Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- -dAyT4oBgHgl3EQfqfiK/content/tmp_files/2301.00544v1.pdf.txt +1265 -0
- -dAyT4oBgHgl3EQfqfiK/content/tmp_files/load_file.txt +0 -0
- -dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf +3 -0
- -dE1T4oBgHgl3EQf8QXB/vector_store/index.pkl +3 -0
- -tAyT4oBgHgl3EQf3fnG/content/2301.00771v1.pdf +3 -0
- .gitattributes +118 -0
- 0NAyT4oBgHgl3EQfPPZ4/content/2301.00021v1.pdf +3 -0
- 1dE4T4oBgHgl3EQfzQ2-/content/2301.05273v1.pdf +3 -0
- 1dE4T4oBgHgl3EQfzQ2-/vector_store/index.pkl +3 -0
- 29AzT4oBgHgl3EQfR_sP/vector_store/index.faiss +3 -0
- 2dFRT4oBgHgl3EQfnDfl/vector_store/index.faiss +3 -0
- 39E1T4oBgHgl3EQfSgNA/vector_store/index.faiss +3 -0
- 39E3T4oBgHgl3EQfogqI/content/2301.04634v1.pdf +3 -0
- 39FQT4oBgHgl3EQf3zah/vector_store/index.pkl +3 -0
- 3tFQT4oBgHgl3EQf3jaF/content/2301.13428v1.pdf +3 -0
- 4tAyT4oBgHgl3EQf2Plc/vector_store/index.faiss +3 -0
- 4tAzT4oBgHgl3EQfuv3m/vector_store/index.faiss +3 -0
- 4tE2T4oBgHgl3EQfkAch/vector_store/index.faiss +3 -0
- 5dAzT4oBgHgl3EQfEfoE/vector_store/index.faiss +3 -0
- 5tE0T4oBgHgl3EQfewA6/vector_store/index.pkl +3 -0
- 5tE1T4oBgHgl3EQfTAOS/vector_store/index.faiss +3 -0
- 6dAzT4oBgHgl3EQfvP2u/vector_store/index.pkl +3 -0
- 79AyT4oBgHgl3EQfQvZ4/content/2301.00052v1.pdf +3 -0
- 7dFLT4oBgHgl3EQfAS4p/content/2301.11965v1.pdf +3 -0
- 7tAzT4oBgHgl3EQf-f6Q/vector_store/index.pkl +3 -0
- 89AyT4oBgHgl3EQfqPhE/content/2301.00538v1.pdf +3 -0
- 9NE3T4oBgHgl3EQfqwrj/vector_store/index.pkl +3 -0
- 9dFJT4oBgHgl3EQfoixI/content/2301.11596v1.pdf +3 -0
- A9FQT4oBgHgl3EQfMzZX/vector_store/index.faiss +3 -0
- ANAzT4oBgHgl3EQfF_sv/content/2301.01019v1.pdf +3 -0
- B9E2T4oBgHgl3EQfRwdj/content/2301.03784v1.pdf +3 -0
- CNE0T4oBgHgl3EQfyALn/vector_store/index.faiss +3 -0
- CNFQT4oBgHgl3EQfODbS/vector_store/index.pkl +3 -0
- CdE1T4oBgHgl3EQf9wZ6/content/2301.03560v1.pdf +3 -0
- CtA0T4oBgHgl3EQfAf94/content/2301.01963v1.pdf +3 -0
- DNE1T4oBgHgl3EQfEAOl/content/2301.02885v1.pdf +3 -0
- DNE1T4oBgHgl3EQfEAOl/vector_store/index.faiss +3 -0
- DdE4T4oBgHgl3EQfGAyt/vector_store/index.faiss +3 -0
- DtE1T4oBgHgl3EQfqAXb/content/2301.03339v1.pdf +3 -0
- DtE1T4oBgHgl3EQfqAXb/vector_store/index.faiss +3 -0
- E9FRT4oBgHgl3EQfBzcS/vector_store/index.pkl +3 -0
- ENFJT4oBgHgl3EQfCCwM/vector_store/index.faiss +3 -0
- EdE4T4oBgHgl3EQfGgyE/vector_store/index.faiss +3 -0
- FNFQT4oBgHgl3EQfRTbc/vector_store/index.faiss +3 -0
- FtE2T4oBgHgl3EQf-Qmd/vector_store/index.faiss +3 -0
- G9FIT4oBgHgl3EQfXCt6/content/2301.11242v1.pdf +3 -0
- G9FIT4oBgHgl3EQfXCt6/vector_store/index.faiss +3 -0
- GdE3T4oBgHgl3EQfWQoN/content/2301.04466v1.pdf +3 -0
- GtAzT4oBgHgl3EQfjP0_/vector_store/index.faiss +3 -0
- HNFLT4oBgHgl3EQfHy-l/vector_store/index.faiss +3 -0
-dAyT4oBgHgl3EQfqfiK/content/tmp_files/2301.00544v1.pdf.txt
ADDED
@@ -0,0 +1,1265 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Relativistic BGK hydrodynamics
|
2 |
+
Pracheta Singhaa, Samapan Bhadurya,c, Arghya Mukherjeeb, Amaresh Jaiswala
|
3 |
+
aSchool of Physical Sciences, National Institute of Science Education and Research, An OCC of Homi Bhabha National Institute, Jatni 752050, Odisha, India
|
4 |
+
bDepartment of Physics and Astronomy, Brandon University, Brandon, Manitoba R7A 6A9, Canada
|
5 |
+
cInstitute of Theoretical Physics, Jagiellonian University, ul. St. Łojasiewicza 11, 30-348 Krakow, Poland
|
6 |
+
Abstract
|
7 |
+
Bhatnagar-Gross-Krook (BGK) collision kernel is employed in the Boltzmann equation to formulate relativistic dissipative hydro-
|
8 |
+
dynamics. In this formulation, we find that there remains freedom of choosing a matching condition that affects the scalar transport
|
9 |
+
in the system. We also propose a new collision kernel which, unlike BGK collision kernel, is valid in the limit of zero chemical
|
10 |
+
potential and derive relativistic first-order dissipative hydrodynamics using it. We study the effects of this new formulation on the
|
11 |
+
coefficient of bulk viscosity.
|
12 |
+
1. Introduction
|
13 |
+
Relativistic Boltzmann equation governs the space-time evo-
|
14 |
+
lution of the single particle phase-space distribution function of
|
15 |
+
a relativistic system. Moreover, suitable moments of the Boltz-
|
16 |
+
mann equation are capable of describing the collective dynam-
|
17 |
+
ics of the system. Therefore, it has been extensively used to de-
|
18 |
+
rive equations of relativistic dissipative hydrodynamics and ob-
|
19 |
+
tain expressions for the transport coefficients [1–14]. The col-
|
20 |
+
lision term in the Boltzmann equation, which describes change
|
21 |
+
in the phase-space distribution due to the collisions of particles,
|
22 |
+
makes it a complicated integro-differential equation. In order
|
23 |
+
to circumvent this issue, several approximations have been sug-
|
24 |
+
gested to simplify the collision term in the linearized regime
|
25 |
+
[15–19].
|
26 |
+
Bhatnagar-Gross-Krook [15], and independently Welander
|
27 |
+
[16], proposed a relaxation type model for the collision term,
|
28 |
+
which is commonly known as the BGK model. This model
|
29 |
+
was further simplified by Marle [17] and Anderson-Witting [18]
|
30 |
+
to calculate the transport coefficients. In the non-relativistic
|
31 |
+
limit, Marle’s formulation leads to the same transport coeffi-
|
32 |
+
cient as the BGK model but fails in the relativistic limit. On
|
33 |
+
the other hand, the Anderson-Witting model, also known as the
|
34 |
+
relaxation-time approximation (RTA), is better suited in the rel-
|
35 |
+
ativistic limit. The RTA has been employed extensively in sev-
|
36 |
+
eral areas of physics with considerable success and has been
|
37 |
+
widely employed in the formulation of relativistic dissipative
|
38 |
+
hydrodynamics [8–11, 20–32].
|
39 |
+
The RTA Boltzmann equation has provided remarkable in-
|
40 |
+
sights into the causal theory of relativistic hydrodynamics as
|
41 |
+
well as a simple yet meaningful picture of the collision mech-
|
42 |
+
anism in a non-equilibrium system. On the other hand, the
|
43 |
+
Email addresses: pracheta.singha@gmail.com (Pracheta Singha),
|
44 |
+
samapan.bhadury@niser.ac.in (Samapan Bhadury),
|
45 |
+
arbp.phy@gmail.com (Arghya Mukherjee), a.jaiswal@niser.ac.in
|
46 |
+
(Amaresh Jaiswal)
|
47 |
+
BGK collision term ensures conservation of net particle four-
|
48 |
+
current by construction, and is the precursor to RTA. While the
|
49 |
+
RTA has been employed extensively, a consistent formulation
|
50 |
+
of relativistic dissipative hydrodynamics with the BGK colli-
|
51 |
+
sion term is relatively less explored. This may be attributed to
|
52 |
+
the fact that the BGK collision kernel is ill defined for relativis-
|
53 |
+
tic systems without a conserved net particle four-current. This
|
54 |
+
has limited the use of the BGK collision kernel to the studies
|
55 |
+
related to flow of particle number and/or charge [33–43].
|
56 |
+
In this article, we take the first step towards formulating a
|
57 |
+
consistent framework of relativistic dissipative hydrodynamics
|
58 |
+
using the BGK collision kernel. Furthermore, we propose a
|
59 |
+
modified BGK collisions kernel (MBGK), which is well de-
|
60 |
+
fined even in the absence of conserved particle four-current and
|
61 |
+
is better suited for the formulation of the relativistic dissipative
|
62 |
+
hydrodynamics. We find that there exists a free scalar parame-
|
63 |
+
ter arising from the freedom of matching condition. This affects
|
64 |
+
the scalar dissipation in the system, i.e., the coefficient of bulk
|
65 |
+
viscosity. We study the effect on bulk viscosity in several dif-
|
66 |
+
ferent scenarios.
|
67 |
+
2. Relativistic dissipative hydrodynamics
|
68 |
+
The conserved net particle four-current, Nµ, and the energy-
|
69 |
+
momentum tensor, T µν, of a system can be expressed in terms
|
70 |
+
of the single particle phase-space distribution function and the
|
71 |
+
hydrodynamic variables as [44],
|
72 |
+
Nµ =
|
73 |
+
�
|
74 |
+
dP pµ �
|
75 |
+
f − ¯f
|
76 |
+
�
|
77 |
+
= n uµ + nµ,
|
78 |
+
(1)
|
79 |
+
T µν =
|
80 |
+
�
|
81 |
+
dP pµpν �
|
82 |
+
f + ¯f
|
83 |
+
�
|
84 |
+
= ϵ uµuν − (P0 + δP) ∆µν + πµν, (2)
|
85 |
+
where the Lorentz invariant momentum integral measure is de-
|
86 |
+
fined as dP = g d3p/
|
87 |
+
�
|
88 |
+
(2π)3E
|
89 |
+
�
|
90 |
+
with g being the degeneracy fac-
|
91 |
+
tor and E =
|
92 |
+
�
|
93 |
+
|p|2 + m2 being the on-shell energy of the con-
|
94 |
+
stituent particle of the medium with three-momentum p and
|
95 |
+
Preprint submitted to Physics Letters B
|
96 |
+
January 3, 2023
|
97 |
+
arXiv:2301.00544v1 [nucl-th] 2 Jan 2023
|
98 |
+
|
99 |
+
mass m. Here f ≡ f(x, p) and ¯f ≡
|
100 |
+
¯f(x, p) are the phase-
|
101 |
+
space distribution functions for particles and anti-particles, re-
|
102 |
+
spectively. In the above equations, n is the net particle number
|
103 |
+
density, ϵ is the energy density, P0 is the equilibrium pressure,
|
104 |
+
nµ is the particle diffusion four-current, δP is the correction to
|
105 |
+
the isotropic pressure, and πµν is the shear stress tensor. We
|
106 |
+
note that the fluid four-velocity uµ has been defined in the Lan-
|
107 |
+
dau frame, uµT µν = ϵuν. We also define ∆µν ≡ gµν − uµuν as
|
108 |
+
the projection operator orthogonal to uµ. In this article, we will
|
109 |
+
be working in a flat space-time with metric tensor defined as,
|
110 |
+
gµν = diag(1, −1, −1, −1).
|
111 |
+
Hydrodynamic equations are essentially the equations for
|
112 |
+
conservation of net particle four current, ∂µNµ = 0, and energy-
|
113 |
+
momentum tensor, ∂µT µν = 0. Using the expressions of Nµ and
|
114 |
+
T µν from Eqs. (1) and (2), the hydrodynamic equations can be
|
115 |
+
obtained as,
|
116 |
+
˙n + nθ + ∂µnµ = 0
|
117 |
+
(3)
|
118 |
+
˙ϵ + (ϵ + P0 + δP) θ − πµνσµν = 0
|
119 |
+
(4)
|
120 |
+
(ϵ + P0 + δP) ˙uα − ∇α (P0 + δP) + ∆α
|
121 |
+
ν∂µπµν = 0
|
122 |
+
(5)
|
123 |
+
where we use the standard notation, ˙A ≡ uµ∂µA for the co-
|
124 |
+
moving derivatives, ∇α ≡ ∆αβ∂β for the space-like derivatives,
|
125 |
+
θ = ∂µuµ for the expansion scalar, and σµν = 1
|
126 |
+
2 (∇µuν + ∇νuµ) −
|
127 |
+
1
|
128 |
+
3∆µνθ for the velocity stress-tensor.
|
129 |
+
To express the conserved net particle four-current and the
|
130 |
+
energy-momentum tensor in terms of hydrodynamic variables
|
131 |
+
in Eqs. (1) and (2), we chose Landau frame to define the fluid
|
132 |
+
four-velocity. Additionally, the net-number density and energy
|
133 |
+
density of a non-equilibrium system needs to be defined us-
|
134 |
+
ing the so called matching conditions. We relate these non-
|
135 |
+
equilibrium quantities with their equilibrium values as
|
136 |
+
n = n0 + δn,
|
137 |
+
ϵ = ϵ0 + δϵ,
|
138 |
+
(6)
|
139 |
+
where n0 and ϵ0 are the equilibrium net-number density and
|
140 |
+
the energy density, respectively, and, δn, δϵ are the corre-
|
141 |
+
sponding non-equilibrium corrections. For a system which is
|
142 |
+
out-of-equilibrium, the distribution function can be written as
|
143 |
+
f = f0 + δ f, where f0 is the equilibrium distribution function
|
144 |
+
and δf is the non-equilibrium correction. In the present work,
|
145 |
+
we consider the equilibrium distribution function to be of the
|
146 |
+
classical Maxwell-Juttner form, f0 = exp(−β u · p + α), where
|
147 |
+
β ≡ 1/T is the inverse temperature, α ≡ µ/T is the ratio of
|
148 |
+
chemical potential to temperature and u · p ≡ uµpµ. The equi-
|
149 |
+
librium distribution for anti-particles is also taken to be of the
|
150 |
+
Maxwell-Juttner form with α → −α.
|
151 |
+
We can now express the equilibrium hydrodynamic quanti-
|
152 |
+
ties in terms of the equilibrium distribution function as,
|
153 |
+
n0 =
|
154 |
+
�
|
155 |
+
dP (u · p)
|
156 |
+
�
|
157 |
+
f0 − ¯f0
|
158 |
+
�
|
159 |
+
(7)
|
160 |
+
ϵ0 =
|
161 |
+
�
|
162 |
+
dP (u · p)2 �
|
163 |
+
f0 + ¯f0
|
164 |
+
�
|
165 |
+
(8)
|
166 |
+
P0 = −1
|
167 |
+
3∆µν
|
168 |
+
�
|
169 |
+
dP pµpν �
|
170 |
+
f0 + ¯f0
|
171 |
+
�
|
172 |
+
.
|
173 |
+
(9)
|
174 |
+
Similarly, the non-equilibrium quantities can be expressed as
|
175 |
+
δn =
|
176 |
+
�
|
177 |
+
dP (u · p)
|
178 |
+
�
|
179 |
+
δ f − δ ¯f
|
180 |
+
�
|
181 |
+
(10)
|
182 |
+
δϵ =
|
183 |
+
�
|
184 |
+
dP (u · p)2 �
|
185 |
+
δ f + δ ¯f
|
186 |
+
�
|
187 |
+
(11)
|
188 |
+
δP = −1
|
189 |
+
3∆αβ
|
190 |
+
�
|
191 |
+
dP pαpβ �
|
192 |
+
δ f + δ ¯f
|
193 |
+
�
|
194 |
+
,
|
195 |
+
(12)
|
196 |
+
nµ = ∆µ
|
197 |
+
α
|
198 |
+
�
|
199 |
+
dP pα �
|
200 |
+
δ f − δ ¯f
|
201 |
+
�
|
202 |
+
,
|
203 |
+
(13)
|
204 |
+
πµν = ∆µν
|
205 |
+
αβ
|
206 |
+
�
|
207 |
+
dP pαpβ �
|
208 |
+
δ f + δ ¯f
|
209 |
+
�
|
210 |
+
,
|
211 |
+
(14)
|
212 |
+
where ∆µν
|
213 |
+
αβ ≡ 1
|
214 |
+
2(∆µ
|
215 |
+
α∆ν
|
216 |
+
β+∆µ
|
217 |
+
β∆ν
|
218 |
+
α)− 1
|
219 |
+
3∆µν∆αβ is a traceless symmetric
|
220 |
+
projection operator orthogonal to uµ as well as ∆µν. In order to
|
221 |
+
calculate these non-equilibrium quantities, we require the out-
|
222 |
+
of-equilibrium correction to the distribution function, δf and
|
223 |
+
δ ¯f. To this end, we consider the Boltzmann equation with BGK
|
224 |
+
collision kernel.
|
225 |
+
3. The Boltzmann equation and conservation laws
|
226 |
+
The covariant Boltzmann equation, in absence of any force
|
227 |
+
term or mean-field interaction term, is given by,
|
228 |
+
pµ∂µ f = C[ f, ¯f],
|
229 |
+
pµ∂µ ¯f = ¯C[ f, ¯f],
|
230 |
+
(15)
|
231 |
+
for a single species of particles and its antiparticles. In the
|
232 |
+
above equation, C[ f, ¯f] and ¯C[ f, ¯f] are the collision kernels
|
233 |
+
that contain the microscopic information of the scattering pro-
|
234 |
+
cesses. For the formulation of relativistic hydrodynamics from
|
235 |
+
the kinetic theory of unpolarized particles, the collision ker-
|
236 |
+
nel of the Boltzmann equation must satisfy certain properties.
|
237 |
+
Firstly, the collision kernel must vanish for a system in equilib-
|
238 |
+
rium, i.e., C[ f0, ¯f0] = ¯C[ f0, ¯f0] = 0. Further, in order to satisfy
|
239 |
+
the fundamental conservation equations in the microscopic in-
|
240 |
+
teractions, the zeroth and the first moments of the collision ker-
|
241 |
+
nel must vanish, i.e.,
|
242 |
+
�
|
243 |
+
dPC = 0 and
|
244 |
+
�
|
245 |
+
dP pµ C = 0. Vanishing
|
246 |
+
of the zeroth moment and the first moment of the collision ker-
|
247 |
+
nel follows from the net particle four-current conservation and
|
248 |
+
the energy-momentum conservation, respectively.
|
249 |
+
In the present work, we consider the BGK collision kernel
|
250 |
+
which has the advantage that the particle four-current is con-
|
251 |
+
served by construction. The relativistic Boltzmann equation
|
252 |
+
with BGK collision kernel for particles can be written as [15],
|
253 |
+
pµ∂µ f = −(u · p)
|
254 |
+
τR
|
255 |
+
�
|
256 |
+
f − n
|
257 |
+
n0
|
258 |
+
f0
|
259 |
+
�
|
260 |
+
,
|
261 |
+
(16)
|
262 |
+
and similarly for anti-particles with f → ¯f and f0 → ¯f0. Here,
|
263 |
+
τR is a relaxation time like parameter1 which we assume to be
|
264 |
+
the same for particles and anti-particles. It is easy to verify that
|
265 |
+
the conservation of net particle four-current, defined in Eq. (1),
|
266 |
+
follows from the zeroth moment of the above equations. The
|
267 |
+
1A more conventional notation is the collision frequency which is defined
|
268 |
+
as ν = 1/τR.
|
269 |
+
2
|
270 |
+
|
271 |
+
first moment of the above equations should lead to the con-
|
272 |
+
servation of the energy-momentum tensor, defined in Eq. (2).
|
273 |
+
However, we find that the first moment of the Boltzmann equa-
|
274 |
+
tion, Eq. (16), leads to,
|
275 |
+
∂µT µν = − 1
|
276 |
+
τR
|
277 |
+
�
|
278 |
+
ϵ − n
|
279 |
+
n0
|
280 |
+
ϵ0
|
281 |
+
�
|
282 |
+
,
|
283 |
+
(17)
|
284 |
+
which does not vanish automatically.
|
285 |
+
In order to have energy-momentum conservation fulfilled
|
286 |
+
by the Boltzmann equation with the BGK collision kernel,
|
287 |
+
Eq. (16), we require that
|
288 |
+
ϵn0 = ϵ0n,
|
289 |
+
(18)
|
290 |
+
which we identify as one matching condition. Note that two
|
291 |
+
matching conditions are required to define the non-equilibrium
|
292 |
+
net number density and the energy density. Along with the
|
293 |
+
above equation, we are left with the freedom of one matching
|
294 |
+
condition. It is important to observe that the RTA Boltzmann
|
295 |
+
equation, pµ∂µ f = − (u·p)
|
296 |
+
τR ( f − f0), is recovered from Eq. (16)
|
297 |
+
if the second matching condition is fixed as either ϵ = ϵ0 or
|
298 |
+
equivalently n = n0. For the RTA collision term, both matching
|
299 |
+
conditions ϵ = ϵ0 and n = n0, are necessary for net particle four-
|
300 |
+
current and energy-momentum conservation. However, for the
|
301 |
+
BGK collision kernel, both conservation equations are satisfied
|
302 |
+
with only one matching condition, Eq. (18), leaving the other
|
303 |
+
condition free. We shall see later that this scalar freedom af-
|
304 |
+
fects the coefficient of bulk viscosity, which is the transport co-
|
305 |
+
efficient corresponding to scalar dissipation in the system.
|
306 |
+
Note that the equilibrium net number density, defined in
|
307 |
+
Eq. (7), vanishes in the limit of zero chemical potential. This
|
308 |
+
implies that the BGK collision term in Eq. (16) is ill defined
|
309 |
+
in this limit, which is relevant for ultra-relativistic heavy-ion
|
310 |
+
collisions. Therefore, it is desirable to modify the BGK col-
|
311 |
+
lision kernel in order to extend its regime of applicability. At
|
312 |
+
this juncture, we are well equipped to propose a modification
|
313 |
+
to BGK collision kernel that is well-defined for all values of
|
314 |
+
chemical potential. To this end, we rewrite the condition nec-
|
315 |
+
essary for energy-momentum conservation from BGK collision
|
316 |
+
kernel, Eq. (18), in the form
|
317 |
+
n
|
318 |
+
n0
|
319 |
+
= ϵ
|
320 |
+
ϵ0
|
321 |
+
.
|
322 |
+
(19)
|
323 |
+
Substituting the above equation in Eq. (16), we obtain Boltz-
|
324 |
+
mann equation for particles with a modified BGK (MBGK) col-
|
325 |
+
lision kernel,
|
326 |
+
pµ∂µ f = −(u · p)
|
327 |
+
τR
|
328 |
+
�
|
329 |
+
f − ϵ
|
330 |
+
ϵ0
|
331 |
+
f0
|
332 |
+
�
|
333 |
+
,
|
334 |
+
(20)
|
335 |
+
and similarly for anti-particles with f → ¯f and f0 → ¯f0. The
|
336 |
+
advantage of the above modification is that the collision ker-
|
337 |
+
nel conserves energy-momentum by construction and is appli-
|
338 |
+
cable to systems even without any conserved four-current, i.e.,
|
339 |
+
in the limit of vanishing chemical potential. In the case of finite
|
340 |
+
chemical potential, the matching condition, Eq. (18), ensures
|
341 |
+
net particle four-current conservation. It is important to note
|
342 |
+
that BGK and MBGK are completely equivalent for the purpose
|
343 |
+
of the derivation of hydrodynamic equations at finite chemical
|
344 |
+
potential. In the following, we consider the MBGK Boltzmann
|
345 |
+
equation, Eq. (20), to obtain non-equilibrium correction to the
|
346 |
+
distribution function.
|
347 |
+
4. Non-equilibrium correction to the distribution function
|
348 |
+
In order to obtain the non-equilibrium correction to the dis-
|
349 |
+
tribution function, we use Eq. (6) to rewrite the MBGK Boltz-
|
350 |
+
mann equation, Eq. (20), as
|
351 |
+
pµ∂µ f = −(u · p)
|
352 |
+
τR
|
353 |
+
�
|
354 |
+
δ f − δϵ
|
355 |
+
ϵ0
|
356 |
+
f0
|
357 |
+
�
|
358 |
+
,
|
359 |
+
(21)
|
360 |
+
and similarly for anti-particles. The next step is to solve the
|
361 |
+
above equation, order-by-order in gradients. In this work, we
|
362 |
+
intend to obtain the non-equilibrium correction to the distribu-
|
363 |
+
tion function up to first-order in derivative, which we repre-
|
364 |
+
sent by δ f1. However, obtaining the expressions for δf1 from
|
365 |
+
Eq. (21) is not straightforward because it contains δϵ which is
|
366 |
+
defined in Eq. (11) as an integral over δ f. Therefore, to solve
|
367 |
+
for δ f1, we examine each term individually. Up to first-order
|
368 |
+
in gradients, the structure of the term on the left-hand side of
|
369 |
+
Eq. (21) has the form,
|
370 |
+
pµ∂µ f0 =
|
371 |
+
�
|
372 |
+
AΠθ + Anpµ∇µα + Aπpµpνσµν
|
373 |
+
�
|
374 |
+
f0,
|
375 |
+
(22)
|
376 |
+
and similarly for anti-particles. Here,
|
377 |
+
AΠ = −
|
378 |
+
�
|
379 |
+
(u · p)2 �
|
380 |
+
χb − β
|
381 |
+
3
|
382 |
+
�
|
383 |
+
− (u · p) χa + βm2
|
384 |
+
3
|
385 |
+
�
|
386 |
+
,
|
387 |
+
(23)
|
388 |
+
An = 1 − n0 (u · p)
|
389 |
+
(ϵ0 + P0),
|
390 |
+
Aπ = − β.
|
391 |
+
(24)
|
392 |
+
The coefficients χa and χb appearing in Eq. (23) are defined via
|
393 |
+
the relations
|
394 |
+
˙α = χa θ,
|
395 |
+
˙β = χb θ,
|
396 |
+
∇µβ =
|
397 |
+
n0
|
398 |
+
ϵ0 + p0
|
399 |
+
∇µα − β˙uµ
|
400 |
+
(25)
|
401 |
+
χa = I−
|
402 |
+
20(ϵ0 + P0) − I+
|
403 |
+
30n0
|
404 |
+
I+
|
405 |
+
30I+
|
406 |
+
10 − I−
|
407 |
+
20I−
|
408 |
+
20
|
409 |
+
,
|
410 |
+
χb = I+
|
411 |
+
10(ϵ0 + P0) − I−
|
412 |
+
20n0
|
413 |
+
I+
|
414 |
+
30I+
|
415 |
+
10 − I−
|
416 |
+
20I−
|
417 |
+
20
|
418 |
+
, (26)
|
419 |
+
where, the thermodynamic integrals are given by,
|
420 |
+
I±
|
421 |
+
nq =
|
422 |
+
(−1)q
|
423 |
+
(2q + 1)!!
|
424 |
+
�
|
425 |
+
dP (u · p)n−2q �
|
426 |
+
∆αβpαpβ�q �
|
427 |
+
f0 ± ¯f0
|
428 |
+
�
|
429 |
+
.
|
430 |
+
(27)
|
431 |
+
With the above definition, we identify n0 = I−
|
432 |
+
10, ϵ0 = I+
|
433 |
+
20 and
|
434 |
+
P0 = I+
|
435 |
+
21.
|
436 |
+
We assume δ f1 to have the same form as in Eq. (22),
|
437 |
+
δ f1 = τR
|
438 |
+
�
|
439 |
+
BΠθ + Bnpµ∇µα + Bπpµpνσµν
|
440 |
+
�
|
441 |
+
f0,
|
442 |
+
(28)
|
443 |
+
and similarly for anti-particles. In the above expression, the co-
|
444 |
+
efficients BΠ, Bn and Bπ needs to be determined using Eq. (21),
|
445 |
+
up to first order in derivatives. To that end, we substitute the
|
446 |
+
expression for δ f1 in Eq. (11) to obtain
|
447 |
+
δϵ = τR
|
448 |
+
�
|
449 |
+
dP (u · p)2 �
|
450 |
+
BΠ f0 + ¯BΠ ¯f0
|
451 |
+
�
|
452 |
+
θ
|
453 |
+
(29)
|
454 |
+
3
|
455 |
+
|
456 |
+
Using Eqs. (22), (28) and (29) into Eq. (21) and comparing both
|
457 |
+
sides, we get
|
458 |
+
−
|
459 |
+
AΠ
|
460 |
+
(u · p) = BΠ − 1
|
461 |
+
ϵ0
|
462 |
+
�
|
463 |
+
dP (u · p)2 �
|
464 |
+
BΠ f0 + ¯BΠ ¯f0
|
465 |
+
�
|
466 |
+
(30)
|
467 |
+
Bn = −
|
468 |
+
An
|
469 |
+
(u · p) ,
|
470 |
+
Bπ = −
|
471 |
+
Aπ
|
472 |
+
(u · p).
|
473 |
+
(31)
|
474 |
+
Another set of equations in terms of ¯AΠ, ¯An and ¯Aπ can be
|
475 |
+
obtained by considering the MBGK equation, analogous to
|
476 |
+
Eq. (21), for anti-particles. Note that the coefficients Bn, ¯Bn,
|
477 |
+
Bπ and ¯Bπ are easily determined but BΠ and ¯BΠ require further
|
478 |
+
investigation.
|
479 |
+
To obtain their expressions, we consider BΠ to be of the gen-
|
480 |
+
eral form, BΠ = �+∞
|
481 |
+
k=−∞ bk (u · p)k and ¯BΠ = �+∞
|
482 |
+
k=−∞ ¯bk (u · p)k.
|
483 |
+
Substituting these in Eq. (30) and its corresponding equation for
|
484 |
+
anti-particles, we can conclude that the only non-zero bk and ¯bk
|
485 |
+
are the ones with k = −1, 0, 1. We obtain
|
486 |
+
BΠ =
|
487 |
+
1
|
488 |
+
�
|
489 |
+
k=−1
|
490 |
+
bk (u · p)k ,
|
491 |
+
¯BΠ =
|
492 |
+
1
|
493 |
+
�
|
494 |
+
k=−1
|
495 |
+
¯bk (u · p)k .
|
496 |
+
(32)
|
497 |
+
Substituting Eqs. (23) and (32) in Eq. (30), we find
|
498 |
+
b1 = ¯b1 = χb − β
|
499 |
+
3
|
500 |
+
and,
|
501 |
+
b−1 = ¯b−1 = m2β
|
502 |
+
3 ,
|
503 |
+
(33)
|
504 |
+
where we have also used the relation analogous to Eq. (30) for
|
505 |
+
anti-particles. On the other hand, for b0 and ¯b0 we find two
|
506 |
+
coupled equations, which are identical and can be simplified to
|
507 |
+
the relation,
|
508 |
+
¯b0 = b0 + 2 χa.
|
509 |
+
(34)
|
510 |
+
Hence, we see that a unique solution for b0 and ¯b0 can not be
|
511 |
+
obtained but they are constrained by the above relation. We
|
512 |
+
need to provide one more condition, which we recognize as the
|
513 |
+
second matching condition, to fix b0 and ¯b0 separately.
|
514 |
+
Nevertheless, at this stage, we can determine δf1 and δ ¯f1 up
|
515 |
+
to a free parameter, b0, by using Eqs. (30)-(34) into Eq. (28),
|
516 |
+
and similarly for anti-particles. We obtain,
|
517 |
+
δf1 = τR f0
|
518 |
+
� �
|
519 |
+
m2β
|
520 |
+
3 (u · p) + b0 + (u · p)
|
521 |
+
�
|
522 |
+
χb − β
|
523 |
+
3
|
524 |
+
��
|
525 |
+
θ
|
526 |
+
−
|
527 |
+
�
|
528 |
+
1
|
529 |
+
(u · p) −
|
530 |
+
n0
|
531 |
+
(ϵ0 + P0)
|
532 |
+
�
|
533 |
+
pµ �
|
534 |
+
∇µα
|
535 |
+
�
|
536 |
+
+ βpµpµσµν
|
537 |
+
(u · p)
|
538 |
+
�
|
539 |
+
,
|
540 |
+
(35)
|
541 |
+
δ ¯f1 = τR ¯f0
|
542 |
+
� �
|
543 |
+
m2β
|
544 |
+
3 (u · p) + b0 + 2 χa + (u · p)
|
545 |
+
�
|
546 |
+
χb − β
|
547 |
+
3
|
548 |
+
��
|
549 |
+
θ
|
550 |
+
+
|
551 |
+
�
|
552 |
+
1
|
553 |
+
(u · p) +
|
554 |
+
n0
|
555 |
+
(ϵ0 + P0)
|
556 |
+
�
|
557 |
+
pµ �
|
558 |
+
∇µα
|
559 |
+
�
|
560 |
+
+ βpµpµσµν
|
561 |
+
(u · p)
|
562 |
+
�
|
563 |
+
.
|
564 |
+
(36)
|
565 |
+
Note that for vanishing chemical potential, we have α = χa = 0.
|
566 |
+
In this case, Eqs. (35) and (36) coincide to give
|
567 |
+
δf1
|
568 |
+
����µ=0 = τR βf0
|
569 |
+
�� m2
|
570 |
+
3 (u·p) + b0
|
571 |
+
β +(u·p)
|
572 |
+
�
|
573 |
+
c2
|
574 |
+
s− 1
|
575 |
+
3
|
576 |
+
��
|
577 |
+
θ+ pµpµσµν
|
578 |
+
(u·p)
|
579 |
+
�
|
580 |
+
,
|
581 |
+
(37)
|
582 |
+
where we have used χb = βc2
|
583 |
+
s, with c2
|
584 |
+
s being the squared of the
|
585 |
+
speed of sound, given by,
|
586 |
+
c2
|
587 |
+
s =
|
588 |
+
(ϵ0 + P0)
|
589 |
+
3ϵ0 + �3 + z2� P0
|
590 |
+
.
|
591 |
+
(38)
|
592 |
+
Here z ≡ m/T is the ratio of particle mass to temperature.
|
593 |
+
5. First order dissipative hydrodynamics
|
594 |
+
The first-order correction to the phase-space distribution
|
595 |
+
functions of the particles and anti-particles at finite µ are given
|
596 |
+
by Eqs. (35) and (36). Substituting them in Eqs. (10)-(14), we
|
597 |
+
obtain the first-order expressions for non-equilibrium hydrody-
|
598 |
+
namic quantities as
|
599 |
+
δn = νθ,
|
600 |
+
δϵ = eθ,
|
601 |
+
δP = ρθ,
|
602 |
+
nµ = κ∇µα,
|
603 |
+
πµν = 2ησµν,
|
604 |
+
(39)
|
605 |
+
where,
|
606 |
+
ν = τR (χa + b0) n0,
|
607 |
+
e = τR (χa + b0) ϵ0,
|
608 |
+
(40)
|
609 |
+
ρ = τR
|
610 |
+
�
|
611 |
+
(χa + b0)P0 + χb
|
612 |
+
(ϵ0 + P)
|
613 |
+
β
|
614 |
+
− 5
|
615 |
+
3βI+
|
616 |
+
32 − χan0
|
617 |
+
β
|
618 |
+
�
|
619 |
+
,
|
620 |
+
(41)
|
621 |
+
κ = τR
|
622 |
+
������I+
|
623 |
+
11 −
|
624 |
+
n2
|
625 |
+
0
|
626 |
+
β(ϵ0 + P)
|
627 |
+
������ ,
|
628 |
+
η = τR β I+
|
629 |
+
32.
|
630 |
+
(42)
|
631 |
+
Note that the parameter b0 appears in the expressions of ν, e
|
632 |
+
and ρ. Of these, ν and e vanishes for b0 = −χa which cor-
|
633 |
+
responds to the Landau matching condition and RTA collision
|
634 |
+
kernel. Conductivity κ and the coefficient of shear viscosity
|
635 |
+
η does not contain the parameter b0, and the expressions for
|
636 |
+
these two transport coefficients, given in Eq. (42), matches with
|
637 |
+
those derived using RTA collision kernel [11]. Next, we ana-
|
638 |
+
lyze entropy production in the MBGK setup in order to identify
|
639 |
+
dissipative transport coefficients in Eqs. (40)-(42).
|
640 |
+
To study entropy production, we start from the kinetic theory
|
641 |
+
definition of entropy four-current, given by the Boltzmann’s H-
|
642 |
+
theorem, for a classical system
|
643 |
+
S µ = −
|
644 |
+
�
|
645 |
+
dPpµ�
|
646 |
+
f (ln f − 1) + ¯f
|
647 |
+
�
|
648 |
+
ln ¯f − 1
|
649 |
+
� �
|
650 |
+
.
|
651 |
+
(43)
|
652 |
+
The
|
653 |
+
entropy
|
654 |
+
production
|
655 |
+
is
|
656 |
+
determined
|
657 |
+
by
|
658 |
+
taking
|
659 |
+
four-
|
660 |
+
divergence of the above equation,
|
661 |
+
∂µS µ = −
|
662 |
+
�
|
663 |
+
dPpµ� �
|
664 |
+
∂µ f
|
665 |
+
�
|
666 |
+
ln f +
|
667 |
+
�
|
668 |
+
∂µ ¯f
|
669 |
+
�
|
670 |
+
ln ¯f
|
671 |
+
�
|
672 |
+
.
|
673 |
+
(44)
|
674 |
+
Using the MBGK Boltzmann equation, i.e., Eq. (21), and keep-
|
675 |
+
ing terms till quadratic order in deviation-from-equilibrium, we
|
676 |
+
obtain
|
677 |
+
∂µS µ = 1
|
678 |
+
τR
|
679 |
+
�
|
680 |
+
dP (u·p)
|
681 |
+
��
|
682 |
+
δ f − δϵ
|
683 |
+
ϵ0
|
684 |
+
f0
|
685 |
+
�
|
686 |
+
φ +
|
687 |
+
�
|
688 |
+
δ ¯f − δϵ
|
689 |
+
ϵ0
|
690 |
+
¯f0
|
691 |
+
�
|
692 |
+
¯φ
|
693 |
+
�
|
694 |
+
. (45)
|
695 |
+
where we have defined φ ≡ δ f/ f0 and ¯φ ≡ δ ¯f/ ¯f0.
|
696 |
+
Using Eqs. (35) and (36) in Eq. (45), we obtain,
|
697 |
+
∂µS µ = −β Π θ − nµ∇µα + βπµνσµν,
|
698 |
+
(46)
|
699 |
+
4
|
700 |
+
|
701 |
+
where,
|
702 |
+
Π = δP − χb
|
703 |
+
β δϵ + χa
|
704 |
+
β δn.
|
705 |
+
(47)
|
706 |
+
It is important to note that the right-hand-side of Eq. (46) repre-
|
707 |
+
sents entropy production due to dissipation in the system. Here
|
708 |
+
the shear stress tensor πµν is the tensor dissipation, the parti-
|
709 |
+
cle diffusion four-current nµ is the vector dissipation and Π is
|
710 |
+
the scalar dissipation, referred to as the bulk viscous pressure2.
|
711 |
+
From Eq. (47), we observe that δP, δϵ, and δn, all contribute to
|
712 |
+
the bulk viscous pressure. Comparing with the Navier-Stokes
|
713 |
+
relation of bulk viscous pressure, i.e., Π = −ζ θ, we obtain the
|
714 |
+
coefficient of bulk viscosity as,
|
715 |
+
ζ = −τR
|
716 |
+
�χb
|
717 |
+
β (ϵ0 + P0) − 5βI+
|
718 |
+
32
|
719 |
+
3
|
720 |
+
− χan0
|
721 |
+
β
|
722 |
+
+ (χa + b0)
|
723 |
+
β
|
724 |
+
( βP0 − χbϵ0 + χan0)
|
725 |
+
�
|
726 |
+
.
|
727 |
+
(48)
|
728 |
+
Demanding that Eq. (46) does not violate the second law of
|
729 |
+
thermodynamics, i.e., ∂µS µ ≥ 0, leads to the following con-
|
730 |
+
straints [45],
|
731 |
+
ζ ≥ 0,
|
732 |
+
κ ≥ 0,
|
733 |
+
η ≥ 0.
|
734 |
+
(49)
|
735 |
+
These three transport coefficients represent the three dissipative
|
736 |
+
transport phenomena of the system related to the transport of
|
737 |
+
momentum and charge. We see that out of the three transport
|
738 |
+
coefficients, only ζ depends on the parameter b0 and the second
|
739 |
+
matching condition is necessary to uniquely determine ζ. This
|
740 |
+
is to be expected because the matching conditions are scalar
|
741 |
+
conditions and should only affect the scalar dissipation in the
|
742 |
+
system, i.e., bulk viscosity. In the following, we specify the
|
743 |
+
second matching condition.
|
744 |
+
With the parameter, b0 still not specified, the hydrodynamic
|
745 |
+
equations obtained using the MBGK Boltzmann equation forms
|
746 |
+
a class of hydrodynamic theories. A specific hydrodynamic the-
|
747 |
+
ory is determined by a specific b0 parameter. We can access
|
748 |
+
different hydrodynamic theories by varying the b0 parameter,
|
749 |
+
which is solely controlled by the second matching condition.
|
750 |
+
Thus, picking a specific second matching condition will fix b0
|
751 |
+
and hence the hydrodynamic theory. To this end, we define a
|
752 |
+
function A±
|
753 |
+
r as [19, 46],
|
754 |
+
A±
|
755 |
+
r =
|
756 |
+
�
|
757 |
+
dP (u · p)r �
|
758 |
+
δf ± δ ¯f
|
759 |
+
�
|
760 |
+
.
|
761 |
+
(50)
|
762 |
+
The second matching condition then amounts to assigning a
|
763 |
+
value for a given A±
|
764 |
+
r . For instance, the RTA matching condi-
|
765 |
+
tions can be recovered by setting A−
|
766 |
+
1 = A+
|
767 |
+
2 = 0. It is apparent
|
768 |
+
that the choice of a second matching condition is vast, and de-
|
769 |
+
termination of the full list of the allowed ones is a non-trivial
|
770 |
+
task that goes beyond the scope of the present work. Presently,
|
771 |
+
for the second matching condition, we shall restrict our analysis
|
772 |
+
to a special set A+
|
773 |
+
r = 0. These matching conditions ensures that
|
774 |
+
2We can further identify that,
|
775 |
+
� ∂P
|
776 |
+
∂ϵ
|
777 |
+
�
|
778 |
+
n = χb
|
779 |
+
β and,
|
780 |
+
� ∂P
|
781 |
+
∂n
|
782 |
+
�
|
783 |
+
ϵ = − χα
|
784 |
+
β .
|
785 |
+
0.01
|
786 |
+
0.10
|
787 |
+
1
|
788 |
+
10
|
789 |
+
100
|
790 |
+
-0.3
|
791 |
+
-0.2
|
792 |
+
-0.1
|
793 |
+
0.0
|
794 |
+
0.1
|
795 |
+
0.2
|
796 |
+
0.3
|
797 |
+
Figure 1: Dependence of the parameter b0 on z for different matching condi-
|
798 |
+
tions. The red region corresponds to negative values of ζ. The plot is for zero
|
799 |
+
chemical potential.
|
800 |
+
the homogeneous part of δ f vanishes3 [47] and are also valid in
|
801 |
+
the zero chemical potential limit. Using Eqs. (35) and (36) in
|
802 |
+
our proposed matching condition A+
|
803 |
+
r = 0, we obtain
|
804 |
+
b0 = −
|
805 |
+
�
|
806 |
+
1/I+
|
807 |
+
r,0
|
808 |
+
� �
|
809 |
+
χbI+
|
810 |
+
r+1,0 − βI+
|
811 |
+
r+1,1 + χa
|
812 |
+
�
|
813 |
+
I+
|
814 |
+
r,0 − I−
|
815 |
+
r,0
|
816 |
+
��
|
817 |
+
.
|
818 |
+
(51)
|
819 |
+
In the next section, we explore the effect of different b0 on the
|
820 |
+
coefficient of bulk viscosity.
|
821 |
+
6. Results and discussions
|
822 |
+
In this section, we study the effect of MBGK collision kernel
|
823 |
+
on transport coefficients. In the previous Section, we found that
|
824 |
+
the effect of MBGK collision kernel manifests in the parameter
|
825 |
+
b0 which affects only the scalar dissipation, namely bulk vis-
|
826 |
+
cous pressure. On the other hand, the vector (net particle dif-
|
827 |
+
fusion) and tensor (shear stress tensor) dissipation remain unaf-
|
828 |
+
fected. Therefore, we study only the properties of bulk viscous
|
829 |
+
coefficient in this section.
|
830 |
+
Before we proceed to quantify the effect of varying the sec-
|
831 |
+
ond matching condition on the coefficient of bulk viscosity, we
|
832 |
+
must establish the allowed values for the parameter b0. To this
|
833 |
+
end, we note that the second law of thermodynamics demands
|
834 |
+
that the coefficient of bulk viscosity must be positive, Eq. (49).
|
835 |
+
In Fig. 1, we plot b0 vs z for different values of r required to
|
836 |
+
3It must be noted that this is not the only class of matching conditions that
|
837 |
+
guarantee the zero value of the homogeneous part.
|
838 |
+
5
|
839 |
+
|
840 |
+
0.001
|
841 |
+
0.010
|
842 |
+
0.100
|
843 |
+
1
|
844 |
+
10
|
845 |
+
100
|
846 |
+
0.00
|
847 |
+
0.01
|
848 |
+
0.02
|
849 |
+
0.03
|
850 |
+
0.04
|
851 |
+
Figure 2: Dependence of ζ/ (s0τRT) on the T/m for various α = µ/T values.
|
852 |
+
The curves labelled RTA corresponds to r = 2 and those labelled MBGK cor-
|
853 |
+
responds to r = 0.
|
854 |
+
define the second matching condition in Eq. (51), at zero chem-
|
855 |
+
ical potential. The red region in Fig. 1 corresponds to the part
|
856 |
+
of b0-z plane where the coefficient of bulk viscosity becomes
|
857 |
+
negative. Therefore all values of r for which the curves for b0
|
858 |
+
lies in the red zone are not physical and must be discarded. The
|
859 |
+
boundary of the red region corresponds to the ζ = 0 line and is
|
860 |
+
given by
|
861 |
+
b0 = −χa +
|
862 |
+
������
|
863 |
+
χb (ϵ0 + P0) − χan0 − (5/3) β2I+
|
864 |
+
32
|
865 |
+
χbϵ0 − χan0 − βP0
|
866 |
+
������ .
|
867 |
+
(52)
|
868 |
+
We find the b0 parameter with non-negative values of r respects
|
869 |
+
the requirement of the second law of thermodynamics Eq. (49).
|
870 |
+
The black line with r = 2 represents the b0 for which the
|
871 |
+
MBGK reduces to the RTA, where b0 vanishes for all z. From
|
872 |
+
numerical analysis, we find that large negative values of r leads
|
873 |
+
to b0 which corresponds to negative ζ. In Fig. 1, we see that the
|
874 |
+
curve for b0, which corresponds to r = −4, passes through the
|
875 |
+
physically forbidden region.
|
876 |
+
Having determined the allowed range of r and equivalently,
|
877 |
+
the allowed values of b0, we will restrict ourselves to b0 cor-
|
878 |
+
responding to r ≥ 0 values.
|
879 |
+
In Fig. 2 we plot the dimen-
|
880 |
+
sionless quantity ζ/ (s0τRT) for MBGK with r = 0, and RTA
|
881 |
+
(r = 2) against T/m for different values of chemical potential,
|
882 |
+
where s0 ≡ (ϵ0 + P0 − µ n0)/T. We observe that ζ/ (s0τRT)
|
883 |
+
is a non-monotonous function of temperature, having a maxi-
|
884 |
+
mum for each r for MBGK case, similar to the behavior known
|
885 |
+
from RTA [19, 46, 48]. We also note that the dependence of
|
886 |
+
ζ/ (s0τRT) on α is also non-monotonous, which can be realized
|
887 |
+
by observing that not only the position of the peak for α = 1 is
|
888 |
+
at higher T/m values than for α = 0 and α = 2.5, but the peak
|
889 |
+
value is also higher for α = 1 compared to α = 0 and α = 2.5.
|
890 |
+
To better understand the effect of changing matching condi-
|
891 |
+
tions on the behavior of the bulk viscosity for the MBGK col-
|
892 |
+
lision kernel, we focus on the zero chemical potential limit. In
|
893 |
+
this limit, we study the scaling behavior of the ratio of the coef-
|
894 |
+
ficient of bulk viscosity to shear viscosity, ζ/η, with conformal-
|
895 |
+
ity measure 1/3−c2
|
896 |
+
s. In Fig. 3, we plot the ratio (ζ/η)/(1/3−c2
|
897 |
+
s)2
|
898 |
+
0.001
|
899 |
+
0.010
|
900 |
+
0.100
|
901 |
+
1
|
902 |
+
10
|
903 |
+
100
|
904 |
+
0
|
905 |
+
20
|
906 |
+
40
|
907 |
+
60
|
908 |
+
80
|
909 |
+
Figure 3: Variation of the dimensionless quantity (ζ/η)/(1/3−c2
|
910 |
+
s)2 with respect
|
911 |
+
to z for various matching conditions determined by r.
|
912 |
+
as a function of z for different r values. We observe that this
|
913 |
+
ratio saturates in both small-z and large-z limits indicating a
|
914 |
+
squared dependence of ζ/η on the conformality measure, char-
|
915 |
+
acteristic to weakly coupled systems. We also observe that in
|
916 |
+
the small-z limit, this ratio saturates to different values whereas
|
917 |
+
in the large-z limit, they all converge. In order to better un-
|
918 |
+
derstand the behavior of ζ/η in these regimes, we separately
|
919 |
+
analyze the small-z and large-z limits.
|
920 |
+
Small-z behaviour : The small-z limit, i.e., m/T ≪ 1, is
|
921 |
+
the ultra-relativistic limit where the mass of the particles can
|
922 |
+
be ignored compared to the temperature of the system. At zero
|
923 |
+
chemical potential, the small-z limiting behavior of the confor-
|
924 |
+
mality measure is given by
|
925 |
+
� 1
|
926 |
+
3 − c2
|
927 |
+
s
|
928 |
+
�
|
929 |
+
= z2
|
930 |
+
36 + O
|
931 |
+
�
|
932 |
+
z3�
|
933 |
+
. On the other
|
934 |
+
hand, the small-z behavior of the ratio ζ/η is found to be
|
935 |
+
ζ
|
936 |
+
η = Γ(r)
|
937 |
+
�1
|
938 |
+
3 − c2
|
939 |
+
s
|
940 |
+
�2
|
941 |
+
+ O
|
942 |
+
�
|
943 |
+
z5�
|
944 |
+
,
|
945 |
+
(53)
|
946 |
+
for all r. We find the r-dependence of the coefficient to be,
|
947 |
+
Γ(r) ≡ lim
|
948 |
+
z→0
|
949 |
+
ζ/η
|
950 |
+
� 1
|
951 |
+
3 − c2s
|
952 |
+
�2 = 15(r2 + 23r + 10)
|
953 |
+
4(r + 1)
|
954 |
+
,
|
955 |
+
(54)
|
956 |
+
for r ≥ 0. Thus, while the ratio ζ/η shows a z4 dependence in
|
957 |
+
the same small-z limit, the coefficient Γ depends on the match-
|
958 |
+
ing condition through b0, and equivalently r, as is evident from
|
959 |
+
Eq. (54). In Fig. 4, we show the variation of the coefficient Γ as
|
960 |
+
a function of r. We observe that for r = 2, we recover the RTA
|
961 |
+
value, Γ = 75, marked with a red dot in Fig. 4.
|
962 |
+
Large-z behaviour : On the opposite end, i.e., at the large-z
|
963 |
+
limit where m/T ≫ 1, we have the non-relativistic limit. In this
|
964 |
+
limit, the conformality measure is expanded in powers of 1/z
|
965 |
+
and is given by, 1
|
966 |
+
3 − c2
|
967 |
+
s = 1
|
968 |
+
3 − 1
|
969 |
+
z + O
|
970 |
+
� 1
|
971 |
+
z2
|
972 |
+
�
|
973 |
+
. The behaviour of the
|
974 |
+
ratio ζ/η in the same limit is given by,
|
975 |
+
ζ
|
976 |
+
η = 2
|
977 |
+
3 − 3
|
978 |
+
z + O
|
979 |
+
� 1
|
980 |
+
z2
|
981 |
+
�
|
982 |
+
,
|
983 |
+
(55)
|
984 |
+
6
|
985 |
+
|
986 |
+
0.0
|
987 |
+
0.5
|
988 |
+
1.0
|
989 |
+
1.5
|
990 |
+
2.0
|
991 |
+
2.5
|
992 |
+
3.0
|
993 |
+
40
|
994 |
+
50
|
995 |
+
60
|
996 |
+
70
|
997 |
+
80
|
998 |
+
Figure 4: Variation of the scaling coefficient Γ, defined in Eqs. (53) and (54),
|
999 |
+
with respect to parameter r. The red dot represents the RTA value of Γ = 75.
|
1000 |
+
for all r. Considering the leading terms in this expansion, we
|
1001 |
+
find,
|
1002 |
+
ζ
|
1003 |
+
η = 6
|
1004 |
+
�1
|
1005 |
+
3 − c2
|
1006 |
+
s
|
1007 |
+
�2
|
1008 |
+
,
|
1009 |
+
(56)
|
1010 |
+
which is independent of r and hence the second matching con-
|
1011 |
+
dition, as is evident from Fig. 3. In this limit, the MBGK and
|
1012 |
+
RTA results coincide implying that in the non-relativistic limit,
|
1013 |
+
the properties of the fluid are independent of the nature of col-
|
1014 |
+
lision with BGK collision kernel.
|
1015 |
+
7. Summary and outlook
|
1016 |
+
In this work, we have provided the first formulation of rela-
|
1017 |
+
tivistic dissipative hydrodynamics from BGK collision kernel.
|
1018 |
+
We first propose a modified BGK collision kernel which we ad-
|
1019 |
+
vocate to be better suited for derivation of hydrodynamic equa-
|
1020 |
+
tions. We show that at finite chemical potential, where BGK
|
1021 |
+
collision kernel is defined, the formulation of relativistic hy-
|
1022 |
+
drodynamics with MBGK collision kernel becomes identical to
|
1023 |
+
that obtained using BGK collision. The advantage of MBGK
|
1024 |
+
is that it is well defined even in the limit of vanishing chemi-
|
1025 |
+
cal potential, and represents a generalization of RTA collision
|
1026 |
+
kernel. In the formulation of relativistic BGK hydrodynamics,
|
1027 |
+
we found the theory is controlled by a free parameter related
|
1028 |
+
to freedom of a matching condition, which affects the coeffi-
|
1029 |
+
cient of bulk viscous pressure. It is important to note that the
|
1030 |
+
BGK or MBGK collision kernels are affected by the matching
|
1031 |
+
conditions, which in turn affects the dissipative processes in the
|
1032 |
+
system. We have identified a class of matching conditions for
|
1033 |
+
which the homogeneous part of the solution to the relativistic
|
1034 |
+
Boltzmann equation vanishes. We examined the effect of choice
|
1035 |
+
of matching condition on dissipative coefficients and also stud-
|
1036 |
+
ied some scaling properties of the ratio of coefficients of bulk
|
1037 |
+
viscosity to shear viscosity on the conformality measure.
|
1038 |
+
The present formulation of hydrodynamics with a modified
|
1039 |
+
BGK collision kernel opens up several possibilities for future
|
1040 |
+
investigations. This MBGK collision kernel may also find po-
|
1041 |
+
tential applications in non-relativistic physics domain where
|
1042 |
+
BGK collision is widely used. The formulation of causal hydro-
|
1043 |
+
dynamics with MBGK collision kernel is an immediate possible
|
1044 |
+
extension. Formulation of higher-order hydrodynamic theories
|
1045 |
+
may be affected more significantly as the evolution equations
|
1046 |
+
of scalar, vector, and tensor dissipative quantities contain cross-
|
1047 |
+
terms giving rise to the possibility of them being controlled by
|
1048 |
+
the matching conditions. Higher-order theories also exhibit in-
|
1049 |
+
teresting features like fixed points and attractors [49, 50], which
|
1050 |
+
could also be studied within the MBGK hydrodynamics frame-
|
1051 |
+
work. The present article forms the basis for all these studies
|
1052 |
+
which we leave for future explorations.
|
1053 |
+
Acknowledgements
|
1054 |
+
The
|
1055 |
+
authors
|
1056 |
+
acknowledge
|
1057 |
+
Sunil
|
1058 |
+
Jaiswal
|
1059 |
+
for
|
1060 |
+
sev-
|
1061 |
+
eral
|
1062 |
+
useful
|
1063 |
+
discussions.
|
1064 |
+
A.J.
|
1065 |
+
was
|
1066 |
+
supported
|
1067 |
+
in
|
1068 |
+
part
|
1069 |
+
by
|
1070 |
+
the
|
1071 |
+
DST-INSPIRE
|
1072 |
+
faculty
|
1073 |
+
award
|
1074 |
+
under
|
1075 |
+
Grant
|
1076 |
+
No.
|
1077 |
+
DST/INSPIRE/04/2017/000038.
|
1078 |
+
References
|
1079 |
+
[1] I. M¨uller, Zum Paradoxon der Warmeleitungstheorie, Z. Phys. 198 (1967)
|
1080 |
+
329–344. doi:10.1007/BF01326412.
|
1081 |
+
[2] S. Chapman, T. G. Cowling, The Mathematical Theory of Non- Uniform
|
1082 |
+
Gases, 3rd ed, Cambridge University Press, Cambridge (1970).
|
1083 |
+
[3] W. Israel, J. Stewart, Transient relativistic thermodynamics and ki-
|
1084 |
+
netic theory, Annals Phys. 118 (1979) 341–372.
|
1085 |
+
doi:10.1016/
|
1086 |
+
0003-4916(79)90130-1.
|
1087 |
+
[4] A. Muronga, Relativistic Dynamics of Non-ideal Fluids: Viscous and
|
1088 |
+
heat-conducting fluids. II. Transport properties and microscopic descrip-
|
1089 |
+
tion of relativistic nuclear matter, Phys. Rev. C 76 (2007) 014910. arXiv:
|
1090 |
+
nucl-th/0611091, doi:10.1103/PhysRevC.76.014910.
|
1091 |
+
[5] M. A. York, G. D. Moore, Second order hydrodynamic coefficients from
|
1092 |
+
kinetic theory, Phys. Rev. D 79 (2009) 054011.
|
1093 |
+
arXiv:0811.0729,
|
1094 |
+
doi:10.1103/PhysRevD.79.054011.
|
1095 |
+
[6] B. Betz, D. Henkel, D. H. Rischke, From kinetic theory to dissipative fluid
|
1096 |
+
dynamics, Prog. Part. Nucl. Phys. 62 (2009) 556–561. arXiv:0812.
|
1097 |
+
1440, doi:10.1016/j.ppnp.2008.12.018.
|
1098 |
+
[7] P. Romatschke, New Developments in Relativistic Viscous Hydrodynam-
|
1099 |
+
ics, Int. J. Mod. Phys. E 19 (2010) 1–53.
|
1100 |
+
arXiv:0902.3663, doi:
|
1101 |
+
10.1142/S0218301310014613.
|
1102 |
+
[8] G. S. Denicol, T. Koide, D. H. Rischke, Dissipative relativistic fluid dy-
|
1103 |
+
namics: a new way to derive the equations of motion from kinetic the-
|
1104 |
+
ory, Phys. Rev. Lett. 105 (2010) 162501.
|
1105 |
+
arXiv:1004.5013, doi:
|
1106 |
+
10.1103/PhysRevLett.105.162501.
|
1107 |
+
[9] G. S. Denicol, H. Niemi, E. Molnar, D. H. Rischke, Derivation of transient
|
1108 |
+
relativistic fluid dynamics from the Boltzmann equation, Phys. Rev. D
|
1109 |
+
85 (2012) 114047, [Erratum: Phys.Rev.D 91, 039902 (2015)]. arXiv:
|
1110 |
+
1202.4551, doi:10.1103/PhysRevD.85.114047.
|
1111 |
+
[10] A. Jaiswal, R. Ryblewski, M. Strickland, Transport coefficients for bulk
|
1112 |
+
viscous evolution in the relaxation time approximation, Phys. Rev. C
|
1113 |
+
90 (4) (2014) 044908. arXiv:1407.7231, doi:10.1103/PhysRevC.
|
1114 |
+
90.044908.
|
1115 |
+
[11] A. Jaiswal, B. Friman, K. Redlich, Relativistic second-order dissipative
|
1116 |
+
hydrodynamics at finite chemical potential, Phys. Lett. B 751 (2015)
|
1117 |
+
548–552.
|
1118 |
+
arXiv:1507.02849, doi:10.1016/j.physletb.2015.
|
1119 |
+
11.018.
|
1120 |
+
[12] A. Gabbana, M. Mendoza, S. Succi, R. Tripiccione, Kinetic approach
|
1121 |
+
to relativistic dissipation, Phys. Rev. E 96 (2) (2017) 023305. arXiv:
|
1122 |
+
1704.02523, doi:10.1103/PhysRevE.96.023305.
|
1123 |
+
[13] J.-P. Blaizot, L. Yan, Onset of hydrodynamics for a quark-gluon plasma
|
1124 |
+
from the evolution of moments of distribution functions, JHEP 11 (2017)
|
1125 |
+
161. arXiv:1703.10694, doi:10.1007/JHEP11(2017)161.
|
1126 |
+
7
|
1127 |
+
|
1128 |
+
[14] S. Jaiswal, J.-P. Blaizot, R. S. Bhalerao, Z. Chen, A. Jaiswal, L. Yan, From
|
1129 |
+
moments of the distribution function to hydrodynamics: The nonconfor-
|
1130 |
+
mal case, Phys. Rev. C 106 (4) (2022) 044912. arXiv:2208.02750,
|
1131 |
+
doi:10.1103/PhysRevC.106.044912.
|
1132 |
+
[15] P. L. Bhatnagar, E. P. Gross, M. Krook, A Model for Collision Processes
|
1133 |
+
in Gases. 1. Small Amplitude Processes in Charged and Neutral One-
|
1134 |
+
Component Systems, Phys. Rev. 94 (1954) 511–525.
|
1135 |
+
doi:10.1103/
|
1136 |
+
PhysRev.94.511.
|
1137 |
+
[16] P. Welander, On the temperature jump in a rarefied gas, Arkiv Fysik 7
|
1138 |
+
(1954) 507.
|
1139 |
+
URL https://www.osti.gov/biblio/4395580
|
1140 |
+
[17] C. M. Marle, Sur l’´etablissement des ´equations de l’hydrodynamique des
|
1141 |
+
fluides relativistes dissipatifs. I. - L’´equation de Boltzmann relativiste,
|
1142 |
+
Ann. Phys. Theor. 10 (1969) 67–126.
|
1143 |
+
URL http://www.numdam.org/item/AIHPA_1969__10_1_67_0/
|
1144 |
+
[18] J. L. Anderson, H. Witting, A relativistic relaxation-time model for the
|
1145 |
+
boltzmann equation, Physica 74 (3) (1974) 466–488.
|
1146 |
+
[19] G. S. Rocha, G. S. Denicol, J. Noronha, Novel Relaxation Time Approx-
|
1147 |
+
imation to the Relativistic Boltzmann Equation, Phys. Rev. Lett. 127 (4)
|
1148 |
+
(2021) 042301.
|
1149 |
+
arXiv:2103.07489, doi:10.1103/PhysRevLett.
|
1150 |
+
127.042301.
|
1151 |
+
[20] W. Florkowski, R. Maj, R. Ryblewski, M. Strickland, Hydrodynamics of
|
1152 |
+
anisotropic quark and gluon fluids, Phys. Rev. C 87 (3) (2013) 034914.
|
1153 |
+
arXiv:1209.3671, doi:10.1103/PhysRevC.87.034914.
|
1154 |
+
[21] W. Florkowski, R. Ryblewski, M. Strickland, Anisotropic Hydrodynam-
|
1155 |
+
ics for Rapidly Expanding Systems, Nucl. Phys. A 916 (2013) 249–259.
|
1156 |
+
arXiv:1304.0665, doi:10.1016/j.nuclphysa.2013.08.004.
|
1157 |
+
[22] W. Florkowski, R. Ryblewski, M. Strickland, Testing viscous and
|
1158 |
+
anisotropic hydrodynamics in an exactly solvable case, Phys. Rev. C
|
1159 |
+
88 (2013) 024903. arXiv:1305.7234, doi:10.1103/PhysRevC.88.
|
1160 |
+
024903.
|
1161 |
+
[23] G. S. Denicol, W. Florkowski, R. Ryblewski, M. Strickland, Shear-bulk
|
1162 |
+
coupling in nonconformal hydrodynamics, Phys. Rev. C 90 (4) (2014)
|
1163 |
+
044905. arXiv:1407.4767, doi:10.1103/PhysRevC.90.044905.
|
1164 |
+
[24] W. Florkowski, E. Maksymiuk, R. Ryblewski, M. Strickland, Exact so-
|
1165 |
+
lution of the (0+1)-dimensional Boltzmann equation for a massive gas,
|
1166 |
+
Phys. Rev. C 89 (5) (2014) 054908. arXiv:1402.7348, doi:10.1103/
|
1167 |
+
PhysRevC.89.054908.
|
1168 |
+
[25] W. Florkowski, R. Ryblewski, M. Strickland, L. Tinti, Leading-order
|
1169 |
+
anisotropic hydrodynamics for systems with massive particles, Phys.
|
1170 |
+
Rev. C 89 (5) (2014) 054909.
|
1171 |
+
arXiv:1403.1223, doi:10.1103/
|
1172 |
+
PhysRevC.89.054909.
|
1173 |
+
[26] L. Tinti, Anisotropic matching principle for the hydrodynamic expan-
|
1174 |
+
sion, Phys. Rev. C 94 (4) (2016) 044902. arXiv:1506.07164, doi:
|
1175 |
+
10.1103/PhysRevC.94.044902.
|
1176 |
+
[27] A. Czajka, S. Hauksson, C. Shen, S. Jeon, C. Gale, Bulk viscosity of
|
1177 |
+
strongly interacting matter in the relaxation time approximation, Phys.
|
1178 |
+
Rev. C 97 (4) (2018) 044914.
|
1179 |
+
arXiv:1712.05905, doi:10.1103/
|
1180 |
+
PhysRevC.97.044914.
|
1181 |
+
[28] M. Kurian, V. Chandra, Bulk viscosity of a hot QCD medium in a
|
1182 |
+
strong magnetic field within the relaxation-time approximation, Phys.
|
1183 |
+
Rev. D 97 (11) (2018) 116008. arXiv:1802.07904, doi:10.1103/
|
1184 |
+
PhysRevD.97.116008.
|
1185 |
+
[29] C. Chattopadhyay, U. Heinz, S. Pal, G. Vujanovic, Higher order and
|
1186 |
+
anisotropic hydrodynamics for Bjorken and Gubser flows, Phys. Rev. C
|
1187 |
+
97 (6) (2018) 064909. arXiv:1801.07755, doi:10.1103/PhysRevC.
|
1188 |
+
97.064909.
|
1189 |
+
[30] C. Chattopadhyay, S. Jaiswal, L. Du, U. Heinz, S. Pal, Non-conformal
|
1190 |
+
attractor in boost-invariant plasmas, Phys. Lett. B 824 (2022) 136820.
|
1191 |
+
arXiv:2107.05500, doi:10.1016/j.physletb.2021.136820.
|
1192 |
+
[31] S. Jaiswal, C. Chattopadhyay, L. Du, U. Heinz, S. Pal, Nonconformal
|
1193 |
+
kinetic theory and hydrodynamics for Bjorken flow, Phys. Rev. C 105 (2)
|
1194 |
+
(2022) 024911. arXiv:2107.10248, doi:10.1103/PhysRevC.105.
|
1195 |
+
024911.
|
1196 |
+
[32] D. Liyanage, D. Everett, C. Chattopadhyay, U. Heinz, Prehydrody-
|
1197 |
+
namic evolution and its impact on quark-gluon plasma signatures, Phys.
|
1198 |
+
Rev. C 105 (6) (2022) 064908. arXiv:2205.00964, doi:10.1103/
|
1199 |
+
PhysRevC.105.064908.
|
1200 |
+
[33] M. E. Carrington, T. Fugleberg, D. Pickering, M. H. Thoma, Dielectric
|
1201 |
+
functions and dispersion relations of ultrarelativistic plasmas with col-
|
1202 |
+
lisions, Can. J. Phys. 82 (2004) 671–678.
|
1203 |
+
arXiv:hep-ph/0312103,
|
1204 |
+
doi:10.1139/p04-035.
|
1205 |
+
[34] B. Schenke, M. Strickland, C. Greiner, M. H. Thoma, A Model of
|
1206 |
+
the effect of collisions on QCD plasma instabilities, Phys. Rev. D 73
|
1207 |
+
(2006) 125004. arXiv:hep-ph/0603029, doi:10.1103/PhysRevD.
|
1208 |
+
73.125004.
|
1209 |
+
[35] M. Mandal, P. Roy, Wake potential in collisional anisotropic quark-gluon
|
1210 |
+
plasma, Phys. Rev. D 88 (7) (2013) 074013. arXiv:1310.4660, doi:
|
1211 |
+
10.1103/PhysRevD.88.074013.
|
1212 |
+
[36] B.-f. Jiang, D.-f. Hou, J.-r. Li, Refractive index of quark-gluon plasma:
|
1213 |
+
Kinetic theory with a Bhatnagar-Gross-Krook collisional kernel, Phys.
|
1214 |
+
Rev. D 94 (7) (2016) 074026. doi:10.1103/PhysRevD.94.074026.
|
1215 |
+
[37] C. Han, D.-f. Hou, B.-f. Jiang, J.-r. Li, Jet energy loss in quark-
|
1216 |
+
gluon plasma: Kinetic theory with a Bhatnagar-Gross-Krook collisional
|
1217 |
+
kernel, Eur. Phys. J. A 53 (10) (2017) 205.
|
1218 |
+
doi:10.1140/epja/
|
1219 |
+
i2017-12400-9.
|
1220 |
+
[38] A. Kumar, M. Y. Jamal, V. Chandra, J. R. Bhatt, Collective excitations
|
1221 |
+
of a hot anisotropic QCD medium with the Bhatnagar-Gross-Krook col-
|
1222 |
+
lisional kernel within an effective description, Phys. Rev. D 97 (3) (2018)
|
1223 |
+
034007. arXiv:1709.01032, doi:10.1103/PhysRevD.97.034007.
|
1224 |
+
[39] S. A. Khan, B. K. Patra, Cumulative effects of collision integral, strong
|
1225 |
+
magnetic field, and quasiparticle description on charge and heat transport
|
1226 |
+
in a thermal QCD medium, Phys. Rev. D 104 (5) (2021) 054024. arXiv:
|
1227 |
+
2011.02682, doi:10.1103/PhysRevD.104.054024.
|
1228 |
+
[40] M. Formanek, C. Grayson, J. Rafelski, B. M¨uller, Current-conserving rel-
|
1229 |
+
ativistic linear response for collisional plasmas, Annals Phys. 434 (2021)
|
1230 |
+
168605. arXiv:2105.07897, doi:10.1016/j.aop.2021.168605.
|
1231 |
+
[41] S. A. Khan, B. K. Patra, Transport coefficients in thermal QCD: A probe
|
1232 |
+
to the collision integral, Phys. Rev. D 106 (9) (2022) 094033. arXiv:
|
1233 |
+
2205.00317, doi:10.1103/PhysRevD.106.094033.
|
1234 |
+
[42] S. A. Khan, B. K. Patra, Seebeck and Nernst coefficients of a magnetized
|
1235 |
+
hot QCD medium with number conserving kernel (11 2022). arXiv:
|
1236 |
+
2211.10779.
|
1237 |
+
[43] A. Shaikh, S. Rath, S. Dash, B. Panda, Flow of charge and heat in thermal
|
1238 |
+
QCD within the weak magnetic field limit: A BGK model approach (10
|
1239 |
+
2022). arXiv:2210.15388.
|
1240 |
+
[44] S. R. De Groot, Relativistic Kinetic Theory. Principles and Applications,
|
1241 |
+
1980.
|
1242 |
+
[45] P. Kovtun, First-order relativistic hydrodynamics is stable, JHEP 10
|
1243 |
+
(2019) 034. arXiv:1907.08191, doi:10.1007/JHEP10(2019)034.
|
1244 |
+
[46] R. Biswas, S. Mitra, V. Roy, Is first-order relativistic hydrodynamics
|
1245 |
+
in a general frame stable and causal for arbitrary interactions?, Phys.
|
1246 |
+
Rev. D 106 (1) (2022) L011501. arXiv:2202.08685, doi:10.1103/
|
1247 |
+
PhysRevD.106.L011501.
|
1248 |
+
[47] R. E. Hoult, P. Kovtun, Causal first-order hydrodynamics from kinetic
|
1249 |
+
theory and holography, Phys. Rev. D 106 (6) (2022) 066023. arXiv:
|
1250 |
+
2112.14042, doi:10.1103/PhysRevD.106.066023.
|
1251 |
+
[48] D. Dash, S. Bhadury, S. Jaiswal, A. Jaiswal, Extended relaxation time
|
1252 |
+
approximation and relativistic dissipative hydrodynamics, Phys. Lett. B
|
1253 |
+
831 (2022) 137202. arXiv:2112.14581, doi:10.1016/j.physletb.
|
1254 |
+
2022.137202.
|
1255 |
+
[49] M. P. Heller, M. Spalinski, Hydrodynamics Beyond the Gradient Ex-
|
1256 |
+
pansion:
|
1257 |
+
Resurgence and Resummation, Phys. Rev. Lett. 115 (7)
|
1258 |
+
(2015) 072501.
|
1259 |
+
arXiv:1503.07514, doi:10.1103/PhysRevLett.
|
1260 |
+
115.072501.
|
1261 |
+
[50] J.-P. Blaizot, L. Yan, Fluid dynamics of out of equilibrium boost invariant
|
1262 |
+
plasmas, Phys. Lett. B 780 (2018) 283–286. arXiv:1712.03856, doi:
|
1263 |
+
10.1016/j.physletb.2018.02.058.
|
1264 |
+
8
|
1265 |
+
|
-dAyT4oBgHgl3EQfqfiK/content/tmp_files/load_file.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:80b41198a8d1dfdc480c64abb18915ff8b450d4d159728b5fa13e778fc1e335e
|
3 |
+
size 390143
|
-dE1T4oBgHgl3EQf8QXB/vector_store/index.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ab6971d672316c2633455e296c09c1f7579d97030d44b5717e24103c466b8ea4
|
3 |
+
size 131322
|
-tAyT4oBgHgl3EQf3fnG/content/2301.00771v1.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:73eb21b3a9781b8f46dd429fc0cb5b46d7d832bfa0f83cd4ed1ae521e2007640
|
3 |
+
size 25295637
|
.gitattributes
CHANGED
@@ -15176,3 +15176,121 @@ vtE0T4oBgHgl3EQfsgGN/content/2301.02580v1.pdf filter=lfs diff=lfs merge=lfs -tex
|
|
15176 |
F9AyT4oBgHgl3EQfe_i6/content/2301.00333v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15177 |
5dAzT4oBgHgl3EQfEfoE/content/2301.00992v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15178 |
C9E3T4oBgHgl3EQfUgrG/content/2301.04452v1.pdf filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15176 |
F9AyT4oBgHgl3EQfe_i6/content/2301.00333v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15177 |
5dAzT4oBgHgl3EQfEfoE/content/2301.00992v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15178 |
C9E3T4oBgHgl3EQfUgrG/content/2301.04452v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15179 |
+
G9FIT4oBgHgl3EQfXCt6/content/2301.11242v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15180 |
+
ZtAyT4oBgHgl3EQfifij/content/2301.00397v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15181 |
+
Y9E2T4oBgHgl3EQfZAfl/content/2301.03861v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15182 |
+
idE2T4oBgHgl3EQfcweU/content/2301.03899v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15183 |
+
CtA0T4oBgHgl3EQfAf94/content/2301.01963v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15184 |
+
bNE0T4oBgHgl3EQf4gLC/content/2301.02740v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15185 |
+
edE5T4oBgHgl3EQfgg_h/content/2301.05635v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15186 |
+
qNFKT4oBgHgl3EQfHi2k/content/2301.11730v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15187 |
+
VNAzT4oBgHgl3EQf1P5q/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15188 |
+
GdE3T4oBgHgl3EQfWQoN/content/2301.04466v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15189 |
+
3tFQT4oBgHgl3EQf3jaF/content/2301.13428v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15190 |
+
B9E2T4oBgHgl3EQfRwdj/content/2301.03784v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15191 |
+
7dFLT4oBgHgl3EQfAS4p/content/2301.11965v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15192 |
+
fNE1T4oBgHgl3EQfLwP5/content/2301.02982v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15193 |
+
nNFRT4oBgHgl3EQfazfZ/content/2301.13558v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15194 |
+
DNE1T4oBgHgl3EQfEAOl/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15195 |
+
0NAyT4oBgHgl3EQfPPZ4/content/2301.00021v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15196 |
+
DdE4T4oBgHgl3EQfGAyt/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15197 |
+
btFAT4oBgHgl3EQfXx0t/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15198 |
+
bNE0T4oBgHgl3EQf4gLC/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15199 |
+
wdAyT4oBgHgl3EQfnfgZ/content/2301.00488v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15200 |
+
4tE2T4oBgHgl3EQfkAch/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15201 |
+
5tE1T4oBgHgl3EQfTAOS/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15202 |
+
pdE2T4oBgHgl3EQfKQak/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15203 |
+
c9FQT4oBgHgl3EQfizaw/content/2301.13351v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15204 |
+
dtFKT4oBgHgl3EQfqy7x/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15205 |
+
gtE1T4oBgHgl3EQffATW/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15206 |
+
rdE0T4oBgHgl3EQfagDQ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15207 |
+
jdAzT4oBgHgl3EQfpf0M/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15208 |
+
W9E0T4oBgHgl3EQfmQFi/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15209 |
+
rdFST4oBgHgl3EQfPzg1/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15210 |
+
9dFJT4oBgHgl3EQfoixI/content/2301.11596v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15211 |
+
ANAzT4oBgHgl3EQfF_sv/content/2301.01019v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15212 |
+
wdFPT4oBgHgl3EQf_DXv/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15213 |
+
wdE2T4oBgHgl3EQf3Ai2/content/2301.04167v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15214 |
+
5dAzT4oBgHgl3EQfEfoE/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15215 |
+
FNFQT4oBgHgl3EQfRTbc/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15216 |
+
ptE5T4oBgHgl3EQfJA6J/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15217 |
+
1dE4T4oBgHgl3EQfzQ2-/content/2301.05273v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15218 |
+
DtE1T4oBgHgl3EQfqAXb/content/2301.03339v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15219 |
+
-dAzT4oBgHgl3EQfSvvG/content/2301.01238v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15220 |
+
CdE1T4oBgHgl3EQf9wZ6/content/2301.03560v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15221 |
+
FtE2T4oBgHgl3EQf-Qmd/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15222 |
+
W9E5T4oBgHgl3EQfcg_y/content/2301.05605v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15223 |
+
39E1T4oBgHgl3EQfSgNA/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15224 |
+
oNA0T4oBgHgl3EQfJ_-C/content/2301.02098v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15225 |
+
_9FLT4oBgHgl3EQfES7g/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15226 |
+
HNFLT4oBgHgl3EQfHy-l/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15227 |
+
GtAzT4oBgHgl3EQfjP0_/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15228 |
+
rNE2T4oBgHgl3EQfLAYw/content/2301.03708v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15229 |
+
DtE1T4oBgHgl3EQfqAXb/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15230 |
+
zdAzT4oBgHgl3EQftf1m/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15231 |
+
J9AzT4oBgHgl3EQfyP6v/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15232 |
+
WdE2T4oBgHgl3EQfuQhQ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15233 |
+
qdE5T4oBgHgl3EQfJQ70/content/2301.05457v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15234 |
+
4tAzT4oBgHgl3EQfuv3m/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15235 |
+
zdE4T4oBgHgl3EQfyQ3C/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15236 |
+
RNE0T4oBgHgl3EQfkgFL/content/2301.02473v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15237 |
+
lNAyT4oBgHgl3EQf_frR/content/2301.00911v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15238 |
+
sNE3T4oBgHgl3EQf9AvA/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15239 |
+
RNE0T4oBgHgl3EQf1gJx/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15240 |
+
MNAzT4oBgHgl3EQfy_4H/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15241 |
+
uNAyT4oBgHgl3EQfaPdk/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15242 |
+
79AyT4oBgHgl3EQfQvZ4/content/2301.00052v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15243 |
+
29AzT4oBgHgl3EQfR_sP/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15244 |
+
ptE0T4oBgHgl3EQf9QJL/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15245 |
+
p9AzT4oBgHgl3EQfb_zy/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15246 |
+
89AyT4oBgHgl3EQfqPhE/content/2301.00538v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15247 |
+
q9AzT4oBgHgl3EQfO_td/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15248 |
+
ptA0T4oBgHgl3EQfKf9E/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15249 |
+
VNFOT4oBgHgl3EQf6jQA/content/2301.12958v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15250 |
+
MtAzT4oBgHgl3EQfkv1s/content/2301.01536v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15251 |
+
JtE4T4oBgHgl3EQfhw0J/content/2301.05127v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15252 |
+
utE1T4oBgHgl3EQfkATn/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15253 |
+
39E3T4oBgHgl3EQfogqI/content/2301.04634v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15254 |
+
ONFRT4oBgHgl3EQfHTe-/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15255 |
+
2dFRT4oBgHgl3EQfnDfl/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15256 |
+
ndAyT4oBgHgl3EQfYvfO/content/2301.00211v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15257 |
+
ENFJT4oBgHgl3EQfCCwM/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15258 |
+
pdE1T4oBgHgl3EQfPAPS/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15259 |
+
bdAzT4oBgHgl3EQfnf0f/content/2301.01580v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15260 |
+
hNE5T4oBgHgl3EQfiA_6/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15261 |
+
O9FAT4oBgHgl3EQfzB6w/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15262 |
+
CNE0T4oBgHgl3EQfyALn/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15263 |
+
_tFQT4oBgHgl3EQfLjUE/content/2301.13264v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15264 |
+
vtFPT4oBgHgl3EQfOjSp/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15265 |
+
zNE3T4oBgHgl3EQfmQrA/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15266 |
+
G9FIT4oBgHgl3EQfXCt6/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15267 |
+
pNE5T4oBgHgl3EQfIw6b/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15268 |
+
wtFQT4oBgHgl3EQfwDZl/content/2301.13400v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15269 |
+
4tAyT4oBgHgl3EQf2Plc/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15270 |
+
YNFLT4oBgHgl3EQfUy8r/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15271 |
+
EdE4T4oBgHgl3EQfGgyE/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15272 |
+
atE4T4oBgHgl3EQfPAw4/content/2301.04969v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15273 |
+
idE1T4oBgHgl3EQfzwUn/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15274 |
+
VdE2T4oBgHgl3EQfDAbs/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15275 |
+
jtFKT4oBgHgl3EQfwy4u/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15276 |
+
-tAyT4oBgHgl3EQf3fnG/content/2301.00771v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15277 |
+
NtE0T4oBgHgl3EQf0gJJ/content/2301.02686v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15278 |
+
A9FQT4oBgHgl3EQfMzZX/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15279 |
+
ZtFQT4oBgHgl3EQffDZj/content/2301.13338v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15280 |
+
SNE1T4oBgHgl3EQfHwN5/content/2301.02930v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15281 |
+
atE4T4oBgHgl3EQfPAw4/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15282 |
+
_tE4T4oBgHgl3EQf4g2G/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15283 |
+
zdE4T4oBgHgl3EQfyQ3C/content/2301.05265v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15284 |
+
s9AzT4oBgHgl3EQfBfoq/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15285 |
+
ItAyT4oBgHgl3EQfTPfP/content/2301.00103v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15286 |
+
Q9E1T4oBgHgl3EQfHQPT/content/2301.02925v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15287 |
+
IdAyT4oBgHgl3EQfTPeX/content/2301.00102v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15288 |
+
DNE1T4oBgHgl3EQfEAOl/content/2301.02885v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15289 |
+
VNAzT4oBgHgl3EQf1P5q/content/2301.01796v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15290 |
+
UdE2T4oBgHgl3EQfCwZ5/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15291 |
+
pNE3T4oBgHgl3EQfLgmE/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15292 |
+
ZdE3T4oBgHgl3EQfcgrr/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15293 |
+
n9FPT4oBgHgl3EQf6DVd/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15294 |
+
ktE4T4oBgHgl3EQftA2c/content/2301.05221v1.pdf filter=lfs diff=lfs merge=lfs -text
|
15295 |
+
M9AyT4oBgHgl3EQfs_mP/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
15296 |
+
O9E2T4oBgHgl3EQfVQdj/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
|
0NAyT4oBgHgl3EQfPPZ4/content/2301.00021v1.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:becc302fc3ca270bc70a66cb6adf895b4c5dbcb28436718071ed48bc6791c6eb
|
3 |
+
size 1231431
|
1dE4T4oBgHgl3EQfzQ2-/content/2301.05273v1.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c08b5e9278b0fc3ff04a7ba9085980cf25eaa78f29045bdc36fcbc6e9fedb5aa
|
3 |
+
size 1683179
|
1dE4T4oBgHgl3EQfzQ2-/vector_store/index.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a83aaf7d3afe6f9dfa0c00d6e8fe174d0d36f6559ed9c3318b56fb5cfeed7a20
|
3 |
+
size 119989
|
29AzT4oBgHgl3EQfR_sP/vector_store/index.faiss
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9ff0d8e1ccbb6bae880143871c60b40fd88119f24f40d1ee15008b6296f9c8f1
|
3 |
+
size 11337773
|
2dFRT4oBgHgl3EQfnDfl/vector_store/index.faiss
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:318f5e49695ce26a04ae430b580f28f2865fdf180f859c96556755c73d81ec11
|
3 |
+
size 5570605
|
39E1T4oBgHgl3EQfSgNA/vector_store/index.faiss
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b50c9504612416f4cd58cbcc0207985012a6838b2a3e358e0bc0a82bedfc74da
|
3 |
+
size 4587565
|
39E3T4oBgHgl3EQfogqI/content/2301.04634v1.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8cd079fa16743674df2ed54b24d0fba65a92d40efd2e39df6d25dd982ec7d25f
|
3 |
+
size 2795097
|
39FQT4oBgHgl3EQf3zah/vector_store/index.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f15fc506a3074a0c9e313423e5d28a990dfc40e745d0fb6b852af2a6348d2524
|
3 |
+
size 93670
|
3tFQT4oBgHgl3EQf3jaF/content/2301.13428v1.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:81288c5fe31420f11753e15a2a50949134553cd7648f595bed7c02b20ec2f15c
|
3 |
+
size 601740
|
4tAyT4oBgHgl3EQf2Plc/vector_store/index.faiss
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:033979816e4bd31c3f054061d4fda0b90d25488f0ad27c13f21bfc7ead93f066
|
3 |
+
size 5439533
|
4tAzT4oBgHgl3EQfuv3m/vector_store/index.faiss
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8ecf89c1247955c4014fbda88bf84e4ac456eec261590683cd9fd7568b759a1c
|
3 |
+
size 7274541
|
4tE2T4oBgHgl3EQfkAch/vector_store/index.faiss
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:97fb19a3eba79b2ab1330e812ea7ae01f04c02a2f69a6f851115d18944ef5902
|
3 |
+
size 1966125
|
5dAzT4oBgHgl3EQfEfoE/vector_store/index.faiss
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:03bc1f6f627c6887f584d599b3b57dc920f91bfba2f9ef344a83c1888f35e4af
|
3 |
+
size 4063277
|
5tE0T4oBgHgl3EQfewA6/vector_store/index.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c759d4af3d3d7caed3f6360a63aaf697112ffc93323fecf2ea73540e53533837
|
3 |
+
size 58790
|
5tE1T4oBgHgl3EQfTAOS/vector_store/index.faiss
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:10f9b4b923b474c5fb3faa4e83ca764398f156fa1d646076b2a7b4a67a3f2cf2
|
3 |
+
size 8781869
|
6dAzT4oBgHgl3EQfvP2u/vector_store/index.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:84a379dfc53bc9d81045150ec2191c9fd43b8a0c17afdc004050b262410e3e65
|
3 |
+
size 90107
|
79AyT4oBgHgl3EQfQvZ4/content/2301.00052v1.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eb0514326c731de19774f2dae8e14bbcb4d4692495b094f6c9f76463f3a26633
|
3 |
+
size 133002
|
7dFLT4oBgHgl3EQfAS4p/content/2301.11965v1.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3281fad2dcfdc48460f653aa546b8cc2c93dcf2b737645d6617527cbc4383750
|
3 |
+
size 585850
|
7tAzT4oBgHgl3EQf-f6Q/vector_store/index.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca52cd064e5b8b21798e6a84d74cd3eab78a20cd64e79420fb1e92b6d78f2f9f
|
3 |
+
size 79945
|
89AyT4oBgHgl3EQfqPhE/content/2301.00538v1.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fc6e81385e621ed708d1f0c943d6292e375a10865df5e6312f023c8c6efcc978
|
3 |
+
size 3942207
|
9NE3T4oBgHgl3EQfqwrj/vector_store/index.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eda5dd22c2dbf137c56cac76cecace444af027e2769d9940ad99068f0164851a
|
3 |
+
size 135914
|
9dFJT4oBgHgl3EQfoixI/content/2301.11596v1.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:117d141416e015cbbb17a3cc8f6c08aaa42854f4f6cb86339a45069d8051b6ac
|
3 |
+
size 800967
|
A9FQT4oBgHgl3EQfMzZX/vector_store/index.faiss
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:528c4b51aa620a5d104c945a9b6075b1ce19d713de84f8c7133e9910966f6012
|
3 |
+
size 21102637
|
ANAzT4oBgHgl3EQfF_sv/content/2301.01019v1.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dcce392b9d27f18b5d36c7b4d94c1281bca1203236fb9dcdd2b81bb56f1f6b7e
|
3 |
+
size 700327
|
B9E2T4oBgHgl3EQfRwdj/content/2301.03784v1.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8b43405e80bd2d0c9d80745b362a50dce24e8801a902f3acf513cf1f23f3cc95
|
3 |
+
size 1197564
|
CNE0T4oBgHgl3EQfyALn/vector_store/index.faiss
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:92b6929ee281019c45eda85e35ea94056977e568ac6c7a0a7321d882b1160b51
|
3 |
+
size 25952301
|
CNFQT4oBgHgl3EQfODbS/vector_store/index.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:32f0b065abea24b780bf100c6aae87ad95eb1eb5dbdd6dccd22011bfa536278c
|
3 |
+
size 849980
|
CdE1T4oBgHgl3EQf9wZ6/content/2301.03560v1.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7e2f5bb31d90f6ecf9d9f1a22bd326678d3be9d8ebfb8c5b1d2c4534eda8cefa
|
3 |
+
size 941548
|
CtA0T4oBgHgl3EQfAf94/content/2301.01963v1.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:914ac69fe136e2eb6d99afc2bb5f49f2b75649e12f156d7b585e7494ea6a8160
|
3 |
+
size 161278
|
DNE1T4oBgHgl3EQfEAOl/content/2301.02885v1.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4e768ced5afbfc26c91d7a161f2e8e281ab2a52410317042dfb4ce51ceb075c5
|
3 |
+
size 18125339
|
DNE1T4oBgHgl3EQfEAOl/vector_store/index.faiss
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:273ccacfc89c545b29042ac3fab689c461a850acc67d3dd3bdc30c1affd8b619
|
3 |
+
size 9568301
|
DdE4T4oBgHgl3EQfGAyt/vector_store/index.faiss
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3741e88b5d68ecd9393bc441b5bfe66453b8db1ed8b7da3755aca4b7748e4ff3
|
3 |
+
size 5046317
|
DtE1T4oBgHgl3EQfqAXb/content/2301.03339v1.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d6327d26a4ac2517e31f151f748472c7982f057080091270bee0dc6e473821e9
|
3 |
+
size 208689
|
DtE1T4oBgHgl3EQfqAXb/vector_store/index.faiss
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3bee09b8340fe4f27e4f4582e3c53bbd9e23786bf3b5ea27d583a21e252df13e
|
3 |
+
size 3211309
|
E9FRT4oBgHgl3EQfBzcS/vector_store/index.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7755d978a95e6a4d20a48fb8ef0b02536688474b0da45898b0bf40c07c5278a6
|
3 |
+
size 96842
|
ENFJT4oBgHgl3EQfCCwM/vector_store/index.faiss
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:40858f4faf4dd3b77ba64e55cb3717d1af2ac129c3461d6a9b8bf7324241c9b1
|
3 |
+
size 2031661
|
EdE4T4oBgHgl3EQfGgyE/vector_store/index.faiss
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9ada6624a0e215dcdf97681a9dee5a86d00235651141acb2eaf809996c804df5
|
3 |
+
size 3145773
|
FNFQT4oBgHgl3EQfRTbc/vector_store/index.faiss
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1336a1d57258dd610e25c2dc2cc85adf1c00ea4b30114677c5b949efda6b06b9
|
3 |
+
size 3604525
|
FtE2T4oBgHgl3EQf-Qmd/vector_store/index.faiss
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d9d663cbf48bdde6245f0700fdfe04b686934f8c41ac3e0e0a6c4936e23e2408
|
3 |
+
size 6684717
|
G9FIT4oBgHgl3EQfXCt6/content/2301.11242v1.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f8ff40475f296f3bc05b703d4c780441c02434b53eae299ed6014d8d54998443
|
3 |
+
size 962664
|
G9FIT4oBgHgl3EQfXCt6/vector_store/index.faiss
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5b337fe94af165a017dc383896b4ebc954948a5f3a556e87ced1c30e8991aca1
|
3 |
+
size 6357037
|
GdE3T4oBgHgl3EQfWQoN/content/2301.04466v1.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:858e3f260b794c5573ccd1203f48cb26b9e9c3ecc63ac86d530223ff97a370a5
|
3 |
+
size 266956
|
GtAzT4oBgHgl3EQfjP0_/vector_store/index.faiss
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5e967dcc0dbd8832040a8b572c64af55b5cd2de0508f1ab1d4f05dbf39a187d3
|
3 |
+
size 1900589
|
HNFLT4oBgHgl3EQfHy-l/vector_store/index.faiss
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec497f9b12aadaa05ff35eda69f98946594247b235f6d9b7439b8c8bbf2ebe97
|
3 |
+
size 4194349
|