→ Qµ is an isometric embedding of P2(R) into
160
+ L2((0, 1)).
161
+ Theorem 1 ([32, Thm 2.18]). For µ, ν ∈ P2(R), the quantile function Qµ ∈ C((0, 1)) satisfies
162
+ µ = (Qµ)#λ(0,1) and
163
+ W 2
164
+ 2 (µ, ν) =
165
+ � 1
166
+ 0
167
+ |Qµ(s) − Qν(s)|2ds.
168
+
169
+ 4
170
+ J. Hertrich et al.
171
+ Next we will see that instead of working with functionals F : P2(R) → (−∞, +∞], we can just
172
+ deal with associated functionals F: L2((0, 1)) → (−∞, ∞] fulfilling F(Qµ) := F(µ). Note that F
173
+ is defined in this way only on C((0, 1)), and there exist several continuous extensions to the whole
174
+ linear space L2((0, 1)). Instead of the extended Fréchet subdifferential (2), we will use the regular
175
+ subdifferential in L2((0, 1)) defined by
176
+ ∂G(f) :=
177
+
178
+ h ∈ L2((0, 1)) : G(g) ≥ G(f) + ⟨h, g − f⟩ + o(∥g − f∥L2) ∀g ∈ L2((0, 1))
179
+
180
+ .
181
+ The following theorem characterizes Wasserstein gradient flows by this regular subdifferential and
182
+ states a convexity relation between F : P2(R) → (−∞, +∞] and the associated functional F.
183
+ Theorem 2. i) Let γ : (0, ∞) → P2(R) be a locally absolutely continuous curve and F: L2((0, 1)) →
184
+ (−∞, ∞] such that the pointwise derivative ∂tQγ(t) exists and fulfills the L2 subgradient equation
185
+ ∂tQγ(t) ∈ −∂F(Qγ(t)),
186
+ for almost every t ∈ (0, +∞).
187
+ Then γ is a Wasserstein gradient flow with respect to the functional F : P2(R) → (−∞, +∞] defined
188
+ by F(µ) := F(Qµ).
189
+ ii) If F : C((0, 1)) → (−∞, ∞] is convex, then F(µ) := F(Qµ) is convex along geodesics.
190
+ Proof. i) Since γ is (locally) absolute continuous, the velocity field vt from (3) fulfills by [3,
191
+ Prop 8.4.6] for almost every t ∈ (0, ∞) the relation
192
+ 0 = lim
193
+ h→0
194
+ W2(γ(t + h), (Id + hvt)#γ(t))
195
+ |h|
196
+ = lim
197
+ h→0
198
+ W2((Qγ(t+h))#λ(0,1),
199
+
200
+ Qγ(t) + h(vt ◦ Qγ(t))
201
+
202
+ #λ(0,1))
203
+ |h|
204
+ = lim
205
+ h→0
206
+ ���Qγ(t+h) − Qγ(t)
207
+ h
208
+ − vt ◦ Qγ(t)
209
+ ���
210
+ L2 = ∥∂tQγ(t) − vt ◦ Qγ(t)∥L2.
211
+ Thus, by assumption, vt ◦ Qγ(t) ∈ −∂F(Qγ(t)) a.e. In particular, for any µ ∈ P2(R), we obtain
212
+ 0 ≤ F(Qµ) − F(Qγ(t)) +
213
+ � 1
214
+ 0
215
+ vt(Qγ(t)(s)) (Qµ(s) − Qγ(t)(s)) ds + o(∥Qµ − Qγ(t)∥L2)
216
+ = F(µ) − F(γ(t)) +
217
+
218
+ R×R
219
+ vt(x) (y − x) dπ(x, y) + o
220
+
221
+ W2(µ, γ(t))
222
+
223
+ ,
224
+ where π := (Qγ(t), Qµ)#λ(0,1). Since π the unique optimal transport plan between γ(t) and µ, this
225
+ yields by (2) that vt ∈ −∂F(γ(t)) showing the assertion by (4).
226
+ ii) Let F: L2((0, 1)) → R be convex. For any geodesic γ : [0, 1] → P2(R), since µ �→ Qµ is an
227
+ isometry, the curve t �→ Qγ(t) is a geodesic in L2((0, 1)) too. Since L2((0, 1)) is a linear space, the
228
+ convexity of F: L2((0, 1)) → R yields that t �→ F(Qγ(t)) = F(γ(t)) is convex. Thus, F is convex
229
+ along γ.
230
+ ⊓⊔
231
+ Remark 1. If F : P2(R) → (−∞, +∞] is proper, lsc, coercive and λ-convex along so-called general-
232
+ ized geodesics, then the Wasserstein gradient flow starting at any µ0 ∈ dom F is uniquely determined
233
+ and is the uniform limit of the miminizing movement scheme of Jordan, Kinderlehrer and Otto [19]
234
+ when the time step size goes to zero, see [3, Thm 11.2.1]. In R, but not in higher dimensions,
235
+ λ-convex functions along geodesics fulfill also the stronger property that they are λ-convex along
236
+ generalized geodesics, see [18].
237
+
238
+ Wasserstein Gradient Flows of the Discrepancy with Distance Kernel on the Line
239
+ 5
240
+ 4
241
+ Discrepancies
242
+ We consider symmetric and conditionally positive definite kernels K : Rd × Rd → R of order one,
243
+ i.e., for any n ∈ N, any pairwise different points x1, . . . , xn ∈ Rd and any a1, . . . , an ∈ R with
244
+ �n
245
+ i=1 ai = 0 the relation �n
246
+ i,j=1 aiajK(xi, xj) ≥ 0 is satisfied. Typical examples are Riesz kernels
247
+ K(x, y) := −∥x − y∥r,
248
+ r ∈ (0, 2),
249
+ where we have strict inequality except for all aj, j = 1, . . . , n being zero. The maximum mean
250
+ discrepancy (MMD) D2
251
+ K : P(Rd) × P(Rd) → R between two measures µ, ν ∈ P(Rd) is defined by
252
+ D2
253
+ K(µ, ν) := EK(µ − ν)
254
+ with the so-called K-energy on signed measures
255
+ EK(σ) := 1
256
+ 2
257
+
258
+ Rd
259
+
260
+ Rd K(x, y) dσ(x)dσ(y),
261
+ σ ∈ M(Rd).
262
+ The relation between discrepancies and Wasserstein distances is discussed in [15,24]. For fixed
263
+ ν ∈ P(Rd), the MMD can be decomposed as
264
+ Fν(µ) = D2
265
+ K(µ, ν) = EK(µ) + VK,ν(µ) + EK(ν)
266
+ � �� �
267
+ const.
268
+ with the interaction energy on probability measures
269
+ EK(µ) = 1
270
+ 2
271
+
272
+ Rd
273
+
274
+ Rd K(x, y) dµ(x)dµ(y),
275
+ µ ∈ P2(Rd)
276
+ and the potential energy of µ with respect to the potential of ν,
277
+ VK,ν(µ) :=
278
+
279
+ Rd VK,ν(y)dµ(x),
280
+ VK,ν(x) := −
281
+
282
+ Rd K(x, y)dν(y).
283
+ In dimensions d ≥ 2 neither EK nor D2
284
+ K with the Riesz kernel are λ-convex along geodesics, see
285
+ [18], so that certain properties of Wasserstein gradient flows do not apply. We will see that this is
286
+ different on the real line.
287
+ 5
288
+ MMD Flows on the Line
289
+ In the rest of this paper, we restrict our attention to d = 1 and negative distance K(x, y) =
290
+ −|x − y|, i.e. to Riesz kernels with r = 1. For fixed ν ∈ P2(R), we consider the MMD functional
291
+ Fν := D2
292
+ K(·, ν). Note that the unique minimizer of this functional is given by µ = ν.
293
+ Lemma 1. Let Fν := D2
294
+ K(·, ν) with the negative distance kernel. Then the convex functional
295
+ Fν : L2((0, 1)) → R defined by
296
+ Fν(f) :=
297
+ � 1
298
+ 0
299
+
300
+ (1 − 2s)(f(s) + Qν(s)) +
301
+ � 1
302
+ 0
303
+ |f(s) − Qν(t)| dt
304
+
305
+ ds.
306
+ (5)
307
+ fulfills Fν(Qµ) = Fν(µ) for all µ ∈ P2(R). In particular, Fν is convex along (generalized) geodesics
308
+ and there exists a unique Wasserstein gradient flow.
309
+
310
+ 6
311
+ J. Hertrich et al.
312
+ Proof. We reformulate Fν as
313
+ Fν(µ) = −1
314
+ 2
315
+
316
+ R×R
317
+ |x − y|(dµ(x) − dν(x))(dµ(y) − dν(y))
318
+ = −1
319
+ 2
320
+ � 1
321
+ 0
322
+ � 1
323
+ 0
324
+ |Qµ(s) − Qµ(t)| − 2|Qµ(s) − Qν(t)| + |Qν(s) − Qν(t)| ds dt
325
+ =
326
+ � 1
327
+ 0
328
+ � 1
329
+ t
330
+ Qµ(t) − Qµ(s) + Qν(t) − Qν(s) ds dt +
331
+ � 1
332
+ 0
333
+ � 1
334
+ 0
335
+ |Qµ(s) − Qν(t)| ds dt
336
+ =
337
+ � 1
338
+ 0
339
+ � 1
340
+ t
341
+ Qµ(t) + Qν(t) ds dt −
342
+ � 1
343
+ 0
344
+ � s
345
+ 0
346
+ Qµ(s) + Qν(s) dt ds +
347
+ � 1
348
+ 0
349
+ � 1
350
+ 0
351
+ |Qµ(s) − Qν(t)| ds dt
352
+ =
353
+ � 1
354
+ 0
355
+
356
+ (1 − 2s)(Qµ(s) + Qν(s)) +
357
+ � 1
358
+ 0
359
+ |Qµ(s) − Qν(t)| dt
360
+
361
+ ds,
362
+ which yields the first claim. The second one follows by Theorem 2ii) and Remark 1.
363
+ ⊓⊔
364
+ Note that the lemma cannot immediately be generalized to Riesz kernels with r = (1, 2).
365
+ Finally, we derive for the special choice ν = δq in D2
366
+ K(·, ν) an analytic formula for its Wasserstein
367
+ gradient flow.
368
+ Proposition 1. Let Fδq := D2
369
+ K(·, δq) with the negative distance kernel. Then the unique Wasser-
370
+ stein gradient flow of Fδq starting at µ0 = γ(0) ∈ P2(R) is γ(t) = (gt)#λ(0,1), where the function
371
+ gt : (0, 1) → R is given by
372
+ gt(s) :=
373
+
374
+
375
+
376
+
377
+
378
+
379
+
380
+ min{Qµ0(s) + 2st, q},
381
+ Qµ0(s) < q,
382
+ q,
383
+ Qµ0(s) = q,
384
+ max{Qµ0(s) + 2st − 2t, q},
385
+ Qµ0(s) > q.
386
+ (6)
387
+ Proof. First, note that gt ∈ C((0, 1)) such that it holds gt = Qγ(t). Since Qδq ≡ q, the subdifferential
388
+ of Fδq in (5) at gt consists of all functions
389
+ h(s) =
390
+
391
+
392
+
393
+
394
+
395
+
396
+
397
+ −2s,
398
+ Qµ0(s) < q and t < q−Qµ0(s)
399
+ 2s
400
+ ,
401
+ 2 − 2s,
402
+ Qµ0(s) > q and t < Qµ0(s)−q
403
+ 2−2s
404
+ ,
405
+ 1 − 2s + n(s),
406
+ otherwise,
407
+ with −1 ≤ n(s) ≤ 1 for s ∈ (0, 1). On the other hand, the pointwise derivative of gt in (6) can be
408
+ written as
409
+ ∂tgt(s) =
410
+
411
+
412
+
413
+
414
+
415
+
416
+
417
+ 2s,
418
+ Qµ0(s) < q and t < q−Qµ0(s)
419
+ 2s
420
+ ,
421
+ 2s − 2,
422
+ Qµ0(s) > q and t < Qµ0(s)−q
423
+ 2−2s
424
+ ,
425
+ 0,
426
+ otherwise,
427
+ such that we obtain ∂tQγ(t) = ∂tgt ∈ −∂Fν(gt) = −∂Fν(Qγ(t)). Thus, by Lemma 1 and Theorem 2,
428
+ we obtain that γ is a Wasserstein gradient flow. It is unique since Fν is convex along geodesics by
429
+ Theorem 2.ii, Lemma 1 and Remark 1.
430
+ ⊓⊔
431
+
432
+ Wasserstein Gradient Flows of the Discrepancy with Distance Kernel on the Line
433
+ 7
434
+ 6
435
+ Intuitive Examples
436
+ Finally, we provide some intuitive examples of Wasserstein gradient flows of Fν := D2
437
+ K(·, ν) with
438
+ the negative distance kernel.
439
+ 6.1
440
+ Flow between Dirac Measures
441
+ We consider the flow of Fδ0 starting at the initial measure γ(0) = µ0 := δ−1. Due to Qδ0 ≡ 0,
442
+ Proposition 1 yields the gradient flow γ(t) := (Qt)#λ(0,1) given by
443
+ γ(t) =
444
+
445
+
446
+
447
+
448
+
449
+
450
+
451
+ δ−1,
452
+ t = 0,
453
+ 1
454
+ 2tλ[−1,−1+2t],
455
+ 0 ≤ t ≤ 1
456
+ 2,
457
+ 1
458
+ 2tλ[−1,0] +
459
+
460
+ 1 − 1
461
+ 2t
462
+
463
+ δ0,
464
+ 1
465
+ 2 < t.
466
+ For t ∈ (0, 1
467
+ 2], the initial Dirac measure becomes a uniform measure with increasing support, and
468
+ for t ∈ ( 1
469
+ 2, 1) it is the convex combination of a uniform measure and δ0. A visualization of the flow
470
+ is given in Figure 1.
471
+
472
+ Fig. 1: Visualization of the Wasserstein gradient flow of Fδ0 from δ−1 to δ0. At various times t, the
473
+ absolute continuous part is visualized by its density in blue (area equals mass) and the atomic part
474
+ by the red dotted vertical line (height equals mass). The atomic part at the end point x = 0 starts
475
+ to grow at time t = 1
476
+ 2, where the support of the density touches this point for the first time.
477
+ 6.2
478
+ Flow on Restricted Sets
479
+ Next, we are interested in the Wasserstein gradient flows on the subsets Si, i = 1, 2, given by
480
+ (i) S1 := {δx : x ∈ R},
481
+ (ii) S2 := {µm,σ =
482
+ 1
483
+ 2
484
+
485
+ 3σλ[m−
486
+
487
+ 3σ,m+
488
+
489
+ 3σ] : m ∈ R, σ ∈ R≥0}.
490
+ Note that S2 is a special instance of sets of scaled and translated measures µ ∈ P2(R) defined by
491
+ {Ta,b#µ : a ∈ R≥0, b ∈ R}, where Ta,b(x) := ax + b. As mentioned in [16] the Wasserstein distance
492
+ between measures µ1, µ2 from such sets has been already known to Fréchet:
493
+ W 2
494
+ 2 (µ1, µ2) = |m1 − m2|2 + |σ1 − σ2|2,
495
+
496
+ t= 0.00
497
+ t= 0.25
498
+ t= 0.29
499
+ t= 0.33
500
+ t=0.40
501
+ t= 0.50
502
+ t= 0.67
503
+ t= 1.00
504
+ t= 2.00
505
+ t= 8
506
+ 2.0
507
+ 1.5
508
+ 1.0 -
509
+ 0.5
510
+ 0.0
511
+ 1
512
+ 0
513
+ 0
514
+ 0
515
+ 0
516
+ 0
517
+ 0
518
+ 08
519
+ J. Hertrich et al.
520
+ where mi and σi are the mean value and standard deviation of µi, i = 1, 2. This provides an
521
+ isometric embedding of R×R≥0 into P2(R). The boundary of S2 is the set of Dirac measures S1 and
522
+ is isometric to R. The sets are convex in the sense that for µ, ν ∈ Si all geodesics γ : [0, 1] → P(R)
523
+ with γ(0) = µ and γ(1) = ν are in Si, i ∈ {1, 2}. For i = 1, 2, we consider
524
+ Fi,ν(µ) :=
525
+
526
+
527
+ µ ∈ Si,
528
+ +∞
529
+ otherwise.
530
+ Due to the convexity of Fν along geodesics and the convexity of the sets Si, we obtain that the
531
+ functions Fi,ν are convex along geodesics.
532
+ Flows of F1,ν We use the notation fx ≡ x for the constant function on (0, 1) with value x. It is
533
+ straightforward to check that the function F: L2((0, 1)) → (−∞, ∞] given by
534
+ F(f) =
535
+
536
+ F(x),
537
+ if f = fx for some x ∈ R,
538
+ +∞,
539
+ otherwise,
540
+ with
541
+ F(x) :=
542
+
543
+ R
544
+ |x − y| dν(y) − 1
545
+ 2
546
+
547
+ R×R
548
+ |y − z| dν(y)dν(z)
549
+ fulfills F(Qµ) = F1,ν(µ). In the following, we aim to find x: [0, ∞) → R satisfying
550
+ ˙x(t) = −∂F(x(t)).
551
+ Since the set {Qµ : µ ∈ S1} is a one-dimensional linear subspace of L2((0, 1)) spanned by the
552
+ constant one-function f1, this yields fx(t) ∈ −∂F(fx(t)) such that the Wasserstein gradient flow is
553
+ by Theorem 2 given by γ(t) = (fx(t))#λ(0,1) = δx(t).
554
+ In the special case ν = δq for some q ∈ R, we have
555
+ F(x) = |x − q|,
556
+ ∂F(x) =
557
+
558
+
559
+
560
+
561
+
562
+
563
+
564
+ {−1},
565
+ x < q,
566
+ [−1, 1],
567
+ x = q,
568
+ {1},
569
+ x > q.
570
+ Therefore, the Wasserstein gradient flow for x(0) = x0 ̸= 0 is given by
571
+ γ(t) = δx(t),
572
+ with
573
+ x(t) =
574
+
575
+ x0 + t,
576
+ x0 < q,
577
+ x0 − t,
578
+ x0 > q. ,
579
+ 0 ≤ t < |x0 − q|
580
+ and γ(t) = δq for t ≥ |x0 − q|.
581
+ For ν = 1
582
+ 2λ[−1,1] the gradient flow starting at x0 ∈ [−1, 1] is
583
+ x(t) = x0e−t,
584
+ t ≥ 0,
585
+ and converges to the midpoint of the interval for t → ∞. If it starts at x0 ∈ R \ [−1, 1] the gradient
586
+ flow is
587
+ x(t) =
588
+
589
+ x0 + t,
590
+ x0 < −1,
591
+ x0 − t,
592
+ x0 > 1.
593
+ ,
594
+ 0 ≤ t ≤ min |x0 − 1|, |x0 + 1|,
595
+ where it reaches the nearest interval end point in finite time. In Figure 2, we plotted the x(t) for
596
+ different initial values x(0).
597
+
598
+ Wasserstein Gradient Flows of the Discrepancy with Distance Kernel on the Line
599
+ 9
600
+ Fig. 2: Wasserstein gradient flow of F1,ν for ν = δ0 (left) and ν = 1
601
+ 2λ[−1,1] (right) from various
602
+ initial points δx, x ∈ [−2, 2]. The support of the right measure ν is depicted by the blue region. The
603
+ examples show that gradient flows may reach the optimal points in finite or infinite time.
604
+ Flows of F2,ν We observe that Qµm,σ = fm,σ, where fm,σ(x) = m + 2
605
+
606
+ 3σ(x − 1
607
+ 2). By Lemma 1
608
+ we obtain that the function F: L2((0, 1)) → (−∞, ∞] given by
609
+ F(f) =
610
+
611
+ F(m, σ),
612
+ if f = fm,σ for (m, σ) ∈ R × R≥0,
613
+ +∞,
614
+ otherwise,
615
+ fulfills F(Qµ) = F2,ν(µ), where
616
+ F(m, σ) :=
617
+
618
+ (0,1)
619
+ (1 − 2s)(fm,σ(s) + Qν(s))ds +
620
+
621
+ (0,1)2 |fm,σ(s) − Qν(t)|dtds,
622
+ The set {fm,σ : m, σ ∈ R} is a two dimensional linear subspace of L2((0, 1)) with orthonormal basis
623
+ {f1,0, f0,1}. We aim to compute m: [0, ∞) → R and σ: [0, ∞) → R≥0 with
624
+ ( ˙m(t), ˙σ(t)) = −∂F(m(t), σ(t)),
625
+ t ∈ I ⊂ R,
626
+ (7)
627
+ because this yields fm(t),σ(t) ∈ −∂F(fm(t),σ(t)) such that γ(t) = (fm(t),σ(t))#λ(0,1) = µm,σ is by
628
+ Theorem 2 the Wasserstein gradient flow.
629
+ In the following, we consider the special case ν = δ0 = µ0,0. Then, the function F reduces to
630
+ F(m, σ) =
631
+
632
+ R
633
+ (1 − 2s)(m + 2
634
+
635
+ 3σ(s − 1
636
+ 2)) + |m + 2
637
+
638
+ 3σ(s − 1
639
+ 2)|ds
640
+ = − σ
641
+
642
+ 3 +
643
+
644
+
645
+
646
+ |m|,
647
+ if |m| ≥
648
+
649
+ 3σ,
650
+ m2+3σ2
651
+ 2
652
+
653
+ 3σ2
654
+ if |m| <
655
+
656
+ 3σ,
657
+ and the subdifferential is given by
658
+ ∂F(m, σ) =
659
+
660
+
661
+
662
+ sgn(m) × {− 1
663
+
664
+ 3},
665
+ if |m| ≥
666
+
667
+ 3σ,
668
+ {(
669
+ m
670
+
671
+ 3σ2 , −m2
672
+
673
+ 3σ3 −
674
+ 1
675
+
676
+ 3)},
677
+ if |m| <
678
+
679
+ 3σ,
680
+ sgn(m) =
681
+
682
+ { |m|
683
+ m },
684
+ if m ̸= 0,
685
+ [−1, 1],
686
+ if m = 0.
687
+ We observe that F is differentiable for σ > 0. Thus, for any initial intial value (m(0), σ(0)) =
688
+ (m0, σ0), we can compute the trajectory (m(t), σ(t)) solving (7) using an ODE solver. In Figure 3
689
+
690
+ 2.0
691
+ 1.5
692
+ 1.0
693
+ 0.5
694
+ X
695
+ 0.0
696
+ -0.5
697
+ 1.0
698
+ 1.5
699
+ -2.0
700
+ 0.0
701
+ 0.5
702
+ 1.0
703
+ 1.5
704
+ 2.0
705
+ 2.5
706
+ 3.0
707
+ 3.5
708
+ 4.0
709
+ t2.0
710
+ 1.5
711
+ 1.0
712
+ 0.5
713
+ X
714
+ 0.0
715
+ -0.5
716
+ 1.0
717
+ 1.5
718
+ 2.0
719
+ 0.0
720
+ 0.5
721
+ 1.0
722
+ 1.5
723
+ 2.0
724
+ 2.5
725
+ 3.0
726
+ 3.5
727
+ 4.0
728
+ t10
729
+ J. Hertrich et al.
730
+ (left), we plotted the level sets of the function F(m, σ) as well as the solution trajectory (m(t), σ(t))
731
+ for different initial values (m(0), σ(0)). For (m(0), σ(0)) = (−1, 0), the resulting flow is illustrated
732
+ in Figure 3, right.
733
+ Fig. 3: Wasserstein gradient flow F2,δ0 from (m(0), σ(0)) to δ0 (left) and from δ−1 to δ0 (right). In
734
+ contrast Figure 1 it is a uniform measure for all t ∈ (0, 1).
735
+ Flows for a Smooth Kernel For smooth, positive definite kernels K the MMD functional Fν :=
736
+ D2
737
+ K(·, ν) is in general not convex and leads to a more complex energy landscape than for the
738
+ negative distance kernel. This may lead to problems for optimization algorithms. To illustrate this
739
+ observation, we let ν := λ[−1,1] and compare the energy landscape of the restricted functional F2,ν
740
+ for K(x, y) := −|x − y| and the kernel
741
+ ˜K(x, y) :=
742
+
743
+ (1 − 1
744
+ 2|x − y|)2(|x − y| + 1),
745
+ |x − y| ≤ 2,
746
+ 0,
747
+ else.
748
+ (8)
749
+ In contrast to the negative distance kernel K, the kernel ˜K is positive definite (without restrictions
750
+ on the ai), cf. [33], and has a Lipschitz continuous gradient. The two energy landscapes of F2,ν are
751
+ visualized in Figure 4. The non-convexity of Fν for ˜K is readily seen by the presence of a saddle
752
+ point for F2,ν at µ = δ0 (equivalently to (m, σ) = (0, 0) in the mσ-plane). Note that any Wasserstein
753
+ gradient flow of Fν starting at a Dirac measure δx converges to this saddle point µ = δ0.
754
+ 7
755
+ Conclusions
756
+ We provided insight into Wasserstein gradient flows of MMD functionals with negative distance
757
+ kernels and characterized in particular flows ending in a Dirac measure. We have seen that such flows
758
+ are not simple particle flows, e.g. starting in another Dirac measure the flow becomes immediately
759
+ uniformly distributed and after a certain time a mixture of a uniform and a Dirac measure. In
760
+ our future work, we want to extend our considerations to empirical measures and incorporate
761
+
762
+ 2.00
763
+ 1.75
764
+ 1.50
765
+ 1.25
766
+ b 1.00
767
+ 0.75
768
+ 0.50
769
+ 0.25
770
+ 0.00
771
+ -1.00
772
+ -0.75
773
+ -0.50
774
+ -0.25
775
+ 0.00
776
+ 0.25
777
+ 0.50
778
+ 0.75
779
+ 1.00
780
+ mt= 0.00
781
+ t= 0.25
782
+ t= 0.50
783
+ t= 0.75
784
+ t= 1.00
785
+ t= 1.25
786
+ t= 1.50
787
+ t= 1.75
788
+ t= 2.00
789
+ t = 2.25
790
+ 2.0
791
+ 1.5
792
+ 1.0
793
+ 0.5
794
+ 0.0
795
+ 1
796
+ 0
797
+ 0
798
+ 0
799
+ 0
800
+ 0
801
+ 1
802
+ 0Wasserstein Gradient Flows of the Discrepancy with Distance Kernel on the Line
803
+ 11
804
+ Fig. 4: Visualization of the energy landscapes of F2,λ[−1,1] for the convex negative distance kernel
805
+ (left) and the non-convex, smooth kernel given in (8). The red dot is the global minimizer λ[−1,1]
806
+ (left and right) and the blue point (right) is the saddle point δ0. The black lines depict selected
807
+ gradient flows.
808
+ deep learning techniques as in [2]. Also the treatment of other functionals which incorporate an
809
+ interaction energy part appears to be interesting. Further, we may combine univariate techniques
810
+ with multivariate settings using Radon transform like techniques as in [8,23,25].
811
+ References
812
+ 1. Abraham, I., Abraham, R., Bergounioux, M., Carlier, G.: Tomographic reconstruction from a few views:
813
+ A multi-marginal optimal transport approach. Applied Mathematics and Optimization 75(1), 55–73
814
+ (2017)
815
+ 2. Altekrüger, F., Hertrich, J., Steidl, G.: Neural Wasserstein gradient flows for maximum mean discrep-
816
+ ancies with Riesz kernels. arXiv:XXX (2023)
817
+ 3. Ambrosio, L., Gigli, N., Savare, G.: Gradient Flows. Lectures in Mathematics ETH Zürich, Birkhäuser,
818
+ Basel (2005)
819
+ 4. Arbel, M., Korba, A., Salim, A., Gretton, A.: Maximum mean discrepancy gradient flow. In: Wallach,
820
+ H., Larochelle, H., Beygelzimer, A., d Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural
821
+ Information Processing Systems. vol. 32, pp. 1–11. Curran Associates Inc., New York, USA (2019)
822
+ 5. Beier, F., Beinert, R., Steidl, G.: On a linear Gromov–Wasserstein distance. IEEE Transactions on
823
+ Image Processing 31, 7292–7305 (2022)
824
+ 6. Binkowski, M., Sutherland, D.J., Arbel, M., Gretton, A.: Demystifying MMD GANs. In: Proceedings
825
+ ICLR 2018. OpenReview (2018)
826
+ 7. Bonaschi, G.A., Carrillo, J.A., Francesco, M.D., Peletier, M.A.: Equivalence of gradient flows and
827
+ entropy solutions for singular nonlocal interaction equations in 1d. ESAIM Control Optimization and
828
+ Calculus of Variation 21, 414–441 (2015)
829
+ 8. Bonet, C., Courty, N., Septier, F., Drumetz, L.: Efficient gradient flows in sliced-Wasserstein space.
830
+ Transactions on Machine Learning Research (2022)
831
+ 9. Bonneel, N., Rabin, J., Peyré, G., Pfister, H.: Sliced and Radon Wasserstein barycenters of measures.
832
+ Journal of Mathematical Imaging and Vision 1(51), 22–45 (2015)
833
+
834
+ 2.00
835
+ 1.75
836
+ 1.50
837
+ 1.25
838
+ b6 1.00
839
+ 0.75
840
+ 0.50
841
+ 0.25
842
+ 0.00
843
+ -1.00
844
+ -0.75
845
+ -0.50
846
+ -0.25
847
+ 0.00
848
+ 0.25
849
+ 0.50
850
+ 0.75
851
+ 1.00
852
+ m2.00
853
+ 1.75
854
+ 1.50
855
+ 1.25
856
+ b 1.00
857
+ 0.75
858
+ 0.50
859
+ 0.25
860
+ 0.00
861
+ 1.00 -0.75-0.50 -0.25
862
+ 0.00
863
+ 0.25
864
+ 0.50
865
+ 0.75
866
+ 1.00
867
+ m12
868
+ J. Hertrich et al.
869
+ 10. Cai, T., Cheng, J., Schmitzer, B., Thorpe, M.: The linearized Hellinger-Kantorovich distance.
870
+ arXiv:2102.08807 (2021)
871
+ 11. Carrillo, J.A., Huang, Y.: Explicit equilibrium solutions for the aggregation equation with power-law
872
+ potentials. Kinetic and Related Models 10(1), 171–192 (2017)
873
+ 12. Chafaï, D., Saff, E.B., Womersley, R.S.: Threshold condensation to singular support for a Riesz equi-
874
+ librium problem. arXiv:2206.04956v1 (2022)
875
+ 13. Dziugaite, G.K., Roy, D.M., Ghahramani, Z.: Training generative neural networks via maximum mean
876
+ discrepancy optimization. In: Proceedings UAI 2015. UAI (2015)
877
+ 14. Ehler, M., Gräf, M., Neumayer, S., Steidl, G.: Curve based approximation of measures on manifolds by
878
+ discrepancy minimization. Foundations of Computational Mathematics 21(6), 1595–1642 (2021)
879
+ 15. Feydy, J., Séjourné, T., Vialard, F.X., Amari, S., Trouvé, A., Peyré, G.: Interpolating between optimal
880
+ transport and MMD using Sinkhorn divergences. In: Proc. of Machine Learning Research. vol. 89, pp.
881
+ 2681–2690. PMLR (2019)
882
+ 16. Gelbrich, M.: On a formula for the l2 Wasserstein metric between measures on Euclidean and Hilbert
883
+ spaces. Mathematische Nachrichten 147(1), 185–203 (1990)
884
+ 17. Gutleb, T.S., Carrillo, J.A., Olver, S.: Computation of power law equilibrium measures on balls of
885
+ arbitrary dimension. arXiv:2109.00843v1 (2021)
886
+ 18. Hertrich, J., Gräf, M., Beinert, R., Steidl, G.: Wasserstein steepest descent flows of disrepancies with
887
+ Riesz kernels. arXiv:2211.01804 v1) (2022)
888
+ 19. Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker–Planck equation.
889
+ SIAM Journal on Mathematical Analysis 29(1), 1–17 (1998)
890
+ 20. Kolouri, S., Park, S., Rohde, G.: The Radon cumulative distribution transform and its application to
891
+ image classification. IEEE Transactions on Image Processing 25(2), 920–934 (2016)
892
+ 21. Landkof, N.: Foundations of Modern Potential Theory. Grundlehren der mathematischen Wis-
893
+ senschaften, Springer, Berlin (1972)
894
+ 22. Li, C.L., Chang, W.C., Cheng, Y., Yang, Y., Póczos, B.: MMD GAN: Towards deeper understanding
895
+ of moment matching network. arXiv:1705.08584 (2017)
896
+ 23. Liutkus, A., Simsekli, U., Majewski, S., Durmus, A., Stöter, F.R.: Sliced-wasserstein flows: Nonparamet-
897
+ ric generative modeling via optimal transport and diffusions. In: Proc. of Machine Learning Research,
898
+ vol. 97. PMLR (2019)
899
+ 24. Neumayer, S., Steidl, G.: From optimal transport to discrepancy. In: Chen, K., Schönlieb, C.B., Tai,
900
+ X.C., Younes, L. (eds.) Handbook of Mathematical Models and Algorithms in Computer Vision and
901
+ Imaging: Mathematical Imaging and Vision, pp. 1–36. Springer (2023)
902
+ 25. Nguyen, K., Ho, N., Pham, T., Bui, H.: Distributional sliced-wasserstein and applications to generative
903
+ modeling. In: 9th International Conference on Learning Representations. IEEE (2021)
904
+ 26. Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Communica-
905
+ tions in Partial Differential Equations 26, 101–174 (2001)
906
+ 27. Park, S., Kolouri, S., Kundu, S., Rohde, G.: The cumulative distribution transform and linear pattern
907
+ classification. Applied and Computational Harmonic Analysis (2017)
908
+ 28. Pavliotis, G.A.: Stochastic processes and applications: Diffusion Processes, the Fokker-Planck and
909
+ Langevin Equations. No. 60 in Texts in Applied Mathematics, Springer, New York (2014)
910
+ 29. Rockafellar, R.T., Royset, J.O.: Random variables, monotone relations, and convex analysis. Mathe-
911
+ matical Programming 148, 297–331 (2014)
912
+ 30. Saff, E., Totik, V.: Logarithmic Potentials with External Fields. Grundlehren der mathematischen
913
+ Wissenschaften, Springer, Berlin (1997)
914
+ 31. Santambrogio, F.: Optimal Transport for Applied Mathematicians, Progress in Nonlinear Differential
915
+ Equations and their Applications, vol. 87. Birkhäuser, Basel (2015)
916
+ 32. Villani, C.: Topics in Optimal Transportation. No. 58 in Graduate Studies in Mathematics, American
917
+ Mathematical Society, Providence (2003)
918
+ 33. Wendland, H.: Scattered Data Approximation. Cambridge University Press (2005)
919
+
ANE3T4oBgHgl3EQfTQrd/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
BdE5T4oBgHgl3EQfTA_5/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05f54f0e8d1420af202149feeb0607052a15e9b3552b0d063a402fdcbb399a2c
3
+ size 7602221
C9E0T4oBgHgl3EQfyQLe/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6918807b1f7f5891763fc7c6b6751b3d3a92b8fb91c69d92caf37561500ce62
3
+ size 589869
CdAzT4oBgHgl3EQfiP0X/content/2301.01495v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:031f268e3ab4661fd80f035a7a4b4c6c4de30c88c0ffc15431163e35c6d07c16
3
+ size 582953
CdAzT4oBgHgl3EQfiP0X/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f504e946307252ea22160694253c63efadeed2aa676ac2fc32a7336a8852d22d
3
+ size 3407917
CdAzT4oBgHgl3EQfiP0X/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f68befa56d6cf11f7354625b2b26c0e36b415ed94ad34e4d51003ac680acb0d1
3
+ size 121463
CdE1T4oBgHgl3EQfpwUV/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61bf4cce9f8f6939ad6be3f8aa471a1cf411db7e3308fc0bec6663e05fedf283
3
+ size 2097197
DtAyT4oBgHgl3EQf4vpJ/content/2301.00791v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:006ba2a53e150fb3e65d3c826fac2340566936cf7c09cf04b9709c891d750032
3
+ size 492988
DtAyT4oBgHgl3EQf4vpJ/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7aef4c4148501d31fbb7c51bceabab33f99e40991868cd469dfcd17bc1349e5a
3
+ size 5505069
DtAyT4oBgHgl3EQf4vpJ/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5596f5844898b25eb82dc2fc236b3c18f43b2c3288b22960df08b618c5e62e2e
3
+ size 226102
DtFRT4oBgHgl3EQfATdu/content/tmp_files/2301.13461v1.pdf.txt ADDED
@@ -0,0 +1,1353 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Investigating fission dynamics of neutron shell closed nuclei 210Po, 212Rn and 213Fr
2
+ within a stochastic dynamical approach
3
+ Divya Arora, P. Sugathan,∗ and A. Chatterjee
4
+ Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067, India
5
+ Dissipative dynamics of nuclear fission is a well confirmed phenomenon described either by a
6
+ Kramers-modified statistical model or by a dynamical model employing the Langevin equation.
7
+ Though dynamical models as well as statistical models incorporating fission delay are found to
8
+ explain the measured fission observables in many studies, it nonetheless shows conflicting results
9
+ for shell closed nuclei in the mass region 200.
10
+ Analysis of recent data for neutron shell closed
11
+ nuclei in excitation energy range 40−80 MeV failed to arrive at a satisfactory description of the
12
+ data and attributed the mismatch to shell effects and/or entrance channel effects, without reaching
13
+ a definite conclusion. In the present work we show that a well established stochastic dynamical
14
+ code simultaneously reproduces the available data of pre-scission neutron multiplicities, fission and
15
+ evaporation residue excitation functions for neutron shell closed nuclei 210Po and 212Rn and their
16
+ isotopes 206Po and 214,216Rn without the need for including any extra shell or entrance channel
17
+ effects. The calculations are performed by using a phenomenological universal friction form factor
18
+ with no ad-hoc adjustment of model parameters. However, we note significant deviation, beyond
19
+ experimental errors, in some cases of Fr isotopes.
20
+ I.
21
+ INTRODUCTION
22
+ Fission of atomic nuclei is considered to be one of the
23
+ most complex physical phenomena in nuclear physics. It
24
+ involves rapid re-arrangement of nuclear matter with a
25
+ delicate interplay between the macroscopic bulk matter
26
+ and the microscopic quantal properties [1, 2]. Though
27
+ properties of fission have been studied exhaustively, many
28
+ aspects of the dynamics are still not well-understood. For
29
+ instance, discrepancies are reported between the mea-
30
+ sured fission observables and the predictions of the clas-
31
+ sical theory based on the standard Bohr-Wheeler statis-
32
+ tical model of fission [3].
33
+ Fission hindrance, enhanced
34
+ pre-scission particle and giant dipole resonance (GDR)
35
+ γ-ray multiplicities observed in hot nuclei suggested the
36
+ effects of nuclear dissipation slowing down the fission pro-
37
+ cess [4–10]. To account for frictional effects, Kramers dif-
38
+ fusion model formalism with modified fission width [11],
39
+ referred to as Kramers-modified statistical model was in-
40
+ cluded in the standard statistical theory.
41
+ Although nature and strength of the nuclear dissipa-
42
+ tion have been studied quite extensively, a simultaneous
43
+ description of the experimental observables, namely, pre-
44
+ scission neutron multiplicities (νpre), fission excitation
45
+ functions and evaporation residue (ER) cross-sections
46
+ still remains challenging.
47
+ Additionally, the dissipation
48
+ coefficient is treated as an adjustable free parameter in
49
+ the statistical model analysis. The pre-fission lifetime (or
50
+ the dissipation strength), the level density parameter at
51
+ ground state and saddle point deformation and fission
52
+ barrier are empirically fitted to explain the νpre and/or
53
+ fission and ER cross-section data [6, 12–15]. As a result,
54
+ the conclusions reached are often system dependent and
55
+ are inadequate to provide a consistent description of the
56
+ ∗ sugathan@gmail.com
57
+ fission process.
58
+ Inadequate modelling of fission in statistical model can
59
+ drastically influence the understanding of the fission phe-
60
+ nomenon [16, 17].
61
+ This is especially observed in mass
62
+ (A) ≈ 200 region that is explored here, to understand the
63
+ role of N=126 neutron shell closure in the fissioning com-
64
+ pound nucleus (CN). An anomalous increase in the exper-
65
+ imental fission fragment angular anisotropy was reported
66
+ for 210Po (N=126) as compared to 206Po (non-shell closed
67
+ nuclei) across an excitation energy range (Eex) ≈ 40−60
68
+ MeV and was conjectured to be a manifestation of shell
69
+ effects at the unconditional saddle [18]. Further, a con-
70
+ siderable amount of saddle shell correction was invoked
71
+ to describe the experimental νpre data for 210Po nuclei
72
+ [19]. However, a re-investigation of the experimental ex-
73
+ citation functions and νpre data of 210Po ruled out any
74
+ significant shell influence on the saddle [20] after corre-
75
+ lated tuning of statistical-model parameters and inclu-
76
+ sion of fission delay.
77
+ Another interesting aspect is the contradictory inter-
78
+ pretation for correlation between neutron shell structure
79
+ and nuclear dissipation strength that was required to re-
80
+ produce the measured ER and νpre excitation functions
81
+ in N=126 shell closed nuclei, namely 212Rn and 213Fr.
82
+ The theoretical analysis of νpre data of 212Rn [21] and
83
+ 213Fr [22] reported a low dissipation strength at Eex ≈
84
+ 50 MeV which was attributed to the influence of neu-
85
+ tron shell closure. On the contrary, no discernible shell
86
+ influence was reported from ER cross-section studies of
87
+ 212Rn and its isotope [23], though moderate nuclear dis-
88
+ sipation was required to describe the data. It must be
89
+ noted that the magnitude of dissipation invoked to ex-
90
+ plain the experimental ER cross-sections varied within
91
+ Rn isotopes [23, 24], which is again found to be different
92
+ for the description of the νpre data [21]. Interestingly,
93
+ in case of Fr nuclei, the finite-range liquid drop model
94
+ fission barrier was scaled down, particularly for 213Fr to
95
+ fit measured ER cross-section [15]. This reduction of the
96
+ arXiv:2301.13461v1 [nucl-th] 31 Jan 2023
97
+
98
+ 2
99
+ fission barrier is in disagreement with the predictions for
100
+ the shell closed nuclei [25]. One notable observation is the
101
+ reported interpretation of reduced survival probability of
102
+ 213Fr nucleus due to neutron shell which is in contrast
103
+ to the isotopic trend reported for Rn isotopes. Further,
104
+ the fission cross-section of 213Fr is reported to exhibit
105
+ no extra stability from N=126 shell closure [26]. In the
106
+ statistical model approach followed in these works, no at-
107
+ tempts were made to extract a global prescription of the
108
+ parameters, rather, a case specific adjustment of dissipa-
109
+ tion strength was involved. The influence of neutron shell
110
+ structures on the potential energy surface and hence fis-
111
+ sion observables are still quite ambiguous. Apart from
112
+ just shell influence, entrance channels effects are also
113
+ probed in a couple of recent publications to understand
114
+ the experimental νpre data for 213Fr nuclei [27, 28]. These
115
+ studies reportedly observed a deviation in the measured
116
+ data from the predictions of entrance channel model for
117
+ 16O- and 19F-induced reactions.
118
+ These studies substantiate the view that no consistent
119
+ picture has emerged from recent independent analysis
120
+ of each fission observable for neutron shell closed nuclei
121
+ 210Po, 212Rn and 213Fr and their isotopes.
122
+ Inadequa-
123
+ cies of standard statistical model interpretations have
124
+ been addressed by employing Kramers-modified fission
125
+ width taking into account shape-dependent level den-
126
+ sity, temperature-dependent fission transition points, ori-
127
+ entation (K state) degree of freedom and temperature-
128
+ independent reduced dissipation coefficient [16, 17]. At-
129
+ tempts for restraining the statistical-model parameters
130
+ have also been reported [29], but a consistent description
131
+ of experimental data for all three observables, namely
132
+ νpre, fission and ER excitation functions for shell closed
133
+ nuclei still could not be achieved. Recent developments
134
+ in multi-dimensional stochastic approach are fairly suc-
135
+ cessful in describing the fission characteristics of excited
136
+ nuclei [30–35]. However, a simultaneous description of
137
+ the experimental data and a systematic study for shell
138
+ closed nuclei has not been attempted yet and is further
139
+ required.
140
+ In this paper, we show that the dynamical model based
141
+ on 1D Langevin equation coupled with a statistical ap-
142
+ proach [36] can simultaneously reproduce νpre, fission
143
+ and ER cross-section data of shell closed nuclei over a
144
+ range of excitation energies (Eex ≈ 40−80 MeV) of the
145
+ measurements. The present calculations are performed
146
+ without adjusting any of the model parameters, thus pro-
147
+ vides a unified framework for a simultaneous study of
148
+ these fission observables for nuclei in A ≈ 200 region.
149
+ We re-investigated the available experimental data for
150
+ the neutron shell closed nuclei 210Po, 212Rn and 213Fr,
151
+ and their non-shell closed isotopes 206Po, 214,216Rn and
152
+ 215,217Fr.
153
+ It is observed that a universal deformation-
154
+ dependent reduced friction parameter is able to describe
155
+ the fission observables simultaneously at all measured en-
156
+ ergies irrespective of the shell structure of the nuclei.
157
+ II.
158
+ THEORETICAL MODEL DESCRIPTION
159
+ A combined dynamical and statistical model code [37]
160
+ is utilized to compute the fission observables of nuclei
161
+ under study.
162
+ The detailed description of the theoreti-
163
+ cal aspects of the model can be found in Refs. [36, 38].
164
+ The dynamical part of the model is carried out with a
165
+ 1D Langevin equation of motion governed by a driving
166
+ potential that is determined by free energy F(q, T), as
167
+ employed in recent Refs.
168
+ [39–44].
169
+ The free energy as
170
+ derived from the Fermi gas model is related to the defor-
171
+ mation dependent level density parameter a(q, A) as F(q,
172
+ T) = V(q) - a(q, A)T 2 where T is the nuclear temper-
173
+ ature, q is the dimensionless deformation coordinate de-
174
+ fined as the ratio of half the distance between the center
175
+ of masses of future fission fragments to the radius of CN
176
+ and V (q) is the nuclear potential energy obtained from
177
+ the finite-range liquid drop model [45, 46]. Fr¨obrich [47]
178
+ and Lestone et al. [17] have emphasized on using nuclear
179
+ entropy given by, S(q, A, Etot) = 2
180
+
181
+ a(q, A)[Etot − V (q)]
182
+ in determining the driving force and therefore, it is em-
183
+ ployed as a crucial quantity in the model. The nuclear
184
+ driving force K = - dV (q)
185
+ dq
186
+ + da(q)
187
+ dq T 2, not only consists of
188
+ a conservative force but also contain a thermodynami-
189
+ cal correction that enters the dynamics via. level density
190
+ parameter a(q, A). The deformation dependent level den-
191
+ sity parameter used in constructing the entropy has the
192
+ form [48]:
193
+ a(q, A) = ˜a1A + ˜a2A2/3Bs(q)
194
+ (1)
195
+ where A is the mass number of the CN and ˜a1 = 0.073
196
+ MeV−1 and ˜a2 = 0.095 MeV−1 are taken from Ref. [49].
197
+ Bs(q) is the dimensionless functional of the surface en-
198
+ ergy [34, 38, 43, 50], expressed as the ratio of surface
199
+ energy of the composite system to that of a sphere.
200
+ The over-damped Langevin equation which describes
201
+ the fission process in the dynamical part of the model
202
+ thus, has the form [36]:
203
+ dq
204
+ dt =
205
+ T
206
+ Mβ(q)
207
+ �∂S(q)
208
+ ∂q
209
+
210
+ Etot
211
+ +
212
+
213
+ T
214
+ Mβ(q)Γ(t)
215
+ (2)
216
+ where Etot is the total energy of the composite system
217
+ that remains conserved and Γ(t) is a Markovian stochas-
218
+ tic variable with a normal distribution. The reduced dis-
219
+ sipation coefficient β(q) = γ/M (as employed in litera-
220
+ ture, see e.g., Refs. [16, 29, 42, 44] (and Refs. therein))
221
+ is the ratio of friction coefficient γ to the inertia param-
222
+ eter M calculated with Werner-Wheeler approximation
223
+ of an incompressible irrotational fluid [51]. The present
224
+ model employs ”funny−hills” parameters {c,h,α} [52]
225
+ for describing the shape of the fissioning nuclei.
226
+ Tak-
227
+ ing into account only symmetric fission, the mass asym-
228
+ metry parameter of the shape evolution is set to α=0
229
+ [36, 38, 50]. The dimensionless fission coordinate (q) is
230
+ given by q(c,h)= ( 3c
231
+ 8 )(1+ 2
232
+ 15[2h+ (c−1)
233
+ 2
234
+ ]c3), where c and h
235
+
236
+ 3
237
+ defines the elongation and neck degree of freedom of the
238
+ fissioning nucleus, respectively [36, 43, 53, 54].
239
+ Following the fission dynamics through full Langevin
240
+ dynamical calculation is quite time consuming. Similar
241
+ to previous Langevin studies [31, 36, 39–43], a compu-
242
+ tationally less intensive approach is adopted in present
243
+ study where the dynamical stage is coupled with a sta-
244
+ tistical model. In the present calculations, the emission
245
+ of light particles from ground state to scission config-
246
+ uration along the Langevin trajectories is treated as a
247
+ discrete process.
248
+ The evaporation of pre-scission light
249
+ particles from ground state of Langevin trajectories to
250
+ the scission point is coupled to the fission mode by a
251
+ Monte Carlo procedure. The decay width for light parti-
252
+ cle evaporation at each Langevin time step is calculated
253
+ with the formalism as suggested by Fr¨obrich et al. [36]
254
+ and later incorporated in Refs. [34, 40–43]. The emission
255
+ width of a particle of kind ν (n,p,α) is given by [55]:
256
+ Γν = (2sν + 1)
257
+
258
+ π2ℏ2ρc(Eex)
259
+ ×
260
+ � (Eex−Bν)
261
+ 0
262
+ dϵνρR(Eex − Bν − ϵν)ϵνσinv(ϵν)
263
+ (3)
264
+ where sν is the spin of emitted particle ν, and mν is
265
+ its reduced mass with respect to the residual nucleus.
266
+ The level densities of the compound and residual nuclei
267
+ are denoted by ρc(Eex) and ρR(Eex − Bν − ϵν). Bν is
268
+ the liquid-drop binding energy, ϵ is the kinetic energy
269
+ of the emitted particle and σinv(ϵν) is the inverse cross
270
+ sections [55]. The decay width for light particle emission
271
+ is calculated at each Langevin time step τ [43, 53, 54].
272
+ When a stationary flux over the barrier is reached af-
273
+ ter a sufficiently long delay time, the decay of the CN
274
+ is then modelled by an adequately modified statistical
275
+ model [38, 56, 57]. To have continuity when switching
276
+ from dynamical to statistical branch, an entropy depen-
277
+ dent fission width is incorporated in the latter. While en-
278
+ tering the statistical branch, the particle emission width
279
+ Γν is re-calculated and the fission width Γf = ℏRf [36]
280
+ is calculated with fission rate (Rf) given by,
281
+ Rf =
282
+ Tgs
283
+
284
+ |S
285
+ ′′
286
+ gs|S
287
+ ′′
288
+ sd
289
+ 2πMβgs
290
+ exp[S(qgs) − S(qsd)]
291
+ × 2(1+erf[(qsc − qsd)
292
+
293
+ S
294
+ ′′
295
+ sd/2])−1
296
+ (4)
297
+ Here erf(x) = (2/√π)
298
+ � x
299
+ 0 dt exp(−t2) is the error func-
300
+ tion and βgs is ground state dissipation coefficient. The
301
+ saddle-point (qsd) and the ground-state positions (qgs)
302
+ are defined by the entropy and not, as in the conventional
303
+ approach, by the potential energy. The standard Monte
304
+ Carlo cascade procedure was used to select the kind of
305
+ decay with weights Γi/Γtot (i=fission,n,p,d,α) and Γtot =
306
+
307
+ i Γi. Pre-scission particle multiplicities are calculated
308
+ by counting the number of corresponding evaporated par-
309
+ ticle events registered in the dynamical and statistical
310
+ branch of the model.
311
+ The Langevin equation is started from a ground state
312
+ configuration with a temperature corresponding to the
313
+ initial excitation energy.
314
+ The fusion cross-section can
315
+ be determined from the partial cross section dσ(l)
316
+ dl
317
+ which
318
+ represent the contribution of angular momenta l to the
319
+ total fusion cross-section.
320
+ Each Langevin trajectory is
321
+ started with an orbital angular momentum which is sam-
322
+ pled from a fusion spin distribution that reads as [34, 36]:
323
+ dσ(l)
324
+ dl
325
+ = 2π
326
+ k2
327
+ 2l + 1
328
+ 1 + exp (l−lc)
329
+ δl
330
+ (5)
331
+ The final results are weighted over all relevant waves, that
332
+ is, the spin distribution is used as an angular momen-
333
+ tum weight function with which the Langevin calcula-
334
+ tions for fission are started. As shown in recent Langevin
335
+ studies, [34, 39–44], the spin distribution is calculated
336
+ with the surface friction model [58].
337
+ This calculation
338
+ also fixes the fusion cross-section thus guaranteeing the
339
+ correct normalization of fission and evaporation residue
340
+ cross-sections within the accuracy of the surface friction
341
+ model. The parameters lc and δl are the critical angular
342
+ momentum for fusion and diffuseness, respectively.
343
+ The fission observables that will be discussed in sub-
344
+ sequent sections are calculated in the model as follows.
345
+ The pre-scission neutron multiplicity is the number of
346
+ neutrons emitted by the CN till it reaches the scission
347
+ configuration. The fission probability (Pf) is given by
348
+ the ratio of fissioned trajectories to total trajectories.
349
+ The CN survival probability (1-Pf) is given by number
350
+ of trajectories leading to ER formation divided by total
351
+ trajectories and the fission (ER) cross-section is given by
352
+ the product of fission (survival) probability and fusion
353
+ cross-section.
354
+ III.
355
+ RESULTS AND DISCUSSION
356
+ In the present study, pre-scission neutron multiplic-
357
+ ities, fission and ER excitation functions for 206,210Po,
358
+ 212,214,216Rn and 213,215,217Fr compound nuclei are com-
359
+ puted and compared with available experimental data
360
+ wherein 210Po, 212Rn and 213Fr are N=126 neutron shell
361
+ closed nuclei. The table I shows important parameters
362
+ for the reactions studied in this work. The dynamical cal-
363
+ culations are performed with a universal frictional form
364
+ of Refs. [36, 47, 57] without adjusting any of the model
365
+ parameters with a consistent prescription of the dissipa-
366
+ tion coefficient. To account for sufficient statistics, 107
367
+ Langevin trajectories are considered in the model calcu-
368
+ lations.
369
+ Fig.
370
+ 1 shows the results of dynamical calculations
371
+ compared with the experimental data of νpre, fission
372
+ and ER cross-sections for 206Po formed via.
373
+ 12C+194Pt
374
+ [18, 19, 59] reaction and 210Po formed through two dif-
375
+ ferent entrance channel reactions, namely
376
+ 12C+198Pt
377
+ [18, 19, 60] and 18O+192Os [5, 60, 61], spanning a wide
378
+ range of excitation energy. The excitation energies shown
379
+
380
+ 4
381
+ TABLE I. Important parameters of reactions studied
382
+ CN
383
+ fissility
384
+ Sn
385
+ Bf(l=0)
386
+ Reaction
387
+ Mass excess (MeV) α/αBG
388
+ (MeV)
389
+ (MeV)
390
+ target(proj)
391
+ CN
392
+ 206Po
393
+ 0.717
394
+ 7.99
395
+ 10.51
396
+ 12C+194Pt
397
+ -34.79(0)
398
+ -18.83
399
+ 1.043
400
+ 210Po
401
+ 0.711
402
+ 7.38
403
+ 11.22
404
+ 12C+198Pt
405
+ -29.93(0)
406
+ -16.33
407
+ 1.050
408
+ 18O+192Os -35.89(-0.78) -16.33
409
+ 0.982
410
+ 212Rn
411
+ 0.732
412
+ 7.83
413
+ 8.88
414
+ 18O+194Pt -34.79(-0.78)
415
+ -9.26
416
+ 0.970
417
+ 214Rn
418
+ 0.729
419
+ 7.54
420
+ 9.19
421
+ 16O+198Pt -29.93(-4.74)
422
+ -4.77
423
+ 0.996
424
+ 216Rn
425
+ 0.727
426
+ 7.25
427
+ 9.49
428
+ 18O+198Pt -29.93(-0.78)
429
+ 0.70
430
+ 0.977
431
+ 213Fr
432
+ 0.743
433
+ 8.06
434
+ 7.83
435
+ 16O+197Au -31.16(-4.74)
436
+ -4.01
437
+ 0.987
438
+ 19F+194Pt
439
+ -34.79(-1.49)
440
+ -4.01
441
+ 0.954
442
+ 215Fr
443
+ 0.740
444
+ 7.76
445
+ 8.13
446
+ 19F+196Pt -32.67 (-1.49) -0.07
447
+ 0.958
448
+ 217Fr
449
+ 0.737
450
+ 7.47
451
+ 8.42
452
+ 19F+198Pt
453
+ -29.93(-1.49)
454
+ 5.00
455
+ 0.961
456
+ here are with respect to the liquid drop ground state CN
457
+ mass and experimental mass of projectile and target [62].
458
+ Our calculations are restricted to excitation energies at
459
+ and above 40 MeV where the present macroscopic model
460
+ is valid. We emphasize that the microscopic shell correc-
461
+ tions are not accounted for in the present calculations,
462
+ as we are dealing with hot nuclei where shell effects are
463
+ expected to be negligible at high excitation energies that
464
+ are populated in heavy-ion reactions. The results of cal-
465
+ culations using only the statistical model (dashed line)
466
+ are also shown in Fig. 1. These calculations are made
467
+ with the same code with Langevin dynamics turned off.
468
+ The statistical model calculations under-predict the mea-
469
+ sured νpre data as shown in panels (a) to (c), even more
470
+ so as excitation energy increases. The dynamical model
471
+ calculations using universal reduced friction coefficient
472
+ are in excellent agreement with the measured data of
473
+ νpre (panels (a) to (c)), fission cross-sections σfiss (pan-
474
+ els (d) to (f)) and ER cross-sections σER (panels (g) to
475
+ (i)) for the neutron shell closed nuclei 210Po as well as
476
+ its isotope 206Po. The measured data of 210Po formed
477
+ through two different entrance channels agree well with
478
+ the theory in a broad range of excitation energies up to
479
+ 80 MeV. The model calculations describe the available
480
+ experimental data for 206,210Po simultaneously at these
481
+ excitation energies without any microscopic corrections
482
+ included in the model. These observations are at vari-
483
+ ance with the statistical model analysis of 12C+194Pt and
484
+ 12C+198Pt reactions that reported a significant shell cor-
485
+ rection at the saddle deformation to describe the angular
486
+ anisotropy and νpre data [18, 19]. A recent 4D Langevin
487
+ dynamical study [63] that was carried on 206Po and 210Po
488
+ populated from reaction 12C+198Pt, reported a reason-
489
+ able description of the measured data for these reactions
490
+ without invoking any extra shell corrections at the saddle
491
+ state; shown as open triangles in panels (a), (c), (d) and
492
+ (f) of Fig. 1. A better agreement of the measured data is
493
+ observed for 12C+198Pt reaction in comparison to its 4D
494
+ Langevin calculations [63], particularly at low excitation
495
+ energies as shown in panels (a) and (d) of Fig. 1. The
496
+ overestimation of νpre and fission cross-section of 210Po
497
+ in Ref.
498
+ [63] was attributed to the remnant of ground
499
+ state shells and hence, a consequence of not using a pure
500
+ macroscopic potential energy surface as suggested in Ref.
501
+ [64]. Nonetheless, the predictions of multi-dimensional
502
+ Langevin model for νpre data of 206Po by Karpov et al.
503
+ [30] are also found to be in reasonable agreement with the
504
+ results of the present analysis. Moreover, the measured
505
+ mass distribution of fragments in the fission of 206,210Po
506
+ [65, 66] reaffirms the absence of any shell corrections on
507
+ the potential energy surface at the saddle point.
508
+ Figs.
509
+ 2 and 3 display the comparison between ex-
510
+ perimental data and theoretical calculations of νpre, fis-
511
+ sion, ER and fusion cross-sections for N=126 shell closed
512
+ nuclei viz.
513
+ 212Rn [21, 23, 24, 67] formed through re-
514
+ action 18O+194Pt and 213Fr formed through reactions
515
+ 19F+194Pt [15, 22, 26, 68] and 16O+197Au [5, 6], and
516
+ their non-shell closed isotopes 214,216Rn populated via.
517
+ reactions 16,18O+198Pt [21, 23, 24, 67] and 215,217Fr pop-
518
+ ulated via. reactions 19F+196,198Pt [15, 22, 26, 68]. The
519
+ model calculations describe the νpre and fission excita-
520
+ tion functions for 212Rn and its isotopes 214,216Rn quite
521
+ successfully. In reactions forming 213,215,217Fr nuclei, the
522
+ same parameter set is able to account for the experi-
523
+ mental fission excitation functions but not νpre. A re-
524
+ cent work [26] using an extended version of statistical-
525
+ model employing collective enhancement of level density
526
+ also reported an under-estimation of νpre data for same
527
+ reactions when fitted simultaneously with fission cross-
528
+ section. In the present work, the disagreement between
529
+ experimental νpre and theory is prominent above ≈50
530
+ MeV excitation energy and it increases with rise in exci-
531
+ tation energy. Considering that νpre of other studied nu-
532
+ clei are well reproduced by the model, it is unclear why
533
+
534
+ 5
535
+ 0
536
+ 1
537
+ 2
538
+ 3
539
+ 4
540
+ νpre
541
+ (a)
542
+ 12C+198Pt −→ 210Po
543
+ (b)
544
+ 18O+192Os −→ 210Po
545
+ (c)
546
+ 12C+194Pt −→ 206Po
547
+ 100
548
+ 101
549
+ 102
550
+ 103
551
+ σfiss(mb)
552
+ (d)
553
+ (e)
554
+ (f)
555
+ 40
556
+ 60
557
+ 80
558
+ 100
559
+ 100
560
+ 101
561
+ 102
562
+ 103
563
+ σER(mb)
564
+ (g)
565
+ 40
566
+ 60
567
+ 80
568
+ 100
569
+ (h)
570
+ 40
571
+ 60
572
+ (i)
573
+ Eex (MeV)
574
+ FIG. 1. (Colour online) Measured and calculated pre-scission neutron multiplicities (νpre), fission cross-sections (σfiss) and evap-
575
+ oration residue cross-sections (σER) as a function of excitation energy for the reactions 12C+198Pt, 18O+192Os and 12C+194Pt.
576
+ The continuous line (red) denote calculated results with a universal frictional form factor and dashed line (black) represent
577
+ statistical model calculations. The symbols in the legend represent different experimental data sets, for νpre: (filled squares)
578
+ Ref. [19], (filled circles) Ref. [5] and (open square) Ref. [59]; for σfission and σER: (filled diamonds) Ref. [18], (filled hexagons)
579
+ Ref. [61] and (open diamonds) Ref. [60]. The open triangles represent results of νpre and σfission from 4D Langevin calculations
580
+ of Ref. [63].
581
+ the same frictional form fails, particularly for reactions
582
+ forming Fr nuclei. It is to be noted that, an energy de-
583
+ pendent dissipation was used in Ref.[21, 22] to describe
584
+ the νpre data for these reactions.
585
+ We also attempted
586
+ similar approach by employing a temperature-dependent
587
+ friction (TDF) in the stochastic calculations [69] (with-
588
+ out changing any other parameter). This frictional form
589
+ factor is deformation dependent, unlike the ones used in
590
+ Refs. [21, 22, 70]. The maximum of β(q) in TDF corre-
591
+ sponds to the ground state, that tends to decrease with
592
+ increasing deformation with its minimum near the sad-
593
+ dle configuration and is followed by an increase in the
594
+ dissipation strength when approaching the scission. The
595
+ dissipation coefficient assumes a higher value with in-
596
+ creasing temperature of the CN. It is observed that a
597
+ better agreement of νpre data is achieved for reactions
598
+ 19F+194,196,198Pt and 16O+197Au after invoking temper-
599
+ ature dependence of the dissipation. The same frictional
600
+ form, however, is found to over-predict the measured νpre
601
+ data of other studied nuclei and hence is not shown here.
602
+ Deviation in ER excitation functions are also to be
603
+ noted for 212Rn and 213,215,217Fr nuclei wherein the cal-
604
+ culated ER cross-sections underpredict the experimental
605
+ data for these nuclei at high excitation energies. The case
606
+
607
+ 6
608
+ 0
609
+ 2
610
+ 4
611
+ νpre
612
+ (a)
613
+ 18O+198Pt −→ 216Rn
614
+ (b)
615
+ 16O+198Pt −→ 214Rn
616
+ (c)
617
+ 18O+194Pt −→ 212Rn
618
+ 101
619
+ 102
620
+ 103
621
+ σfiss(mb)
622
+ (d)
623
+ (e)
624
+ (f)
625
+ 101
626
+ 102
627
+ 103
628
+ σER(mb)
629
+ (g)
630
+ (h)
631
+ (i)
632
+ 40
633
+ 60
634
+ 80
635
+ 101
636
+ 102
637
+ 103
638
+ σfus(mb)
639
+ (j)
640
+ 40
641
+ 60
642
+ 80
643
+ (k)
644
+ 40
645
+ 60
646
+ 80
647
+ (l)
648
+ Eex (MeV)
649
+ FIG. 2. (Colour online) Measured and calculated pre-scission neutron multiplicities (νpre), fission cross-sections (σfiss), evapora-
650
+ tion residue cross-sections (σER) and fusion cross-sections (σfus) as a function of excitation energy for the reactions 18O+198Pt,
651
+ 16O+198Pt, 18O+194Pt. The continuous (red) and dashed (black) lines have the same meaning as in Fig. 1. The calculations
652
+ of fusion cross-section are independent of the frictional form and are represented by dotted line (brown). The symbols in the
653
+ legend represent different experimental data sets, for νpre: (filled squares) Ref. [21]; for σfiss: (filled diamonds) Ref. [67] and
654
+ (open diamonds) Ref. [23]; for σER: (filled circles) Ref. [24] and (filled hexagons) Ref. [23] and for σfus: (filled triangles) Refs.
655
+ [23, 24].
656
+ of Rn isotopes is of particular interest as the ER cross-
657
+ section data for 214,216Rn [24] agrees fairly well with the
658
+ model calculations at all measured energies but differ for
659
+ 212Rn [23] except at the lowest energy. For 213,215,217Fr
660
+ nuclei, the measured ER cross-sections of Ref. [15] differ
661
+ above excitation energy ≈ 55 MeV and the deviation is
662
+ prominent for 213,215Fr. It is quite interesting to note that
663
+ the ER measurement by a different group [68] for same
664
+ reactions forming 213,217Fr at Eex ≤ 55 MeV follows the
665
+ trend of the model predictions quite successfully. Unfor-
666
+ tunately, Ref. [68] has reported only three data points.
667
+ Moreover, the ER cross-section data of 215Fr formed in
668
+ reaction 18O+197Au [71] is reproduced reasonably well
669
+ with results of 19F+196Pt particularly, above 50 MeV ex-
670
+ citation energy (displayed as open pentagons in panel (j)
671
+ of Fig. 3). The present dynamical calculations assume
672
+
673
+ 7
674
+ 0
675
+ 2
676
+ 4
677
+ 6
678
+ νpre
679
+ (a)
680
+ 19F+198Pt → 217Fr
681
+ (b)
682
+ 19F+196Pt → 215Fr
683
+ (c)
684
+ 19F+194Pt → 213Fr
685
+ (d)
686
+ 16O+197Au → 213Fr
687
+ 101
688
+ 102
689
+ 103
690
+ σfiss(mb)
691
+ (e)
692
+ (f)
693
+ (g)
694
+ (h)
695
+ 101
696
+ 102
697
+ 103
698
+ σER(mb)
699
+ (i)
700
+ (j)
701
+ (k)
702
+ (l)
703
+ 50
704
+ 75
705
+ 100
706
+ 101
707
+ 102
708
+ 103
709
+ σfus(mb)
710
+ (m)
711
+ 50
712
+ 75
713
+ 100
714
+ (n)
715
+ 50
716
+ 75
717
+ 100
718
+ (o)
719
+ 50
720
+ 100
721
+ (p)
722
+ Eex (MeV)
723
+ FIG. 3. (Colour online) Measured and calculated pre-scission neutron multiplicities (νpre), fission cross-sections (σfiss), evapora-
724
+ tion residue cross-sections (σER) and fusion cross-sections (σfus) as a function of excitation energy for the reactions 19F+198Pt,
725
+ 19F+196Pt, 19F+194Pt and 16O+197Au. The continuous (red), dashed (black) and dotted (brown) lines have the same meaning
726
+ as in Figs. 1 and 2. The dash-dotted line (magenta) represent calculated results with temperature-dependent friction. The
727
+ symbols in the legend represent different experimental data sets, for νpre: (filled squares) Ref. [22] and (partially filled squares)
728
+ Ref. [5] ; for σfiss: (filled diamonds) Ref. [26],(partially filled diamonds) Ref. [6] and (open diamonds) Ref. [68]; for σER:
729
+ (filled circles) Ref. [15], (partially filled circles) Ref. [6] and (open circles) Ref. [68] and for σfus: (filled triangles) Refs.
730
+ [15, 26, 68] and (open triangles) Refs. [6]. The open pentagons denote σER for 215Fr nuclei formed via 18O+197Au Ref. [71].
731
+ decay from an equilibrated CN and any entrance channel
732
+ effects are not included. It takes account of only the dif-
733
+ ferent angular momenta that are populated in different
734
+ entrance channels. Taking into consideration the insignif-
735
+ icant difference in angular momenta between two en-
736
+ trance channels forming 215Fr, the observed deviation in
737
+ ER cross-section for 19F-induced reaction is quite unex-
738
+ pected. These observations further necessitated the need
739
+ to confront the deviations in describing ER cross-sections
740
+ by comparing the measured fusion cross-sections for Rn
741
+ and Fr nuclei with the model. It is revealed that the cal-
742
+ culated fusion cross-sections are in good agreement with
743
+ the measured fusion data, augmenting the validity of the
744
+ present calculations. Furthermore, the under-prediction
745
+ of ER cross-sections indicates the need for a strong dis-
746
+ sipation in the pre-saddle region [72].
747
+ However, 3D
748
+
749
+ 8
750
+ Langevin dynamical calculations [31] reported a reduc-
751
+ tion in the wall friction coefficient to reproduce the mass
752
+ and kinetic energy distribution of fission fragments, and
753
+ their influence on νpre for 215Fr nucleus. The strength
754
+ of the reduction coefficient, ks = 0.25 − 0.5 indicates
755
+ a weak dissipation in the initial stages of the fissioning
756
+ nucleus. The experimental analysis of fission fragment
757
+ nuclear-charge distributions and fission cross-sections of
758
+ Fr, Rn isotopes and their neighbouring nuclei also re-
759
+ ported a pre-saddle dissipation strength of magnitude
760
+ (4.5 ± 0.5) × 1021 s−1 [73] and 2 × 1021 s−1 [74], respec-
761
+ tively. The more recent microscopic study of energy de-
762
+ pendent dissipation using time-dependent Hartree-Fock
763
+ + BCS method [75] also observed a strength of deforma-
764
+ tion dependent friction coefficient, ranging from 1 to 6
765
+ × 1021 s−1 in heavy nuclei. The strength of these fric-
766
+ tional parameterizations are quite in agreement with the
767
+ dissipation form factor employed in the present calcula-
768
+ tions.
769
+ These observations affirm a weak dissipation in
770
+ the pre-saddle region; so, the observed enhancement of
771
+ ER cross-sections in Fr nuclei populated via. 19F-induced
772
+ reactions is not well-understood from the perspective of
773
+ dissipation strength alone.
774
+ In fact, a satisfactory de-
775
+ scription of the excitation functions including ER cross-
776
+ sections for reactions 12C+194Pt, 12C+198Pt, 18O+192Os
777
+ and 16,18O+198Pt and survival probabilities for a range
778
+ of fissilities [36] is observed within the framework of this
779
+ 1D Langevin dynamics with a universal friction param-
780
+ eter. However, it is also important to bear in mind the
781
+ possible bias coming from experimental uncertainty. It is
782
+ striking that the observed deviations are pronounced in
783
+ ER cross-section data where measurements are reported
784
+ to have large uncertainty in ER separator transmission
785
+ efficiency [15, 23]. It would be highly desirable to have
786
+ additional ER measurements to rule out any possible ex-
787
+ perimental bias in the interpretation of ER data.
788
+ It must be noted that, the entrance channel dynam-
789
+ ics of the fusion stage might also play a role influenc-
790
+ ing neutron emission at the formation stage [14]. It is
791
+ known that interplay of CN excitation energy, angular
792
+ momentum and fission barrier play crucial role in fission
793
+ process [28]. Present study do not take into account any
794
+ entrance channel dynamics influencing the fusion stage.
795
+ The model only considers the entrance channel depen-
796
+ dent ’l’ distribution calculated within the surface friction
797
+ model [58]. In Fig. 4 we show the calculated fission bar-
798
+ rier height Bf(l) for three compound systems and mean
799
+ angular momentum < l > calculated from ’l’ distribu-
800
+ tion for different entrance channels forming same CN.
801
+ The variation of Bf is plotted as a function of ’l’ in Fig.
802
+ 4(a) and variation of < l > of the compound systems is
803
+ plotted as a function of Eex in Fig 4(b). From Fig. 4,
804
+ it is clear that, the difference in angular momenta be-
805
+ tween two entrance channels forming same CN at similar
806
+ Eex is not very significant to cause any ’l’ induced ef-
807
+ fects on measured fission observable. This is evident in
808
+ the νpre data for 210Po formed in reactions 12C+198Pt
809
+ and 18O+192Os which are well described in the present
810
+ work (see Fig. 1) without invoking any entrance channel
811
+ effects in the model.
812
+ Recent studies investigating en-
813
+ trance channel dynamics [27, 28] reported disagreement
814
+ between experimental νpre and predictions of entrance
815
+ channel model for 213Fr nuclei formed via.
816
+ 16O+197Au
817
+ and 19F+194Pt reactions. These studies were, however,
818
+ not extended to other isotopes of Fr, namely 215,217Fr
819
+ that also show similar discrepancy as reported in the
820
+ present study.
821
+ The current 1D Langevin analysis provides a simul-
822
+ taneous description of the experimental data for neutron
823
+ magic nuclei 210Po without invoking any saddle shell cor-
824
+ rections or a nuclear dissipation strength dependent on
825
+ system/observable under study. In order to understand
826
+ qualitatively that consideration of saddle shell correc-
827
+ tions are not required to explain νpre data, we consider
828
+ the nature of neutron emission during the fission process.
829
+ It is to be noted that these neutrons are emitted from dy-
830
+ namical trajectories that originated from compact config-
831
+ uration till scission point is reached. The prompt and
832
+ beta-delayed neutron emissions from fission fragments
833
+ are not taken into consideration.
834
+ As recent publica-
835
+ tions have advocated for the inclusion of shell correc-
836
+ tions on the saddle configuration to describe the angular
837
+ anisotropy and νpre data at moderate excitation energies
838
+ [12, 18, 19], we have attempted to find the distribution
839
+ of pre-scission neutrons as it evolves from ground state
840
+ to scission point. The model calculated potential energy
841
+ V(q) and distribution of percentage yield of pre-scission
842
+ neutrons are plotted as a function of the deformation co-
843
+ ordinate (q) for these nuclei at 50 MeV excitation energy
844
+ and shown in Fig. 5. It is evident that more than 90% of
845
+ the neutron emission occurs at an early stage of fission
846
+ before the saddle deformation (q ≈ 0.8) [38] is reached.
847
+ The mean of the distribution corresponds to νpre emis-
848
+ sion close to the ground state configuration. In-fact, a
849
+ multi-dimensional Langevin study of 215Fr by Nadtochy
850
+ et al. [31] have also pointed out that an appreciable part
851
+ of pre-scission neutrons are emitted at an early stage of
852
+ fission before saddle is reached. As most of the neutrons
853
+ are emitted close to the ground state configuration, it is
854
+ unlikely to be influenced by any shell corrections applied
855
+ at the saddle.
856
+ Though the present code uses classical 1D approach to
857
+ describe fission observables, the main objective of this
858
+ work is to have a simultaneous description of experi-
859
+ mental data without any parameter adjustment thus,
860
+ removing some of the reported ambiguities.
861
+ A com-
862
+ parison between νpre calculated with 1D model and re-
863
+ cent macroscopic multi-dimensional models is displayed
864
+ in Fig. 6. It can be seen that the νpre values predicted
865
+ by different models are very similar and also reproduce
866
+ the measurements quite well for reactions spanning a
867
+ wide range of fissility parameter Z2/A.
868
+ Additionally,
869
+ the multi-dimensional calculations [34, 50, 76] also use
870
+ the formalisms adopted from Refs. [36, 69] such as the
871
+ parameterization of surface friction model and weakest
872
+ coordinate dependence of the level-density parameter as
873
+
874
+ 9
875
+ 0
876
+ 20
877
+ 40
878
+ 60
879
+ 80
880
+ ℓ (¯h)
881
+ 0
882
+ 2
883
+ 4
884
+ 6
885
+ 8
886
+ 10
887
+ 12
888
+ 14
889
+ Bf (MeV)
890
+ (a)
891
+ 210Po
892
+ 212Rn
893
+ 213Fr
894
+ 30
895
+ 40
896
+ 50
897
+ 60
898
+ 70
899
+ 80
900
+ 90
901
+ 10
902
+ 15
903
+ 20
904
+ 25
905
+ 30
906
+ 35
907
+ 40
908
+ 45
909
+ < ℓ > (¯h)
910
+ (b)
911
+ 12C+198Pt
912
+ 18O+192Os
913
+ 19F+194Pt
914
+ 16O+197Au
915
+ Eex (MeV)
916
+ FIG. 4. (Colour online) (a) The angular momentum ’l’ de-
917
+ pendent fission barrier height Bf(l) for three CN 210Po,212Rn
918
+ and 213Fr and (b) Variation of mean angular momentum < l >
919
+ with compound nucleus excitation energy for 210Po,and 213Fr
920
+ populated by different entrance channels.
921
+ employed in the present work.
922
+ Hence, the qualitative
923
+ nature of the observed features presented here is not ex-
924
+ pected to be different with multi-dimensional approach.
925
+ As the present framework is found to provide realistic
926
+ values close to measured data, we believe that the 1D
927
+ approach still can be a potential tool to study a wider
928
+ systematics which can be accomplished within minimum
929
+ 0
930
+ 10
931
+ 20
932
+ 30
933
+ 40
934
+ V (MeV)
935
+ 0.2
936
+ 0.4
937
+ 0.6
938
+ 0.8
939
+ 1.0
940
+ 1.2
941
+ 0
942
+ 1
943
+ 2
944
+ 3
945
+ 4
946
+ 5
947
+ 6
948
+ 7
949
+ 8
950
+ d<νpre>/dq (%)
951
+ qneck
952
+ qsadd
953
+ 210Po
954
+ 212Rn
955
+ 213Fr
956
+ deformation coordinate (q)
957
+ FIG. 5.
958
+ (Colour online) Potential energy distribution as a
959
+ function of nuclear deformation coordinate (q) for three fis-
960
+ sioning nuclei 210Po, 212Rn and 213Fr (top panel) and distri-
961
+ bution of percentage yield of evaporated pre-scission neutrons
962
+ as a function of (q) for three CN at 50 MeV excitation energy
963
+ (bottom panel). The deformation coordinate (q) assumes a
964
+ value of 0.6 (qneck) when the neck of the fissioning nucleus
965
+ starts to develop and q=0.8 (qsadd) at the saddle state con-
966
+ figuration.
967
+ computational resources.
968
+ It must be remarked here that, even though present
969
+ analysis provides a reasonable reproduction of the exper-
970
+ imental data without invoking any shell corrections at
971
+ high excitation energies, it shall not be concluded from
972
+ this work that shell effects are not relevant in the analy-
973
+ sis. As present investigation consider only the first chance
974
+ fission at Eex ∼ 40 MeV and above where shell effects are
975
+ expected to be washed out, no indication for the need of
976
+ including shell corrections was found. However, for the
977
+ case when the CN is populated at low excitation energies
978
+ or reaches low excitation energy due to neutron emission
979
+ as a consequence of competition between neutron evapo-
980
+ ration and fission (multi-chance fission), the microscopic
981
+ effects are required to be taken into consideration. Re-
982
+ cent microscopic study of dissipation within Hartree-Fock
983
+ + BCS framework [75] have shown a strong dependence
984
+ of dissipation on deformation and initial excitation ener-
985
+ gies of the hot nuclei. Possible influence of microscopic
986
+ temperature dependence of fission barrier height and its
987
+ curvature were also emphasized in some recent studies
988
+ of fully microscopic description of fission process [77, 78].
989
+
990
+ 10
991
+ 30
992
+ 35
993
+ 40
994
+ Z2/A
995
+ 0
996
+ 1
997
+ 2
998
+ 3
999
+ 4
1000
+ 5
1001
+ 6
1002
+ νpre
1003
+ 162Yb
1004
+ 206Po
1005
+ 210Po
1006
+ 215Fr
1007
+ 244Cm
1008
+ 264Rf
1009
+ 216Ra
1010
+ 248Cf
1011
+ Expt. data
1012
+ Present
1013
+ Multi-dimensional model
1014
+ FIG. 6.
1015
+ (Colour online) Comparison of measured pre-
1016
+ scission neutron multiplicities (νpre) with the results of the
1017
+ 1D model (present work) and multi-dimensional models. The
1018
+ filled triangles (blue) denote experimental data [6, 14, 59, 80–
1019
+ 83], the present dynamical model calculations are represented
1020
+ by filled circles (orange) and the filled squares (green) de-
1021
+ note the results of multi-dimensional dynamical calculations
1022
+ [28, 30, 34, 84].
1023
+ A microscopic framework based on the finite-temperature
1024
+ Skyrme-HartreeFock+BCS approach [79] was adopted to
1025
+ demonstrate the essential role of energy dependent fission
1026
+ barriers by studying the experimental fission probability
1027
+ of 210Po. It would be quite interesting to extend the in-
1028
+ vestigation of Fr nuclei within such a microscopic frame-
1029
+ work.
1030
+ IV.
1031
+ SUMMARY AND CONCLUSION
1032
+ In the present work we report a systematic study on
1033
+ the fission dynamics of N=126 shell closed nuclei in mass
1034
+ region 200 with a simultaneous description of three fis-
1035
+ sion observables. The present work highlights the limited
1036
+ reliability of the conclusions drawn from the recent statis-
1037
+ tical model analysis of shell closed nuclei, namely 210Po,
1038
+ 212Rn and 213Fr at excitation energies 40 MeV and above,
1039
+ that advocated for extra shell effects at saddle configu-
1040
+ ration even after their inclusion in the level density for-
1041
+ mulation. Earlier analyses of νpre and ER cross-sections
1042
+ were based on different assumptions and case dependent
1043
+ parameter adjustments, without reaching a definite con-
1044
+ clusion.
1045
+ On the basis of present analysis we conclude
1046
+ that, without many of those assumptions and parameter
1047
+ adjustments, a well established combined dynamical and
1048
+ statistical model can simultaneously reproduce the avail-
1049
+ able data of νpre, fission and evaporation residue excita-
1050
+ tion functions (also fusion cross-sections in certain cases)
1051
+ for neutron shell closed nuclei, viz.
1052
+ 210Po, 212Rn and
1053
+ their non-shell closed isotopes 206Po and 214,216Rn with-
1054
+ out the need of including any extra shell effects. There
1055
+ appears to be no discernible influence of N=126 neutron
1056
+ shell structure on these measured fission observables in
1057
+ the medium excitation energy range. The present work
1058
+ also points to a relatively smaller role of entrance channel
1059
+ effects in the studied systems.
1060
+ However, we find a significant mismatch between mea-
1061
+ sured νpre data and its model predictions for Fr nuclei
1062
+ formed in reactions 19F+194,196,198Pt and 16O+197Au,
1063
+ despite a reasonable description of fission and fusion
1064
+ cross-sections.
1065
+ The νpre data in Fr nuclei could only
1066
+ be reproduced after invoking a temperature dependent
1067
+ frictional form.
1068
+ The difficulty in completely reproduc-
1069
+ ing some specific measurements of Fr nuclei still remains
1070
+ not well-understood and additional measurements are de-
1071
+ sired. Although the present work is limited to the study
1072
+ of three fission observables, it would also be interesting
1073
+ to extend the systematic study using recent microscopic
1074
+ theory within Hartree-Fock + BCS framework.
1075
+ V.
1076
+ ACKNOWLEDGMENTS
1077
+ We are thankful to K. S. Golda and N. Saneesh for
1078
+ fruitful discussions. One of the authors (D.A.) acknowl-
1079
+ edges the financial support in the form of research fel-
1080
+ lowship received from the University Grants Commission
1081
+ (UGC).
1082
+ REFERENCES
1083
+ [1] R. Vandenbosch, J. R. Huizenga, Nuclear Fission, Aca-
1084
+ demic Press, New York, 1973.
1085
+ [2] H. J. Krappe, K. Pomorski, Theory of Nuclear Fission,
1086
+ Lecture Notes in Physics, Springer, Heidelberg, 2012.
1087
+ [3] N. Bohr, J. A. Wheeler, Phys. Rev. 56 (1939) 426. doi:
1088
+ 10.1103/PhysRev.56.426.
1089
+ [4] A. Gavron, J. R. Beene, B. Cheynis, R. L. Ferguson,
1090
+ F. E. Obenshain, F. Plasil, G. R. Young, G. A. Petitt,
1091
+ M. J¨a¨askel¨ainen, D. G. Sarantites, C. F. Maguire, Phys.
1092
+ Rev. Lett. 47 (1981) 1255. doi:10.1103/PhysRevLett.
1093
+ 47.1255.
1094
+ [5] J. O. Newton,
1095
+ D. J. Hinde,
1096
+ R. J. Charity,
1097
+ J. R.
1098
+ Leigh, J. J. M. Bokhorst, A. Chatterjee, G. S. Foote,
1099
+ S. Ogaza, Nucl. Phys. A 483 (1988) 126. doi:10.1016/
1100
+ 0375-9474(88)90068-1.
1101
+
1102
+ 11
1103
+ [6] D. J. Hinde, R. J. Charity, G. S. Foote, J. R. Leigh,
1104
+ J. O. Newton, S. Ogaza, A. Chatterjee, Nucl. Phys. A
1105
+ 452 (1986) 550. doi:10.1016/0375-9474(86)90214-9.
1106
+ [7] J. P. Lestone, J. R. Leigh, J. O. Newton, D. J. Hinde,
1107
+ J. X. Wei, J. X. Chen, S. Elfstrom, D. G. Popescu, Phys.
1108
+ Rev. Lett. 67 (1991) 1078. doi:10.1103/PhysRevLett.
1109
+ 67.1078.
1110
+ [8] H. Rossner, D. Hilscher, D. J. Hinde, B. Gebauer,
1111
+ M. Lehmann, M. Wilpert, E. Mordhorst, Phys. Rev. C
1112
+ 40 (1989) 2629. doi:10.1103/PhysRevC.40.2629.
1113
+ [9] M. Thoennessen, D. R. Chakrabarty, M. G. Herman,
1114
+ R. Butsch, P. Paul, Phys. Rev. Lett. 59 (1987) 2860.
1115
+ doi:10.1103/PhysRevLett.59.2860.
1116
+ [10] D. J. Hofman, B. B. Back, P. Paul, Phys. Rev. C 51
1117
+ (1995) 2597. doi:10.1103/PhysRevC.51.2597.
1118
+ [11] H. A. Kramers, Physica 7 (1940) 284.
1119
+ doi:10.1016/
1120
+ S0031-8914(40)90098-2.
1121
+ [12] K. Mahata, S. Kailas, S. S. Kapoor, Phys. Rev. C 74
1122
+ (2006) 041301(R). doi:10.1103/PhysRevC.74.041301.
1123
+ [13] D. Mancusi, R. J. Charity, J. Cugnon, Phys. Rev. C 82
1124
+ (2010) 044610. doi:10.1103/PhysRevC.82.044610.
1125
+ [14] A. Saxena, A. Chatterjee, R. K. Choudhury, S. S.
1126
+ Kapoor, D. M. Nadkarni, Phys. Rev. C 49 (1994) 932.
1127
+ doi:10.1103/PhysRevC.49.932.
1128
+ [15] V. Singh, B. R. Behera, M. Kaur, A. Kumar, K. P. Singh,
1129
+ N. Madhavan, S. Nath, J. Gehlot, G. Mohanto, A. Jhin-
1130
+ gan, I. Mukul, T. Varughese, J. Sadhukhan, S. Pal,
1131
+ S. Goyal, A. Saxena, S. Santra, S. Kailas, Phys. Rev.
1132
+ C 89 (2014) 024609. doi:10.1103/PhysRevC.89.024609.
1133
+ [16] S. G. McCalla, J. P. Lestone, Phys. Rev. Lett. 101 (2008)
1134
+ 032702. doi:10.1103/PhysRevLett.101.032702.
1135
+ [17] J. P. Lestone, S. G. McCalla, Phys. Rev. C 79 (2009)
1136
+ 044611. doi:10.1103/PhysRevC.79.044611.
1137
+ [18] A. Shrivastava, S. Kailas, A. Chatterjee, A. M. Samant,
1138
+ A. Navin, P. Singh, B. S. Tomar, Phys. Rev. Lett. 82
1139
+ (1999) 699. doi:10.1103/PhysRevLett.82.699.
1140
+ [19] K. S. Golda, A. Saxena, V. K. Mittal, K. Mahata,
1141
+ P. Sugathan, A. Jhingan, V. Singh, R. Sandal, S. Goyal,
1142
+ J. Gehlot, A. Dhal, B. R. Behera, R. K. Bhowmik,
1143
+ S. Kailas, Nucl. Phys. A 913 (2013) 157. doi:10.1016/
1144
+ j.nuclphysa.2013.05.016.
1145
+ [20] K. Mahata, S. Kailas, S. S. Kapoor, Phys. Rev. C 92
1146
+ (2015) 034602. doi:10.1103/PhysRevC.92.034602.
1147
+ [21] R. Sandal, B. R. Behera, V. Singh, M. Kaur, A. Kumar,
1148
+ G. Singh, K. P. Singh, P. Sugathan, A. Jhingan, K. S.
1149
+ Golda, M. B. Chatterjee, R. K. Bhowmik, S. Kalkal,
1150
+ D. Siwal, S. Goyal, S. Mandal, E. Prasad, K. Mahata,
1151
+ A. Saxena, J. Sadhukhan, S. Pal, Phys. Rev. C 87 (2013)
1152
+ 014604. doi:10.1103/PhysRevC.87.014604.
1153
+ [22] V. Singh, B. R. Behera, M. Kaur, P. Sugathan, K. S.
1154
+ Golda, A. Jhingan, J. Sadhukhan, D. Siwal, S. Goyal,
1155
+ S. Santra, A. Kumar, R. K. Bhowmik, M. B. Chatterjee,
1156
+ A. Saxena, S. Pal, S. Kailas, Phys. Rev. C 86 (2012)
1157
+ 014609. doi:10.1103/PhysRevC.86.014609.
1158
+ [23] P. V. Laveen, E. Prasad, N. Madhavan, S. Pal, J. Sad-
1159
+ hukhan, S. Nath, J. Gehlot, A. Jhingan, K. M. Varier,
1160
+ R. G. Thomas,
1161
+ A. M. Vinodkumar,
1162
+ A. Shamlath,
1163
+ T. Varughese, P. Sugathan, B. R. S. Babu, S. Ap-
1164
+ pannababu, K. S. Golda, B. R. Behera, V. Singh, R. San-
1165
+ dal, A. Saxena, B. V. John, S. Kailas, J. Phys. G: Nucl.
1166
+ Part. Phys. 42 (2015) 095105. doi:10.1088/0954-3899/
1167
+ 42/9/095105.
1168
+ [24] R. Sandal, B. R. Behera, V. Singh, M. Kaur, A. Kumar,
1169
+ G. Kaur, P. Sharma, N. Madhavan, S. Nath, J. Gehlot,
1170
+ A. Jhingan, K. S. Golda, H. Singh, S. Mandal, S. Verma,
1171
+ E. Prasad, K. M. Varier, A. M. Vinodkumar, A. Saxena,
1172
+ J. Sadhukhan, S. Pal, Phys. Rev. C 91 (2015) 044621.
1173
+ doi:10.1103/PhysRevC.91.044621.
1174
+ [25] P. M¨oller,
1175
+ A. J. Sierk,
1176
+ T. Ichikawa,
1177
+ A. Iwamoto,
1178
+ R. Bengtsson, H. Uhrenholt, S. ˚Aberg, Phys. Rev. C 79
1179
+ (2009) 064304. doi:10.1103/PhysRevC.79.064304.
1180
+ [26] V. Singh, B. R. Behera, M. Kaur, A. Jhingan, R. Kaur,
1181
+ P. Sugathan, D. Siwal, S. Goyal, K. P. Singh, S. Pal,
1182
+ A. Saxena, S. Kailas, J. Phys. G: Nucl. Part. Phys. 48
1183
+ (2021) 075104. doi:10.1088/1361-6471/abe8cd.
1184
+ [27] M. Shareef, A. Chatterjee, E. Prasad, Eur. Phys. J. A 52
1185
+ (2016) 342. doi:10.1140/epja/i2016-16342-4.
1186
+ [28] C. Schmitt, K. Mazurek, P. N. Nadtochy, Phys. Rev. C
1187
+ 97 (2018) 014616. doi:10.1103/PhysRevC.97.014616.
1188
+ [29] T. Banerjee, S. Nath, S. Pal, Phys. Lett. B 776 (2018)
1189
+ 163. doi:10.1016/j.physletb.2017.11.040.
1190
+ [30] A. V. Karpov, P. N. Nadtochy, D. V. Vanin, G. D. Adeev,
1191
+ Phys. Rev. C 63 (2001) 054610. doi:10.1103/PhysRevC.
1192
+ 63.054610.
1193
+ [31] P. N. Nadtochy, G. D. Adeev, A. V. Karpov, Phys. Rev.
1194
+ C 65 (2002) 064615. doi:10.1103/PhysRevC.65.064615.
1195
+ [32] J. Randrup, P. M¨oller, A. J. Sierk, Phys. Rev. C 84 (2011)
1196
+ 034613. doi:10.1103/PhysRevC.84.034613.
1197
+ [33] J. Randrup, P. M¨oller, Phys. Rev. Lett. 106 (2011)
1198
+ 132503. doi:10.1103/PhysRevLett.106.132503.
1199
+ [34] P. N. Nadtochy, E. G. Ryabov, A. E. Gegechkori, Y. A.
1200
+ Anischenko, G. D. Adeev, Phys. Rev. C 89 (2014) 014616.
1201
+ doi:10.1103/PhysRevC.89.014616.
1202
+ [35] K. Mazurek, P. N. Nadtochy, E. G. Ryabov, G. D.
1203
+ Adeev, Eur. Phys. J. A 53 (2017) 79. doi:10.1140/epja/
1204
+ i2017-12262-1.
1205
+ [36] P. Fr¨obrich, I. I. Gontchar, Phys. Reports 292 (1998) 131.
1206
+ doi:10.1016/S0370-1573(97)00042-2.
1207
+ [37] I. I. Gontchar, L. A. Litnevsky, P. Fr¨obrich, Computer
1208
+ Physics Communications 107 (1997) 223. doi:10.1016/
1209
+ S0010-4655(97)00108-2.
1210
+ [38] I. I. Gontchar, P. Fr¨obrich, N. I. Pischasov, Phys. Rev.
1211
+ C 47 (1993) 2228. doi:10.1103/PhysRevC.47.2228.
1212
+ [39] G. Chaudhuri, S. Pal, Eur. Phys. J. A 18 (2003) 9. doi:
1213
+ 10.1140/epja/i2003-10038-x.
1214
+ [40] W. Kun, M. Yu-Gang, W. Yi-Bin, C. Xiang-Zhou, C. Jin-
1215
+ Gen, F. De-Qing, G. Wei, M. Guo-Liang, S. Wen-Qing,
1216
+ T. Wen-Dong, Z. Chen, Z. Xing-Fei, Chinese Phys. Lett.
1217
+ 22 (2005) 53. doi:10.1088/0256-307x/22/1/016.
1218
+ [41] Y. Wei, W. Feng, Y. Hong-Wei, Chinese Phys. C 32
1219
+ (2008) 816. doi:10.1088/1674-1137/32/10/010.
1220
+ [42] W. Feng, Y. Wei, Chinese Phys. C 34 (2010) 551. doi:
1221
+ 10.1088/1674-1137/34/5/007.
1222
+ [43] N. Wang, W. Ye, Phys. Rev. C 97 (2018) 014603. doi:
1223
+ 10.1103/PhysRevC.97.014603.
1224
+ [44] N. Wang, W. Ye, Phys. Rev. C 103 (2021) 024611. doi:
1225
+ 10.1103/PhysRevC.103.024611.
1226
+ [45] W. D. Myers, W. J. Swiatecki, Nucl. Phys. 81 (1966) 1.
1227
+ doi:10.1016/0029-5582(66)90639-0.
1228
+ [46] H. J. Krappe, J. R. Nix, A. J. Sierk, Phys. Rev. C 20
1229
+ (1979) 992. doi:10.1103/physrevc.20.992.
1230
+ [47] P. Fr¨obrich, Nucl. Phys. A 787 (2007) 170. doi:10.1016/
1231
+ j.nuclphysa.2006.12.028.
1232
+ [48] R. Balian, C. Bloch, Annals of Phys. 60 (1970) 401. doi:
1233
+ 10.1016/0003-4916(70)90497-5.
1234
+ [49] A. V. Ignatyuk, M. G. Itkis, V. N. Okolovich, G. N.
1235
+ Smirenkin, A. S. Tishin, Yad. Fiz. 21 (1975) 1185.
1236
+
1237
+ 12
1238
+ [50] G. Chaudhuri, S. Pal, Phys. Rev. C 65 (2002) 054612.
1239
+ doi:10.1103/physrevc.65.054612.
1240
+ [51] K. T. R. Davies, A. J. Sierk, J. R. Nix, Phys. Rev. C 13
1241
+ (1976) 2385. doi:10.1103/physrevc.13.2385.
1242
+ [52] M. Brack, J. E. N. S. Damgaard, A. S. Jensen, H. C.
1243
+ Pauli, V. M. Strutinsky, C. Y. Wong, Rev. Mod. Phys.
1244
+ 44 (1972) 320. doi:10.1103/revmodphys.44.320.
1245
+ [53] W. Ye, J. Tian, Phys, Rev. C 93 (2016) 044603. doi:
1246
+ 10.1103/physrevc.93.044603.
1247
+ [54] W. Ye, J. Tian, Phys. Rev. C 91 (2015) 064603. doi:
1248
+ 10.1103/physrevc.91.064603.
1249
+ [55] M. Blann, Phys. Rev. C 21 (1980) 1770. doi:10.1103/
1250
+ PhysRevC.21.1770.
1251
+ [56] N. D. Mavlitov, P. Fr¨obrich, I. I. Gonchar, Z Physik A
1252
+ 342 (1992) 195. doi:10.1007/bf01288469.
1253
+ [57] P. Fr¨obrich, I. I. Gontchar, N. D. Mavlitov, Nucl. Phys.
1254
+ A 556 (1993) 281. doi:10.1016/0375-9474(93)90352-X.
1255
+ [58] J. Marten, P. Fr¨obrich, Nucl. Phys. A 545 (1992) 854.
1256
+ doi:10.1016/0375-9474(92)90533-p.
1257
+ [59] G. Chubaryan, M. Itkis, S. Luk’yanov, V. Okolovich,
1258
+ Y.
1259
+ Penionzhkevich,
1260
+ A.
1261
+ Rusanov,
1262
+ V.
1263
+ Salamatin,
1264
+ G. Smirenkin, Phys. Atom. Nucl. 56 (1993) 286.
1265
+ [60] J. van der Plicht, H. C. Britt, M. M. Fowler, Z. Fraenkel,
1266
+ A. Gavron, J. B. Wilhelmy, F. Plasil, T. C. Awes, G. R.
1267
+ Young, Phys. Rev. C 28 (1983) 2022.
1268
+ doi:10.1103/
1269
+ PhysRevC.28.2022.
1270
+ [61] R. J. Charity, J. R. Leigh, J. J. M. Bokhorst, A. Chat-
1271
+ terjee, G. S. Foote, D. J. Hinde, J. O. Newton, S. Ogaza,
1272
+ D. Ward, Nucl. Phys. A 457 (1986) 441. doi:10.1016/
1273
+ 0375-9474(86)90388-X.
1274
+ [62] P. Moller, J. R. Nix, W. D. Myers, W. J. Swiatecki, At.
1275
+ data and Nucl. data tables 59 (1995) 185–381. doi:10.
1276
+ 1006/adnd.1995.1002.
1277
+ [63] C. Schmitt, K. Mazurek, P. N. Nadtochy, Phys. Lett. B
1278
+ 737 (2014) 289. doi:10.1016/j.physletb.2014.08.072.
1279
+ [64] K. Mahata, S. Kailas, Phys. Rev. C 95 (2017) 054616.
1280
+ doi:10.1103/PhysRevC.95.054616.
1281
+ [65] A. Sen, T. K. Ghosh, S. Bhattacharya, K. Banerjee,
1282
+ C. Bhattacharya, S. Kundu, G. Mukherjee, A. Asgar,
1283
+ A. Dey, A. Dhal, M. M. Shaikh, J. K. Meena, S. Manna,
1284
+ R. Pandey, T. K. Rana, P. Roy, T. Roy, V. Srivas-
1285
+ tava, P. Bhattacharya, Phys. Rev. C 96 (2017) 064609.
1286
+ doi:10.1103/PhysRevC.96.064609.
1287
+ [66] A. Chaudhuri, T. K. Ghosh, K. Banerjee, S. Bhat-
1288
+ tacharya, J. Sadhukhan, S. Kundu, C. Bhattacharya,
1289
+ J. K. Meena, G. Mukherjee, A. K. Saha, M. A. As-
1290
+ gar, A. Dey, S. Manna, R. Pandey, T. K. Rana, P. Roy,
1291
+ T. Roy, V. Srivastava, P. Bhattacharya, D. C. Biswas,
1292
+ B. N. Joshi, K. Mahata, A. Shrivastava, R. P. Vind,
1293
+ S. Pal, B. R. Behera, V. Singh, Phys. Rev. C 92 (2015)
1294
+ 041601(R). doi:10.1103/PhysRevC.92.041601.
1295
+ [67] R. Sandal, Ph.D. thesis, Panjab University (2013).
1296
+ [68] K. Mahata, S. Kailas, A. Shrivastava, A. Chatterjee,
1297
+ P. Singh, S. Santra, B. S. Tomar, Phys. Rev. C 65 (2002)
1298
+ 034613. doi:10.1103/PhysRevC.65.034613.
1299
+ [69] I. Gontchar, L. A. Litnevsky, Z Physik A 359 (1997) 149.
1300
+ doi:10.1007/s002180050382.
1301
+ [70] M. Thoennessen, G. F. Bertsch, Phys. Rev. Lett. 71
1302
+ (1993) 4303. doi:10.1103/PhysRevLett.71.4303.
1303
+ [71] L. Corradi,
1304
+ B. R. Behera,
1305
+ E. Fioretto,
1306
+ A. Gadea,
1307
+ A. Latina, A. M. Stefanini, S. Szilner, M. Trotta,
1308
+ Y. Wu, S. Beghini, G. Montagnoli, F. Scarlassara, R. N.
1309
+ Sagaidak, S. N. Atutov, B. Mai, G. Stancari, L. Tomas-
1310
+ setti, E. Mariotti, A. Khanbekyan, S. Veronesi, Phys.
1311
+ Rev. C 71 (2005) 014609.
1312
+ doi:10.1103/PhysRevC.71.
1313
+ 014609.
1314
+ [72] B. B. Back, D. J. Blumenthal, C. N. Davids, D. J. Hen-
1315
+ derson, R. Hermann, D. J. Hofman, C. L. Jiang, H. T.
1316
+ Penttil¨a, A. H. Wuosmaa, Phys. Rev. C 60 (1999) 044602.
1317
+ doi:10.1103/PhysRevC.60.044602.
1318
+ [73] C. Schmitt, P. N. Nadtochy, A. Heinz, B. Jurado,
1319
+ A. Keli´c, K.-H. Schmidt, Phys. Rev. Lett. 99 (2007)
1320
+ 042701. doi:10.1103/PhysRevLett.99.042701.
1321
+ [74] B. Jurado, C. Schmitt, K.-H. Schmidt, J. Benlliure,
1322
+ T. Enqvist, A. R. Junghans, A. Keli´c, F. Rejmund, Phys.
1323
+ Rev. Lett. 93 (2004) 072501. doi:10.1103/PhysRevLett.
1324
+ 93.072501.
1325
+ [75] Y. Qiang, J. C. Pei, Phys. Rev. C 104 (2021) 054604.
1326
+ doi:10.1103/physrevc.104.054604.
1327
+ [76] P. N. Nadtochy, E. G. Ryabov, A. E. Gegechkori, Y. A.
1328
+ Anischenko, G. D. Adeev, Phys. Rev. C 85 (2012) 064619.
1329
+ doi:10.1103/PhysRevC.85.064619.
1330
+ [77] Y. Zhu, J. C. Pei, Phys. Rev. C 94 (2016) 024329. doi:
1331
+ 10.1103/physrevc.94.024329.
1332
+ [78] C. Y. Qiao, J. C. Pei, Phys. Rev. C 106 (2022) 014608.
1333
+ doi:10.1103/physrevc.106.014608.
1334
+ [79] A. L. Goodman, Nucl. Phys. A 352 (1981) 30. doi:10.
1335
+ 1016/0375-9474(81)90557-1.
1336
+ [80] D. J. Hinde, D. Hilscher, H. Rossner, B. Gebauer,
1337
+ M. Lehmann, M. Wilpert, Physical Review C 45 (1992)
1338
+ 1229. doi:10.1103/physrevc.45.1229.
1339
+ [81] H. Singh, K. S. Golda, S. Pal, Ranjeet, R. Sandal, B. R.
1340
+ Behera, G. Singh, A. Jhingan, R. P. Singh, P. Sugathan,
1341
+ M. B. Chatterjee, S. K. Datta, A. Kumar, G. Viesti,
1342
+ I. M. Govil, Physical Review C 78 (2008) 024609. doi:
1343
+ 10.1103/physrevc.78.024609.
1344
+ [82] M. G. Itkis, S. M. Lukyanov, V. N. Okolovich, Y. E.
1345
+ Penionzkevich, A. Y. Rusanov, V. S. Salamatin, G. N.
1346
+ Smirenkin, G. G. Chubaryan, Phys. At. Nucl. 52 (1990)
1347
+ 15.
1348
+ [83] R. L. Ferguson, F. Plasil, H. Freiesleben, C. E. Bemis,
1349
+ H. W. Schmitt, Phys. Rev. C 8 (1973) 1104. doi:doi:
1350
+ 10.1103/physrevc.8.1104.
1351
+ [84] H. Eslamizadeh, Eur. Phys. J. A 47 (2011) 134. doi:
1352
+ 10.1140/epja/i2011-11134-0.
1353
+
DtFRT4oBgHgl3EQfATdu/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
E9E5T4oBgHgl3EQfVA-E/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:090a747c540e22257860bf791a23cf50c605c5ae527adf06e50d2463514883b0
3
+ size 140592
F9AyT4oBgHgl3EQfSveK/content/2301.00092v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1854a136dbc8347d1ce8628cb8117bce3cd0829710e3f90895bad14373cc492
3
+ size 640750
F9AyT4oBgHgl3EQfSveK/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0e11080dd82a6238d3fd8a84a2d8e5919afb2abf334e09f91c100641ad2e51c
3
+ size 326724
F9E1T4oBgHgl3EQf-wbm/content/2301.03574v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a50db6c95094dcef8d1ff843d0bbaf33f2d86669776d31bc5a9a20dda283a65a
3
+ size 400397
F9E1T4oBgHgl3EQf-wbm/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2edf41f660d8ec22479683209718a6a6d7a8e68be9c18776392b4e74f69282e7
3
+ size 5505069