jackkuo commited on
Commit
bab24dc
·
verified ·
1 Parent(s): 220453c

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. -dAyT4oBgHgl3EQfqfiK/content/tmp_files/2301.00544v1.pdf.txt +1265 -0
  2. -dAyT4oBgHgl3EQfqfiK/content/tmp_files/load_file.txt +0 -0
  3. -dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf +3 -0
  4. -dE1T4oBgHgl3EQf8QXB/vector_store/index.pkl +3 -0
  5. -tAyT4oBgHgl3EQf3fnG/content/2301.00771v1.pdf +3 -0
  6. .gitattributes +118 -0
  7. 0NAyT4oBgHgl3EQfPPZ4/content/2301.00021v1.pdf +3 -0
  8. 1dE4T4oBgHgl3EQfzQ2-/content/2301.05273v1.pdf +3 -0
  9. 1dE4T4oBgHgl3EQfzQ2-/vector_store/index.pkl +3 -0
  10. 29AzT4oBgHgl3EQfR_sP/vector_store/index.faiss +3 -0
  11. 2dFRT4oBgHgl3EQfnDfl/vector_store/index.faiss +3 -0
  12. 39E1T4oBgHgl3EQfSgNA/vector_store/index.faiss +3 -0
  13. 39E3T4oBgHgl3EQfogqI/content/2301.04634v1.pdf +3 -0
  14. 39FQT4oBgHgl3EQf3zah/vector_store/index.pkl +3 -0
  15. 3tFQT4oBgHgl3EQf3jaF/content/2301.13428v1.pdf +3 -0
  16. 4tAyT4oBgHgl3EQf2Plc/vector_store/index.faiss +3 -0
  17. 4tAzT4oBgHgl3EQfuv3m/vector_store/index.faiss +3 -0
  18. 4tE2T4oBgHgl3EQfkAch/vector_store/index.faiss +3 -0
  19. 5dAzT4oBgHgl3EQfEfoE/vector_store/index.faiss +3 -0
  20. 5tE0T4oBgHgl3EQfewA6/vector_store/index.pkl +3 -0
  21. 5tE1T4oBgHgl3EQfTAOS/vector_store/index.faiss +3 -0
  22. 6dAzT4oBgHgl3EQfvP2u/vector_store/index.pkl +3 -0
  23. 79AyT4oBgHgl3EQfQvZ4/content/2301.00052v1.pdf +3 -0
  24. 7dFLT4oBgHgl3EQfAS4p/content/2301.11965v1.pdf +3 -0
  25. 7tAzT4oBgHgl3EQf-f6Q/vector_store/index.pkl +3 -0
  26. 89AyT4oBgHgl3EQfqPhE/content/2301.00538v1.pdf +3 -0
  27. 9NE3T4oBgHgl3EQfqwrj/vector_store/index.pkl +3 -0
  28. 9dFJT4oBgHgl3EQfoixI/content/2301.11596v1.pdf +3 -0
  29. A9FQT4oBgHgl3EQfMzZX/vector_store/index.faiss +3 -0
  30. ANAzT4oBgHgl3EQfF_sv/content/2301.01019v1.pdf +3 -0
  31. B9E2T4oBgHgl3EQfRwdj/content/2301.03784v1.pdf +3 -0
  32. CNE0T4oBgHgl3EQfyALn/vector_store/index.faiss +3 -0
  33. CNFQT4oBgHgl3EQfODbS/vector_store/index.pkl +3 -0
  34. CdE1T4oBgHgl3EQf9wZ6/content/2301.03560v1.pdf +3 -0
  35. CtA0T4oBgHgl3EQfAf94/content/2301.01963v1.pdf +3 -0
  36. DNE1T4oBgHgl3EQfEAOl/content/2301.02885v1.pdf +3 -0
  37. DNE1T4oBgHgl3EQfEAOl/vector_store/index.faiss +3 -0
  38. DdE4T4oBgHgl3EQfGAyt/vector_store/index.faiss +3 -0
  39. DtE1T4oBgHgl3EQfqAXb/content/2301.03339v1.pdf +3 -0
  40. DtE1T4oBgHgl3EQfqAXb/vector_store/index.faiss +3 -0
  41. E9FRT4oBgHgl3EQfBzcS/vector_store/index.pkl +3 -0
  42. ENFJT4oBgHgl3EQfCCwM/vector_store/index.faiss +3 -0
  43. EdE4T4oBgHgl3EQfGgyE/vector_store/index.faiss +3 -0
  44. FNFQT4oBgHgl3EQfRTbc/vector_store/index.faiss +3 -0
  45. FtE2T4oBgHgl3EQf-Qmd/vector_store/index.faiss +3 -0
  46. G9FIT4oBgHgl3EQfXCt6/content/2301.11242v1.pdf +3 -0
  47. G9FIT4oBgHgl3EQfXCt6/vector_store/index.faiss +3 -0
  48. GdE3T4oBgHgl3EQfWQoN/content/2301.04466v1.pdf +3 -0
  49. GtAzT4oBgHgl3EQfjP0_/vector_store/index.faiss +3 -0
  50. HNFLT4oBgHgl3EQfHy-l/vector_store/index.faiss +3 -0
-dAyT4oBgHgl3EQfqfiK/content/tmp_files/2301.00544v1.pdf.txt ADDED
@@ -0,0 +1,1265 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Relativistic BGK hydrodynamics
2
+ Pracheta Singhaa, Samapan Bhadurya,c, Arghya Mukherjeeb, Amaresh Jaiswala
3
+ aSchool of Physical Sciences, National Institute of Science Education and Research, An OCC of Homi Bhabha National Institute, Jatni 752050, Odisha, India
4
+ bDepartment of Physics and Astronomy, Brandon University, Brandon, Manitoba R7A 6A9, Canada
5
+ cInstitute of Theoretical Physics, Jagiellonian University, ul. St. Łojasiewicza 11, 30-348 Krakow, Poland
6
+ Abstract
7
+ Bhatnagar-Gross-Krook (BGK) collision kernel is employed in the Boltzmann equation to formulate relativistic dissipative hydro-
8
+ dynamics. In this formulation, we find that there remains freedom of choosing a matching condition that affects the scalar transport
9
+ in the system. We also propose a new collision kernel which, unlike BGK collision kernel, is valid in the limit of zero chemical
10
+ potential and derive relativistic first-order dissipative hydrodynamics using it. We study the effects of this new formulation on the
11
+ coefficient of bulk viscosity.
12
+ 1. Introduction
13
+ Relativistic Boltzmann equation governs the space-time evo-
14
+ lution of the single particle phase-space distribution function of
15
+ a relativistic system. Moreover, suitable moments of the Boltz-
16
+ mann equation are capable of describing the collective dynam-
17
+ ics of the system. Therefore, it has been extensively used to de-
18
+ rive equations of relativistic dissipative hydrodynamics and ob-
19
+ tain expressions for the transport coefficients [1–14]. The col-
20
+ lision term in the Boltzmann equation, which describes change
21
+ in the phase-space distribution due to the collisions of particles,
22
+ makes it a complicated integro-differential equation. In order
23
+ to circumvent this issue, several approximations have been sug-
24
+ gested to simplify the collision term in the linearized regime
25
+ [15–19].
26
+ Bhatnagar-Gross-Krook [15], and independently Welander
27
+ [16], proposed a relaxation type model for the collision term,
28
+ which is commonly known as the BGK model. This model
29
+ was further simplified by Marle [17] and Anderson-Witting [18]
30
+ to calculate the transport coefficients. In the non-relativistic
31
+ limit, Marle’s formulation leads to the same transport coeffi-
32
+ cient as the BGK model but fails in the relativistic limit. On
33
+ the other hand, the Anderson-Witting model, also known as the
34
+ relaxation-time approximation (RTA), is better suited in the rel-
35
+ ativistic limit. The RTA has been employed extensively in sev-
36
+ eral areas of physics with considerable success and has been
37
+ widely employed in the formulation of relativistic dissipative
38
+ hydrodynamics [8–11, 20–32].
39
+ The RTA Boltzmann equation has provided remarkable in-
40
+ sights into the causal theory of relativistic hydrodynamics as
41
+ well as a simple yet meaningful picture of the collision mech-
42
+ anism in a non-equilibrium system. On the other hand, the
43
+ Email addresses: pracheta.singha@gmail.com (Pracheta Singha),
44
+ samapan.bhadury@niser.ac.in (Samapan Bhadury),
45
+ arbp.phy@gmail.com (Arghya Mukherjee), a.jaiswal@niser.ac.in
46
+ (Amaresh Jaiswal)
47
+ BGK collision term ensures conservation of net particle four-
48
+ current by construction, and is the precursor to RTA. While the
49
+ RTA has been employed extensively, a consistent formulation
50
+ of relativistic dissipative hydrodynamics with the BGK colli-
51
+ sion term is relatively less explored. This may be attributed to
52
+ the fact that the BGK collision kernel is ill defined for relativis-
53
+ tic systems without a conserved net particle four-current. This
54
+ has limited the use of the BGK collision kernel to the studies
55
+ related to flow of particle number and/or charge [33–43].
56
+ In this article, we take the first step towards formulating a
57
+ consistent framework of relativistic dissipative hydrodynamics
58
+ using the BGK collision kernel. Furthermore, we propose a
59
+ modified BGK collisions kernel (MBGK), which is well de-
60
+ fined even in the absence of conserved particle four-current and
61
+ is better suited for the formulation of the relativistic dissipative
62
+ hydrodynamics. We find that there exists a free scalar parame-
63
+ ter arising from the freedom of matching condition. This affects
64
+ the scalar dissipation in the system, i.e., the coefficient of bulk
65
+ viscosity. We study the effect on bulk viscosity in several dif-
66
+ ferent scenarios.
67
+ 2. Relativistic dissipative hydrodynamics
68
+ The conserved net particle four-current, Nµ, and the energy-
69
+ momentum tensor, T µν, of a system can be expressed in terms
70
+ of the single particle phase-space distribution function and the
71
+ hydrodynamic variables as [44],
72
+ Nµ =
73
+
74
+ dP pµ �
75
+ f − ¯f
76
+
77
+ = n uµ + nµ,
78
+ (1)
79
+ T µν =
80
+
81
+ dP pµpν �
82
+ f + ¯f
83
+
84
+ = ϵ uµuν − (P0 + δP) ∆µν + πµν, (2)
85
+ where the Lorentz invariant momentum integral measure is de-
86
+ fined as dP = g d3p/
87
+
88
+ (2π)3E
89
+
90
+ with g being the degeneracy fac-
91
+ tor and E =
92
+
93
+ |p|2 + m2 being the on-shell energy of the con-
94
+ stituent particle of the medium with three-momentum p and
95
+ Preprint submitted to Physics Letters B
96
+ January 3, 2023
97
+ arXiv:2301.00544v1 [nucl-th] 2 Jan 2023
98
+
99
+ mass m. Here f ≡ f(x, p) and ¯f ≡
100
+ ¯f(x, p) are the phase-
101
+ space distribution functions for particles and anti-particles, re-
102
+ spectively. In the above equations, n is the net particle number
103
+ density, ϵ is the energy density, P0 is the equilibrium pressure,
104
+ nµ is the particle diffusion four-current, δP is the correction to
105
+ the isotropic pressure, and πµν is the shear stress tensor. We
106
+ note that the fluid four-velocity uµ has been defined in the Lan-
107
+ dau frame, uµT µν = ϵuν. We also define ∆µν ≡ gµν − uµuν as
108
+ the projection operator orthogonal to uµ. In this article, we will
109
+ be working in a flat space-time with metric tensor defined as,
110
+ gµν = diag(1, −1, −1, −1).
111
+ Hydrodynamic equations are essentially the equations for
112
+ conservation of net particle four current, ∂µNµ = 0, and energy-
113
+ momentum tensor, ∂µT µν = 0. Using the expressions of Nµ and
114
+ T µν from Eqs. (1) and (2), the hydrodynamic equations can be
115
+ obtained as,
116
+ ˙n + nθ + ∂µnµ = 0
117
+ (3)
118
+ ˙ϵ + (ϵ + P0 + δP) θ − πµνσµν = 0
119
+ (4)
120
+ (ϵ + P0 + δP) ˙uα − ∇α (P0 + δP) + ∆α
121
+ ν∂µπµν = 0
122
+ (5)
123
+ where we use the standard notation, ˙A ≡ uµ∂µA for the co-
124
+ moving derivatives, ∇α ≡ ∆αβ∂β for the space-like derivatives,
125
+ θ = ∂µuµ for the expansion scalar, and σµν = 1
126
+ 2 (∇µuν + ∇νuµ) −
127
+ 1
128
+ 3∆µνθ for the velocity stress-tensor.
129
+ To express the conserved net particle four-current and the
130
+ energy-momentum tensor in terms of hydrodynamic variables
131
+ in Eqs. (1) and (2), we chose Landau frame to define the fluid
132
+ four-velocity. Additionally, the net-number density and energy
133
+ density of a non-equilibrium system needs to be defined us-
134
+ ing the so called matching conditions. We relate these non-
135
+ equilibrium quantities with their equilibrium values as
136
+ n = n0 + δn,
137
+ ϵ = ϵ0 + δϵ,
138
+ (6)
139
+ where n0 and ϵ0 are the equilibrium net-number density and
140
+ the energy density, respectively, and, δn, δϵ are the corre-
141
+ sponding non-equilibrium corrections. For a system which is
142
+ out-of-equilibrium, the distribution function can be written as
143
+ f = f0 + δ f, where f0 is the equilibrium distribution function
144
+ and δf is the non-equilibrium correction. In the present work,
145
+ we consider the equilibrium distribution function to be of the
146
+ classical Maxwell-Juttner form, f0 = exp(−β u · p + α), where
147
+ β ≡ 1/T is the inverse temperature, α ≡ µ/T is the ratio of
148
+ chemical potential to temperature and u · p ≡ uµpµ. The equi-
149
+ librium distribution for anti-particles is also taken to be of the
150
+ Maxwell-Juttner form with α → −α.
151
+ We can now express the equilibrium hydrodynamic quanti-
152
+ ties in terms of the equilibrium distribution function as,
153
+ n0 =
154
+
155
+ dP (u · p)
156
+
157
+ f0 − ¯f0
158
+
159
+ (7)
160
+ ϵ0 =
161
+
162
+ dP (u · p)2 �
163
+ f0 + ¯f0
164
+
165
+ (8)
166
+ P0 = −1
167
+ 3∆µν
168
+
169
+ dP pµpν �
170
+ f0 + ¯f0
171
+
172
+ .
173
+ (9)
174
+ Similarly, the non-equilibrium quantities can be expressed as
175
+ δn =
176
+
177
+ dP (u · p)
178
+
179
+ δ f − δ ¯f
180
+
181
+ (10)
182
+ δϵ =
183
+
184
+ dP (u · p)2 �
185
+ δ f + δ ¯f
186
+
187
+ (11)
188
+ δP = −1
189
+ 3∆αβ
190
+
191
+ dP pαpβ �
192
+ δ f + δ ¯f
193
+
194
+ ,
195
+ (12)
196
+ nµ = ∆µ
197
+ α
198
+
199
+ dP pα �
200
+ δ f − δ ¯f
201
+
202
+ ,
203
+ (13)
204
+ πµν = ∆µν
205
+ αβ
206
+
207
+ dP pαpβ �
208
+ δ f + δ ¯f
209
+
210
+ ,
211
+ (14)
212
+ where ∆µν
213
+ αβ ≡ 1
214
+ 2(∆µ
215
+ α∆ν
216
+ β+∆µ
217
+ β∆ν
218
+ α)− 1
219
+ 3∆µν∆αβ is a traceless symmetric
220
+ projection operator orthogonal to uµ as well as ∆µν. In order to
221
+ calculate these non-equilibrium quantities, we require the out-
222
+ of-equilibrium correction to the distribution function, δf and
223
+ δ ¯f. To this end, we consider the Boltzmann equation with BGK
224
+ collision kernel.
225
+ 3. The Boltzmann equation and conservation laws
226
+ The covariant Boltzmann equation, in absence of any force
227
+ term or mean-field interaction term, is given by,
228
+ pµ∂µ f = C[ f, ¯f],
229
+ pµ∂µ ¯f = ¯C[ f, ¯f],
230
+ (15)
231
+ for a single species of particles and its antiparticles. In the
232
+ above equation, C[ f, ¯f] and ¯C[ f, ¯f] are the collision kernels
233
+ that contain the microscopic information of the scattering pro-
234
+ cesses. For the formulation of relativistic hydrodynamics from
235
+ the kinetic theory of unpolarized particles, the collision ker-
236
+ nel of the Boltzmann equation must satisfy certain properties.
237
+ Firstly, the collision kernel must vanish for a system in equilib-
238
+ rium, i.e., C[ f0, ¯f0] = ¯C[ f0, ¯f0] = 0. Further, in order to satisfy
239
+ the fundamental conservation equations in the microscopic in-
240
+ teractions, the zeroth and the first moments of the collision ker-
241
+ nel must vanish, i.e.,
242
+
243
+ dPC = 0 and
244
+
245
+ dP pµ C = 0. Vanishing
246
+ of the zeroth moment and the first moment of the collision ker-
247
+ nel follows from the net particle four-current conservation and
248
+ the energy-momentum conservation, respectively.
249
+ In the present work, we consider the BGK collision kernel
250
+ which has the advantage that the particle four-current is con-
251
+ served by construction. The relativistic Boltzmann equation
252
+ with BGK collision kernel for particles can be written as [15],
253
+ pµ∂µ f = −(u · p)
254
+ τR
255
+
256
+ f − n
257
+ n0
258
+ f0
259
+
260
+ ,
261
+ (16)
262
+ and similarly for anti-particles with f → ¯f and f0 → ¯f0. Here,
263
+ τR is a relaxation time like parameter1 which we assume to be
264
+ the same for particles and anti-particles. It is easy to verify that
265
+ the conservation of net particle four-current, defined in Eq. (1),
266
+ follows from the zeroth moment of the above equations. The
267
+ 1A more conventional notation is the collision frequency which is defined
268
+ as ν = 1/τR.
269
+ 2
270
+
271
+ first moment of the above equations should lead to the con-
272
+ servation of the energy-momentum tensor, defined in Eq. (2).
273
+ However, we find that the first moment of the Boltzmann equa-
274
+ tion, Eq. (16), leads to,
275
+ ∂µT µν = − 1
276
+ τR
277
+
278
+ ϵ − n
279
+ n0
280
+ ϵ0
281
+
282
+ ,
283
+ (17)
284
+ which does not vanish automatically.
285
+ In order to have energy-momentum conservation fulfilled
286
+ by the Boltzmann equation with the BGK collision kernel,
287
+ Eq. (16), we require that
288
+ ϵn0 = ϵ0n,
289
+ (18)
290
+ which we identify as one matching condition. Note that two
291
+ matching conditions are required to define the non-equilibrium
292
+ net number density and the energy density. Along with the
293
+ above equation, we are left with the freedom of one matching
294
+ condition. It is important to observe that the RTA Boltzmann
295
+ equation, pµ∂µ f = − (u·p)
296
+ τR ( f − f0), is recovered from Eq. (16)
297
+ if the second matching condition is fixed as either ϵ = ϵ0 or
298
+ equivalently n = n0. For the RTA collision term, both matching
299
+ conditions ϵ = ϵ0 and n = n0, are necessary for net particle four-
300
+ current and energy-momentum conservation. However, for the
301
+ BGK collision kernel, both conservation equations are satisfied
302
+ with only one matching condition, Eq. (18), leaving the other
303
+ condition free. We shall see later that this scalar freedom af-
304
+ fects the coefficient of bulk viscosity, which is the transport co-
305
+ efficient corresponding to scalar dissipation in the system.
306
+ Note that the equilibrium net number density, defined in
307
+ Eq. (7), vanishes in the limit of zero chemical potential. This
308
+ implies that the BGK collision term in Eq. (16) is ill defined
309
+ in this limit, which is relevant for ultra-relativistic heavy-ion
310
+ collisions. Therefore, it is desirable to modify the BGK col-
311
+ lision kernel in order to extend its regime of applicability. At
312
+ this juncture, we are well equipped to propose a modification
313
+ to BGK collision kernel that is well-defined for all values of
314
+ chemical potential. To this end, we rewrite the condition nec-
315
+ essary for energy-momentum conservation from BGK collision
316
+ kernel, Eq. (18), in the form
317
+ n
318
+ n0
319
+ = ϵ
320
+ ϵ0
321
+ .
322
+ (19)
323
+ Substituting the above equation in Eq. (16), we obtain Boltz-
324
+ mann equation for particles with a modified BGK (MBGK) col-
325
+ lision kernel,
326
+ pµ∂µ f = −(u · p)
327
+ τR
328
+
329
+ f − ϵ
330
+ ϵ0
331
+ f0
332
+
333
+ ,
334
+ (20)
335
+ and similarly for anti-particles with f → ¯f and f0 → ¯f0. The
336
+ advantage of the above modification is that the collision ker-
337
+ nel conserves energy-momentum by construction and is appli-
338
+ cable to systems even without any conserved four-current, i.e.,
339
+ in the limit of vanishing chemical potential. In the case of finite
340
+ chemical potential, the matching condition, Eq. (18), ensures
341
+ net particle four-current conservation. It is important to note
342
+ that BGK and MBGK are completely equivalent for the purpose
343
+ of the derivation of hydrodynamic equations at finite chemical
344
+ potential. In the following, we consider the MBGK Boltzmann
345
+ equation, Eq. (20), to obtain non-equilibrium correction to the
346
+ distribution function.
347
+ 4. Non-equilibrium correction to the distribution function
348
+ In order to obtain the non-equilibrium correction to the dis-
349
+ tribution function, we use Eq. (6) to rewrite the MBGK Boltz-
350
+ mann equation, Eq. (20), as
351
+ pµ∂µ f = −(u · p)
352
+ τR
353
+
354
+ δ f − δϵ
355
+ ϵ0
356
+ f0
357
+
358
+ ,
359
+ (21)
360
+ and similarly for anti-particles. The next step is to solve the
361
+ above equation, order-by-order in gradients. In this work, we
362
+ intend to obtain the non-equilibrium correction to the distribu-
363
+ tion function up to first-order in derivative, which we repre-
364
+ sent by δ f1. However, obtaining the expressions for δf1 from
365
+ Eq. (21) is not straightforward because it contains δϵ which is
366
+ defined in Eq. (11) as an integral over δ f. Therefore, to solve
367
+ for δ f1, we examine each term individually. Up to first-order
368
+ in gradients, the structure of the term on the left-hand side of
369
+ Eq. (21) has the form,
370
+ pµ∂µ f0 =
371
+
372
+ AΠθ + Anpµ∇µα + Aπpµpνσµν
373
+
374
+ f0,
375
+ (22)
376
+ and similarly for anti-particles. Here,
377
+ AΠ = −
378
+
379
+ (u · p)2 �
380
+ χb − β
381
+ 3
382
+
383
+ − (u · p) χa + βm2
384
+ 3
385
+
386
+ ,
387
+ (23)
388
+ An = 1 − n0 (u · p)
389
+ (ϵ0 + P0),
390
+ Aπ = − β.
391
+ (24)
392
+ The coefficients χa and χb appearing in Eq. (23) are defined via
393
+ the relations
394
+ ˙α = χa θ,
395
+ ˙β = χb θ,
396
+ ∇µβ =
397
+ n0
398
+ ϵ0 + p0
399
+ ∇µα − β˙uµ
400
+ (25)
401
+ χa = I−
402
+ 20(ϵ0 + P0) − I+
403
+ 30n0
404
+ I+
405
+ 30I+
406
+ 10 − I−
407
+ 20I−
408
+ 20
409
+ ,
410
+ χb = I+
411
+ 10(ϵ0 + P0) − I−
412
+ 20n0
413
+ I+
414
+ 30I+
415
+ 10 − I−
416
+ 20I−
417
+ 20
418
+ , (26)
419
+ where, the thermodynamic integrals are given by,
420
+
421
+ nq =
422
+ (−1)q
423
+ (2q + 1)!!
424
+
425
+ dP (u · p)n−2q �
426
+ ∆αβpαpβ�q �
427
+ f0 ± ¯f0
428
+
429
+ .
430
+ (27)
431
+ With the above definition, we identify n0 = I−
432
+ 10, ϵ0 = I+
433
+ 20 and
434
+ P0 = I+
435
+ 21.
436
+ We assume δ f1 to have the same form as in Eq. (22),
437
+ δ f1 = τR
438
+
439
+ BΠθ + Bnpµ∇µα + Bπpµpνσµν
440
+
441
+ f0,
442
+ (28)
443
+ and similarly for anti-particles. In the above expression, the co-
444
+ efficients BΠ, Bn and Bπ needs to be determined using Eq. (21),
445
+ up to first order in derivatives. To that end, we substitute the
446
+ expression for δ f1 in Eq. (11) to obtain
447
+ δϵ = τR
448
+
449
+ dP (u · p)2 �
450
+ BΠ f0 + ¯BΠ ¯f0
451
+
452
+ θ
453
+ (29)
454
+ 3
455
+
456
+ Using Eqs. (22), (28) and (29) into Eq. (21) and comparing both
457
+ sides, we get
458
+
459
+
460
+ (u · p) = BΠ − 1
461
+ ϵ0
462
+
463
+ dP (u · p)2 �
464
+ BΠ f0 + ¯BΠ ¯f0
465
+
466
+ (30)
467
+ Bn = −
468
+ An
469
+ (u · p) ,
470
+ Bπ = −
471
+
472
+ (u · p).
473
+ (31)
474
+ Another set of equations in terms of ¯AΠ, ¯An and ¯Aπ can be
475
+ obtained by considering the MBGK equation, analogous to
476
+ Eq. (21), for anti-particles. Note that the coefficients Bn, ¯Bn,
477
+ Bπ and ¯Bπ are easily determined but BΠ and ¯BΠ require further
478
+ investigation.
479
+ To obtain their expressions, we consider BΠ to be of the gen-
480
+ eral form, BΠ = �+∞
481
+ k=−∞ bk (u · p)k and ¯BΠ = �+∞
482
+ k=−∞ ¯bk (u · p)k.
483
+ Substituting these in Eq. (30) and its corresponding equation for
484
+ anti-particles, we can conclude that the only non-zero bk and ¯bk
485
+ are the ones with k = −1, 0, 1. We obtain
486
+ BΠ =
487
+ 1
488
+
489
+ k=−1
490
+ bk (u · p)k ,
491
+ ¯BΠ =
492
+ 1
493
+
494
+ k=−1
495
+ ¯bk (u · p)k .
496
+ (32)
497
+ Substituting Eqs. (23) and (32) in Eq. (30), we find
498
+ b1 = ¯b1 = χb − β
499
+ 3
500
+ and,
501
+ b−1 = ¯b−1 = m2β
502
+ 3 ,
503
+ (33)
504
+ where we have also used the relation analogous to Eq. (30) for
505
+ anti-particles. On the other hand, for b0 and ¯b0 we find two
506
+ coupled equations, which are identical and can be simplified to
507
+ the relation,
508
+ ¯b0 = b0 + 2 χa.
509
+ (34)
510
+ Hence, we see that a unique solution for b0 and ¯b0 can not be
511
+ obtained but they are constrained by the above relation. We
512
+ need to provide one more condition, which we recognize as the
513
+ second matching condition, to fix b0 and ¯b0 separately.
514
+ Nevertheless, at this stage, we can determine δf1 and δ ¯f1 up
515
+ to a free parameter, b0, by using Eqs. (30)-(34) into Eq. (28),
516
+ and similarly for anti-particles. We obtain,
517
+ δf1 = τR f0
518
+ � �
519
+ m2β
520
+ 3 (u · p) + b0 + (u · p)
521
+
522
+ χb − β
523
+ 3
524
+ ��
525
+ θ
526
+
527
+
528
+ 1
529
+ (u · p) −
530
+ n0
531
+ (ϵ0 + P0)
532
+
533
+ pµ �
534
+ ∇µα
535
+
536
+ + βpµpµσµν
537
+ (u · p)
538
+
539
+ ,
540
+ (35)
541
+ δ ¯f1 = τR ¯f0
542
+ � �
543
+ m2β
544
+ 3 (u · p) + b0 + 2 χa + (u · p)
545
+
546
+ χb − β
547
+ 3
548
+ ��
549
+ θ
550
+ +
551
+
552
+ 1
553
+ (u · p) +
554
+ n0
555
+ (ϵ0 + P0)
556
+
557
+ pµ �
558
+ ∇µα
559
+
560
+ + βpµpµσµν
561
+ (u · p)
562
+
563
+ .
564
+ (36)
565
+ Note that for vanishing chemical potential, we have α = χa = 0.
566
+ In this case, Eqs. (35) and (36) coincide to give
567
+ δf1
568
+ ����µ=0 = τR βf0
569
+ �� m2
570
+ 3 (u·p) + b0
571
+ β +(u·p)
572
+
573
+ c2
574
+ s− 1
575
+ 3
576
+ ��
577
+ θ+ pµpµσµν
578
+ (u·p)
579
+
580
+ ,
581
+ (37)
582
+ where we have used χb = βc2
583
+ s, with c2
584
+ s being the squared of the
585
+ speed of sound, given by,
586
+ c2
587
+ s =
588
+ (ϵ0 + P0)
589
+ 3ϵ0 + �3 + z2� P0
590
+ .
591
+ (38)
592
+ Here z ≡ m/T is the ratio of particle mass to temperature.
593
+ 5. First order dissipative hydrodynamics
594
+ The first-order correction to the phase-space distribution
595
+ functions of the particles and anti-particles at finite µ are given
596
+ by Eqs. (35) and (36). Substituting them in Eqs. (10)-(14), we
597
+ obtain the first-order expressions for non-equilibrium hydrody-
598
+ namic quantities as
599
+ δn = νθ,
600
+ δϵ = eθ,
601
+ δP = ρθ,
602
+ nµ = κ∇µα,
603
+ πµν = 2ησµν,
604
+ (39)
605
+ where,
606
+ ν = τR (χa + b0) n0,
607
+ e = τR (χa + b0) ϵ0,
608
+ (40)
609
+ ρ = τR
610
+
611
+ (χa + b0)P0 + χb
612
+ (ϵ0 + P)
613
+ β
614
+ − 5
615
+ 3βI+
616
+ 32 − χan0
617
+ β
618
+
619
+ ,
620
+ (41)
621
+ κ = τR
622
+ ������I+
623
+ 11 −
624
+ n2
625
+ 0
626
+ β(ϵ0 + P)
627
+ ������ ,
628
+ η = τR β I+
629
+ 32.
630
+ (42)
631
+ Note that the parameter b0 appears in the expressions of ν, e
632
+ and ρ. Of these, ν and e vanishes for b0 = −χa which cor-
633
+ responds to the Landau matching condition and RTA collision
634
+ kernel. Conductivity κ and the coefficient of shear viscosity
635
+ η does not contain the parameter b0, and the expressions for
636
+ these two transport coefficients, given in Eq. (42), matches with
637
+ those derived using RTA collision kernel [11]. Next, we ana-
638
+ lyze entropy production in the MBGK setup in order to identify
639
+ dissipative transport coefficients in Eqs. (40)-(42).
640
+ To study entropy production, we start from the kinetic theory
641
+ definition of entropy four-current, given by the Boltzmann’s H-
642
+ theorem, for a classical system
643
+ S µ = −
644
+
645
+ dPpµ�
646
+ f (ln f − 1) + ¯f
647
+
648
+ ln ¯f − 1
649
+ � �
650
+ .
651
+ (43)
652
+ The
653
+ entropy
654
+ production
655
+ is
656
+ determined
657
+ by
658
+ taking
659
+ four-
660
+ divergence of the above equation,
661
+ ∂µS µ = −
662
+
663
+ dPpµ� �
664
+ ∂µ f
665
+
666
+ ln f +
667
+
668
+ ∂µ ¯f
669
+
670
+ ln ¯f
671
+
672
+ .
673
+ (44)
674
+ Using the MBGK Boltzmann equation, i.e., Eq. (21), and keep-
675
+ ing terms till quadratic order in deviation-from-equilibrium, we
676
+ obtain
677
+ ∂µS µ = 1
678
+ τR
679
+
680
+ dP (u·p)
681
+ ��
682
+ δ f − δϵ
683
+ ϵ0
684
+ f0
685
+
686
+ φ +
687
+
688
+ δ ¯f − δϵ
689
+ ϵ0
690
+ ¯f0
691
+
692
+ ¯φ
693
+
694
+ . (45)
695
+ where we have defined φ ≡ δ f/ f0 and ¯φ ≡ δ ¯f/ ¯f0.
696
+ Using Eqs. (35) and (36) in Eq. (45), we obtain,
697
+ ∂µS µ = −β Π θ − nµ∇µα + βπµνσµν,
698
+ (46)
699
+ 4
700
+
701
+ where,
702
+ Π = δP − χb
703
+ β δϵ + χa
704
+ β δn.
705
+ (47)
706
+ It is important to note that the right-hand-side of Eq. (46) repre-
707
+ sents entropy production due to dissipation in the system. Here
708
+ the shear stress tensor πµν is the tensor dissipation, the parti-
709
+ cle diffusion four-current nµ is the vector dissipation and Π is
710
+ the scalar dissipation, referred to as the bulk viscous pressure2.
711
+ From Eq. (47), we observe that δP, δϵ, and δn, all contribute to
712
+ the bulk viscous pressure. Comparing with the Navier-Stokes
713
+ relation of bulk viscous pressure, i.e., Π = −ζ θ, we obtain the
714
+ coefficient of bulk viscosity as,
715
+ ζ = −τR
716
+ �χb
717
+ β (ϵ0 + P0) − 5βI+
718
+ 32
719
+ 3
720
+ − χan0
721
+ β
722
+ + (χa + b0)
723
+ β
724
+ ( βP0 − χbϵ0 + χan0)
725
+
726
+ .
727
+ (48)
728
+ Demanding that Eq. (46) does not violate the second law of
729
+ thermodynamics, i.e., ∂µS µ ≥ 0, leads to the following con-
730
+ straints [45],
731
+ ζ ≥ 0,
732
+ κ ≥ 0,
733
+ η ≥ 0.
734
+ (49)
735
+ These three transport coefficients represent the three dissipative
736
+ transport phenomena of the system related to the transport of
737
+ momentum and charge. We see that out of the three transport
738
+ coefficients, only ζ depends on the parameter b0 and the second
739
+ matching condition is necessary to uniquely determine ζ. This
740
+ is to be expected because the matching conditions are scalar
741
+ conditions and should only affect the scalar dissipation in the
742
+ system, i.e., bulk viscosity. In the following, we specify the
743
+ second matching condition.
744
+ With the parameter, b0 still not specified, the hydrodynamic
745
+ equations obtained using the MBGK Boltzmann equation forms
746
+ a class of hydrodynamic theories. A specific hydrodynamic the-
747
+ ory is determined by a specific b0 parameter. We can access
748
+ different hydrodynamic theories by varying the b0 parameter,
749
+ which is solely controlled by the second matching condition.
750
+ Thus, picking a specific second matching condition will fix b0
751
+ and hence the hydrodynamic theory. To this end, we define a
752
+ function A±
753
+ r as [19, 46],
754
+
755
+ r =
756
+
757
+ dP (u · p)r �
758
+ δf ± δ ¯f
759
+
760
+ .
761
+ (50)
762
+ The second matching condition then amounts to assigning a
763
+ value for a given A±
764
+ r . For instance, the RTA matching condi-
765
+ tions can be recovered by setting A−
766
+ 1 = A+
767
+ 2 = 0. It is apparent
768
+ that the choice of a second matching condition is vast, and de-
769
+ termination of the full list of the allowed ones is a non-trivial
770
+ task that goes beyond the scope of the present work. Presently,
771
+ for the second matching condition, we shall restrict our analysis
772
+ to a special set A+
773
+ r = 0. These matching conditions ensures that
774
+ 2We can further identify that,
775
+ � ∂P
776
+ ∂ϵ
777
+
778
+ n = χb
779
+ β and,
780
+ � ∂P
781
+ ∂n
782
+
783
+ ϵ = − χα
784
+ β .
785
+ 0.01
786
+ 0.10
787
+ 1
788
+ 10
789
+ 100
790
+ -0.3
791
+ -0.2
792
+ -0.1
793
+ 0.0
794
+ 0.1
795
+ 0.2
796
+ 0.3
797
+ Figure 1: Dependence of the parameter b0 on z for different matching condi-
798
+ tions. The red region corresponds to negative values of ζ. The plot is for zero
799
+ chemical potential.
800
+ the homogeneous part of δ f vanishes3 [47] and are also valid in
801
+ the zero chemical potential limit. Using Eqs. (35) and (36) in
802
+ our proposed matching condition A+
803
+ r = 0, we obtain
804
+ b0 = −
805
+
806
+ 1/I+
807
+ r,0
808
+ � �
809
+ χbI+
810
+ r+1,0 − βI+
811
+ r+1,1 + χa
812
+
813
+ I+
814
+ r,0 − I−
815
+ r,0
816
+ ��
817
+ .
818
+ (51)
819
+ In the next section, we explore the effect of different b0 on the
820
+ coefficient of bulk viscosity.
821
+ 6. Results and discussions
822
+ In this section, we study the effect of MBGK collision kernel
823
+ on transport coefficients. In the previous Section, we found that
824
+ the effect of MBGK collision kernel manifests in the parameter
825
+ b0 which affects only the scalar dissipation, namely bulk vis-
826
+ cous pressure. On the other hand, the vector (net particle dif-
827
+ fusion) and tensor (shear stress tensor) dissipation remain unaf-
828
+ fected. Therefore, we study only the properties of bulk viscous
829
+ coefficient in this section.
830
+ Before we proceed to quantify the effect of varying the sec-
831
+ ond matching condition on the coefficient of bulk viscosity, we
832
+ must establish the allowed values for the parameter b0. To this
833
+ end, we note that the second law of thermodynamics demands
834
+ that the coefficient of bulk viscosity must be positive, Eq. (49).
835
+ In Fig. 1, we plot b0 vs z for different values of r required to
836
+ 3It must be noted that this is not the only class of matching conditions that
837
+ guarantee the zero value of the homogeneous part.
838
+ 5
839
+
840
+ 0.001
841
+ 0.010
842
+ 0.100
843
+ 1
844
+ 10
845
+ 100
846
+ 0.00
847
+ 0.01
848
+ 0.02
849
+ 0.03
850
+ 0.04
851
+ Figure 2: Dependence of ζ/ (s0τRT) on the T/m for various α = µ/T values.
852
+ The curves labelled RTA corresponds to r = 2 and those labelled MBGK cor-
853
+ responds to r = 0.
854
+ define the second matching condition in Eq. (51), at zero chem-
855
+ ical potential. The red region in Fig. 1 corresponds to the part
856
+ of b0-z plane where the coefficient of bulk viscosity becomes
857
+ negative. Therefore all values of r for which the curves for b0
858
+ lies in the red zone are not physical and must be discarded. The
859
+ boundary of the red region corresponds to the ζ = 0 line and is
860
+ given by
861
+ b0 = −χa +
862
+ ������
863
+ χb (ϵ0 + P0) − χan0 − (5/3) β2I+
864
+ 32
865
+ χbϵ0 − χan0 − βP0
866
+ ������ .
867
+ (52)
868
+ We find the b0 parameter with non-negative values of r respects
869
+ the requirement of the second law of thermodynamics Eq. (49).
870
+ The black line with r = 2 represents the b0 for which the
871
+ MBGK reduces to the RTA, where b0 vanishes for all z. From
872
+ numerical analysis, we find that large negative values of r leads
873
+ to b0 which corresponds to negative ζ. In Fig. 1, we see that the
874
+ curve for b0, which corresponds to r = −4, passes through the
875
+ physically forbidden region.
876
+ Having determined the allowed range of r and equivalently,
877
+ the allowed values of b0, we will restrict ourselves to b0 cor-
878
+ responding to r ≥ 0 values.
879
+ In Fig. 2 we plot the dimen-
880
+ sionless quantity ζ/ (s0τRT) for MBGK with r = 0, and RTA
881
+ (r = 2) against T/m for different values of chemical potential,
882
+ where s0 ≡ (ϵ0 + P0 − µ n0)/T. We observe that ζ/ (s0τRT)
883
+ is a non-monotonous function of temperature, having a maxi-
884
+ mum for each r for MBGK case, similar to the behavior known
885
+ from RTA [19, 46, 48]. We also note that the dependence of
886
+ ζ/ (s0τRT) on α is also non-monotonous, which can be realized
887
+ by observing that not only the position of the peak for α = 1 is
888
+ at higher T/m values than for α = 0 and α = 2.5, but the peak
889
+ value is also higher for α = 1 compared to α = 0 and α = 2.5.
890
+ To better understand the effect of changing matching condi-
891
+ tions on the behavior of the bulk viscosity for the MBGK col-
892
+ lision kernel, we focus on the zero chemical potential limit. In
893
+ this limit, we study the scaling behavior of the ratio of the coef-
894
+ ficient of bulk viscosity to shear viscosity, ζ/η, with conformal-
895
+ ity measure 1/3−c2
896
+ s. In Fig. 3, we plot the ratio (ζ/η)/(1/3−c2
897
+ s)2
898
+ 0.001
899
+ 0.010
900
+ 0.100
901
+ 1
902
+ 10
903
+ 100
904
+ 0
905
+ 20
906
+ 40
907
+ 60
908
+ 80
909
+ Figure 3: Variation of the dimensionless quantity (ζ/η)/(1/3−c2
910
+ s)2 with respect
911
+ to z for various matching conditions determined by r.
912
+ as a function of z for different r values. We observe that this
913
+ ratio saturates in both small-z and large-z limits indicating a
914
+ squared dependence of ζ/η on the conformality measure, char-
915
+ acteristic to weakly coupled systems. We also observe that in
916
+ the small-z limit, this ratio saturates to different values whereas
917
+ in the large-z limit, they all converge. In order to better un-
918
+ derstand the behavior of ζ/η in these regimes, we separately
919
+ analyze the small-z and large-z limits.
920
+ Small-z behaviour : The small-z limit, i.e., m/T ≪ 1, is
921
+ the ultra-relativistic limit where the mass of the particles can
922
+ be ignored compared to the temperature of the system. At zero
923
+ chemical potential, the small-z limiting behavior of the confor-
924
+ mality measure is given by
925
+ � 1
926
+ 3 − c2
927
+ s
928
+
929
+ = z2
930
+ 36 + O
931
+
932
+ z3�
933
+ . On the other
934
+ hand, the small-z behavior of the ratio ζ/η is found to be
935
+ ζ
936
+ η = Γ(r)
937
+ �1
938
+ 3 − c2
939
+ s
940
+ �2
941
+ + O
942
+
943
+ z5�
944
+ ,
945
+ (53)
946
+ for all r. We find the r-dependence of the coefficient to be,
947
+ Γ(r) ≡ lim
948
+ z→0
949
+ ζ/η
950
+ � 1
951
+ 3 − c2s
952
+ �2 = 15(r2 + 23r + 10)
953
+ 4(r + 1)
954
+ ,
955
+ (54)
956
+ for r ≥ 0. Thus, while the ratio ζ/η shows a z4 dependence in
957
+ the same small-z limit, the coefficient Γ depends on the match-
958
+ ing condition through b0, and equivalently r, as is evident from
959
+ Eq. (54). In Fig. 4, we show the variation of the coefficient Γ as
960
+ a function of r. We observe that for r = 2, we recover the RTA
961
+ value, Γ = 75, marked with a red dot in Fig. 4.
962
+ Large-z behaviour : On the opposite end, i.e., at the large-z
963
+ limit where m/T ≫ 1, we have the non-relativistic limit. In this
964
+ limit, the conformality measure is expanded in powers of 1/z
965
+ and is given by, 1
966
+ 3 − c2
967
+ s = 1
968
+ 3 − 1
969
+ z + O
970
+ � 1
971
+ z2
972
+
973
+ . The behaviour of the
974
+ ratio ζ/η in the same limit is given by,
975
+ ζ
976
+ η = 2
977
+ 3 − 3
978
+ z + O
979
+ � 1
980
+ z2
981
+
982
+ ,
983
+ (55)
984
+ 6
985
+
986
+ 0.0
987
+ 0.5
988
+ 1.0
989
+ 1.5
990
+ 2.0
991
+ 2.5
992
+ 3.0
993
+ 40
994
+ 50
995
+ 60
996
+ 70
997
+ 80
998
+ Figure 4: Variation of the scaling coefficient Γ, defined in Eqs. (53) and (54),
999
+ with respect to parameter r. The red dot represents the RTA value of Γ = 75.
1000
+ for all r. Considering the leading terms in this expansion, we
1001
+ find,
1002
+ ζ
1003
+ η = 6
1004
+ �1
1005
+ 3 − c2
1006
+ s
1007
+ �2
1008
+ ,
1009
+ (56)
1010
+ which is independent of r and hence the second matching con-
1011
+ dition, as is evident from Fig. 3. In this limit, the MBGK and
1012
+ RTA results coincide implying that in the non-relativistic limit,
1013
+ the properties of the fluid are independent of the nature of col-
1014
+ lision with BGK collision kernel.
1015
+ 7. Summary and outlook
1016
+ In this work, we have provided the first formulation of rela-
1017
+ tivistic dissipative hydrodynamics from BGK collision kernel.
1018
+ We first propose a modified BGK collision kernel which we ad-
1019
+ vocate to be better suited for derivation of hydrodynamic equa-
1020
+ tions. We show that at finite chemical potential, where BGK
1021
+ collision kernel is defined, the formulation of relativistic hy-
1022
+ drodynamics with MBGK collision kernel becomes identical to
1023
+ that obtained using BGK collision. The advantage of MBGK
1024
+ is that it is well defined even in the limit of vanishing chemi-
1025
+ cal potential, and represents a generalization of RTA collision
1026
+ kernel. In the formulation of relativistic BGK hydrodynamics,
1027
+ we found the theory is controlled by a free parameter related
1028
+ to freedom of a matching condition, which affects the coeffi-
1029
+ cient of bulk viscous pressure. It is important to note that the
1030
+ BGK or MBGK collision kernels are affected by the matching
1031
+ conditions, which in turn affects the dissipative processes in the
1032
+ system. We have identified a class of matching conditions for
1033
+ which the homogeneous part of the solution to the relativistic
1034
+ Boltzmann equation vanishes. We examined the effect of choice
1035
+ of matching condition on dissipative coefficients and also stud-
1036
+ ied some scaling properties of the ratio of coefficients of bulk
1037
+ viscosity to shear viscosity on the conformality measure.
1038
+ The present formulation of hydrodynamics with a modified
1039
+ BGK collision kernel opens up several possibilities for future
1040
+ investigations. This MBGK collision kernel may also find po-
1041
+ tential applications in non-relativistic physics domain where
1042
+ BGK collision is widely used. The formulation of causal hydro-
1043
+ dynamics with MBGK collision kernel is an immediate possible
1044
+ extension. Formulation of higher-order hydrodynamic theories
1045
+ may be affected more significantly as the evolution equations
1046
+ of scalar, vector, and tensor dissipative quantities contain cross-
1047
+ terms giving rise to the possibility of them being controlled by
1048
+ the matching conditions. Higher-order theories also exhibit in-
1049
+ teresting features like fixed points and attractors [49, 50], which
1050
+ could also be studied within the MBGK hydrodynamics frame-
1051
+ work. The present article forms the basis for all these studies
1052
+ which we leave for future explorations.
1053
+ Acknowledgements
1054
+ The
1055
+ authors
1056
+ acknowledge
1057
+ Sunil
1058
+ Jaiswal
1059
+ for
1060
+ sev-
1061
+ eral
1062
+ useful
1063
+ discussions.
1064
+ A.J.
1065
+ was
1066
+ supported
1067
+ in
1068
+ part
1069
+ by
1070
+ the
1071
+ DST-INSPIRE
1072
+ faculty
1073
+ award
1074
+ under
1075
+ Grant
1076
+ No.
1077
+ DST/INSPIRE/04/2017/000038.
1078
+ References
1079
+ [1] I. M¨uller, Zum Paradoxon der Warmeleitungstheorie, Z. Phys. 198 (1967)
1080
+ 329–344. doi:10.1007/BF01326412.
1081
+ [2] S. Chapman, T. G. Cowling, The Mathematical Theory of Non- Uniform
1082
+ Gases, 3rd ed, Cambridge University Press, Cambridge (1970).
1083
+ [3] W. Israel, J. Stewart, Transient relativistic thermodynamics and ki-
1084
+ netic theory, Annals Phys. 118 (1979) 341–372.
1085
+ doi:10.1016/
1086
+ 0003-4916(79)90130-1.
1087
+ [4] A. Muronga, Relativistic Dynamics of Non-ideal Fluids: Viscous and
1088
+ heat-conducting fluids. II. Transport properties and microscopic descrip-
1089
+ tion of relativistic nuclear matter, Phys. Rev. C 76 (2007) 014910. arXiv:
1090
+ nucl-th/0611091, doi:10.1103/PhysRevC.76.014910.
1091
+ [5] M. A. York, G. D. Moore, Second order hydrodynamic coefficients from
1092
+ kinetic theory, Phys. Rev. D 79 (2009) 054011.
1093
+ arXiv:0811.0729,
1094
+ doi:10.1103/PhysRevD.79.054011.
1095
+ [6] B. Betz, D. Henkel, D. H. Rischke, From kinetic theory to dissipative fluid
1096
+ dynamics, Prog. Part. Nucl. Phys. 62 (2009) 556–561. arXiv:0812.
1097
+ 1440, doi:10.1016/j.ppnp.2008.12.018.
1098
+ [7] P. Romatschke, New Developments in Relativistic Viscous Hydrodynam-
1099
+ ics, Int. J. Mod. Phys. E 19 (2010) 1–53.
1100
+ arXiv:0902.3663, doi:
1101
+ 10.1142/S0218301310014613.
1102
+ [8] G. S. Denicol, T. Koide, D. H. Rischke, Dissipative relativistic fluid dy-
1103
+ namics: a new way to derive the equations of motion from kinetic the-
1104
+ ory, Phys. Rev. Lett. 105 (2010) 162501.
1105
+ arXiv:1004.5013, doi:
1106
+ 10.1103/PhysRevLett.105.162501.
1107
+ [9] G. S. Denicol, H. Niemi, E. Molnar, D. H. Rischke, Derivation of transient
1108
+ relativistic fluid dynamics from the Boltzmann equation, Phys. Rev. D
1109
+ 85 (2012) 114047, [Erratum: Phys.Rev.D 91, 039902 (2015)]. arXiv:
1110
+ 1202.4551, doi:10.1103/PhysRevD.85.114047.
1111
+ [10] A. Jaiswal, R. Ryblewski, M. Strickland, Transport coefficients for bulk
1112
+ viscous evolution in the relaxation time approximation, Phys. Rev. C
1113
+ 90 (4) (2014) 044908. arXiv:1407.7231, doi:10.1103/PhysRevC.
1114
+ 90.044908.
1115
+ [11] A. Jaiswal, B. Friman, K. Redlich, Relativistic second-order dissipative
1116
+ hydrodynamics at finite chemical potential, Phys. Lett. B 751 (2015)
1117
+ 548–552.
1118
+ arXiv:1507.02849, doi:10.1016/j.physletb.2015.
1119
+ 11.018.
1120
+ [12] A. Gabbana, M. Mendoza, S. Succi, R. Tripiccione, Kinetic approach
1121
+ to relativistic dissipation, Phys. Rev. E 96 (2) (2017) 023305. arXiv:
1122
+ 1704.02523, doi:10.1103/PhysRevE.96.023305.
1123
+ [13] J.-P. Blaizot, L. Yan, Onset of hydrodynamics for a quark-gluon plasma
1124
+ from the evolution of moments of distribution functions, JHEP 11 (2017)
1125
+ 161. arXiv:1703.10694, doi:10.1007/JHEP11(2017)161.
1126
+ 7
1127
+
1128
+ [14] S. Jaiswal, J.-P. Blaizot, R. S. Bhalerao, Z. Chen, A. Jaiswal, L. Yan, From
1129
+ moments of the distribution function to hydrodynamics: The nonconfor-
1130
+ mal case, Phys. Rev. C 106 (4) (2022) 044912. arXiv:2208.02750,
1131
+ doi:10.1103/PhysRevC.106.044912.
1132
+ [15] P. L. Bhatnagar, E. P. Gross, M. Krook, A Model for Collision Processes
1133
+ in Gases. 1. Small Amplitude Processes in Charged and Neutral One-
1134
+ Component Systems, Phys. Rev. 94 (1954) 511–525.
1135
+ doi:10.1103/
1136
+ PhysRev.94.511.
1137
+ [16] P. Welander, On the temperature jump in a rarefied gas, Arkiv Fysik 7
1138
+ (1954) 507.
1139
+ URL https://www.osti.gov/biblio/4395580
1140
+ [17] C. M. Marle, Sur l’´etablissement des ´equations de l’hydrodynamique des
1141
+ fluides relativistes dissipatifs. I. - L’´equation de Boltzmann relativiste,
1142
+ Ann. Phys. Theor. 10 (1969) 67–126.
1143
+ URL http://www.numdam.org/item/AIHPA_1969__10_1_67_0/
1144
+ [18] J. L. Anderson, H. Witting, A relativistic relaxation-time model for the
1145
+ boltzmann equation, Physica 74 (3) (1974) 466–488.
1146
+ [19] G. S. Rocha, G. S. Denicol, J. Noronha, Novel Relaxation Time Approx-
1147
+ imation to the Relativistic Boltzmann Equation, Phys. Rev. Lett. 127 (4)
1148
+ (2021) 042301.
1149
+ arXiv:2103.07489, doi:10.1103/PhysRevLett.
1150
+ 127.042301.
1151
+ [20] W. Florkowski, R. Maj, R. Ryblewski, M. Strickland, Hydrodynamics of
1152
+ anisotropic quark and gluon fluids, Phys. Rev. C 87 (3) (2013) 034914.
1153
+ arXiv:1209.3671, doi:10.1103/PhysRevC.87.034914.
1154
+ [21] W. Florkowski, R. Ryblewski, M. Strickland, Anisotropic Hydrodynam-
1155
+ ics for Rapidly Expanding Systems, Nucl. Phys. A 916 (2013) 249–259.
1156
+ arXiv:1304.0665, doi:10.1016/j.nuclphysa.2013.08.004.
1157
+ [22] W. Florkowski, R. Ryblewski, M. Strickland, Testing viscous and
1158
+ anisotropic hydrodynamics in an exactly solvable case, Phys. Rev. C
1159
+ 88 (2013) 024903. arXiv:1305.7234, doi:10.1103/PhysRevC.88.
1160
+ 024903.
1161
+ [23] G. S. Denicol, W. Florkowski, R. Ryblewski, M. Strickland, Shear-bulk
1162
+ coupling in nonconformal hydrodynamics, Phys. Rev. C 90 (4) (2014)
1163
+ 044905. arXiv:1407.4767, doi:10.1103/PhysRevC.90.044905.
1164
+ [24] W. Florkowski, E. Maksymiuk, R. Ryblewski, M. Strickland, Exact so-
1165
+ lution of the (0+1)-dimensional Boltzmann equation for a massive gas,
1166
+ Phys. Rev. C 89 (5) (2014) 054908. arXiv:1402.7348, doi:10.1103/
1167
+ PhysRevC.89.054908.
1168
+ [25] W. Florkowski, R. Ryblewski, M. Strickland, L. Tinti, Leading-order
1169
+ anisotropic hydrodynamics for systems with massive particles, Phys.
1170
+ Rev. C 89 (5) (2014) 054909.
1171
+ arXiv:1403.1223, doi:10.1103/
1172
+ PhysRevC.89.054909.
1173
+ [26] L. Tinti, Anisotropic matching principle for the hydrodynamic expan-
1174
+ sion, Phys. Rev. C 94 (4) (2016) 044902. arXiv:1506.07164, doi:
1175
+ 10.1103/PhysRevC.94.044902.
1176
+ [27] A. Czajka, S. Hauksson, C. Shen, S. Jeon, C. Gale, Bulk viscosity of
1177
+ strongly interacting matter in the relaxation time approximation, Phys.
1178
+ Rev. C 97 (4) (2018) 044914.
1179
+ arXiv:1712.05905, doi:10.1103/
1180
+ PhysRevC.97.044914.
1181
+ [28] M. Kurian, V. Chandra, Bulk viscosity of a hot QCD medium in a
1182
+ strong magnetic field within the relaxation-time approximation, Phys.
1183
+ Rev. D 97 (11) (2018) 116008. arXiv:1802.07904, doi:10.1103/
1184
+ PhysRevD.97.116008.
1185
+ [29] C. Chattopadhyay, U. Heinz, S. Pal, G. Vujanovic, Higher order and
1186
+ anisotropic hydrodynamics for Bjorken and Gubser flows, Phys. Rev. C
1187
+ 97 (6) (2018) 064909. arXiv:1801.07755, doi:10.1103/PhysRevC.
1188
+ 97.064909.
1189
+ [30] C. Chattopadhyay, S. Jaiswal, L. Du, U. Heinz, S. Pal, Non-conformal
1190
+ attractor in boost-invariant plasmas, Phys. Lett. B 824 (2022) 136820.
1191
+ arXiv:2107.05500, doi:10.1016/j.physletb.2021.136820.
1192
+ [31] S. Jaiswal, C. Chattopadhyay, L. Du, U. Heinz, S. Pal, Nonconformal
1193
+ kinetic theory and hydrodynamics for Bjorken flow, Phys. Rev. C 105 (2)
1194
+ (2022) 024911. arXiv:2107.10248, doi:10.1103/PhysRevC.105.
1195
+ 024911.
1196
+ [32] D. Liyanage, D. Everett, C. Chattopadhyay, U. Heinz, Prehydrody-
1197
+ namic evolution and its impact on quark-gluon plasma signatures, Phys.
1198
+ Rev. C 105 (6) (2022) 064908. arXiv:2205.00964, doi:10.1103/
1199
+ PhysRevC.105.064908.
1200
+ [33] M. E. Carrington, T. Fugleberg, D. Pickering, M. H. Thoma, Dielectric
1201
+ functions and dispersion relations of ultrarelativistic plasmas with col-
1202
+ lisions, Can. J. Phys. 82 (2004) 671–678.
1203
+ arXiv:hep-ph/0312103,
1204
+ doi:10.1139/p04-035.
1205
+ [34] B. Schenke, M. Strickland, C. Greiner, M. H. Thoma, A Model of
1206
+ the effect of collisions on QCD plasma instabilities, Phys. Rev. D 73
1207
+ (2006) 125004. arXiv:hep-ph/0603029, doi:10.1103/PhysRevD.
1208
+ 73.125004.
1209
+ [35] M. Mandal, P. Roy, Wake potential in collisional anisotropic quark-gluon
1210
+ plasma, Phys. Rev. D 88 (7) (2013) 074013. arXiv:1310.4660, doi:
1211
+ 10.1103/PhysRevD.88.074013.
1212
+ [36] B.-f. Jiang, D.-f. Hou, J.-r. Li, Refractive index of quark-gluon plasma:
1213
+ Kinetic theory with a Bhatnagar-Gross-Krook collisional kernel, Phys.
1214
+ Rev. D 94 (7) (2016) 074026. doi:10.1103/PhysRevD.94.074026.
1215
+ [37] C. Han, D.-f. Hou, B.-f. Jiang, J.-r. Li, Jet energy loss in quark-
1216
+ gluon plasma: Kinetic theory with a Bhatnagar-Gross-Krook collisional
1217
+ kernel, Eur. Phys. J. A 53 (10) (2017) 205.
1218
+ doi:10.1140/epja/
1219
+ i2017-12400-9.
1220
+ [38] A. Kumar, M. Y. Jamal, V. Chandra, J. R. Bhatt, Collective excitations
1221
+ of a hot anisotropic QCD medium with the Bhatnagar-Gross-Krook col-
1222
+ lisional kernel within an effective description, Phys. Rev. D 97 (3) (2018)
1223
+ 034007. arXiv:1709.01032, doi:10.1103/PhysRevD.97.034007.
1224
+ [39] S. A. Khan, B. K. Patra, Cumulative effects of collision integral, strong
1225
+ magnetic field, and quasiparticle description on charge and heat transport
1226
+ in a thermal QCD medium, Phys. Rev. D 104 (5) (2021) 054024. arXiv:
1227
+ 2011.02682, doi:10.1103/PhysRevD.104.054024.
1228
+ [40] M. Formanek, C. Grayson, J. Rafelski, B. M¨uller, Current-conserving rel-
1229
+ ativistic linear response for collisional plasmas, Annals Phys. 434 (2021)
1230
+ 168605. arXiv:2105.07897, doi:10.1016/j.aop.2021.168605.
1231
+ [41] S. A. Khan, B. K. Patra, Transport coefficients in thermal QCD: A probe
1232
+ to the collision integral, Phys. Rev. D 106 (9) (2022) 094033. arXiv:
1233
+ 2205.00317, doi:10.1103/PhysRevD.106.094033.
1234
+ [42] S. A. Khan, B. K. Patra, Seebeck and Nernst coefficients of a magnetized
1235
+ hot QCD medium with number conserving kernel (11 2022). arXiv:
1236
+ 2211.10779.
1237
+ [43] A. Shaikh, S. Rath, S. Dash, B. Panda, Flow of charge and heat in thermal
1238
+ QCD within the weak magnetic field limit: A BGK model approach (10
1239
+ 2022). arXiv:2210.15388.
1240
+ [44] S. R. De Groot, Relativistic Kinetic Theory. Principles and Applications,
1241
+ 1980.
1242
+ [45] P. Kovtun, First-order relativistic hydrodynamics is stable, JHEP 10
1243
+ (2019) 034. arXiv:1907.08191, doi:10.1007/JHEP10(2019)034.
1244
+ [46] R. Biswas, S. Mitra, V. Roy, Is first-order relativistic hydrodynamics
1245
+ in a general frame stable and causal for arbitrary interactions?, Phys.
1246
+ Rev. D 106 (1) (2022) L011501. arXiv:2202.08685, doi:10.1103/
1247
+ PhysRevD.106.L011501.
1248
+ [47] R. E. Hoult, P. Kovtun, Causal first-order hydrodynamics from kinetic
1249
+ theory and holography, Phys. Rev. D 106 (6) (2022) 066023. arXiv:
1250
+ 2112.14042, doi:10.1103/PhysRevD.106.066023.
1251
+ [48] D. Dash, S. Bhadury, S. Jaiswal, A. Jaiswal, Extended relaxation time
1252
+ approximation and relativistic dissipative hydrodynamics, Phys. Lett. B
1253
+ 831 (2022) 137202. arXiv:2112.14581, doi:10.1016/j.physletb.
1254
+ 2022.137202.
1255
+ [49] M. P. Heller, M. Spalinski, Hydrodynamics Beyond the Gradient Ex-
1256
+ pansion:
1257
+ Resurgence and Resummation, Phys. Rev. Lett. 115 (7)
1258
+ (2015) 072501.
1259
+ arXiv:1503.07514, doi:10.1103/PhysRevLett.
1260
+ 115.072501.
1261
+ [50] J.-P. Blaizot, L. Yan, Fluid dynamics of out of equilibrium boost invariant
1262
+ plasmas, Phys. Lett. B 780 (2018) 283–286. arXiv:1712.03856, doi:
1263
+ 10.1016/j.physletb.2018.02.058.
1264
+ 8
1265
+
-dAyT4oBgHgl3EQfqfiK/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80b41198a8d1dfdc480c64abb18915ff8b450d4d159728b5fa13e778fc1e335e
3
+ size 390143
-dE1T4oBgHgl3EQf8QXB/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab6971d672316c2633455e296c09c1f7579d97030d44b5717e24103c466b8ea4
3
+ size 131322
-tAyT4oBgHgl3EQf3fnG/content/2301.00771v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:73eb21b3a9781b8f46dd429fc0cb5b46d7d832bfa0f83cd4ed1ae521e2007640
3
+ size 25295637
.gitattributes CHANGED
@@ -15176,3 +15176,121 @@ vtE0T4oBgHgl3EQfsgGN/content/2301.02580v1.pdf filter=lfs diff=lfs merge=lfs -tex
15176
  F9AyT4oBgHgl3EQfe_i6/content/2301.00333v1.pdf filter=lfs diff=lfs merge=lfs -text
15177
  5dAzT4oBgHgl3EQfEfoE/content/2301.00992v1.pdf filter=lfs diff=lfs merge=lfs -text
15178
  C9E3T4oBgHgl3EQfUgrG/content/2301.04452v1.pdf filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15176
  F9AyT4oBgHgl3EQfe_i6/content/2301.00333v1.pdf filter=lfs diff=lfs merge=lfs -text
15177
  5dAzT4oBgHgl3EQfEfoE/content/2301.00992v1.pdf filter=lfs diff=lfs merge=lfs -text
15178
  C9E3T4oBgHgl3EQfUgrG/content/2301.04452v1.pdf filter=lfs diff=lfs merge=lfs -text
15179
+ G9FIT4oBgHgl3EQfXCt6/content/2301.11242v1.pdf filter=lfs diff=lfs merge=lfs -text
15180
+ ZtAyT4oBgHgl3EQfifij/content/2301.00397v1.pdf filter=lfs diff=lfs merge=lfs -text
15181
+ Y9E2T4oBgHgl3EQfZAfl/content/2301.03861v1.pdf filter=lfs diff=lfs merge=lfs -text
15182
+ idE2T4oBgHgl3EQfcweU/content/2301.03899v1.pdf filter=lfs diff=lfs merge=lfs -text
15183
+ CtA0T4oBgHgl3EQfAf94/content/2301.01963v1.pdf filter=lfs diff=lfs merge=lfs -text
15184
+ bNE0T4oBgHgl3EQf4gLC/content/2301.02740v1.pdf filter=lfs diff=lfs merge=lfs -text
15185
+ edE5T4oBgHgl3EQfgg_h/content/2301.05635v1.pdf filter=lfs diff=lfs merge=lfs -text
15186
+ qNFKT4oBgHgl3EQfHi2k/content/2301.11730v1.pdf filter=lfs diff=lfs merge=lfs -text
15187
+ VNAzT4oBgHgl3EQf1P5q/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15188
+ GdE3T4oBgHgl3EQfWQoN/content/2301.04466v1.pdf filter=lfs diff=lfs merge=lfs -text
15189
+ 3tFQT4oBgHgl3EQf3jaF/content/2301.13428v1.pdf filter=lfs diff=lfs merge=lfs -text
15190
+ B9E2T4oBgHgl3EQfRwdj/content/2301.03784v1.pdf filter=lfs diff=lfs merge=lfs -text
15191
+ 7dFLT4oBgHgl3EQfAS4p/content/2301.11965v1.pdf filter=lfs diff=lfs merge=lfs -text
15192
+ fNE1T4oBgHgl3EQfLwP5/content/2301.02982v1.pdf filter=lfs diff=lfs merge=lfs -text
15193
+ nNFRT4oBgHgl3EQfazfZ/content/2301.13558v1.pdf filter=lfs diff=lfs merge=lfs -text
15194
+ DNE1T4oBgHgl3EQfEAOl/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15195
+ 0NAyT4oBgHgl3EQfPPZ4/content/2301.00021v1.pdf filter=lfs diff=lfs merge=lfs -text
15196
+ DdE4T4oBgHgl3EQfGAyt/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15197
+ btFAT4oBgHgl3EQfXx0t/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15198
+ bNE0T4oBgHgl3EQf4gLC/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15199
+ wdAyT4oBgHgl3EQfnfgZ/content/2301.00488v1.pdf filter=lfs diff=lfs merge=lfs -text
15200
+ 4tE2T4oBgHgl3EQfkAch/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15201
+ 5tE1T4oBgHgl3EQfTAOS/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15202
+ pdE2T4oBgHgl3EQfKQak/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15203
+ c9FQT4oBgHgl3EQfizaw/content/2301.13351v1.pdf filter=lfs diff=lfs merge=lfs -text
15204
+ dtFKT4oBgHgl3EQfqy7x/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15205
+ gtE1T4oBgHgl3EQffATW/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15206
+ rdE0T4oBgHgl3EQfagDQ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15207
+ jdAzT4oBgHgl3EQfpf0M/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15208
+ W9E0T4oBgHgl3EQfmQFi/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15209
+ rdFST4oBgHgl3EQfPzg1/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15210
+ 9dFJT4oBgHgl3EQfoixI/content/2301.11596v1.pdf filter=lfs diff=lfs merge=lfs -text
15211
+ ANAzT4oBgHgl3EQfF_sv/content/2301.01019v1.pdf filter=lfs diff=lfs merge=lfs -text
15212
+ wdFPT4oBgHgl3EQf_DXv/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15213
+ wdE2T4oBgHgl3EQf3Ai2/content/2301.04167v1.pdf filter=lfs diff=lfs merge=lfs -text
15214
+ 5dAzT4oBgHgl3EQfEfoE/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15215
+ FNFQT4oBgHgl3EQfRTbc/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15216
+ ptE5T4oBgHgl3EQfJA6J/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15217
+ 1dE4T4oBgHgl3EQfzQ2-/content/2301.05273v1.pdf filter=lfs diff=lfs merge=lfs -text
15218
+ DtE1T4oBgHgl3EQfqAXb/content/2301.03339v1.pdf filter=lfs diff=lfs merge=lfs -text
15219
+ -dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf filter=lfs diff=lfs merge=lfs -text
15220
+ CdE1T4oBgHgl3EQf9wZ6/content/2301.03560v1.pdf filter=lfs diff=lfs merge=lfs -text
15221
+ FtE2T4oBgHgl3EQf-Qmd/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15222
+ W9E5T4oBgHgl3EQfcg_y/content/2301.05605v1.pdf filter=lfs diff=lfs merge=lfs -text
15223
+ 39E1T4oBgHgl3EQfSgNA/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15224
+ oNA0T4oBgHgl3EQfJ_-C/content/2301.02098v1.pdf filter=lfs diff=lfs merge=lfs -text
15225
+ _9FLT4oBgHgl3EQfES7g/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15226
+ HNFLT4oBgHgl3EQfHy-l/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15227
+ GtAzT4oBgHgl3EQfjP0_/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15228
+ rNE2T4oBgHgl3EQfLAYw/content/2301.03708v1.pdf filter=lfs diff=lfs merge=lfs -text
15229
+ DtE1T4oBgHgl3EQfqAXb/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15230
+ zdAzT4oBgHgl3EQftf1m/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15231
+ J9AzT4oBgHgl3EQfyP6v/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15232
+ WdE2T4oBgHgl3EQfuQhQ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15233
+ qdE5T4oBgHgl3EQfJQ70/content/2301.05457v1.pdf filter=lfs diff=lfs merge=lfs -text
15234
+ 4tAzT4oBgHgl3EQfuv3m/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15235
+ zdE4T4oBgHgl3EQfyQ3C/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15236
+ RNE0T4oBgHgl3EQfkgFL/content/2301.02473v1.pdf filter=lfs diff=lfs merge=lfs -text
15237
+ lNAyT4oBgHgl3EQf_frR/content/2301.00911v1.pdf filter=lfs diff=lfs merge=lfs -text
15238
+ sNE3T4oBgHgl3EQf9AvA/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15239
+ RNE0T4oBgHgl3EQf1gJx/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15240
+ MNAzT4oBgHgl3EQfy_4H/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15241
+ uNAyT4oBgHgl3EQfaPdk/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15242
+ 79AyT4oBgHgl3EQfQvZ4/content/2301.00052v1.pdf filter=lfs diff=lfs merge=lfs -text
15243
+ 29AzT4oBgHgl3EQfR_sP/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15244
+ ptE0T4oBgHgl3EQf9QJL/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15245
+ p9AzT4oBgHgl3EQfb_zy/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15246
+ 89AyT4oBgHgl3EQfqPhE/content/2301.00538v1.pdf filter=lfs diff=lfs merge=lfs -text
15247
+ q9AzT4oBgHgl3EQfO_td/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15248
+ ptA0T4oBgHgl3EQfKf9E/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15249
+ VNFOT4oBgHgl3EQf6jQA/content/2301.12958v1.pdf filter=lfs diff=lfs merge=lfs -text
15250
+ MtAzT4oBgHgl3EQfkv1s/content/2301.01536v1.pdf filter=lfs diff=lfs merge=lfs -text
15251
+ JtE4T4oBgHgl3EQfhw0J/content/2301.05127v1.pdf filter=lfs diff=lfs merge=lfs -text
15252
+ utE1T4oBgHgl3EQfkATn/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15253
+ 39E3T4oBgHgl3EQfogqI/content/2301.04634v1.pdf filter=lfs diff=lfs merge=lfs -text
15254
+ ONFRT4oBgHgl3EQfHTe-/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15255
+ 2dFRT4oBgHgl3EQfnDfl/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15256
+ ndAyT4oBgHgl3EQfYvfO/content/2301.00211v1.pdf filter=lfs diff=lfs merge=lfs -text
15257
+ ENFJT4oBgHgl3EQfCCwM/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15258
+ pdE1T4oBgHgl3EQfPAPS/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15259
+ bdAzT4oBgHgl3EQfnf0f/content/2301.01580v1.pdf filter=lfs diff=lfs merge=lfs -text
15260
+ hNE5T4oBgHgl3EQfiA_6/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15261
+ O9FAT4oBgHgl3EQfzB6w/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15262
+ CNE0T4oBgHgl3EQfyALn/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15263
+ _tFQT4oBgHgl3EQfLjUE/content/2301.13264v1.pdf filter=lfs diff=lfs merge=lfs -text
15264
+ vtFPT4oBgHgl3EQfOjSp/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15265
+ zNE3T4oBgHgl3EQfmQrA/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15266
+ G9FIT4oBgHgl3EQfXCt6/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15267
+ pNE5T4oBgHgl3EQfIw6b/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15268
+ wtFQT4oBgHgl3EQfwDZl/content/2301.13400v1.pdf filter=lfs diff=lfs merge=lfs -text
15269
+ 4tAyT4oBgHgl3EQf2Plc/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15270
+ YNFLT4oBgHgl3EQfUy8r/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15271
+ EdE4T4oBgHgl3EQfGgyE/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15272
+ atE4T4oBgHgl3EQfPAw4/content/2301.04969v1.pdf filter=lfs diff=lfs merge=lfs -text
15273
+ idE1T4oBgHgl3EQfzwUn/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15274
+ VdE2T4oBgHgl3EQfDAbs/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15275
+ jtFKT4oBgHgl3EQfwy4u/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15276
+ -tAyT4oBgHgl3EQf3fnG/content/2301.00771v1.pdf filter=lfs diff=lfs merge=lfs -text
15277
+ NtE0T4oBgHgl3EQf0gJJ/content/2301.02686v1.pdf filter=lfs diff=lfs merge=lfs -text
15278
+ A9FQT4oBgHgl3EQfMzZX/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15279
+ ZtFQT4oBgHgl3EQffDZj/content/2301.13338v1.pdf filter=lfs diff=lfs merge=lfs -text
15280
+ SNE1T4oBgHgl3EQfHwN5/content/2301.02930v1.pdf filter=lfs diff=lfs merge=lfs -text
15281
+ atE4T4oBgHgl3EQfPAw4/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15282
+ _tE4T4oBgHgl3EQf4g2G/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15283
+ zdE4T4oBgHgl3EQfyQ3C/content/2301.05265v1.pdf filter=lfs diff=lfs merge=lfs -text
15284
+ s9AzT4oBgHgl3EQfBfoq/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15285
+ ItAyT4oBgHgl3EQfTPfP/content/2301.00103v1.pdf filter=lfs diff=lfs merge=lfs -text
15286
+ Q9E1T4oBgHgl3EQfHQPT/content/2301.02925v1.pdf filter=lfs diff=lfs merge=lfs -text
15287
+ IdAyT4oBgHgl3EQfTPeX/content/2301.00102v1.pdf filter=lfs diff=lfs merge=lfs -text
15288
+ DNE1T4oBgHgl3EQfEAOl/content/2301.02885v1.pdf filter=lfs diff=lfs merge=lfs -text
15289
+ VNAzT4oBgHgl3EQf1P5q/content/2301.01796v1.pdf filter=lfs diff=lfs merge=lfs -text
15290
+ UdE2T4oBgHgl3EQfCwZ5/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15291
+ pNE3T4oBgHgl3EQfLgmE/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15292
+ ZdE3T4oBgHgl3EQfcgrr/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15293
+ n9FPT4oBgHgl3EQf6DVd/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15294
+ ktE4T4oBgHgl3EQftA2c/content/2301.05221v1.pdf filter=lfs diff=lfs merge=lfs -text
15295
+ M9AyT4oBgHgl3EQfs_mP/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
15296
+ O9E2T4oBgHgl3EQfVQdj/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
0NAyT4oBgHgl3EQfPPZ4/content/2301.00021v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:becc302fc3ca270bc70a66cb6adf895b4c5dbcb28436718071ed48bc6791c6eb
3
+ size 1231431
1dE4T4oBgHgl3EQfzQ2-/content/2301.05273v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c08b5e9278b0fc3ff04a7ba9085980cf25eaa78f29045bdc36fcbc6e9fedb5aa
3
+ size 1683179
1dE4T4oBgHgl3EQfzQ2-/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a83aaf7d3afe6f9dfa0c00d6e8fe174d0d36f6559ed9c3318b56fb5cfeed7a20
3
+ size 119989
29AzT4oBgHgl3EQfR_sP/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ff0d8e1ccbb6bae880143871c60b40fd88119f24f40d1ee15008b6296f9c8f1
3
+ size 11337773
2dFRT4oBgHgl3EQfnDfl/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:318f5e49695ce26a04ae430b580f28f2865fdf180f859c96556755c73d81ec11
3
+ size 5570605
39E1T4oBgHgl3EQfSgNA/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b50c9504612416f4cd58cbcc0207985012a6838b2a3e358e0bc0a82bedfc74da
3
+ size 4587565
39E3T4oBgHgl3EQfogqI/content/2301.04634v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8cd079fa16743674df2ed54b24d0fba65a92d40efd2e39df6d25dd982ec7d25f
3
+ size 2795097
39FQT4oBgHgl3EQf3zah/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f15fc506a3074a0c9e313423e5d28a990dfc40e745d0fb6b852af2a6348d2524
3
+ size 93670
3tFQT4oBgHgl3EQf3jaF/content/2301.13428v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:81288c5fe31420f11753e15a2a50949134553cd7648f595bed7c02b20ec2f15c
3
+ size 601740
4tAyT4oBgHgl3EQf2Plc/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:033979816e4bd31c3f054061d4fda0b90d25488f0ad27c13f21bfc7ead93f066
3
+ size 5439533
4tAzT4oBgHgl3EQfuv3m/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ecf89c1247955c4014fbda88bf84e4ac456eec261590683cd9fd7568b759a1c
3
+ size 7274541
4tE2T4oBgHgl3EQfkAch/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:97fb19a3eba79b2ab1330e812ea7ae01f04c02a2f69a6f851115d18944ef5902
3
+ size 1966125
5dAzT4oBgHgl3EQfEfoE/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:03bc1f6f627c6887f584d599b3b57dc920f91bfba2f9ef344a83c1888f35e4af
3
+ size 4063277
5tE0T4oBgHgl3EQfewA6/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c759d4af3d3d7caed3f6360a63aaf697112ffc93323fecf2ea73540e53533837
3
+ size 58790
5tE1T4oBgHgl3EQfTAOS/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10f9b4b923b474c5fb3faa4e83ca764398f156fa1d646076b2a7b4a67a3f2cf2
3
+ size 8781869
6dAzT4oBgHgl3EQfvP2u/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84a379dfc53bc9d81045150ec2191c9fd43b8a0c17afdc004050b262410e3e65
3
+ size 90107
79AyT4oBgHgl3EQfQvZ4/content/2301.00052v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb0514326c731de19774f2dae8e14bbcb4d4692495b094f6c9f76463f3a26633
3
+ size 133002
7dFLT4oBgHgl3EQfAS4p/content/2301.11965v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3281fad2dcfdc48460f653aa546b8cc2c93dcf2b737645d6617527cbc4383750
3
+ size 585850
7tAzT4oBgHgl3EQf-f6Q/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca52cd064e5b8b21798e6a84d74cd3eab78a20cd64e79420fb1e92b6d78f2f9f
3
+ size 79945
89AyT4oBgHgl3EQfqPhE/content/2301.00538v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc6e81385e621ed708d1f0c943d6292e375a10865df5e6312f023c8c6efcc978
3
+ size 3942207
9NE3T4oBgHgl3EQfqwrj/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eda5dd22c2dbf137c56cac76cecace444af027e2769d9940ad99068f0164851a
3
+ size 135914
9dFJT4oBgHgl3EQfoixI/content/2301.11596v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:117d141416e015cbbb17a3cc8f6c08aaa42854f4f6cb86339a45069d8051b6ac
3
+ size 800967
A9FQT4oBgHgl3EQfMzZX/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:528c4b51aa620a5d104c945a9b6075b1ce19d713de84f8c7133e9910966f6012
3
+ size 21102637
ANAzT4oBgHgl3EQfF_sv/content/2301.01019v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dcce392b9d27f18b5d36c7b4d94c1281bca1203236fb9dcdd2b81bb56f1f6b7e
3
+ size 700327
B9E2T4oBgHgl3EQfRwdj/content/2301.03784v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b43405e80bd2d0c9d80745b362a50dce24e8801a902f3acf513cf1f23f3cc95
3
+ size 1197564
CNE0T4oBgHgl3EQfyALn/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92b6929ee281019c45eda85e35ea94056977e568ac6c7a0a7321d882b1160b51
3
+ size 25952301
CNFQT4oBgHgl3EQfODbS/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:32f0b065abea24b780bf100c6aae87ad95eb1eb5dbdd6dccd22011bfa536278c
3
+ size 849980
CdE1T4oBgHgl3EQf9wZ6/content/2301.03560v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e2f5bb31d90f6ecf9d9f1a22bd326678d3be9d8ebfb8c5b1d2c4534eda8cefa
3
+ size 941548
CtA0T4oBgHgl3EQfAf94/content/2301.01963v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:914ac69fe136e2eb6d99afc2bb5f49f2b75649e12f156d7b585e7494ea6a8160
3
+ size 161278
DNE1T4oBgHgl3EQfEAOl/content/2301.02885v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e768ced5afbfc26c91d7a161f2e8e281ab2a52410317042dfb4ce51ceb075c5
3
+ size 18125339
DNE1T4oBgHgl3EQfEAOl/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:273ccacfc89c545b29042ac3fab689c461a850acc67d3dd3bdc30c1affd8b619
3
+ size 9568301
DdE4T4oBgHgl3EQfGAyt/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3741e88b5d68ecd9393bc441b5bfe66453b8db1ed8b7da3755aca4b7748e4ff3
3
+ size 5046317
DtE1T4oBgHgl3EQfqAXb/content/2301.03339v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6327d26a4ac2517e31f151f748472c7982f057080091270bee0dc6e473821e9
3
+ size 208689
DtE1T4oBgHgl3EQfqAXb/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3bee09b8340fe4f27e4f4582e3c53bbd9e23786bf3b5ea27d583a21e252df13e
3
+ size 3211309
E9FRT4oBgHgl3EQfBzcS/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7755d978a95e6a4d20a48fb8ef0b02536688474b0da45898b0bf40c07c5278a6
3
+ size 96842
ENFJT4oBgHgl3EQfCCwM/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:40858f4faf4dd3b77ba64e55cb3717d1af2ac129c3461d6a9b8bf7324241c9b1
3
+ size 2031661
EdE4T4oBgHgl3EQfGgyE/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ada6624a0e215dcdf97681a9dee5a86d00235651141acb2eaf809996c804df5
3
+ size 3145773
FNFQT4oBgHgl3EQfRTbc/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1336a1d57258dd610e25c2dc2cc85adf1c00ea4b30114677c5b949efda6b06b9
3
+ size 3604525
FtE2T4oBgHgl3EQf-Qmd/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9d663cbf48bdde6245f0700fdfe04b686934f8c41ac3e0e0a6c4936e23e2408
3
+ size 6684717
G9FIT4oBgHgl3EQfXCt6/content/2301.11242v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f8ff40475f296f3bc05b703d4c780441c02434b53eae299ed6014d8d54998443
3
+ size 962664
G9FIT4oBgHgl3EQfXCt6/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b337fe94af165a017dc383896b4ebc954948a5f3a556e87ced1c30e8991aca1
3
+ size 6357037
GdE3T4oBgHgl3EQfWQoN/content/2301.04466v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:858e3f260b794c5573ccd1203f48cb26b9e9c3ecc63ac86d530223ff97a370a5
3
+ size 266956
GtAzT4oBgHgl3EQfjP0_/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e967dcc0dbd8832040a8b572c64af55b5cd2de0508f1ab1d4f05dbf39a187d3
3
+ size 1900589
HNFLT4oBgHgl3EQfHy-l/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec497f9b12aadaa05ff35eda69f98946594247b235f6d9b7439b8c8bbf2ebe97
3
+ size 4194349