jackkuo commited on
Commit
bbb7295
·
verified ·
1 Parent(s): 554a28b

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +58 -0
  2. 0dE2T4oBgHgl3EQfiQdl/content/tmp_files/2301.03956v1.pdf.txt +895 -0
  3. 0dE2T4oBgHgl3EQfiQdl/content/tmp_files/load_file.txt +0 -0
  4. 1tE0T4oBgHgl3EQfuQHv/vector_store/index.faiss +3 -0
  5. 1tE0T4oBgHgl3EQfuQHv/vector_store/index.pkl +3 -0
  6. 29E1T4oBgHgl3EQflwQn/content/2301.03288v1.pdf +3 -0
  7. 29E1T4oBgHgl3EQflwQn/vector_store/index.pkl +3 -0
  8. 2NAzT4oBgHgl3EQfe_yo/content/tmp_files/2301.01446v1.pdf.txt +691 -0
  9. 2NAzT4oBgHgl3EQfe_yo/content/tmp_files/load_file.txt +434 -0
  10. 2tAzT4oBgHgl3EQfDvpk/content/tmp_files/2301.00981v1.pdf.txt +655 -0
  11. 2tAzT4oBgHgl3EQfDvpk/content/tmp_files/load_file.txt +405 -0
  12. 2tE1T4oBgHgl3EQflgTe/content/2301.03287v1.pdf +3 -0
  13. 2tE1T4oBgHgl3EQflgTe/vector_store/index.faiss +3 -0
  14. 2tE1T4oBgHgl3EQflgTe/vector_store/index.pkl +3 -0
  15. 3NE3T4oBgHgl3EQfoQom/content/tmp_files/2301.04631v1.pdf.txt +1043 -0
  16. 3NE3T4oBgHgl3EQfoQom/content/tmp_files/load_file.txt +0 -0
  17. 4dAzT4oBgHgl3EQfuv2o/content/2301.01696v1.pdf +3 -0
  18. 4dAzT4oBgHgl3EQfuv2o/vector_store/index.pkl +3 -0
  19. 5NE4T4oBgHgl3EQfBQty/vector_store/index.pkl +3 -0
  20. 99AzT4oBgHgl3EQf_P4t/content/2301.01944v1.pdf +3 -0
  21. 99AzT4oBgHgl3EQf_P4t/vector_store/index.pkl +3 -0
  22. 9NFST4oBgHgl3EQfaziV/content/tmp_files/load_file.txt +0 -0
  23. A9AyT4oBgHgl3EQfRvd3/content/2301.00072v1.pdf +3 -0
  24. A9AyT4oBgHgl3EQfRvd3/vector_store/index.faiss +3 -0
  25. A9AyT4oBgHgl3EQfRvd3/vector_store/index.pkl +3 -0
  26. AdE2T4oBgHgl3EQfRQcf/content/2301.03778v1.pdf +3 -0
  27. AdE2T4oBgHgl3EQfRQcf/vector_store/index.pkl +3 -0
  28. AtAzT4oBgHgl3EQf__8r/vector_store/index.pkl +3 -0
  29. AtE3T4oBgHgl3EQfsgvt/content/tmp_files/2301.04669v1.pdf.txt +0 -0
  30. AtE3T4oBgHgl3EQfsgvt/content/tmp_files/load_file.txt +0 -0
  31. BNE4T4oBgHgl3EQf5A7u/content/tmp_files/2301.05320v1.pdf.txt +0 -0
  32. BNE4T4oBgHgl3EQf5A7u/content/tmp_files/load_file.txt +0 -0
  33. BdE5T4oBgHgl3EQfTA_5/content/2301.05534v1.pdf +3 -0
  34. BdE5T4oBgHgl3EQfTA_5/vector_store/index.pkl +3 -0
  35. BtE2T4oBgHgl3EQf8wk1/content/tmp_files/2301.04221v1.pdf.txt +445 -0
  36. BtE2T4oBgHgl3EQf8wk1/content/tmp_files/load_file.txt +304 -0
  37. CdE5T4oBgHgl3EQfTw8s/content/2301.05538v1.pdf +3 -0
  38. EtE4T4oBgHgl3EQf6w5f/content/tmp_files/2301.05334v1.pdf.txt +1685 -0
  39. EtE4T4oBgHgl3EQf6w5f/content/tmp_files/load_file.txt +0 -0
  40. G9E1T4oBgHgl3EQfXQT3/vector_store/index.faiss +3 -0
  41. G9E1T4oBgHgl3EQfXQT3/vector_store/index.pkl +3 -0
  42. H9FJT4oBgHgl3EQfFSyX/content/2301.11442v1.pdf +3 -0
  43. H9FJT4oBgHgl3EQfFSyX/vector_store/index.pkl +3 -0
  44. HtA0T4oBgHgl3EQfB_9Y/vector_store/index.faiss +3 -0
  45. K9E1T4oBgHgl3EQfYwRv/vector_store/index.faiss +3 -0
  46. LtE2T4oBgHgl3EQfBAZB/vector_store/index.faiss +3 -0
  47. LtE3T4oBgHgl3EQfAwm8/content/2301.04261v1.pdf +3 -0
  48. NNE2T4oBgHgl3EQfqwgI/content/2301.04041v1.pdf +3 -0
  49. OtAzT4oBgHgl3EQfzf59/vector_store/index.pkl +3 -0
  50. PNFKT4oBgHgl3EQfgS6S/content/2301.11833v1.pdf +3 -0
.gitattributes CHANGED
@@ -6352,3 +6352,61 @@ l9E2T4oBgHgl3EQfJAaa/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -tex
6352
  ZtFJT4oBgHgl3EQf7i35/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6353
  EdE2T4oBgHgl3EQfSgfT/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6354
  CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6352
  ZtFJT4oBgHgl3EQf7i35/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6353
  EdE2T4oBgHgl3EQfSgfT/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6354
  CdE1T4oBgHgl3EQfpwUV/content/2301.03334v1.pdf filter=lfs diff=lfs merge=lfs -text
6355
+ hNFKT4oBgHgl3EQfuC7r/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6356
+ UNE2T4oBgHgl3EQftQjd/content/2301.04069v1.pdf filter=lfs diff=lfs merge=lfs -text
6357
+ ZtAzT4oBgHgl3EQfm_2G/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6358
+ kdE4T4oBgHgl3EQftA0V/content/2301.05220v1.pdf filter=lfs diff=lfs merge=lfs -text
6359
+ K9E1T4oBgHgl3EQfYwRv/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6360
+ 4dAzT4oBgHgl3EQfuv2o/content/2301.01696v1.pdf filter=lfs diff=lfs merge=lfs -text
6361
+ LtE2T4oBgHgl3EQfBAZB/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6362
+ TNE2T4oBgHgl3EQfWwfK/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6363
+ NNE2T4oBgHgl3EQfqwgI/content/2301.04041v1.pdf filter=lfs diff=lfs merge=lfs -text
6364
+ ttE3T4oBgHgl3EQfNQnH/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6365
+ hNFKT4oBgHgl3EQfuC7r/content/2301.11890v1.pdf filter=lfs diff=lfs merge=lfs -text
6366
+ qdE5T4oBgHgl3EQflA_S/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6367
+ qtFST4oBgHgl3EQfOzjA/content/2301.13753v1.pdf filter=lfs diff=lfs merge=lfs -text
6368
+ j9E4T4oBgHgl3EQfTQyV/content/2301.05006v1.pdf filter=lfs diff=lfs merge=lfs -text
6369
+ l9E2T4oBgHgl3EQfJAaa/content/2301.03687v1.pdf filter=lfs diff=lfs merge=lfs -text
6370
+ XtFOT4oBgHgl3EQf9DQS/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6371
+ H9FJT4oBgHgl3EQfFSyX/content/2301.11442v1.pdf filter=lfs diff=lfs merge=lfs -text
6372
+ CdE5T4oBgHgl3EQfTw8s/content/2301.05538v1.pdf filter=lfs diff=lfs merge=lfs -text
6373
+ m9FKT4oBgHgl3EQfEy02/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6374
+ z9E2T4oBgHgl3EQfMwaS/content/2301.03728v1.pdf filter=lfs diff=lfs merge=lfs -text
6375
+ Y9E2T4oBgHgl3EQfEgYU/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6376
+ z9E2T4oBgHgl3EQfMwaS/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6377
+ ZNE5T4oBgHgl3EQfDA6r/content/2301.05402v1.pdf filter=lfs diff=lfs merge=lfs -text
6378
+ ZNE5T4oBgHgl3EQfDA6r/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6379
+ PdE0T4oBgHgl3EQfTwBe/content/2301.02240v1.pdf filter=lfs diff=lfs merge=lfs -text
6380
+ rdE5T4oBgHgl3EQflg-S/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6381
+ mdFAT4oBgHgl3EQfcR2T/content/2301.08563v1.pdf filter=lfs diff=lfs merge=lfs -text
6382
+ PNFKT4oBgHgl3EQfgS6S/content/2301.11833v1.pdf filter=lfs diff=lfs merge=lfs -text
6383
+ G9E1T4oBgHgl3EQfXQT3/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6384
+ w9FST4oBgHgl3EQfRzg4/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6385
+ WtFLT4oBgHgl3EQfTC_4/content/2301.12044v1.pdf filter=lfs diff=lfs merge=lfs -text
6386
+ LtE3T4oBgHgl3EQfAwm8/content/2301.04261v1.pdf filter=lfs diff=lfs merge=lfs -text
6387
+ r9E4T4oBgHgl3EQfwg0d/content/2301.05250v1.pdf filter=lfs diff=lfs merge=lfs -text
6388
+ s9AzT4oBgHgl3EQfPfs9/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6389
+ kdE4T4oBgHgl3EQftA0V/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6390
+ QtE0T4oBgHgl3EQfkQGy/content/2301.02471v1.pdf filter=lfs diff=lfs merge=lfs -text
6391
+ AdE2T4oBgHgl3EQfRQcf/content/2301.03778v1.pdf filter=lfs diff=lfs merge=lfs -text
6392
+ Y9E2T4oBgHgl3EQfEgYU/content/2301.03635v1.pdf filter=lfs diff=lfs merge=lfs -text
6393
+ 99AzT4oBgHgl3EQf_P4t/content/2301.01944v1.pdf filter=lfs diff=lfs merge=lfs -text
6394
+ BdE5T4oBgHgl3EQfTA_5/content/2301.05534v1.pdf filter=lfs diff=lfs merge=lfs -text
6395
+ PNFKT4oBgHgl3EQfgS6S/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6396
+ A9AyT4oBgHgl3EQfRvd3/content/2301.00072v1.pdf filter=lfs diff=lfs merge=lfs -text
6397
+ mdFIT4oBgHgl3EQftCvn/content/2301.11338v1.pdf filter=lfs diff=lfs merge=lfs -text
6398
+ hNAyT4oBgHgl3EQfxfmy/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6399
+ 2tE1T4oBgHgl3EQflgTe/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6400
+ 29E1T4oBgHgl3EQflwQn/content/2301.03288v1.pdf filter=lfs diff=lfs merge=lfs -text
6401
+ WtFLT4oBgHgl3EQfTC_4/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6402
+ gtE4T4oBgHgl3EQfRwx9/content/2301.04993v1.pdf filter=lfs diff=lfs merge=lfs -text
6403
+ V9E1T4oBgHgl3EQfbQST/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6404
+ fdE1T4oBgHgl3EQfygXR/content/2301.03435v1.pdf filter=lfs diff=lfs merge=lfs -text
6405
+ A9AyT4oBgHgl3EQfRvd3/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6406
+ Y9E4T4oBgHgl3EQfOAzo/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6407
+ tdE2T4oBgHgl3EQffge_/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6408
+ mdFIT4oBgHgl3EQftCvn/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6409
+ vNFKT4oBgHgl3EQf3y7o/content/2301.11931v1.pdf filter=lfs diff=lfs merge=lfs -text
6410
+ 2tE1T4oBgHgl3EQflgTe/content/2301.03287v1.pdf filter=lfs diff=lfs merge=lfs -text
6411
+ 1tE0T4oBgHgl3EQfuQHv/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6412
+ HtA0T4oBgHgl3EQfB_9Y/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
0dE2T4oBgHgl3EQfiQdl/content/tmp_files/2301.03956v1.pdf.txt ADDED
@@ -0,0 +1,895 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Towards High-Definition Maps: a Framework Leveraging Semantic
2
+ Segmentation to Improve NDT Map Compression and Descriptivity
3
+ Petri Manninen1, Heikki Hyyti1, Ville Kyrki2, Jyri Maanp¨a¨a1, Josef Taher1 and Juha Hyypp¨a1
4
+ Abstract— High-Definition (HD) maps are needed for robust
5
+ navigation of autonomous vehicles, limited by the on-board
6
+ storage capacity. To solve this, we propose a novel frame-
7
+ work, Environment-Aware Normal Distributions Transform
8
+ (EA-NDT), that significantly improves compression of standard
9
+ NDT map representation. The compressed representation of
10
+ EA-NDT is based on semantic-aided clustering of point clouds
11
+ resulting in more optimal cells compared to grid cells of
12
+ standard NDT. To evaluate EA-NDT, we present an open-source
13
+ implementation that extracts planar and cylindrical primitive
14
+ features from a point cloud and further divides them into
15
+ smaller cells to represent the data as an EA-NDT HD map. We
16
+ collected an open suburban environment dataset and evaluated
17
+ EA-NDT HD map representation against the standard NDT
18
+ representation. Compared to the standard NDT, EA-NDT
19
+ achieved consistently at least 1.5× higher map compression
20
+ while maintaining the same descriptive capability. Moreover,
21
+ we showed that EA-NDT is capable of producing maps with
22
+ significantly higher descriptivity score when using the same
23
+ number of cells than the standard NDT.
24
+ I. INTRODUCTION
25
+ The current development of mobile robots and the on-
26
+ going competition for the crown of autonomous driving
27
+ has increased the demand of accurate positioning services.
28
+ Generally, Global Navigation Satellite System (GNSS) can
29
+ be used to measure global position of a mobile robot but the
30
+ accuracy of satellite navigation alone is typically around a
31
+ few meters and because of signal obstruction the satellite
32
+ signals may be unavailable [1], [2]. Alternatively, global
33
+ position can be solved by fitting the current sensor view
34
+ into an existing georeferenced map, that can be computed
35
+ e.g. with Simultaneous Localization and Mapping (SLAM)
36
+ [3]. Moreover, map-based technique provides a combined
37
+ position and rotation estimate in contrast to a global position
38
+ measured by GNSS.
39
+ Maps used in autonomous driving are typically called
40
+ High-Definition (HD) maps [4], [5]. Data compression of
41
+ HD maps is of high importance within many applications
42
+ that have limited computational resources and storage capac-
43
+ ity [6]–[8]. Moreover, real-time localization requires com-
44
+ pressed maps to ensure fast processing capability.
45
+ *This work was supported by Academy of Finland, decisions 337656,
46
+ 319011, 318437 and by Henry Ford foundation Finland.
47
+ 1P. Manninen, H. Hyyti, J. Maanp¨a¨a, J. Taher, J. Hyypp¨a are
48
+ with
49
+ Department
50
+ of
51
+ Remote
52
+ Sensing
53
+ and
54
+ Photogrammetry,
55
+ Finnish
56
+ Geospatial Research Institute (FGI), National Land Survey of Finland
57
+ (NLS),
58
+ 02150
59
+ Espoo,
60
+ Finland
61
+ petri.manninen@nls.fi,
62
+ heikki.hyyti@nls.fi, jyri.maanpaa@nls.fi,
63
+ josef.taher@nls.fi, juha.hyyppa@nls.fi
64
+ 2V. Kyrki is with School of Electrical Engineering, Aalto University,
65
+ 02150 Espoo, Finland ville.kyrki@aalto.fi
66
+ Fig. 1: An illustration of a point cloud (white) and corre-
67
+ sponding EA-NDT HD map representation. EA-NDT cells
68
+ are visualized with ellipsoids (mass within a standard de-
69
+ viation) presenting building (yellow), fence (cyan), ground
70
+ (purple), pole (blue), tree trunk (orange) and traffic sign (red)
71
+ labels.
72
+ Since positioning in real-time with raw point clouds is
73
+ infeasible, alternative methods have been developed to over-
74
+ come the problem [6], [9]–[12]. One promising approach is
75
+ Normal Distributions transform (NDT) [9]. NDT compresses
76
+ the three-dimensional point cloud data by dividing the cloud
77
+ into equal sized cubical cells that are expressed by their mean
78
+ and covariance. To improve the scan registration, Semantic-
79
+ assisted Normal Distributions Transform (SE-NDT) [12]
80
+ expanded the original NDT with semantic information.
81
+ However, both NDT and SE-NDT use a grid structure for
82
+ the division of the point cloud, and therefore cannot find
83
+ the fundamental geometrical structure of the environment
84
+ (e.g. boundaries between object surfaces). Consequently, this
85
+ results in an NDT representation where part of the cells have
86
+ a high variance in all three dimensions. Magnusson [9] also
87
+ presented that the point cloud can alternatively be divided
88
+ by K-means clustering [13] and that it improves the scan
89
+ registration compared to using a grid structure.
90
+ In this work, we address the aforementioned problem of
91
+ sub-optimal point cloud division. We propose to solve the
92
+ problem by leveraging semantic-aided clustering. We present
93
+ a novel framework called Environment-Aware NDT (EA-
94
+ NDT) (illustrated in Fig. 1), which provides EA-NDT HD
95
+ Map representation. EA-NDT HD Map is a compressed
96
+ representation of a point cloud that is based on the leaf cell
97
+ representation of the standard NDT, and therefore NDT scan
98
+ registration technique is directly applicable with EA-NDT. In
99
+ this work, the standard NDT is referred as NDT. In contrast
100
+ to the grid structure of NDT, EA-NDT leverages semantic
101
+ information to cluster planar and cylindrical primitives of the
102
+ ©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
103
+ reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
104
+ copyrighted component of this work in other works. DOI: 10.1109/IROS47612.2022.9982050
105
+ arXiv:2301.03956v1 [cs.RO] 10 Jan 2023
106
+
107
+ environment to provide a more optimal NDT cell division.
108
+ In EA-NDT HD Map, each cell only consists of points that
109
+ model the same basic geometrical shape such as a plane
110
+ or a pole. Moreover, by adding understanding of semantic
111
+ information in the scene, we can compute a map containing
112
+ only stable objects that are useful for accurate localization.
113
+ The main contributions of this paper are:
114
+ 1) A novel data-driven framework to compute NDT map
115
+ representation without the grid structure.
116
+ 2) Demonstration of significantly improved data compres-
117
+ sion compared to NDT representation.
118
+ 3) An open-source implementation1 of the proposed EA-
119
+ NDT is shared for the community.
120
+ 4) A registered dataset2 to evaluate the proposed EA-NDT
121
+ on data collected with Velodyne VLS-128 LiDAR.
122
+ The rest of the paper is organized as follows: The next
123
+ section describes the related work in the fields of HD Maps,
124
+ scan registration, SLAM, and point cloud semantic segmen-
125
+ tation. In Section III, we formalize a pipeline architecture
126
+ of the proposed framework to extract planar and cylindrical
127
+ primitives of the point cloud. The implementation details of
128
+ our proof of concept solution are explained in Section IV
129
+ together with an introduction to the data collection setup and
130
+ preprocessed dataset, and the evaluation metrics used for the
131
+ experiment. In Section V, we compare the proposed EA-
132
+ NDT to a map computed with NDT and show that EA-NDT
133
+ provides a significant map compression while maintaining
134
+ the same descriptive capability. Finally, in Section VI we
135
+ consider the advantages and disadvantages of EA-NDT and
136
+ provide a discussion over the validity, reliability and gener-
137
+ alizability of the experiment.
138
+ II. RELATED WORK
139
+ HD Maps are one of the key techniques to enable au-
140
+ tonomous driving [5]. Seif and Hu [4] have recognized three
141
+ challenges to be solved with an HD map: the localization
142
+ of the vehicle, reacting to events beyond sight, and driving
143
+ according to the needs of the traffic. In this work, we focus
144
+ in the localization task. An HD Map can be computed e.g.
145
+ with SLAM that is a well established and profoundly studied
146
+ problem about how to align subsequent sensor measurements
147
+ to incrementally compute a map of the surrounding environ-
148
+ ment while simultaneously localizing the sensor [14]. In the
149
+ review by Bresson et al [14], they found that an accuracy
150
+ of 10 cm has been reported for the built maps but even an
151
+ accuracy of 2 cm is possible.
152
+ Data compression is a crucial challenge for HD maps in
153
+ large environments. For example, the well known Iterative
154
+ Closest Point (ICP) [15] algorithm is infeasible in large
155
+ point clouds due to the computational cost of finding closest
156
+ corresponding points across a measurement and a map. To
157
+ improve the computational problems of ICP, Magnusson
158
+ proposed Point-to-Distribution (P2D)-NDT in which the
159
+ reference cloud is divided by a fixed sized 3D grid into
160
+ 1https://gitlab.com/fgi_nls/public/hd-map
161
+ 2https://doi.org/10.5281/zenodo.6796874
162
+ cells modelled by the mean and covariance of the points
163
+ [9]. In (P2D)-NDT, each point in the registered scan is
164
+ fitted to the cells within a local neighbourhood of the point.
165
+ In addition to robust scan registration, NDT representation
166
+ provides data compression together with faster registration.
167
+ Stoyanov et al. presented Distribution-to-Distribution (D2D)-
168
+ NDT that further develops the P2D-NDT to likewise model
169
+ the registered scan with normal distributions [10].
170
+ Semantic information can enhance scan registration perfor-
171
+ mance of NDT. For example, Semantic-assisted NDT (SE-
172
+ NDT) [11], proposed by Zaganidis et al., showed that the use
173
+ of even two semantic labels (edges and planes) can improve
174
+ the scan registration. To further develop SE-NDT, Zaganidis
175
+ et al. presented a complete semantic registration pipeline that
176
+ uses a deep neural network for semantic segmentation of the
177
+ point cloud [12]. SE-NDT uses the 3D grid cell structure
178
+ of NDT but models each semantic label separately to utilize
179
+ the division of similar entities in the registration task. For
180
+ semantic segmentation, SE-NDT uses PointNet [16] that is
181
+ a pioneering solution of a point cloud segmentation network
182
+ that consumes raw point cloud data without voxelization
183
+ or rendering. Cho et al. proposed that the uncertainty of
184
+ semantic information could also be used in the registration
185
+ task [17].
186
+ Semantic information can be utilized further than was
187
+ proposed in the previous works. In this work, we propose
188
+ to replace the aforementioned grid division by leveraging
189
+ semantic-aided clustering that finds planar and cylindrical
190
+ structures of a point cloud. For semantic segmentation,
191
+ we use Random sampling and an effective Local feature
192
+ Aggregator-Net (RandLA-Net) [18] that presents a new local
193
+ feature aggregation module to support random sampling that
194
+ was found a suitable technique for semantic segmentation
195
+ of large scale point clouds. They have reported up to 200×
196
+ faster processing capacity compared to the existing solutions.
197
+ A further review of semantic segmentation of point cloud
198
+ data is available e.g. in [19].
199
+ III. ENVIRONMENT-AWARE NDT
200
+ Here we propose a framework, called Environment-Aware
201
+ NDT (EA-NDT), to divide a semantically segmented point
202
+ cloud into NDT cells. The proposed framework is a straight
203
+ pipeline process consisting of 4 stages (Fig. 3) that step-
204
+ by-step divide the input point cloud into cells which are
205
+ ultimately represented as an NDT map. The input of the
206
+ pipeline is a Registered Point Cloud, which is processed
207
+ in the following order by stages called Semantic Seg-
208
+ mentation, Instance Clustering, Primitive Extraction and
209
+ Cell Clustering. Finally, the output of the pipeline is
210
+ an environment-aware NDT-based HD map representation,
211
+ called EA-NDT HD Map, which stores the found cells using
212
+ NDT representation.
213
+ In the Registered Point Cloud each 3D point has X,
214
+ Y, Z Cartesian coordinate (e.g. ETRS-TM35FIN, ECEF)
215
+ and an intensity value. Semantic Segmentation appends
216
+ semantic information for each point in the cloud to enable
217
+ further clustering of the data. In this work, we used road,
218
+
219
+ sidewalk, parking, building, fence, pole, traffic sign, and
220
+ tree trunk labels to demonstrate the framework but also
221
+ other labels could be used. Instance Clustering divides
222
+ each semantic segment into instances that are spatially sep-
223
+ arated from each other. Primitive Extraction divides each
224
+ instance into predefined primitives that can be modeled with
225
+ an unimodal distribution. In this work, we have defined
226
+ planar and cylindrical primitives but the framework could
227
+ be extended to support new types of primitives. However,
228
+ large primitives such as trees can not be modelled well with
229
+ an uniform distribution. Therefore, Cell Clustering further
230
+ divides each primitive into cells of approximately equal size
231
+ while minimizing the number of used cells. Ultimately, EA-
232
+ NDT HD Map is presented as an octree [20] that in this
233
+ work stores the point counter, point sum and upper diagonal
234
+ of the covariance matrix for each cell but other attributes
235
+ such as semantic segment, instance cluster or primitive type
236
+ could be included.
237
+ IV. METHODS AND EXPERIMENTS
238
+ To demonstrate the proposed framework to build an EA-
239
+ NDT HD Map, we used a dataset collected with Velodyne
240
+ VLS-128 Alpha Puck [21] LiDAR 7th of September 2020 in
241
+ a suburban environment in the area of K¨apyl¨a in Helsinki, the
242
+ capital of Finland. The environment in the dataset consists of
243
+ a straight two-way asphalt street, called Pohjolankatu, which
244
+ starts from a larger controlled intersection at the crossing of
245
+ Tuusulanv¨ayl¨a (60.213326° N, 24.942908° E in WGS84) and
246
+ passes by three smaller uncontrolled intersections until the
247
+ crossing of Metsolantie (60.215537° N, 24.950065° E). It is
248
+ a typical suburban street with tram lines, sidewalks, small
249
+ buildings, traffic signs, light poles, and cars parked on both
250
+ sides of the streets. To collect a reference trajectory and to
251
+ synchronize the LiDAR measurements, we have used a No-
252
+ vatel PwrPak7-E1 GNSS Inertial Navigation System (INS)
253
+ [22]. The sensors were installed on a Ford Mondeo Hybrid
254
+ research platform named Autonomous Research Vehicle Ob-
255
+ servatory (ARVO) [23]. The sensors were interfaced through
256
+ Robotic Operation System (ROS) [24] version Kinetic Kame
257
+ and the sensor measurements were saved in rosbag format
258
+ for further processing.
259
+ A. Preprocessed Dataset
260
+ Our open preprocessed dataset2, shown in Fig. 2, consists
261
+ of a two-way asphalt paved street with a tram line to both
262
+ directions and sidewalks in both sides of the street. The
263
+ length of the dataset trajectory is around 640 m and it has
264
+ Fig. 2: The complete dataset visualized with semantic labels
265
+ in different colors: road (magenta), sidewalk (violet), park-
266
+ ing (pink), terrain (green), buildings (yellow), fence (light
267
+ brown), tree trunk (brown), traffic sign (red), pole (grey).
268
+ TABLE I: RandLA-Net classified dataset label proportions.
269
+ Semantic label
270
+ No. of points
271
+ % of all
272
+ % of used
273
+ Ground
274
+ 14,052,836
275
+ 34.7
276
+ 50.8
277
+ Building
278
+ 7,650,980
279
+ 18.9
280
+ 27.7
281
+ Tree trunk
282
+ 3,560,910
283
+ 8.8
284
+ 12.9
285
+ Fence
286
+ 2,120,849
287
+ 5.2
288
+ 7.7
289
+ Pole
290
+ 193,516
291
+ 0.5
292
+ 0.7
293
+ Traffic sign
294
+ 82,680
295
+ 0.2
296
+ 0.3
297
+ Labels used here
298
+ 27,661,771
299
+ 68.4
300
+ 100.0
301
+ Others
302
+ 12,799,904
303
+ 31.6
304
+ Total
305
+ 40,461,675
306
+ 100.0
307
+ in total more than 40 million points from which 28 million
308
+ are used in this work. All the intersections together have
309
+ a plenty of traffic signs. The sidewalks are separated from
310
+ the road by a row of tall planted trees. The dataset contains
311
+ nearly 30 buildings that are mostly wooden and there are
312
+ several fences between the houses. Our dataset includes all
313
+ the semantic labels classified by RandLA-Net [18] but in this
314
+ work we have used only road, sidewalk, parking, building,
315
+ fence, tree trunk, traffic sign, and pole labels. In this work,
316
+ road, sidewalk, and parking labels were reassigned into a
317
+ common ground label. The proportion and the number of
318
+ the points of each label are shown in Table I. Half of the
319
+ used points consist of ground and roughly a fourth represent
320
+ buildings whereas poles and traffic signs together represent
321
+ only 1 %. Tree trunks and fences together represent a fifth
322
+ of the used points. The preprocessing of the data consists
323
+ of three steps; semantic segmentation, scan registration, and
324
+ data filtering.
325
+ In semantic segmentation of scans, we used a RandLA-Net
326
+ model pre-trained with SemanticKITTI dataset which was
327
+ collected with Velodyne HDL-64 LiDAR [25]. Instead, we
328
+ used VLS-128 which has a longer range and 128 laser beams
329
+ instead of 64 [21]. Also, VLS-128 has a wider field of view
330
+ (FOV) in vertical direction. Consequently, the measurements
331
+ outside of the vertical FOV of HDL-64 were constantly
332
+ misclassified so only the measurements within HDL-64 FOV
333
+ were used. RandLA-Net outputs a probability estimate vector
334
+ of labels for each point. In this work, we call it as label
335
+ probabilities.
336
+ In scan registration, the motion deformation of each scan
337
+ was first fixed according to a GNSS INS trajectory post-
338
+ processed with Novatel Inertial Explorer [26], after which
339
+ P2D-NDT implementation [27] with 1 m grid cell size was
340
+ used for registration. In registration, a local map of 5 last
341
+ keyframes was used as a target cloud and a motion threshold
342
+ of 10 cm was used to add a new keyframe. Grid cells
343
+ containing points from a single ring of the LiDAR were
344
+ ignored in the registration. Moreover, points that were con-
345
+ sidered possibly unreliable (vehicles, bicycles, pedestrians
346
+ and vegetation) or further than 50 m away from the LiDAR,
347
+ were ignored.
348
+ After the scan registration, the dense Registered Point
349
+ Cloud was voxel filtered to average X, Y, Z position and
350
+
351
+ Fig. 3: A visualization of the proposed EA-NDT processing pipeline that is based on the framework in Section III. The input
352
+ is a semantically segmented point cloud and the intermediate phases before EA-NDT HD Map are instances, primitives and
353
+ cells, in which the entities are separated by color. The color mapping of semantic information is explained in Fig. 1.
354
+ label probabilities of each 1 cm voxel. To smoothen the
355
+ semantic segmentation, the label probabilities of each point
356
+ was averaged within a radius of 5 cm.
357
+ B. The Implementation
358
+ A method1, based on the framework presented in Sec-
359
+ tion III, was implemented in C++14 on top of ROS Noetic
360
+ Ninjemys. The main functionality of the implementation uses
361
+ existing functions and classes of Point Cloud Library (PCL)
362
+ [28]. The implemented processing pipeline is demonstrated
363
+ in Fig. 3. The 1st stage of the framework, Semantic Segmen-
364
+ tation, is explained in Section IV-A. Therefore, our dataset
365
+ already includes the semantic information.
366
+ Instance clustering was implemented with Euclidean
367
+ region growing algorithm [29] to divide each semantic seg-
368
+ ment into spatially separate instances shown in Fig. 3. In
369
+ general, we require a distance threshold of 30 cm between
370
+ the instances and a minimum of 10 points per instance.
371
+ For ground label we require a distance threshold of 50 cm
372
+ between the instances and a minimum of 3000 points per
373
+ instance. In our dataset, there is a significant amount of
374
+ outliers and reflected points below the ground plane that are
375
+ undesired in a map, Instance clustering is used to filter those
376
+ points.
377
+ In Primitive Extraction, tree trunk and pole instances
378
+ are modeled as individual cylindrical primitives, and traffic
379
+ sign instances as individual planar primitives. Both primitive
380
+ types are shown in Fig. 3. For other semantic labels, planar
381
+ primitives were extracted by Random Sample Consensus
382
+ (RANSAC) [30] based normal plane fitting algorithm after
383
+ subsampling the instance with an averaging 10 cm voxel grid
384
+ and estimating the point normals for each remaining point
385
+ from 26 nearest neighbours. For building and fence instances,
386
+ a normal distance weight of π/4 and a distance threshold of
387
+ 15 cm was used for plane fitting. For ground instances, the
388
+ procedure differs slightly: 1) an existing implementation [31]
389
+ of K-means++ algorithm [32] was used to divide the ground
390
+ instances into primitives with an area of approximately 100
391
+ m² (The initialization of number of K-means clusters is
392
+ explained later in this section in Cell Clustering), after
393
+ which 2) the plane fitting was performed for each primitive
394
+ with a 30 cm distance threshold for a coarse noise filtering.
395
+ In Cell Clustering, primitives are divided into cells
396
+ (shown in Fig. 3) with K-means++ algorithm for which the
397
+ number of clusters
398
+ NL = ⌈fLnL
399
+ gL⌉
400
+ (1)
401
+ is initialized for each label L. In (1), ⌈·⌉ is the ceiling
402
+ operator, nL is either nα for cylindrical primitives (tree
403
+ trunk and pole) or nβ for planar primitives (ground, building,
404
+ fence, and traffic sign):
405
+ nα = lα
406
+
407
+ sc
408
+ and
409
+ nβ = Aβ
410
+
411
+ sc
412
+ 2,
413
+ (2)
414
+ TABLE II: The final values of the scaling parameters
415
+ Semantic label (L)
416
+ fL
417
+ gL
418
+ Ground
419
+ 1.680
420
+ 0.083
421
+ Building
422
+ 2.708
423
+ 0.137
424
+ Tree trunk
425
+ 4.179
426
+ 0.318
427
+ Fence
428
+ 2.248
429
+ −0.788
430
+ Pole
431
+ 1.687
432
+ −0.315
433
+ Traffic sign
434
+ 3.923
435
+ 0.317
436
+ Fig. 4: The number of cells Nc after fitting EA-NDT with
437
+ NDT shown w.r.t. cell size sc, color indicates the method,
438
+ line style the label, and green background the fitted range.
439
+
440
+ Fig. 5: The complete map descriptivity score Sd compared
441
+ w.r.t. number of cells Nc. The violet line depicts the com-
442
+ putation of the NDT compression efficiency η for each Sd.
443
+ where lα is the length of a cylindrical primitive and Aβ is
444
+ the number of points remaining after projecting the planar
445
+ primitive into the eigenspace found by principal component
446
+ analysis (PCA) and filtering with a 10 cm voxel grid.
447
+ Additionally, after clustering cells in ground, a plane fitting
448
+ with a 15 cm threshold is performed for each cell for a finer
449
+ noise filtering. In (1), scaling parameters fL and gL, shown
450
+ in Table II, were manually fitted for each L over 6 iterations
451
+ starting from fL0 = 1 and gL0 = 1 until the number of cells
452
+ Nc for EA-NDT (shown in Fig. 4) was sufficiently close to
453
+ NDT with cell size sc < 1 m. Despite the cell size, each
454
+ primitive is required to have at least one cell. Fig. 4 reveals
455
+ how this sets a lower boundary for Nc with larger cells.
456
+ Finally, all the computed cells were stored into an octree
457
+ structure [20] that represents the EA-NDT HD Map. Each
458
+ leaf cell in the octree stores a point counter, point sum
459
+ and upper diagonal of the covariance matrix for the cell.
460
+ We require a minimum of 6 points for a leaf cell to be
461
+ modeled reliably with a normal distribution, hence cells with
462
+ less points are ignored. The octree implementation in PCL
463
+ requires a minimum leaf cell size parameter, we used sc/4
464
+ to make it sufficiently smaller compared to the required cell
465
+ size of EA-NDT.
466
+ C. Evaluation
467
+ Here, a descriptivity score Sd, in which a higher score
468
+ denotes higher similarity, is defined to evaluate how well the
469
+ map models the raw point cloud. It is derived using a density
470
+ function of a multivariate normal distribution [33], which is
471
+ defined for each 3D point xi and jth NDT cell as
472
+ fj(xi) =
473
+ 1
474
+
475
+ (2π)k|Σj|
476
+ e(− 1
477
+ 2 (xi−µj)TΣ−1
478
+ j
479
+ (xi−µj)).
480
+ (3)
481
+ In (3), µj is the mean vector of a distribution with a
482
+ covariance matrix Σj for jth NDT cell, | · | is the determinant
483
+ operator and k = 3 describes dimension of the multivariate
484
+ distribution. Restricting to the local neighborhood of each
485
+ Np point, the descriptivity score Sd is an average density of
486
+ Fig. 6: An alternative comparison of the complete map
487
+ descriptivity score Sd w.r.t. cell size sc. The violet line
488
+ depicts the computation of the descriptivity ratio Rd for each
489
+ sc and green background emphasizes the applicable range.
490
+ best fitting NDT cells:
491
+ Sd = 1
492
+ Np
493
+ Np
494
+
495
+ i=1
496
+ max fj(xi)
497
+ ∥xi−µj∥2 ≤ 2sc
498
+ .
499
+ (4)
500
+ The maximum distance inside a grid cell is
501
+
502
+ 3sc, and
503
+ therefore the radius of 2sc was considered large enough to
504
+ contain the highest fit.
505
+ We have defined two ratios, descriptivity ratio Rd requir-
506
+ ing sEA
507
+ c
508
+ = sNDT
509
+ c
510
+ (Fig. 6) and data compression ratio Rc:
511
+ Rd = SEA
512
+ d
513
+
514
+ SNDT
515
+ d
516
+ and
517
+ Rc = Npσp
518
+
519
+ Ncσc,
520
+ (5)
521
+ where superscripts EA and NDT stand for EA-NDT and
522
+ NDT, respectively, σp and σc are the data size of the point
523
+ and the cell, respectively. Using (5) while requiring SEA
524
+ d
525
+ =
526
+ SNDT
527
+ d
528
+ , we define an NDT compression efficiency (Fig. 5)
529
+ η = RNDT
530
+ c
531
+
532
+ REA
533
+ c
534
+ = N NDT
535
+ c
536
+
537
+ N EA
538
+ c .
539
+ (6)
540
+ V. RESULTS
541
+ In this section, we evaluate the quality between EA-
542
+ NDT and NDT map representations and demonstrate the
543
+ data compression of EA-NDT. The performance of both
544
+ methods was evaluated by stepping the cell size from 0.2 m
545
+ to 10 m with 30 values. Note that the computational time
546
+ increases exponentially with decreasing cell size. The lower
547
+ boundary of 0.2 m was selected since it could still be
548
+ computed overnight. Similarly, the upper boundary of 10 m
549
+ was considered large enough for this test. In Figs. 6–8, a
550
+ practically applicable range of 0.5 – 2.0 m, based on previous
551
+ work [9], is highlighted.
552
+ The evaluation of complete map representation on the
553
+ dataset described in Section IV-A is shown in Fig. 5. It
554
+ shows that EA-NDT map representation provides a higher
555
+ descriptivity score for any number of cells (note that the min-
556
+ imum number of cells is limited for EA-NDT as explained
557
+ in Section IV-B). However, typically the results of NDT are
558
+ compared as a function of the cell size, and therefore, in
559
+
560
+ Fig. 7: Comparison of descriptivity score Sd of each label
561
+ w.r.t. cell size sc, line style indicates the method, color the
562
+ label, and green background the applicable range.
563
+ Fig. 8: Both NDT compression efficiency η (above) and
564
+ descriptivity ratio Rd (below) of the proposed method are
565
+ visualized for the complete map and all labels w.r.t NDT cell
566
+ size sc, green background emphasizes the applicable range.
567
+ Fig. 6 we present an alternative comparison for which the
568
+ number of cells in EA-NDT were fitted with NDT as ex-
569
+ plained in Section IV-B. Likewise, descriptivity of EA-NDT
570
+ outperforms NDT with any cell size. By comparing Fig. 5
571
+ and Fig. 6, one can note that both plots are equally capable of
572
+ showing the differences between the compared methods. In
573
+ general, it can be noticed that the descriptivity score of NDT
574
+ approaches EA-NDT with smaller cells. However, this is an
575
+ expected phenomenon of grid cell division; the probability
576
+ of multiple objects to be associated within one cell decreases
577
+ with smaller cells.
578
+ In Table I in Section IV-B, it is shown that around 78.5 %
579
+ of the data consists of points labelled as ground or building,
580
+ which reflects a similar proportion to the number of cells
581
+ shown in Fig. 4. The descriptivity score of the complete map
582
+ is dominated by these abundant labels leaving the effect of
583
+ other labels imperceptible. Therefore, in Fig. 7, we present
584
+ an equivalent descriptivity score comparison separated for
585
+ each label, which in case of NDT is equivalent to SE-NDT
586
+ representation [11]. Similarly to the comparison of complete
587
+ map representation, EA-NDT descriptivity score of each
588
+ separate label is higher except for tree trunks with 3 – 6
589
+ m cells, for which the descriptivity score equals with NDT.
590
+ The low descriptivity of EA-NDT is most likely caused by
591
+ the use of K-means clustering because if a cluster is large or
592
+ a diameter of a trunk is small, a single cluster can contain
593
+ points within the entire circumference of the trunk resulting
594
+ in a non-Gaussian distribution. Moreover, the use of HDL-
595
+ 64 vertical FOV limits the height of tree trunks and poles
596
+ in to a range of 2.5 – 3 m (as explained in Section IV-A)
597
+ and when the required cell size exceeds half of that height, a
598
+ large portion of the primitives is assigned into a one cluster
599
+ instead of two causing the observed discontinuity. However,
600
+ because of scaling the number of cells, the effect does not
601
+ appear exactly with the expected cell size. With tree trunk
602
+ and pole labels it is also observable that the descriptivity
603
+ does not decrease with the largest cells, because the size of
604
+ the primitive limits the cluster size from increasing.
605
+ The descriptivity ratio between EA-NDT and NDT is
606
+ shown in the lower part of Fig. 8. In general, the descriptivity
607
+ ratio increases for all the labels towards the greater cell
608
+ sizes, tree trunk and pole labels make an exception that was
609
+ already covered above. Within the applicable cell range, the
610
+ improvement in descriptivity ratio is more constant for all
611
+ labels. For the complete map with 2 m cells, the descriptivity
612
+ is 2× higher compared to NDT and for 10 m cells the
613
+ descriptivity is 20× higher. Especially, building and fence
614
+ labels show relatively higher descriptivity scores, which
615
+ suggests that the plane extraction is advantageous.
616
+ Map compression is a direct consequence of EA-NDT’s
617
+ higher descriptivity scores; EA-NDT achieves the same de-
618
+ scriptivity with a larger cell size which means a smaller num-
619
+ ber of cells. The NDT compression efficiency η, visualized
620
+ in the upper part of Fig. 8, was used to compare compression
621
+ of EA-NDT with NDT (note that η, shown in Fig. 5, can be
622
+ computed only when a corresponding score exists for both
623
+ methods). For the complete map representation, EA-NDT
624
+ provides 1.5 – 1.75× better compression within the whole
625
+ examined range. The compression of the complete EA-NDT
626
+ is mainly defined by the ground label, which is about 1.5×
627
+ better within the whole range. EA-NDT’s compression of
628
+ traffic sign and pole labels is more than 2.1× higher than
629
+ NDT for the smallest cells but drops steeply towards greater
630
+ cell sizes, though, remaining higher compression even for the
631
+ largest cells. For building and fence labels, the compression
632
+ is more than 2.2× higher around 0.5 m cell size, for smaller
633
+
634
+ and larger cells the NDT compression efficiency decreases.
635
+ This suggests that EA-NDT’s technique of modeling the
636
+ planes and excluding the other points is beneficial until cell
637
+ size of about 0.5 m but with smaller cells, NDT reaches
638
+ the difference by modeling the excluded points. Finally, we
639
+ can state that the complete map representation of EA-NDT
640
+ achieves the highest compression improvement around 0.7 m
641
+ cell size which is also within the applicable cell size range.
642
+ VI. DISCUSSION
643
+ The proposed EA-NDT achieves 1) at least 1.5× higher
644
+ compression, and 2) always a higher descriptivity score
645
+ with the same number of cells compared to NDT as shown
646
+ in Fig. 8. For separately tested semantic labels, EA-NDT
647
+ achieves 1) always a higher compression, and 2) a higher
648
+ descriptivity score in the applicable cell size range of 0.5 –
649
+ 2.0 m. However, we suggest to use cell sizes of 0.5 – 1.0
650
+ m for EA-NDT in a suburban environment since our results
651
+ (Fig. 8) indicate that this range provides better compression.
652
+ Due to the semantic-aided instance clustering and primi-
653
+ tive extraction, the proposed EA-NDT is able to find the most
654
+ significant planar and cylindrical primitives in the environ-
655
+ ment. NDT representation is especially informative within
656
+ planar and thin cylindrical structures that can be modeled
657
+ with a unimodal distribution, and therefore, EA-NDT is
658
+ able to model the environment more optimally compared
659
+ to NDT. Moreover, the use of semantic information enables
660
+ selection of the stable objects that should be modeled in the
661
+ map. Finally, K-means clustering of the primitives ensures
662
+ data efficient placement of cells where they are needed.
663
+ The advantage of EA-NDT is a result of improved point
664
+ cloud division. Therefore, the advantage is prominent in
665
+ small objects such as poles or complicated structures such as
666
+ buildings or fences. In the ground plane, the advantage is less
667
+ evident because it is in any case a one large plane and the
668
+ benefit can be almost completely explained by the removal
669
+ of outliers and by the efficiency gained from clustering the
670
+ ground plane.
671
+ Finding planar primitives in building and fence instances
672
+ removes some points which are not modeled by EA-NDT
673
+ HD Map. As shown in our results in Fig. 8, that is beneficial
674
+ for compression with cell sizes above 0.5 m but for smaller
675
+ cell sizes it could be beneficial to model those points with
676
+ additional NDT cells. However, as shown in this work,
677
+ the described effect is not significant within the range of
678
+ the suggested cell sizes. Moreover, the suggested correction
679
+ should be justified only if it improves also the performance
680
+ of scan registration.
681
+ The classification accuracy of the pre-trained RandLA-Net
682
+ (see Section IV-A) was a limiting factor for the quality of se-
683
+ mantic segmentation. The misclassification increases the total
684
+ number of cells when overlapping cells of different semantic
685
+ labels model the same object (see Fig. 1), which reduces the
686
+ compression of EA-NDT representation. In future work, the
687
+ classification accuracy of the semantic segmentation could be
688
+ improved by using a more advanced model [34], [35] and
689
+ by retraining the model for the used LiDAR.
690
+ The proposed EA-NDT was tested in a suburban envi-
691
+ ronment that consist of 1) a flat ground, buildings, fences,
692
+ and traffic signs, which are modeled as planar surfaces, and
693
+ 2) poles and tree trunks, which are modeled as cylindrical
694
+ objects. The tested environment contains enough samples of
695
+ all the tested semantic labels to demonstrate that EA-NDT is
696
+ able to compress the data more than NDT. However, our tests
697
+ did not concern vegetation, tree canopies, water, significant
698
+ height variations, nor high rise buildings. In the future, a
699
+ larger variety of environments should be studied.
700
+ EA-NDT provides map compression within the tested
701
+ semantic labels in environments where 1) the used semantic
702
+ labels exist in the environment, 2) the reliability of semantic
703
+ segmentation is high enough, and 3) instances are separated
704
+ by sufficient distance. In order to use the proposed EA-NDT,
705
+ the following assumptions need to hold: 1) ground, buildings,
706
+ fences, and traffic signs must be composed of planar surfaces,
707
+ and 2) tree trunks and poles need to be cylindrical. In future
708
+ work, for other semantic labels, the type of primitive would
709
+ need to be defined according to the properties of that label.
710
+ Semantic information is a powerful tool and a key enabler
711
+ of HD Maps. In this work, we have shown that semantic
712
+ information enables separate processes for each semantic
713
+ label which results into more optimal clustering of point
714
+ cloud data. Furthermore, in previous works semantic infor-
715
+ mation has been used to improve positioning [11], [12],
716
+ [17]. Moreover, semantic information enables the removal of
717
+ unwanted dynamic objects from the map. In future work, the
718
+ use of semantic information opens a possibility to study the
719
+ positioning accuracy and reliability of different object types
720
+ over time. That could be especially useful when navigating
721
+ in constantly changing environments such as arctic areas.
722
+ This work was outlined on evaluating compression and
723
+ descriptivity properties of EA-NDT HD Map, and therefore,
724
+ the positioning performance of the proposed framework
725
+ remains an open question for the future work. Although,
726
+ the positioning was not evaluated, the well established scan
727
+ registration and cell representation of NDT is integrated into
728
+ positioning of EA-NDT. Moreover, the data compression
729
+ of an HD map is a desired property of any mobile robot
730
+ application. Another open question is how the proposed
731
+ EA-NDT HD map can be efficiently updated with new
732
+ information. Also, currently the computation of EA-NDT
733
+ is very slow and the computational optimization is left for
734
+ future work.
735
+ VII. CONCLUSIONS
736
+ In this work, we proposed EA-NDT, that is a novel
737
+ framework to compute a compressed map representation
738
+ based on NDT formulation. The fundamental concept of
739
+ EA-NDT is semantic-aided clustering to find planar and
740
+ cylindrical primitive features of a point cloud to model them
741
+ as planar or elongated normal distributions in a 3D space,
742
+ respectively.
743
+ We showed that compared to NDT, the data-driven ap-
744
+ proach of EA-NDT achieves consistently at least 1.5× higher
745
+ map descriptivity score, and therefore enables a significant
746
+
747
+ map compression without deteriorating the descriptive ca-
748
+ pability of the map. The best compression in comparison
749
+ to NDT is obtained within cell sizes of 0.5 – 2 m, which
750
+ is an applicable range for real-time positioning. Moreover,
751
+ the results show that compared to NDT, the representation
752
+ achieves a higher data compression within all the tested
753
+ semantic labels, that is a desired property for mobile robots
754
+ such as autonomous vehicles.
755
+ When data compression is a required property of an HD
756
+ map, we recommend the use of EA-NDT instead of NDT.
757
+ Based on the results of this work, it seems likely that the
758
+ positioning accuracy using EA-NDT maps exceeds that of
759
+ standard NDT maps of same size. However, this warrants
760
+ future studies because there are several interacting factors
761
+ such as potentially varying contribution of different semantic
762
+ labels to the positioning accuracy.
763
+ ACKNOWLEDGMENT
764
+ In addition, the authors would like to thank Paula Litkey
765
+ and Eero Ahokas from FGI for data management and col-
766
+ lection and Antero Kukko and Harri Kaartinen from FGI
767
+ for assistance and advices. We would also like to thank Leo
768
+ Pakola for participation in the research vehicle development.
769
+ REFERENCES
770
+ [1] A. Zaidi and M. Suddle, “Global navigation satellite systems: a
771
+ survey,” in 2006 International Conference on Advances in Space
772
+ Technologies, pp. 84–87, 2006.
773
+ [2] J. Wang, “Pseudolite applications in positioning and navigation:
774
+ Progress and problems,” Journal of Global Positioning Systems, vol. 1,
775
+ no. 03, pp. 48–56, 2002.
776
+ [3] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
777
+ I. Reid, and J. J. Leonard, “Past, present, and future of simultaneous
778
+ localization and mapping: Toward the robust-perception age,” IEEE
779
+ Transactions on Robotics, vol. 32, no. 6, pp. 1309–1332, 2016.
780
+ [4] H. G. Seif and X. Hu, “Autonomous driving in the iCity—HD maps
781
+ as a key challenge of the automotive industry,” Engineering, vol. 2,
782
+ no. 2, pp. 159–162, 2016.
783
+ [5] R. Liu, J. Wang, and B. Zhang, “High definition map for automated
784
+ driving: Overview and analysis,” The Journal of Navigation, vol. 73,
785
+ no. 2, pp. 324–341, 2020.
786
+ [6] R. Dub´e, A. Cramariuc, D. Dugas, H. Sommer, M. Dymczyk, J. Nieto,
787
+ R. Siegwart, and C. Cadena, “SegMap: Segment-based mapping and
788
+ localization using data-driven descriptors,” The International Journal
789
+ of Robotics Research, vol. 39, no. 2-3, pp. 339–355, 2020.
790
+ [7] H. Yin, Y. Wang, L. Tang, X. Ding, S. Huang, and R. Xiong,
791
+ “3D LiDAR map compression for efficient localization on resource
792
+ constrained vehicles,” IEEE Transactions on Intelligent Transportation
793
+ Systems, vol. 22, no. 2, pp. 837–852, 2020.
794
+ [8] M.-F. Chang, W. Dong, J. Mangelson, M. Kaess, and S. Lucey, “Map
795
+ compressibility assessment for LiDAR registration,” in 2021 IEEE/RSJ
796
+ International Conference on Intelligent Robots and Systems (IROS),
797
+ pp. 5560–5567, 2021.
798
+ [9] M. Magnusson, The three-dimensional normal-distributions transform:
799
+ an efficient representation for registration, surface analysis, and loop
800
+ detection. PhD thesis, ¨Orebro University, 2009.
801
+ [10] T. Stoyanov, M. Magnusson, H. Andreasson, and A. J. Lilienthal, “Fast
802
+ and accurate scan registration through minimization of the distance
803
+ between compact 3D NDT representations,” The International Journal
804
+ of Robotics Research, vol. 31, no. 12, pp. 1377–1393, 2012.
805
+ [11] A. Zaganidis, M. Magnusson, T. Duckett, and G. Cielniak, “Semantic-
806
+ assisted 3D normal distributions transform for scan registration in
807
+ environments with limited structure,” in 2017 IEEE/RSJ International
808
+ Conference on Intelligent Robots and Systems (IROS), pp. 4064–4069,
809
+ 2017.
810
+ [12] A. Zaganidis, L. Sun, T. Duckett, and G. Cielniak, “Integrating
811
+ deep semantic segmentation into 3-D point cloud registration,” IEEE
812
+ Robotics and Automation Letters, vol. 3, no. 4, pp. 2942–2949, 2018.
813
+ [13] C. Sammut and G. I. Webb, Encyclopedia of machine learning and
814
+ data mining. Springer Publishing Company, Incorporated, 2017.
815
+ [14] G. Bresson, Z. Alsayed, L. Yu, and S. Glaser, “Simultaneous localiza-
816
+ tion and mapping: A survey of current trends in autonomous driving,”
817
+ IEEE Transactions on Intelligent Vehicles, vol. 2, no. 3, pp. 194–220,
818
+ 2017.
819
+ [15] P. J. Besl and N. D. McKay, “Method for registration of 3-D shapes,” in
820
+ Sensor Fusion IV: Control Paradigms and Data Structures, vol. 1611,
821
+ pp. 586–606, 1992.
822
+ [16] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep learning
823
+ on point sets for 3D classification and segmentation,” in Proceedings
824
+ of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
825
+ nition (CVPR), pp. 652–660, 2017.
826
+ [17] S. Cho, C. Kim, J. Park, M. Sunwoo, and K. Jo, “Semantic point
827
+ cloud mapping of LiDAR based on probabilistic uncertainty modeling
828
+ for autonomous driving,” Sensors, vol. 20, no. 20, p. 5900, 2020.
829
+ [18] Q. Hu, B. Yang, L. Xie, S. Rosa, Y. Guo, Z. Wang, N. Trigoni, and
830
+ A. Markham, “RandLA-Net: Efficient semantic segmentation of large-
831
+ scale point clouds,” in Proceedings of the IEEE/CVF Conference on
832
+ Computer Vision and Pattern Recognition (CVPR), pp. 11108–11117,
833
+ 2020.
834
+ [19] J. Zhang, X. Zhao, Z. Chen, and Z. Lu, “A review of deep learning-
835
+ based semantic segmentation for point cloud,” IEEE Access, vol. 7,
836
+ pp. 179118–179133, 2019.
837
+ [20] J. Kammerl, N. Blodow, R. B. Rusu, S. Gedikli, M. Beetz, and
838
+ E. Steinbach, “Real-time compression of point cloud streams,” in 2012
839
+ IEEE International Conference on Robotics and Automation, pp. 778–
840
+ 785, 2012.
841
+ [21] Velodyne, VLS-128 Alpha Puck, 2019. 63-9480 Rev-3 datasheet.
842
+ [22] Novatel, PwrPak7-E1, October 2020. D18496 Version 7 datasheet.
843
+ [23] J. Maanp¨a¨a, J. Taher, P. Manninen, L. Pakola, I. Melekhov, and
844
+ J. Hyypp¨a, “Multimodal end-to-end learning for autonomous steering
845
+ in adverse road and weather conditions,” in 2020 25th International
846
+ Conference on Pattern Recognition (ICPR), pp. 699–706, 2021.
847
+ [24] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
848
+ E. Berger, R. Wheeler, and A. Ng, “ROS: an open-source robot
849
+ operating system,” in ICRA Workshop on Open Source Software in
850
+ Robotics, 2009.
851
+ [25] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stach-
852
+ niss, and J. Gall, “SemanticKITTI: A dataset for semantic scene
853
+ understanding of LiDAR sequences,” in Proceedings of the IEEE/CVF
854
+ International Conference on Computer Vision (ICCV), pp. 9297–9307,
855
+ 2019.
856
+ [26] Novatel, Inertial Explorer, February 2020.
857
+ D18034 Version 9
858
+ brochure.
859
+ [27] K.
860
+ Koide,
861
+ “OpenMP-boosted
862
+ normal
863
+ distributions
864
+ transform.”
865
+ https://github.com/koide3/ndt_omp, 2017.
866
+ Referenced
867
+ 26 January 2022.
868
+ [28] R. B. Rusu and S. Cousins, “3D is here: Point cloud library (PCL),”
869
+ in 2011 IEEE International Conference on Robotics and Automation,
870
+ 2011.
871
+ [29] A. J. Trevor, S. Gedikli, R. B. Rusu, and H. I. Christensen, “Efficient
872
+ organized point cloud segmentation with connected components,” in
873
+ 3rd Workshop on Semantic Perception, Mapping and Exploration
874
+ (SPME), 2013.
875
+ [30] M. A. Fischler and R. C. Bolles, “Random sample consensus: a
876
+ paradigm for model fitting with applications to image analysis and
877
+ automated cartography,” Communications of the ACM, vol. 24, no. 6,
878
+ pp. 381–395, 1981.
879
+ [31] N. Sarten, “A generic C++11 k-means clustering implementation.”
880
+ https://github.com/genbattle/dkm, 2015. Referenced 26
881
+ January 2022.
882
+ [32] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful
883
+ seeding,” in SODA ’07: Proceedings of the Eighteenth Annual ACM-
884
+ SIAM Symposium on Discrete Algorithms, pp. 1027–1035, 2007.
885
+ [33] S. J. Prince, Computer vision: models, learning, and inference. Cam-
886
+ bridge University Press, 2012.
887
+ [34] H. Tang, Z. Liu, S. Zhao, Y. Lin, J. Lin, H. Wang, and S. Han, “Search-
888
+ ing efficient 3D architectures with sparse point-voxel convolution,” in
889
+ European Conference on Computer Vision, pp. 685–702, 2020.
890
+ [35] X. Zhu, H. Zhou, T. Wang, F. Hong, Y. Ma, W. Li, H. Li, and
891
+ D. Lin, “Cylindrical and asymmetrical 3D convolution networks for
892
+ LiDAR segmentation,” in Proceedings of the IEEE/CVF Conference
893
+ on Computer Vision and Pattern Recognition (CVPR), pp. 9939–9948,
894
+ 2021.
895
+
0dE2T4oBgHgl3EQfiQdl/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
1tE0T4oBgHgl3EQfuQHv/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55829734e8880a799b280ace52c650cdedc27f7b438f3845f5aaa0c9debae349
3
+ size 5046317
1tE0T4oBgHgl3EQfuQHv/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6fc48272f6b37ad96892cfa6a1864234586ad656e0c04e27e718cc22a6971620
3
+ size 184595
29E1T4oBgHgl3EQflwQn/content/2301.03288v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6b14abc3abf8f8cc6c7904c344fc4dfab4c52aa2d579abb8dc17a5537a7b24e
3
+ size 1933910
29E1T4oBgHgl3EQflwQn/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1a81d5dd18fec218494c6771ea9f48608b837c25f53460693541307cf13bf2fb
3
+ size 104835
2NAzT4oBgHgl3EQfe_yo/content/tmp_files/2301.01446v1.pdf.txt ADDED
@@ -0,0 +1,691 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Radio Frequency Fingerprints Extraction for
2
+ LTE-V2X: A Channel Estimation Based Methodology
3
+ Tianshu Chen∗, Hong Shen∗, Aiqun Hu∗†, Weihang He‡, Jie Xu‡, Hongxing Hu§
4
+ ∗National Mobile Communications Research Laboratory, Southeast University, Nanjing, China
5
+ †The Purple Mountain Laboratories for Network and Communication Security, Nanjing, China
6
+ ‡School of Cyber Science and Engineering, Southeast University, Nanjing, China
7
+ §China Automotive Innovation Corporation, Nanjing, China
8
+ Email: {iamtianshu, shhseu, aqhu, 220205165, 220205095}@seu.edu.cn, huhongxing@t3caic.com
9
+ Abstract—The vehicular-to-everything (V2X) technology has
10
+ recently drawn a number of attentions from both academic and
11
+ industrial areas. However, the openness of the wireless communi-
12
+ cation system makes it more vulnerable to identity impersonation
13
+ and information tampering. How to employ the powerful radio
14
+ frequency fingerprint (RFF) identification technology in V2X
15
+ systems turns out to be a vital and also challenging task. In
16
+ this paper, we propose a novel RFF extraction method for Long
17
+ Term Evolution-V2X (LTE-V2X) systems. In order to conquer the
18
+ difficulty of extracting transmitter RFF in the presence of wireless
19
+ channel and receiver noise, we first estimate the wireless channel
20
+ which excludes the RFF. Then, we remove the impact of the
21
+ wireless channel based on the channel estimate and obtain initial
22
+ RFF features. Finally, we conduct RFF denoising to enhance the
23
+ quality of the initial RFF. Simulation and experiment results both
24
+ demonstrate that our proposed RFF extraction scheme achieves
25
+ a high identification accuracy. Furthermore, the performance is
26
+ also robust to the vehicle speed.
27
+ Index Terms—Vehicular-to-everything (V2X), radio frequency
28
+ fingerprint (RFF), device identification, channel estimation, RFF
29
+ denoising
30
+ I. INTRODUCTION
31
+ Vehicular-to-everything (V2X) has become a promising
32
+ technique for intelligent transportation and autonomous driv-
33
+ ing. In particular, the cellular-V2X (C-V2X) has been widely
34
+ acknowledged as a key V2X communication standard due to
35
+ its superior performance [1], [2].
36
+ Since V2X relies on wireless transmission, the information
37
+ is easy to be eavesdropped, forged or tampered with, which
38
+ imposes great challenges on the safety of vehicles, pedestrians
39
+ and road infrastructures in the V2X communication network
40
+ [3]. To deal with the security threats faced by wireless
41
+ communications, there are usually two widely used authen-
42
+ tication strategies: key-based cryptographic authentication and
43
+ physical layer security-based non-cryptographic authentication
44
+ [4]. The cryptographic authentication technology needs to
45
+ © 2022 IEEE. Personal use of this material is permitted. Permission from
46
+ IEEE must be obtained for all other uses, in any current or future media,
47
+ including reprinting/republishing this material for advertising or promotional
48
+ purposes, creating new collective works, for resale or redistribution to servers
49
+ or lists, or reuse of any copyrighted component of this work in other works.
50
+ distribute and manage abundant communication keys, which
51
+ occupies computing resources and leads to additional overhead
52
+ and delays. Moreover, with the rapid development of comput-
53
+ ing capability of the computers, especially the emergence of
54
+ quantum computers, traditional cryptography technologies are
55
+ more vulnerable to brute-force attacks [5]. On the contrary, the
56
+ physical layer security based authentication has lower com-
57
+ plexity and network overhead with lower latency compared
58
+ to traditional cryptography-based authentication methods, and
59
+ can achieve non-perceptual authentication without third-party
60
+ facilities. One typical example is the radio frequency fin-
61
+ gerprint (RFF) based authentication, which fully exploits the
62
+ hardware differences between any two devices. Since the
63
+ hardware characteristic of each device is unique and difficult
64
+ to clone, the RFF based authentication can better resist the
65
+ identity attacks and spoofing [6].
66
+ In literature, a variety of RFF extraction and identification
67
+ methods have been advocated. Early works mainly focus on
68
+ the characteristics of transient signals, such as instantaneous
69
+ amplitude, frequency, and phase responses [7]. Concerning
70
+ the steady-state signal, such as preamble signals, researchers
71
+ consider extracting the RFF features including I/Q offset
72
+ [8], power spectral density [9], differential constellation trace
73
+ figure [10]. Furthermore, some universal RFF extraction meth-
74
+ ods which are independent of data, channel or modulation
75
+ modes have also been studied. Concretely, Shen et al. [11]
76
+ constructed channel independent spectrogram and utilized data
77
+ augmentation for RFF extraction and identification of Lora
78
+ devices, which achieves good performance under different
79
+ channel conditions. Alternatively, Yang et al. [12] used random
80
+ data segments to extract the tap coefficients of the least mean
81
+ square (LMS) adaptive filter as data independent RFF. Sun et
82
+ al. [13] verified the locality and inhomogeneity of the RFF
83
+ distribution with the analysis in the cepstral domain, which
84
+ yields modulation mode independent RFF.
85
+ The aforementioned works mainly consider the RFF extrac-
86
+ tion for low mobility and narrowband systems. However, for
87
+ the V2X system, the channel typically varies fast due to the
88
+ high mobility vehicles. In addition, the V2X signal usually
89
+ arXiv:2301.01446v1 [eess.SP] 4 Jan 2023
90
+
91
+ Signal preprocessing
92
+ RFF feature extraction
93
+ and denoising
94
+ Device identification
95
+ Digital baseband
96
+ signal
97
+ Mixer
98
+ up-conversion
99
+ Transmitter RFF model
100
+ RF front-end power amplifier
101
+ DAC
102
+ Baseband low-pass filter
103
+ TX antenna
104
+ OBU
105
+ OBU
106
+ RSU
107
+ V2P
108
+ V2I
109
+ Receiver
110
+ Channel estimation
111
+ and equalization
112
+ RFF identification
113
+ and access system
114
+ I/Q DC offset
115
+ Non-linearity
116
+ Gain imbalance
117
+ and phase deviation
118
+ Frequency response
119
+ deviation
120
+ Fig. 1. LTE-V2X RFF extraction and identification system framework and RFF model at the transmitter.
121
+ has a large bandwidth which is more vulnerable to multipath
122
+ environment. Therefore, the current RFF extraction methods
123
+ for narrowband systems such as ZigBee and Lora cannot be
124
+ directly applied for the V2X system because they do not
125
+ take into account the impact of multipath and time-varying
126
+ channels.
127
+ In this work, we propose a channel estimation based RFF
128
+ extraction method for Long Term Evolution-V2X (LTE-V2X)
129
+ systems, which, to the best of our knowledge, has not been
130
+ investigated in existing works. Specifically, we first estimate
131
+ the experienced wireless channel using an improved least
132
+ square (LS) channel estimation method. Then, we perform
133
+ channel equalization based on the channel estimate to obtain
134
+ channel dependent RFF. The RFF quality is further enhanced
135
+ via conducting time-domain denoising. It is worthwhile noting
136
+ that the developed method eliminates the effect of the channel
137
+ and the noise on the RFF with low implementation complex-
138
+ ity, and can be extended to various broadband multi-carrier
139
+ wireless communication systems.
140
+ This paper is organized as follows. Section II introduces the
141
+ system model and signal preprocessing. Section III presents
142
+ the details of the proposed RFF extraction methodology based
143
+ on wireless channel estimation. Section IV evaluates the
144
+ performance of the proposed RFF extraction method through
145
+ simulations and experiments. Section V concludes this work.
146
+ II. SYSTEM MODEL AND SIGNAL PREPROCESSING
147
+ A. System Model
148
+ Fig. 1 demonstrates the framework of the considered LTE-
149
+ V2X RFF extraction and identification system together with
150
+ the RFF model at the transmitter. More concretely, one V2X
151
+ terminal, e.g., on board unit (OBU) or road side unit (RSU),
152
+ first transmits data to other devices, where the transmitted
153
+ signal includes the RFF of the transmitter. Then, the receiver
154
+ preprocesses the received signal which consists of converting
155
+ the RF signal to the baseband signal and performing time-
156
+ frequency synchronization. Subsequently, the RFF features are
157
+ extracted based on the synchronized signal, where the effects
158
+ of the wireless channel and the noise on the RFF need to be
159
+ mitigated. Finally, the device identification is performed using
160
+ the extracted RFF features.
161
+ It is necessary to note that the considered RFF refers to all
162
+ the characteristics of the circuits at the transmitter, which, as
163
+ shown in Fig. 1, include the I/Q DC offsets of the digital-to-
164
+ analog converter (DAC), the frequency response deviation of
165
+ the filter, the gain imbalance and the carrier phase quadrature
166
+ deviation of the mixer, and the non-linearity of the power
167
+ amplifier [14].
168
+ B. LTE-V2X PSBCH
169
+ We adopt the physical sidelink broadcast channel (PSBCH)
170
+ in LTE-V2X systems for RFF extraction. According to [15],
171
+ PSBCH is transmitted every 160 ms occupying the central 6
172
+
173
+ PSBCH
174
+ PSBCH
175
+ PSSS
176
+ PSSS
177
+ DMRS
178
+ PSBCH
179
+ DMRS
180
+ DMRS
181
+ PSBCH
182
+ PSBCH
183
+ PSBCH
184
+ SSSS
185
+ SSSS
186
+ GUARD
187
+ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 time
188
+ 1 ms
189
+ frequency
190
+ 6 RBs
191
+ Fig. 2. LTE-V2X PSBCH format.
192
+ resource blocks (RBs), i.e., 72 subcarriers and 14 single-carrier
193
+ frequency division multiple access (SC-FDMA) symbols.
194
+ The detailed format of PSBCH is shown in Fig. 2, where
195
+ primary sidelink synchronization signal (PSSS), secondary
196
+ sidelink synchronization signal (SSSS), and demodulation
197
+ reference signal (DMRS) all depend on the currently used
198
+ sidelink synchronization signal (SLSS) ID. Since the SLSS
199
+ ID can be estimated [15], we can readily obtain ideal PSSS,
200
+ SSSS, and DMRS at the receiver which are used for extracting
201
+ transmitter RFF.
202
+ C. Signal Preprocessing
203
+ In order to ensure the stability of the extracted RFF, the
204
+ signal preprocessing procedure includes time synchronization
205
+ and carrier frequency offset (CFO) estimation and compensa-
206
+ tion after the received signal is down-converted from the RF
207
+ band to the baseband.
208
+ The time synchronization is realized by utilizing two identi-
209
+ cal training symbols, e.g., two repeated PSSS or SSSS symbols
210
+ in LTE-V2X PSBCH, and the cross-correlation between the
211
+ received signal r(n) and the training signal x(n) as
212
+ P(d)=
213
+ N−1
214
+
215
+ n=0
216
+ |r(n+d)x∗(n)|2+
217
+ N−1
218
+
219
+ n=0
220
+ |r(n+d+N +NCP )x∗(n)|2 ,
221
+ (1)
222
+ where N = 2048 for LTE-V2X systems and NCP denotes
223
+ the length of the cyclic prefix (CP). When P(d) exceeds a
224
+ given threshold PTH and reaches the maximum, we obtain the
225
+ estimated starting position of the training symbol [16], which
226
+ is expressed by
227
+ ˆd = arg
228
+ max
229
+ d∈{d|P (d)>PTH} P(d).
230
+ (2)
231
+ Afterwards, the CFO is estimated by performing auto-
232
+ correlation between adjacent two identical PSSS symbols and
233
+ two identical SSSS symbols [17], which is expressed as
234
+ ˆε =
235
+ 1
236
+ 2π(N +NCP )angle
237
+ �N−1
238
+
239
+ n=0
240
+ [r(n+ ˆd)r∗(n+ ˆd+N +NCP )]
241
+ +
242
+ N−1
243
+
244
+ n=0
245
+ [r(n+∆n+ ˆd)r∗(n+∆n+ ˆd+N +NCP )]
246
+
247
+ ,
248
+ (3)
249
+ where angle{·} returns the phase angle of the input complex
250
+ number and ∆n represents the number of the sampling points
251
+ (a) initial time domain channel esti-
252
+ mate h5(n)
253
+ (b) windowed time domain channel
254
+ estimate ˆh5(n)
255
+ Fig. 3. The initial and windowed time domain channel estimates of the DMRS
256
+ symbol.
257
+ between the first PSSS and the first SSSS. Accordingly, we
258
+ obtain the CFO compensated signal by
259
+ y(n) = ˜r(n)e−j2πnˆε,
260
+ (4)
261
+ where ˜r(n) denotes the time synchronized signal.
262
+ III. PROPOSED RFF EXTRACTION METHOD
263
+ In this section, we propose a novel PSBCH based RFF ex-
264
+ traction method for LTE-V2X systems, which mainly includes
265
+ channel estimation, channel equalization, and RFF denoising.
266
+ A. Channel Estimation
267
+ We adopt the improved LS algorithm [18] for channel
268
+ estimation. The main idea of the algorithm is to obtain the
269
+ initial frequency domain channel estimate through the LS
270
+ algorithm, which is then transformed into the time domain
271
+ via inverse discrete Fourier transform (IDFT). Afterwards, we
272
+ perform time-domain windowing to exclude the noise and
273
+ the RFF. The resultant signal is finally transformed into the
274
+ frequency domain via discrete Fourier transform (DFT). The
275
+ detailed steps of channel estimation for the PSBCH subframe
276
+ are described as follows.
277
+ Denote the i-th time-domain SC-FDMA symbol of the
278
+ received PSBCH after preprocessing and CP removal by yi(n),
279
+ which carries RFF information and channel information. Then,
280
+ we transform the time-domain received signals corresponding
281
+ to the PSSS, the SSSS, and the DMRS symbols into the
282
+ frequency domain by performing DFT, which is expressed as
283
+ Yi(k) = DFTN{yi(n)}, 0 ≤ k ≤ N − 1,
284
+ (5)
285
+ where DFTN{·} denotes the N-point DFT and i = 2, 3, 5, 7,
286
+ 10, 12, 13. Denote the frequency domain received signal cor-
287
+ responding to the effective bandwidth occupied by the PSSS,
288
+ the SSSS, and the DMRS as ÙYi(k). Then, the initial frequency
289
+ domain channel estimate of the i-th symbol ˆHi(k) containing
290
+ the RFF and the noise is calculated by
291
+ ˆHi(k) =
292
+ ÙYi(k)
293
+ Ù
294
+ Xi(k)
295
+ , k ∈ Ni,
296
+ (6)
297
+
298
+ where Ù
299
+ Xi(k) denotes the PSSS, the SSSS, or the DMRS, and
300
+ Ni is defined by
301
+ Ni =
302
+ ®[5, 66], i = 2, 3, 12, 13
303
+ [0, 71], i = 5, 7, 10
304
+ .
305
+ (7)
306
+ Subsequently, based on ˆHi(k), we obtain the initial time
307
+ domain channel estimate by
308
+ ˆhi(n) = IDFTNi{ ˆHi(k)}, n ∈ Ni,
309
+ (8)
310
+ where IDFTNi{·} denotes the Ni-point IDFT and Ni is
311
+ defined by
312
+ Ni =
313
+ ®62, i = 2, 3, 12, 13
314
+ 72, i = 5, 7, 10
315
+ .
316
+ (9)
317
+ Since the channel impulse response is concentrated in a
318
+ few time domain samples while the noise and the RFF are
319
+ distributed over the entire time domain, we can apply an
320
+ appropriate window on ˆhi(n) to obtain an improved time
321
+ domain channel estimate by
322
+ ˘hi(n) = ˆhi(n)wi(n), n ∈ Ni,
323
+ (10)
324
+ where wi(n) denotes the window function. Fig. 3 illustrates
325
+ the windowing operation, where a rectangular window is used.
326
+ Since most noises and RFFs are removed by the windowing
327
+ operation, the resultant channel estimate becomes more accu-
328
+ rate.
329
+ After obtaining ˘hi(n), we further acquire the corresponding
330
+ frequency domain channel estimate as
331
+ ˘Hi(k) = DFTNi{˘hi(n)}, k ∈ Ni,
332
+ (11)
333
+ Considering the fact that the channels experienced by adjacent
334
+ symbols are approximately identical, especially when the
335
+ vehicle speed is not very high, we can further average adjacent
336
+ ˘Hi(k)’s to suppress the noise, thus improving the channel
337
+ estimation accuracy. For instance, if the channel variation in
338
+ one subframe is negligible, the ultimate frequency domain
339
+ channel estimate can be calculated by
340
+ ˜H(k)=
341
+
342
+
343
+
344
+
345
+
346
+
347
+
348
+ ˘HPSSS(k) + ˘HDMRS(k) + ˘HSSSS(k)
349
+ 7
350
+ , 5 ≤ k ≤ 66
351
+ ˘HDMRS(k)
352
+ 3
353
+ , 0 ≤ k ≤ 71
354
+ ,
355
+ (12)
356
+ where
357
+ ˘HPSSS(k) = ˘H2(k) + ˘H3(k),
358
+ (13)
359
+ ˘HDMRS(k) = ˘H5(k) + ˘H7(k) + ˘H10(k),
360
+ (14)
361
+ ˘HSSSS(k) = ˘H12(k) + ˘H13(k).
362
+ (15)
363
+ B. Channel Equalization
364
+ After acquiring the channel estimate ˜H(k), we can perform
365
+ channel equalization to remove the channel information and
366
+ achieve the initial RFF features Ri(k) by
367
+ Ri(k) =
368
+ ÙYi(k)
369
+ ˜H(k)
370
+ , k ∈ Ni.
371
+ (16)
372
+ Note that the above channel equalization will not lead to a loss
373
+ of RFF information since most RFFs have been removed by
374
+ the windowing operation during the channel estimation stage.
375
+ C. RFF Denoising
376
+ According to (16), the initial RFF feature is still affected
377
+ by the noise in ÙYi(k). To alleviate the impact of noise
378
+ on the extracted RFF, we further average the initial RFFs
379
+ corresponding to the same data sequence. Specifically, the
380
+ denoised RFFs for the PSSS, the DMRS, and the SSSS are
381
+ given by
382
+ RPSSS(k) = R2(k) + R3(k)
383
+ 2
384
+ , 5 ≤ k ≤ 66,
385
+ (17)
386
+ RDMRS(k)=
387
+
388
+
389
+
390
+
391
+
392
+ R5(k) + R7(k) + R10(k)
393
+ 3
394
+ , N SL
395
+ ID mod 2=0
396
+ R5(k) + R10(k)
397
+ 2
398
+ ,
399
+ N SL
400
+ ID mod 2=1
401
+ ,
402
+ 0 ≤ k ≤ 71,
403
+ (18)
404
+ RSSSS(k) = R12(k) + R13(k)
405
+ 2
406
+ , 5 ≤ k ≤ 66.
407
+ (19)
408
+ Note that the DMRS sequence on the 7th symbol differs from
409
+ those on the 5th and 10th symbols when the SLSS ID N SL
410
+ ID is
411
+ odd. Hence, for this case, we only calculate the mean of R5(k)
412
+ and R10(k) which have the same data sequence. Finally, we
413
+ obtain ultimate RFF features R(k) as
414
+ R(k) =
415
+ ®RDMRS(k),
416
+ 0 ≤ k ≤ 4, 67 ≤ k ≤ 71
417
+ [RPSSS(k), RDMRS(k), RSSSS(k)] , 5 ≤ k ≤ 66 .
418
+ (20)
419
+ IV. SIMULATION AND EXPERIMENT RESULTS
420
+ In the experiment, we employ 10 simulated LTE-V2X
421
+ terminals with different RFF parameters and 6 actual LTE-
422
+ V2X modules to generate PSBCH subframes, respectively,
423
+ and evaluate the classification performance of different devices
424
+ based on our proposed RFF extraction scheme.
425
+ A. Simulation Verification
426
+ For the simulation, we set different RFF parameters for 10
427
+ terminals, including the I/Q DC offsets, the baseband low-pass
428
+ filter coefficients, the gain imbalance, the phase quadrature
429
+ deviation, and the RF front-end power amplifier coefficients,
430
+ which are specifically shown in Table I, to ensure the modu-
431
+ lation domain error vector magnitude (EVM) is within 17.5%
432
+ [19].
433
+ Next, the PSBCH signals carrying the RFFs generated by
434
+ the 10 terminals pass through the simulated extended typical
435
+ urban (ETU) multipath channel [20], where the vehicle speed
436
+ ranges from 0 to 120 km/h. Moreover, the SNR ranges from
437
+ 0 to 30 dB.
438
+ Then, we conduct classification experiments on 10 terminals
439
+ using random forest algorithm. The 700 received PSBCH
440
+ subframes of each terminal constitute the training set, where
441
+ the SNR is 30 dB and the vehicle speed is 30 km/h. The
442
+ test set consists of 300 other subframes from each terminal.
443
+
444
+ TABLE I
445
+ RFF PARAMETERS OF 10 SIMULATED LTE-V2X TERMINALS
446
+ Terminal index
447
+ DC offset
448
+ Filter coefficients
449
+ Gain imbalance
450
+ Phase deviation
451
+ Power amplifier coefficient
452
+ 1
453
+ DI=0, DQ=0
454
+ hI=[1 0], hQ=[1 0]
455
+ 0.1
456
+ 0.1
457
+ [1 0 0]
458
+ 2
459
+ DI=0.01, DQ=0
460
+ hI=[1 0], hQ=[1 0]
461
+ 0.01
462
+ 0.01
463
+ [1 0 0]
464
+ 3
465
+ DI=0, DQ=-0.01
466
+ hI=[1 0], hQ=[1 0]
467
+ 0
468
+ 0
469
+ [1 0 0]
470
+ 4
471
+ DI=-0.005, DQ=0.005
472
+ hI=[1 0], hQ=[1 0]
473
+ 0.01
474
+ 0.01
475
+ [1 0 0]
476
+ 5
477
+ DI=0.005, DQ=-0.005
478
+ hI=[1 0], hQ=[1 0]
479
+ 0
480
+ 0
481
+ [1 0 0]
482
+ 6
483
+ DI=0, DQ=0
484
+ hI=[1 0], hQ=[1 0]
485
+ 0.05
486
+ 0
487
+ [0.9+0.15j 0.1 0.1-0.15j]
488
+ 7
489
+ DI=0, DQ=0
490
+ hI=[1 0], hQ=[1 0]
491
+ 0
492
+ 0.05
493
+ [1.15 -0.2 0]
494
+ 8
495
+ DI=0, DQ=0
496
+ hI=[0.825 0], hQ=[1.175 0]
497
+ 0
498
+ 0
499
+ [1 0 0]
500
+ 9
501
+ DI=0, DQ=0
502
+ hI=[1 0.175], hQ=[1 -0.175]
503
+ 0
504
+ 0
505
+ [1 0 0]
506
+ 10
507
+ DI=0.005, DQ=0
508
+ hI=[0.95 0], hQ=[1 0.05]
509
+ 0.05
510
+ 0.05
511
+ [0.95-0.05j 0 0]
512
+ Accuracy (%)
513
+ Fig. 4. Identification accuracy of 10 simulated LTE-V2X terminals based
514
+ on the proposed RFF extraction method under different SNRs and different
515
+ vehicle speeds.
516
+ The identification accuracy of the 10 terminals under different
517
+ SNRs and different vehicle speeds is depicted in Fig. 4. It
518
+ can be found that the vehicle speed has little effect on the
519
+ RFF identification accuracy rate. When the SNR exceeds 10
520
+ dB, the accuracy always remains above 97% regardless of
521
+ the speed, while the accuracy decreases significantly when
522
+ the SNR drops below 10 dB mainly because we only use
523
+ one PSBCH subframe for RFF extraction. It reveals that the
524
+ proposed RFF extraction method has excellent classification
525
+ performance under medium and high SNRs.
526
+ Fig. 5 compares the RFF identification performances of the
527
+ methods with and without channel equalization, where the
528
+ SNR is 30 dB. When the speed increases from 0 to 120 km/h,
529
+ there is no obvious loss in the accuracy rate for the channel
530
+ equalization based method, which always remains over 99%,
531
+ while the identification accuracy without channel equalization
532
+ falls rapidly especially at high speeds, which indicates that our
533
+ proposed method based on channel estimation can effectively
534
+ mitigate the impact of wireless channels on the RFF extraction.
535
+ Accuracy (%)
536
+ Fig. 5. Comparison of the identification accuracy of 10 simulated LTE-V2X
537
+ terminals with and without channel equalization (SNR = 30 dB).
538
+ (a)
539
+ (b)
540
+ USRP B205
541
+ LTE-V2X module
542
+ GPS
543
+ Receiver
544
+ Transmitter
545
+ GPS
546
+ Fig. 6. Experiment setup: (a) receiving device (USRP B205); (b) transmitting
547
+ device (LTE-V2X module).
548
+ B. Experiment Verification
549
+ For the experiment, we use 6 LTE-V2X modules to transmit
550
+ PSBCH subframes and utilize USRP B205 to receive the
551
+ signals. The experiment setup is shown in Fig. 6. First, we
552
+ collect 400 PSBCH subframes for each module as training set
553
+
554
+ TABLE II
555
+ RFF IDENTIFICATION ACCURACY OF 6 LTE-V2X
556
+ MODULES UNDER DIFFERENT SPEEDS
557
+ Device
558
+ Accuracy
559
+ Speed
560
+ 0 km/h
561
+ 10 km/h
562
+ 20 km/h
563
+ 30 km/h
564
+ Module 1
565
+ 92%
566
+ 93%
567
+ 90%
568
+ 91%
569
+ Module 2
570
+ 69%
571
+ 71%
572
+ 69%
573
+ 68%
574
+ Module 3
575
+ 92%
576
+ 90%
577
+ 93%
578
+ 93%
579
+ Module 4
580
+ 100%
581
+ 100%
582
+ 100%
583
+ 97%
584
+ Module 5
585
+ 100%
586
+ 100%
587
+ 100%
588
+ 100%
589
+ Module 6
590
+ 100%
591
+ 100%
592
+ 100%
593
+ 100%
594
+ Average
595
+ 92.2%
596
+ 92.3%
597
+ 92%
598
+ 91.5%
599
+ under static state and low-speed moving state. Subsequently,
600
+ 100 other subframes are captured from each module as test set,
601
+ where the speed ranges from 10 to 30 km/h. The classification
602
+ accuracy of the 6 LTE-V2X modules are shown in Table II. It
603
+ can be seen that the average accuracy exceeds 90%. Moreover,
604
+ the accuracy rate does not drop significantly after the speed
605
+ increases. Note that modules 1 to 4 belong to the same type
606
+ with very similar RFF features. Hence, the corresponding
607
+ classification accuracy is relatively low.
608
+ V. CONCLUSION
609
+ In this paper, we proposed a novel RFF extraction method
610
+ for LTE-V2X systems. Focusing on the PSSS, the SSSS,
611
+ and the DMRS of PSBCH, we successfully obtained highly
612
+ distinguishable RFF features by performing channel estima-
613
+ tion, channel equalization, and RFF denoising. As verified
614
+ via both simulations and experiments, our method displays
615
+ robust performance under challenging time-varying and mul-
616
+ tipath channels. The proposed method can also be applied
617
+ to any broadband multi-carrier communication systems that
618
+ have fixed sequences. In the future work, more terminals can
619
+ be tested in practical high mobility channel environments to
620
+ further verify the effectiveness of this method.
621
+ REFERENCES
622
+ [1] S. Gyawali, S. Xu, Y. Qian, and R. Q. Hu, “Challenges and solutions
623
+ for cellular based V2X communications,” IEEE Commun. Surveys Tuts.,
624
+ vol. 23, no. 1, pp. 222–255, 1st Quart., 2021.
625
+ [2] W. Anwar, N. Franchi, and G. Fettweis, “Physical layer evaluation
626
+ of V2X communications technologies: 5G NR-V2X, LTE-V2X, IEEE
627
+ 802.11bd, and IEEE 802.11p,” in Proc. IEEE 90th Veh. Technol. Conf.
628
+ (VTC-Fall), Honolulu, HI, USA, Sept. 2019, pp. 1–7.
629
+ [3] C. Wang, Z. Li, X.-G. Xia, J. Shi, J. Si, and Y. Zou, “Physical
630
+ layer security enhancement using artificial noise in cellular vehicle-
631
+ to-everything (C-V2X) networks,” IEEE Trans. Veh. Technol., vol. 69,
632
+ no. 12, pp. 15 253–15 268, Dec. 2020.
633
+ [4] X. Luo, Y. Liu, H.-H. Chen, and Q. Guo, “Physical layer security in
634
+ intelligently connected vehicle networks,” IEEE Netw., vol. 34, no. 5,
635
+ pp. 232–239, Sept./Oct. 2020.
636
+ [5] M. Mosca, “Cybersecurity in an era with quantum computers: Will we
637
+ be ready?” IEEE Security Privacy, vol. 16, no. 5, pp. 38–41, Sept./Oct.
638
+ 2018.
639
+ [6] K. Zeng, K. Govindan, and P. Mohapatra, “Non-cryptographic authen-
640
+ tication and identification in wireless networks [security and privacy in
641
+ emerging wireless networks],” IEEE Wireless Commun., vol. 17, no. 5,
642
+ pp. 56–62, Oct. 2010.
643
+ [7] A. M. Ali, E. Uzundurukan, and A. Kara, “Improvements on transient
644
+ signal detection for RF fingerprinting,” in Proc. 25th Signal Process.
645
+ Commun. Appl. Conf. (SIU), Antalya, Turkey, May. 2017, pp. 1–4.
646
+ [8] Y. Shi and M. A. Jensen, “Improved radiometric identification of
647
+ wireless devices using MIMO transmission,” IEEE Trans. Inf. Forensics
648
+ Security, vol. 6, no. 4, pp. 1346–1354, Dec. 2011.
649
+ [9] W. C. Suski II, M. A. Temple, M. J. Mendenhall, and R. F. Mills,
650
+ “Using spectral fingerprints to improve wireless network security,” in
651
+ Proc. IEEE Global Telecommun. Conf. (GLOBECOM), New Orleans,
652
+ LO, Nov. 2008, pp. 1–5.
653
+ [10] L. Peng, A. Hu, J. Zhang, Y. Jiang, J. Yu, and Y. Yan, “Design of a
654
+ hybrid RF fingerprint extraction and device classification scheme,” IEEE
655
+ Internet Things J., vol. 6, no. 1, pp. 349–360, Feb. 2019.
656
+ [11] G. Shen, J. Zhang, A. Marshall, and J. R. Cavallaro, “Towards scalable
657
+ and channel-robust radio frequency fingerprint identification for LoRa,”
658
+ IEEE Trans. Inf. Forensics Security, vol. 17, pp. 774–787, Feb. 2022.
659
+ [12] Y. Yang, A. Hu, Y. Xing, J. Yu, and Z. Zhang, “A data-independent radio
660
+ frequency fingerprint extraction scheme,” IEEE Wireless Commun. Lett.,
661
+ vol. 10, no. 11, pp. 2524–2527, Nov. 2021.
662
+ [13] L. Sun, X. Wang, Z. Huang, and B. Li, “Radio frequency fingerprint
663
+ extraction based on feature inhomogeneity,” IEEE Internet Things J.,
664
+ early access, Feb. 25, 2022, doi: 10.1109/JIOT.2022.3154595.
665
+ [14] W. Wang, Z. Sun, S. Piao, B. Zhu, and K. Ren, “Wireless physical-
666
+ layer identification: Modeling and validation,” IEEE Trans. Inf. Forensics
667
+ Security, vol. 11, no. 9, pp. 2091–2106, Sept. 2016.
668
+ [15] ETSI 3rd Generation Partnership Project, “LTE; Evolved Universal
669
+ Terrestrial Radio Access (E-UTRA); Physical channels and modulation
670
+ (Release 14),” Sophia Antipolis Cedex, Biarritz, France, 3GPP TS
671
+ 36.211 version 14.2.0, 2016.
672
+ [16] T. M. Schmidl and D. C. Cox, “Robust frequency and timing synchro-
673
+ nization for OFDM,” IEEE Trans. Commun., vol. 45, no. 12, pp. 1613–
674
+ 1621, Dec. 1997.
675
+ [17] J. J. van de Beek and M. Sandell, “ML estimation of time and frequency
676
+ offset in OFDM systems,” IEEE Trans. Signal Process., vol. 45, no. 7,
677
+ pp. 1800–1805, Jul. 1997.
678
+ [18] J. J. van de Beek, O. Edfors, M. Sandell, S. Wilson, and P. Borjesson,
679
+ “On channel estimation in OFDM systems,” in Proc. IEEE 45th Veh.
680
+ Technol. Conf., vol. 2, Chicago, IL, USA, Jul. 1995, pp. 815–819.
681
+ [19] ETSI 3rd Generation Partnership Project, “Technical Specification
682
+ Group Radio Access Network; Evolved Universal Terrestrial Radio Ac-
683
+ cess (E-UTRA); User Equipment (UE) radio transmission and reception
684
+ (Release 9),” Sophia Antipolis Cedex, Biarritz, France, 3GPP TS 36.101
685
+ version 9.4.0, 2010.
686
+ [20] ETSI 3rd Generation Partnership Project, “Technical Specification
687
+ Group Radio Access Network; Evolved Universal Terrestrial Radio
688
+ Access (E-UTRA); Base Station (BS) radio transmission and reception
689
+ (Release 14),” Sophia Antipolis Cedex, Biarritz, France, 3GPP TS
690
+ 36.104 version 14.3.0, 2017.
691
+
2NAzT4oBgHgl3EQfe_yo/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,434 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf,len=433
2
+ page_content='Radio Frequency Fingerprints Extraction for LTE-V2X: A Channel Estimation Based Methodology Tianshu Chen∗,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
3
+ page_content=' Hong Shen∗,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
4
+ page_content=' Aiqun Hu∗†,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
5
+ page_content=' Weihang He‡,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
6
+ page_content=' Jie Xu‡,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
7
+ page_content=' Hongxing Hu§ ∗National Mobile Communications Research Laboratory,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
8
+ page_content=' Southeast University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
9
+ page_content=' Nanjing,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
10
+ page_content=' China †The Purple Mountain Laboratories for Network and Communication Security,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
11
+ page_content=' Nanjing,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
12
+ page_content=' China ‡School of Cyber Science and Engineering,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
13
+ page_content=' Southeast University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
14
+ page_content=' Nanjing,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
15
+ page_content=' China §China Automotive Innovation Corporation,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
16
+ page_content=' Nanjing,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
17
+ page_content=' China Email: {iamtianshu,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
18
+ page_content=' shhseu,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
19
+ page_content=' aqhu,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
20
+ page_content=' 220205165,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
21
+ page_content=' 220205095}@seu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
22
+ page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
23
+ page_content='cn, huhongxing@t3caic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
24
+ page_content='com Abstract—The vehicular-to-everything (V2X) technology has recently drawn a number of attentions from both academic and industrial areas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
25
+ page_content=' However, the openness of the wireless communi- cation system makes it more vulnerable to identity impersonation and information tampering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
26
+ page_content=' How to employ the powerful radio frequency fingerprint (RFF) identification technology in V2X systems turns out to be a vital and also challenging task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
27
+ page_content=' In this paper, we propose a novel RFF extraction method for Long Term Evolution-V2X (LTE-V2X) systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
28
+ page_content=' In order to conquer the difficulty of extracting transmitter RFF in the presence of wireless channel and receiver noise, we first estimate the wireless channel which excludes the RFF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
29
+ page_content=' Then, we remove the impact of the wireless channel based on the channel estimate and obtain initial RFF features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
30
+ page_content=' Finally, we conduct RFF denoising to enhance the quality of the initial RFF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
31
+ page_content=' Simulation and experiment results both demonstrate that our proposed RFF extraction scheme achieves a high identification accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
32
+ page_content=' Furthermore, the performance is also robust to the vehicle speed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
33
+ page_content=' Index Terms—Vehicular-to-everything (V2X), radio frequency fingerprint (RFF), device identification, channel estimation, RFF denoising I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
34
+ page_content=' INTRODUCTION Vehicular-to-everything (V2X) has become a promising technique for intelligent transportation and autonomous driv- ing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
35
+ page_content=' In particular, the cellular-V2X (C-V2X) has been widely acknowledged as a key V2X communication standard due to its superior performance [1], [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
36
+ page_content=' Since V2X relies on wireless transmission, the information is easy to be eavesdropped, forged or tampered with, which imposes great challenges on the safety of vehicles, pedestrians and road infrastructures in the V2X communication network [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
37
+ page_content=' To deal with the security threats faced by wireless communications, there are usually two widely used authen- tication strategies: key-based cryptographic authentication and physical layer security-based non-cryptographic authentication [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
38
+ page_content=' The cryptographic authentication technology needs to © 2022 IEEE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
39
+ page_content=' Personal use of this material is permitted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
40
+ page_content=' Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
41
+ page_content=' distribute and manage abundant communication keys, which occupies computing resources and leads to additional overhead and delays.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
42
+ page_content=' Moreover, with the rapid development of comput- ing capability of the computers, especially the emergence of quantum computers, traditional cryptography technologies are more vulnerable to brute-force attacks [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
43
+ page_content=' On the contrary, the physical layer security based authentication has lower com- plexity and network overhead with lower latency compared to traditional cryptography-based authentication methods, and can achieve non-perceptual authentication without third-party facilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
44
+ page_content=' One typical example is the radio frequency fin- gerprint (RFF) based authentication, which fully exploits the hardware differences between any two devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
45
+ page_content=' Since the hardware characteristic of each device is unique and difficult to clone, the RFF based authentication can better resist the identity attacks and spoofing [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
46
+ page_content=' In literature, a variety of RFF extraction and identification methods have been advocated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
47
+ page_content=' Early works mainly focus on the characteristics of transient signals, such as instantaneous amplitude, frequency, and phase responses [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
48
+ page_content=' Concerning the steady-state signal, such as preamble signals, researchers consider extracting the RFF features including I/Q offset [8], power spectral density [9], differential constellation trace figure [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
49
+ page_content=' Furthermore, some universal RFF extraction meth- ods which are independent of data, channel or modulation modes have also been studied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
50
+ page_content=' Concretely, Shen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
51
+ page_content=' [11] constructed channel independent spectrogram and utilized data augmentation for RFF extraction and identification of Lora devices, which achieves good performance under different channel conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
52
+ page_content=' Alternatively, Yang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
53
+ page_content=' [12] used random data segments to extract the tap coefficients of the least mean square (LMS) adaptive filter as data independent RFF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
54
+ page_content=' Sun et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
55
+ page_content=' [13] verified the locality and inhomogeneity of the RFF distribution with the analysis in the cepstral domain, which yields modulation mode independent RFF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
56
+ page_content=' The aforementioned works mainly consider the RFF extrac- tion for low mobility and narrowband systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
57
+ page_content=' However, for the V2X system, the channel typically varies fast due to the high mobility vehicles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
58
+ page_content=' In addition, the V2X signal usually arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
59
+ page_content='01446v1 [eess.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
60
+ page_content='SP] 4 Jan 2023 Signal preprocessing RFF feature extraction and denoising Device identification Digital baseband signal Mixer up-conversion Transmitter RFF model RF front-end power amplifier DAC Baseband low-pass filter TX antenna OBU OBU RSU V2P V2I Receiver Channel estimation and equalization RFF identification and access system I/Q DC offset Non-linearity Gain imbalance and phase deviation Frequency response deviation Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
61
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
62
+ page_content=' LTE-V2X RFF extraction and identification system framework and RFF model at the transmitter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
63
+ page_content=' has a large bandwidth which is more vulnerable to multipath environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
64
+ page_content=' Therefore, the current RFF extraction methods for narrowband systems such as ZigBee and Lora cannot be directly applied for the V2X system because they do not take into account the impact of multipath and time-varying channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
65
+ page_content=' In this work, we propose a channel estimation based RFF extraction method for Long Term Evolution-V2X (LTE-V2X) systems, which, to the best of our knowledge, has not been investigated in existing works.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
66
+ page_content=' Specifically, we first estimate the experienced wireless channel using an improved least square (LS) channel estimation method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
67
+ page_content=' Then, we perform channel equalization based on the channel estimate to obtain channel dependent RFF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
68
+ page_content=' The RFF quality is further enhanced via conducting time-domain denoising.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
69
+ page_content=' It is worthwhile noting that the developed method eliminates the effect of the channel and the noise on the RFF with low implementation complex- ity, and can be extended to various broadband multi-carrier wireless communication systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
70
+ page_content=' This paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
71
+ page_content=' Section II introduces the system model and signal preprocessing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
72
+ page_content=' Section III presents the details of the proposed RFF extraction methodology based on wireless channel estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
73
+ page_content=' Section IV evaluates the performance of the proposed RFF extraction method through simulations and experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
74
+ page_content=' Section V concludes this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
75
+ page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
76
+ page_content=' SYSTEM MODEL AND SIGNAL PREPROCESSING A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
77
+ page_content=' System Model Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
78
+ page_content=' 1 demonstrates the framework of the considered LTE- V2X RFF extraction and identification system together with the RFF model at the transmitter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
79
+ page_content=' More concretely, one V2X terminal, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
80
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
81
+ page_content=', on board unit (OBU) or road side unit (RSU), first transmits data to other devices, where the transmitted signal includes the RFF of the transmitter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
82
+ page_content=' Then, the receiver preprocesses the received signal which consists of converting the RF signal to the baseband signal and performing time- frequency synchronization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
83
+ page_content=' Subsequently, the RFF features are extracted based on the synchronized signal, where the effects of the wireless channel and the noise on the RFF need to be mitigated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
84
+ page_content=' Finally, the device identification is performed using the extracted RFF features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
85
+ page_content=' It is necessary to note that the considered RFF refers to all the characteristics of the circuits at the transmitter, which, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
86
+ page_content=' 1, include the I/Q DC offsets of the digital-to- analog converter (DAC), the frequency response deviation of the filter, the gain imbalance and the carrier phase quadrature deviation of the mixer, and the non-linearity of the power amplifier [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
87
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
88
+ page_content=' LTE-V2X PSBCH We adopt the physical sidelink broadcast channel (PSBCH) in LTE-V2X systems for RFF extraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
89
+ page_content=' According to [15], PSBCH is transmitted every 160 ms occupying the central 6 PSBCH PSBCH PSSS PSSS DMRS PSBCH DMRS DMRS PSBCH PSBCH PSBCH SSSS SSSS GUARD 1 2 3 4 5 6 7 8 9 10 11 12 13 14 time 1 ms frequency 6 RBs Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
90
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
91
+ page_content=' LTE-V2X PSBCH format.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
92
+ page_content=' resource blocks (RBs), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
93
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
94
+ page_content=', 72 subcarriers and 14 single-carrier frequency division multiple access (SC-FDMA) symbols.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
95
+ page_content=' The detailed format of PSBCH is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
96
+ page_content=' 2, where primary sidelink synchronization signal (PSSS), secondary sidelink synchronization signal (SSSS), and demodulation reference signal (DMRS) all depend on the currently used sidelink synchronization signal (SLSS) ID.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
97
+ page_content=' Since the SLSS ID can be estimated [15], we can readily obtain ideal PSSS, SSSS, and DMRS at the receiver which are used for extracting transmitter RFF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
98
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
99
+ page_content=' Signal Preprocessing In order to ensure the stability of the extracted RFF, the signal preprocessing procedure includes time synchronization and carrier frequency offset (CFO) estimation and compensa- tion after the received signal is down-converted from the RF band to the baseband.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
100
+ page_content=' The time synchronization is realized by utilizing two identi- cal training symbols, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
101
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
102
+ page_content=', two repeated PSSS or SSSS symbols in LTE-V2X PSBCH, and the cross-correlation between the received signal r(n) and the training signal x(n) as P(d)= N−1 � n=0 |r(n+d)x∗(n)|2+ N−1 � n=0 |r(n+d+N +NCP )x∗(n)|2 , (1) where N = 2048 for LTE-V2X systems and NCP denotes the length of the cyclic prefix (CP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
103
+ page_content=' When P(d) exceeds a given threshold PTH and reaches the maximum, we obtain the estimated starting position of the training symbol [16], which is expressed by ˆd = arg max d∈{d|P (d)>PTH} P(d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
104
+ page_content=' (2) Afterwards,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
105
+ page_content=' the CFO is estimated by performing auto- correlation between adjacent two identical PSSS symbols and two identical SSSS symbols [17],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
106
+ page_content=' which is expressed as ˆε = 1 2π(N +NCP )angle �N−1 � n=0 [r(n+ ˆd)r∗(n+ ˆd+N +NCP )] + N−1 � n=0 [r(n+∆n+ ˆd)r∗(n+∆n+ ˆd+N +NCP )] � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
107
+ page_content=' (3) where angle{·} returns the phase angle of the input complex number and ∆n represents the number of the sampling points (a) initial time domain channel esti- mate h5(n) (b) windowed time domain channel estimate ˆh5(n) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
108
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
109
+ page_content=' The initial and windowed time domain channel estimates of the DMRS symbol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
110
+ page_content=' between the first PSSS and the first SSSS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
111
+ page_content=' Accordingly, we obtain the CFO compensated signal by y(n) = ˜r(n)e−j2πnˆε, (4) where ˜r(n) denotes the time synchronized signal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
112
+ page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
113
+ page_content=' PROPOSED RFF EXTRACTION METHOD In this section, we propose a novel PSBCH based RFF ex- traction method for LTE-V2X systems, which mainly includes channel estimation, channel equalization, and RFF denoising.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
114
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
115
+ page_content=' Channel Estimation We adopt the improved LS algorithm [18] for channel estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
116
+ page_content=' The main idea of the algorithm is to obtain the initial frequency domain channel estimate through the LS algorithm, which is then transformed into the time domain via inverse discrete Fourier transform (IDFT).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
117
+ page_content=' Afterwards, we perform time-domain windowing to exclude the noise and the RFF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
118
+ page_content=' The resultant signal is finally transformed into the frequency domain via discrete Fourier transform (DFT).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
119
+ page_content=' The detailed steps of channel estimation for the PSBCH subframe are described as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
120
+ page_content=' Denote the i-th time-domain SC-FDMA symbol of the received PSBCH after preprocessing and CP removal by yi(n), which carries RFF information and channel information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
121
+ page_content=' Then, we transform the time-domain received signals corresponding to the PSSS, the SSSS, and the DMRS symbols into the frequency domain by performing DFT, which is expressed as Yi(k) = DFTN{yi(n)}, 0 ≤ k ≤ N − 1, (5) where DFTN{·} denotes the N-point DFT and i = 2, 3, 5, 7, 10, 12, 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
122
+ page_content=' Denote the frequency domain received signal cor- responding to the effective bandwidth occupied by the PSSS, the SSSS, and the DMRS as ÙYi(k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
123
+ page_content=' Then, the initial frequency domain channel estimate of the i-th symbol ˆHi(k) containing the RFF and the noise is calculated by ˆHi(k) = ÙYi(k) Ù Xi(k) , k ∈ Ni, (6) where Ù Xi(k) denotes the PSSS, the SSSS, or the DMRS, and Ni is defined by Ni = ®[5, 66], i = 2, 3, 12, 13 [0, 71], i = 5, 7, 10 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
124
+ page_content=' (7) Subsequently, based on ˆHi(k), we obtain the initial time domain channel estimate by ˆhi(n) = IDFTNi{ ˆHi(k)}, n ∈ Ni, (8) where IDFTNi{·} denotes the Ni-point IDFT and Ni is defined by Ni = ®62, i = 2, 3, 12, 13 72, i = 5, 7, 10 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
125
+ page_content=' (9) Since the channel impulse response is concentrated in a few time domain samples while the noise and the RFF are distributed over the entire time domain, we can apply an appropriate window on ˆhi(n) to obtain an improved time domain channel estimate by ˘hi(n) = ˆhi(n)wi(n), n ∈ Ni, (10) where wi(n) denotes the window function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
126
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
127
+ page_content=' 3 illustrates the windowing operation, where a rectangular window is used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
128
+ page_content=' Since most noises and RFFs are removed by the windowing operation, the resultant channel estimate becomes more accu- rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
129
+ page_content=' After obtaining ˘hi(n), we further acquire the corresponding frequency domain channel estimate as ˘Hi(k) = DFTNi{˘hi(n)}, k ∈ Ni, (11) Considering the fact that the channels experienced by adjacent symbols are approximately identical, especially when the vehicle speed is not very high, we can further average adjacent ˘Hi(k)’s to suppress the noise, thus improving the channel estimation accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
130
+ page_content=' For instance, if the channel variation in one subframe is negligible, the ultimate frequency domain channel estimate can be calculated by ˜H(k)= � � � � � � � ˘HPSSS(k) + ˘HDMRS(k) + ˘HSSSS(k) 7 , 5 ≤ k ≤ 66 ˘HDMRS(k) 3 , 0 ≤ k ≤ 71 , (12) where ˘HPSSS(k) = ˘H2(k) + ˘H3(k), (13) ˘HDMRS(k) = ˘H5(k) + ˘H7(k) + ˘H10(k), (14) ˘HSSSS(k) = ˘H12(k) + ˘H13(k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
131
+ page_content=' (15) B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
132
+ page_content=' Channel Equalization After acquiring the channel estimate ˜H(k), we can perform channel equalization to remove the channel information and achieve the initial RFF features Ri(k) by Ri(k) = ÙYi(k) ˜H(k) , k ∈ Ni.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
133
+ page_content=' (16) Note that the above channel equalization will not lead to a loss of RFF information since most RFFs have been removed by the windowing operation during the channel estimation stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
134
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
135
+ page_content=' RFF Denoising According to (16), the initial RFF feature is still affected by the noise in ÙYi(k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
136
+ page_content=' To alleviate the impact of noise on the extracted RFF, we further average the initial RFFs corresponding to the same data sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
137
+ page_content=' Specifically, the denoised RFFs for the PSSS, the DMRS, and the SSSS are given by RPSSS(k) = R2(k) + R3(k) 2 , 5 ≤ k ≤ 66, (17) RDMRS(k)= � � � � � R5(k) + R7(k) + R10(k) 3 , N SL ID mod 2=0 R5(k) + R10(k) 2 , N SL ID mod 2=1 , 0 ≤ k ≤ 71, (18) RSSSS(k) = R12(k) + R13(k) 2 , 5 ≤ k ≤ 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
138
+ page_content=' (19) Note that the DMRS sequence on the 7th symbol differs from those on the 5th and 10th symbols when the SLSS ID N SL ID is odd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
139
+ page_content=' Hence, for this case, we only calculate the mean of R5(k) and R10(k) which have the same data sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
140
+ page_content=' Finally, we obtain ultimate RFF features R(k) as R(k) = ®RDMRS(k), 0 ≤ k ≤ 4, 67 ≤ k ≤ 71 [RPSSS(k), RDMRS(k), RSSSS(k)] , 5 ≤ k ≤ 66 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
141
+ page_content=' (20) IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
142
+ page_content=' SIMULATION AND EXPERIMENT RESULTS In the experiment, we employ 10 simulated LTE-V2X terminals with different RFF parameters and 6 actual LTE- V2X modules to generate PSBCH subframes, respectively, and evaluate the classification performance of different devices based on our proposed RFF extraction scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
143
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
144
+ page_content=' Simulation Verification For the simulation, we set different RFF parameters for 10 terminals, including the I/Q DC offsets, the baseband low-pass filter coefficients, the gain imbalance, the phase quadrature deviation, and the RF front-end power amplifier coefficients, which are specifically shown in Table I, to ensure the modu- lation domain error vector magnitude (EVM) is within 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
145
+ page_content='5% [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
146
+ page_content=' Next, the PSBCH signals carrying the RFFs generated by the 10 terminals pass through the simulated extended typical urban (ETU) multipath channel [20], where the vehicle speed ranges from 0 to 120 km/h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
147
+ page_content=' Moreover, the SNR ranges from 0 to 30 dB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
148
+ page_content=' Then, we conduct classification experiments on 10 terminals using random forest algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
149
+ page_content=' The 700 received PSBCH subframes of each terminal constitute the training set, where the SNR is 30 dB and the vehicle speed is 30 km/h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
150
+ page_content=' The test set consists of 300 other subframes from each terminal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
151
+ page_content=' TABLE I RFF PARAMETERS OF 10 SIMULATED LTE-V2X TERMINALS Terminal index DC offset Filter coefficients Gain imbalance Phase deviation Power amplifier coefficient 1 DI=0, DQ=0 hI=[1 0], hQ=[1 0] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
152
+ page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
153
+ page_content='1 [1 0 0] 2 DI=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
154
+ page_content='01, DQ=0 hI=[1 0], hQ=[1 0] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
155
+ page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
156
+ page_content='01 [1 0 0] 3 DI=0, DQ=-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
157
+ page_content='01 hI=[1 0], hQ=[1 0] 0 0 [1 0 0] 4 DI=-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
158
+ page_content='005, DQ=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
159
+ page_content='005 hI=[1 0], hQ=[1 0] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
160
+ page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
161
+ page_content='01 [1 0 0] 5 DI=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
162
+ page_content='005, DQ=-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
163
+ page_content='005 hI=[1 0], hQ=[1 0] 0 0 [1 0 0] 6 DI=0, DQ=0 hI=[1 0], hQ=[1 0] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
164
+ page_content='05 0 [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
165
+ page_content='9+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
166
+ page_content='15j 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
167
+ page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
168
+ page_content='1-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
169
+ page_content='15j] 7 DI=0, DQ=0 hI=[1 0], hQ=[1 0] 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
170
+ page_content='05 [1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
171
+ page_content='15 -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
172
+ page_content='2 0] 8 DI=0, DQ=0 hI=[0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
173
+ page_content='825 0], hQ=[1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
174
+ page_content='175 0] 0 0 [1 0 0] 9 DI=0, DQ=0 hI=[1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
175
+ page_content='175], hQ=[1 -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
176
+ page_content='175] 0 0 [1 0 0] 10 DI=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
177
+ page_content='005, DQ=0 hI=[0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
178
+ page_content='95 0], hQ=[1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
179
+ page_content='05] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
180
+ page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
181
+ page_content='05 [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
182
+ page_content='95-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
183
+ page_content='05j 0 0] Accuracy (%) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
184
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
185
+ page_content=' Identification accuracy of 10 simulated LTE-V2X terminals based on the proposed RFF extraction method under different SNRs and different vehicle speeds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
186
+ page_content=' The identification accuracy of the 10 terminals under different SNRs and different vehicle speeds is depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
187
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
188
+ page_content=' It can be found that the vehicle speed has little effect on the RFF identification accuracy rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
189
+ page_content=' When the SNR exceeds 10 dB, the accuracy always remains above 97% regardless of the speed, while the accuracy decreases significantly when the SNR drops below 10 dB mainly because we only use one PSBCH subframe for RFF extraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
190
+ page_content=' It reveals that the proposed RFF extraction method has excellent classification performance under medium and high SNRs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
191
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
192
+ page_content=' 5 compares the RFF identification performances of the methods with and without channel equalization, where the SNR is 30 dB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
193
+ page_content=' When the speed increases from 0 to 120 km/h, there is no obvious loss in the accuracy rate for the channel equalization based method, which always remains over 99%, while the identification accuracy without channel equalization falls rapidly especially at high speeds, which indicates that our proposed method based on channel estimation can effectively mitigate the impact of wireless channels on the RFF extraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
194
+ page_content=' Accuracy (%) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
195
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
196
+ page_content=' Comparison of the identification accuracy of 10 simulated LTE-V2X terminals with and without channel equalization (SNR = 30 dB).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
197
+ page_content=' (a) (b) USRP B205 LTE-V2X module GPS Receiver Transmitter GPS Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
198
+ page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
199
+ page_content=' Experiment setup: (a) receiving device (USRP B205);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
200
+ page_content=' (b) transmitting device (LTE-V2X module).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
201
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
202
+ page_content=' Experiment Verification For the experiment, we use 6 LTE-V2X modules to transmit PSBCH subframes and utilize USRP B205 to receive the signals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
203
+ page_content=' The experiment setup is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
204
+ page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
205
+ page_content=' First, we collect 400 PSBCH subframes for each module as training set TABLE II RFF IDENTIFICATION ACCURACY OF 6 LTE-V2X MODULES UNDER DIFFERENT SPEEDS Device Accuracy Speed 0 km/h 10 km/h 20 km/h 30 km/h Module 1 92% 93% 90% 91% Module 2 69% 71% 69% 68% Module 3 92% 90% 93% 93% Module 4 100% 100% 100% 97% Module 5 100% 100% 100% 100% Module 6 100% 100% 100% 100% Average 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
206
+ page_content='2% 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
207
+ page_content='3% 92% 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
208
+ page_content='5% under static state and low-speed moving state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
209
+ page_content=' Subsequently, 100 other subframes are captured from each module as test set, where the speed ranges from 10 to 30 km/h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
210
+ page_content=' The classification accuracy of the 6 LTE-V2X modules are shown in Table II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
211
+ page_content=' It can be seen that the average accuracy exceeds 90%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
212
+ page_content=' Moreover, the accuracy rate does not drop significantly after the speed increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
213
+ page_content=' Note that modules 1 to 4 belong to the same type with very similar RFF features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
214
+ page_content=' Hence, the corresponding classification accuracy is relatively low.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
215
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
216
+ page_content=' CONCLUSION In this paper, we proposed a novel RFF extraction method for LTE-V2X systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
217
+ page_content=' Focusing on the PSSS, the SSSS, and the DMRS of PSBCH, we successfully obtained highly distinguishable RFF features by performing channel estima- tion, channel equalization, and RFF denoising.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
218
+ page_content=' As verified via both simulations and experiments, our method displays robust performance under challenging time-varying and mul- tipath channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
219
+ page_content=' The proposed method can also be applied to any broadband multi-carrier communication systems that have fixed sequences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
220
+ page_content=' In the future work, more terminals can be tested in practical high mobility channel environments to further verify the effectiveness of this method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
221
+ page_content=' REFERENCES [1] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
222
+ page_content=' Gyawali, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
223
+ page_content=' Xu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
224
+ page_content=' Qian, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
225
+ page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
226
+ page_content=' Hu, “Challenges and solutions for cellular based V2X communications,” IEEE Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
227
+ page_content=' Surveys Tuts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
228
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
229
+ page_content=' 23, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
230
+ page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
231
+ page_content=' 222–255, 1st Quart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
232
+ page_content=', 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
233
+ page_content=' [2] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
234
+ page_content=' Anwar, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
235
+ page_content=' Franchi, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
236
+ page_content=' Fettweis, “Physical layer evaluation of V2X communications technologies: 5G NR-V2X, LTE-V2X, IEEE 802.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
237
+ page_content='11bd, and IEEE 802.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
238
+ page_content='11p,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
239
+ page_content=' IEEE 90th Veh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
240
+ page_content=' Technol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
241
+ page_content=' Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
242
+ page_content=' (VTC-Fall), Honolulu, HI, USA, Sept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
243
+ page_content=' 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
244
+ page_content=' 1–7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
245
+ page_content=' [3] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
246
+ page_content=' Wang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
247
+ page_content=' Li, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
248
+ page_content='-G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
249
+ page_content=' Xia, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
250
+ page_content=' Shi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
251
+ page_content=' Si, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
252
+ page_content=' Zou, “Physical layer security enhancement using artificial noise in cellular vehicle- to-everything (C-V2X) networks,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
253
+ page_content=' Veh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
254
+ page_content=' Technol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
255
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
256
+ page_content=' 69, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
257
+ page_content=' 12, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
258
+ page_content=' 15 253–15 268, Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
259
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
260
+ page_content=' [4] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
261
+ page_content=' Luo, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
262
+ page_content=' Liu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
263
+ page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
264
+ page_content=' Chen, and Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
265
+ page_content=' Guo, “Physical layer security in intelligently connected vehicle networks,” IEEE Netw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
266
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
267
+ page_content=' 34, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
268
+ page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
269
+ page_content=' 232–239, Sept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
270
+ page_content='/Oct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
271
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
272
+ page_content=' [5] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
273
+ page_content=' Mosca, “Cybersecurity in an era with quantum computers: Will we be ready?”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
274
+ page_content=' IEEE Security Privacy, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
275
+ page_content=' 16, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
276
+ page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
277
+ page_content=' 38–41, Sept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
278
+ page_content='/Oct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
279
+ page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
280
+ page_content=' [6] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
281
+ page_content=' Zeng, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
282
+ page_content=' Govindan, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
283
+ page_content=' Mohapatra, “Non-cryptographic authen- tication and identification in wireless networks [security and privacy in emerging wireless networks],” IEEE Wireless Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
284
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
285
+ page_content=' 17, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
286
+ page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
287
+ page_content=' 56–62, Oct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
288
+ page_content=' 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
289
+ page_content=' [7] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
290
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
291
+ page_content=' Ali, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
292
+ page_content=' Uzundurukan, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
293
+ page_content=' Kara, “Improvements on transient signal detection for RF fingerprinting,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
294
+ page_content=' 25th Signal Process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
295
+ page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
296
+ page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
297
+ page_content=' Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
298
+ page_content=' (SIU), Antalya, Turkey, May.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
299
+ page_content=' 2017, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
300
+ page_content=' 1–4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
301
+ page_content=' [8] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
302
+ page_content=' Shi and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
303
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
304
+ page_content=' Jensen, “Improved radiometric identification of wireless devices using MIMO transmission,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
305
+ page_content=' Inf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
306
+ page_content=' Forensics Security, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
307
+ page_content=' 6, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
308
+ page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
309
+ page_content=' 1346–1354, Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
310
+ page_content=' 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
311
+ page_content=' [9] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
312
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
313
+ page_content=' Suski II, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
314
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
315
+ page_content=' Temple, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
316
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
317
+ page_content=' Mendenhall, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
318
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
319
+ page_content=' Mills, “Using spectral fingerprints to improve wireless network security,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
320
+ page_content=' IEEE Global Telecommun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
321
+ page_content=' Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
322
+ page_content=' (GLOBECOM), New Orleans, LO, Nov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
323
+ page_content=' 2008, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
324
+ page_content=' 1–5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
325
+ page_content=' [10] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
326
+ page_content=' Peng, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
327
+ page_content=' Hu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
328
+ page_content=' Zhang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
329
+ page_content=' Jiang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
330
+ page_content=' Yu, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
331
+ page_content=' Yan, “Design of a hybrid RF fingerprint extraction and device classification scheme,” IEEE Internet Things J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
332
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
333
+ page_content=' 6, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
334
+ page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
335
+ page_content=' 349–360, Feb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
336
+ page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
337
+ page_content=' [11] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
338
+ page_content=' Shen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
339
+ page_content=' Zhang, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
340
+ page_content=' Marshall, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
341
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
342
+ page_content=' Cavallaro, “Towards scalable and channel-robust radio frequency fingerprint identification for LoRa,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
343
+ page_content=' Inf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
344
+ page_content=' Forensics Security, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
345
+ page_content=' 17, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
346
+ page_content=' 774–787, Feb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
347
+ page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
348
+ page_content=' [12] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
349
+ page_content=' Yang, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
350
+ page_content=' Hu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
351
+ page_content=' Xing, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
352
+ page_content=' Yu, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
353
+ page_content=' Zhang, “A data-independent radio frequency fingerprint extraction scheme,” IEEE Wireless Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
354
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
355
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
356
+ page_content=' 10, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
357
+ page_content=' 11, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
358
+ page_content=' 2524–2527, Nov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
359
+ page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
360
+ page_content=' [13] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
361
+ page_content=' Sun, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
362
+ page_content=' Wang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
363
+ page_content=' Huang, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
364
+ page_content=' Li, “Radio frequency fingerprint extraction based on feature inhomogeneity,” IEEE Internet Things J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
365
+ page_content=', early access, Feb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
366
+ page_content=' 25, 2022, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
367
+ page_content='1109/JIOT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
368
+ page_content='2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
369
+ page_content='3154595.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
370
+ page_content=' [14] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
371
+ page_content=' Wang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
372
+ page_content=' Sun, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
373
+ page_content=' Piao, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
374
+ page_content=' Zhu, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
375
+ page_content=' Ren, “Wireless physical- layer identification: Modeling and validation,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
376
+ page_content=' Inf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
377
+ page_content=' Forensics Security, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
378
+ page_content=' 11, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
379
+ page_content=' 9, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
380
+ page_content=' 2091–2106, Sept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
381
+ page_content=' 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
382
+ page_content=' [15] ETSI 3rd Generation Partnership Project, “LTE;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
383
+ page_content=' Evolved Universal Terrestrial Radio Access (E-UTRA);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
384
+ page_content=' Physical channels and modulation (Release 14),” Sophia Antipolis Cedex, Biarritz, France, 3GPP TS 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
385
+ page_content='211 version 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
386
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
387
+ page_content='0, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
388
+ page_content=' [16] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
389
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
390
+ page_content=' Schmidl and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
391
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
392
+ page_content=' Cox, “Robust frequency and timing synchro- nization for OFDM,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
393
+ page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
394
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
395
+ page_content=' 45, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
396
+ page_content=' 12, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
397
+ page_content=' 1613– 1621, Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
398
+ page_content=' 1997.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
399
+ page_content=' [17] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
400
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
401
+ page_content=' van de Beek and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
402
+ page_content=' Sandell, “ML estimation of time and frequency offset in OFDM systems,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
403
+ page_content=' Signal Process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
404
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
405
+ page_content=' 45, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
406
+ page_content=' 7, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
407
+ page_content=' 1800–1805, Jul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
408
+ page_content=' 1997.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
409
+ page_content=' [18] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
410
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
411
+ page_content=' van de Beek, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
412
+ page_content=' Edfors, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
413
+ page_content=' Sandell, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
414
+ page_content=' Wilson, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
415
+ page_content=' Borjesson, “On channel estimation in OFDM systems,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
416
+ page_content=' IEEE 45th Veh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
417
+ page_content=' Technol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
418
+ page_content=' Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
419
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
420
+ page_content=' 2, Chicago, IL, USA, Jul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
421
+ page_content=' 1995, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
422
+ page_content=' 815–819.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
423
+ page_content=' [19] ETSI 3rd Generation Partnership Project, “Technical Specification Group Radio Access Network;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
424
+ page_content=' Evolved Universal Terrestrial Radio Ac- cess (E-UTRA);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
425
+ page_content=' User Equipment (UE) radio transmission and reception (Release 9),” Sophia Antipolis Cedex, Biarritz, France, 3GPP TS 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
426
+ page_content='101 version 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
427
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
428
+ page_content='0, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
429
+ page_content=' [20] ETSI 3rd Generation Partnership Project, “Technical Specification Group Radio Access Network;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
430
+ page_content=' Evolved Universal Terrestrial Radio Access (E-UTRA);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
431
+ page_content=' Base Station (BS) radio transmission and reception (Release 14),” Sophia Antipolis Cedex, Biarritz, France, 3GPP TS 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
432
+ page_content='104 version 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
433
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
434
+ page_content='0, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NAzT4oBgHgl3EQfe_yo/content/2301.01446v1.pdf'}
2tAzT4oBgHgl3EQfDvpk/content/tmp_files/2301.00981v1.pdf.txt ADDED
@@ -0,0 +1,655 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Transfer Generative Adversarial Networks
2
+ (T-GAN)-based Terahertz Channel Modeling
3
+ Zhengdong Hu, Yuanbo Li, and Chong Han
4
+ Terahertz Wireless Communications (TWC) Laboratory, Shanghai Jiao Tong University, China.
5
+ Email: {huzhengdong, yuanbo.li, chong.han}@sjtu.edu.cn
6
+ Abstract—Terahertz (THz) communications are envisioned as
7
+ a promising technology for 6G and beyond wireless systems,
8
+ providing ultra-broad bandwidth and thus Terabit-per-second
9
+ (Tbps) data rates. However, as foundation of designing THz
10
+ communications, channel modeling and characterization are
11
+ fundamental to scrutinize the potential of the new spectrum.
12
+ Relied on physical measurements, traditional statistical channel
13
+ modeling methods suffer from the problem of low accuracy
14
+ with the assumed certain distributions and empirical parameters.
15
+ Moreover, it is time-consuming and expensive to acquire extensive
16
+ channel measurement in the THz band. In this paper, a transfer
17
+ generative adversarial network (T-GAN) based modeling method
18
+ is proposed in the THz band, which exploits the advantage of
19
+ GAN in modeling the complex distribution, and the benefit of
20
+ transfer learning in transferring the knowledge from a source
21
+ task to improve generalization about the target task with limited
22
+ training data. Specifically, to start with, the proposed GAN is pre-
23
+ trained using the simulated dataset, generated by the standard
24
+ channel model from 3rd generation partnerships project (3GPP).
25
+ Furthermore, by transferring the knowledge and fine-tuning the
26
+ pre-trained GAN, the T-GAN is developed by using the THz mea-
27
+ sured dataset with a small amount. Experimental results reveal
28
+ that the distribution of PDPs generated by the proposed T-GAN
29
+ method shows good agreement with measurement. Moreover, T-
30
+ GAN achieves good performance in channel modeling, with 9 dB
31
+ improved root-mean-square error (RMSE) and higher Structure
32
+ Similarity Index Measure (SSIM), compared with traditional
33
+ 3GPP method.
34
+ I. INTRODUCTION
35
+ With the exponential growth of the number of intercon-
36
+ nected devices, the sixth generation (6G) is expected to achieve
37
+ intelligent connections of everything, anywhere, anytime [1],
38
+ which demands Tbit/s wireless data rates. To fulfill the de-
39
+ mand, Terahertz (THz) communications gain increasing atten-
40
+ tion as a vital technology of 6G systems, thanks to the ultra-
41
+ broad bandwidth ranging from tens of GHz to hundreds of
42
+ GHz [2]. The THz band is promising to address the spectrum
43
+ scarcity and capacity limitations of current wireless systems,
44
+ and realize long-awaited applications, extending from wireless
45
+ cognition, localization/positioning, to integrated sensing and
46
+ communication [3].
47
+ To design reliable THz wireless systems, one fundamental
48
+ challenge lies in developing an accurate channel model to por-
49
+ tray the propagation phenomena. Due to the high frequencies,
50
+ new characteristics occur in the THz band, such as frequency-
51
+ selective absorption loss and rough-surface scattering. At-
52
+ tribute to these new characteristics, THz channel modeling is
53
+ required to capture these characteristics. However, traditional
54
+ statistical channel modeling methods suffer from the prob-
55
+ lem of low accuracy with the assumed certain distributions
56
+ and empirical parameters. For example, a geometric based
57
+ stochastic channel model (GSCM) assumes that the positions
58
+ of scatters follow certain statistical distributions, such as the
59
+ uniform distribution within a circle around the transmitters
60
+ and receivers [4]. However, the positions of scatters are hard
61
+ to characterize by certain statistical distributions, making the
62
+ GSCM not accurate for utilization in the THz band. Moreover,
63
+ it is time-consuming and costly to acquire extensive channel
64
+ measurement for THz channel modeling. To this end, an
65
+ accurate channel modeling method with limited measurement
66
+ data for the THz band is needed.
67
+ Recently, deep learning (DL) is popular and widely applied
68
+ in wireless communications, such as channel estimation [5],
69
+ [6] and channel state information (CSI) feedback [7]. Among
70
+ different kinds of DL methods, the generative adversarial
71
+ network (GAN) has the advantage of modeling complex dis-
72
+ tribution accurately without any statistical assumptions, based
73
+ on which GAN can be utilized to develop channel models. The
74
+ authors in [8] train GAN to approximate the probability distri-
75
+ bution functions (PDFs) of stochastic channel response. In [9],
76
+ GAN is applied to generate synthetic channel samples close
77
+ to the distribution of real channel samples. The researchers
78
+ in [10] model the channel with GAN through channel input-
79
+ output measurements. In [11], a model-driven GAN-based
80
+ channel modeling method is developed in intelligent reflecting
81
+ surface (IRS) aided communication system. These methods
82
+ achieve good performance in modeling the channel and prove
83
+ high consistency between the target channel distribution and
84
+ the generated channel distribution. However, the GAN based
85
+ channel modeling method has not been exploited in the THz
86
+ band. Moreover, it is a challenge to train GAN for channel
87
+ modeling with the scarce THz channel measurement dataset.
88
+ In this paper, a transfer GAN (T-GAN)-based THz channel
89
+ modeling method is proposed, which can learn the distribution
90
+ of power delay profile (PDP) of the THz channel. Moreover,
91
+ to tackle the challenge of limited channel measurement in
92
+ the THz band, the transfer learning technique is introduced
93
+ in T-GAN, which reduces the size requirement of channel
94
+ dataset for training and enhances the performance of channel
95
+ modeling, through transferring the knowledge stored in a pre-
96
+ trained model to a new model [12], [13]. Furthermore, the
97
+ performance of T-GAN in modeling the channel distribution
98
+ is validated by real measurements [14].
99
+ The contributions of this paper are listed as follows.
100
+ • We propose a T-GAN based THz channel modeling
101
+ arXiv:2301.00981v1 [eess.SP] 3 Jan 2023
102
+
103
+ method, in which a GAN is designed to capture the
104
+ distribution of PDPs of the THz channel, by training on
105
+ the dataset of PDP samples.
106
+ • To tackle the challenge of limited measurement data
107
+ for THz channel modeling, transfer learning is further
108
+ exploited by T-GAN, which reduces the size requirement
109
+ of training dataset, and enhances the performance of
110
+ GAN, through transferring the knowledge stored in a pre-
111
+ trained model to a new model.
112
+ The rest of the sections are organized as follows. Sec. II
113
+ details the proposed T-GAN based channel modeling method.
114
+ Sec. III demonstrates the performance of the proposed T-GAN
115
+ method. The paper is concluded in Sec. IV.
116
+ Notation: a is a scalar. a denotes a vector. A represents a
117
+ matrix. E{·} describes the expectation. ∇ denotes the gradient
118
+ operation. ∥·∥ represent the L2 norm. IN defines an N dimen-
119
+ sional identity matrix. N denotes the normal distribution.
120
+ II. TRANSFER GAN (T-GAN) BASED CHANNEL
121
+ MODELING
122
+ In this section, the channel modeling problem is first for-
123
+ mulated into a channel distribution learning problem. Then,
124
+ the proposed GAN in T-GAN method is elaborated. Finally,
125
+ T-GAN is presented.
126
+ A. Problem Formulation
127
+ The channel impulse response (CIR) can be represented as
128
+ h(τ) =
129
+ L−1
130
+
131
+ l=0
132
+ αlejφlδ(τ − τl),
133
+ (1)
134
+ where τl denotes the delay of the lth multi-path components
135
+ (MPCs), L denotes the number of MPC, αl refers to the path
136
+ gain and φl represents the phase of the corresponding MPC.
137
+ To characterize the channel, PDP is an important feature,
138
+ which indicates the dispersion of power over the time delay,
139
+ specifically, the received power with respect to the delay in
140
+ a multi-path channel. It can be extracted from the channel
141
+ impulse response by
142
+ P(τ) = |h(τ)|2,
143
+ (2)
144
+ Then, the channel modeling problem is exploited by learning
145
+ the distribution of PDPs denoted by pr, which is difficult to
146
+ be analytically represented. Instead, the distribution pr can be
147
+ captured by generating fake PDP samples with distribution pg,
148
+ such that the generated distribution pg of PDPs can match the
149
+ actual distribution pr.
150
+ B. Proposed GAN
151
+ The GAN can be utilized to learn the distribution of
152
+ PDPs denoted by pr, with the framework depicted in Fig 1.
153
+ The GAN consists of two sub-networks, namely, generator
154
+ and discriminator. The generator is aimed at generating fake
155
+ samples G(z) to fool the discriminator, in which z is the noise
156
+ sample, by mapping the input noise distribution pz(z) to the
157
+ generated distribution pg = p(G(z)). The discriminator tries to
158
+ Fig. 1. Framework of GAN.
159
+ distinguish between real samples x from pr and fake samples
160
+ G(z) from pg, and the output of the discriminator D(x) and
161
+ D(G(z)) can be treated as the probability of being a real
162
+ sample. The two networks are trained in an adversarial manner,
163
+ which can be considered as a two-player zero-sum minimax
164
+ game. Specifically, the training objective can be represented
165
+ by
166
+ min
167
+ G max
168
+ D Ex∼pr[log D(x)] + Ez∼pz[log(1 − D(G(z)))], (3)
169
+ where the generator minimizes the probability (1 − D(G(z))
170
+ that the generated sample is detected as fake by the dis-
171
+ criminator, while the discriminator maximizes this probability.
172
+ Therefore, the generator and discriminator compete against
173
+ each other with the opposite objectives in the training process.
174
+ Through the adversarial training, the Nash equilibrium can
175
+ be achieved, such that the generator and discriminator cannot
176
+ improve their objectives by changing only their own network.
177
+ Moreover, the global optimum of the training objective can be
178
+ achieved in the equilibrium when pg = pr. However, training
179
+ with the objective function in (3) is unstable, since the training
180
+ objective is potentially not continuous with respect to the
181
+ generator’s parameters [15]. Therefore, the improved version
182
+ of GAN, namely, Wasserstein GAN with gradient penalty
183
+ (WGAN-GP) [15] is adopted. The modified objective function
184
+ is expressed as
185
+ min
186
+ G max
187
+ D Ex∼pr[D(x)]+Ez∼pz[(1 − D(G(z)))]
188
+ +λE˜x[(∥∇˜xD(˜x)∥ − 1)2)],
189
+ (4)
190
+ where the last term is the gradient penalty term to enforce
191
+ Lipschitz constraint that the gradient of the GAN network
192
+ is upper-bounded by a maximum value, the symbol ˜x is the
193
+ uniformly sampled point between the points of x and G(z).
194
+ Moreover, the parameter λ is the penalty coefficient.
195
+ After introducing the framework of GAN, the detailed
196
+ architecture of proposed GAN network is presented. The
197
+ structures of generator G and discriminator D are depicted in
198
+ Fig. 2, where the number in the bracket denotes the dimension.
199
+ The input to the generator is a noise vector z with dimension
200
+ nz = 100, which is sampled from the probability density
201
+ function N(0, σ2Inz). The generator consists of five dense
202
+ layers, and the numbers of neurons in the dense layers are
203
+ 128, 128, 128, 128, 401, respectively. It is worth noting that
204
+ the size of the output layer is equal to the size of PDP. The
205
+
206
+ Fig. 2. Structure of generator and discriminator.
207
+ activation function of the first four dense layers is LeakyReLU
208
+ function, which can speed up the convergence and avoid the
209
+ gradient vanishing problem. The formula of the LeakyReLU
210
+ function is expressed as
211
+ f(x) =
212
+
213
+ x,
214
+ if x ≥ 0
215
+ αx,
216
+ if x < 0 ,
217
+ (5)
218
+ where α is the slope coefficient when the value of neuron x is
219
+ negative. In addition to the LeakyReLU function, a Sigmoid
220
+ function is utilized in the last layer, which maps the output to
221
+ the range of [0, 1]. The Sigmoid function is defined as
222
+ f(x) =
223
+ 1
224
+ 1 + e−x .
225
+ (6)
226
+ After going through the dense layers and activation functions
227
+ in the generator, the input noise vectors are transformed into
228
+ the generated samples. Then, the generated samples together
229
+ with real samples are passed to the discriminator.
230
+ The discriminator is designed to distinguish between gen-
231
+ erated samples and real samples. The numbers of neurons
232
+ for the five dense layers in the discriminator are 512, 256,
233
+ 128, 64, 1, respectively. The activation function chosen for
234
+ the first 4 layers is the LeakyReLU function introduced
235
+ before. The activation function for the output layer is linear
236
+ activation function, which is decided by the objective function
237
+ of WGAN-GP introduced in (4).
238
+ C. Proposed T-GAN
239
+ The framework for the proposed T-GAN is depicted in
240
+ Fig. 3, in which the transfer learning is conducted between the
241
+ measurement and 3GPP TR 38.901 model [16]. The measured
242
+ PDPs denote the PDPs extracted from measurement with
243
+ a small size, while the simulated PDPs refer to the PDPs
244
+ simulated by the 3GPP model, which is implemented with
245
+ the extracted statistics from measurement. Then, the proposed
246
+ GAN and T-GAN with the same network structure, are trained
247
+ on the simulated PDPs and measured PDPs, respectively, to
248
+ capture the distribution of PDPs. Since the size of measured
249
+ PDPs is quite small for the training of T-GAN, which can
250
+ cause the difficulty of converging or the over-fitting problem,
251
+ the transfer learning is exploited to tackle these problems.
252
+ Fig. 3. Framework for T-GAN.
253
+ To describe the transfer learning formally, a domain denoted
254
+ by D consists of a feature space X and a marginal probability
255
+ distribution P(X) defined on X = {x1, x2, · · · , xN} ∈ X,
256
+ where N is the number of feature vectors in X. As depicted
257
+ in Fig. 3, the target domain Dt and source domain Ds are
258
+ defined on measurement and 3GPP model, respectively. The
259
+ feature spaces for the two domains are both constructed by
260
+ PDPs, with different marginal probability distributions defined
261
+ on measured PDPs Xt and simulated PDPs Xs.
262
+ Moreover, given a domain D(X, P(X)), a task denoted by
263
+ T is defined by a label space L and a predictive function f(·),
264
+ and the predictive function is learned from the pairs (xn, ln)
265
+ with xn ∈ X and ln ∈ L. In the target domain Dt and source
266
+ domain Ds, the tasks are the same to capture the distribution
267
+ of PDPs, and the label space is L = {0, 1} representing
268
+ whether the PDP sample is generated by the proposed GAN
269
+ or from the training dataset. The T-GAN and GAN serve as
270
+ the predictive functions ft and fs. Then, transfer learning is
271
+ aimed at learning the function ft in target domain Dt with
272
+ the knowledge of Ts in source domain Ds, i.e., transferring
273
+ the knowledge stored in GAN trained on simulated PDPs to
274
+ T-GAN trained on the measured PDPs.
275
+ The method of fine-tuning [13] is adopted for the transfer
276
+ learning. The T-GAN is initialized with the weights of the
277
+ GAN trained on the simulated PDPs, and is then fine-tuned
278
+ on the measured PDPs with small size. It is worth noting that
279
+ both the generator and discriminator in the GAN are trans-
280
+ ferred, which can yield the better performance in generating
281
+ high quality samples and fast convergence, compared with
282
+ transferring only the generator or the discriminator [13].
283
+ With transfer learning, the performance of T-GAN can be
284
+ largely enhanced. Specifically, the channel statistics extracted
285
+ for 3GPP method are captured by the proposed GAN trained
286
+ on simulated PDPs, which are further transferred to T-GAN.
287
+ Moreover, T-GAN can learn the features of PDPs that are not
288
+ captured by 3GPP method, directly from measurement, which
289
+ further improves the performance of T-GAN in modeling the
290
+ distribution of PDPs.
291
+
292
+ Target Domain
293
+ Source DomainFig. 4. Measurement layout in the indoor corridor scenario [14].
294
+ III. EXPERIMENT AND PERFORMANCE EVALUATION
295
+ In this section, the experiment settings are elaborated.
296
+ Moreover, the performance of the T-GAN are evaluated by
297
+ comparing the generated distribution of PDPs with measure-
298
+ ment.
299
+ A. Dataset and Setup
300
+ The dataset is collected from the measurement campaign
301
+ in [14]. which is conducted in an indoor corridor scenario
302
+ at 306-321 GHz with 400 ns maximum delay, as depicted in
303
+ Fig. 4. With the measurement data, the PDPs can be extracted
304
+ to characterize the channel in the 21 receiver points. Since
305
+ the sample frequency interval is relatively small, as 2.5 MHz,
306
+ the measured PDPs are very long, including 6001 sample
307
+ points, which results in extraordinary computation and time
308
+ consumption to train the GANs. To address this problem,
309
+ we only use the measured channel transfer functions in the
310
+ frequency band from 314 to 315 GHz, based on which the
311
+ PDPs can be shorten to 401 sample points.
312
+ The PDPs of the 21 measured channels make up the mea-
313
+ sured dataset. In addition to the measured dataset, the dataset
314
+ of simulated PDPs can be generated by 3GPP model with
315
+ the extracted statistics from the measurement, which consists
316
+ of 10000 channels. Compared to the measured dataset, the
317
+ simulated dataset has larger data size with the channel statistics
318
+ embedded. Moreover, the PDPs in two datasets are normalized
319
+ into the range of [0, 1] by the min-max normalization method.
320
+ The training procedure of the GAN network is explained
321
+ in detail as follows. Firstly, the input noise vector z of size
322
+ 100 is generated by the multivariate normal distribution, which
323
+ can provide the capabilities to transform into the desired
324
+ distribution. The gradient penalty parameter λ in (4) is set
325
+ as 10, which works well in the training process. Moreover,
326
+ the stochastic gradient descent (SGD) optimizer is applied for
327
+ the generator network, and the adaptive moment estimation
328
+ (Adam) optimizer is chosen for the discriminator network. In
329
+ addition, the learning rates of the two optimizers are both set
330
+ as 0.0002 to stabilize the training.
331
+ All the experimental results are implemented on a PC with
332
+ AMD Ryzen Threadripper 3990X @ 2.19 GHz and four
333
+ Nvidia GeForce RTX 3090 Ti GPUs. In addition, the training
334
+ of GAN network is carried out in the Pytorch framework.
335
+ 0
336
+ 2000
337
+ 4000
338
+ 6000
339
+ 8000
340
+ 10000
341
+ Epoch
342
+ -3
343
+ -2
344
+ -1
345
+ 0
346
+ 1
347
+ 2
348
+ 3
349
+ 4
350
+ Loss
351
+ G_loss (simulated dataset)
352
+ D_loss(simulated dataset)
353
+ G_loss (measured dataset)
354
+ D_loss (measured dataset)
355
+ TG_loss (measured dataset)
356
+ TD_loss (measured dataset)
357
+ Fig. 5. Loss of the generator and discriminator in the GAN network.
358
+ B. Convergence
359
+ The proposed GAN is first trained on the simulated dataset,
360
+ and is then fine-tuned on the measured dataset with transfer
361
+ learning to develop the T-GAN. The numbers of epochs for
362
+ training the proposed GAN and T-GAN are both set as 10000.
363
+ A epoch is defined as a complete training cycle through the
364
+ training dataset, in which the generator and discriminator are
365
+ iteratively trained for once. To demonstrate the benefits of
366
+ transfer learning, the GAN is also trained on the measured
367
+ dataset without transfer learning for comparison. The loss of
368
+ generator denoted by G loss and loss of discriminator denoted
369
+ by D loss are shown in the Fig. 5, in which the TG loss and
370
+ TD loss correspond to the losses for T-GAN. For the simu-
371
+ lated dataset, it is clear that the generator and discriminator
372
+ reach the equilibrium in the end. For the measured dataset, the
373
+ loss of T-GAN is close to the loss for the simulated dataset
374
+ except for some small fluctuations. The fluctuations are due
375
+ to the small size of the measured dataset. By comparison, the
376
+ training is not stable for the GAN network without transfer
377
+ leaning. There is large fluctuation in the discriminator loss,
378
+ and the absolute values of G loss and D loss are quite
379
+ large compared to the losses for the simulated dataset. The
380
+ comparison demonstrates the benefits of the transfer learning
381
+ in the training of GAN network, which enables T-GAN to
382
+ converge with a small training dataset. Moreover, it takes
383
+ only 4000 epochs for T-GAN to converge, compared to 6000
384
+ epochs for GAN trained on the simulated dataset. The training
385
+ time of T-GAN on the measured dataset is also small, which
386
+ is only 114 seconds compared to 7 hours for GAN trained
387
+ on the simulated dataset. From these results, it is clear that
388
+ the transfer learning technique can improve the convergence
389
+ rate of T-GAN, and reduce the training overhead with the
390
+ knowledge from the pre-trained model.
391
+
392
+ nDoor -
393
+ Wooden wall
394
+ Glass wall
395
+ Concrete wall Metal pillars
396
+ a
397
+ g
398
+ ka
399
+ D
400
+ 业下
401
+ 不业
402
+ Rx 1 ~ Rx 15
403
+ Rx 16 ~ Rx 21
404
+ 0.86 m 1.26 m
405
+ N
406
+ TX
407
+ 0.93 m
408
+ 5.88 m
409
+ F
410
+ 5 m
411
+ 3
412
+ 19 m
413
+ S
414
+ 31 m
415
+ 58 m
416
+ D
417
+ buD
418
+ ID
419
+ C
420
+ 9000
421
+ 100
422
+ 200
423
+ 300
424
+ 400
425
+ [ns]
426
+ -85
427
+ -80
428
+ -75
429
+ -70
430
+ -65
431
+ -60
432
+ -55
433
+ -50
434
+ Power [dB]
435
+ Measurement
436
+ 3GPP
437
+ GAN
438
+ T-GAN
439
+ (a) Samples of PDP.
440
+ 0
441
+ 100
442
+ 200
443
+ 300
444
+ 400
445
+ [ns]
446
+ -82
447
+ -80
448
+ -78
449
+ -76
450
+ -74
451
+ -72
452
+ -70
453
+ -68
454
+ -66
455
+ Power [dB]
456
+ Measurement
457
+ 3GPP
458
+ GAN
459
+ T-GAN
460
+ (b) Average PDP.
461
+ Fig. 6. Plot of PDPs generated by measurement, 3GPP, the proposed GAN and T-GAN.
462
+ 0.3
463
+ 0.4
464
+ 0.5
465
+ 0.6
466
+ 0.7
467
+ 0.8
468
+ 0.9
469
+ SSIM
470
+ 0
471
+ 0.2
472
+ 0.4
473
+ 0.6
474
+ 0.8
475
+ 1
476
+ Culmultative probability function
477
+ 3GPP
478
+ GAN
479
+ T-GAN
480
+ Fig. 7. SSIM of PDP for 3GPP, the proposed GAN and T-GAN.
481
+ C. Power Delay Profile
482
+ In the experiment, the samples of PDP from measurement,
483
+ 3GPP method, the proposed GAN and T-GAN are compared
484
+ as in Fig. 6(a). It is clear that the PDPs are similar to each
485
+ other, which proves that the proposed GAN and T-GAN can
486
+ learn the features of PDPs. Moreover, it is observed that PDP
487
+ of measurement is more complex than PDP of 3GPP method.
488
+ There are more peaks and fluctuations in the temporal domain.
489
+ This shows that 3GPP cannot well capture the channel effects
490
+ embedded in PDP. Comparing PDPs generated by the proposed
491
+ GAN and T-GAN, the PDP generated by T-GAN is close to
492
+ measurement, while the PDP generated by the proposed GAN
493
+ is similar to the 3GPP approach. This is reasonable, since the
494
+ T-GAN can capture the features of PDP from measurement
495
+ 0
496
+ 20
497
+ 40
498
+ 60
499
+ 80
500
+ 100
501
+ 120
502
+ 140
503
+ Delay spread [ns]
504
+ 0
505
+ 0.2
506
+ 0.4
507
+ 0.6
508
+ 0.8
509
+ 1
510
+ Culmulative probability function
511
+ Measurement
512
+ 3GPP
513
+ GAN
514
+ T-GAN
515
+ Fig. 8. Delay spread for 3GPP, the proposed GAN and T-GAN.
516
+ through transfer learning, while the propose GAN can only
517
+ learn the features of the simulated PDPs by 3GPP method.
518
+ In addition, the average PDPs for these method are plotted
519
+ in Fig. 6(b). It is clear that T-GAN shows good agreement with
520
+ measurement, while 3GPP and GAN have large deviations
521
+ from measurement. The deviations can be measured by root-
522
+ mean-square error (RMSE), calculated as
523
+ RMSE =
524
+
525
+ 1
526
+
527
+
528
+ (Pm(i∆τ) − Pg(i∆τ))2,
529
+ (7)
530
+ where Nτ denotes the number of sampling points in PDP, i
531
+ indexs temporal sample points of PDPs, Nτ represents the
532
+ number of sampling points and ∆τ is the sampling interval.
533
+ Moreover, Pm(i∆τ) and Pg(i∆τ) are the average power in the
534
+
535
+ ith sample point of measured PDPs and generated PDPs, re-
536
+ spectively. The results of RMSE for 3GPP, the proposed GAN
537
+ and T-GAN are 4.29 dB, 4.12 dB and -4.82 dB, respectively.
538
+ The T-GAN improves the performance of RMSE by about 9
539
+ dB, compared with other methods, which demonstrates that the
540
+ T-GAN outperforms the other methods in terms of modeling
541
+ the average power of PDP. This is attributed to the powerful
542
+ capability of GAN in modeling the complex distribution, and
543
+ the benefits of transfer learning in better utilizing the small
544
+ measurement dataset.
545
+ Moreover, to measure the similarity quantitatively, Structure
546
+ Similarity Index Measure (SSIM) is introduced, which is
547
+ widely applied to evaluate the quality and similarity of images.
548
+ The range of SSIM is from 0 to 1, and the value of SSIM is
549
+ larger when the similarity between images is higher. The PDPs
550
+ generated by 3GPP method, the proposed GAN and T-GAN
551
+ are compared with measurement. The cumulative probability
552
+ functions (CDFs) of SSIM for these method are shown in
553
+ Fig. 7. It can be observed that the proposed T-GAN can
554
+ achieve higher SSIM values compared with other methods.
555
+ More than 40% of SSIM values are higher than 0.6 for T-
556
+ GAN, compared to only 20% for 3GPP and the proposed
557
+ GAN. This further demonstrates the better performance of T-
558
+ GAN in modeling the PDPs.
559
+ D. Delay Spread
560
+ Delay spread characterizes the power dispersion of multi-
561
+ path components in the temporal domain, which can be
562
+ calculated as the second central moment of PDPs, by
563
+ ¯τ =
564
+ �Nτ
565
+ i=0 i∆τP(i∆τ)∆τ
566
+ �Nτ
567
+ i=0 P(i∆τ)∆τ
568
+ ,
569
+ τrms =
570
+
571
+
572
+
573
+
574
+ �Nτ
575
+ i=0(i∆τ − ¯τ)2P(i∆τ)∆τ
576
+ �Nτ
577
+ i=0 P(i∆τ)∆τ
578
+ ,
579
+ (8)
580
+ where ¯τ denotes the mean delay weighted by the power,
581
+ τrms refers to the root-mean-square (RMS) delay spread, and
582
+ P(i∆τ) are the power in the ith sample point of PDPs.
583
+ Then, the CDF plot of delay spread for measurement, 3GPP,
584
+ the proposed GAN and T-GAN is depicted in Fig. 8. It can be
585
+ observed that the CDFs of delay spread for 3GPP, the proposed
586
+ GAN and T-GAN match the measurement well.
587
+ IV. CONCLUSION
588
+ In this paper, we proposed a T-GAN based THz channel
589
+ modeling method, which can capture the distribution of PDPs
590
+ for the THz channel with the designed GAN. Moreover, the
591
+ transfer learning is exploited in T-GAN to reduce the size
592
+ requirement of training dataset and enhance the performance
593
+ of GAN, through transferring the knowledge stored in the
594
+ pre-trained GAN on the simulated dataset to the target T-
595
+ GAN trained on limited measurement. Finally, we validate
596
+ the performance of T-GAN with measurement. T-GAN can
597
+ generate the PDPs that have good agreement with measure-
598
+ ment. Compared with conventional methods, T-GAN has better
599
+ performance in modeling the distribution of PDPs, with 9 dB
600
+ improved RMSE and higher SSIM. More than 40% of SSIM
601
+ values are higher than 0.6 for T-GAN, compared to only 20%
602
+ for 3GPP and the proposed GAN.
603
+ REFERENCES
604
+ [1] I. F. Akyildiz, C. Han, Z. Hu, S. Nie, and J. M. Jornet, “Terahertz band
605
+ communication: An old problem revisited and research directions for
606
+ the next decade (invited paper),” IEEE Trans. Commun., vol. 70, no. 6,
607
+ pp. 4250–4285, 2022.
608
+ [2] Z. Chen et al., “Terahertz wireless communications for 2030 and beyond:
609
+ A cutting-edge frontier,” IEEE Commun. Mag., vol. 59, no. 11, pp. 66–
610
+ 72, 2021.
611
+ [3] C. Han, Y. Wu, Z. Chen, Y. Chen, and G. Wang, “THz ISAC: A Physical-
612
+ Layer Perspective of Terahertz Integrated Sensing and Communication,”
613
+ arXiv preprint:2209.03145, 2022.
614
+ [4] P. Petrus, J. Reed, and T. Rappaport, “Geometrical-based statistical
615
+ macrocell channel model for mobile environments,” IEEE Trans. Com-
616
+ mun., vol. 50, no. 3, pp. 495–502, 2002.
617
+ [5] Y. Chen, L. Yan, and C. Han, “Hybrid spherical- and planar-wave
618
+ modeling and DCNN-powered estimation of Terahertz Ultra-Massive
619
+ MIMO channels,” IEEE Trans. Commun., vol. 69, no. 10, pp. 7063–
620
+ 7076, 2021.
621
+ [6] Y. Chen, L. Yan, C. Han, and M. Tao, “Millidegree-level direction-
622
+ of-arrival estimation and tracking for terahertz ultra-massive mimo
623
+ systems,” IEEE Trans. Wirel. Commun., vol. 21, no. 2, pp. 869–883,
624
+ 2022.
625
+ [7] T. Wang, C.-K. Wen, S. Jin, and G. Y. Li, “Deep learning-based CSI
626
+ feedback approach for time-varying massive MIMO channels,” IEEE
627
+ Wirel. Commun. Lett., vol. 8, no. 2, pp. 416–419, 2019.
628
+ [8] T. J. O’Shea, T. Roy, and N. West, “Approximating the void: Learning
629
+ stochastic channel models from observation with variational generative
630
+ adversarial networks,” in Proc. Int. Conf. Comput., Netw. Commun.,
631
+ 2019, pp. 681–686.
632
+ [9] H. Xiao, W. Tian, W. Liu, and J. Shen, “ChannelGan: Deep learning-
633
+ based channel modeling and generating,” IEEE Wirel. Commun. Lett.,
634
+ vol. 11, no. 3, pp. 650–654, 2022.
635
+ [10] T. Orekondy, A. Behboodi, and J. B. Soriaga, “MIMO-GAN: Generative
636
+ MIMO channel modeling,” in Proc. IEEE Int. Conf. Commun., 2022, pp.
637
+ 5322–5328.
638
+ [11] Y. Wei, M.-M. Zhao, and M.-J. Zhao, “Channel distribution learning:
639
+ Model-driven gan-based channel modeling for irs-aided wireless com-
640
+ munication,” IEEE Trans. Commun., vol. 70, no. 7, pp. 4482–4497,
641
+ 2022.
642
+ [12] N. V. Huynh and G. Y. Li, “Transfer learning for signal detection in
643
+ wireless networks,” IEEE Wirel. Commun. Lett., pp. 1–1, 2022.
644
+ [13] Y. Wang, C. Wu, L. Herranz, J. van de Weijer, A. Gonzalez-Garcia, and
645
+ B. Raducanu, “Transferring gans: generating images from limited data,”
646
+ in ECCV, 2018.
647
+ [14] Y. Li, Y. Wang, Y. Chen, Z. Yu, and C. Han, “Channel measurement
648
+ and analysis in an indoor corridor scenario at 300 ghz,” in Proc. IEEE
649
+ Int. Conf. Commun., 2022, pp. 2888–2893.
650
+ [15] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville,
651
+ “Improved training of Wasserstein GANs,” in Proc. Int. Conf. Neural
652
+ Inf. Process. Syst., 2017, p. 5769–5779.
653
+ [16] Study on Channel Model for Frequencies From 0.5 to 100 GHz (Release
654
+ 15), document TR 38.901, 3GPP, 2018.
655
+
2tAzT4oBgHgl3EQfDvpk/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,405 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf,len=404
2
+ page_content='Transfer Generative Adversarial Networks (T-GAN)-based Terahertz Channel Modeling Zhengdong Hu, Yuanbo Li, and Chong Han Terahertz Wireless Communications (TWC) Laboratory, Shanghai Jiao Tong University, China.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
3
+ page_content=' Email: {huzhengdong, yuanbo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
4
+ page_content='li, chong.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
5
+ page_content='han}@sjtu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
6
+ page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
7
+ page_content='cn Abstract—Terahertz (THz) communications are envisioned as a promising technology for 6G and beyond wireless systems, providing ultra-broad bandwidth and thus Terabit-per-second (Tbps) data rates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
8
+ page_content=' However, as foundation of designing THz communications, channel modeling and characterization are fundamental to scrutinize the potential of the new spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
9
+ page_content=' Relied on physical measurements, traditional statistical channel modeling methods suffer from the problem of low accuracy with the assumed certain distributions and empirical parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
10
+ page_content=' Moreover, it is time-consuming and expensive to acquire extensive channel measurement in the THz band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
11
+ page_content=' In this paper, a transfer generative adversarial network (T-GAN) based modeling method is proposed in the THz band, which exploits the advantage of GAN in modeling the complex distribution, and the benefit of transfer learning in transferring the knowledge from a source task to improve generalization about the target task with limited training data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
12
+ page_content=' Specifically, to start with, the proposed GAN is pre- trained using the simulated dataset, generated by the standard channel model from 3rd generation partnerships project (3GPP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
13
+ page_content=' Furthermore, by transferring the knowledge and fine-tuning the pre-trained GAN, the T-GAN is developed by using the THz mea- sured dataset with a small amount.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
14
+ page_content=' Experimental results reveal that the distribution of PDPs generated by the proposed T-GAN method shows good agreement with measurement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
15
+ page_content=' Moreover, T- GAN achieves good performance in channel modeling, with 9 dB improved root-mean-square error (RMSE) and higher Structure Similarity Index Measure (SSIM), compared with traditional 3GPP method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
16
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
17
+ page_content=' INTRODUCTION With the exponential growth of the number of intercon- nected devices, the sixth generation (6G) is expected to achieve intelligent connections of everything, anywhere, anytime [1], which demands Tbit/s wireless data rates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
18
+ page_content=' To fulfill the de- mand, Terahertz (THz) communications gain increasing atten- tion as a vital technology of 6G systems, thanks to the ultra- broad bandwidth ranging from tens of GHz to hundreds of GHz [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
19
+ page_content=' The THz band is promising to address the spectrum scarcity and capacity limitations of current wireless systems, and realize long-awaited applications, extending from wireless cognition, localization/positioning, to integrated sensing and communication [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
20
+ page_content=' To design reliable THz wireless systems, one fundamental challenge lies in developing an accurate channel model to por- tray the propagation phenomena.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
21
+ page_content=' Due to the high frequencies, new characteristics occur in the THz band, such as frequency- selective absorption loss and rough-surface scattering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
22
+ page_content=' At- tribute to these new characteristics, THz channel modeling is required to capture these characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
23
+ page_content=' However, traditional statistical channel modeling methods suffer from the prob- lem of low accuracy with the assumed certain distributions and empirical parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
24
+ page_content=' For example, a geometric based stochastic channel model (GSCM) assumes that the positions of scatters follow certain statistical distributions, such as the uniform distribution within a circle around the transmitters and receivers [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
25
+ page_content=' However, the positions of scatters are hard to characterize by certain statistical distributions, making the GSCM not accurate for utilization in the THz band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
26
+ page_content=' Moreover, it is time-consuming and costly to acquire extensive channel measurement for THz channel modeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
27
+ page_content=' To this end, an accurate channel modeling method with limited measurement data for the THz band is needed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
28
+ page_content=' Recently, deep learning (DL) is popular and widely applied in wireless communications, such as channel estimation [5], [6] and channel state information (CSI) feedback [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
29
+ page_content=' Among different kinds of DL methods, the generative adversarial network (GAN) has the advantage of modeling complex dis- tribution accurately without any statistical assumptions, based on which GAN can be utilized to develop channel models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
30
+ page_content=' The authors in [8] train GAN to approximate the probability distri- bution functions (PDFs) of stochastic channel response.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
31
+ page_content=' In [9], GAN is applied to generate synthetic channel samples close to the distribution of real channel samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
32
+ page_content=' The researchers in [10] model the channel with GAN through channel input- output measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
33
+ page_content=' In [11], a model-driven GAN-based channel modeling method is developed in intelligent reflecting surface (IRS) aided communication system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
34
+ page_content=' These methods achieve good performance in modeling the channel and prove high consistency between the target channel distribution and the generated channel distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
35
+ page_content=' However, the GAN based channel modeling method has not been exploited in the THz band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
36
+ page_content=' Moreover, it is a challenge to train GAN for channel modeling with the scarce THz channel measurement dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
37
+ page_content=' In this paper, a transfer GAN (T-GAN)-based THz channel modeling method is proposed, which can learn the distribution of power delay profile (PDP) of the THz channel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
38
+ page_content=' Moreover, to tackle the challenge of limited channel measurement in the THz band, the transfer learning technique is introduced in T-GAN, which reduces the size requirement of channel dataset for training and enhances the performance of channel modeling, through transferring the knowledge stored in a pre- trained model to a new model [12], [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
39
+ page_content=' Furthermore, the performance of T-GAN in modeling the channel distribution is validated by real measurements [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
40
+ page_content=' The contributions of this paper are listed as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
41
+ page_content=' We propose a T-GAN based THz channel modeling arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
42
+ page_content='00981v1 [eess.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
43
+ page_content='SP] 3 Jan 2023 method, in which a GAN is designed to capture the distribution of PDPs of the THz channel, by training on the dataset of PDP samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
44
+ page_content=' To tackle the challenge of limited measurement data for THz channel modeling, transfer learning is further exploited by T-GAN, which reduces the size requirement of training dataset, and enhances the performance of GAN, through transferring the knowledge stored in a pre- trained model to a new model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
45
+ page_content=' The rest of the sections are organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
46
+ page_content=' Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
47
+ page_content=' II details the proposed T-GAN based channel modeling method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
48
+ page_content=' Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
49
+ page_content=' III demonstrates the performance of the proposed T-GAN method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
50
+ page_content=' The paper is concluded in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
51
+ page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
52
+ page_content=' Notation: a is a scalar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
53
+ page_content=' a denotes a vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
54
+ page_content=' A represents a matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
55
+ page_content=' E{·} describes the expectation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
56
+ page_content=' ∇ denotes the gradient operation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
57
+ page_content=' ∥·∥ represent the L2 norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
58
+ page_content=' IN defines an N dimen- sional identity matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
59
+ page_content=' N denotes the normal distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
60
+ page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
61
+ page_content=' TRANSFER GAN (T-GAN) BASED CHANNEL MODELING In this section, the channel modeling problem is first for- mulated into a channel distribution learning problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
62
+ page_content=' Then, the proposed GAN in T-GAN method is elaborated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
63
+ page_content=' Finally, T-GAN is presented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
64
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
65
+ page_content=' Problem Formulation The channel impulse response (CIR) can be represented as h(τ) = L−1 � l=0 αlejφlδ(τ − τl), (1) where τl denotes the delay of the lth multi-path components (MPCs), L denotes the number of MPC, αl refers to the path gain and φl represents the phase of the corresponding MPC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
66
+ page_content=' To characterize the channel, PDP is an important feature, which indicates the dispersion of power over the time delay, specifically, the received power with respect to the delay in a multi-path channel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
67
+ page_content=' It can be extracted from the channel impulse response by P(τ) = |h(τ)|2, (2) Then, the channel modeling problem is exploited by learning the distribution of PDPs denoted by pr, which is difficult to be analytically represented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
68
+ page_content=' Instead, the distribution pr can be captured by generating fake PDP samples with distribution pg, such that the generated distribution pg of PDPs can match the actual distribution pr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
69
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
70
+ page_content=' Proposed GAN The GAN can be utilized to learn the distribution of PDPs denoted by pr, with the framework depicted in Fig 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
71
+ page_content=' The GAN consists of two sub-networks, namely, generator and discriminator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
72
+ page_content=' The generator is aimed at generating fake samples G(z) to fool the discriminator, in which z is the noise sample, by mapping the input noise distribution pz(z) to the generated distribution pg = p(G(z)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
73
+ page_content=' The discriminator tries to Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
74
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
75
+ page_content=' Framework of GAN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
76
+ page_content=' distinguish between real samples x from pr and fake samples G(z) from pg, and the output of the discriminator D(x) and D(G(z)) can be treated as the probability of being a real sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
77
+ page_content=' The two networks are trained in an adversarial manner, which can be considered as a two-player zero-sum minimax game.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
78
+ page_content=' Specifically, the training objective can be represented by min G max D Ex∼pr[log D(x)] + Ez∼pz[log(1 − D(G(z)))], (3) where the generator minimizes the probability (1 − D(G(z)) that the generated sample is detected as fake by the dis- criminator, while the discriminator maximizes this probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
79
+ page_content=' Therefore, the generator and discriminator compete against each other with the opposite objectives in the training process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
80
+ page_content=' Through the adversarial training, the Nash equilibrium can be achieved, such that the generator and discriminator cannot improve their objectives by changing only their own network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
81
+ page_content=' Moreover, the global optimum of the training objective can be achieved in the equilibrium when pg = pr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
82
+ page_content=' However, training with the objective function in (3) is unstable, since the training objective is potentially not continuous with respect to the generator’s parameters [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
83
+ page_content=' Therefore, the improved version of GAN, namely, Wasserstein GAN with gradient penalty (WGAN-GP) [15] is adopted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
84
+ page_content=' The modified objective function is expressed as min G max D Ex∼pr[D(x)]+Ez∼pz[(1 − D(G(z)))] +λE˜x[(∥∇˜xD(˜x)∥ − 1)2)], (4) where the last term is the gradient penalty term to enforce Lipschitz constraint that the gradient of the GAN network is upper-bounded by a maximum value, the symbol ˜x is the uniformly sampled point between the points of x and G(z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
85
+ page_content=' Moreover, the parameter λ is the penalty coefficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
86
+ page_content=' After introducing the framework of GAN, the detailed architecture of proposed GAN network is presented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
87
+ page_content=' The structures of generator G and discriminator D are depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
88
+ page_content=' 2, where the number in the bracket denotes the dimension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
89
+ page_content=' The input to the generator is a noise vector z with dimension nz = 100, which is sampled from the probability density function N(0, σ2Inz).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
90
+ page_content=' The generator consists of five dense layers, and the numbers of neurons in the dense layers are 128, 128, 128, 128, 401, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
91
+ page_content=' It is worth noting that the size of the output layer is equal to the size of PDP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
92
+ page_content=' The Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
93
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
94
+ page_content=' Structure of generator and discriminator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
95
+ page_content=' activation function of the first four dense layers is LeakyReLU function, which can speed up the convergence and avoid the gradient vanishing problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
96
+ page_content=' The formula of the LeakyReLU function is expressed as f(x) = � x, if x ≥ 0 αx, if x < 0 , (5) where α is the slope coefficient when the value of neuron x is negative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
97
+ page_content=' In addition to the LeakyReLU function, a Sigmoid function is utilized in the last layer, which maps the output to the range of [0, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
98
+ page_content=' The Sigmoid function is defined as f(x) = 1 1 + e−x .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
99
+ page_content=' (6) After going through the dense layers and activation functions in the generator, the input noise vectors are transformed into the generated samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
100
+ page_content=' Then, the generated samples together with real samples are passed to the discriminator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
101
+ page_content=' The discriminator is designed to distinguish between gen- erated samples and real samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
102
+ page_content=' The numbers of neurons for the five dense layers in the discriminator are 512, 256, 128, 64, 1, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
103
+ page_content=' The activation function chosen for the first 4 layers is the LeakyReLU function introduced before.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
104
+ page_content=' The activation function for the output layer is linear activation function, which is decided by the objective function of WGAN-GP introduced in (4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
105
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
106
+ page_content=' Proposed T-GAN The framework for the proposed T-GAN is depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
107
+ page_content=' 3, in which the transfer learning is conducted between the measurement and 3GPP TR 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
108
+ page_content='901 model [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
109
+ page_content=' The measured PDPs denote the PDPs extracted from measurement with a small size, while the simulated PDPs refer to the PDPs simulated by the 3GPP model, which is implemented with the extracted statistics from measurement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
110
+ page_content=' Then, the proposed GAN and T-GAN with the same network structure, are trained on the simulated PDPs and measured PDPs, respectively, to capture the distribution of PDPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
111
+ page_content=' Since the size of measured PDPs is quite small for the training of T-GAN, which can cause the difficulty of converging or the over-fitting problem, the transfer learning is exploited to tackle these problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
112
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
113
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
114
+ page_content=' Framework for T-GAN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
115
+ page_content=' To describe the transfer learning formally, a domain denoted by D consists of a feature space X and a marginal probability distribution P(X) defined on X = {x1, x2, · · · , xN} ∈ X, where N is the number of feature vectors in X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
116
+ page_content=' As depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
117
+ page_content=' 3, the target domain Dt and source domain Ds are defined on measurement and 3GPP model, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
118
+ page_content=' The feature spaces for the two domains are both constructed by PDPs, with different marginal probability distributions defined on measured PDPs Xt and simulated PDPs Xs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
119
+ page_content=' Moreover, given a domain D(X, P(X)), a task denoted by T is defined by a label space L and a predictive function f(·), and the predictive function is learned from the pairs (xn, ln) with xn ∈ X and ln ∈ L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
120
+ page_content=' In the target domain Dt and source domain Ds, the tasks are the same to capture the distribution of PDPs, and the label space is L = {0, 1} representing whether the PDP sample is generated by the proposed GAN or from the training dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
121
+ page_content=' The T-GAN and GAN serve as the predictive functions ft and fs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
122
+ page_content=' Then, transfer learning is aimed at learning the function ft in target domain Dt with the knowledge of Ts in source domain Ds, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
123
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
124
+ page_content=', transferring the knowledge stored in GAN trained on simulated PDPs to T-GAN trained on the measured PDPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
125
+ page_content=' The method of fine-tuning [13] is adopted for the transfer learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
126
+ page_content=' The T-GAN is initialized with the weights of the GAN trained on the simulated PDPs, and is then fine-tuned on the measured PDPs with small size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
127
+ page_content=' It is worth noting that both the generator and discriminator in the GAN are trans- ferred, which can yield the better performance in generating high quality samples and fast convergence, compared with transferring only the generator or the discriminator [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
128
+ page_content=' With transfer learning, the performance of T-GAN can be largely enhanced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
129
+ page_content=' Specifically, the channel statistics extracted for 3GPP method are captured by the proposed GAN trained on simulated PDPs, which are further transferred to T-GAN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
130
+ page_content=' Moreover, T-GAN can learn the features of PDPs that are not captured by 3GPP method, directly from measurement, which further improves the performance of T-GAN in modeling the distribution of PDPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
131
+ page_content=' Target Domain Source DomainFig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
132
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
133
+ page_content=' Measurement layout in the indoor corridor scenario [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
134
+ page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
135
+ page_content=' EXPERIMENT AND PERFORMANCE EVALUATION In this section, the experiment settings are elaborated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
136
+ page_content=' Moreover, the performance of the T-GAN are evaluated by comparing the generated distribution of PDPs with measure- ment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
137
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
138
+ page_content=' Dataset and Setup The dataset is collected from the measurement campaign in [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
139
+ page_content=' which is conducted in an indoor corridor scenario at 306-321 GHz with 400 ns maximum delay, as depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
140
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
141
+ page_content=' With the measurement data, the PDPs can be extracted to characterize the channel in the 21 receiver points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
142
+ page_content=' Since the sample frequency interval is relatively small, as 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
143
+ page_content='5 MHz, the measured PDPs are very long, including 6001 sample points, which results in extraordinary computation and time consumption to train the GANs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
144
+ page_content=' To address this problem, we only use the measured channel transfer functions in the frequency band from 314 to 315 GHz, based on which the PDPs can be shorten to 401 sample points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
145
+ page_content=' The PDPs of the 21 measured channels make up the mea- sured dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
146
+ page_content=' In addition to the measured dataset, the dataset of simulated PDPs can be generated by 3GPP model with the extracted statistics from the measurement, which consists of 10000 channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
147
+ page_content=' Compared to the measured dataset, the simulated dataset has larger data size with the channel statistics embedded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
148
+ page_content=' Moreover, the PDPs in two datasets are normalized into the range of [0, 1] by the min-max normalization method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
149
+ page_content=' The training procedure of the GAN network is explained in detail as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
150
+ page_content=' Firstly, the input noise vector z of size 100 is generated by the multivariate normal distribution, which can provide the capabilities to transform into the desired distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
151
+ page_content=' The gradient penalty parameter λ in (4) is set as 10, which works well in the training process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
152
+ page_content=' Moreover, the stochastic gradient descent (SGD) optimizer is applied for the generator network, and the adaptive moment estimation (Adam) optimizer is chosen for the discriminator network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
153
+ page_content=' In addition, the learning rates of the two optimizers are both set as 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
154
+ page_content='0002 to stabilize the training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
155
+ page_content=' All the experimental results are implemented on a PC with AMD Ryzen Threadripper 3990X @ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
156
+ page_content='19 GHz and four Nvidia GeForce RTX 3090 Ti GPUs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
157
+ page_content=' In addition, the training of GAN network is carried out in the Pytorch framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
158
+ page_content=' 0 2000 4000 6000 8000 10000 Epoch 3 2 1 0 1 2 3 4 Loss G_loss (simulated dataset) D_loss(simulated dataset) G_loss (measured dataset) D_loss (measured dataset) TG_loss (measured dataset) TD_loss (measured dataset) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
159
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
160
+ page_content=' Loss of the generator and discriminator in the GAN network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
161
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
162
+ page_content=' Convergence The proposed GAN is first trained on the simulated dataset, and is then fine-tuned on the measured dataset with transfer learning to develop the T-GAN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
163
+ page_content=' The numbers of epochs for training the proposed GAN and T-GAN are both set as 10000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
164
+ page_content=' A epoch is defined as a complete training cycle through the training dataset, in which the generator and discriminator are iteratively trained for once.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
165
+ page_content=' To demonstrate the benefits of transfer learning, the GAN is also trained on the measured dataset without transfer learning for comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
166
+ page_content=' The loss of generator denoted by G loss and loss of discriminator denoted by D loss are shown in the Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
167
+ page_content=' 5, in which the TG loss and TD loss correspond to the losses for T-GAN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
168
+ page_content=' For the simu- lated dataset, it is clear that the generator and discriminator reach the equilibrium in the end.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
169
+ page_content=' For the measured dataset, the loss of T-GAN is close to the loss for the simulated dataset except for some small fluctuations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
170
+ page_content=' The fluctuations are due to the small size of the measured dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
171
+ page_content=' By comparison, the training is not stable for the GAN network without transfer leaning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
172
+ page_content=' There is large fluctuation in the discriminator loss, and the absolute values of G loss and D loss are quite large compared to the losses for the simulated dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
173
+ page_content=' The comparison demonstrates the benefits of the transfer learning in the training of GAN network, which enables T-GAN to converge with a small training dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
174
+ page_content=' Moreover, it takes only 4000 epochs for T-GAN to converge, compared to 6000 epochs for GAN trained on the simulated dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
175
+ page_content=' The training time of T-GAN on the measured dataset is also small, which is only 114 seconds compared to 7 hours for GAN trained on the simulated dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
176
+ page_content=' From these results, it is clear that the transfer learning technique can improve the convergence rate of T-GAN, and reduce the training overhead with the knowledge from the pre-trained model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
177
+ page_content=' nDoor - Wooden wall Glass wall Concrete wall Metal pillars a g ka D 业下 不业 Rx 1 ~ Rx 15 Rx 16 ~ Rx 21 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
178
+ page_content='86 m 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
179
+ page_content='26 m N TX 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
180
+ page_content='93 m 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
181
+ page_content='88 m F 5 m 3 19 m S 31 m 58 m D buD ID C 9000 100 200 300 400 [ns] 85 80 75 70 65 60 55 50 Power [dB] Measurement 3GPP GAN T-GAN (a) Samples of PDP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
182
+ page_content=' 0 100 200 300 400 [ns] 82 80 78 76 74 72 70 68 66 Power [dB] Measurement 3GPP GAN T-GAN (b) Average PDP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
183
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
184
+ page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
185
+ page_content=' Plot of PDPs generated by measurement, 3GPP, the proposed GAN and T-GAN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
186
+ page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
187
+ page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
188
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
189
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
190
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
191
+ page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
192
+ page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
193
+ page_content='9 SSIM 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
194
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
195
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
196
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
197
+ page_content='8 1 Culmultative probability function 3GPP GAN T-GAN Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
198
+ page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
199
+ page_content=' SSIM of PDP for 3GPP, the proposed GAN and T-GAN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
200
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
201
+ page_content=' Power Delay Profile In the experiment, the samples of PDP from measurement, 3GPP method, the proposed GAN and T-GAN are compared as in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
202
+ page_content=' 6(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
203
+ page_content=' It is clear that the PDPs are similar to each other, which proves that the proposed GAN and T-GAN can learn the features of PDPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
204
+ page_content=' Moreover, it is observed that PDP of measurement is more complex than PDP of 3GPP method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
205
+ page_content=' There are more peaks and fluctuations in the temporal domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
206
+ page_content=' This shows that 3GPP cannot well capture the channel effects embedded in PDP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
207
+ page_content=' Comparing PDPs generated by the proposed GAN and T-GAN, the PDP generated by T-GAN is close to measurement, while the PDP generated by the proposed GAN is similar to the 3GPP approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
208
+ page_content=' This is reasonable, since the T-GAN can capture the features of PDP from measurement 0 20 40 60 80 100 120 140 Delay spread [ns] 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
209
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
210
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
211
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
212
+ page_content='8 1 Culmulative probability function Measurement 3GPP GAN T-GAN Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
213
+ page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
214
+ page_content=' Delay spread for 3GPP, the proposed GAN and T-GAN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
215
+ page_content=' through transfer learning, while the propose GAN can only learn the features of the simulated PDPs by 3GPP method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
216
+ page_content=' In addition, the average PDPs for these method are plotted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
217
+ page_content=' 6(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
218
+ page_content=' It is clear that T-GAN shows good agreement with measurement, while 3GPP and GAN have large deviations from measurement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
219
+ page_content=' The deviations can be measured by root- mean-square error (RMSE), calculated as RMSE = � 1 Nτ � (Pm(i∆τ) − Pg(i∆τ))2, (7) where Nτ denotes the number of sampling points in PDP, i indexs temporal sample points of PDPs, Nτ represents the number of sampling points and ∆τ is the sampling interval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
220
+ page_content=' Moreover, Pm(i∆τ) and Pg(i∆τ) are the average power in the ith sample point of measured PDPs and generated PDPs, re- spectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
221
+ page_content=' The results of RMSE for 3GPP, the proposed GAN and T-GAN are 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
222
+ page_content='29 dB, 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
223
+ page_content='12 dB and -4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
224
+ page_content='82 dB, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
225
+ page_content=' The T-GAN improves the performance of RMSE by about 9 dB, compared with other methods, which demonstrates that the T-GAN outperforms the other methods in terms of modeling the average power of PDP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
226
+ page_content=' This is attributed to the powerful capability of GAN in modeling the complex distribution, and the benefits of transfer learning in better utilizing the small measurement dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
227
+ page_content=' Moreover, to measure the similarity quantitatively, Structure Similarity Index Measure (SSIM) is introduced, which is widely applied to evaluate the quality and similarity of images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
228
+ page_content=' The range of SSIM is from 0 to 1, and the value of SSIM is larger when the similarity between images is higher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
229
+ page_content=' The PDPs generated by 3GPP method, the proposed GAN and T-GAN are compared with measurement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
230
+ page_content=' The cumulative probability functions (CDFs) of SSIM for these method are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
231
+ page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
232
+ page_content=' It can be observed that the proposed T-GAN can achieve higher SSIM values compared with other methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
233
+ page_content=' More than 40% of SSIM values are higher than 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
234
+ page_content='6 for T- GAN, compared to only 20% for 3GPP and the proposed GAN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
235
+ page_content=' This further demonstrates the better performance of T- GAN in modeling the PDPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
236
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
237
+ page_content=' Delay Spread Delay spread characterizes the power dispersion of multi- path components in the temporal domain, which can be calculated as the second central moment of PDPs, by ¯τ = �Nτ i=0 i∆τP(i∆τ)∆τ �Nτ i=0 P(i∆τ)∆τ , τrms = � � � � �Nτ i=0(i∆τ − ¯τ)2P(i∆τ)∆τ �Nτ i=0 P(i∆τ)∆τ , (8) where ¯τ denotes the mean delay weighted by the power, τrms refers to the root-mean-square (RMS) delay spread, and P(i∆τ) are the power in the ith sample point of PDPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
238
+ page_content=' Then, the CDF plot of delay spread for measurement, 3GPP, the proposed GAN and T-GAN is depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
239
+ page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
240
+ page_content=' It can be observed that the CDFs of delay spread for 3GPP, the proposed GAN and T-GAN match the measurement well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
241
+ page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
242
+ page_content=' CONCLUSION In this paper, we proposed a T-GAN based THz channel modeling method, which can capture the distribution of PDPs for the THz channel with the designed GAN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
243
+ page_content=' Moreover, the transfer learning is exploited in T-GAN to reduce the size requirement of training dataset and enhance the performance of GAN, through transferring the knowledge stored in the pre-trained GAN on the simulated dataset to the target T- GAN trained on limited measurement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
244
+ page_content=' Finally, we validate the performance of T-GAN with measurement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
245
+ page_content=' T-GAN can generate the PDPs that have good agreement with measure- ment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
246
+ page_content=' Compared with conventional methods, T-GAN has better performance in modeling the distribution of PDPs, with 9 dB improved RMSE and higher SSIM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
247
+ page_content=' More than 40% of SSIM values are higher than 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
248
+ page_content='6 for T-GAN, compared to only 20% for 3GPP and the proposed GAN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
249
+ page_content=' REFERENCES [1] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
250
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
251
+ page_content=' Akyildiz, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
252
+ page_content=' Han, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
253
+ page_content=' Hu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
254
+ page_content=' Nie, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
255
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
256
+ page_content=' Jornet, “Terahertz band communication: An old problem revisited and research directions for the next decade (invited paper),” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
257
+ page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
258
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
259
+ page_content=' 70, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
260
+ page_content=' 6, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
261
+ page_content=' 4250–4285, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
262
+ page_content=' [2] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
263
+ page_content=' Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
264
+ page_content=', “Terahertz wireless communications for 2030 and beyond: A cutting-edge frontier,” IEEE Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
265
+ page_content=' Mag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
266
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
267
+ page_content=' 59, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
268
+ page_content=' 11, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
269
+ page_content=' 66– 72, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
270
+ page_content=' [3] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
271
+ page_content=' Han, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
272
+ page_content=' Wu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
273
+ page_content=' Chen, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
274
+ page_content=' Chen, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
275
+ page_content=' Wang, “THz ISAC: A Physical- Layer Perspective of Terahertz Integrated Sensing and Communication,” arXiv preprint:2209.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
276
+ page_content='03145, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
277
+ page_content=' [4] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
278
+ page_content=' Petrus, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
279
+ page_content=' Reed, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
280
+ page_content=' Rappaport, “Geometrical-based statistical macrocell channel model for mobile environments,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
281
+ page_content=' Com- mun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
282
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
283
+ page_content=' 50, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
284
+ page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
285
+ page_content=' 495–502, 2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
286
+ page_content=' [5] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
287
+ page_content=' Chen, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
288
+ page_content=' Yan, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
289
+ page_content=' Han, “Hybrid spherical- and planar-wave modeling and DCNN-powered estimation of Terahertz Ultra-Massive MIMO channels,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
290
+ page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
291
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
292
+ page_content=' 69, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
293
+ page_content=' 10, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
294
+ page_content=' 7063– 7076, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
295
+ page_content=' [6] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
296
+ page_content=' Chen, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
297
+ page_content=' Yan, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
298
+ page_content=' Han, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
299
+ page_content=' Tao, “Millidegree-level direction- of-arrival estimation and tracking for terahertz ultra-massive mimo systems,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
300
+ page_content=' Wirel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
301
+ page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
302
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
303
+ page_content=' 21, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
304
+ page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
305
+ page_content=' 869–883, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
306
+ page_content=' [7] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
307
+ page_content=' Wang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
308
+ page_content='-K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
309
+ page_content=' Wen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
310
+ page_content=' Jin, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
311
+ page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
312
+ page_content=' Li, “Deep learning-based CSI feedback approach for time-varying massive MIMO channels,” IEEE Wirel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
313
+ page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
314
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
315
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
316
+ page_content=' 8, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
317
+ page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
318
+ page_content=' 416–419, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
319
+ page_content=' [8] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
320
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
321
+ page_content=' O’Shea, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
322
+ page_content=' Roy, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
323
+ page_content=' West, “Approximating the void: Learning stochastic channel models from observation with variational generative adversarial networks,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
324
+ page_content=' Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
325
+ page_content=' Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
326
+ page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
327
+ page_content=', Netw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
328
+ page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
329
+ page_content=', 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
330
+ page_content=' 681–686.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
331
+ page_content=' [9] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
332
+ page_content=' Xiao, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
333
+ page_content=' Tian, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
334
+ page_content=' Liu, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
335
+ page_content=' Shen, “ChannelGan: Deep learning- based channel modeling and generating,” IEEE Wirel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
336
+ page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
337
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
338
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
339
+ page_content=' 11, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
340
+ page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
341
+ page_content=' 650–654, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
342
+ page_content=' [10] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
343
+ page_content=' Orekondy, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
344
+ page_content=' Behboodi, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
345
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
346
+ page_content=' Soriaga, “MIMO-GAN: Generative MIMO channel modeling,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
347
+ page_content=' IEEE Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
348
+ page_content=' Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
349
+ page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
350
+ page_content=', 2022, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
351
+ page_content=' 5322–5328.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
352
+ page_content=' [11] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
353
+ page_content=' Wei, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
354
+ page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
355
+ page_content=' Zhao, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
356
+ page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
357
+ page_content=' Zhao, “Channel distribution learning: Model-driven gan-based channel modeling for irs-aided wireless com- munication,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
358
+ page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
359
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
360
+ page_content=' 70, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
361
+ page_content=' 7, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
362
+ page_content=' 4482–4497, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
363
+ page_content=' [12] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
364
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
365
+ page_content=' Huynh and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
366
+ page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
367
+ page_content=' Li, “Transfer learning for signal detection in wireless networks,” IEEE Wirel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
368
+ page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
369
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
370
+ page_content=', pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
371
+ page_content=' 1–1, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
372
+ page_content=' [13] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
373
+ page_content=' Wang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
374
+ page_content=' Wu, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
375
+ page_content=' Herranz, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
376
+ page_content=' van de Weijer, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
377
+ page_content=' Gonzalez-Garcia, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
378
+ page_content=' Raducanu, “Transferring gans: generating images from limited data,” in ECCV, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
379
+ page_content=' [14] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
380
+ page_content=' Li, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
381
+ page_content=' Wang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
382
+ page_content=' Chen, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
383
+ page_content=' Yu, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
384
+ page_content=' Han, “Channel measurement and analysis in an indoor corridor scenario at 300 ghz,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
385
+ page_content=' IEEE Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
386
+ page_content=' Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
387
+ page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
388
+ page_content=', 2022, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
389
+ page_content=' 2888–2893.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
390
+ page_content=' [15] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
391
+ page_content=' Gulrajani, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
392
+ page_content=' Ahmed, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
393
+ page_content=' Arjovsky, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
394
+ page_content=' Dumoulin, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
395
+ page_content=' Courville, “Improved training of Wasserstein GANs,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
396
+ page_content=' Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
397
+ page_content=' Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
398
+ page_content=' Neural Inf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
399
+ page_content=' Process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
400
+ page_content=' Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
401
+ page_content=', 2017, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
402
+ page_content=' 5769–5779.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
403
+ page_content=' [16] Study on Channel Model for Frequencies From 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
404
+ page_content='5 to 100 GHz (Release 15), document TR 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
405
+ page_content='901, 3GPP, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAzT4oBgHgl3EQfDvpk/content/2301.00981v1.pdf'}
2tE1T4oBgHgl3EQflgTe/content/2301.03287v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a73294f6d766dcc1c27105c28d2820cd67c5f9fda070e130b89f37c7cf0c5d0
3
+ size 1495493
2tE1T4oBgHgl3EQflgTe/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b71792098cdc558dcd56cfe7f8d1861931ff682dfc02000e053aa44d1df814e
3
+ size 3866669
2tE1T4oBgHgl3EQflgTe/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a30a0d4868b0d08a647582eff8cc825a3ef9659c3d97ab4e9a24f6eaffad5b09
3
+ size 157027
3NE3T4oBgHgl3EQfoQom/content/tmp_files/2301.04631v1.pdf.txt ADDED
@@ -0,0 +1,1043 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Deep Residual Axial Networks
2
+ Nazmul Shahadat, Anthony S. Maida
3
+ University of Louisiana at Lafayette
4
+ Lafayette LA 70504, USA
5
+ nazmul.ruet@gmail.com, maida@louisiana.edu
6
+ Abstract
7
+ While residual networks (ResNets) demonstrate out-
8
+ standing performance on computer vision tasks, their
9
+ computational cost still remains high. Here, we focus
10
+ on reducing this cost by proposing a new network archi-
11
+ tecture, axial ResNet, which replaces spatial 2D convo-
12
+ lution operations with two consecutive 1D convolution
13
+ operations. Convergence of very deep axial ResNets has
14
+ faced degradation problems which prevent the networks
15
+ from performing efficiently. To mitigate this, we apply a
16
+ residual connection to each 1D convolutional operation
17
+ and propose our final novel architecture namely residual
18
+ axial networks (RANs). Extensive benchmark evaluation
19
+ shows that RANs outperform with about 49% fewer pa-
20
+ rameters than ResNets on CIFAR benchmarks, SVHN,
21
+ and Tiny ImageNet image classification datasets. More-
22
+ over, our proposed RANs show significant improvement
23
+ in validation performance in comparison to the wide
24
+ ResNets on CIFAR benchmarks and the deep recursive
25
+ residual networks on image super resolution dataset.
26
+ 1. Introduction
27
+ Deep convolutional neural network (CNN) based ar-
28
+ chitectures, specifically ResNets [11], have achieved
29
+ significant success for image processing tasks, includ-
30
+ ing classification [10,11,21], object detection [6,22] and
31
+ image super-resolution [17, 18, 28]. The performance
32
+ of deep ResNets and wide ResNets has improved in re-
33
+ cent years. Along with the increasing depth or widening
34
+ of ResNets, the computational cost of the networks also
35
+ rises. Moreover, training these deeper or wider networks
36
+ has faced exploding or vanishing gradient and degrada-
37
+ tion problems. Different initialization, optimization, and
38
+ normalization techniques [9,10,16,25,27,30], skip con-
39
+ nections [10], and transfer learning [5] have been used
40
+ used to mitigate these problems. The rising computa-
41
+ tional cost and/or trainable parameter is still unexplored
42
+ which is the main purpose of this paper.
43
+ However, the computational cost of these deeper and
44
+ wider ResNets has not been analyzed yet.
45
+ Deep or
46
+ wide ResNets gain popularity and impressive perfor-
47
+ mance due to their simple but effective architectures
48
+ [4, 8, 14, 31, 33]. Deep ResNets can be factored as en-
49
+ sembles of shallow networks [1] and represent func-
50
+ tions more efficiently for complex tasks than shallow
51
+ networks [2]. However, constructing deeper ResNets is
52
+ not as simple as adding more residual layers. The de-
53
+ sign of deeper ResNets demands better optimization and
54
+ initialization schemes, and proper use of identity con-
55
+ nections. Deeper ResNets have great success in image
56
+ classification and object detection tasks [10, 11]. How-
57
+ ever, the computational cost increases linearly with the
58
+ number of layers [12].
59
+ Wide ResNets use a shallow network with wide (high
60
+ channel count) architecture to attain better performance
61
+ than the deeper networks [4, 31, 33]. For example, [33]
62
+ represented their wide residual network as WRN-n-k
63
+ where n is the number of convolutional layers and k rep-
64
+ resents the widening factor. They have shown that their
65
+ WRN-28-10, wide ResNet that adopts 28 convolutional
66
+ layers with k = 10 widening factor, outperforms the
67
+ deep ResNet-1001 network (1001 layers). However, the
68
+ computational cost is quadratic with a widening factor
69
+ of k.
70
+ This work revisits the designs of deep and wide
71
+ ResNets to boost their performance further, reduce the
72
+ above-mentioned high computational costs, and im-
73
+ prove the model inference speed.
74
+ To get these, we
75
+ propose our novel architecture, residual axial networks
76
+ (RANs), obtained using axial operations, height or
77
+ width-axis, instead of spatial operations in the residual
78
+ block. Here, we split 2D spatial (3 × 3) convolution
79
+ operation into two consecutive 1D convolution opera-
80
+ tions. These 1D convolution operations are mapped to
81
+ the height-axis (3 × 1) and width-axis (1 × 3). As axial
82
+ 1D convolution operations propagate information along
83
+ one axis at a time, this modification reduces cost sig-
84
+ nificantly. To capture global information, we use these
85
+ layers in consecutive pairs.
86
+ arXiv:2301.04631v1 [cs.CV] 11 Jan 2023
87
+
88
+ Figure 1. Residual block architectures. “bn” stands for batch
89
+ normalization. (Left) ResNet basic block and (Right) ResNet
90
+ bottleneck blocks are depicted.
91
+ A simple axial architecture reduces cost but does not
92
+ improve performance. The reason is that forward in-
93
+ formation flows across the axial blocks degrades (di-
94
+ minishing feature reuse [15]). To address this, we add
95
+ residual connections to span the axial blocks. By using
96
+ both modifications, we made a novel, effective residual
97
+ axial architecture (RAN). The effectiveness of our pro-
98
+ posed model is demonstrated experimentally on four im-
99
+ age classification datasets and an image super-resolution
100
+ dataset. Our assessments are based on parameter counts,
101
+ FLOPS counts (number of multiply-add operations), la-
102
+ tency to process one image after training, and validation
103
+ accuracy.
104
+ 2. Background and Related Work
105
+ 2.1. Convolutional Neural Networks
106
+ In a convolutional layer, the core building block is
107
+ a convolution operation using one kernel W applied to
108
+ small neighborhoods to find input correlations. For an
109
+ input image X with height h, width w, and channel
110
+ count din, the convolution operation operates on region
111
+ (a, b) ∈ X centered at pixel (i, j) with spatial extend k.
112
+ The output for this operation Co where o = (i, j) is [26],
113
+ Co =
114
+
115
+ (a,b)∈Nk×k(i,j)
116
+ W (m)
117
+ i−a,j−b, xa,b
118
+ (1)
119
+ where Nk×k is the neighborhood of pixel (i, j) with spa-
120
+ tial extent k, and W is the shared weights to calculate the
121
+ output for all pixel positions (i, j).
122
+ 2.2. Residual Networks
123
+ Residual networks (ResNets) are constructed using
124
+ convolutional layers linked by additive identity connec-
125
+ tions [12]. They were introduced to address the problem
126
+ of vanishing gradients found in standard deep CNNs.
127
+ Although, the vanishing gradient problem may be ad-
128
+ dressed by using normalized inputs and normalization
129
+ layers which help to make networks till ten layers. In
130
+ this situation, when more layers were stacked, the net-
131
+ work depth increases but accuracy gets saturated and
132
+ then degrades rapidly. The degradation (of training ac-
133
+ curacy) indicates that not all systems are similarly opti-
134
+ mized. To address these problems, He et al. proposed
135
+ residual networks by adding identity mapping among
136
+ the layers [12]. As a result, the subsequent deeper lay-
137
+ ers are shared inputs from the learned shallower model.
138
+ This helps to address all of the problems.
139
+ The key architectural feature of ResNets is the resid-
140
+ ual block with identity mapping to tackle the degrada-
141
+ tion problem. Two kinds of residual blocks are used
142
+ in residual networks, the basic block and the bottleneck
143
+ block, both depicted in Figure 1. Figure 1 (left) is known
144
+ as the basic architecture of ResNet which is constructed
145
+ with two k × k convolution layers where k is the size of
146
+ the kernel and an identity shortcut connection is added
147
+ to the end of these two layers to address vanishing gradi-
148
+ ents. These operations can be expressed mathematically
149
+ as,
150
+ y = F(Ckm,kn(x, W)) + x
151
+ (2)
152
+ where F, x, y, W, and Ckm,kn represent residual func-
153
+ tion, input vector, output vector, weight parameters, and
154
+ output of two convolution layers with kernels Km and
155
+ Kn respectively. Figure 1 (right) is a bottleneck archi-
156
+ tecture that is constructed using 1 × 1, k × k, and 1 × 1
157
+ convolution layers, where the 1 × 1 layers reduce and
158
+ then increase the number of channels, and the 3×3 layer
159
+ performs feature extraction. The identity shortcuts (ex-
160
+ plained in equation 3) are very important for this block
161
+ as it leads to more efficient designs [11]. These can be
162
+ expressed mathematically as,
163
+ y = F(Ck1,km,k1(x, W)) + x
164
+ (3)
165
+ where F, x, y, W, and Ck1,km,k1 represent residual
166
+ function, input vector, output vector, weight parame-
167
+ ters, and output of three convolution layers with kernels
168
+ 1 × 1, Km × Km and 1 × 1 respectively. Its perfor-
169
+ mance surpasses the learning speed, number of learning
170
+ parameters, way of layer-wise representation, difficult
171
+ optimization property, and memory mechanisms.
172
+ 2.3. Wide Residual Networks
173
+ Wide ResNets [4, 33] use fewer layers compared to
174
+ standard ResNets but use high channel counts (wide ar-
175
+ chitectures) which compensate for the shallower archi-
176
+ tecture. The comparison between shallow and deep net-
177
+ works has been revealed in circuit complexity theory
178
+
179
+ X
180
+ X
181
+ 3x3 conv2d
182
+ 1x1 conv2d
183
+ bn
184
+ bn
185
+ relu
186
+ ★ relu
187
+ 3x3 conv2d
188
+ 3x3 conv2d
189
+ bn
190
+ bn
191
+ relu
192
+ 1x1 conv2d
193
+ relu
194
+ bn
195
+ reluwhere shallow circuits require more components than
196
+ the deeper circuit. Inspired by this observation, [11] pro-
197
+ posed deeper networks with thinner architecture where
198
+ a gradient goes through the layers.
199
+ But the problem
200
+ such networks face is that the residual block weights
201
+ do not flow through the network layers. For this, the
202
+ network may be forced to avoid learning during train-
203
+ ing. To address these issues, [33] proposed shallow but
204
+ wide network architectures and showed that widening
205
+ the residual blocks improves the performance of resid-
206
+ ual networks compared to increasing their depth. For
207
+ example, a 16-layer wide ResNet has similar accuracy
208
+ performance to a 1000-layer thinner network.
209
+ 2.4. Recursive Residual Networks
210
+ Image super-resolution (SR) is the process of gen-
211
+ erating a high-resolution (HR) image from a low-
212
+ resolution (LR) image.
213
+ It is also known as single
214
+ image super-resolution (SISR). A list of convolution-
215
+ based models has shown promising results on SISR
216
+ [7, 17, 18, 28]. These 2D convolutional networks learn
217
+ a nonlinear mapping from an LR to an HR image in an
218
+ end-to-end manner. Convolution-based recursive neural
219
+ networks have been used on SISR, where recursive net-
220
+ works learn detailed and structured information about an
221
+ image. As image SR requires more image details, pool-
222
+ ing is not used in deep models for SISR. Convolution-
223
+ based SR [7] has shown that the convolution-based LR-
224
+ HR mapping significantly improves performance for
225
+ classical shallow methods. Kim et al., introduce two
226
+ deep CNNs for SR by stacking weight layers [17, 18].
227
+ Among them, [18] uses a chain structure recursive layer
228
+ along with skip-connections to control the model pa-
229
+ rameters and improve the performance. Deep SR mod-
230
+ els [17,18,23] demand large parameter counts and more
231
+ storage.
232
+ To address these issues, deep recursive residual net-
233
+ works (DRRNs) were proposed as a very deep network
234
+ structure, which achieves better performance with fewer
235
+ parameters [28]. It includes both local and global resid-
236
+ ual learning, where global residual learning (GRL) is be-
237
+ ing used in the identity branch to estimate the residual
238
+ image from the input and output of the network. GRL
239
+ might face degradation problems for deeper networks.
240
+ To handle this problem, local residual learning (LRL)
241
+ has been used which carries rich image details to deeper
242
+ layers and helps gradient flow. The DRRN also used
243
+ recursive learning of residual units to keep the model
244
+ more compact. Several recursive blocks (B) has been
245
+ stacked, followed by a CNN layer which is used to re-
246
+ construct the residual between the LR and HR images.
247
+ Each of these residual blocks decomposed into a num-
248
+ ber of residual units (U). The number of recursive block
249
+ B, and the number of residual units U are responsible
250
+ for defining network depth. The depth of DRRN d is
251
+ calculated as,
252
+ d = (1 + 2 × U) × B + 1
253
+ (4)
254
+ Recursive block definition, DRRN formulation, and the
255
+ loss function of DRRN are defined in [28].
256
+ 3. Proposed Residual Axial Networks
257
+ The convolution-based residual basic and bottleneck
258
+ blocks [11, 12] have demonstrated significant perfor-
259
+ mance with the help of several state-of-the-art archi-
260
+ tectures like, ResNets [11], wide ResNets [31], scal-
261
+ ing wide ResNets [33], and deep recursive residual net-
262
+ works (DRRNs) [28] on image classification and im-
263
+ age super-resolution datasets. Although the bottleneck
264
+ residual block makes the networks thinner still the ba-
265
+ sic and bottleneck blocks are not cost-effective and/or
266
+ parameter efficient. The 2D convolutional operation of
267
+ these blocks is consuming O(N 2) resources, where N is
268
+ the flattened pixels of an image, and N = hw (for a 2D
269
+ image of height h, width w, and h = w). So the cost for
270
+ a 2D convolutional operation, for an image with height
271
+ h, and width w, is O((hw)2) = O(h2w2) = O(h4)
272
+ [13, 29]. To reduce this impractical computational cost,
273
+ we are proposing a novel architectural design, residual
274
+ axial networks (RANs).
275
+ Due to high computational expenses, we replace all
276
+ spatial 2D convolution operations (conv2D) of the resid-
277
+ ual basic blocks, and the only spatial 2D convolution op-
278
+ eration of the residual bottleneck block by using two 1D
279
+ convolutional operations. Also, each 1D convolutional
280
+ operation has a residual connection to reduce vanishing
281
+ gradients. Although this axial technique was introduced
282
+ in [13] for auto-regressive transformer models, we pro-
283
+ pose novel architectures by factorizing 2D convolution
284
+ into two consecutive 1D convolutions. Figures 2, and 3
285
+ show our novel proposed residual blocks.
286
+ For each location, o = (i, j), a local input kernel k×k
287
+ is extracted from an input image X with height h, width
288
+ w, and channel count din to serve convolutional opera-
289
+ tion. Residual units, used by [12], are defined as,
290
+ Yo = R(Xo) + F(Xo, Wo)
291
+ (5)
292
+ where, Xo and Yo are input and output for the location
293
+ o = (i, j), R(Xo) is the original input or identity map-
294
+ ping, and F is the residual function. This residual func-
295
+ tion is defined using convolutional operation for vision
296
+ tasks. The structure of this residual function depends on
297
+ the residual block, we use. Two spatial 2D convolutional
298
+ operations are used for residual basic block, and a spa-
299
+ tial (kernel k > 1) 2D convolution operation is used in
300
+ between two convolutional operations (kernel k = 1) for
301
+
302
+ Figure 2. RAN basic block used in our proposed networks. “bn” stands for batch normalization.
303
+ Figure 3. RAN bottleneck block used in our proposed networks. “bn” stands for batch normalization.
304
+ bottleneck block. These spatial 2D convolutional oper-
305
+ ations for kernel k > 1 and o = (i, j) can be defined
306
+ as [26],
307
+ Co =
308
+
309
+ (a,b)∈Nk×k(o)
310
+ Wi−a,j−b, xa,b
311
+ (6)
312
+ where, Nk ∈ Rk×k×din is the neighborhood of pixel
313
+ (i, j) with the spatial square region k × k and W ∈
314
+ Rk×k×dout×din is the shared weights that are for cal-
315
+ culating output for all pixel positions centered by (i, j).
316
+ The computational cost is O(hwk2) which is high.
317
+ To reduce this computation cost and make parame-
318
+ ter efficient architecture, we propose to adopt the axial
319
+ concept and replace 2D convolution using two 1D con-
320
+ volutions with residual connections. These two 1D con-
321
+ volutions are performing convolution along the height
322
+ axis and the width axis. The 1D convolution along the
323
+ height axis is defined as follows.
324
+ Ch =
325
+
326
+ (a,b)∈Nk×1(i,j)
327
+ Wi−a,j−b, xa,b
328
+ (7)
329
+ where, Nk ∈ Rk×1×din is the neighborhood of pixel
330
+ (i, j) with spatial extent k × 1 and W ∈ Rk×1×dout×din
331
+ is the shared weights that are for calculating output for
332
+ all pixel positions (i, j). And, for width axis is as fol-
333
+ lows.
334
+ Cw =
335
+
336
+ (a,b)∈N1×k(i,j)
337
+ Wi−a,j−b, xa,b
338
+ (8)
339
+ where, Nk ∈ R1×k×din is the neighborhood of pixel
340
+ (i, j) with spatial extent 1 × k and W ∈ R1×k×dout×din
341
+ is the shared weights that are for calculating output for
342
+ all pixel positions (i, j).
343
+ To construct our basic and bottleneck blocks, we re-
344
+ place each 2D convolution layer from the original resid-
345
+ ual blocks with a pair of consecutive 1D convolution
346
+ layers. When we did this but omitted a residual connec-
347
+ tion, the network faced the vanishing gradient problem.
348
+ To handle this, we added a residual connection along
349
+ each 1D convolution operation. Each 2D convolution in
350
+ Equation 6 is equivalent to our proposed method defined
351
+ as,
352
+ Yh = Ch(Wh, Xo) + Xo
353
+ (9)
354
+ Yo = Cw(Ww, Yh) + Yh
355
+ (10)
356
+ where, Ch, and Cw are the height and width outputs of
357
+ Equations 7 and 8, respectively, Wh, and Ww is the con-
358
+ volutional weights for height, and width axis 1D convo-
359
+ lutional operations, respectively. Equation 10 describes
360
+ the residual basic and bottleneck blocks. As two 1D op-
361
+ erations equal one 2D operation, the use of these two
362
+
363
+ ....
364
+ 1x3 Conv1D
365
+ 3x1 Conv1D
366
+ Height-Axis
367
+ Width-Axis
368
+ 1x3 Conv1D
369
+ Width-Axis
370
+ I.
371
+ relu
372
+ X D
373
+ D
374
+ .S
375
+ Conv1D
376
+ Vidth-Axis
377
+ D
378
+ Conv1l
379
+ Axi
380
+ 2
381
+ 2
382
+ E
383
+ Conv
384
+ bn
385
+ n
386
+ 0
387
+ C
388
+ c
389
+ 3
390
+ X
391
+ X
392
+ H
393
+ X
394
+ X
395
+ 3layers does not increase the layer count. The RAN ba-
396
+ sic and bottleneck blocks are shown in Figures 2 and 3.
397
+ These blocks are used to construct our proposed residual
398
+ axial networks (RANs). The output Yo from Equation 10
399
+ is applied to other 2D convolution-based networks, for
400
+ example, wide residual networks (to make our proposed
401
+ wide RANs) and deep recursive residual networks (to
402
+ make RARNets), to check the effectiveness of our pro-
403
+ posed method.
404
+ 4. Experimental Analysis
405
+ We present experimental results on four image classi-
406
+ fication datasets and one image super-resolution dataset.
407
+ Our experiments evaluate the proposed residual axial
408
+ networks, the original ResNets, the wide ResNets, wide
409
+ RANs, the deep recursive residual networks (DRRNs),
410
+ and RARNets. We compare our proposed network’s per-
411
+ formance with the corresponding original ResNets, as
412
+ these original networks used 2D spatial convolutional
413
+ layers. Our comparisons use parameter counts, FLOPS,
414
+ latency, and validation performance.
415
+ 4.1. Method: Residual Networks
416
+ To explore scalability, we compare our proposed
417
+ RANs and baseline models on four datasets: CIFAR-
418
+ 10 and CIFAR-100 benchmarks [19], Street View House
419
+ Number (SVHN) [24], and Tiny ImageNet datasets
420
+ [20].
421
+ The CIFAR benchmarks have 10 and 100 dis-
422
+ tinct classes, and 60,000 color images (split into 50,000
423
+ training and 10,000 testing images) of size 32 × 32. We
424
+ perform data normalization using per-channel mean and
425
+ standard deviation. In preprocessing, we do a horizontal
426
+ flip and randomly crop after padding with four pixels on
427
+ each side of the image. The SVHN and Tiny ImageNet
428
+ datasets contain 600,000 images of size 32 × 32 with
429
+ ten classes and 110,000 images of 200 distinct classes
430
+ downsized to 64 × 64 colored images, respectively. Our
431
+ only preprocessing is mean/std normalization for both
432
+ datasets.
433
+ All the models (baselines and proposed RANs) were
434
+ trained using similar architectures (same hyperparame-
435
+ ters and the same number of output channels). As our
436
+ main concern was to reduce the parameter counts of the
437
+ bottleneck residual block, we implemented all network
438
+ architecture, baselines, and proposed, using only bottle-
439
+ neck blocks. The numbers of output channels of bottle-
440
+ neck groups are 120, 240, 480,, and 960 for all networks.
441
+ This experiment analyzes 26, 35, 50, 101, and 152-
442
+ layer architectures with the bottleneck block multipliers
443
+ “[1, 2, 4, 1]”, “[2, 3, 4, 2]”, “[3, 4, 6, 3]”, “[3, 4, 23, 3]”,
444
+ and “[3, 8, 36, 3]”, respectively. All models were run us-
445
+ ing the stochastic gradient descent optimizer, and using
446
+ linearly warmed-up learning for 10 epochs from zero
447
+ to 0.1 and then used cosine learning scheduling from
448
+ epochs 11 to 150. All models were trained using batch
449
+ sizes of 128 for all datasets, we used except the 101, and
450
+ 152-layer architectures of the Tiny ImageNet dataset.
451
+ We used a batch size of 64 for these two architectures
452
+ on Tiny ImageNet.
453
+ 4.2. Results: Residual Networks
454
+ Table 1 summarizes the classification results of the
455
+ original ResNets and our proposed RANs on the four
456
+ datasets. We tested shallow and deeper networks by im-
457
+ plementing 26, 35, 50, 101, and 152-layer architectures.
458
+ These architectures compare performance to check the
459
+ effectiveness of our proposed methods for shallow and
460
+ deep networks. Our proposed method is compared with
461
+ original ResNets in terms of parameter count, FLOPS
462
+ count (number of multiply-add operations), inference
463
+ time or latency (time used to test one image after train-
464
+ ing), and the percentage accuracy of validation results
465
+ on the four datasets.
466
+ The 26, 35, 50, 101, and 152-layer architectures re-
467
+ duce by 48.6%, 46.5%, 44.8%, 43.2%, and 42.6% the
468
+ trainable parameters respectively needed in comparison
469
+ to the baseline networks. In addition to parameter re-
470
+ duction, our proposed method requires 15 to 36 percent
471
+ fewer FLOPS for all analyzed architectures. Also, the
472
+ validation performance improvement is significantly no-
473
+ ticeable for all datasets. The latency to process one im-
474
+ age after training our proposed models is comparatively
475
+ high as the RANs use two convolution layers sequen-
476
+ tially. It is also shown that the deeper networks perform
477
+ better than the shallow networks and it has demonstrated
478
+ “the deeper, the better” in classification.
479
+ 4.3. Method: Wide Residual Networks
480
+ The previous experiment did not assess wide
481
+ ResNets.
482
+ To assess the widening factor on our pro-
483
+ posed RANs, we increase the width of our RANs by
484
+ factorizing the number of output channels for shallow
485
+ networks like [33].
486
+ Like the original wide residual
487
+ networks (WRNs) [33], we analyzed our proposed 26-
488
+ layer bottleneck block of RANs with a widening factor,
489
+ k = 2, 4, 6, 8, and 10. We multiplied the number of out-
490
+ put channels of RANs with k to obtain wide RANs. We
491
+ performed training with the same optimizer and hyper-
492
+ parameters used in 4.1.
493
+ 4.4. Results: Wide Residual Networks
494
+ Table 1 shows “the deeper the better” in vision classi-
495
+ fication for our proposed methods. To compare our pro-
496
+ posed RANs with the original wide ResNets (WRNs),
497
+ we analyze our proposed method for different widening
498
+ factors. Table 2 shows an overall comparison among the
499
+ original WRN-28-10 (28-layers with a widening factor
500
+
501
+ Dataset
502
+ Model Name
503
+ Layers
504
+ Params
505
+ FLOPs
506
+ Latency
507
+ Accuracy
508
+ CIFAR-10
509
+ ResNet [11]
510
+ 26
511
+ 40.9M
512
+ 0.66G
513
+ 0.66ms
514
+ 94.68
515
+ RAN (Ours)
516
+ 21M
517
+ 0.56G
518
+ 0.73ms
519
+ 96.08
520
+ ResNet [11]
521
+ 35
522
+ 57.8M
523
+ 0.86G
524
+ 0.82ms
525
+ 94.95
526
+ RAN (Ours)
527
+ 30.9M
528
+ 0.68G
529
+ 0.91ms
530
+ 96.15
531
+ ResNet [11]
532
+ 50
533
+ 82.5M
534
+ 1.18G
535
+ 1.02ms
536
+ 95.08
537
+ RAN (Ours)
538
+ 45.5M
539
+ 0.87G
540
+ 1.17ms
541
+ 96.25
542
+ ResNet [11]
543
+ 101
544
+ 149.2M
545
+ 2.29G
546
+ 1.68ms
547
+ 95.36
548
+ RAN (Ours)
549
+ 84.7M
550
+ 1.52G
551
+ 1.86ms
552
+ 96.27
553
+ ResNet [11]
554
+ 152
555
+ 204.1M
556
+ 3.41G
557
+ 2.39ms
558
+ 95.36
559
+ RAN (Ours)
560
+ 117.1M
561
+ 2.18G
562
+ 2.55ms
563
+ 96.37
564
+ CIFAR-100
565
+ ResNet [11]
566
+ 26
567
+ 41.2M
568
+ 0.66G
569
+ 0.66ms
570
+ 78.21
571
+ RAN (Ours)
572
+ 21.1M
573
+ 0.56G
574
+ 0.74ms
575
+ 79.66
576
+ ResNet [11]
577
+ 35
578
+ 58.1M
579
+ 0.86G
580
+ 0.80ms
581
+ 78.72
582
+ RAN (Ours)
583
+ 31.1M
584
+ 0.68G
585
+ 0.91ms
586
+ 80.38
587
+ ResNet [11]
588
+ 50
589
+ 82.9M
590
+ 1.18G
591
+ 1.11ms
592
+ 78.95
593
+ RAN (Ours)
594
+ 45.7M
595
+ 0.87G
596
+ 1.17ms
597
+ 80.84
598
+ ResNet [11]
599
+ 101
600
+ 149.5M
601
+ 2.29G
602
+ 1.72ms
603
+ 78.80
604
+ RAN (Ours)
605
+ 84.9M
606
+ 1.52G
607
+ 1.86ms
608
+ 80.88
609
+ ResNet [11]
610
+ 152
611
+ 204.5M
612
+ 3.41G
613
+ 2.36ms
614
+ 79.85
615
+ RAN (Ours)
616
+ 117.2M
617
+ 2.18G
618
+ 2.55ms
619
+ 80.94
620
+ SVHN
621
+ ResNet [11]
622
+ 26
623
+ 40.9M
624
+ 0.66G
625
+ 0.64ms
626
+ 96.04
627
+ RAN (Ours)
628
+ 21M
629
+ 0.56G
630
+ 0.73ms
631
+ 97.60
632
+ ResNet [11]
633
+ 35
634
+ 57.8M
635
+ 0.86G
636
+ 0.79ms
637
+ 95.74
638
+ RAN (Ours)
639
+ 30.9M
640
+ 0.68G
641
+ 0.90ms
642
+ 97.50
643
+ ResNet [11]
644
+ 50
645
+ 82.5M
646
+ 1.18G
647
+ 1.05ms
648
+ 95.76
649
+ RAN (Ours)
650
+ 45.5M
651
+ 0.87G
652
+ 1.11ms
653
+ 97.32
654
+ ResNet [11]
655
+ 101
656
+ 149.2M
657
+ 2.29G
658
+ 1.64ms
659
+ 96.29
660
+ RAN (Ours)
661
+ 84.7M
662
+ 1.52G
663
+ 1.80ms
664
+ 97.29
665
+ ResNet [11]
666
+ 152
667
+ 204.1M
668
+ 3.41G
669
+ 2.28ms
670
+ 96.35
671
+ RAN (Ours)
672
+ 117.1M
673
+ 2.18G
674
+ 2.5ms
675
+ 97.38
676
+ ImageNet-Tiny
677
+ ResNet [11]
678
+ 26
679
+ 41.6M
680
+ 0.66G
681
+ 2.31ms
682
+ 57.21
683
+ RAN (Ours)
684
+ 21.3M
685
+ 0.56G
686
+ 2.58ms
687
+ 62.28
688
+ ResNet [11]
689
+ 35
690
+ 58.5M
691
+ 0.86G
692
+ 2.85ms
693
+ 57.80
694
+ RAN (Ours)
695
+ 31.3M
696
+ 0.68G
697
+ 3.0ms
698
+ 59.31
699
+ ResNet [11]
700
+ 50
701
+ 82.6M
702
+ 1.18G
703
+ 3.75ms
704
+ 59.06
705
+ RAN (Ours)
706
+ 45.8M
707
+ 0.87G
708
+ 4.02ms
709
+ 62.40
710
+ ResNet [11]
711
+ 101
712
+ 149.3M
713
+ 2.29G
714
+ 6.86ms
715
+ 60.62
716
+ RAN (Ours)
717
+ 85.1M
718
+ 1.52G
719
+ 7.19ms
720
+ 64.18
721
+ ResNet [11]
722
+ 152
723
+ 204.2M
724
+ 3.41G
725
+ 9.29ms
726
+ 61.57
727
+ RAN (Ours)
728
+ 117.4M
729
+ 2.18G
730
+ 9.72ms
731
+ 66.16
732
+ Table 1. Image classification performance on the CIFAR benchmarks, SVHN, and Tiny ImageNet datasets for 26, 35, 50, 101, and
733
+ 152-layer architectures.
734
+ of 10), and our proposed 26-layer networks with differ-
735
+ ent widening factors (k = 2, 4, 6, 8, and 10). Our pro-
736
+ posed wide RANs show significant accuracy improve-
737
+ ment over the original WRN-28-10.
738
+ This table also
739
+ demonstrates “the wider the better” for our proposed
740
+ wide RANs.
741
+ 4.5. Method: Recursive Networks
742
+ This experiment compares the cost and performance
743
+ of our novel RARnet with the DRRN on the super-
744
+ resolution tasks. The RARnet is built by replacing the
745
+ residual unit U with a RAN layer described in Equation
746
+ 10. These modifications form a new architecture, recur-
747
+ sive axial residual network (RARNet) whose depth d is
748
+
749
+ Figure 4. Recursive axial residual network (RARNet) architec-
750
+ ture with B = 4 and U = 3. Here, “RB” layer, and RAN refer
751
+ to a recursive block, and residual axial block, respectively.
752
+ defined as,
753
+ d = (1 + URAN) × B + 1
754
+ (11)
755
+ As two 1D layers are equivalent to one 2D layer and we
756
+ replace each residual unit by a RAN unit (see Equation
757
+ 10). Hence, we rewrite Equation 4 to Equation 11 by
758
+ removing the multiplier for the residual unit. The pro-
759
+ posed RARNet with four RB blocks is shown on the left
760
+ in Figure 4. An RB block is expanded on the right.
761
+ We trained our proposed RARNet using 291 images
762
+ dataset [32] and tested using the Set5 dataset [3]. We
763
+ also use different scales (×2, ×3, and ×4) in training
764
+ and testing images.
765
+ We used similar data augmenta-
766
+ tion, training hyperparameters, and implementation de-
767
+ tails like [28].
768
+ 4.6. Results: Recursive Networks
769
+ Table 3 shows the Peak Signal-to-Noise Ratio
770
+ (PSNR) results of several CNN models including
771
+ DRRN, and our proposed RARNet on the Set5 dataset.
772
+ The comparison between DRRN and RARNet is our
773
+ main focus as it directly indicates the effectiveness of us-
774
+ ing our proposed RAN block. DRRN19 and DRRN125
775
+ are constructed using B = 1, U = 9, and B = 1, U =
776
+ 25, respectively. For fair comparison, we also construct
777
+ similar architecture like RARNet19 (B = 1, URAN =
778
+ 9) and RARNet125 (B = 1, URAN = 25). Our pro-
779
+ posed models outperform all CNN models in Table 3
780
+ on the Set5 dataset and for all scaling factors. As we
781
+ are trying to propose a parameter-efficient architecture,
782
+ parameter comparison is very essential along with the
783
+ testing performance. Our proposed model for B = 1,
784
+ and URAN = 9 takes 213,254 parameters compared to
785
+ 297,216 parameters of DRRN (B = 1, and U = 9).
786
+ RARNet, which is constructed using RAN blocks, re-
787
+ duces by 28.2% the trainable parameters compared to
788
+ Dataset
789
+ Model Name
790
+ Accuracy
791
+ CIFAR-10
792
+ WRN-28-10 [33]
793
+ 94.68
794
+ RAN-26-2 (Ours)
795
+ 96.32
796
+ RAN-26-4 (Ours)
797
+ 96.68
798
+ RAN-26-6 (Ours)
799
+ 96.77
800
+ RAN-26-8 (Ours)
801
+ 96.83
802
+ RAN-26-10 (Ours)
803
+ 96.87
804
+ CIFAR-100
805
+ WRN-28-10 [33]
806
+ 79.57
807
+ RAN-26-2 (Ours)
808
+ 83.54
809
+ RAN-26-4 (Ours)
810
+ 83.75
811
+ RAN-26-6 (Ours)
812
+ 83.78
813
+ RAN-26-8 (Ours)
814
+ 83.82
815
+ RAN-26-10 (Ours)
816
+ 83.92
817
+ Table 2. Image classification performance comparison on the
818
+ CIFAR benchmarks for 26-layer RAN architectures with dif-
819
+ ferent widening factors.
820
+ the DRRN.
821
+ 5. Discussion and Conclusions
822
+ This work introduces a new residual block that can
823
+ be used as a replacement for the ResNet basic and bot-
824
+ tleneck blocks. This RAN block replaced the 2D convo-
825
+ lution from the original ResNet blocks with two sequen-
826
+ tial 1D convolutions along with a residual connection.
827
+ These modifications help to reduce trainable parame-
828
+ ters as well as improve validation performance on vision
829
+ classification. But the latency of our proposed model is
830
+ comparatively high. The proposed model’s performance
831
+ and parameter reduction outweigh this latency time limi-
832
+ tation. We also checked this proposed block for widened
833
+ ResNets and showed that the wide RANs obtain better
834
+ accuracy performance than the WRNs. We also checked
835
+ the effectiveness of RANs on the SISR task. Specifi-
836
+ cally, we applied our proposed RAN block on am image
837
+ restoration dataset and found that our proposed recursive
838
+ axial ResNets (RARNets) improve image resolution and
839
+ reduce trainable parameters more than the other CNN-
840
+ based super-resolution models. Extensive experiments
841
+ and analysis show that RANs can be deep, and wide
842
+ and these are parameter-efficient and superior models
843
+ for image classification and SISR. We have shown that
844
+ our proposed model is a viable replacement for ResNets
845
+ on the tasks that were tested. Further work is required
846
+ to determine the range of applications for which RANs
847
+ may offer advantages.
848
+ References
849
+ [1] Serge Belongie, Michael Wilber, and Andreas Veit.
850
+ Residual networks behave like ensembles of relatively
851
+ shallow networks. 2016. 1
852
+
853
+ X1
854
+ X
855
+
856
+ RAN
857
+ RB
858
+ RAN
859
+ RB
860
+ RB
861
+ 4
862
+ RAN
863
+ RB
864
+ conv
865
+ RAN
866
+
867
+ --
868
+ Y
869
+ X2Dataset
870
+ Scale
871
+ SRCNN [7]
872
+ VDSR [17]
873
+ DRCN [18]
874
+ DRRN19
875
+ DRRN125
876
+ RARNet19
877
+ RARNet25
878
+ Set5
879
+ x2
880
+ 36.66
881
+ 37.53
882
+ 37.63
883
+ 37.66
884
+ 37.74
885
+ 37.73
886
+ 37.84
887
+ x3
888
+ 32.75
889
+ 33.66
890
+ 33.82
891
+ 33.93
892
+ 34.03
893
+ 33.99
894
+ 34.11
895
+ x4
896
+ 30.48
897
+ 31.35
898
+ 31.53
899
+ 31.58
900
+ 31.68
901
+ 31.63
902
+ 31.84
903
+ Table 3. Benchmark testing PSNR results for scaling factors ×2, ×3, and ×4 on Set5 dataset.
904
+ [2] Yoshua Bengio, Aaron Courville, and Pascal Vincent.
905
+ Representation learning: A review and new perspectives.
906
+ IEEE transactions on pattern analysis and machine in-
907
+ telligence, 35(8):1798–1828, 2013. 1
908
+ [3] Marco Bevilacqua, Aline Roumy, Christine Guillemot,
909
+ and Marie Line Alberi-Morel. Low-complexity single-
910
+ image super-resolution based on nonnegative neighbor
911
+ embedding. 2012. 7
912
+ [4] Liang-Chieh Chen, Huiyu Wang, and Siyuan Qiao. Scal-
913
+ ing wide residual networks for panoptic segmentation.
914
+ arXiv preprint arXiv:2011.11675, 2020. 1, 2
915
+ [5] Tianqi Chen, Ian Goodfellow, and Jonathon Shlens.
916
+ Net2net: Accelerating learning via knowledge transfer.
917
+ arXiv preprint arXiv:1511.05641, 2015. 1
918
+ [6] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn: Ob-
919
+ ject detection via region-based fully convolutional net-
920
+ works. Advances in neural information processing sys-
921
+ tems, 29, 2016. 1
922
+ [7] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou
923
+ Tang. Image super-resolution using deep convolutional
924
+ networks. IEEE transactions on pattern analysis and ma-
925
+ chine intelligence, 38(2):295–307, 2015. 3, 8
926
+ [8] Shang-Hua Gao, Ming-Ming Cheng, Kai Zhao, Xin-Yu
927
+ Zhang, Ming-Hsuan Yang, and Philip Torr.
928
+ Res2net:
929
+ A new multi-scale backbone architecture. IEEE trans-
930
+ actions on pattern analysis and machine intelligence,
931
+ 43(2):652–662, 2019. 1
932
+ [9] Xavier Glorot and Yoshua Bengio. Understanding the
933
+ difficulty of training deep feedforward neural networks.
934
+ In Proceedings of the thirteenth international conference
935
+ on artificial intelligence and statistics, pages 249–256.
936
+ JMLR Workshop and Conference Proceedings, 2010. 1
937
+ [10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
938
+ Sun. Delving deep into rectifiers: Surpassing human-
939
+ level performance on imagenet classification.
940
+ In Pro-
941
+ ceedings of the IEEE international conference on com-
942
+ puter vision, pages 1026–1034, 2015. 1
943
+ [11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
944
+ Sun. Deep residual learning for image recognition. In
945
+ Proceedings of the IEEE conference on computer vision
946
+ and pattern recognition, pages 770–778, 2016. 1, 2, 3, 6
947
+ [12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
948
+ Sun. Identity mappings in deep residual networks. In Eu-
949
+ ropean conference on computer vision, pages 630–645.
950
+ Springer, 2016. 1, 2, 3
951
+ [13] Jonathan Ho, Nal Kalchbrenner, Dirk Weissenborn, and
952
+ Tim Salimans. Axial attention in multidimensional trans-
953
+ formers. arXiv preprint arXiv:1912.12180, 2019. 3
954
+ [14] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation
955
+ networks.
956
+ In Proceedings of the IEEE conference on
957
+ computer vision and pattern recognition, pages 7132–
958
+ 7141, 2018. 1
959
+ [15] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and
960
+ Kilian Q. Weinberger.
961
+ Deep networks with stochastic
962
+ depth. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max
963
+ Welling, editors, Computer Vision – ECCV 2016, pages
964
+ 646–661, Cham, 2016. Springer International Publish-
965
+ ing. 2
966
+ [16] Sergey Ioffe and Christian Szegedy. Batch normaliza-
967
+ tion: Accelerating deep network training by reducing in-
968
+ ternal covariate shift. In International conference on ma-
969
+ chine learning, pages 448–456. PMLR, 2015. 1
970
+ [17] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Ac-
971
+ curate image super-resolution using very deep convolu-
972
+ tional networks. In Proceedings of the IEEE conference
973
+ on computer vision and pattern recognition, pages 1646–
974
+ 1654, 2016. 1, 3, 8
975
+ [18] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee.
976
+ Deeply-recursive convolutional network for image super-
977
+ resolution. In Proceedings of the IEEE conference on
978
+ computer vision and pattern recognition, pages 1637–
979
+ 1645, 2016. 1, 3, 8
980
+ [19] Alex Krizhevsky, Geoffrey Hinton, et al. Learning mul-
981
+ tiple layers of features from tiny images. 2009. 5
982
+ [20] Ya Le and Xuan S. Yang. Tiny imagenet visual recogni-
983
+ tion challenge. 2015. 5
984
+ [21] Xiu Li and Zuoying Cui.
985
+ Deep residual networks for
986
+ plankton classification.
987
+ In OCEANS 2016 MTS/IEEE
988
+ Monterey, pages 1–4, 2016. 1
989
+ [22] Tsung-Yi Lin, Piotr Doll´ar, Ross Girshick, Kaiming He,
990
+ Bharath Hariharan, and Serge Belongie. Feature pyra-
991
+ mid networks for object detection. In Proceedings of the
992
+ IEEE conference on computer vision and pattern recog-
993
+ nition, pages 2117–2125, 2017. 1
994
+ [23] Xiaojiao Mao, Chunhua Shen, and Yu-Bin Yang. Im-
995
+ age restoration using very deep convolutional encoder-
996
+ decoder networks with symmetric skip connections. Ad-
997
+ vances in neural information processing systems, 29,
998
+ 2016. 3
999
+ [24] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bis-
1000
+ sacco, Bo Wu, and Andrew Y Ng. Reading digits in nat-
1001
+ ural images with unsupervised feature learning. 2011.
1002
+ 5
1003
+ [25] Siyuan Qiao, Huiyu Wang, Chenxi Liu, Wei Shen, and
1004
+ Alan Yuille.
1005
+ Micro-batch training with batch-channel
1006
+ normalization and weight standardization. arXiv preprint
1007
+ arXiv:1903.10520, 2019. 1
1008
+ [26] Prajit Ramachandran, Niki Parmar, Ashish Vaswani, Ir-
1009
+ wan Bello, Anselm Levskaya, and Jonathon Shlens.
1010
+ Stand-alone self-attention in vision models.
1011
+ arXiv
1012
+ preprint arXiv:1906.05909, 2019. 2, 4
1013
+
1014
+ [27] Ilya Sutskever, James Martens, George Dahl, and Geof-
1015
+ frey Hinton. On the importance of initialization and mo-
1016
+ mentum in deep learning. In International conference on
1017
+ machine learning, pages 1139–1147. PMLR, 2013. 1
1018
+ [28] Ying Tai, Jian Yang, and Xiaoming Liu. Image super-
1019
+ resolution via deep recursive residual network. In Pro-
1020
+ ceedings of the IEEE conference on computer vision and
1021
+ pattern recognition, pages 3147–3155, 2017. 1, 3, 7
1022
+ [29] Huiyu Wang, Yukun Zhu, Bradley Green, Hartwig
1023
+ Adam, Alan Yuille, and Liang-Chieh Chen.
1024
+ Axial-
1025
+ deeplab: Stand-alone axial-attention for panoptic seg-
1026
+ mentation. In European Conference on Computer Vision,
1027
+ pages 108–126. Springer, 2020. 3
1028
+ [30] Yuxin Wu and Kaiming He. Group normalization. In
1029
+ Proceedings of the European conference on computer vi-
1030
+ sion (ECCV), pages 3–19, 2018. 1
1031
+ [31] Zifeng Wu, Chunhua Shen, and Anton Van Den Hengel.
1032
+ Wider or deeper: Revisiting the resnet model for visual
1033
+ recognition. Pattern Recognition, 90:119–133, 2019. 1,
1034
+ 3
1035
+ [32] Jianchao Yang, John Wright, Thomas S Huang, and Yi
1036
+ Ma.
1037
+ Image super-resolution via sparse representation.
1038
+ IEEE transactions on image processing, 19(11):2861–
1039
+ 2873, 2010. 7
1040
+ [33] Sergey Zagoruyko and Nikos Komodakis. Wide residual
1041
+ networks. arXiv preprint arXiv:1605.07146, 2016. 1, 2,
1042
+ 3, 5, 7
1043
+
3NE3T4oBgHgl3EQfoQom/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
4dAzT4oBgHgl3EQfuv2o/content/2301.01696v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:385b6ab986485c74f7a331c13ae5b2617a1cff457b7daeaa7fe679b7d74e6439
3
+ size 1316514
4dAzT4oBgHgl3EQfuv2o/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c5398059a290b5f17e26040908607a4830ab1c11df0663c84292d9a4287f6e33
3
+ size 353784
5NE4T4oBgHgl3EQfBQty/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e99c2eedeaba5eabd8abcaca8e1a215a8d692db7f15ce5bbea7f9b45cb92b301
3
+ size 138488
99AzT4oBgHgl3EQf_P4t/content/2301.01944v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:799a3af2a9c0381442f98ac482a7a6961f8916cbbfb6e8440395d906e0f5e7b3
3
+ size 1485842
99AzT4oBgHgl3EQf_P4t/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b75388a2d8276d8f67e689eb7a084440149d9a52cc2ae09acdae658b0e1b07da
3
+ size 332426
9NFST4oBgHgl3EQfaziV/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
A9AyT4oBgHgl3EQfRvd3/content/2301.00072v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21d0fddaa7cc80733690766b7ee0c9e8ce487d1f4f57374dc909985d767dd683
3
+ size 1468140
A9AyT4oBgHgl3EQfRvd3/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a588373e0c70eccf27aa2e166d5b319b0ee7256663bb390b78c21058a37fcfa8
3
+ size 4915245
A9AyT4oBgHgl3EQfRvd3/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:86b11c9855600226696bea4f38fa60a776e77df86e5bf7757a15db205d7c02d9
3
+ size 197048
AdE2T4oBgHgl3EQfRQcf/content/2301.03778v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c193a78ca62e816c5dd0eada8a4c24ba608b6931f38aca740235c53c72bec300
3
+ size 516482
AdE2T4oBgHgl3EQfRQcf/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:feff0c7f76c17afc2559f1a1364484fd773fa5e02e1c2e81d35c8e5aa5c33e8d
3
+ size 98656
AtAzT4oBgHgl3EQf__8r/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ed8159929f9780ef64d657108dd8876575b0feeaebba6c5a831b95e9341266a
3
+ size 135517
AtE3T4oBgHgl3EQfsgvt/content/tmp_files/2301.04669v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
AtE3T4oBgHgl3EQfsgvt/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
BNE4T4oBgHgl3EQf5A7u/content/tmp_files/2301.05320v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
BNE4T4oBgHgl3EQf5A7u/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
BdE5T4oBgHgl3EQfTA_5/content/2301.05534v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd08b91595ba9d76064378a9b659cc902bcf16b78a197e1c528b984016fd7bcd
3
+ size 521263
BdE5T4oBgHgl3EQfTA_5/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b692fb1568247bb05f962a31fd6f9f82040bdc8c87b1e1cb7e5eba29aae6b0ae
3
+ size 340263
BtE2T4oBgHgl3EQf8wk1/content/tmp_files/2301.04221v1.pdf.txt ADDED
@@ -0,0 +1,445 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Citation
2
+ R. Benkert, O.J. Aribido, and G. AlRegib, “Explaining Deep Models Through Forgettable Learning Dynamics,” in IEEE
3
+ International Conference on Image Processing (ICIP), Anchorage, AK, Sep. 19-22 2021
4
+ Review
5
+ Date of acceptance: June 2021
6
+ Bib
7
+ @ARTICLE{benkert2021 ICIP,
8
+ author={R. Benkert, O.J. Aribido, and G. AlRegib},
9
+ journal={IEEE International Conference on Image Processing},
10
+ title={Explaining Deep Models Through Forgettable Learning Dynamics},
11
+ year={2021}
12
+ Copyright
13
+ ©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
14
+ in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
15
+ creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
16
+ this work in other works.
17
+ Contact
18
+ rbenkert3@gatech.edu OR alregib@gatech.edu
19
+ http://ghassanalregib.info/
20
+ arXiv:2301.04221v1 [cs.CV] 10 Jan 2023
21
+
22
+ EXPLAINING DEEP MODELS THROUGH FORGETTABLE LEARNING DYNAMICS
23
+ Ryan Benkert, Oluwaseun Joseph Aribido and Ghassan AlRegib
24
+ School of Electrical and Computer Engineering
25
+ Georgia Institute of Technology,
26
+ Atlanta, GA, 30332-0250, USA
27
+ {rbenkert3, oja, alregib}@gatech.edu
28
+ ABSTRACT
29
+ Even though deep neural networks have shown tremendous
30
+ success in countless applications, explaining model behaviour
31
+ or predictions is an open research problem. In this paper, we
32
+ address this issue by employing a simple yet effective method
33
+ by analysing the learning dynamics of deep neural networks
34
+ in semantic segmentation tasks.
35
+ Specifically, we visualize
36
+ the learning behaviour during training by tracking how of-
37
+ ten samples are learned and forgotten in subsequent training
38
+ epochs. This further allows us to derive important informa-
39
+ tion about the proximity to the class decision boundary and
40
+ identify regions that pose a particular challenge to the model.
41
+ Inspired by this phenomenon, we present a novel segmenta-
42
+ tion method that actively uses this information to alter the
43
+ data representation within the model by increasing the vari-
44
+ ety of difficult regions. Finally, we show that our method
45
+ consistently reduces the amount of regions that are forgotten
46
+ frequently. We further evaluate our method in light of the
47
+ segmentation performance.
48
+ Index Terms—
49
+ Example Forgetting, Interpretability,
50
+ Support Vectors, Semantic Segmentation
51
+ 1. INTRODUCTION
52
+ Over the last decade, deep learning has had an impact on
53
+ nearly every sector. It has paved the way for scientific break-
54
+ throughs in areas ranging from image recognition to com-
55
+ plex medical diagnostics. The success of deep neural mod-
56
+ els lies in their ability to learn complex non-linear functions
57
+ and estimate distributions of high dimensional data. In ad-
58
+ dition, open-source deep learning libraries enable fast large-
59
+ scale deployment, making state-of-the-art algorithms avail-
60
+ able for countless applications. A central component of neu-
61
+ ral networks is how well they are capable of representing the
62
+ target data. Well designed models can capture unique repre-
63
+ sentations of the data and ”learn” a function with a small er-
64
+ ror margin. In contrast, poor representations are often incon-
65
+ sistent and can produce semantically incorrect predictions.
66
+ Therefore, understanding how the model represents and inter-
67
+ acts with the data remains a very challenging and highly rele-
68
+ vant research problem. One application, where this behaviour
69
+ is especially important, is deep learning models for compu-
70
+ tational seismic interpretation. In seismic, there is limited
71
+ open-source annotated data due to the high cost associated
72
+ with data acquisition and expert annotation. For this reason,
73
+ architectures designed for large computer vision applications
74
+ over-fit on limited annotated seismic data and result in poor
75
+ generalization capabilities. Due to the high relevance in this
76
+ field, we present our method using the F3 block dataset ([1])
77
+ where several classes are underrepresented. Nevertheless, the
78
+ work is applicable to a wide range of 2D data.
79
+ In this paper, we view neural networks in the context of their
80
+ learning dynamics. Specifically, neural networks do not learn
81
+ continually but forget samples over time. One branch of re-
82
+ search investigates the forgotten information when a model is
83
+ trained on one task but fine-tuned on another. In literature,
84
+ this is often referred to as catastrophic forgetting ([2, 3]). In
85
+ contrast, [4] view the dynamics within a single data distribu-
86
+ tion and track the frequency in which information is forgotten
87
+ during training. In this paper, we build upon this intuition
88
+ and visualize frequently forgotten regions in a generalized
89
+ segmentation framework. Similar to uncertainty works with
90
+ Bayesian inference ([5]) or gradient based explanations ([6, 7,
91
+ 8]), we can identify difficult regions and explain segmentation
92
+ predictions. In contrast to other explainability techniques, fre-
93
+ quently forgotten regions contain valuable information about
94
+ the position within the representation space. Specifically, fre-
95
+ quently forgotten regions are closer to the decision boundary
96
+ and pose a threat to the generalization performance. Based on
97
+ these findings we engineer a method that identifies challeng-
98
+ ing pixels and generates new samples that actively influence
99
+ the representation mapping. In Fig. 1 we show a toy exam-
100
+ ple of our method. Based on the identified support vectors
101
+ (circled blue disks), we generate new samples (green) that ac-
102
+ tively shift the decision boundary (black line) to reduce the
103
+ amount of support vectors for a specific class. In contrast to
104
+ traditional data augmentation ([9]), our method is data-driven
105
+ and consistently reduces support vectors within the model.
106
+ The following are our contributions: First, we visualize dif-
107
+ ficult regions in the data by analyzing the learning dynamics
108
+
109
+ during training. Second, we develop a augmentation method
110
+ that reduces prone regions by actively shifting the decision
111
+ boundary. Lastly, we compare our technique to popular aug-
112
+ mentation techniques in literature.
113
+ Fig. 1. Intuition of our support vector augmentation method
114
+ 2. METHODOLOGY
115
+ Our goal is to quantify the learning behaviour during image
116
+ segmentation by analysing the frequency of sample forget-
117
+ ting. In this section, we formally define when a sample is for-
118
+ gotten and how this relates to the proximity of samples to the
119
+ decision boundary. Furthermore, we exploit these dynamics
120
+ to actively shift the decision boundary in our model. Specif-
121
+ ically, we identify support vectors in our training images and
122
+ increase the variety through style transfer.
123
+ 2.1. Forgetting Events
124
+ Intuitively, a sample is forgotten if it was classified correctly
125
+ in a previous epoch and miss-classified in the current epoch.
126
+ More formally, for image I with (pixel, annotation) tuples
127
+ (xi, yi), we define the accuracy of each pixel at a epoch t as
128
+ acct
129
+ i = 1˜yt
130
+ i=yi.
131
+ (1)
132
+ Here, 1˜yt
133
+ i=yi refers to a binary variable indicating the cor-
134
+ rectness of the classified pixel in image I. With this definition
135
+ we say a pixel was forgotten at epoch t + 1 if the accuracy at
136
+ t + 1 is strictly smaller than the accuracy at epoch t:
137
+ f t
138
+ i = int(acct+1
139
+ i
140
+ < acct
141
+ i) ∈ 1, 0
142
+ (2)
143
+ Following [4], we define the binary event f t
144
+ i as a forgetting
145
+ event at epoch t. Since our application is a segmentation set-
146
+ ting, we further visualize forgetting events in the spatial do-
147
+ main. Specifically, we count the amount of forgetting events
148
+ occurring at each pixel i and display them in a heat map.
149
+ Mathematically, heat map L ∈ N0+
150
+ M×N is the sum over
151
+ all forgetting events f t
152
+ i that occurred in time frame T:
153
+ Li =
154
+ T
155
+
156
+ t=0
157
+ f t
158
+ i
159
+ (3)
160
+ Fig. 2. An example of a forgetting event heat map as well as
161
+ its corresponding image and annotation. Pixels close to the
162
+ decision boundary are highlighted in different shades of red
163
+ whereas pixels deep within the class manifold are dark blue.
164
+ Note, that several classes (e.g the orange class ”scruff”) are
165
+ underrepresented
166
+ For better illustration, we present an example of a heat map in
167
+ Fig 2. Areas that were forgotten frequently are highlighted in
168
+ shades of red in contrast to pixels that were forgotten rarely
169
+ (blue). Similar to [4], we can broadly classify the pixels into
170
+ two groups: The first group consists of the pixels that were
171
+ never forgotten or forgotten only rarely (e.g. light blue class
172
+ in the center of Fig 2). Since every epoch represents a model
173
+ update, we conclude that these pixels are never or only rarely
174
+ shifted outside of the class manifold in the feature space. In
175
+ contrast, the second group consists of pixels forgotten more
176
+ frequently (e.g. the class boundaries in Fig. 2). Specifically,
177
+ this means that several model updates shifted these pixels over
178
+ the decision boundary during training, mapping them closer
179
+ to the decision boundary than unforgettable pixels. Similar to
180
+ [4], we argue that these pixels play a similar role to support
181
+ vectors in maximal margin classifiers. In particular, we will
182
+ show the importance of forgetting events in analyzing model
183
+ predictions.
184
+ 2.2. Support Vector Augmentation
185
+ As we have seen in Section 2.1, forgetting events are a useful
186
+ metric to quantify the sample position in the representation
187
+ space. To be precise, forgetting events provide information
188
+ about the proximity of samples to the decision boundary in
189
+ a training interval T.
190
+ In this section, we will exploit this
191
+ information to increase the variety of forgettable pixels. In
192
+ the seismic application, we achieve this through style transfer
193
+ models ([10, 11]).
194
+ Specifically, we transfer class specific
195
+ visual features from a source image to a target image with-
196
+ out changing the structure or characteristics of neighboring
197
+ classes. We target specific classes with a high forgetting event
198
+ density and transfer the characteristics to other sections with-
199
+ out affecting the geologic properties of the seismic images.
200
+ An example of a style transfer is presented in Fig. 3. Here, we
201
+ show the target for the transfer, the resulting transfer image
202
+ (second column from the left), the target annotation, and the
203
+ style source with its corresponding label. The image on the
204
+ far right of Fig. 3 shows the difference between the transfer
205
+ images of subsequent batches with different style sources. In
206
+
207
+ Fig. 3. Example of a feature transfer within two seismic images.
208
+ this example, we transfer the visual features of class ”scruff”
209
+ (orange) from the style source to the target image. Moreover,
210
+ switching the source image largely affects the target class
211
+ (difference image in Fig. 3) and presents the desired func-
212
+ tionality of our algorithm.
213
+ Our method consists of a segmentation model, a transfer
214
+ model and a data selection step (Fig 4). First, our method
215
+ trains the segmentation model on the training data and pro-
216
+ duces a forgetting event heat map for every validation image
217
+ in the training volume.
218
+ In principle, heat maps could be
219
+ produced for the entire training set but is computationally
220
+ inefficient. In our implementation, the segmentation archi-
221
+ tecture is based on the deeplab-v3 architecture by [12] with a
222
+ resnet-18 ([13]) backbone. Our choice is based on empirical
223
+ evaluations of performance and computational efficiency.
224
+ In the next step of our workflow, we calculate the forgetting
225
+ event density within each class of a heat map. Specifically,
226
+ we sum all forgetting events fi∈ck within class ck of a heat
227
+ map and divide by the number of pixels of class ck in the im-
228
+ age. This metric allows us to rank each heat map according
229
+ to its density with regard to an arbitrary class in the dataset.
230
+ Finally, we transfer the visual features of a predefined class
231
+ from the images with the highest density to randomly sampled
232
+ training images. Here, our architecture is a slightly altered
233
+ version of [10].
234
+ In short, the model modulates the style
235
+ characteristics on the batch-normalization outputs within the
236
+ image generator. This enables class specific transfers without
237
+ affecting the geology of the image. In our method, we trans-
238
+ fer the underrepresented classes within our data-set as these
239
+ classes are generally most difficult to learn. After generation,
240
+ the transferred images are added to our training pool and the
241
+ segmentation model is trained from scratch.
242
+ 3. RESULTS AND DISCUSSION
243
+ To produce computationally efficient forgetting event heat
244
+ maps, we train the network for 60 epochs and only track the
245
+ validation and test set heat maps. In each of our experiments,
246
+ the validation set is chosen by selecting every fifth vertical
247
+ slice (referred to as inlines) and horizontal slice (referred to
248
+ Fig. 4. Entire workflow of our architecture.
249
+ as crosslines) of the training volume. Subsequently, we query
250
+ six images with the highest forgetting event density of our
251
+ target class. Each image is used as a style source to generate
252
+ 64 transfer images. For generation, we sample randomly to
253
+ obtain the target image and retrain the segmentation model
254
+ from scratch. In this paper, we only report the results when
255
+ transferring the orange class (scruff). Other underrepresented
256
+ classes (e.g. the red class zechstein) rendered similar results
257
+ and are omitted. In our numerical analysis, our results are
258
+ averaged over five separate experiments to account for ran-
259
+ dom factors (e.g. initialization). We compare our method to
260
+ other common augmentation methods (random horizontal flip
261
+ and random rotations) in terms of segmentation performance
262
+ (in class accuracy) and the forgetting event heat maps. The
263
+ results are shown in Table 1 and Fig. 5 respectively. Overall,
264
+ our method reduces the amount of forgetting events signifi-
265
+ cantly more than other augmentation methods. Specifically,
266
+ we find that several regions with a high forgetting event den-
267
+ sity are transferred to a low density or disappear entirely
268
+ (bottom class in Section 2 or entire right part of Section 6).
269
+ These regions were shifted away from the decision boundary
270
+ and model updates had little or no affect on the classification
271
+
272
+ F3
273
+ Data
274
+ Unc.
275
+ Selection
276
+ Synth
277
+ F3 DataClass Accuracy
278
+ Class
279
+ Upper N. S.
280
+ Middle N. S.
281
+ Lower N. S.
282
+ Chalk
283
+ Scruff
284
+ Zechstein
285
+ Baseline
286
+ 0.982
287
+ 0.912
288
+ 0.969
289
+ 0.816
290
+ 0.383
291
+ 0.651
292
+ Random Flip
293
+ 0.983
294
+ 0.899
295
+ 0.967
296
+ 0.820
297
+ 0.354
298
+ 0.672
299
+ Random Rotate
300
+ 0.974
301
+ 0.933
302
+ 0.974
303
+ 0.824
304
+ 0.533
305
+ 0.681
306
+ Ours
307
+ 0.982
308
+ 0.906
309
+ 0.966
310
+ 0.810
311
+ 0.438
312
+ 0.656
313
+ Table 1. Averaged class accuracy over five augmentation experiments.
314
+ Fig. 5. Heat maps when using different augmentation methods. Our method significantly reduces the amount of forgetting
315
+ events and impacts the regions shape.
316
+ accuracy during training. In contrast, we find that no for-
317
+ getting event regions disappear in the standard augmentation
318
+ methods. Instead, the severity of forgetting event regions is
319
+ reduced.
320
+ Numerically, all methods overwhelmingly match or outper-
321
+ form the baseline with respect to class accuracy. We note,
322
+ that our method only affects the scruff class accuracy and
323
+ matches the baseline performance of all other classes. This
324
+ shows flexibility in our algorithm and allows an increased
325
+ control over the network performance. We further observe
326
+ that random rotations outperform our technique even in the
327
+ scruff class. Although the class accuracy is higher, the for-
328
+ getting event maps show significantly more forgetting event
329
+ regions than the maps produced by our method. Moreover,
330
+ the locations and shapes of the prone regions produced by the
331
+ traditional methods are similar to the baseline regions (e.g.
332
+ bottom class of Section 3). In contrast, our method changes
333
+ the shape and location of the severe forgetting event region
334
+ indicating a clear shift in the representation space.
335
+ Finally, we also identify regions with a lower forgetting event
336
+ density that transitioned to a higher density (Section 5 bot-
337
+ tom left) by applying our method. This allows us to analyze
338
+ model weaknesses and interpret the segmentation output in
339
+ light of training difficulty.
340
+ 4. CONCLUSION
341
+ In this paper, we explain the behaviour of deep models by
342
+ tracking how often samples are forgotten in between model
343
+ updates. We identify regions that are especially difficult for
344
+ the model and evaluate how these regions change when dif-
345
+ ferent segmentation strategies are pursued. Finally, we engi-
346
+ neer a novel method that explicitly exploits this characteristic
347
+ to actively influence how the data is represented within the
348
+ model. We show that our method increases the margin of dif-
349
+ ficult regions indicating a clear decision boundary shift.
350
+
351
+ Section 1
352
+ Section 2
353
+ Section 3
354
+ Section 4
355
+ Section 5
356
+ Section 6
357
+ 15
358
+ 15
359
+ Baseline
360
+ 10
361
+ 10
362
+ 10
363
+ 10
364
+ 15
365
+ Random Flip
366
+ 10
367
+ 10
368
+ 10
369
+ 10
370
+ 10
371
+ 20
372
+ 15
373
+ 15
374
+ 15
375
+ 15
376
+ Random
377
+ 10
378
+ 10
379
+ 10
380
+ Rotation
381
+ 20
382
+ 15
383
+ 15
384
+ 15
385
+ Ours
386
+ 10
387
+ 105. REFERENCES
388
+ [1] Y. Alaudah, P. Michałowicz, M. Alfarraj, and G. Al-
389
+ Regib, “A machine-learning benchmark for facies clas-
390
+ sification,” Interpretation, vol. 7, no. 3, pp. SE175–
391
+ SE187, 2019.
392
+ [2] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness,
393
+ G. Desjardins, A. A. Rusu, K. Milan, J. Quan, T. Ra-
394
+ malho, A. Grabska-Barwinska, et al., “Overcoming
395
+ catastrophic forgetting in neural networks,” Proceedings
396
+ of the national academy of sciences, vol. 114, no. 13,
397
+ pp. 3521–3526, 2017.
398
+ [3] H. Ritter, A. Botev, and D. Barber, “Online structured
399
+ laplace approximations for overcoming catastrophic for-
400
+ getting,” in Advances in Neural Information Processing
401
+ Systems, pp. 3738–3748, 2018.
402
+ [4] M. Toneva, A. Sordoni, R. T. d. Combes, A. Trischler,
403
+ Y. Bengio, and G. J. Gordon, “An empirical study of ex-
404
+ ample forgetting during deep neural network learning,”
405
+ arXiv preprint arXiv:1812.05159, 2018.
406
+ [5] A. Kendall and Y. Gal, “What uncertainties do we
407
+ need in bayesian deep learning for computer vision?,”
408
+ in Advances in neural information processing systems,
409
+ pp. 5574–5584, 2017.
410
+ [6] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam,
411
+ D. Parikh, and D. Batra, “Grad-cam: Visual explana-
412
+ tions from deep networks via gradient-based localiza-
413
+ tion,” in Proceedings of the IEEE international confer-
414
+ ence on computer vision, pp. 618–626, 2017.
415
+ [7] M. Prabhushankar, G. Kwon, D. Temel, and G. Al-
416
+ Regib, “Contrastive explanations in neural networks,” in
417
+ 2020 IEEE International Conference on Image Process-
418
+ ing (ICIP), pp. 3289–3293, IEEE, 2020.
419
+ [8] J. Lee and G. AlRegib, “Gradients as a measure of
420
+ uncertainty in neural networks,” in 2020 IEEE In-
421
+ ternational Conference on Image Processing (ICIP),
422
+ pp. 2416–2420, IEEE, 2020.
423
+ [9] G. B. Orr and K.-R. M¨uller, Neural networks: tricks of
424
+ the trade. Springer, 2003.
425
+ [10] P. Zhu, R. Abdal, Y. Qin, and P. Wonka, “Sean: Image
426
+ synthesis with semantic region-adaptive normalization,”
427
+ in Proceedings of the IEEE/CVF Conference on Com-
428
+ puter Vision and Pattern Recognition, pp. 5104–5113,
429
+ 2020.
430
+ [11] T. Park, M.-Y. Liu, T.-C. Wang, and J.-Y. Zhu, “Seman-
431
+ tic image synthesis with spatially-adaptive normaliza-
432
+ tion,” in Proceedings of the IEEE Conference on Com-
433
+ puter Vision and Pattern Recognition, pp. 2337–2346,
434
+ 2019.
435
+ [12] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy,
436
+ and A. L. Yuille, “Deeplab: Semantic image segmenta-
437
+ tion with deep convolutional nets, atrous convolution,
438
+ and fully connected crfs,” IEEE transactions on pat-
439
+ tern analysis and machine intelligence, vol. 40, no. 4,
440
+ pp. 834–848, 2017.
441
+ [13] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
442
+ learning for image recognition,” in Proceedings of the
443
+ IEEE conference on computer vision and pattern recog-
444
+ nition, pp. 770–778, 2016.
445
+
BtE2T4oBgHgl3EQf8wk1/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,304 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf,len=303
2
+ page_content='Citation R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
3
+ page_content=' Benkert, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
4
+ page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
5
+ page_content=' Aribido, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
6
+ page_content=' AlRegib, “Explaining Deep Models Through Forgettable Learning Dynamics,” in IEEE International Conference on Image Processing (ICIP), Anchorage, AK, Sep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
7
+ page_content=' 19-22 2021 Review Date of acceptance: June 2021 Bib @ARTICLE{benkert2021 ICIP, author={R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
8
+ page_content=' Benkert, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
9
+ page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
10
+ page_content=' Aribido, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
11
+ page_content=' AlRegib}, journal={IEEE International Conference on Image Processing}, title={Explaining Deep Models Through Forgettable Learning Dynamics}, year={2021} Copyright ©2022 IEEE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
12
+ page_content=' Personal use of this material is permitted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
13
+ page_content=' Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
14
+ page_content=' Contact rbenkert3@gatech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
15
+ page_content='edu OR alregib@gatech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
16
+ page_content='edu http://ghassanalregib.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
17
+ page_content='info/ arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
18
+ page_content='04221v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
19
+ page_content='CV] 10 Jan 2023 EXPLAINING DEEP MODELS THROUGH FORGETTABLE LEARNING DYNAMICS Ryan Benkert, Oluwaseun Joseph Aribido and Ghassan AlRegib School of Electrical and Computer Engineering Georgia Institute of Technology, Atlanta, GA, 30332-0250, USA {rbenkert3, oja, alregib}@gatech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
20
+ page_content='edu ABSTRACT Even though deep neural networks have shown tremendous success in countless applications, explaining model behaviour or predictions is an open research problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
21
+ page_content=' In this paper, we address this issue by employing a simple yet effective method by analysing the learning dynamics of deep neural networks in semantic segmentation tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
22
+ page_content=' Specifically, we visualize the learning behaviour during training by tracking how of- ten samples are learned and forgotten in subsequent training epochs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
23
+ page_content=' This further allows us to derive important informa- tion about the proximity to the class decision boundary and identify regions that pose a particular challenge to the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
24
+ page_content=' Inspired by this phenomenon, we present a novel segmenta- tion method that actively uses this information to alter the data representation within the model by increasing the vari- ety of difficult regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
25
+ page_content=' Finally, we show that our method consistently reduces the amount of regions that are forgotten frequently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
26
+ page_content=' We further evaluate our method in light of the segmentation performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
27
+ page_content=' Index Terms— Example Forgetting, Interpretability, Support Vectors, Semantic Segmentation 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
28
+ page_content=' INTRODUCTION Over the last decade, deep learning has had an impact on nearly every sector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
29
+ page_content=' It has paved the way for scientific break- throughs in areas ranging from image recognition to com- plex medical diagnostics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
30
+ page_content=' The success of deep neural mod- els lies in their ability to learn complex non-linear functions and estimate distributions of high dimensional data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
31
+ page_content=' In ad- dition, open-source deep learning libraries enable fast large- scale deployment, making state-of-the-art algorithms avail- able for countless applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
32
+ page_content=' A central component of neu- ral networks is how well they are capable of representing the target data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
33
+ page_content=' Well designed models can capture unique repre- sentations of the data and ”learn” a function with a small er- ror margin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
34
+ page_content=' In contrast, poor representations are often incon- sistent and can produce semantically incorrect predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
35
+ page_content=' Therefore, understanding how the model represents and inter- acts with the data remains a very challenging and highly rele- vant research problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
36
+ page_content=' One application, where this behaviour is especially important, is deep learning models for compu- tational seismic interpretation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
37
+ page_content=' In seismic, there is limited open-source annotated data due to the high cost associated with data acquisition and expert annotation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
38
+ page_content=' For this reason, architectures designed for large computer vision applications over-fit on limited annotated seismic data and result in poor generalization capabilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
39
+ page_content=' Due to the high relevance in this field, we present our method using the F3 block dataset ([1]) where several classes are underrepresented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
40
+ page_content=' Nevertheless, the work is applicable to a wide range of 2D data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
41
+ page_content=' In this paper, we view neural networks in the context of their learning dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
42
+ page_content=' Specifically, neural networks do not learn continually but forget samples over time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
43
+ page_content=' One branch of re- search investigates the forgotten information when a model is trained on one task but fine-tuned on another.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
44
+ page_content=' In literature, this is often referred to as catastrophic forgetting ([2, 3]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
45
+ page_content=' In contrast, [4] view the dynamics within a single data distribu- tion and track the frequency in which information is forgotten during training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
46
+ page_content=' In this paper, we build upon this intuition and visualize frequently forgotten regions in a generalized segmentation framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
47
+ page_content=' Similar to uncertainty works with Bayesian inference ([5]) or gradient based explanations ([6, 7, 8]), we can identify difficult regions and explain segmentation predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
48
+ page_content=' In contrast to other explainability techniques, fre- quently forgotten regions contain valuable information about the position within the representation space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
49
+ page_content=' Specifically, fre- quently forgotten regions are closer to the decision boundary and pose a threat to the generalization performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
50
+ page_content=' Based on these findings we engineer a method that identifies challeng- ing pixels and generates new samples that actively influence the representation mapping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
51
+ page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
52
+ page_content=' 1 we show a toy exam- ple of our method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
53
+ page_content=' Based on the identified support vectors (circled blue disks), we generate new samples (green) that ac- tively shift the decision boundary (black line) to reduce the amount of support vectors for a specific class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
54
+ page_content=' In contrast to traditional data augmentation ([9]), our method is data-driven and consistently reduces support vectors within the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
55
+ page_content=' The following are our contributions: First, we visualize dif- ficult regions in the data by analyzing the learning dynamics during training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
56
+ page_content=' Second, we develop a augmentation method that reduces prone regions by actively shifting the decision boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
57
+ page_content=' Lastly, we compare our technique to popular aug- mentation techniques in literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
58
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
59
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
60
+ page_content=' Intuition of our support vector augmentation method 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
61
+ page_content=' METHODOLOGY Our goal is to quantify the learning behaviour during image segmentation by analysing the frequency of sample forget- ting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
62
+ page_content=' In this section, we formally define when a sample is for- gotten and how this relates to the proximity of samples to the decision boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
63
+ page_content=' Furthermore, we exploit these dynamics to actively shift the decision boundary in our model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
64
+ page_content=' Specif- ically, we identify support vectors in our training images and increase the variety through style transfer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
65
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
66
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
67
+ page_content=' Forgetting Events Intuitively, a sample is forgotten if it was classified correctly in a previous epoch and miss-classified in the current epoch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
68
+ page_content=' More formally, for image I with (pixel, annotation) tuples (xi, yi), we define the accuracy of each pixel at a epoch t as acct i = 1˜yt i=yi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
69
+ page_content=' (1) Here, 1˜yt i=yi refers to a binary variable indicating the cor- rectness of the classified pixel in image I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
70
+ page_content=' With this definition we say a pixel was forgotten at epoch t + 1 if the accuracy at t + 1 is strictly smaller than the accuracy at epoch t: f t i = int(acct+1 i < acct i) ∈ 1, 0 (2) Following [4], we define the binary event f t i as a forgetting event at epoch t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
71
+ page_content=' Since our application is a segmentation set- ting, we further visualize forgetting events in the spatial do- main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
72
+ page_content=' Specifically, we count the amount of forgetting events occurring at each pixel i and display them in a heat map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
73
+ page_content=' Mathematically, heat map L ∈ N0+ M×N is the sum over all forgetting events f t i that occurred in time frame T: Li = T � t=0 f t i (3) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
74
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
75
+ page_content=' An example of a forgetting event heat map as well as its corresponding image and annotation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
76
+ page_content=' Pixels close to the decision boundary are highlighted in different shades of red whereas pixels deep within the class manifold are dark blue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
77
+ page_content=' Note, that several classes (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
78
+ page_content='g the orange class ”scruff”) are underrepresented For better illustration, we present an example of a heat map in Fig 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
79
+ page_content=' Areas that were forgotten frequently are highlighted in shades of red in contrast to pixels that were forgotten rarely (blue).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
80
+ page_content=' Similar to [4], we can broadly classify the pixels into two groups: The first group consists of the pixels that were never forgotten or forgotten only rarely (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
81
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
82
+ page_content=' light blue class in the center of Fig 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
83
+ page_content=' Since every epoch represents a model update, we conclude that these pixels are never or only rarely shifted outside of the class manifold in the feature space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
84
+ page_content=' In contrast, the second group consists of pixels forgotten more frequently (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
85
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
86
+ page_content=' the class boundaries in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
87
+ page_content=' 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
88
+ page_content=' Specifically, this means that several model updates shifted these pixels over the decision boundary during training, mapping them closer to the decision boundary than unforgettable pixels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
89
+ page_content=' Similar to [4], we argue that these pixels play a similar role to support vectors in maximal margin classifiers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
90
+ page_content=' In particular, we will show the importance of forgetting events in analyzing model predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
91
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
92
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
93
+ page_content=' Support Vector Augmentation As we have seen in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
94
+ page_content='1, forgetting events are a useful metric to quantify the sample position in the representation space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
95
+ page_content=' To be precise, forgetting events provide information about the proximity of samples to the decision boundary in a training interval T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
96
+ page_content=' In this section, we will exploit this information to increase the variety of forgettable pixels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
97
+ page_content=' In the seismic application, we achieve this through style transfer models ([10, 11]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
98
+ page_content=' Specifically, we transfer class specific visual features from a source image to a target image with- out changing the structure or characteristics of neighboring classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
99
+ page_content=' We target specific classes with a high forgetting event density and transfer the characteristics to other sections with- out affecting the geologic properties of the seismic images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
100
+ page_content=' An example of a style transfer is presented in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
101
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
102
+ page_content=' Here, we show the target for the transfer, the resulting transfer image (second column from the left), the target annotation, and the style source with its corresponding label.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
103
+ page_content=' The image on the far right of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
104
+ page_content=' 3 shows the difference between the transfer images of subsequent batches with different style sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
105
+ page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
106
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
107
+ page_content=' Example of a feature transfer within two seismic images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
108
+ page_content=' this example, we transfer the visual features of class ”scruff” (orange) from the style source to the target image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
109
+ page_content=' Moreover, switching the source image largely affects the target class (difference image in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
110
+ page_content=' 3) and presents the desired func- tionality of our algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
111
+ page_content=' Our method consists of a segmentation model, a transfer model and a data selection step (Fig 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
112
+ page_content=' First, our method trains the segmentation model on the training data and pro- duces a forgetting event heat map for every validation image in the training volume.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
113
+ page_content=' In principle, heat maps could be produced for the entire training set but is computationally inefficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
114
+ page_content=' In our implementation, the segmentation archi- tecture is based on the deeplab-v3 architecture by [12] with a resnet-18 ([13]) backbone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
115
+ page_content=' Our choice is based on empirical evaluations of performance and computational efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
116
+ page_content=' In the next step of our workflow, we calculate the forgetting event density within each class of a heat map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
117
+ page_content=' Specifically, we sum all forgetting events fi∈ck within class ck of a heat map and divide by the number of pixels of class ck in the im- age.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
118
+ page_content=' This metric allows us to rank each heat map according to its density with regard to an arbitrary class in the dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
119
+ page_content=' Finally, we transfer the visual features of a predefined class from the images with the highest density to randomly sampled training images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
120
+ page_content=' Here, our architecture is a slightly altered version of [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
121
+ page_content=' In short, the model modulates the style characteristics on the batch-normalization outputs within the image generator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
122
+ page_content=' This enables class specific transfers without affecting the geology of the image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
123
+ page_content=' In our method, we trans- fer the underrepresented classes within our data-set as these classes are generally most difficult to learn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
124
+ page_content=' After generation, the transferred images are added to our training pool and the segmentation model is trained from scratch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
125
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
126
+ page_content=' RESULTS AND DISCUSSION To produce computationally efficient forgetting event heat maps, we train the network for 60 epochs and only track the validation and test set heat maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
127
+ page_content=' In each of our experiments, the validation set is chosen by selecting every fifth vertical slice (referred to as inlines) and horizontal slice (referred to Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
128
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
129
+ page_content=' Entire workflow of our architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
130
+ page_content=' as crosslines) of the training volume.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
131
+ page_content=' Subsequently, we query six images with the highest forgetting event density of our target class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
132
+ page_content=' Each image is used as a style source to generate 64 transfer images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
133
+ page_content=' For generation, we sample randomly to obtain the target image and retrain the segmentation model from scratch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
134
+ page_content=' In this paper, we only report the results when transferring the orange class (scruff).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
135
+ page_content=' Other underrepresented classes (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
136
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
137
+ page_content=' the red class zechstein) rendered similar results and are omitted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
138
+ page_content=' In our numerical analysis, our results are averaged over five separate experiments to account for ran- dom factors (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
139
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
140
+ page_content=' initialization).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
141
+ page_content=' We compare our method to other common augmentation methods (random horizontal flip and random rotations) in terms of segmentation performance (in class accuracy) and the forgetting event heat maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
142
+ page_content=' The results are shown in Table 1 and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
143
+ page_content=' 5 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
144
+ page_content=' Overall, our method reduces the amount of forgetting events signifi- cantly more than other augmentation methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
145
+ page_content=' Specifically, we find that several regions with a high forgetting event den- sity are transferred to a low density or disappear entirely (bottom class in Section 2 or entire right part of Section 6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
146
+ page_content=' These regions were shifted away from the decision boundary and model updates had little or no affect on the classification F3 Data Unc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
147
+ page_content=' Selection Synth F3 DataClass Accuracy Class Upper N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
148
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
149
+ page_content=' Middle N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
150
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
151
+ page_content=' Lower N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
152
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
153
+ page_content=' Chalk Scruff Zechstein Baseline 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
154
+ page_content='982 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
155
+ page_content='912 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
156
+ page_content='969 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
157
+ page_content='816 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
158
+ page_content='383 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
159
+ page_content='651 Random Flip 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
160
+ page_content='983 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
161
+ page_content='899 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
162
+ page_content='967 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
163
+ page_content='820 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
164
+ page_content='354 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
165
+ page_content='672 Random Rotate 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
166
+ page_content='974 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
167
+ page_content='933 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
168
+ page_content='974 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
169
+ page_content='824 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
170
+ page_content='533 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
171
+ page_content='681 Ours 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
172
+ page_content='982 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
173
+ page_content='906 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
174
+ page_content='966 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
175
+ page_content='810 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
176
+ page_content='438 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
177
+ page_content='656 Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
178
+ page_content=' Averaged class accuracy over five augmentation experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
179
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
180
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
181
+ page_content=' Heat maps when using different augmentation methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
182
+ page_content=' Our method significantly reduces the amount of forgetting events and impacts the regions shape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
183
+ page_content=' accuracy during training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
184
+ page_content=' In contrast, we find that no for- getting event regions disappear in the standard augmentation methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
185
+ page_content=' Instead, the severity of forgetting event regions is reduced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
186
+ page_content=' Numerically, all methods overwhelmingly match or outper- form the baseline with respect to class accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
187
+ page_content=' We note, that our method only affects the scruff class accuracy and matches the baseline performance of all other classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
188
+ page_content=' This shows flexibility in our algorithm and allows an increased control over the network performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
189
+ page_content=' We further observe that random rotations outperform our technique even in the scruff class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
190
+ page_content=' Although the class accuracy is higher, the for- getting event maps show significantly more forgetting event regions than the maps produced by our method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
191
+ page_content=' Moreover, the locations and shapes of the prone regions produced by the traditional methods are similar to the baseline regions (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
192
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
193
+ page_content=' bottom class of Section 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
194
+ page_content=' In contrast, our method changes the shape and location of the severe forgetting event region indicating a clear shift in the representation space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
195
+ page_content=' Finally, we also identify regions with a lower forgetting event density that transitioned to a higher density (Section 5 bot- tom left) by applying our method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
196
+ page_content=' This allows us to analyze model weaknesses and interpret the segmentation output in light of training difficulty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
197
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
198
+ page_content=' CONCLUSION In this paper, we explain the behaviour of deep models by tracking how often samples are forgotten in between model updates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
199
+ page_content=' We identify regions that are especially difficult for the model and evaluate how these regions change when dif- ferent segmentation strategies are pursued.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
200
+ page_content=' Finally, we engi- neer a novel method that explicitly exploits this characteristic to actively influence how the data is represented within the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
201
+ page_content=' We show that our method increases the margin of dif- ficult regions indicating a clear decision boundary shift.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
202
+ page_content=' Section 1 Section 2 Section 3 Section 4 Section 5 Section 6 15 15 Baseline 10 10 10 10 15 Random Flip 10 10 10 10 10 20 15 15 15 15 Random 10 10 10 Rotation 20 15 15 15 Ours 10 105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
203
+ page_content=' REFERENCES [1] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
204
+ page_content=' Alaudah, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
205
+ page_content=' Michałowicz, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
206
+ page_content=' Alfarraj, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
207
+ page_content=' Al- Regib, “A machine-learning benchmark for facies clas- sification,” Interpretation, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
208
+ page_content=' 7, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
209
+ page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
210
+ page_content=' SE175– SE187, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
211
+ page_content=' [2] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
212
+ page_content=' Kirkpatrick, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
213
+ page_content=' Pascanu, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
214
+ page_content=' Rabinowitz, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
215
+ page_content=' Veness, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
216
+ page_content=' Desjardins, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
217
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
218
+ page_content=' Rusu, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
219
+ page_content=' Milan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
220
+ page_content=' Quan, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
221
+ page_content=' Ra- malho, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
222
+ page_content=' Grabska-Barwinska, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
223
+ page_content=', “Overcoming catastrophic forgetting in neural networks,” Proceedings of the national academy of sciences, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
224
+ page_content=' 114, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
225
+ page_content=' 13, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
226
+ page_content=' 3521–3526, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
227
+ page_content=' [3] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
228
+ page_content=' Ritter, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
229
+ page_content=' Botev, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
230
+ page_content=' Barber, “Online structured laplace approximations for overcoming catastrophic for- getting,” in Advances in Neural Information Processing Systems, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
231
+ page_content=' 3738–3748, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
232
+ page_content=' [4] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
233
+ page_content=' Toneva, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
234
+ page_content=' Sordoni, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
235
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
236
+ page_content=' d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
237
+ page_content=' Combes, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
238
+ page_content=' Trischler, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
239
+ page_content=' Bengio, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
240
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
241
+ page_content=' Gordon, “An empirical study of ex- ample forgetting during deep neural network learning,” arXiv preprint arXiv:1812.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
242
+ page_content='05159, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
243
+ page_content=' [5] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
244
+ page_content=' Kendall and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
245
+ page_content=' Gal, “What uncertainties do we need in bayesian deep learning for computer vision?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
246
+ page_content=',” in Advances in neural information processing systems, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
247
+ page_content=' 5574–5584, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
248
+ page_content=' [6] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
249
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
250
+ page_content=' Selvaraju, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
251
+ page_content=' Cogswell, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
252
+ page_content=' Das, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
253
+ page_content=' Vedantam, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
254
+ page_content=' Parikh, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
255
+ page_content=' Batra, “Grad-cam: Visual explana- tions from deep networks via gradient-based localiza- tion,” in Proceedings of the IEEE international confer- ence on computer vision, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
256
+ page_content=' 618–626, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
257
+ page_content=' [7] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
258
+ page_content=' Prabhushankar, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
259
+ page_content=' Kwon, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
260
+ page_content=' Temel, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
261
+ page_content=' Al- Regib, “Contrastive explanations in neural networks,” in 2020 IEEE International Conference on Image Process- ing (ICIP), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
262
+ page_content=' 3289–3293, IEEE, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
263
+ page_content=' [8] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
264
+ page_content=' Lee and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
265
+ page_content=' AlRegib, “Gradients as a measure of uncertainty in neural networks,” in 2020 IEEE In- ternational Conference on Image Processing (ICIP), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
266
+ page_content=' 2416–2420, IEEE, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
267
+ page_content=' [9] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
268
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
269
+ page_content=' Orr and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
270
+ page_content='-R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
271
+ page_content=' M¨uller, Neural networks: tricks of the trade.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
272
+ page_content=' Springer, 2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
273
+ page_content=' [10] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
274
+ page_content=' Zhu, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
275
+ page_content=' Abdal, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
276
+ page_content=' Qin, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
277
+ page_content=' Wonka, “Sean: Image synthesis with semantic region-adaptive normalization,” in Proceedings of the IEEE/CVF Conference on Com- puter Vision and Pattern Recognition, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
278
+ page_content=' 5104–5113, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
279
+ page_content=' [11] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
280
+ page_content=' Park, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
281
+ page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
282
+ page_content=' Liu, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
283
+ page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
284
+ page_content=' Wang, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
285
+ page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
286
+ page_content=' Zhu, “Seman- tic image synthesis with spatially-adaptive normaliza- tion,” in Proceedings of the IEEE Conference on Com- puter Vision and Pattern Recognition, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
287
+ page_content=' 2337–2346, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
288
+ page_content=' [12] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
289
+ page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
290
+ page_content=' Chen, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
291
+ page_content=' Papandreou, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
292
+ page_content=' Kokkinos, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
293
+ page_content=' Murphy, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
294
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
295
+ page_content=' Yuille, “Deeplab: Semantic image segmenta- tion with deep convolutional nets, atrous convolution, and fully connected crfs,” IEEE transactions on pat- tern analysis and machine intelligence, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
296
+ page_content=' 40, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
297
+ page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
298
+ page_content=' 834–848, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
299
+ page_content=' [13] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
300
+ page_content=' He, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
301
+ page_content=' Zhang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
302
+ page_content=' Ren, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
303
+ page_content=' Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recog- nition, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
304
+ page_content=' 770–778, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE2T4oBgHgl3EQf8wk1/content/2301.04221v1.pdf'}
CdE5T4oBgHgl3EQfTw8s/content/2301.05538v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:174c8cd38b6b557543eca211994ab9272056b2299ab26ababc8b9c3ae1c24c47
3
+ size 10452790
EtE4T4oBgHgl3EQf6w5f/content/tmp_files/2301.05334v1.pdf.txt ADDED
@@ -0,0 +1,1685 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ TransfQMix: Transformers for Leveraging the Graph Structure of
2
+ Multi-Agent Reinforcement Learning Problems
3
+ Matteo Gallici
4
+ KEMLG Research Group, Universitat
5
+ Politècnica de Catalunya
6
+ Barcelona, Spain
7
+ gallici@cs.upc.edu
8
+ Mario Martin
9
+ KEMLG Research Group, Universitat
10
+ Politècnica de Catalunya
11
+ Barcelona, Spain
12
+ mmartin@cs.upc.edu
13
+ Ivan Masmitja
14
+ Institut de Ciències del Mar (ICM),
15
+ CSIC
16
+ Barcelona, Spain
17
+ masmitja@icm.csic.es
18
+ ABSTRACT
19
+ Coordination is one of the most difficult aspects of multi-agent re-
20
+ inforcement learning (MARL). One reason is that agents normally
21
+ choose their actions independently of one another. In order to see
22
+ coordination strategies emerging from the combination of inde-
23
+ pendent policies, the recent research has focused on the use of a
24
+ centralized function (CF) that learns each agent’s contribution to
25
+ the team reward. However, the structure in which the environment
26
+ is presented to the agents and to the CF is typically overlooked.
27
+ We have observed that the features used to describe the coordi-
28
+ nation problem can be represented as vertex features of a latent
29
+ graph structure. Here, we present TransfQMix, a new approach that
30
+ uses transformers to leverage this latent structure and learn better
31
+ coordination policies. Our transformer agents perform a graph rea-
32
+ soning over the state of the observable entities. Our transformer
33
+ Q-mixer learns a monotonic mixing-function from a larger graph
34
+ that includes the internal and external states of the agents. Trans-
35
+ fQMix is designed to be entirely transferable, meaning that same
36
+ parameters can be used to control and train larger or smaller teams
37
+ of agents. This enables to deploy promising approaches to save
38
+ training time and derive general policies in MARL, such as transfer
39
+ learning, zero-shot transfer, and curriculum learning. We report
40
+ TransfQMix’s performances in the Spread and StarCraft II environ-
41
+ ments. In both settings, it outperforms state-of-the-art Q-Learning
42
+ models, and it demonstrates effectiveness in solving problems that
43
+ other methods can not solve.
44
+ KEYWORDS
45
+ Multi-Agent Reinforcement Learning, Transformers, Coordination
46
+ Graphs, Transfer Learning
47
+ ACM Reference Format:
48
+ Matteo Gallici, Mario Martin, and Ivan Masmitja. 2023. TransfQMix: Trans-
49
+ formers for Leveraging the Graph Structure of Multi-Agent Reinforcement
50
+ Learning Problems. In PREPRINT VERSION, accepted at: Proc. of the 22nd
51
+ International Conference on Autonomous Agents and Multiagent Systems
52
+ (AAMAS 2023), London, United Kingdom, May 29 – June 2, 2023, IFAAMAS,
53
+ 9 pages.
54
+ 1
55
+ INTRODUCTION
56
+ In order to solve cooperative multi-agent problems, it is critical
57
+ that agents behave in a coordinated manner. Deep reinforcement
58
+ PREPRINT VERSION, accepted at: Proc. of the 22nd International Conference on
59
+ Autonomous Agents and Multiagent Systems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon,
60
+ B. An (eds.), May 29 – June 2, 2023, London, United Kingdom. © 2023 International
61
+ Foundation for Autonomous Agents and Multiagent Systems (www.ifaamas.org). All
62
+ rights reserved.
63
+ learning (RL) has been successfully applied to numerous multi-
64
+ agent optimization tasks [6, 8, 12]. When we try to apply RL to
65
+ learn coordination policies, however, we face numerous challenges.
66
+ Due to communication constraints, the deployment of a central
67
+ controller is not practical. Even when communication is allowed,
68
+ the large size of the observation and action spaces introduces the
69
+ curse of dimensionality, discouraging the use of a single actuator.
70
+ Agents should therefore choose their actions independently of one
71
+ another. In order to see coordinating strategies emerging from the
72
+ combination of independent policies, state-of-the-art multi-agent
73
+ reinforcement learning (MARL) models use one or more centralized
74
+ functions (CFs) to learn the contribution of the agents’ actions to
75
+ the team goal. The CFs allow to optimize the agents’ parameters
76
+ with respect to a global team reward. Once trained, they can still be
77
+ deployed autonomously since each agent is in charge of choosing
78
+ its own behavior. This approach is referred to as the centralized-
79
+ training-decentralized-execution (CTDE) paradigm [4, 7].
80
+ During the last years, most of the works have focused on the
81
+ CFs of CTDE. Methods such as Value Decomposition Networks
82
+ (VDN) [21], QMix [18], and QTran [20] extended the traditional
83
+ Q-Learning algorithm [28] with a central network that (learns to)
84
+ project the agent’s action-values over the q-value of the joint action.
85
+ Actor-critic models such as Multi-Agent Deep Deterministic Policy
86
+ gradient (MADDPG) [11] and Multi-Agent Proximal Policy Opti-
87
+ mization (MAPPO) [30], allow the critic networks to access global
88
+ observations during training. More recent approaches, like Deep
89
+ Implicit Coordination Graphs (DICG) [9] and QPlex [26] refined
90
+ the CF with the use of multi-head self-attention and graph neural
91
+ networks. Nonetheless, individual agents are usually kept simple
92
+ by employing recurrent neural networks (RNN) fed by observation
93
+ vectors that are large concatenations of various types of features
94
+ (see Figure 1a). By performing these concatenations a key infor-
95
+ mation is lost: the fact that many of the features are exactly of the
96
+ same type despite referring to separate entities (e.g., the position
97
+ in a map).
98
+ Our work shows that the structure of the observation space,
99
+ as well as the architecture used to deploy the agents and the CFs,
100
+ play an important role in solving complex coordination tasks. We
101
+ suggest that observation vectors contain mostly vertex features of
102
+ a latent graph structure that becomes explicit when we reconsider
103
+ how they are fed into neural networks. Consequently, instead of
104
+ chaining together many features to generate a vector that describes
105
+ the state of the world observed by the agent, we generalize a set
106
+ of features and we use them to describe the state of the entities
107
+ observed by the agent (or the CFs). Our approach is depicted in
108
+ Figure 1b. We do not include any additional information in this
109
+
110
+ MLP
111
+ RNN
112
+ (a) Traditional approach
113
+ Embedder
114
+ Self-Attention
115
+ (b) Our graph approach
116
+ Figure 1: A traditional observation vector and our graph approach.
117
+ In traditional approaches (a), the observation vector for the agent 𝑎
118
+ at the time step 𝑡 is defined by a concatenation of features relative
119
+ to itself, to the other 𝑘 − 1 entities, and to additional elements (e.g.,
120
+ previous actions). In our approach (b), we keep only the 𝑧 features
121
+ defined for all the entities to generate the vertices of a coordination
122
+ graph, the edges of which are learned via a self-attention mechanism.
123
+ process. On the contrary, sometimes we need to remove data that
124
+ is not accessible for all the observed entities. There are several
125
+ advantages in this approach: (i) we can employ the same weights
126
+ of an embedded feed forward network to process the same vertex
127
+ features, reducing the complexity of the feature space; and (ii), we
128
+ can learn the edges of the latent coordination graph using a self-
129
+ attention mechanism. In particular, we employ transformers [24],
130
+ which have been shown to be an effective graph-based architecture
131
+ in natural language processing [27], computer vision [29], and even
132
+ for developing a generalist agent [19].
133
+ Our transformer agents sample their actions after processing the
134
+ graph of entities observed at a specific time step. Our transformer
135
+ Q-mixer learns a monotonic mixing-function from a larger graph
136
+ that contains the agents’ internal and external states. Given the
137
+ strong temporal dependencies in RL problems, we add a recurrent
138
+ mechanism in both the agents and the mixer, which allows us to
139
+ affect the graph reasoning at a certain time step with an embed-
140
+ ding of the preceding. The resulting model, TransfQMix, has the
141
+ advantage of being totally transferable, meaning that the same
142
+ parameters can be applied to control and train larger or smaller
143
+ teams. This is allowed since the networks’ weights constitute an
144
+ attention mechanism that is independent of the number of ver-
145
+ tices to which it is applied. Traditional models, conversely, must
146
+ be re-trained every time we introduce a new entity, because the
147
+ dimension of the concatenated vectors changes, and therefore the
148
+ networks weights must be readjusted. The total transferability of
149
+ TransfQMix enables to deploy transfer learning, zero-shot transfer,
150
+ and curriculum learning, which are crucial steps towards more
151
+ general models in MARL.
152
+ We tested TransfQMix in multiple scenarios of the Spread task
153
+ [11], and in the hardest maps of StarCraft II (SC2) [25]. TransfQMix
154
+ outperformed state-of-the-art Q-Learning models in both environ-
155
+ ments, and it could solve problems that others can not address,
156
+ showing in general faster convergence to better coordination poli-
157
+ cies.
158
+ The following is a list of the contributions of this paper:
159
+ (1) We formalize a new paradigm for cooperative MARL, which
160
+ consists of rethinking the coordination tasks as graph em-
161
+ bedding tasks.
162
+ (2) We present a new method, TransfQMix, that uses transform-
163
+ ers to leverage coordination graphs and outperforms state-
164
+ of-the-art Q-Learning methods.
165
+ (3) We introduce a graph-based recurrent mechanism for includ-
166
+ ing a time dependency in both the transformer agents and
167
+ mixer.
168
+ (4) We design TransfQMix to be able to process graphs of enti-
169
+ ties of varying sizes. This allows us to obtain a more general
170
+ method which can be used to deploy zero-shot transfer, trans-
171
+ fer learning, and curriculum learning in MARL.
172
+ 2
173
+ RELATED WORK
174
+ Recent state-of-the-art methods tackle MARL problems using the
175
+ CTDE paradigm [4, 7]. The CTDE approach was deployed success-
176
+ fully with policy-based and value-based methods [9, 30, 31]. Here,
177
+ we have focused on value-based methods that use CTDE.
178
+ A necessary condition for implementing CTDE effectively in
179
+ multi-agent Q-Learning is that a greedy sampling of the joint ac-
180
+ tion is equivalent to sampling the actions greedily from the in-
181
+ dividual agents [25]. This principle is known as the individual-
182
+ global-max (IGM) [20]. VDN has been one of the first methods to
183
+ extend Q-Learning to MARL using CTDE [21]. It implements a not-
184
+ parameterized CF which computes the𝑄𝑡𝑜𝑡 of the joint action as the
185
+ sum of the individual agents’ action-values. Despite respecting IGM,
186
+ this CF is too simple to model effectively the agents’ contribution
187
+ to 𝑄𝑡𝑜𝑡 [18].
188
+ QMix [18] demonstrated that in order to satisfy IGM, it is suffi-
189
+ cient that the CF is monotonic with regard to the individual action-
190
+ values. As a result, the VDN’s sum-function is substituted with a
191
+ multi-layer perceptron (MLP). This mixer network can learn sophis-
192
+ ticated non-linear projections of several action-values over 𝑄𝑡𝑜𝑡.
193
+ Its weights are generated by a set of hypernetworks conditioned by
194
+ the state 𝑠 and are forced to be positive by an absolute activation
195
+ function. Our proposed method is a refined version of QMix. In
196
+ particular, TransfQMix also learns a monotonic CF conditioned
197
+ by 𝑠 that serves to produce 𝑄𝑡𝑜𝑡 from the individual action-values.
198
+ Nonetheless, TransfQMix is a much more sophisticated method for
199
+ the use of transformers.
200
+ Previous methods have attempted to improve QMix. OWQMix
201
+ and CWQMix [17] used a weighting mechanism for learning non-
202
+ monotonic CFs, giving more importance to better joint actions.
203
+ QTran [20] learned a factorization of 𝑄𝑡𝑜𝑡 that was also free of
204
+ monotonicity, but it did this via several MLPs. QPlex [26] proposed
205
+ a dueling structure to learn non-monotonic CFs while adhering
206
+ to IGM principle. Notice that QPlex, like TransfQMix, employed
207
+ multi-head attention, but only for a subset of their centralized
208
+ dueling network. All of these approaches involved RNN agents and
209
+ large concatenated observation vectors. Despite showing significant
210
+ advantages in simple theoretical frameworks, it is still debated
211
+ whether relaxing the monotonicity constraint benefits modeling
212
+
213
+ complex problems [26]. Our refinement of QMix focuses on the
214
+ representation of cooperative games and the networks architecture
215
+ rather than monotonicity.
216
+ Transformers were successfully deployed in single agent RL [16],
217
+ but required architecture modifications. Such adjustments are un-
218
+ necessary for multi-agent problems, since they can be represented
219
+ more naturally as graph problems. DeepMind’s generalist agent
220
+ (Gato) [19] is a standard transformer that can solve a variety of RL
221
+ tasks, but it has not been tested in multi-agent settings. Further-
222
+ more, Gato is not trained using RL, but rather through a supervised
223
+ approach. In a method known as universal policy decomposition
224
+ transformer (UPDET) [5], transformers were applied to a subset of
225
+ the SC2 tasks. UPDET adopted the QMix framework but replaced
226
+ RNN agents with transformers, and used a decoupling policy sys-
227
+ tem in which the q-values of entity-based actions (particularly, the
228
+ q-value of attacking a specific enemy in SC2) were generated by the
229
+ transformer embedding of that entity. The model performed well in
230
+ the SC2 subset, but it was not stated how it could be applied to other
231
+ MARL problems. Moreover, the authors demonstrate that, in the
232
+ absence of the decoupling approach, QMix performed better when
233
+ utilizing RNN rather than transformers. Because policy decoupling
234
+ is not applicable in many scenarios, UPDET appears to be effective
235
+ only for very specific problems.
236
+ Our method formalizes a generic framework that shows clear
237
+ benefits of using transformers also when policy decoupling is not
238
+ applicable. TransfQMix employees a transformer also in the central
239
+ mixer, whereas UPDET deploys the same MLPs of QMix. This makes
240
+ TransfQMix a totally transferable method. In contrast, UPDET is
241
+ only partially transferable, because the mixer network must be re-
242
+ trained every time the agents are applied to a new task. TransfQMix
243
+ uses a recurrent graph approach similar to the one introduced by UP-
244
+ DET. However, TransfQMix makes a better use of the hidden-state
245
+ by sampling the non-decoupled actions directly from it. Moreover,
246
+ TransfQMix employs this recurrent mechanism as well in the mixer
247
+ network. To our knowledge, this is the first method that includes a
248
+ temporal conditioning in a CF.
249
+ Zero-shot transfer, transfer learning, and curriculum learning
250
+ were explored in MARL by [1] using an entity-based graph method
251
+ similar to ours. That technique, however, was limited to communi-
252
+ cation problems, whereas TransfQMix aims to be a general MARL
253
+ method.
254
+ 3
255
+ BACKGROUND
256
+ Cooperative multi-agent tasks are formalized as decentralised par-
257
+ tially observable Markov decision process (Dec-POMDP) [13]. A tuple
258
+ 𝐺 = ⟨𝑆,𝑈, 𝑃,𝑟,𝑍,𝑂, 𝐻,𝑛,𝛾⟩ describes the agents 𝑎 ∈ 𝐴 ≡ {1, . . . ,𝑛}
259
+ which at every time step choose an action 𝑢𝑎 ∈ 𝑈 from their hid-
260
+ den state ℎ𝑎 ∈ 𝐻, forming a joint action u ∈ U ≡ 𝑈 𝑛. This causes
261
+ a transition on the environment according to the state transition
262
+ function 𝑃 (𝑠′ | 𝑠, u) : 𝑆 × U × 𝑆 → [0, 1], where 𝑠 ∈ 𝑆 is the true
263
+ state of the environment. All agents share the same reward func-
264
+ tion 𝑟 (𝑠, u) : 𝑆 �� U → R and 𝛾 ∈ [0, 1) is a discount factor. The
265
+ agents have access only to partial observations of the environment,
266
+ 𝑧 ∈ 𝑍 according to the observation function 𝑂(𝑠,𝑎) : 𝑆 × 𝐴 → 𝑍.
267
+ Each agent has an action-observation history 𝜏𝑎 ∈ 𝑇 ≡ (𝑍 ×
268
+ 𝑈 )∗, on which it conditions a stochastic policy 𝜋𝑎 (𝑢𝑎 | 𝜏𝑎) : 𝑇×
269
+ 𝑈 → [0, 1]. The joint policy 𝜋 has a joint action-value function:
270
+ 𝑄𝜋 (𝑠𝑡, u𝑡) = E𝑠𝑡+1:∞, u𝑡+1:∞ [𝑅𝑡 | 𝑠𝑡, u𝑡], where 𝑅𝑡 = �∞
271
+ 𝑖=0 𝛾𝑖𝑟𝑡+𝑖 is
272
+ the discounted return.
273
+ In order to find the optimal joint action-value function𝑄∗(𝑠, 𝒖) =
274
+ 𝑟 (𝑠, 𝒖) + 𝛾E𝑠′ [max𝒖′ 𝑄∗ (𝑠′, 𝒖′)], we use Q-Learning [28] with a
275
+ deep neural network parameterized by 𝜃 [23] to minimize the ex-
276
+ pected TD error [26]:
277
+ L(𝜽) = E(𝝉,𝒖,𝑟,𝝉′)∈𝐷
278
+ ��𝑟 + 𝛾𝑉 �𝝉′;𝜽 −� − 𝑄(𝝉, 𝒖;𝜽)�2�
279
+ (1)
280
+ where 𝑉 (𝝉′;𝜽 −) = max𝒖′ 𝑄 (𝝉′, 𝒖′;𝜽 −) is the one-step expected
281
+ future return of the TD target and 𝜃 − are the parameters of the
282
+ target network, which will be periodically updated with 𝜃. We use
283
+ a buffer 𝐷 to store the transition tuple (𝝉, 𝒖,𝑟,𝝉′), where 𝑟 is the
284
+ reward for taking action 𝒖 at joint action-observation history 𝝉
285
+ with a transition to 𝝉′.
286
+ We adopt a monotonic CTDE learning paradigm [4, 7, 18, 21].
287
+ Execution is decentralized, meaning that each agent’s learnt pol-
288
+ icy is conditioned only on its own action-observation history 𝜏𝑎.
289
+ During training, a central mixer network has access to the global
290
+ state 𝑠 of the environment and the hidden states of the agents 𝐻 for
291
+ projecting the individual action-values over the 𝑄𝑡𝑜𝑡 of the joint
292
+ action, which is used in equation (1) to train the model end to end.
293
+ The monotonic constraint imposed to the CF is the same formalized
294
+ by QMix:
295
+ 𝜕𝑄𝑡𝑜𝑡
296
+ 𝜕𝑄𝑎
297
+ ≥ 0, ∀𝑎 ∈ 𝐴
298
+ (2)
299
+ which ensures that the IGM principle is respected.
300
+ The neural networks in our method are transformers [24], which
301
+ make a large use of the attention mechanism [2]. Specifically, we use
302
+ transformers to manipulate our graphs via multi-head self-attention
303
+ (MHSA) [10, 15, 24]. Given an embedded graph matrix X𝑛×ℎ of
304
+ 𝑛 vertices represented with ℎ-dimensional vectors, a transformer
305
+ computes a set of queries Q = XW𝑄, keys K = XW𝐾, and values
306
+ V = XW𝑉 , where W𝑄, W𝐾, W𝑉 are three different parameterized
307
+ matrices with dimensions ℎ×𝑘. The self-attention is then computed
308
+ as:
309
+ Self-Attention(X) = Attention(Q, K, V) = softmax
310
+ � QK⊤
311
+ √𝑛
312
+
313
+ V
314
+ (3)
315
+ A transformer uses𝑚 attention modules in parallel, and then con-
316
+ catenates all the outputs and projects them back to ℎ-dimensional
317
+ vectors using a final W𝑂 feed-forward layer:
318
+ MultiHeadSelfAttn(X) = 𝐶𝑜𝑛𝑐𝑎𝑡 (head 1, · · · , head𝑚) W𝑂
319
+ where ℎ𝑒𝑎𝑑𝑖 = Attention
320
+
321
+ XW𝑄
322
+ 𝑖 , XW𝐾
323
+ 𝑖 , XW𝑉
324
+ 𝑖
325
+
326
+ .
327
+ (4)
328
+ 4
329
+ METHOD
330
+ 4.1
331
+ Graph Observations and State
332
+ Our method rethinks how cooperative problems are presented to
333
+ neural networks. For the sake of simplicity, here we assume that
334
+ an agent observes 𝑘 entities at each time step 𝑡, where 𝑘 is the total
335
+ number of entities in the environment. In our approach, a set of 𝑧
336
+ features defines each entity. Because of the environment’s partial
337
+ observability, the features can take different values for each agent.
338
+
339
+ Agent 1
340
+ Agent N
341
+ Mixing Network
342
+ Embedder
343
+ Transformer Block
344
+ Embedder
345
+ Transformer
346
+ Block
347
+ Figure 2: (a) Transformer Mixer. (b) Overall TransfQMix architecture. (c) Transformer Agent. The purple dotted lines represent the recurrent
348
+ connections. The green components are simple feed-forward layers (embedders and scalar projectors), and the green circles are the embedded
349
+ vertices. The purple circles are transformed vertices. The dotted green components represent the action decoupling mechanism.
350
+ Therefore,
351
+ 𝑒𝑛𝑡𝑎
352
+ 𝑖,𝑡 = [𝑓1, · · · , 𝑓𝑧]𝑎
353
+ 𝑖,𝑡
354
+ (5)
355
+ defines the entity 𝑖 as it is observed by the agent 𝑎 at the time step
356
+ 𝑡. We replace the traditional observation vectors with observation
357
+ matrices with dimensions 𝑘 × 𝑧 which includes all the 𝑘 entities
358
+ observed by an agent 𝑎 at 𝑡:
359
+ O𝑎
360
+ 𝑡 =
361
+ 
362
+ 𝑒𝑛𝑡1
363
+ ...
364
+ 𝑒𝑛𝑡𝑘
365
+ 
366
+ 𝑎
367
+ 𝑡
368
+ =
369
+ 
370
+ 𝑓1,1
371
+ · · ·
372
+ 𝑓1,𝑧
373
+ ...
374
+ ...
375
+ ...
376
+ 𝑓𝑘,1
377
+ · · ·
378
+ 𝑓𝑘,𝑧
379
+ 
380
+ 𝑎
381
+ 𝑡
382
+ (6)
383
+ This structure allows the agents to process the features of the same
384
+ type using the same weights of a parameterized matrix Emb with
385
+ shape 𝑧 ×ℎ, where ℎ is an embedding dimension. The resulting ma-
386
+ trix E𝑎
387
+ 𝑡 = O𝑎
388
+ 𝑡 Emb𝑎 is formed by vertices embeddings [𝑒1, · · · ,𝑒𝑘]𝑎⊤
389
+ 𝑡
390
+ that will be further processed by transformers. Notice that Emb𝑎 is
391
+ independent from 𝑘. Conversely, the encoding feed-forward layer
392
+ used by RNN agents has approximately 𝑘 × 𝑧 × ℎ parameters. Our
393
+ approach is therefore more scalable and transferable in respect to
394
+ the number of entities.
395
+ The observation vectors in the cooperative environments we
396
+ studied [11, 20, 25] already contained an implicit matrix structure or
397
+ required very little modifications to adopt it. Features like (relative)
398
+ map location, velocity, remaining life points, and so on, which
399
+ are frequently defined for all entities and then concatenated in
400
+ the same vector, can be easily rethought as vertex features of our
401
+ observation matrix. On the other hand, features such as one-hot-
402
+ encoding of agent’s last action or one-hot-encoding of agent’s id
403
+ necessitate extra work. Moreover, since in our method the features
404
+ of the same types are processed by the same weights, we lose
405
+ the positional information implicitly present in the concatenated
406
+ vectors. A traditional encoder, indeed, can learn that the features in
407
+ some specific vector locations are relevant to some specific entity
408
+ and hence treat them differently from the others.
409
+ In our preliminary research, we found that we can compensate
410
+ for these drawbacks by using two additional binary features. The
411
+ first, IS_SELF, informs if the described entity is the agent to which
412
+ the observation matrix belongs:
413
+ 𝑓 𝑎
414
+ 𝑖,IS_SELF =
415
+
416
+ 1,
417
+ if 𝑖 = 𝑎
418
+ 0,
419
+ otherwise.
420
+ (7)
421
+ This feature will be 1 for 𝑒𝑛𝑡𝑎
422
+ 𝑎,𝑡 and 0 for all the other entities.
423
+ IS_SELF can be thought as a re-adaptation of the one-hot-encoding
424
+ of the agent’s id, which is commonly employed by state-of-the-
425
+ art models [18, 26, 30]. The second feature tells us if the entity
426
+ described is a cooperative agent or not:
427
+ 𝑓 𝑎
428
+ 𝑖,IS_AGENT =
429
+
430
+ 1,
431
+ if 𝑖 ∈ 𝐴
432
+ 0,
433
+ otherwise
434
+ (8)
435
+ allowing the vertex features of teammates to be treated differently
436
+ than others. Even though state-of-the-art methods do not always
437
+ include this feature, we argue that we are not using additional data
438
+ because this information is otherwise implicitly encoded in vector
439
+ positions.
440
+ We apply the same reformulation of the agents’ observations to
441
+ the global state. Usually, the state is defined as a vector of “real”
442
+ features relative to the entities (i.e., not partially observed by an
443
+ agent) and/or the concatenation of all agents’ observations. In our
444
+ approach, we define a state matrix S𝑡 of dimensions 𝑘 × 𝑧:
445
+ S𝑡 =
446
+ 
447
+ 𝑒𝑛𝑡1
448
+ ...
449
+ 𝑒𝑛𝑡𝑘
450
+ 𝑡
451
+ =
452
+ 
453
+ 𝑓1,1
454
+ · · ·
455
+ 𝑓1,𝑧
456
+ ...
457
+ ...
458
+ ...
459
+ 𝑓𝑘,1
460
+ · · ·
461
+ 𝑓𝑘,𝑧
462
+ 𝑡
463
+ (9)
464
+ which defines the vertex features for all the entities from a global
465
+ point of view. For simplicity, in the notation we assume that we are
466
+ using the same 𝑧 features in both S and O. We could use different
467
+ ones, though. For instance, adding IS_SELF to S does not make
468
+ sense since the features are not defined in respect to any agent, and
469
+
470
+ indeed in our experiments we do exclude IS_SELF from S. In the
471
+ environments that we took into account, the state vectors shown a
472
+ structure easily reshapable as in equation (9). As for O, we can pro-
473
+ cess the same feature types in parallel with a parameterized matrix
474
+ Emb𝑠 to obtain embedded vertices that can be further processed by
475
+ a transformer, i.e. E𝑡 = [𝑒1, · · ·𝑒𝑘]⊤
476
+ 𝑡 = S𝑡Emb𝑠.
477
+ 4.2
478
+ Transformer Agent
479
+ Our transformer agent takes as input the embedded vertices E𝑎
480
+ 𝑡 =
481
+ [𝑒1, · · · ,𝑒𝑘]𝑎⊤
482
+ 𝑡
483
+ plus a hidden vector ℎ𝑎
484
+ 𝑡−1, which has the same size
485
+ of any vector 𝑒𝑎
486
+ 𝑖 and it is fullfilled with 0s at the beginning of an
487
+ episode. The final input matrix is X𝑎
488
+ 𝑡 = [ℎ𝑎
489
+ 𝑡−1,𝑒𝑎
490
+ 1,𝑡, · · · ,𝑒𝑎
491
+ 𝑘,𝑡]⊤. The
492
+ output of 𝑙 transformer blocks: ˜X𝑎
493
+ 𝑡 = MultiHeadSelfAttn(X𝑎
494
+ 𝑡 ) is a
495
+ refined graph in which all the vertices were altered based on the
496
+ attention given to the others. In particular, ℎ𝑎
497
+ 𝑡 = ˜ℎ𝑎
498
+ 𝑡−1 can be con-
499
+ sidered as a transformation of the agent’s hidden state according
500
+ to the attention given to the new state of the entities. Similarly
501
+ to the approach used in natural language processing, where the
502
+ transformation of the first token ( [CLS] in Bert [3]) is considered to
503
+ encode an entire sentence, we consider ℎ𝑎
504
+ 𝑡 to encode the general co-
505
+ ordination reasoning of an agent. We therefore sample the agent’s
506
+ actions-values from ℎ𝑎
507
+ 𝑡 using a feed-forward layer W𝑢 with dimen-
508
+ sions ℎ × 𝑢, where 𝑢 is the number of actions: 𝑄𝑎(𝜏𝑎, ·) = ℎ𝑎
509
+ 𝑡 W𝑢.
510
+ Finally, we passℎ𝑎
511
+ 𝑡 to the next time step so that the agent can update
512
+ its coordination reasoning recurrently. When some agent’s actions
513
+ are directly related to some of the observed entities (e.g., “attack the
514
+ enemy 𝑖” in StarCraft II), our transformer agents use a decoupling
515
+ mechanism similar to the one introduced in [5]. In particular, the
516
+ action-values of the entity-related actions are derived from their
517
+ respective entity embeddings. An additional feed-forward matrix
518
+ W ˆ𝑢 of dimension ℎ × 1 is used in this case. For example, the q-
519
+ value of attacking the enemy 𝑖 is sampled as ˜𝑒𝑎
520
+ 𝑖,𝑡W ˆ𝑢. The q-values
521
+ of the non-entity-related and the entity-related actions are then
522
+ concatenated together to obtain 𝑄𝑎(𝜏𝑎, ·).
523
+ 4.3
524
+ Transformer Mixer
525
+ Exactly as QMix, TransfQMix uses a MLP in order to project 𝑄𝐴
526
+ (the q-values of the actions sampled by the individual agents) over
527
+ 𝑄𝑡𝑜𝑡 (the q-value of the joint sampled action). Formally:
528
+ 𝑄𝑡𝑜𝑡 = (𝑄 (1×𝑛)
529
+ 𝐴
530
+ W1(𝑛×ℎ) + b1(1×ℎ))W2(ℎ×1) + b2(1×1)
531
+ (10)
532
+ where W1, b1 and W2, b2 are the weights and biases of the hidden
533
+ and output layer, respectively. We explicitly state inside brackets
534
+ the dimensions of equation 10 to show that only three values are
535
+ relevant: 𝑛, the number of agents; ℎ, a hidden dimension; and 1,
536
+ which accounts for 𝑄𝑡𝑜𝑡 being a scalar. This shows that in order to
537
+ arrange the MLP mixer we need 𝑛 + 2 vectors of size ℎ plus a scalar.
538
+ QMix generates the vectors using 4 MLP hypernetworks. We
539
+ propose to use the outputs of a transformer to generate the weights
540
+ of the mixer’s MLP. The input graph of our transformer mixer is:
541
+ X𝑡 =
542
+
543
+ ℎ1
544
+ 𝑡, · · · ,ℎ𝑛
545
+ 𝑡 ,𝑤b1
546
+ 𝑡−1,𝑤W2
547
+ 𝑡−1,𝑤b2
548
+ 𝑡−1,𝑒1,𝑡, · · · ,𝑒𝑘,𝑡
549
+ �⊤
550
+ (11)
551
+ where ℎ1
552
+ 𝑡, · · · ,ℎ𝑛
553
+ 𝑡 are the 𝑛 hidden states of the agents, 𝑤b1
554
+ 𝑡−1, 𝑤W2
555
+ 𝑡−1,
556
+ 𝑤b2
557
+ 𝑡−1 are three recurrent vectors fulfilled with 0s at the beginning
558
+ of an episode, and 𝑒1,𝑡, · · · ,𝑒𝑘,𝑡 is the embedded state, i.e., E𝑡 =
559
+ S𝑡Emb𝑠. The output consist in a matrix ˜X𝑡 = MultiHeadSelfAttn(X𝑡)
560
+ that contains the same vertices of X𝑡 transformed by the multi-head
561
+ self-attention mechanism. In particular, ˜ℎ1
562
+ 𝑡, · · · , ˜ℎ𝑛
563
+ 𝑡 are the coordi-
564
+ nation reasonings of agents enhanced by global information to
565
+ which the agents had no access, namely the hidden state of the
566
+ other agents and the true state of the environment. These 𝑛 refined
567
+ vectors are used to build W1. 𝑄𝐴W1 is therefore a re-projection
568
+ of the individual q-values 𝑄𝐴 over a transformation of the agents’
569
+ hidden states. Notice that the individual q-values were generated
570
+ (or conditioned) exactly from ℎ1
571
+ 𝑡, · · · ,ℎ𝑛
572
+ 𝑡 by the agents. This means
573
+ that the primary goal of the transformer mixer is to combine and
574
+ refine the independent agents’ reasoning so that they represent the
575
+ team coordination.
576
+ The transformed embeddings of the recurrent vectors, 𝑤b1
577
+ 𝑡
578
+ =
579
+ ˜𝑤b1
580
+ 𝑡−1, 𝑤W2
581
+ 𝑡
582
+ = ˜𝑤W2
583
+ 𝑡−1, 𝑤b2
584
+ 𝑡
585
+ = ˜𝑤b2
586
+ 𝑡−1 are used to generate b1, W2,
587
+ b2, respectively. Since b2 is a scalar, an additional parameterized
588
+ matrix with dimensions ℎ × 1 is applied on 𝑤b2
589
+ 𝑡 . We use a recurrent
590
+ mechanism for two reasons: (i) to ensure that the transformer mixer
591
+ is totally independent of the number of entities in the environment;
592
+ and (ii) to incorporate a temporal dependence on the centralized
593
+ training, in accordance with the MDP formulation of the problem.
594
+ We argue that 𝑄𝑡𝑜𝑡 is heavily dependent on prior states and that
595
+ this reliance should be encoded explicitly on the mixer network.
596
+ This recurrent process allows the mixer to provide more consistent
597
+ targets across time steps, resulting in more stable training.
598
+ We employ the same strategy described by QMix to adhere to the
599
+ monotonicity constraint. Namely, we apply an absolute activation
600
+ function to the weights W1 and W2 and 𝑟𝑒𝑙𝑢 to b2.
601
+ 5
602
+ EXPERIMENTAL SETUP
603
+ 5.1
604
+ Spread
605
+ In the Spread environment [11], the goal of 𝑛 agents is to move as
606
+ close as possible to the random positions occupied by 𝑛 landmarks
607
+ while avoiding collisions with each other. The agents can move
608
+ in four directions or stay still. The optimal policy would have one
609
+ agent occupying one landmark, resulting in a perfect space distri-
610
+ bution. Since each agent must anticipate which target the other
611
+ agents will occupy and proceed to the remaining one, this calls for
612
+ robust coordination reasoning.
613
+ The global reward is the negative minimum distances from each
614
+ landmark to any agent. An additional term is added to punish
615
+ collisions among agents. It must be noticed that the original reward
616
+ function implemented by [11] was affected by a redundant factor,
617
+ i.e. it is multiplied by 2𝑛. Later on, PettingZoo [22] eliminated this
618
+ redundancy, which is the reward function we used here.
619
+ The Spread’s observation space for the agent 𝑎 consists of a vec-
620
+ tor containing the velocity and absolute position of itself together
621
+ with the relative positions of all the other agents and landmarks.
622
+ In order to convert it into an observation matrix, we only main-
623
+ tain the relative positions, which are the features defined for all
624
+ the entities observed by 𝑎. Every observed entity is therefore de-
625
+ fined by 𝑒𝑛𝑡𝑎
626
+ 𝑖,𝑡 = [𝑝𝑜𝑠𝑥, 𝑝𝑜𝑠𝑦, IS_SELF, IS_AGENT]𝑎
627
+ 𝑖,𝑡 where 𝑝𝑜𝑠𝑥
628
+ and 𝑝𝑜𝑠𝑦 are the relative positions of the entity 𝑖 in respect to 𝑎 in
629
+ the horizontal and vertical axes.
630
+
631
+ 0
632
+ 0.5M
633
+ 1M
634
+ 1.5M
635
+ 2M
636
+ 0.2
637
+ 0.4
638
+ 0.6
639
+ 0.8
640
+ 1
641
+ TransfQmix
642
+ Qtran
643
+ Qplex
644
+ Qmix
645
+ OwQmix
646
+ CwQmix
647
+ Time Steps
648
+ Test Occupied Landmarks %
649
+ (a) 3 Agents, 3 Landmarks
650
+ 0
651
+ 0.5M
652
+ 1M
653
+ 1.5M
654
+ 2M
655
+ 0.2
656
+ 0.4
657
+ 0.6
658
+ 0.8
659
+ 1
660
+ Time Steps
661
+ (b) 4 Agents, 4 Landmarks
662
+ 0
663
+ 0.5M
664
+ 1M
665
+ 1.5M
666
+ 2M
667
+ 0.2
668
+ 0.4
669
+ 0.6
670
+ 0.8
671
+ 1
672
+ Time Steps
673
+ (c) 5 Agents, 5 Landmarks
674
+ 0
675
+ 0.5M
676
+ 1M
677
+ 1.5M
678
+ 2M
679
+ 0.2
680
+ 0.4
681
+ 0.6
682
+ 0.8
683
+ 1
684
+ Time Steps
685
+ (d) 6 Agents, 6 Landmarks
686
+ Figure 3: Comparative results in the Spread environment.
687
+ The Spread’s state space consist of the concatenation of all the
688
+ agents observations. Also in this case we keep the features that
689
+ are defined for all the entities, which are the absolute positions
690
+ and the velocities. In the final state matrix the entities are defined
691
+ by 𝑒𝑛𝑡𝑖,𝑡 = [ ˆ
692
+ 𝑝𝑜𝑠𝑥, ˆ
693
+ 𝑝𝑜𝑠𝑦, 𝑣𝑥, 𝑣𝑦, IS_AGENT]𝑖,𝑡 where
694
+ ˆ
695
+ 𝑝𝑜𝑠𝑥 and
696
+ ˆ
697
+ 𝑝𝑜𝑠𝑦
698
+ are the absolute position of the entity 𝑖, and 𝑣𝑥 and 𝑣𝑦 its velocity
699
+ (which is 0 in the case of the landmarks).
700
+ The standard reported metric for Spread is the global reward.
701
+ This metric, however, is not informative because it is a value that is
702
+ challenging to interpret and does not stay in the same range when
703
+ 𝑛 changes. As a result, we present a new metric: the percentage
704
+ of landmarks occupied at the conclusion of an episode (POL). To
705
+ compute the POL we count the number of landmarks with an agent
706
+ closer than a predetermined threshold and we divide it for the total
707
+ number of landmarks. The POL is a more informative metric be-
708
+ cause it assesses the proper distribution of the agents. Additionally,
709
+ it maintains the same range (0, 1) when 𝑛 is changed. We found that
710
+ when the distance threshold is set to 0.3, the POL has a correlation
711
+ of 0.95 with the reward function, meaning that the data we are
712
+ presenting is still comparable with previous studies.
713
+ 5.2
714
+ StarCraft II
715
+ This environment uses the StarCraft II Learning Environment [25],
716
+ which makes available a range of micromanagement tasks based
717
+ on the well-known real-time strategy game StarCraft II1. Each task
718
+ consists of a unique combat scenario in which a group of agents,
719
+ each managing a single unit, engage an army under the command
720
+ of the StarCraft game’s central AI. In order to win a game, agents
721
+ must develop coordinated action sequences that will allow them to
722
+ concentrate their attention on certain enemy units. We report the
723
+ results in SC2 for the 8 tasks that are considered the most difficult in
724
+ the literature [26, 30]: 5m_vs_6m, 8m_vs_9m, 27m_vs_30m, 5s10z,
725
+ 3s5z_vs_3s6z, 6h_vs_8z, MMM2, and corridor.
726
+ The SC2’s observation vector for the agent 𝑎 consists in a con-
727
+ catenation of features defined for the allies and the enemies that
728
+ are inside the sight range of the agent. These features include the
729
+ relative position of the entity in respect to 𝑎, the distance, the health,
730
+ the state of the shield, and a one-hot-encoding of the type of the
731
+ entity (which can be a marine, a marauder, a stalker, etc.). This
732
+ structure already defines an observation matrix which requires
733
+ only the addition of the IS_SELF and IS_AGENT features to be used
734
+ by TransfQMix. However, TransfQMix can not use some additional
735
+ features that are present in the original SC2’s observation vector,
736
+ 1StarCraft II is a trademark of Blizzard EntertainmentTM
737
+ which include a one-hot-encoding of the available and previous
738
+ actions and a representation of the map’s limits.
739
+ Our transformer mixer can be fed directly with the original state
740
+ vector of SC2, which is also a concatenation of features defined for
741
+ all 𝑘 entities. These features are the same of the observation vector
742
+ but defined from a global viewpoint, i.e., the position relative to
743
+ the center of the map. On the other hand, an additional feature
744
+ consisting of the actions taken by all the agents is not used by
745
+ TransfQMix since it is not compatible with the graph state approach.
746
+ The decoupling technique described in Section 4.2 is employed
747
+ for TransfQMix and UPDET, i.e., the q-value of attacking the enemy
748
+ 𝑖 is determined from the transformer embedding of 𝑖. When appro-
749
+ priate, the same process is used for actions that include healing
750
+ another agent.
751
+ 5.3
752
+ Algorithms
753
+ Our codebase is built on top of pymarl [4, 18] and it is available at:
754
+ https://github.com/mttga/pymarl_transformers. It contains
755
+ TransfQMix and our wrappers for Spread and SC2, plus the original
756
+ implementations of the algorithms to which our method is com-
757
+ pared to: QMix, QTran, QPlex, OW-QMix, CW-QMix and UPDET.
758
+ For all the compared methods, we used the same hyper-parameters
759
+ reported in the original implementations. We kept the parameters
760
+ of each method constant in all the experiments we performed. No-
761
+ tice that in all our experiments we used the parameters sharing
762
+ technique, i.e., all the agents shared the same weights. This was
763
+ demonstrated to be very beneficial in several studies [14, 18, 30].
764
+ We fine-tuned TransfQMix in the SC2’s 5m_vs_6m task and we
765
+ used the same parameters for all the other settings (included the
766
+ Spread tasks). In particular, we used 32 as the hidden embedding
767
+ dimension, 4 attention heads, and 2 transformer blocks for both
768
+ the transformer agents and the mixer, resulting in a total of ∼ 50𝑘
769
+ parameters for both networks. The learning configuration for all
770
+ the transformers architectures (included UPDET) used the 𝐴𝑑𝑎𝑚
771
+ optimizer with a learning rate of 0.001 and a 𝜆 of 0.6 for comput-
772
+ ing the twin delayed (td) targets. This setup is different from the
773
+ one used by the state-of-the-art RNN-based models (𝑅𝑀𝑆𝑃𝑟𝑜𝑝 op-
774
+ timizer, 0.0005 learning rate, and 0 for td’s 𝜆). However, we found
775
+ that the optimal learning configuration of TransfQMix did not work
776
+ with the other models, i.e., they performed better with their original
777
+ learning setup. Some parameters were shared by all the methods,
778
+ such as the buffer size (5000 episodes), the batch size (32 episodes),
779
+ the interval for updating the target network (200 episodes), and the
780
+ anneal time for the epsilon decay (100𝑘 time steps).
781
+
782
+ 0
783
+ 0.5M
784
+ 1M
785
+ 1.5M
786
+ 2M
787
+ 0.2
788
+ 0.4
789
+ 0.6
790
+ 0.8
791
+ 1
792
+ TransfQmix
793
+ Qtran
794
+ Qplex
795
+ Qmix
796
+ OwQmix
797
+ CwQmix
798
+ Updet
799
+ Time Steps
800
+ Test Win Rate %
801
+ (a) 5m_vs_6m
802
+ 0
803
+ 0.5M
804
+ 1M
805
+ 1.5M
806
+ 2M
807
+ 0.2
808
+ 0.4
809
+ 0.6
810
+ 0.8
811
+ 1
812
+ Time Steps
813
+ (b) 8m_vs_9m
814
+ 0
815
+ 0.5M
816
+ 1M
817
+ 1.5M
818
+ 2M
819
+ 0.2
820
+ 0.4
821
+ 0.6
822
+ 0.8
823
+ 1
824
+ Time Steps
825
+ (c) 27m_vs_30m
826
+ 0
827
+ 0.5M
828
+ 1M
829
+ 1.5M
830
+ 2M
831
+ 0.2
832
+ 0.4
833
+ 0.6
834
+ 0.8
835
+ 1
836
+ Time Steps
837
+ (d) 6h_vs_8z
838
+ 0
839
+ 0.5M
840
+ 1M
841
+ 1.5M
842
+ 2M
843
+ 0.2
844
+ 0.4
845
+ 0.6
846
+ 0.8
847
+ 1
848
+ Time Steps
849
+ Test Win Rate %
850
+ (e) 5s10z
851
+ 0
852
+ 0.5M
853
+ 1M
854
+ 1.5M
855
+ 2M
856
+ 0.2
857
+ 0.4
858
+ 0.6
859
+ 0.8
860
+ 1
861
+ Time Steps
862
+ (f) 3s5z_vs_3s6z
863
+ 0
864
+ 0.5M
865
+ 1M
866
+ 1.5M
867
+ 2M
868
+ 0.2
869
+ 0.4
870
+ 0.6
871
+ 0.8
872
+ 1
873
+ Time Steps
874
+ (g) MM2
875
+ 0
876
+ 0.5M
877
+ 1M
878
+ 1.5M
879
+ 2M
880
+ 0.2
881
+ 0.4
882
+ 0.6
883
+ 0.8
884
+ 1
885
+ Time Steps
886
+ (h) corridor
887
+ Figure 4: Comparative results in the SC2 environment.
888
+ 6
889
+ RESULTS AND DISCUSSION
890
+ 6.1
891
+ Main Results
892
+ The performances of MARL methods in Spread are usually reported
893
+ using𝑛 = 3. We increased𝑛 up to 6 in order to analyze the scalability
894
+ of the methods. Figure 3 shows how the POL improved when the
895
+ considered methods were trained on the various scenarios. The POL
896
+ was computed every 40𝑘 time steps by running 30 independent
897
+ episodes with each agent performing greedy decentralised action
898
+ selection. In the standard task involving 3 agents, state-of-the-art
899
+ methods learned a good policy which covers on average the ∼80%
900
+ of the landmarks, with the exception of QTran and CW-QMix (POL
901
+ of ∼50%). However, they did not perform significantly better than
902
+ QMix. The sole state-of-the-art method that could defeat QMix in
903
+ the tasks involving 4 or 5 agents was QPlex (POL of 50%), which
904
+ demonstrated to be very unstable in 𝑛 = 6. Conversely, TransfQMix
905
+ significantly outperformed QMix and the other methods in every
906
+ scenario, reaching a steady POL of almost 90% in just 500𝑘 time
907
+ steps. Notice that in Spread the optimal policy was the same for
908
+ every 𝑛 (i.e., each agent occupying a landmark). State-of-the-art
909
+ methods could learn this strategy only when the team size was
910
+ small. On the other hand, TransfQMix demonstrated a better agent-
911
+ team size invariance by obtaining similar results in every scenario.
912
+ Figure 4 shows the results of all the methods in the hardest tasks
913
+ of SC2. The reported metric is the average percentage of won games
914
+ performing greedy action sampling every 100 episodes during train-
915
+ ing. The results for UPDET are reported only for tasks that include
916
+ marines, since the original implementation of this method does not
917
+ support other scenarios. It is noteworthy that UPDET did not per-
918
+ form better than RNN-based models and failed in the 27m_vs_30m
919
+ task, indicating that using a transformer agent with policy decou-
920
+ pling does not necessarily provide a clear advantage. Conversely,
921
+ our more sophisticated use of transformers significantly outper-
922
+ formed the other models in every task, and consistently defeats the
923
+ SC2’s central AI even in scenarios where previous methods could
924
+ not win any game. TransfQMix also demonstrated its effectiveness
925
+ Table 1: Results of zero-shot transfer in Spread.
926
+ POL Scenario
927
+ Model
928
+ 3v3
929
+ 4v4
930
+ 5v5
931
+ 6v6
932
+ TransfQMix (3v3)
933
+ 0.98
934
+ 0.88
935
+ 0.8
936
+ 0.75
937
+ TransfQMix (4v4)
938
+ 0.96
939
+ 0.93
940
+ 0.9
941
+ 0.86
942
+ TransfQMix (5v5)
943
+ 0.88
944
+ 0.85
945
+ 0.82
946
+ 0.82
947
+ TransfQMix (6v6)
948
+ 0.91
949
+ 0.88
950
+ 0.85
951
+ 0.84
952
+ TransfQMix (CL)
953
+ 0.88
954
+ 0.88
955
+ 0.87
956
+ 0.87
957
+ State-of-the-art
958
+ 0.76
959
+ 0.45
960
+ 0.36
961
+ 0.33
962
+ in environments with a large number of entities, such as the corri-
963
+ dor map (which stays for 6 Zealots versus 24 Zerglings, for a total
964
+ of 30 entities) and the 27m_vs_30m (57 entities). While other ap-
965
+ proaches require their parameters to be increased according to the
966
+ number of entities, TransfQMix’s networks are (nearly) the same
967
+ size in all the tasks. This suggests that TransfQMix’s architecture
968
+ may be regarded as sufficiently generic to address various problems
969
+ without requiring structural changes.
970
+ 6.2
971
+ Transfer Learning
972
+ We tested the zero-shot capabilities of TransfQMix by applying
973
+ the networks trained in a particular Spread task to the others. Ta-
974
+ ble 1 shows the POL averaged across 1000 episodes achieved by
975
+ TransfQMix trained with 𝑛 agents in scenarios with different 𝑛.
976
+ As a benchmark, the best POLs obtained by state-of-the-art mod-
977
+ els trained in each specific task are reported. We also include the
978
+ performances of TransfQMix trained with a curriculum learning
979
+ (CL) approach, which consists of making the agents cooperate in
980
+ progressively larger teams. In particular, we trained the agents in
981
+ teams of 3, 4, 5 and 6 for 500𝑘 time steps each.
982
+ In general, every network showed excellent zero-shot capabili-
983
+ ties but worse performances for larger teams, except for the agents
984
+ trained with CL, which performed similarly in all the scenarios.
985
+
986
+ 0
987
+ 0.5M
988
+ 1M
989
+ 1.5M
990
+ 2M
991
+ 0.2
992
+ 0.4
993
+ 0.6
994
+ 0.8
995
+ 1
996
+ TransferLearning
997
+ Scratch
998
+ Time Steps
999
+ Test Win Rate %
1000
+ (a) 8m_vs_9m to 5m_vs_6m
1001
+ 0
1002
+ 0.5M
1003
+ 1M
1004
+ 1.5M
1005
+ 2M
1006
+ 0.2
1007
+ 0.4
1008
+ 0.6
1009
+ 0.8
1010
+ 1
1011
+ Time Steps
1012
+ (b) 5s10z to 3s5z_vs_3s6z
1013
+ Figure 5: Transfer learning vs training from scratch in 2 SC2 tasks.
1014
+ In this sense, CL seems a promising approach for obtaining gen-
1015
+ eral coordination policies with TransfQMix. Surprisingly, the best
1016
+ transferable policy was learned in the 4v4 task. This could be be-
1017
+ cause the scenario is complex enough to necessitate the learning of
1018
+ strong coordination policies, but not so complicated as to produce
1019
+ instabilities or slow down the learning process. Finally, it is remark-
1020
+ able that all the TransfQMix’s zero-shot transfers outperformed
1021
+ state-of-the-art methods trained in the various scenarios.
1022
+ The only constraint to using TransfQMix in different contexts is
1023
+ that the vertex feature space must be the same. This is not always
1024
+ guaranteed in the SC2 environment, because the unit type’s one-hot
1025
+ encoding feature is dependent on the total number of unit types
1026
+ of the scenario. Nonetheless, we can utilize the same networks in
1027
+ maps with the same entity type. Figure 5 shows the results obtained
1028
+ in the 5m_vs_6m and 3s5z_vs_3s6z tasks by fine-tuning the agents
1029
+ trained in the 8m_vs_9m and 5s10z scenarios, respectively.
1030
+ In both cases, we are transferring coordination strategies learnt
1031
+ in simpler settings to more difficult tasks, implying that we are con-
1032
+ ducting a minimal CL. We can see how fine-tuning helped Trans-
1033
+ fQMix develop a significantly better policy (Figure 5b) or converge
1034
+ faster (Figure 5a) than when it was trained from scratch. The initial
1035
+ peak in the figures corresponds to the zero-shot performance, and
1036
+ it is followed by a falling phase in which the weights were rapidly
1037
+ adjusted for the new task.
1038
+ In conclusion, the results demonstrate TransfQMix’s promising
1039
+ capacity to transfer knowledge between scenarios, as well as how
1040
+ transfer and curriculum learning could aid in the resolution of
1041
+ complex MARL tasks.
1042
+ 6.3
1043
+ Ablation
1044
+ 0
1045
+ 0.5M
1046
+ 1M
1047
+ 1.5M
1048
+ 2M
1049
+ 0.2
1050
+ 0.4
1051
+ 0.6
1052
+ 0.8
1053
+ 1
1054
+ TransfQmix
1055
+ QmixTransfMixer
1056
+ QmixTransfAgent
1057
+ QmixGraphState
1058
+ Qmix
1059
+ Time Steps
1060
+ Test Win Rate %
1061
+ (a) SC2: 5m_vs_6m
1062
+ 0
1063
+ 0.5M
1064
+ 1M
1065
+ 1.5M
1066
+ 2M
1067
+ 0.2
1068
+ 0.4
1069
+ 0.6
1070
+ 0.8
1071
+ 1
1072
+ Time Steps
1073
+ Test Occupied Landmarks %
1074
+ (b) Spread
1075
+ Figure 6: Ablation Study.
1076
+ It might be claimed that the results obtained by TransfQMix
1077
+ in Spread are not comparable with the previous methods because
1078
+ we employ a state observation matrix that differs from the orig-
1079
+ inal state vector. To test this argument, we ran QMix with the
1080
+ flattened version of our state matrix in Spread. The averaged test
1081
+ POL across all Spread tasks is shown in Figure 6b. We can see that
1082
+ QMix’s performance with a graph state (QMixGraphState) was not
1083
+ considerably different from QMix’s performance with the origi-
1084
+ nal state vector. The same figure shows that replacing the QMix
1085
+ mixer’s hypernetworks with a transformer mixer improved per-
1086
+ formance (QMixTransformerMixer). This indicates that, in order
1087
+ to benefit from a graph-based state, a graph-based network as a
1088
+ transformer should be used. We also provide the results produced
1089
+ by our transformer agents in conjunction with the traditional QMix
1090
+ hypernetworks. This framework clearly outperformed the original
1091
+ one based on RNNs in terms of coordination, but it was not as stable
1092
+ or performant as TransfQMix.
1093
+ The identical ablation study was carried out in the SC2 5m_vs_6m
1094
+ task (Figure 6a). In this scenario, the transformer agents and mixers
1095
+ alone were unable to increase the performance of QMix, implying
1096
+ that we need to utilize transformers in both the agent and mixer net-
1097
+ works in order to leverage the graph structure of the observations
1098
+ and state.
1099
+ 7
1100
+ CONCLUSION
1101
+ In this paper we proposed a novel graph-based formalization of
1102
+ MARL problems that depicts coordination problems in a more natu-
1103
+ ral way. We introduced TransfQMix, a method based on transform-
1104
+ ers that makes use of this structure to enhance the coordination rea-
1105
+ soning of the QMix’s agents and mixer. TransfQMix demonstrated
1106
+ great learning capabilities by excelling in the most challenging
1107
+ SC2 and Spread tasks without the need for task-specific hyper-
1108
+ parameter tuning. In contrast to prior approaches that attempted
1109
+ to enhance QMix, TransfQMix does not focus on the monotonicity
1110
+ constraint or other aspects of the learning process. This shows that
1111
+ in order to improve MARL methods, neural networks architectures
1112
+ and environment representations need to receive greater focus.
1113
+ The application of TransfQMix in transfer learning, zero-shot
1114
+ transfer, and curricular learning yielded promising results. In future
1115
+ research we aim to explore the method’s generalization abilities
1116
+ by including several tasks into a single learning pipeline. For in-
1117
+ stance, we aim to train the same agents to solve all the SC2 tasks.
1118
+ Additionally, we want to investigate the feasibility of transferring
1119
+ coordination policies between MARL domains. Finally, we want to
1120
+ examine in greater detail the influence of multi-head self-attention
1121
+ on coordination reasoning.
1122
+ ACKNOWLEDGMENTS
1123
+ This project has received funding from the EU’s Horizon 2020
1124
+ research and innovation programme under the Marie Skłodowska-
1125
+ Curie grant agreement No 893089. This work acknowledges the
1126
+ ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-
1127
+ S). We gratefully acknowledge the David and Lucile Packard Foun-
1128
+ dation.
1129
+
1130
+ REFERENCES
1131
+ [1] Akshat Agarwal, Sumit Kumar, Katia Sycara, and Michael Lewis. 2020. Learning
1132
+ Transferable Cooperative Behavior in Multi-Agent Teams. In Proceedings of the
1133
+ 19th International Conference on Autonomous Agents and MultiAgent Systems
1134
+ (Auckland, New Zealand) (AAMAS ’20). 1741–1743.
1135
+ [2] Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua Bengio. 2015. Neural machine
1136
+ translation by jointly learning to align and translate. 3rd International Conference
1137
+ on Learning Representations, ICLR 2015 ; Conference date: 07-05-2015 Through
1138
+ 09-05-2015.
1139
+ [3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
1140
+ Pre-training of Deep Bidirectional Transformers for Language Understanding. In
1141
+ Proceedings of the 2019 Conference of the North American Chapter of the Association
1142
+ for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
1143
+ Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota,
1144
+ 4171–4186. https://doi.org/10.18653/v1/N19-1423
1145
+ [4] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shi-
1146
+ mon Whiteson. 2018. Counterfactual multi-agent policy gradients. In Proceedings
1147
+ of the AAAI conference on artificial intelligence, Vol. 32.
1148
+ [5] Siyi Hu, Fengda Zhu, Xiaojun Chang, and Xiaodan Liang. 2020. UPDeT: Univer-
1149
+ sal Multi-agent RL via Policy Decoupling with Transformers. In International
1150
+ Conference on Learning Representations.
1151
+ [6] Maximilian Hüttenrauch, Sosic Adrian, Gerhard Neumann, et al. 2019. Deep
1152
+ reinforcement learning for swarm systems. Journal of Machine Learning Research
1153
+ 20, 54 (2019), 1–31.
1154
+ [7] Landon Kraemer and Bikramjit Banerjee. 2016. Multi-agent reinforcement learn-
1155
+ ing as a rehearsal for decentralized planning. Neurocomputing 190 (2016), 82–94.
1156
+ [8] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. 2016. End-to-end
1157
+ training of deep visuomotor policies. The Journal of Machine Learning Research
1158
+ 17, 1 (2016), 1334–1373.
1159
+ [9] Sheng Li, Jayesh K Gupta, Peter Morales, Ross Allen, and Mykel J Kochenderfer.
1160
+ 2021. Deep Implicit Coordination Graphs for Multi-agent Reinforcement Learning.
1161
+ In Proceedings of the 20th International Conference on Autonomous Agents and
1162
+ MultiAgent Systems. 764–772.
1163
+ [10] Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing Xiang,
1164
+ Bowen Zhou, and Yoshua Bengio. 2017. A Structured Self-Attentive Sentence
1165
+ Embedding. In International Conference on Learning Representations.
1166
+ [11] Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor
1167
+ Mordatch. 2017. Multi-agent actor-critic for mixed cooperative-competitive
1168
+ environments. Advances in neural information processing systems 30 (2017).
1169
+ [12] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
1170
+ Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
1171
+ Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
1172
+ nature 518, 7540 (2015), 529–533.
1173
+ [13] Frans A Oliehoek and Christopher Amato. 2016. A concise introduction to decen-
1174
+ tralized POMDPs. Springer.
1175
+ [14] Georgios Papoudakis, Filippos Christianos, Lukas Schäfer, and Stefano V Albrecht.
1176
+ 2021. Benchmarking Multi-Agent Deep Reinforcement Learning Algorithms in
1177
+ Cooperative Tasks. In Thirty-fifth Conference on Neural Information Processing
1178
+ Systems Datasets and Benchmarks Track (Round 1).
1179
+ [15] Ankur Parikh, Oscar Täckström, Dipanjan Das, and Jakob Uszkoreit. 2016. A
1180
+ Decomposable Attention Model for Natural Language Inference. In Proceedings
1181
+ of the 2016 Conference on Empirical Methods in Natural Language Processing.
1182
+ Association for Computational Linguistics, Austin, Texas, 2249–2255.
1183
+ [16] Emilio Parisotto, Francis Song, Jack Rae, Razvan Pascanu, Caglar Gulcehre, Sid-
1184
+ dhant Jayakumar, Max Jaderberg, Raphael Lopez Kaufman, Aidan Clark, Seb
1185
+ Noury, et al. 2020. Stabilizing transformers for reinforcement learning. In Inter-
1186
+ national conference on machine learning. PMLR, 7487–7498.
1187
+ [17] Tabish Rashid, Gregory Farquhar, Bei Peng, and Shimon Whiteson. 2020.
1188
+ Weighted qmix: Expanding monotonic value function factorisation for deep
1189
+ multi-agent reinforcement learning. Advances in neural information processing
1190
+ systems 33 (2020), 10199–10210.
1191
+ [18] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob
1192
+ Foerster, and Shimon Whiteson. 2018. Qmix: Monotonic value function factori-
1193
+ sation for deep multi-agent reinforcement learning. In International conference
1194
+ on machine learning. PMLR, 4295–4304.
1195
+ [19] Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexan-
1196
+ der Novikov, Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost To-
1197
+ bias Springenberg, et al. 2022. A generalist agent. arXiv preprint arXiv:2205.06175
1198
+ (2022).
1199
+ [20] Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung
1200
+ Yi. 2019. Qtran: Learning to factorize with transformation for cooperative multi-
1201
+ agent reinforcement learning. In International conference on machine learning.
1202
+ PMLR, 5887–5896.
1203
+ [21] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vini-
1204
+ cius Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl
1205
+ Tuyls, et al. 2018. Value-Decomposition Networks For Cooperative Multi-Agent
1206
+ Learning Based On Team Reward. In Proceedings of the 17th International Con-
1207
+ ference on Autonomous Agents and MultiAgent Systems, (AAMAS 2018), Vol. 3.
1208
+ 2085–2087.
1209
+ [22] J Terry, Benjamin Black, Nathaniel Grammel, Mario Jayakumar, Ananth Hari,
1210
+ Ryan Sullivan, Luis S Santos, Clemens Dieffendahl, Caroline Horsch, Rodrigo
1211
+ Perez-Vicente, et al. 2021. Pettingzoo: Gym for multi-agent reinforcement learn-
1212
+ ing. Advances in Neural Information Processing Systems 34 (2021), 15032–15043.
1213
+ [23] Hado Van Hasselt, Arthur Guez, and David Silver. 2016. Deep reinforcement
1214
+ learning with double q-learning. In Proceedings of the AAAI conference on artificial
1215
+ intelligence, Vol. 30.
1216
+ [24] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
1217
+ Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
1218
+ you need. Advances in neural information processing systems 30 (2017).
1219
+ [25] Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha
1220
+ Vezhnevets, Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou,
1221
+ Julian Schrittwieser, et al. 2017. Starcraft ii: A new challenge for reinforcement
1222
+ learning. arXiv preprint arXiv:1708.04782 (2017).
1223
+ [26] Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. 2021.
1224
+ QPLEX: Duplex Dueling Multi-Agent Q-Learning. In 9th International Conference
1225
+ on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
1226
+ [27] Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu, Changliang Li, Derek F Wong, and
1227
+ Lidia S Chao. 2019. Learning Deep Transformer Models for Machine Translation.
1228
+ In Proceedings of the 57th Annual Meeting of the Association for Computational
1229
+ Linguistics. 1810–1822.
1230
+ [28] Christopher JCH Watkins and Peter Dayan. 1992. Q-learning. Machine learning
1231
+ 8, 3 (1992), 279–292.
1232
+ [29] Bichen Wu, Chenfeng Xu, Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Zhicheng
1233
+ Yan, Masayoshi Tomizuka, Joseph Gonzalez, Kurt Keutzer, and Peter Vajda. 2020.
1234
+ Visual transformers: Token-based image representation and processing for com-
1235
+ puter vision. arXiv preprint arXiv:2006.03677 (2020).
1236
+ [30] Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre Bayen, and Yi Wu.
1237
+ 2021. The surprising effectiveness of ppo in cooperative, multi-agent games.
1238
+ arXiv preprint arXiv:2103.01955 (2021).
1239
+ [31] Meng Zhou, Ziyu Liu, Pengwei Sui, Yixuan Li, and Yuk Ying Chung. 2020. Learn-
1240
+ ing implicit credit assignment for cooperative multi-agent reinforcement learning.
1241
+ Advances in Neural Information Processing Systems 33 (2020), 11853–11864.
1242
+
1243
+ TransfQMix: Transformers for Leveraging the Graph Structure of
1244
+ Multi-Agent Reinforcement Learning Problems
1245
+ (Supplementary Material)
1246
+ Matteo Gallici
1247
+ KEMLG Research Group, Universitat
1248
+ Politècnica de Catalunya.
1249
+ Barcelona, Spain
1250
+ gallici@cs.upc.edu
1251
+ Mario Martin
1252
+ KEMLG Research Group, Universitat
1253
+ Politècnica de Catalunya.
1254
+ Barcelona, Spain
1255
+ mmartin@cs.upc.edu
1256
+ Ivan Masmitja
1257
+ Institut de Ciències del Mar (ICM),
1258
+ CSIC
1259
+ Barcelona, Spain
1260
+ masmitja@icm.csic.es
1261
+ ACM Reference Format:
1262
+ Matteo Gallici, Mario Martin, and Ivan Masmitja. 2023. TransfQMix: Trans-
1263
+ formers for Leveraging the Graph Structure of Multi-Agent Reinforcement
1264
+ Learning Problems (Supplementary Material). In PREPRINT VERSION,
1265
+ accepted at Proc. of the 22nd International Conference on Autonomous Agents
1266
+ and Multiagent Systems (AAMAS 2023), London, United Kingdom, May 29 –
1267
+ June 2, 2023, IFAAMAS, 6 pages.
1268
+ PREPRINT VERSION, accepted at Proc. of the 22nd International Conference on
1269
+ Autonomous Agents and Multiagent Systems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon,
1270
+ B. An (eds.), May 29 – June 2, 2023, London, United Kingdom. © 2023 International
1271
+ Foundation for Autonomous Agents and Multiagent Systems (www.ifaamas.org). All
1272
+ rights reserved.
1273
+
1274
+ 0
1275
+ 0.5M
1276
+ 1M
1277
+ 1.5M
1278
+ 2M
1279
+ 0.2
1280
+ 0.4
1281
+ 0.6
1282
+ 0.8
1283
+ 1
1284
+ TransfQmix
1285
+ Qtran
1286
+ Qplex
1287
+ Qmix
1288
+ OwQmix
1289
+ CwQmix
1290
+ Updet
1291
+ Time Steps
1292
+ Test Win Rate %
1293
+ (a) Original optimization parameters.
1294
+ 0
1295
+ 0.5M
1296
+ 1M
1297
+ 1.5M
1298
+ 2M
1299
+ 0.2
1300
+ 0.4
1301
+ 0.6
1302
+ 0.8
1303
+ 1
1304
+ Time Steps
1305
+ (b) TransfQMix optimization parameters.
1306
+ Figure 1: Results obtained in the StarCraft II 5m_vs_6m task using the optimization parameters commonly adopted by state-
1307
+ of-the-art models (𝑅𝑀𝑆𝑃𝑟𝑜𝑝 optimizer, 0.0005 learning rate, and 0 for td’s 𝜆) and using the optimal TransfQMix optimization
1308
+ parameters (𝐴𝑑𝑎𝑚 optimizer, 0.001 learning rate, and 0.6 for td’s 𝜆). State-of-the art models do not benefit from the optimization
1309
+ used by TransfQMix. At the same time, TransfQMix outperforms state-of-the-art methods also when it’s trained using the
1310
+ state-of-the-art’s configuration. Updet is the only method that benefits from using TransfQMix’s optimizer configuration,
1311
+ suggesting that these parameters are effective when used to train transformer networks.
1312
+ Table 1: Parameters of TransfQMix. The parameters relative to the transformer are shared between the transformer agents and
1313
+ the transformer mixer.
1314
+ Parameter
1315
+ Value
1316
+ Description
1317
+ Buffer Size
1318
+ 5000
1319
+ Number of last saved episodes used for training
1320
+ Batch Size
1321
+ 32
1322
+ Batch size used for training
1323
+ Update Interval
1324
+ 200
1325
+ Episode interval for updating the target network
1326
+ Optimizer
1327
+ Adam
1328
+ Optimizer
1329
+ Learning Rate
1330
+ 0.001
1331
+ Learning Rate
1332
+ Td-Lambda
1333
+ 0.6
1334
+ Lambda for computing td-targets
1335
+ Emb Dim
1336
+ 32
1337
+ Embedding dimension ℎ
1338
+ Attention Heads
1339
+ 4
1340
+ Self-attention heads of each transformer block
1341
+ Transformer Blocks
1342
+ 2
1343
+ Number of transformer layers
1344
+ Dropout
1345
+ 0
1346
+ Dropout percentage in transformer block
1347
+ Learnable parameters
1348
+ ∼ 50𝑘
1349
+ Learnable parameters of a single network (mixer or agent)
1350
+ Table 2: Comparison between the number of parameters (agent and mixer networks) of TransfQMix and other state of the art
1351
+ models. The number parameters are reported for Spread 3v3, 6v6 and SC2 27m_vs_30m to appreciate their relation with the
1352
+ number of environment’s entities. The number of parameters of TransfQMix is invariable in respect to the entities. Conversely,
1353
+ other methods increase their parameters proportionally with the entities, leading to oversized networks in the 27m_vs_30m
1354
+ task of SC2. TransfQMix is on overall a lighter model than other methods (with the exception of QMix in Spread 3v3 and 6v6).
1355
+ Model
1356
+ Agent
1357
+ Mixer
1358
+ TransfQMix
1359
+ 50k
1360
+ 50k
1361
+ QMix
1362
+ 27k
1363
+ 18k
1364
+ QPlex
1365
+ 27k
1366
+ 251k
1367
+ O-CWQMix
1368
+ 27k
1369
+ 179k
1370
+ (a) Spread 3v3
1371
+ Model
1372
+ Agent
1373
+ Mixer
1374
+ TransfQMix
1375
+ 50k
1376
+ 50k
1377
+ QMix
1378
+ 28k
1379
+ 56k
1380
+ QPlex
1381
+ 28k
1382
+ 597k
1383
+ O-CWQMix
1384
+ 28k
1385
+ 301k
1386
+ (b) Spread 6v6
1387
+ Model
1388
+ Agent
1389
+ Mixer
1390
+ TransfQMix
1391
+ 50k
1392
+ 50k
1393
+ QMix
1394
+ 49k
1395
+ 283k
1396
+ QPlex
1397
+ 49k
1398
+ 3184k
1399
+ O-CWQMix
1400
+ 49k
1401
+ 1021k
1402
+ (c) SC2 27m_vs_30m
1403
+
1404
+ 0
1405
+ 0.5M
1406
+ 1M
1407
+ 1.5M
1408
+ 2M
1409
+ −160
1410
+ −140
1411
+ −120
1412
+ −100
1413
+ −80
1414
+ −60
1415
+ −40
1416
+ −20
1417
+ 0
1418
+ TransfQmix
1419
+ Qtran
1420
+ Qplex
1421
+ Qmix
1422
+ OwQmix
1423
+ CwQmix
1424
+ Time Steps
1425
+ Test Reward Mean
1426
+ (a) 3 Agents, 3 Landmarks
1427
+ 0
1428
+ 0.5M
1429
+ 1M
1430
+ 1.5M
1431
+ 2M
1432
+ −160
1433
+ −140
1434
+ −120
1435
+ −100
1436
+ −80
1437
+ −60
1438
+ −40
1439
+ −20
1440
+ Time Steps
1441
+ (b) 4 Agents, 4 Landmarks
1442
+ 0
1443
+ 0.5M
1444
+ 1M
1445
+ 1.5M
1446
+ 2M
1447
+ −200
1448
+ −150
1449
+ −100
1450
+ −50
1451
+ Time Steps
1452
+ Test Reward Mean
1453
+ (c) 5 Agents, 5 Landmarks
1454
+ 0
1455
+ 0.5M
1456
+ 1M
1457
+ 1.5M
1458
+ 2M
1459
+ −250
1460
+ −200
1461
+ −150
1462
+ −100
1463
+ −50
1464
+ Time Steps
1465
+ (d) 6 Agents, 6 Landmarks
1466
+ Figure 2: Average reward in Spread performing greedy action selection during training. The global reward is the negative
1467
+ minimum distances from each landmark to any agent. We used the PettingZoo reward, which is proportional to 1/2𝑛 in respect
1468
+ to the original one. The results are proportional to the ones based on POL showed in the paper.
1469
+
1470
+ 0
1471
+ 0.5M
1472
+ 1M
1473
+ 1.5M
1474
+ 2M
1475
+ 0
1476
+ 0.2
1477
+ 0.4
1478
+ 0.6
1479
+ 0.8
1480
+ 1
1481
+ TransfQmixNoGraphFeats
1482
+ TransfQmix
1483
+ Time Steps
1484
+ Test Occupied Landmarks %
1485
+ (a) 3 Agents, 3 Landmarks
1486
+ 0
1487
+ 0.5M
1488
+ 1M
1489
+ 1.5M
1490
+ 2M
1491
+ 0
1492
+ 0.2
1493
+ 0.4
1494
+ 0.6
1495
+ 0.8
1496
+ Time Steps
1497
+ (b) 4 Agents, 4 Landmarks
1498
+ 0
1499
+ 0.5M
1500
+ 1M
1501
+ 1.5M
1502
+ 2M
1503
+ 0
1504
+ 0.2
1505
+ 0.4
1506
+ 0.6
1507
+ 0.8
1508
+ Time Steps
1509
+ Test Occupied Landmarks %
1510
+ (c) 5 Agents, 5 Landmarks
1511
+ 0
1512
+ 0.5M
1513
+ 1M
1514
+ 1.5M
1515
+ 2M
1516
+ 0
1517
+ 0.2
1518
+ 0.4
1519
+ 0.6
1520
+ 0.8
1521
+ Time Steps
1522
+ (d) 6 Agents, 6 Landmarks
1523
+ Figure 3: POL in Spread tasks performing greedy action during training of TransfQMix using IS_SELF and IS_AGENT vertex
1524
+ features (TransfQMix) and not using them (TransfQMixNoGraphFeats). Despite how simple they are, these two binary features
1525
+ allow the transformer to infer which of the entity embeddings are relative to the current agent and which of the other ones are
1526
+ relative to team-mates. This seems extremely important in order to generate a coherent coordination graph using self-attention.
1527
+
1528
+ (a) 3 Agents, 3 Landmarks
1529
+ (b) 4 Agents, 4 Landmarks
1530
+
1531
+ Episode
1532
+ Reward
1533
+ Agent_1
1534
+ .
1535
+ Agent_2
1536
+ Agent_3
1537
+ 1.5 -
1538
+ Landmark_1_real
1539
+
1540
+ Landmark_2_real
1541
+ Landmark_3_real
1542
+ 1.0 -
1543
+ 0-
1544
+ 0.5 -
1545
+ Y Position
1546
+ Reward
1547
+ 0.0 -
1548
+ -1-
1549
+ -0.5 -
1550
+ -1.0 -
1551
+ -2 -
1552
+ -1.5 -
1553
+ -1.5
1554
+ -1.0
1555
+ -0.5
1556
+ 0.0
1557
+ 0.5
1558
+ 1.0
1559
+ 1.5
1560
+ -5
1561
+ 10
1562
+ 15
1563
+ 20
1564
+ 25
1565
+ TimestepEpisode
1566
+ Reward
1567
+ Agent_1
1568
+ Agent_2
1569
+ Agent_3
1570
+ 1.5 -
1571
+ Agent_4
1572
+ Landmark_1_real
1573
+ Landmark_2_real
1574
+
1575
+ Landmark_3_real
1576
+ Landmark_4_real
1577
+ 1.0 -
1578
+ 0.5 -
1579
+ Y Position
1580
+ 0.0 -
1581
+ Reward
1582
+ -0.5 -
1583
+ -1 -
1584
+ -1.0 -
1585
+ -1.5 -
1586
+ -2.0 -
1587
+ -2.0
1588
+ -1.5
1589
+ -1.0
1590
+ -0.5
1591
+ 0
1592
+ 0.5
1593
+ 1.0
1594
+ 1.5
1595
+ 10
1596
+ 15
1597
+ 20
1598
+ 25
1599
+ Timestep(c) 5 Agents, 5 Landmarks
1600
+ (d) 6 Agents, 6 Landmarks
1601
+ Figure 4: Some examples of the learned policies in the Spread tasks, using TransfQMix trained in the 4v4 scenario. The smoothed
1602
+ circles represent the trajectories of the agents. The full-filled circles represent their positions at the end of the episode. The
1603
+ green line in the right figures is the evolution of the global reward during the episode.
1604
+
1605
+ Episode
1606
+ Reward
1607
+ Agent_1
1608
+ .
1609
+ 1.5 -
1610
+ Agent_2
1611
+ O
1612
+ Agent_3
1613
+ Agent_4
1614
+ Agent_5
1615
+ Landmark_1_real
1616
+ Landmark_2_real
1617
+ 1.0 -
1618
+ Landmark_3_real
1619
+ Landmark_4_real
1620
+ Landmark_5_real
1621
+ 0.
1622
+ 0.5 -
1623
+ Y Position
1624
+ 0.0 -
1625
+ Reward
1626
+ -0.5 -
1627
+ -1 -
1628
+ -1.0 -
1629
+ -1.5 -
1630
+ -1.5
1631
+ -1.0
1632
+ -0.5
1633
+ 0.0
1634
+ 0.5
1635
+ 1.0
1636
+ 1.5
1637
+ -5
1638
+ 10
1639
+ 15
1640
+ 20
1641
+ 25
1642
+ TimestepEpisode
1643
+ Reward
1644
+ Agent_1
1645
+ .
1646
+ Agent_2
1647
+ Agent_3
1648
+ 1.5 -
1649
+ Agent_4
1650
+ - 0
1651
+ Agent_5
1652
+ Agent_6
1653
+ Landmark_1_real
1654
+ Landmark_2_real
1655
+ 1.0 -
1656
+ Landmark_3_real
1657
+
1658
+ Landmark_4_real
1659
+
1660
+ Landmark_5_real
1661
+ -1 -
1662
+ 8
1663
+ 0.5 -
1664
+ Y Position
1665
+ 0.0 -
1666
+ -0.5 -
1667
+ -3 -
1668
+ -1.0 -
1669
+ -4
1670
+ -1.5 -
1671
+ 2.0 -
1672
+ 2.0
1673
+ -1.5
1674
+ -1.0
1675
+ -0.5
1676
+ 0.0
1677
+ 0.5
1678
+ 1.0
1679
+ 1.5
1680
+ -5
1681
+ 10
1682
+ 15
1683
+ 20
1684
+ 25
1685
+ Timestep
EtE4T4oBgHgl3EQf6w5f/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
G9E1T4oBgHgl3EQfXQT3/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ccfcc561abfd1618344e559fb46ec50ae677602bdff0e966ca6548df8a5245e
3
+ size 11403309
G9E1T4oBgHgl3EQfXQT3/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8684b606d780e49b3264e8a6f2f22da75c6d92eaffeb2f786297a5256a53f348
3
+ size 377364
H9FJT4oBgHgl3EQfFSyX/content/2301.11442v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d22f9391e5d080e36d1eb907b426913efcb4ee3a709ecbee5c069a3de24479dc
3
+ size 250646
H9FJT4oBgHgl3EQfFSyX/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98d416b793970f631f4ad26dbf88e977e6a2154494c965c82df74f74da742fdd
3
+ size 126305
HtA0T4oBgHgl3EQfB_9Y/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43ba989b6fb01cf054166ce700251cd2145d4a2c7eaffe57e47477f6e082d614
3
+ size 3866669
K9E1T4oBgHgl3EQfYwRv/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac0aa519ab2790f16dbd7a18983e43db3c08853494b2f7a62775623ff30bf9bc
3
+ size 3670061
LtE2T4oBgHgl3EQfBAZB/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa67d9441905108534e55aff44dcd485e3ff1d9d76fa049866546abc31a0f76c
3
+ size 262189
LtE3T4oBgHgl3EQfAwm8/content/2301.04261v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a1c4b7ddb22ae78ca045338c30c4be941707bd41670a0bdf10d092ff6f81133d
3
+ size 3551218
NNE2T4oBgHgl3EQfqwgI/content/2301.04041v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10bbfd3acdc5ddd543263bb0ea9048719756ed21eca3b0ddd978234f2453573e
3
+ size 2593704
OtAzT4oBgHgl3EQfzf59/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b29f32fa2075d9820cae588f124e0f6a2f2da05b62b33cf322d7fa663136a6f9
3
+ size 85363
PNFKT4oBgHgl3EQfgS6S/content/2301.11833v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21695979b7c1a5e69ef71e4e174634a623ca83fbb7e4914bf2bc8ccb6806e7cc
3
+ size 3383083