jackkuo commited on
Commit
ad360fd
·
verified ·
1 Parent(s): 2db8c90

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. -dE3T4oBgHgl3EQfrgpm/vector_store/index.faiss +3 -0
  2. -tE1T4oBgHgl3EQf8gUY/content/tmp_files/2301.03545v1.pdf.txt +262 -0
  3. -tE1T4oBgHgl3EQf8gUY/content/tmp_files/load_file.txt +195 -0
  4. .gitattributes +50 -0
  5. 0dFKT4oBgHgl3EQfNy2J/vector_store/index.pkl +3 -0
  6. 1dE1T4oBgHgl3EQfRwNN/vector_store/index.faiss +3 -0
  7. 1dFQT4oBgHgl3EQf1TYk/content/tmp_files/2301.13419v1.pdf.txt +1252 -0
  8. 1dFQT4oBgHgl3EQf1TYk/content/tmp_files/load_file.txt +0 -0
  9. 2dFKT4oBgHgl3EQfPy1W/content/tmp_files/2301.11764v1.pdf.txt +1955 -0
  10. 2dFKT4oBgHgl3EQfPy1W/content/tmp_files/load_file.txt +0 -0
  11. 2dFST4oBgHgl3EQfXzgB/content/2301.13785v1.pdf +3 -0
  12. 2dFST4oBgHgl3EQfXzgB/vector_store/index.pkl +3 -0
  13. 3NAzT4oBgHgl3EQffPyj/content/tmp_files/2301.01450v1.pdf.txt +0 -0
  14. 3NAzT4oBgHgl3EQffPyj/content/tmp_files/load_file.txt +0 -0
  15. 3tE1T4oBgHgl3EQfAgIm/content/tmp_files/2301.02839v1.pdf.txt +1162 -0
  16. 3tE1T4oBgHgl3EQfAgIm/content/tmp_files/load_file.txt +0 -0
  17. 49A0T4oBgHgl3EQfNv86/content/2301.02150v1.pdf +3 -0
  18. 49A0T4oBgHgl3EQfNv86/vector_store/index.pkl +3 -0
  19. 4dAyT4oBgHgl3EQfpPgc/content/2301.00520v1.pdf +3 -0
  20. 4dAyT4oBgHgl3EQfpPgc/vector_store/index.pkl +3 -0
  21. 6dFAT4oBgHgl3EQfnh1q/content/tmp_files/2301.08629v1.pdf.txt +290 -0
  22. 6dFAT4oBgHgl3EQfnh1q/content/tmp_files/load_file.txt +173 -0
  23. 79AyT4oBgHgl3EQfp_gy/content/tmp_files/2301.00534v1.pdf.txt +2438 -0
  24. 79AyT4oBgHgl3EQfp_gy/content/tmp_files/load_file.txt +0 -0
  25. 8NFJT4oBgHgl3EQfnSyO/content/tmp_files/2301.11591v1.pdf.txt +1867 -0
  26. 8NFJT4oBgHgl3EQfnSyO/content/tmp_files/load_file.txt +0 -0
  27. 8tE4T4oBgHgl3EQfCwu_/content/tmp_files/2301.04864v1.pdf.txt +0 -0
  28. 8tE4T4oBgHgl3EQfCwu_/content/tmp_files/load_file.txt +0 -0
  29. 9NAzT4oBgHgl3EQfgvyq/content/tmp_files/2301.01474v1.pdf.txt +1012 -0
  30. 9NAzT4oBgHgl3EQfgvyq/content/tmp_files/load_file.txt +419 -0
  31. 9NE4T4oBgHgl3EQf3Q1N/vector_store/index.faiss +3 -0
  32. 9tE5T4oBgHgl3EQfRQ5h/vector_store/index.faiss +3 -0
  33. AdFAT4oBgHgl3EQfrh5X/content/2301.08653v1.pdf +3 -0
  34. AdFAT4oBgHgl3EQfrh5X/vector_store/index.faiss +3 -0
  35. AdFAT4oBgHgl3EQfrh5X/vector_store/index.pkl +3 -0
  36. B9AzT4oBgHgl3EQfh_2U/vector_store/index.faiss +3 -0
  37. B9E4T4oBgHgl3EQf5Q72/vector_store/index.faiss +3 -0
  38. B9E4T4oBgHgl3EQf5Q72/vector_store/index.pkl +3 -0
  39. BNE1T4oBgHgl3EQfVgSF/vector_store/index.pkl +3 -0
  40. BtAzT4oBgHgl3EQfh_1H/content/tmp_files/2301.01492v1.pdf.txt +1191 -0
  41. BtAzT4oBgHgl3EQfh_1H/content/tmp_files/load_file.txt +0 -0
  42. D9E4T4oBgHgl3EQf6Q7Z/content/tmp_files/2301.05331v1.pdf.txt +0 -0
  43. D9E4T4oBgHgl3EQf6Q7Z/content/tmp_files/load_file.txt +0 -0
  44. DNE0T4oBgHgl3EQfggEA/content/2301.02417v1.pdf +3 -0
  45. DNE0T4oBgHgl3EQfggEA/vector_store/index.pkl +3 -0
  46. ENAzT4oBgHgl3EQfGvvx/content/tmp_files/2301.01035v1.pdf.txt +1232 -0
  47. ENAzT4oBgHgl3EQfGvvx/content/tmp_files/load_file.txt +0 -0
  48. EdFRT4oBgHgl3EQfBDfd/content/2301.13464v1.pdf +3 -0
  49. F9AzT4oBgHgl3EQfxP6U/content/tmp_files/2301.01735v1.pdf.txt +552 -0
  50. F9AzT4oBgHgl3EQfxP6U/content/tmp_files/load_file.txt +0 -0
-dE3T4oBgHgl3EQfrgpm/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:911835ad06c1e443c07366c5c7108e88a58be67e202eb836b93007ac97fc55e1
3
+ size 4325421
-tE1T4oBgHgl3EQf8gUY/content/tmp_files/2301.03545v1.pdf.txt ADDED
@@ -0,0 +1,262 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ DUALITY IN MONOIDAL CATEGORIES
2
+ SEBASTIAN HALBIG AND TONY ZORMAN
3
+ Abstract. We compare closed and rigid monoidal categories.
4
+ Closedness is
5
+ defined by the tensor product having a right adjoint: the internal-hom functor.
6
+ Rigidity on the other hand generalises the concept of duals in the sense of finite-
7
+ dimensional vector spaces. A consequence of these axioms is that the internal-hom
8
+ functor is implemented by tensoring with the respective duals. This raises the
9
+ question: can one decide whether a closed monoidal category is rigid, simply by
10
+ verifying that the internal-hom is tensor-representable? At the Research School on
11
+ Bicategories, Categorification and Quantum Theory, Heunen suggested that this
12
+ is not the case. In this note, we will prove his claim by constructing an explicit
13
+ counterexample.
14
+ 1. Introduction: Closed and Rigid Monoidal Categories
15
+ Monoidal categories are a ubiquitous tool in mathematics, physics, and computer
16
+ science [BS11].
17
+ Often, they come equipped with additional structures, such as
18
+ braidings or twists, see the previously cited article. In the following, we will compare
19
+ two notions of duality for monoidal categories: closedness and rigidity.
20
+ We assume the reader’s familiarity with standard concepts of category theory; in
21
+ particular, adjunctions and monoidal categories as discussed for example in [ML98]
22
+ and [EGNO15]. As rigidity and closedness are preserved, as well as reflected, by
23
+ monoidal equivalences, see [Lin78], we restrict ourselves to the strict setting. As
24
+ such, let C be a strict monoidal category with − ⊗ −: C × C −→ C as its tensor
25
+ product and 1 ∈ C as its unit.
26
+ The category C is called (right) closed if it admits a functor [−, −]: Cop × C −→ C,
27
+ the (right) internal-hom, such that for all objects x ∈ C there exists an adjunction
28
+ (1.1)
29
+ − ⊗ x: C ⇄ C :[x, −].
30
+ On the other hand, C is said to be (right) rigid if every object x ∈ C has a (right)
31
+ dual x∗ equipped with an evaluation and coevaluation morphism
32
+ evx : x∗ ⊗ x −→ 1
33
+ and
34
+ coevx : 1 −→ x ⊗ x∗,
35
+ subject to the snake identities
36
+ (1.2)
37
+ idx = (idx ⊗ evx)(coevx ⊗idx)
38
+ and
39
+ idx∗ = (evx ⊗idx∗)(idx∗ ⊗ coevx).
40
+ Rigid monoidal categories are closed, see for example Section 2.10 of [EGNO15].
41
+ Date: January 10, 2023.
42
+ 2020 Mathematics Subject Classification. 18D15(primary), 18M10(secondary).
43
+ Key words and phrases. closed monoidal categories, rigid monoidal categories, autonomous
44
+ categories, Grothendieck–Verdier categories.
45
+ We would like to thank Robert Allen for fruitful discussions in the early stages of this project,
46
+ as well as Chris Heunen and Jean-Simon Lemay for their comments on a draft of this note. T.Z. is
47
+ supported by the DFG grant KR 5036/2-1.
48
+ 1
49
+ arXiv:2301.03545v1 [math.CT] 9 Jan 2023
50
+
51
+ DUALITY IN MONOIDAL CATEGORIES
52
+ 2
53
+ Lemma 1.1. If C is rigid, the internal-hom is implemented by the adjunction
54
+ (1.3)
55
+ − ⊗ x: C ⇄ C :− ⊗ x∗
56
+ for all x ∈ C.
57
+ The main concern of this note is to show that the converse of the above result
58
+ does not hold. That is, we will prove that the internal-hom being given by tensoring
59
+ with the dual of an object does not imply rigidity.
60
+ In order to elucidate the underlying problem, let us assume that we are given
61
+ objects x, y ∈ C such that − ⊗ x: C ⇄ C :− ⊗ y. The unit and counit of the
62
+ adjunction provide us with natural candidates for the coevaluation and evaluation
63
+ morphisms:
64
+ coevx := η1 : 1 −→ x ⊗ y
65
+ and
66
+ evx := ε1 : y ⊗ x −→ 1.
67
+ The triangle identities of this adjunction evaluated at the monoidal unit state that
68
+ idx = εx ◦ (η1 ⊗ x) and idy = (ε1 ⊗ x) ◦ ηy. However, since we a priori do not know
69
+ whether εx ∼= idx ⊗ ε1 and ηy ∼= idy ⊗ η1, the snake identities do not necessarily
70
+ follow.
71
+ 2. A counterexample
72
+ First, we define a strict monoidal category (D, ⊕, 0) in terms of generators and
73
+ relations. For details of this type of construction we refer the reader to [Kas98,
74
+ Chapter XII]. The objects of D are the natural numbers N0 with addition as the
75
+ tensor product and 0 ∈ N0 as monoidal unit.1 Its arrows are tensor products and
76
+ compositions of identities, and the generating morphisms
77
+ (2.1)
78
+ ηm,n : m −→ m ⊕ n ⊕ n,
79
+ εm,n : m ⊕ n ⊕ n −→ m,
80
+ n, m ∈ N0, n ≥ 1.
81
+ These are for all i, j, k, l, n ∈ N0 with n, k ≥ 1 subject to the relations
82
+ ηi+j+2k+l,n(idi ⊕ ηj,k ⊕ idl) = ((idi ⊕ ηj,k ⊕ idl) ⊕ id2n)ηi+j+l,n,
83
+ (2.2)
84
+ ηi+j+l,n(idi ⊕ εj,k ⊕ idl) = ((idi ⊕ εj,k ⊕ idl) ⊕ id2n)ηi+j+2k+l,n,
85
+ (2.3)
86
+ εi+j+2k+l,n((idi ⊕ ηj,k ⊕ idl) ⊕ id2n) = (idi ⊕ ηj,k ⊕ idl)εi+j+l,n,
87
+ (2.4)
88
+ εi+j+l,n((idi ⊕ εj,k ⊕ idl) ⊕ id2n) = (idi ⊕ εj,k ⊕ idl)εi+j+2k+l,n.
89
+ (2.5)
90
+ These relations are tailored to implement for any n ∈ N natural transformations
91
+ ηx,n : x −→ x ⊕ (n ⊕ n),
92
+ εx,n : x ⊕ (n ⊕ n) −→ x,
93
+ for all x ∈ D.
94
+ For example, let i, j, k, l, n be as above. Further, define x := i⊕j⊕l, y := i⊕j⊕2k⊕j,
95
+ and f := idi ⊕ ηj,k ⊕ idj : x −→ y. In this setting, Equation (2.2) translates to the
96
+ usual naturality condition, expressed by the commutativity of the following diagram:
97
+ x
98
+ y
99
+ x ⊕ (n ⊕ n)
100
+ y ⊕ (n ⊕ n)
101
+ f
102
+ ηy,n
103
+ ηx,n
104
+ f⊕(idn⊕idn)
105
+ By quotienting out the triangle identities, we obtain a category C in which tensoring
106
+ with any fixed object gives rise to a self-adjoint functor. Explained in more detail,
107
+ 1A strict monoidal category whose monoid of objects is (isomorphic to) the natural numbers is
108
+ also called a PRO.
109
+
110
+ DUALITY IN MONOIDAL CATEGORIES
111
+ 3
112
+ the monoidal category (C, ⊕, 0) has the same objects and generating morphisms as
113
+ D and the same identities hold. In addition, for any i, n ∈ N0 with n ≥ 1 we require
114
+ (2.6)
115
+ εi+n,n(ηi,n ⊕ idn) = idi+n,
116
+ and
117
+ (εi,n ⊕ idn)(ηi+n,n) = idi+n.
118
+ The next result succinctly summarises the observations made so far concerning the
119
+ internal-hom of C.
120
+ Lemma 2.1. The category C is closed monoidal; its internal-hom functor is given by
121
+ (2.7)
122
+ − ⊗ n: C ⇄ C :− ⊗ n,
123
+ for all n ∈ C.
124
+ In order to analyse the morphisms in C and show that it is not rigid monoidal, we
125
+ will rely on two tools. The first is the length of an arrow f ∈ C(n, m). It is defined as
126
+ the minimal number of generating morphisms needed to present f. The second tool
127
+ will be given by invariants for morphisms in C arising from functors into the category
128
+ vectk of finite-dimensional vector spaces over a field k. Note that for any such vector
129
+ space V there exists an isomorphism φ: V −→ V ∗ to its dual V ∗. The morphisms
130
+ coevV := (idV ⊗ φ−1) coevV : k −→ V ⊗ V,
131
+ evV := (φ ⊗ idV ) evV : V ⊗ V −→ k
132
+ satisfy the snake identities, turning V into its own dual. The next theorem is an
133
+ application of [Kas98, Proposition XII.1.4].
134
+ Theorem 2.2. For any V ∈ vectk and isomorphism φ: V −→ V ∗ there exists a
135
+ strong monoidal functor F(V,φ) : C −→ vectk such that for all n, m ∈ N0 with n ≥ 1
136
+ F(V,φ)(ηm,n) = idm ⊗ coevV ⊗n
137
+ and
138
+ F(V,φ)(εm,n) = idm ⊗ evV ⊗n.
139
+ To prove the statement, one has to show that relations in C are mapped to relations
140
+ in vectk. This amounts to verifying that V is its own right dual, in the rigid sense.
141
+ Corollary 2.3. The category C is skeletal. Furthermore, for any g ∈ C(m, n) the
142
+ following arrows cannot be isomorphisms:
143
+ (2.8)
144
+ (idj1 ⊗ ηl,m ⊗ idj2)g,
145
+ g(idi1 ⊗ εj,k, idi2).
146
+ Proof. Let V ∈ vectk of dimension at least 2 and fix an isomorphism φ: V −→ V ∗.
147
+ For any n, m ∈ C we have F(V,φ)(n) = V ⊗n = V ⊗m = F(V,φ)(m) if and only if n = m.
148
+ Thus, C must be skeletal.
149
+ Now suppose that g ∈ C(m, n) and consider the morphism f := g(idi1 ⊗ εj,k, idi2).
150
+ Applying F(V,φ) to f, we get F(V,φ)(f) = F(V,φ)(g)F(V,φ)(idi1 ⊗ εj,k, idi2). However, due
151
+ to the difference in the dimensions of its source and target, F(V,φ)(idi1 ⊗ εj,k, idi2)
152
+ must have a non-trivial kernel and thus f cannot be an isomorphism.
153
+ A similar argument involving the cokernel proves that (idj1 ⊗ ηl,m ⊗ idj2)g is not
154
+ invertible.
155
+
156
+ We can now state and prove our main theorem.
157
+ Theorem 2.4. The category C is not rigid.
158
+ Proof. We assume that 1 ∈ C admits a right dual. Due to the uniqueness of adjoints,
159
+ there exist isomorphisms ϑ: 2n −→ 2n and θ: n −→ n such that the evaluation and
160
+ coevaluation morphisms are given by
161
+ coev1 := ϑη0,1 : 0 −→ 2,
162
+ ev1 := ε0,1(θ ⊗ idn): 2 −→ 0.
163
+ We now want to consider the following subset of homomorphisms of D:
164
+ S :=
165
+
166
+ (id1 ⊗ ε0,1) φ (η0,1 ⊗ id1) ∈ D(1, 1)
167
+ ��� φ ∈ D(3, 3) such that π(φ) is invertible
168
+
169
+ ,
170
+
171
+ DUALITY IN MONOIDAL CATEGORIES
172
+ 4
173
+ where π: D −→ C is the ‘projection’ functor.
174
+ By construction, the morphism
175
+ s = (id1 ⊗ ev1)(coev1 ⊗id1) corresponding to one of the two snake-identities is an
176
+ element of S. Furthermore, every element of S has length at least two.2 Thus, by
177
+ proving that S is closed under the relations arising from Equation (2.6), it follows
178
+ that π(s) ̸= id1, which concludes the proof.
179
+ To that end, let us consider an element x = (id1 ⊗ ε0,1) φ (η0,1 ⊗ id1) ∈ S. There
180
+ are two types of ‘moves’ we have to study. First, suppose we expand an identity into
181
+ one of the triangle-morphisms. This equates to either pre- or postcomposing φ with
182
+ an arrow ψ ∈ D(3, 3) which projects onto an isomorphism in C, leading to another
183
+ element in S. Second, a triangle-morphism might be contracted to an identity. A
184
+ priori, there are three ways in which this might occur
185
+ x = (id1 ⊗ ε0,1)ε1,1(η0,1 ⊗ id1),
186
+ where φ = φ′ ε1,1, or
187
+ (2.9)
188
+ x = (id1 ⊗ ε0,1)η1,1φ′′(η0,1 ⊗ id1),
189
+ with φ = η1,1 φ′′, or
190
+ (2.10)
191
+ x = (id1 ⊗ ε0,1)φ2tφ1(η0,1 ⊗ id1)
192
+ with φ = φ2tφ1 and π(t) = id.
193
+ (2.11)
194
+ Due to Corollary 2.3, neither π(φ′)π(ε1,1) nor π(η1,1)π(φ′′) are isomorphisms, contra-
195
+ dicting Cases (2.9) and (2.10). Now assume x = (id1 ⊗ ε0,1) φ2tφ1 (η0,1 ⊗ id1) and
196
+ φ = φ2tφ1. Using the functoriality of π: D −→ C, we get
197
+ π(φ) = π(φ2tφ1) = π(φ2)π(t)π(φ1) = π(φ2)π(φ1) = π(φ2φ1).
198
+ Since π(φ2φ1) is an isomorphism, (id1 ⊗ ε0,1)φ2φ1(η0,1 ⊗ id1) is an element of S.
199
+
200
+ 3. Tensor-Representability and Grothendieck–Verdier Categories
201
+ Although the internal-hom of a closed monoidal category C being tensor-represent-
202
+ able does not imply rigidity, C often admits additional structure.
203
+ Definition 3.1 ([BD13, Section 1.1]). A Grothendieck–Verdier category is a pair
204
+ (C, d) of a monoidal category C and an object d ∈ C, such that there exists an
205
+ antiequivalence D: C −→ Cop and for all x ∈ C the functor C(−⊗x, d) is representable
206
+ by D(x).
207
+ If d = 1 is the monoidal unit, one speaks of an r-category.
208
+ Symmetric Grothendieck–Verdier categories are also called ⋆-autonomous cate-
209
+ gories, see [Bar95]. Any rigid monoidal category is an instance of an r-category. The
210
+ converse does not hold, as shown by the counterexamples [BD13, Example 1.9] and
211
+ [BD13, Example 3.3].
212
+ We conclude this note by showing that any monoidal category where tensoring
213
+ with an object has tensor-reprensentable left and right adjoints is an r-category. To
214
+ this end, we fix a monoidal category C such that for any x ∈ C there exist objects
215
+ L(x) and R(x) such that
216
+ − ⊗ L(x) ⊣ − ⊗ x ⊣ − ⊗ R(x).
217
+ Theorem 3.2. If C is as described above, it is an r-category.
218
+ Proof. By the parameter theorem, see for example [ML98, Theorem IV.7.3], the
219
+ object maps L, R: Ob(C) −→ Ob(C) can be promoted to functors
220
+ R: C −→ Cop
221
+ and
222
+ L: Cop −→ C.
223
+ 2Note that the relations of D leave the number of generating morphisms in any presentation of a
224
+ given arrow invariant.
225
+
226
+ DUALITY IN MONOIDAL CATEGORIES
227
+ 5
228
+ We verify that L and R are quasi-inverses of each other. By assumption, for all
229
+ y, z ∈ C we have
230
+ C(y ⊗ LR(x), z) ∼= C(y, z ⊗ R(x)) ∼= C(y ⊗ x, z).
231
+ Setting y = 1, the Yoneda embedding gives rise to a natural isomorphism LR −→ IdC.
232
+ A similar argument gives RL ∼= IdCop.
233
+ In order to show that C(− ⊗ x, 1) is representable by R(x), we have to prove that
234
+ for all y ∈ C there exists a natural isomorphism
235
+ C(y ⊗ x, 1) ∼= C(y, R(x)).
236
+ By assumption, we have C(y ⊗ x, z) ∼= C(y, z ⊗ Rx). The claim follows by setting
237
+ z = 1.
238
+
239
+ References
240
+ [Bar95] Michael Barr. Nonsymmetric ∗-autonomous categories. Theor. Comput. Sci., 139(1-
241
+ 2):115–130, 1995.
242
+ [BD13] Mitya Boyarchenko and Vladimir Drinfeld.
243
+ A duality formalism in the spirit of
244
+ Grothendieck and Verdier. Quantum Topol., 4(4):447–489, 2013.
245
+ [BS11] John Baez and Mike Stay. Physics, topology, logic and computation: a Rosetta Stone.
246
+ In New structures for physics, volume 813 of Lecture Notes in Phys., pages 95–172.
247
+ Springer, Heidelberg, 2011.
248
+ [EGNO15] Pavel Etingof, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik. Tensor categories,
249
+ volume 205 of Mathematical Surveys and Monographs. American Mathematical Society,
250
+ Providence, RI, 2015.
251
+ [Kas98] Christian Kassel. Quantum groups. In Algebra and operator theory (Tashkent, 1997),
252
+ pages 213–236. Kluwer Acad. Publ., Dordrecht, 1998.
253
+ [Lin78] Harald Lindner. Adjunctions in monoidal categories. Manuscr. Math., 26:113–139, 1978.
254
+ [ML98] Saunders Mac Lane. Categories for the working mathematician, volume 5 of Graduate
255
+ Texts in Mathematics. Springer-Verlag, New York, second edition, 1998.
256
+ S.H., Philipps-Universit¨at Marburg, Arbeitsgruppe Algebraische Lie-Theorie,
257
+ Hans-Meerwein-Straße 6, 35043 Marburg
258
+ Email address: sebastian.halbig@uni-marburg.de
259
+ T.Z., Technische Universit¨at Dresden, Institut f¨ur Geometrie, Zellescher Weg
260
+ 12–14, 01062 Dresden
261
+ Email address: tony.zorman@tu-dresden.de
262
+
-tE1T4oBgHgl3EQf8gUY/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,195 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf,len=194
2
+ page_content='DUALITY IN MONOIDAL CATEGORIES SEBASTIAN HALBIG AND TONY ZORMAN Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
3
+ page_content=' We compare closed and rigid monoidal categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
4
+ page_content=' Closedness is defined by the tensor product having a right adjoint: the internal-hom functor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
5
+ page_content=' Rigidity on the other hand generalises the concept of duals in the sense of finite- dimensional vector spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
6
+ page_content=' A consequence of these axioms is that the internal-hom functor is implemented by tensoring with the respective duals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
7
+ page_content=' This raises the question: can one decide whether a closed monoidal category is rigid, simply by verifying that the internal-hom is tensor-representable?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
8
+ page_content=' At the Research School on Bicategories, Categorification and Quantum Theory, Heunen suggested that this is not the case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
9
+ page_content=' In this note, we will prove his claim by constructing an explicit counterexample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
10
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
11
+ page_content=' Introduction: Closed and Rigid Monoidal Categories Monoidal categories are a ubiquitous tool in mathematics, physics, and computer science [BS11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
12
+ page_content=' Often, they come equipped with additional structures, such as braidings or twists, see the previously cited article.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
13
+ page_content=' In the following, we will compare two notions of duality for monoidal categories: closedness and rigidity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
14
+ page_content=' We assume the reader’s familiarity with standard concepts of category theory;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
15
+ page_content=' in particular, adjunctions and monoidal categories as discussed for example in [ML98] and [EGNO15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
16
+ page_content=' As rigidity and closedness are preserved, as well as reflected, by monoidal equivalences, see [Lin78], we restrict ourselves to the strict setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
17
+ page_content=' As such, let C be a strict monoidal category with − ⊗ −: C × C −→ C as its tensor product and 1 ∈ C as its unit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
18
+ page_content=' The category C is called (right) closed if it admits a functor [−, −]: Cop × C −→ C, the (right) internal-hom, such that for all objects x ∈ C there exists an adjunction (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
19
+ page_content='1) − ⊗ x: C ⇄ C :[x, −].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
20
+ page_content=' On the other hand, C is said to be (right) rigid if every object x ∈ C has a (right) dual x∗ equipped with an evaluation and coevaluation morphism evx : x∗ ⊗ x −→ 1 and coevx : 1 −→ x ⊗ x∗, subject to the snake identities (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
21
+ page_content='2) idx = (idx ⊗ evx)(coevx ⊗idx) and idx∗ = (evx ⊗idx∗)(idx∗ ⊗ coevx).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
22
+ page_content=' Rigid monoidal categories are closed, see for example Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
23
+ page_content='10 of [EGNO15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
24
+ page_content=' Date: January 10, 2023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
25
+ page_content=' 2020 Mathematics Subject Classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
26
+ page_content=' 18D15(primary), 18M10(secondary).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
27
+ page_content=' Key words and phrases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
28
+ page_content=' closed monoidal categories, rigid monoidal categories, autonomous categories, Grothendieck–Verdier categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
29
+ page_content=' We would like to thank Robert Allen for fruitful discussions in the early stages of this project, as well as Chris Heunen and Jean-Simon Lemay for their comments on a draft of this note.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
30
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
31
+ page_content='Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
32
+ page_content=' is supported by the DFG grant KR 5036/2-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
33
+ page_content=' 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
34
+ page_content='03545v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
35
+ page_content='CT] 9 Jan 2023 DUALITY IN MONOIDAL CATEGORIES 2 Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
36
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
37
+ page_content=' If C is rigid, the internal-hom is implemented by the adjunction (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
38
+ page_content='3) − ⊗ x: C ⇄ C :− ⊗ x∗ for all x ∈ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
39
+ page_content=' The main concern of this note is to show that the converse of the above result does not hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
40
+ page_content=' That is, we will prove that the internal-hom being given by tensoring with the dual of an object does not imply rigidity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
41
+ page_content=' In order to elucidate the underlying problem, let us assume that we are given objects x, y ∈ C such that − ⊗ x: C ⇄ C :− ⊗ y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
42
+ page_content=' The unit and counit of the adjunction provide us with natural candidates for the coevaluation and evaluation morphisms: coevx := η1 : 1 −→ x ⊗ y and evx := ε1 : y ⊗ x −→ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
43
+ page_content=' The triangle identities of this adjunction evaluated at the monoidal unit state that idx = εx ◦ (η1 ⊗ x) and idy = (ε1 ⊗ x) ◦ ηy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
44
+ page_content=' However, since we a priori do not know whether εx ∼= idx ⊗ ε1 and ηy ∼= idy ⊗ η1, the snake identities do not necessarily follow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
45
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
46
+ page_content=' A counterexample First, we define a strict monoidal category (D, ⊕, 0) in terms of generators and relations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
47
+ page_content=' For details of this type of construction we refer the reader to [Kas98, Chapter XII].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
48
+ page_content=' The objects of D are the natural numbers N0 with addition as the tensor product and 0 ∈ N0 as monoidal unit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
49
+ page_content='1 Its arrows are tensor products and compositions of identities, and the generating morphisms (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
50
+ page_content='1) ηm,n : m −→ m ⊕ n ⊕ n, εm,n : m ⊕ n ⊕ n −→ m, n, m ∈ N0, n ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
51
+ page_content=' These are for all i, j, k, l, n ∈ N0 with n, k ≥ 1 subject to the relations ηi+j+2k+l,n(idi ⊕ ηj,k ⊕ idl) = ((idi ⊕ ηj,k ⊕ idl) ⊕ id2n)ηi+j+l,n, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
52
+ page_content='2) ηi+j+l,n(idi ⊕ εj,k ⊕ idl) = ((idi ⊕ εj,k ⊕ idl) ⊕ id2n)ηi+j+2k+l,n, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
53
+ page_content='3) εi+j+2k+l,n((idi ⊕ ηj,k ⊕ idl) ⊕ id2n) = (idi ⊕ ηj,k ⊕ idl)εi+j+l,n, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
54
+ page_content='4) εi+j+l,n((idi ⊕ εj,k ⊕ idl) ⊕ id2n) = (idi ⊕ εj,k ⊕ idl)εi+j+2k+l,n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
55
+ page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
56
+ page_content='5) These relations are tailored to implement for any n ∈ N natural transformations ηx,n : x −→ x ⊕ (n ⊕ n), εx,n : x ⊕ (n ⊕ n) −→ x, for all x ∈ D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
57
+ page_content=' For example, let i, j, k, l, n be as above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
58
+ page_content=' Further, define x := i⊕j⊕l, y := i⊕j⊕2k⊕j, and f := idi ⊕ ηj,k ⊕ idj : x −→ y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
59
+ page_content=' In this setting, Equation (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
60
+ page_content='2) translates to the usual naturality condition, expressed by the commutativity of the following diagram: x y x ⊕ (n ⊕ n) y ⊕ (n ⊕ n) f ηy,n ηx,n f⊕(idn⊕idn) By quotienting out the triangle identities, we obtain a category C in which tensoring with any fixed object gives rise to a self-adjoint functor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
61
+ page_content=' Explained in more detail, 1A strict monoidal category whose monoid of objects is (isomorphic to) the natural numbers is also called a PRO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
62
+ page_content=' DUALITY IN MONOIDAL CATEGORIES 3 the monoidal category (C, ⊕, 0) has the same objects and generating morphisms as D and the same identities hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
63
+ page_content=' In addition, for any i, n ∈ N0 with n ≥ 1 we require (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
64
+ page_content='6) εi+n,n(ηi,n ⊕ idn) = idi+n, and (εi,n ⊕ idn)(ηi+n,n) = idi+n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
65
+ page_content=' The next result succinctly summarises the observations made so far concerning the internal-hom of C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
66
+ page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
67
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
68
+ page_content=' The category C is closed monoidal;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
69
+ page_content=' its internal-hom functor is given by (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
70
+ page_content='7) − ⊗ n: C ⇄ C :− ⊗ n, for all n ∈ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
71
+ page_content=' In order to analyse the morphisms in C and show that it is not rigid monoidal, we will rely on two tools.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
72
+ page_content=' The first is the length of an arrow f ∈ C(n, m).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
73
+ page_content=' It is defined as the minimal number of generating morphisms needed to present f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
74
+ page_content=' The second tool will be given by invariants for morphisms in C arising from functors into the category vectk of finite-dimensional vector spaces over a field k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
75
+ page_content=' Note that for any such vector space V there exists an isomorphism φ: V −→ V ∗ to its dual V ∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
76
+ page_content=' The morphisms coevV := (idV ⊗ φ−1) coevV : k −→ V ⊗ V, evV := (φ ⊗ idV ) evV : V ⊗ V −→ k satisfy the snake identities, turning V into its own dual.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
77
+ page_content=' The next theorem is an application of [Kas98, Proposition XII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
78
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
79
+ page_content='4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
80
+ page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
81
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
82
+ page_content=' For any V ∈ vectk and isomorphism φ: V −→ V ∗ there exists a strong monoidal functor F(V,φ) : C −→ vectk such that for all n, m ∈ N0 with n ≥ 1 F(V,φ)(ηm,n) = idm ⊗ coevV ⊗n and F(V,φ)(εm,n) = idm ⊗ evV ⊗n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
83
+ page_content=' To prove the statement, one has to show that relations in C are mapped to relations in vectk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
84
+ page_content=' This amounts to verifying that V is its own right dual, in the rigid sense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
85
+ page_content=' Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
86
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
87
+ page_content=' The category C is skeletal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
88
+ page_content=' Furthermore, for any g ∈ C(m, n) the following arrows cannot be isomorphisms: (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
89
+ page_content='8) (idj1 ⊗ ηl,m ⊗ idj2)g, g(idi1 ⊗ εj,k, idi2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
90
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
91
+ page_content=' Let V ∈ vectk of dimension at least 2 and fix an isomorphism φ: V −→ V ∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
92
+ page_content=' For any n, m ∈ C we have F(V,φ)(n) = V ⊗n = V ⊗m = F(V,φ)(m) if and only if n = m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
93
+ page_content=' Thus, C must be skeletal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
94
+ page_content=' Now suppose that g ∈ C(m, n) and consider the morphism f := g(idi1 ⊗ εj,k, idi2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
95
+ page_content=' Applying F(V,φ) to f, we get F(V,φ)(f) = F(V,φ)(g)F(V,φ)(idi1 ⊗ εj,k, idi2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
96
+ page_content=' However, due to the difference in the dimensions of its source and target, F(V,φ)(idi1 ⊗ εj,k, idi2) must have a non-trivial kernel and thus f cannot be an isomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
97
+ page_content=' A similar argument involving the cokernel proves that (idj1 ⊗ ηl,m ⊗ idj2)g is not invertible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
98
+ page_content=' □ We can now state and prove our main theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
99
+ page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
100
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
101
+ page_content=' The category C is not rigid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
102
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
103
+ page_content=' We assume that 1 ∈ C admits a right dual.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
104
+ page_content=' Due to the uniqueness of adjoints, there exist isomorphisms ϑ: 2n −→ 2n and θ: n −→ n such that the evaluation and coevaluation morphisms are given by coev1 := ϑη0,1 : 0 −→ 2, ev1 := ε0,1(θ ⊗ idn): 2 −→ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
105
+ page_content=' We now want to consider the following subset of homomorphisms of D: S := � (id1 ⊗ ε0,1) φ (η0,1 ⊗ id1) ∈ D(1, 1) ��� φ ∈ D(3, 3) such that π(φ) is invertible � , DUALITY IN MONOIDAL CATEGORIES 4 where π: D −→ C is the ‘projection’ functor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
106
+ page_content=' By construction, the morphism s = (id1 ⊗ ev1)(coev1 ⊗id1) corresponding to one of the two snake-identities is an element of S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
107
+ page_content=' Furthermore, every element of S has length at least two.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
108
+ page_content='2 Thus, by proving that S is closed under the relations arising from Equation (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
109
+ page_content='6), it follows that π(s) ̸= id1, which concludes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
110
+ page_content=' To that end, let us consider an element x = (id1 ⊗ ε0,1) φ (η0,1 ⊗ id1) ∈ S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
111
+ page_content=' There are two types of ‘moves’ we have to study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
112
+ page_content=' First, suppose we expand an identity into one of the triangle-morphisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
113
+ page_content=' This equates to either pre- or postcomposing φ with an arrow ψ ∈ D(3, 3) which projects onto an isomorphism in C, leading to another element in S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
114
+ page_content=' Second, a triangle-morphism might be contracted to an identity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
115
+ page_content=' A priori, there are three ways in which this might occur x = (id1 ⊗ ε0,1)ε1,1(η0,1 ⊗ id1), where φ = φ′ ε1,1, or (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
116
+ page_content='9) x = (id1 ⊗ ε0,1)η1,1φ′′(η0,1 ⊗ id1), with φ = η1,1 φ′′, or (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
117
+ page_content='10) x = (id1 ⊗ ε0,1)φ2tφ1(η0,1 ⊗ id1) with φ = φ2tφ1 and π(t) = id.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
118
+ page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
119
+ page_content='11) Due to Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
120
+ page_content='3, neither π(φ′)π(ε1,1) nor π(η1,1)π(φ′′) are isomorphisms, contra- dicting Cases (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
121
+ page_content='9) and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
122
+ page_content='10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
123
+ page_content=' Now assume x = (id1 ⊗ ε0,1) φ2tφ1 (η0,1 ⊗ id1) and φ = φ2tφ1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
124
+ page_content=' Using the functoriality of π: D −→ C, we get π(φ) = π(φ2tφ1) = π(φ2)π(t)π(φ1) = π(φ2)π(φ1) = π(φ2φ1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
125
+ page_content=' Since π(φ2φ1) is an isomorphism, (id1 ⊗ ε0,1)φ2φ1(η0,1 ⊗ id1) is an element of S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
126
+ page_content=' □ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
127
+ page_content=' Tensor-Representability and Grothendieck–Verdier Categories Although the internal-hom of a closed monoidal category C being tensor-represent- able does not imply rigidity, C often admits additional structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
128
+ page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
129
+ page_content='1 ([BD13, Section 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
130
+ page_content='1]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
131
+ page_content=' A Grothendieck–Verdier category is a pair (C, d) of a monoidal category C and an object d ∈ C, such that there exists an antiequivalence D: C −→ Cop and for all x ∈ C the functor C(−⊗x, d) is representable by D(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
132
+ page_content=' If d = 1 is the monoidal unit, one speaks of an r-category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
133
+ page_content=' Symmetric Grothendieck–Verdier categories are also called ⋆-autonomous cate- gories, see [Bar95].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
134
+ page_content=' Any rigid monoidal category is an instance of an r-category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
135
+ page_content=' The converse does not hold, as shown by the counterexamples [BD13, Example 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
136
+ page_content='9] and [BD13, Example 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
137
+ page_content='3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
138
+ page_content=' We conclude this note by showing that any monoidal category where tensoring with an object has tensor-reprensentable left and right adjoints is an r-category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
139
+ page_content=' To this end, we fix a monoidal category C such that for any x ∈ C there exist objects L(x) and R(x) such that − ⊗ L(x) ⊣ − ⊗ x ⊣ − ⊗ R(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
140
+ page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
141
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
142
+ page_content=' If C is as described above, it is an r-category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
143
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
144
+ page_content=' By the parameter theorem, see for example [ML98, Theorem IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
145
+ page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
146
+ page_content='3], the object maps L, R: Ob(C) −→ Ob(C) can be promoted to functors R: C −→ Cop and L: Cop −→ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
147
+ page_content=' 2Note that the relations of D leave the number of generating morphisms in any presentation of a given arrow invariant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
148
+ page_content=' DUALITY IN MONOIDAL CATEGORIES 5 We verify that L and R are quasi-inverses of each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
149
+ page_content=' By assumption, for all y, z ∈ C we have C(y ⊗ LR(x), z) ∼= C(y, z ⊗ R(x)) ∼= C(y ⊗ x, z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
150
+ page_content=' Setting y = 1, the Yoneda embedding gives rise to a natural isomorphism LR −→ IdC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
151
+ page_content=' A similar argument gives RL ∼= IdCop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
152
+ page_content=' In order to show that C(− ⊗ x, 1) is representable by R(x), we have to prove that for all y ∈ C there exists a natural isomorphism C(y ⊗ x, 1) ∼= C(y, R(x)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
153
+ page_content=' By assumption, we have C(y ⊗ x, z) ∼= C(y, z ⊗ Rx).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
154
+ page_content=' The claim follows by setting z = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
155
+ page_content=' □ References [Bar95] Michael Barr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
156
+ page_content=' Nonsymmetric ∗-autonomous categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
157
+ page_content=' Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
158
+ page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
159
+ page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
160
+ page_content=', 139(1- 2):115–130, 1995.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
161
+ page_content=' [BD13] Mitya Boyarchenko and Vladimir Drinfeld.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
162
+ page_content=' A duality formalism in the spirit of Grothendieck and Verdier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
163
+ page_content=' Quantum Topol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
164
+ page_content=', 4(4):447–489, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
165
+ page_content=' [BS11] John Baez and Mike Stay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
166
+ page_content=' Physics, topology, logic and computation: a Rosetta Stone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
167
+ page_content=' In New structures for physics, volume 813 of Lecture Notes in Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
168
+ page_content=', pages 95–172.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
169
+ page_content=' Springer, Heidelberg, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
170
+ page_content=' [EGNO15] Pavel Etingof, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
171
+ page_content=' Tensor categories, volume 205 of Mathematical Surveys and Monographs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
172
+ page_content=' American Mathematical Society, Providence, RI, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
173
+ page_content=' [Kas98] Christian Kassel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
174
+ page_content=' Quantum groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
175
+ page_content=' In Algebra and operator theory (Tashkent, 1997), pages 213–236.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
176
+ page_content=' Kluwer Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
177
+ page_content=' Publ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
178
+ page_content=', Dordrecht, 1998.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
179
+ page_content=' [Lin78] Harald Lindner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
180
+ page_content=' Adjunctions in monoidal categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
181
+ page_content=' Manuscr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
182
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
183
+ page_content=', 26:113–139, 1978.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
184
+ page_content=' [ML98] Saunders Mac Lane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
185
+ page_content=' Categories for the working mathematician, volume 5 of Graduate Texts in Mathematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
186
+ page_content=' Springer-Verlag, New York, second edition, 1998.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
187
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
188
+ page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
189
+ page_content=', Philipps-Universit¨at Marburg, Arbeitsgruppe Algebraische Lie-Theorie, Hans-Meerwein-Straße 6, 35043 Marburg Email address: sebastian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
190
+ page_content='halbig@uni-marburg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
191
+ page_content='de T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
192
+ page_content='Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
193
+ page_content=', Technische Universit¨at Dresden, Institut f¨ur Geometrie, Zellescher Weg 12–14, 01062 Dresden Email address: tony.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
194
+ page_content='zorman@tu-dresden.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
195
+ page_content='de' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tE1T4oBgHgl3EQf8gUY/content/2301.03545v1.pdf'}
.gitattributes CHANGED
@@ -6092,3 +6092,53 @@ rNA0T4oBgHgl3EQfKv_4/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -tex
6092
  TNE4T4oBgHgl3EQfmA2x/content/2301.05165v1.pdf filter=lfs diff=lfs merge=lfs -text
6093
  VdE4T4oBgHgl3EQfMgyS/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6094
  ztAzT4oBgHgl3EQfQ_vk/content/2301.01210v1.pdf filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6092
  TNE4T4oBgHgl3EQfmA2x/content/2301.05165v1.pdf filter=lfs diff=lfs merge=lfs -text
6093
  VdE4T4oBgHgl3EQfMgyS/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6094
  ztAzT4oBgHgl3EQfQ_vk/content/2301.01210v1.pdf filter=lfs diff=lfs merge=lfs -text
6095
+ atAzT4oBgHgl3EQfZfwz/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6096
+ r9FKT4oBgHgl3EQf1C6f/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6097
+ idFKT4oBgHgl3EQfvi5N/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6098
+ o9FQT4oBgHgl3EQfrjZh/content/2301.13384v1.pdf filter=lfs diff=lfs merge=lfs -text
6099
+ QNE4T4oBgHgl3EQfkw0x/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6100
+ _tE0T4oBgHgl3EQfxQHo/content/2301.02645v1.pdf filter=lfs diff=lfs merge=lfs -text
6101
+ AdFAT4oBgHgl3EQfrh5X/content/2301.08653v1.pdf filter=lfs diff=lfs merge=lfs -text
6102
+ 1dE1T4oBgHgl3EQfRwNN/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6103
+ k9AyT4oBgHgl3EQfyfkg/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6104
+ QtAzT4oBgHgl3EQfz_6d/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6105
+ rdE5T4oBgHgl3EQflg-S/content/2301.05672v1.pdf filter=lfs diff=lfs merge=lfs -text
6106
+ fNE0T4oBgHgl3EQfowEk/content/2301.02529v1.pdf filter=lfs diff=lfs merge=lfs -text
6107
+ NtFJT4oBgHgl3EQfHCyo/content/2301.11450v1.pdf filter=lfs diff=lfs merge=lfs -text
6108
+ _tE0T4oBgHgl3EQfxQHo/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6109
+ AdFAT4oBgHgl3EQfrh5X/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6110
+ KNAzT4oBgHgl3EQfIPul/content/2301.01059v1.pdf filter=lfs diff=lfs merge=lfs -text
6111
+ -dE3T4oBgHgl3EQfrgpm/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6112
+ KtE4T4oBgHgl3EQfJQzO/content/2301.04920v1.pdf filter=lfs diff=lfs merge=lfs -text
6113
+ otE1T4oBgHgl3EQfiAQh/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6114
+ cdE_T4oBgHgl3EQf0Bzf/content/2301.08327v1.pdf filter=lfs diff=lfs merge=lfs -text
6115
+ edE0T4oBgHgl3EQfogFH/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6116
+ j9E1T4oBgHgl3EQfgQRf/content/2301.03227v1.pdf filter=lfs diff=lfs merge=lfs -text
6117
+ q9FIT4oBgHgl3EQfxSv4/content/2301.11356v1.pdf filter=lfs diff=lfs merge=lfs -text
6118
+ atE2T4oBgHgl3EQfZwex/content/2301.03868v1.pdf filter=lfs diff=lfs merge=lfs -text
6119
+ 49A0T4oBgHgl3EQfNv86/content/2301.02150v1.pdf filter=lfs diff=lfs merge=lfs -text
6120
+ lNFST4oBgHgl3EQfJDg3/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6121
+ YtA0T4oBgHgl3EQfFv9O/content/2301.02036v1.pdf filter=lfs diff=lfs merge=lfs -text
6122
+ I9AzT4oBgHgl3EQfH_tx/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6123
+ KtFQT4oBgHgl3EQfTjYq/content/2301.13293v1.pdf filter=lfs diff=lfs merge=lfs -text
6124
+ QdE0T4oBgHgl3EQfUACA/content/2301.02244v1.pdf filter=lfs diff=lfs merge=lfs -text
6125
+ j9E1T4oBgHgl3EQfgQRf/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6126
+ lNFST4oBgHgl3EQfJDg3/content/2301.13731v1.pdf filter=lfs diff=lfs merge=lfs -text
6127
+ I9AzT4oBgHgl3EQfH_tx/content/2301.01054v1.pdf filter=lfs diff=lfs merge=lfs -text
6128
+ 9NE4T4oBgHgl3EQf3Q1N/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6129
+ bNE1T4oBgHgl3EQfxAXP/content/2301.03418v1.pdf filter=lfs diff=lfs merge=lfs -text
6130
+ 4dAyT4oBgHgl3EQfpPgc/content/2301.00520v1.pdf filter=lfs diff=lfs merge=lfs -text
6131
+ OtFPT4oBgHgl3EQfnDXw/content/2301.13128v1.pdf filter=lfs diff=lfs merge=lfs -text
6132
+ DNE0T4oBgHgl3EQfggEA/content/2301.02417v1.pdf filter=lfs diff=lfs merge=lfs -text
6133
+ TNE4T4oBgHgl3EQfmA2x/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6134
+ B9E4T4oBgHgl3EQf5Q72/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6135
+ atE2T4oBgHgl3EQfZwex/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6136
+ r9FJT4oBgHgl3EQfbyya/content/2301.11541v1.pdf filter=lfs diff=lfs merge=lfs -text
6137
+ idFLT4oBgHgl3EQfay-h/content/2301.12076v1.pdf filter=lfs diff=lfs merge=lfs -text
6138
+ 2dFST4oBgHgl3EQfXzgB/content/2301.13785v1.pdf filter=lfs diff=lfs merge=lfs -text
6139
+ 9tE5T4oBgHgl3EQfRQ5h/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6140
+ t9E0T4oBgHgl3EQf9QLr/content/2301.02800v1.pdf filter=lfs diff=lfs merge=lfs -text
6141
+ KtE4T4oBgHgl3EQfiA3u/content/2301.05131v1.pdf filter=lfs diff=lfs merge=lfs -text
6142
+ B9AzT4oBgHgl3EQfh_2U/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6143
+ _NE4T4oBgHgl3EQfEAug/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6144
+ EdFRT4oBgHgl3EQfBDfd/content/2301.13464v1.pdf filter=lfs diff=lfs merge=lfs -text
0dFKT4oBgHgl3EQfNy2J/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:702692a365306d719e984ae9bc99e818ff87bf4a7664205fd8b3cf3de983e63c
3
+ size 67820
1dE1T4oBgHgl3EQfRwNN/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a67ad61c48bee7c3a54f4239e5023c0ccf37dbbaa653f83e43830f3a64fa5cb9
3
+ size 13369389
1dFQT4oBgHgl3EQf1TYk/content/tmp_files/2301.13419v1.pdf.txt ADDED
@@ -0,0 +1,1252 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Recurrent Structure Attention Guidance for Depth Super-Resolution
2
+ Jiayi Yuan*, Haobo Jiang*, Xiang Li, Jianjun Qian†, Jun Li†, Jian Yang
3
+ PCA Lab, Key Lab of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education
4
+ Jiangsu Key Lab of Image and Video Understanding for Social Security
5
+ School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
6
+ {jiayiyuan, jiang.hao.bo, xiang.li.implus, csjqian, junli, csjyang}@njust.edu.cn
7
+ Abstract
8
+ Image guidance is an effective strategy for depth super-
9
+ resolution. Generally, most existing methods employ hand-
10
+ crafted operators to decompose the high-frequency (HF) and
11
+ low-frequency (LF) ingredients from low-resolution depth
12
+ maps and guide the HF ingredients by directly concatenat-
13
+ ing them with image features. However, the hand-designed
14
+ operators usually cause inferior HF maps (e.g., distorted or
15
+ structurally missing) due to the diverse appearance of com-
16
+ plex depth maps. Moreover, the direct concatenation often re-
17
+ sults in weak guidance because not all image features have
18
+ a positive effect on the HF maps. In this paper, we de-
19
+ velop a recurrent structure attention guided (RSAG) frame-
20
+ work, consisting of two important parts. First, we introduce a
21
+ deep contrastive network with multi-scale filters for adaptive
22
+ frequency-domain separation, which adopts contrastive net-
23
+ works from large filters to small ones to calculate the pixel
24
+ contrasts for adaptive high-quality HF predictions. Second,
25
+ instead of the coarse concatenation guidance, we propose a
26
+ recurrent structure attention block, which iteratively utilizes
27
+ the latest depth estimation and the image features to jointly
28
+ select clear patterns and boundaries, aiming at providing re-
29
+ fined guidance for accurate depth recovery. In addition, we
30
+ fuse the features of HF maps to enhance the edge structures in
31
+ the decomposed LF maps. Extensive experiments show that
32
+ our approach obtains superior performance compared with
33
+ state-of-the-art depth super-resolution methods.
34
+ Introduction
35
+ Depth super-resolution (DSR) is a fundamental low-level vi-
36
+ sion topic in computer vision as it plays an important role in
37
+ a variety of applications, such as 3D reconstruction (Hou,
38
+ Dai, and Nießner 2019), autonomous driving (Caesar et al.
39
+ 2020), and virtual reality (Meuleman et al. 2020). Gener-
40
+ ally, DSR is to recover a high-resolution depth map precisely
41
+ from a given low-resolution depth map. Recently, an image
42
+ guidance DSR framework becomes more and more popu-
43
+ lar since it has demonstrated remarkable progress by bor-
44
+ rowing the structures and boundaries in high-resolution im-
45
+ age to improve the depth map (Hui, Loy, and Tang 2016).
46
+ As shown in Fig. 1 (a), most efforts (Hui, Loy, and Tang
47
+ *These authors contributed equally.
48
+ †corresponding authors
49
+ Copyright © 2023, Association for the Advancement of Artificial
50
+ Intelligence (www.aaai.org). All rights reserved.
51
+ Hand-crafted HF
52
+ & LF Separation
53
+ RGB & HF
54
+ Feature Fusion
55
+ ������������������������������������
56
+ Adaptive HF & LF
57
+ Separation
58
+ Structure
59
+ Attention
60
+ (a) Image Guided Residual Framework
61
+ (b) Recurrent Structure Attention Guided Framework
62
+ HF & LF
63
+ Feature Fusion
64
+ ������������������������������������
65
+ ������������������������������������
66
+ ������������������������������������
67
+ ������������������������������������
68
+ ������������������������������������
69
+ Bicubic
70
+ Interpolation
71
+ ������������������������������������
72
+ ������������������������������������
73
+ ������������������������������������
74
+ ������������������������������������
75
+ Recurrent
76
+ Figure 1: Image guided DSR framework. (a) Popular image
77
+ guided residual DSR framework; (b) Our recurrent structure
78
+ attention guided DSR framework.
79
+ 2016; Guo et al. 2019; Zuo et al. 2019b; Li et al. 2019) usu-
80
+ ally 1) use hand-crafted operators (e.g., hand-designed fil-
81
+ ters) to perform an early spectral decomposition of the low-
82
+ resolution depth map (i.e., high-frequency (HF) and low-
83
+ frequency (LF)), 2) coarsely implement the image guidance
84
+ by directly concatenating the image features into the HF
85
+ maps, and 3) run a simple up-sampling like bicubic interpo-
86
+ lation on the decomposed low-resolution LF map to a high-
87
+ resolution one. However, this framework still suffers from
88
+ three challenging problems as follows.
89
+ Firstly, the hand-designed operators often cause a weak
90
+ spectral decomposition as they are difficult to handle the di-
91
+ verse structures in the complex depth map, resulting in lost
92
+ object structures in the HF map of Fig. 2 (b). Secondly, the
93
+ direct feature concatenation results in weak image guidance
94
+ since the complex textures of the image usually produce in-
95
+ ferior features based on our observation. For example, Fig. 2
96
+ (f-h) show clear features of the ceramic bottle (white box)
97
+ and poor features of the poster (yellow box), corresponding
98
+ to the complex and simple textures of the image in Fig. 2 (j),
99
+ respectively. Thirdly, the bicubic interpolation also results
100
+ in blurred edges in the LF map of Fig. 2 (d), because it is
101
+ unsuitable for up-sampling of all kinds of structures.
102
+ arXiv:2301.13419v1 [cs.CV] 31 Jan 2023
103
+
104
+ (c) HF (Ours)
105
+ (b) HF (hand-crafted)
106
+ (d) LF (hand-crafted)
107
+ (e) LF (Ours)
108
+ (f) Fea. map (DMSG)
109
+ (i) Fea. map (Ours)
110
+ (j) Color image
111
+ (a) LR depth
112
+ (h) Fea. map (Ours-direct)
113
+ (g) Fea. map (DJFR)
114
+ Figure 2: Visualizations of the decomposed HF&LF and guidance feature maps. (b) and (d) show a weak frequency-domain
115
+ separation using the hand-designed operators(Hui, Loy, and Tang 2016). (f-h) show image guidance features with redundant
116
+ textures and noise in DMSG (Hui, Loy, and Tang 2016), DJFR (Li et al. 2019) and our network using direct concatenation.
117
+ Compared with them, our method produces better HF structure in (c), sharper LF boundaries in (e), and clearer guidance
118
+ structure in (i). LR depth map and color image are plotted in (a) and (g).
119
+ To address these problems, we develop a novel recur-
120
+ rent structure attention guided (RSAG) framework for high-
121
+ quality DSR in Fig. 1 (b) through three aspects. First of all,
122
+ we introduce a deep contrastive network with multi-scale fil-
123
+ ters (DCN) to effectively decompose the HF and LF compo-
124
+ nents of the input depth, instead of the hand-designed opera-
125
+ tors. DCN is to subtly stack simple contrastive networks (Xu
126
+ et al. 2020) three times from large filters to small ones for a
127
+ coarse-to-fine HF prediction with contextual structures, and
128
+ to calculate the LF component by subtracting the HF predic-
129
+ tion from the input depth map. To better guide the depth fea-
130
+ tures, in addition, we propose a recurrent structure attention
131
+ (SA) block to select the useful image features, instead of the
132
+ direct concatenation guidance. The key step of SA is to add
133
+ absolute values of contrastive attention features of the image
134
+ and the latest depth prediction, and then calculate an atten-
135
+ tion map by employing channel and spatial attention oper-
136
+ ators. Finally, we present an HF&LF feature fusion (HLF)
137
+ block to improve the blurred edges in the LF component
138
+ by concatenating the HF feature produced by our SA block,
139
+ as its contextual structure can enhance the edges. Overall,
140
+ our RSAG framework has a significant improvement on the
141
+ hand-crafted spectral decomposition and image guidance. In
142
+ summary, our contributions are as follows:
143
+ • We introduce a deep contrastive network with multi-scale
144
+ filters (DCN) for the robust HF and LF reconstruction,
145
+ where the HF structure is implemented by stacking the
146
+ pixel-wise contrast from large to small kernels.
147
+ • We propose a novel recurrent structure attention (SA)
148
+ block by combining the latest depth prediction with the
149
+ image feature to select useful image guidance features.
150
+ • Extensive experiments on the benchmark datasets verify
151
+ the superior effectiveness of the proposed framework and
152
+ achieve state-of-the-art restoration performance.
153
+ Related work
154
+ In this section, we mainly review the previous spectral de-
155
+ composition and cross-modality fusion mechanisms used in
156
+ depth map super-resolution (DSR).
157
+ Spectral Decomposition in DSR
158
+ Since the HF component of the depth map can provide suf-
159
+ ficient structure information which coincides well with the
160
+ image boundaries, most methods adopt early spectral de-
161
+ composition for efficient DSR. A line of methods (Makarov,
162
+ Aliev, and Gerasimova 2017; Xiao et al. 2018; Li et al. 2019;
163
+ Zuo et al. 2019b; Guo et al. 2019) regard the interpolated
164
+ depth input as the LF component and add a jump connection
165
+ to transfer it to the end of the network. This global residual
166
+ learning forces the network to focus on recovering the HF
167
+ details. Another line of methods adopt the hand-designed
168
+ filters (Hui, Loy, and Tang 2016; Yang et al. 2017) or edge-
169
+ attention (Ye, Duan, and Li 2018; Chen and Jung 2018)
170
+ blocks to extract HF information. However, these methods
171
+ require additional completion operation, since the HF out-
172
+ puts always include broken edges and holes. Recently, oc-
173
+ tave convolution (Chen et al. 2019) is utilized for frequency
174
+ division operation in DSR network (He et al. 2021), which is
175
+ a plug-and-play convolutional unit. However, it separates the
176
+ frequency domain in embedding space, which does not guar-
177
+ antee that HF information is completely extracted. Instead,
178
+ we propose a simple, fast, and adaptive separation method
179
+ at the pixel level to provide reliable HF and LF maps.
180
+ Cross-modality Fusion Mechanism
181
+ Multi-path/scale Learning. Previous methods (Li et al.
182
+ 2016; Lutio et al. 2019; Zhu et al. 2018; Chen and Jung
183
+ 2018; Hao et al. 2019; Su et al. 2019) extract features in
184
+ color space and depth space through two independent paths
185
+
186
+ Copy
187
+ Add
188
+ SA
189
+ Bicubic
190
+ ������������������������������������
191
+ ������������������������������������������������
192
+ ������������������������
193
+ ������������������������
194
+ DCN
195
+ ������������������������������������
196
+ ������������������������������������
197
+ SA
198
+ ������������������������������������
199
+ ������������������������������������
200
+ ������������������������−������������
201
+ ������������������������
202
+ ������������������������������������
203
+ Recurrent
204
+ ������������������������������������
205
+ Figure 3: The pipeline of our RSAG framework. It consists of a green DCN module for the adaptive frequency-domain separa-
206
+ tion, an orange recurrent SA module for the HF component recovery, and a blue module for the LF component recovery.
207
+ respectively, and transfer common structures through a joint
208
+ branch. However, the multi-path methods may cause details
209
+ missing since the cross-modality features are only fused in
210
+ one specific layer. To handle the abovementioned problem,
211
+ recent methods (Hui, Loy, and Tang 2016; Guo et al. 2019;
212
+ He et al. 2021; Zuo et al. 2019b,a; Yan et al. 2022) adopt a
213
+ multi-scale fusion strategy to merge the cross-modality fea-
214
+ tures at different levels. Although the multi-scale methods
215
+ have achieved considerable performance, the coarse aggre-
216
+ gation may cause texture copying and depth bleeding.
217
+ Recursive Learning. In order to generate higher-level
218
+ details without introducing excessive parameters, recursive
219
+ learning repeatedly applies similar modules for progres-
220
+ sive image reconstruction. Existing recursive DSR meth-
221
+ ods (Wen et al. 2019; Yang et al. 2019; Song et al. 2020)
222
+ construct the depth map in a coarse-to-fine manner by re-
223
+ garding the previous crude depth output as the input of the
224
+ DSR network. Even though the multi-supervision and resid-
225
+ ual learning avoid vanishing or exploding gradient problems
226
+ to a certain extent, there still exists the risk of falling into a
227
+ local optimum. However, we propose a recurrent guidance
228
+ for DSR, which considers the previous depth prediction as
229
+ the guidance information for the next recursion. As the re-
230
+ cursion progresses, the continuously refined guidance is a
231
+ strong constraint for better choosing the image features.
232
+ Attention Mechanism. In recent years, the attention
233
+ mechanism (Zhang et al. 2019; Guo et al. 2020; Wang et al.
234
+ 2021) has achieved significant improvements in the low-
235
+ level vision field. In DSR task, Song et al. (Song et al. 2020)
236
+ utilize the channel attention to focus on HF depth. Mean-
237
+ while, Tang et al. (Tang et al. 2021) also design an HF
238
+ attention bridge to extract the useful HF information dur-
239
+ ing the depth estimation process and input it into the re-
240
+ construction network. Although these attention operations
241
+ selectively highlight the HF information, they do not es-
242
+ sentially solve the problem of texture copying and incon-
243
+ sistent boundaries in guidance images. The most related
244
+ to our method is (Zhong et al. 2021), which also aims to
245
+ find the consistent structure with an attention mechanism.
246
+ However, there are big differences between them. 1) The
247
+ proposed method uses contrastive networks to explore the
248
+ cross-modality correlation in the HF layer since the HF
249
+ modalities of the depth map and image are closer. 2) Com-
250
+ pared with single image guidance, we complement the guid-
251
+ ance with progressively refined depth prediction in a recur-
252
+ sive fashion to accurately mine the consistent structure.
253
+ Approach
254
+ In this section, we introduce our recurrent structure attention
255
+ guided (RSAG) framework for DSR. As shown in Fig. 3,
256
+ RSAG contains three modules, including a deep contrastive
257
+ network with multi-scale filters (DCN), a recurrent structure
258
+ attention module (SA), and an HF&LF feature fusion (HLF)
259
+ module. DCN adaptively learns the HF and LF decomposi-
260
+ tion by cascading contrastive networks from large filters to
261
+ small ones. Then, by introducing the last depth prediction
262
+ to complement the image guidance, recurrent SA jointly se-
263
+ lects the useful and clear structure features of the image for
264
+ accurate HF depth reconstruction. Furthermore, during the
265
+ reconstruction process, HF features guided by recurrent SA
266
+ are integrated with LF features to refine the LF edges.
267
+ Before presenting our method, we denote a high-
268
+ resolution (HR) image by Y hr ∈ RH×W , where H and
269
+ W are the sizes of the image, an HR depth map by
270
+ Dhr ∈ RH×W , a low-resolution (LR) depth map by Dlr ∈
271
+ RpH×pW , where 0 < p ≤ 1 is the downscaling factor
272
+ (e.g., 1/4, 1/8, and 1/16). For Dhr, Dlf ∈ RH×W and
273
+ Dhf ∈ RH×W are denoted as its LF and HF components.
274
+ Deep Contrastive Network with Multi-scale Filters
275
+ As shown in Fig. 4 (a), we aim to explore a DCN network
276
+ for high-quality frequency components, instead of the hand-
277
+ designed operator for the frequency-domain decomposition.
278
+ Inspired by the contrast learning operator (Xu et al. 2020),
279
+ which is designed for RGB image decomposition, we stack
280
+
281
+ Conv7
282
+ ������������������������������������������������
283
+ ������������������������������������
284
+ ������������������������������������
285
+ (a) Deep Contrastive Network with Multi-scale Filters
286
+ Conv5
287
+ Conv3
288
+ Conv5
289
+ Conv1
290
+ Conv3
291
+ LFE
292
+ Channel Attention
293
+ Space Attention
294
+ γ
295
+ c
296
+ ������������������������������������
297
+ ������������������������−������������
298
+ ������������������������
299
+ (b) Structure Attention
300
+ Conv1
301
+ *
302
+ Conv1
303
+ Conv3
304
+ Conv1
305
+ Conv3
306
+ ������������������������
307
+ ������������
308
+ LFE
309
+ Figure 4: The architectures of (a) DCN and (b) SA. DCN
310
+ aims to decompose HF and LF maps of a depth map by
311
+ stacking three contrastive networks from large to small fil-
312
+ ters. SA tends to adaptively filter out unwanted textures and
313
+ highlight the useful HF regions of the image.
314
+ it three times to a DCN with multi-scale filters for extracting
315
+ high-quality HF components of the depth map.
316
+ Specifically, given an LR depth map Dlr ∈ RpH×pW as
317
+ input, we first upscale it to the desired resolution map Dbic ∈
318
+ RH×W by bicubic interpolation. We denote the number of
319
+ layers of our DCN network as I, and the HF map Dhf is
320
+ defined as a recursive formulation:
321
+ Dhf = HI
322
+ I ,
323
+ (1)
324
+ HI
325
+ i = Sigmoid
326
+
327
+ Convk(HI
328
+ i−1) − Convk−2(HI
329
+ i−1)
330
+
331
+ ,
332
+ (2)
333
+ where HI
334
+ 0 = Dbic; HI
335
+ i is the HF feature of the i-th layer
336
+ in the DCN network with I layers (1 ≤ i ≤ I); Convk(·)
337
+ represents a k × k convolutional operation followed by
338
+ PReLU (He et al. 2015) activation, k = 2(I −i)+3, and we
339
+ set I = 3 in this paper. Then, the LF map Dlf is calculated
340
+ by subtracting the HF map Dhf from Dbic:
341
+ Dlf = Dbic − Dhf.
342
+ (3)
343
+ To better understand the DCN network with different layers
344
+ (I = 1, 2, 3), Fig. 5 shows their HF features. Fig. 5 (a-c) plot
345
+ the HF features H1
346
+ 1, H2
347
+ 1 and H2
348
+ 2 of shallow DCN networks.
349
+ Compared to H1
350
+ 1 and H2
351
+ 2, the HF feature H3
352
+ 3 of deeper DCN
353
+ network are shown in Fig. 5 (f), which has the clearest and
354
+ most complete edges. According to Fig. 5 (d-f), it is worth
355
+ noticing that deeper DCN is prone to weaken depth informa-
356
+ tion and enhance structural information (e.g., edge of plaster
357
+ statue behind the teapot).
358
+ Recurrent Structure Attention
359
+ Removing textures while making full use of consistent
360
+ boundaries in the image is a key challenge for guided DSR.
361
+ Instead of trivial cross-modality feature concatenation, we
362
+ propose a novel recurrent structure attention (SA) mecha-
363
+ nism to bridge the modality gap between depth input and
364
+ image guidance. As shown in Fig. 4 (b), we put our efforts
365
+ into the following two aspects: (1) A cross-modality struc-
366
+ ture feature attention is designed, where the consistent struc-
367
+ tures are highlighted by contrast operators and the redundant
368
+ features (e.g., textures and inconsistent boundaries) are sup-
369
+ pressed in channel and space levels. (2) For better guiding
370
+ depth details restoration, useful image features are selected
371
+ with the progressively refined depth prediction recursively.
372
+ Structure Attention. Given the image Y hr ∈ RH×W
373
+ and the same size depth map Dhr ∈ RH×W as input, we
374
+ first use the learnable feature extractor to produce a set of
375
+ hierarchical image and depth features, which match with the
376
+ corresponding HF features in decoder path. Then, sharing
377
+ the same spirit as contrastive networks used in DCN, we ex-
378
+ ploit the contextual information under multiple-level recep-
379
+ tive fields and calculate the high contrastive features as HF
380
+ components. We further sum the depth and image contrast
381
+ maps and use absolute operations to enforce their consistent
382
+ structures and prevent HF smoothing caused by positive and
383
+ negative cancellations. This process can be formulated as:
384
+ J = |Fy1 − Fy2| + |Fd1 − Fd2|,
385
+ (4)
386
+ Fyi = Conv2i−1(LFE(Y hr)),
387
+ (5)
388
+ Fdi = Conv2i−1(LFE(Dhr)), i ∈ {1, 2} ,
389
+ (6)
390
+ where LFE(·) denotes the learnable feature extractor for ini-
391
+ tial hierarchical features learning. Conv2i−1(·) are the con-
392
+ volutions with kernel size 2i − 1 followed by PReLU (He
393
+ et al. 2015) activation. Fyi and Fdi are extracted image fea-
394
+ tures and depth features under different receptive fields, re-
395
+ spectively. J denotes the joint HF features, which are further
396
+ fed into the channel and spatial attention blocks (Woo et al.
397
+ 2018). Such a design encourages learning the interaction be-
398
+ tween different channels and focusing on the important spa-
399
+ tial locations. The features after the attention block denoted
400
+ as structure-aware features Sa, can be formulated as:
401
+ Sa = SpatA(CA(J)),
402
+ (7)
403
+ where SpatA(·) and CA(·) represent the spatial attention
404
+ and the channel attention blocks, respectively. At last, Sa
405
+ is added to the image features and combined with the depth
406
+ features. The SA process is formulated as follows:
407
+ G =SA(Dhr, Y hr)
408
+ =Cat(LFE(Dhr), Sa + γ ∗ LFE(Conv1(Y hr))),
409
+ (8)
410
+ where γ denotes a learnable parameter for controlling the
411
+ degree of highlighting and Cat(·) means concatenation of
412
+ features. Conv1(·) is a 1 × 1 convolutional kernel followed
413
+ by PReLU (He et al. 2015) activation. G represents the fused
414
+ guidance features for feeding into the decoder path.
415
+ Recurrent Mechanism with Refined Depth Guidance.
416
+ As mentioned above, compared to the single image guid-
417
+ ance, the HR depth guidance owns the same modality as the
418
+ LR depth input, which facilitates our attention module to lo-
419
+ cate and select consistent edge structures in image guidance.
420
+ More clear depth structures can achieve more accurate guid-
421
+ ance information for better details restoration, thence we re-
422
+ fine the depth guidance in a recursive manner.
423
+
424
+ ������������1
425
+ 1
426
+ (a)
427
+ (b)
428
+ (c)
429
+ (d)
430
+ (e)
431
+ (f)
432
+ ������������1
433
+ 2
434
+ ������������2
435
+ 2
436
+ ������������1
437
+ 3
438
+ ������������2
439
+ 3
440
+ ������������3
441
+ 3
442
+ Figure 5: Visual HF features of our DCN network with dif-
443
+ ferent layers (I = 1, 2, 3).
444
+ Specifically, for the first recursion, the input depth guid-
445
+ ance is the up-sampled version of LR depth map Dbic ∈
446
+ RH×W by bicubic interpolation, i.e., G0 = SA(Dbic, Y hr).
447
+ For the k-th recursion, the latest output of our DSR network
448
+ is taken as the input of the attention module next time. The
449
+ recurrent SA can be formulated as follows:
450
+ Gk =SA(HLF(Gk−1, Dlf, Dhf), Y hr),
451
+ (9)
452
+ where HLF(·) is the HF&LF feature fusion operation. As
453
+ shown in Fig. 6, the image feature map before being inputted
454
+ into the SA module contains complex patterns and unclear
455
+ boundaries. As the recursion progresses, complex textures
456
+ are removed (e.g., background pattern and cylinder label).
457
+ HF&LF feature fusion module
458
+ Different from previous methods directly up-sampling LF
459
+ component by bicubic interpolation, we propose an HF&LF
460
+ feature fusion (HLF) module to reconstruct the HF compo-
461
+ nent and improve the blurred LF edges. The HF reconstruc-
462
+ tion module is built upon the U-Net architecture, including
463
+ an encoder path, an attention-based guidance branch, and
464
+ a decoder branch (See orange blocks of Fig. 3). Rich hi-
465
+ erarchical features extracted from the guidance branch and
466
+ encoder-decoder structure are fused by using repeated resid-
467
+ ual convolutional block attention modules (Woo et al. 2018;
468
+ Guo et al. 2020). Then, the achieved contextual features in
469
+ the decoder branch are concatenated with the LF features at
470
+ multiple levels for the edges refining during the LF recon-
471
+ struction (See blue blocks of Fig. 3).
472
+ Loss Function
473
+ We train our model by minimizing the smooth-L1 loss be-
474
+ tween the network output Dhr of each recursion and the
475
+ ground-truth depth map Dgt. For the k-th recursion, the loss
476
+ function Lk(·) is defined as below:
477
+ Lk(Dhr
478
+ k , Dgt) =
479
+ N
480
+
481
+ i=1
482
+ smoothL1(Dhr
483
+ k,i, Dgt
484
+ i ),
485
+ (10)
486
+ where smoothL1(x) =
487
+
488
+ 0.5x2,
489
+ if |x| < 1
490
+ |x| − 0.5,
491
+ otherwise. Dhr
492
+ k
493
+ de-
494
+ notes the network output of the k-th recursion. N and i in-
495
+ ������������ = 0
496
+ ������������ = 1
497
+ ������������ = 2
498
+ Figure 6: Visual image features calculated by the Eq. (8)
499
+ when the recursive step is varied from k = 0 to 2.
500
+ dicate the pixel number and the pixel index in the map, re-
501
+ spectively. We can obtain K depth outputs and the overall
502
+ loss is expressed as:
503
+ Ls =
504
+ K
505
+
506
+ k=1
507
+ λkLk,
508
+ (11)
509
+ where λk is the weight coefficient of the k-th loss.
510
+ Experiment
511
+ Experimental Setting
512
+ To evaluate the performance of our framework, we conduct
513
+ sufficient experiments on five datasets:
514
+ • Middlebury (Hirschmuller and Scharstein 2007) & MPI
515
+ Sintel (Butler et al. 2012): Training dataset consists of 34
516
+ RGB/D pairs from Middlebury dataset and 58 RGB/D
517
+ pairs from MPI Sintel dataset. Testing dataset includes
518
+ 6 RGB/D pairs (Art, Books, Dolls, Laundry, Mobeius,
519
+ Reindeer) from Middlebury 2005.
520
+ • NYU-v2 (Silberman et al. 2012): Following the widely
521
+ used data splitting manner, we sample 1000 pairs for
522
+ training and the rest 449 pairs for testing.
523
+ • Lu (Lu, Ren, and Liu 2014): We test 6 RGB/D pairs from
524
+ this dataset with the training model on NYU-v2.
525
+ • RGB-D-D (He et al. 2021): Following FDSR (He et al.
526
+ 2021), we use 405 RGB/D pairs for evaluation with the
527
+ training model on NYU-v2.
528
+ We compare our method with 3 traditional methods: TGV
529
+ (Ferstl et al. 2013), FBS (Barron and Poole 2016), SDF
530
+ (Ham, Cho, and Ponce 2017), 3 classical methods: DJF (Li
531
+ et al. 2016), DMSG (Hui, Loy, and Tang 2016), DGDIE
532
+ (Gu et al. 2017) and 12 state-of-the-art (SOTA) methods:
533
+ SVLRM (Pan et al. 2019), GSPRT (Lutio et al. 2019), DJFR
534
+ (Li et al. 2019), PacNet (Su et al. 2019), GbFT (AlBahar
535
+ and Huang 2019), CUNet (Deng and Dragotti 2020), PM-
536
+ BAN (Ye et al. 2020), DKN (Kim, Ponce, and Ham 2021),
537
+ FDKN (Kim, Ponce, and Ham 2021), FDSR (He et al. 2021),
538
+ AHMF (Zhong et al. 2021) and CTKT (Sun et al. 2021).
539
+ Mean Absolute Error (MAD) and Root Mean Squared Error
540
+ (RMSE) are used to evaluate the performance.
541
+ During training, we randomly extract patches with stride
542
+ = {96, 96, 128} for the scale = {4, 8, 16} respectively as
543
+ ground truth and use bicubic interpolation to get LR in-
544
+ puts. The training and testing data are normalized to the
545
+ range [0, 1]. To balance the training time and network perfor-
546
+ mance, we set the recurrent steps of the SA blocks as k = 2
547
+ in this paper. The loss weights are set as λk = 0.5. The
548
+
549
+ Model
550
+ Art
551
+ Books
552
+ Dolls
553
+ Laundry
554
+ Mobeius
555
+ Reindeer
556
+ ×4
557
+ ×8
558
+ ×16
559
+ ×4
560
+ ×8
561
+ ×16
562
+ ×4
563
+ ×8
564
+ ×16
565
+ ×4
566
+ ×8
567
+ ×16
568
+ ×4
569
+ ×8
570
+ ×16
571
+ ×4
572
+ ×8
573
+ ×16
574
+ Bicbuic
575
+ 1.15
576
+ 2.15
577
+ 4.04
578
+ 0.41
579
+ 0.72
580
+ 1.32
581
+ 0.44
582
+ 0.76
583
+ 1.31
584
+ 0.65
585
+ 1.17
586
+ 2.17
587
+ 0.41
588
+ 0.76
589
+ 1.37
590
+ 0.66
591
+ 1.16
592
+ 2.26
593
+ DJF
594
+ 0.40
595
+ 1.07
596
+ 2.78
597
+ 0.16
598
+ 0.45
599
+ 1.00
600
+ 0.20
601
+ 0.49
602
+ 0.99
603
+ 0.28
604
+ 0.71
605
+ 1.67
606
+ 0.18
607
+ 0.46
608
+ 1.02
609
+ 0.23
610
+ 0.60
611
+ 1.36
612
+ DMSG
613
+ 0.46
614
+ 0.76
615
+ 1.53
616
+ 0.15
617
+ 0.41
618
+ 0.76
619
+ 0.25
620
+ 0.51
621
+ 0.87
622
+ 0.30
623
+ 0.46
624
+ 1.12
625
+ 0.21
626
+ 0.43
627
+ 0.76
628
+ 0.31
629
+ 0.52
630
+ 0.99
631
+ DGDIE
632
+ 0.48
633
+ 1.20
634
+ 2.44
635
+ 0.30
636
+ 0.58
637
+ 1.02
638
+ 0.34
639
+ 0.63
640
+ 0.93
641
+ 0.35
642
+ 0.86
643
+ 1.56
644
+ 0.28
645
+ 0.58
646
+ 0.98
647
+ 0.35
648
+ 0.73
649
+ 1.29
650
+ GSPRT
651
+ 0.48
652
+ 0.74
653
+ 1.48
654
+ 0.21
655
+ 0.38
656
+ 0.76
657
+ 0.28
658
+ 0.48
659
+ 0.79
660
+ 0.33
661
+ 0.56
662
+ 1.24
663
+ 0.24
664
+ 0.49
665
+ 0.80
666
+ 0.31
667
+ 0.61
668
+ 1.07
669
+ DJFR
670
+ 0.33
671
+ 0.71
672
+ 1.72
673
+ 0.19
674
+ 0.38
675
+ 0.78
676
+ 0.25
677
+ 0.44
678
+ 0.79
679
+ 0.22
680
+ 0.50
681
+ 1.12
682
+ 0.20
683
+ 0.38
684
+ 0.76
685
+ 0.24
686
+ 0.45
687
+ 0.96
688
+ PacNet
689
+ 0.40
690
+ 0.82
691
+ 1.59
692
+ 0.22
693
+ 0.49
694
+ 0.84
695
+ 0.28
696
+ 0.53
697
+ 0.85
698
+ 0.28
699
+ 0.56
700
+ 1.08
701
+ 0.23
702
+ 0.44
703
+ 0.79
704
+ 0.29
705
+ 0.53
706
+ 1.00
707
+ CUNet
708
+ 0.47
709
+ 1.06
710
+ 2.34
711
+ 0.33
712
+ 0.63
713
+ 1.41
714
+ 0.40
715
+ 0.67
716
+ 1.27
717
+ 0.41
718
+ 0.80
719
+ 1.88
720
+ 0.29
721
+ 0.65
722
+ 1.12
723
+ 0.35
724
+ 0.69
725
+ 1.14
726
+ PMBAN
727
+ 0.28
728
+ 0.55
729
+ 1.11
730
+ 0.19
731
+ 0.30
732
+ 0.53
733
+ 0.23
734
+ 0.37
735
+ 0.64
736
+ 0.21
737
+ 0.36
738
+ 0.74
739
+ 0.18
740
+ 0.31
741
+ 0.57
742
+ 0.22
743
+ 0.39
744
+ 0.75
745
+ DKN
746
+ 0.25
747
+ 0.51
748
+ 1.22
749
+ 0.16
750
+ 0.30
751
+ 0.52
752
+ 0.21
753
+ 0.35
754
+ 0.61
755
+ 0.17
756
+ 0.34
757
+ 0.81
758
+ 0.16
759
+ 0.28
760
+ 0.54
761
+ 0.20
762
+ 0.38
763
+ 0.70
764
+ AHMF
765
+ 0.22
766
+ 0.50
767
+ 1.04
768
+ 0.14
769
+ 0.30
770
+ 0.50
771
+ 0.18
772
+ 0.35
773
+ 0.62
774
+ 0.15
775
+ 0.34
776
+ 0.73
777
+ 0.14
778
+ 0.28
779
+ 0.53
780
+ 0.18
781
+ 0.37
782
+ 0.64
783
+ CTKT
784
+ 0.25
785
+ 0.53
786
+ 1.44
787
+ 0.11
788
+ 0.26
789
+ 0.67
790
+ 0.16
791
+ 0.36
792
+ 0.65
793
+ 0.16
794
+ 0.36
795
+ 0.76
796
+ 0.13
797
+ 0.27
798
+ 0.69
799
+ 0.17
800
+ 0.35
801
+ 0.77
802
+ RSAG
803
+ 0.13
804
+ 0.23
805
+ 0.88
806
+ 0.09
807
+ 0.14
808
+ 0.50
809
+ 0.15
810
+ 0.20
811
+ 0.57
812
+ 0.10
813
+ 0.19
814
+ 0.58
815
+ 0.12
816
+ 0.17
817
+ 0.42
818
+ 0.13
819
+ 0.18
820
+ 0.52
821
+ Table 1: Quantitative comparisons (in MAD) on Middlebury dataset.
822
+ Bicubic
823
+ TGV
824
+ DJF
825
+ FBS
826
+ DMSG
827
+ DJFR
828
+ GbFT
829
+ PacNet
830
+ FDKN
831
+ DKN
832
+ FDSR
833
+ CTKT
834
+ DCTNet
835
+ RSAG
836
+ ×4
837
+ 8.16
838
+ 4.98
839
+ 3.54
840
+ 4.29
841
+ 3.02
842
+ 2.38
843
+ 3.35
844
+ 2.39
845
+ 1.86
846
+ 1.62
847
+ 1.61
848
+ 1.49
849
+ 1.59
850
+ 1.23
851
+ ×8
852
+ 14.22
853
+ 11.23
854
+ 6.20
855
+ 8.94
856
+ 2.99
857
+ 4.94
858
+ 5.73
859
+ 4.59
860
+ 3.58
861
+ 3.26
862
+ 3.18
863
+ 2.73
864
+ 3.16
865
+ 2.51
866
+ ×16
867
+ 22.32
868
+ 28.13
869
+ 10.21
870
+ 14.59
871
+ 9.17
872
+ 9.18
873
+ 9.01
874
+ 8.09
875
+ 6.96
876
+ 6.51
877
+ 5.86
878
+ 5.11
879
+ 5.84
880
+ 5.27
881
+ Table 2: Quantitative comparisons (in RMSE (cm)) on NYU-v2 dataset.
882
+ Model
883
+ Lu
884
+ RGB-D-D
885
+ ×4
886
+ ×8
887
+ ×16
888
+ ×4
889
+ ×8
890
+ ×16
891
+ DJF
892
+ 1.65
893
+ 3.96
894
+ 6.75
895
+ 3.41
896
+ 5.57
897
+ 8.15
898
+ DJFR
899
+ 1.15
900
+ 3.57
901
+ 6.77
902
+ 3.35
903
+ 5.57
904
+ 7.99
905
+ FDKN
906
+ 0.82
907
+ 2.10
908
+ 5.05
909
+ 1.18
910
+ 1.91
911
+ 3.41
912
+ DKN
913
+ 0.96
914
+ 2.16
915
+ 5.11
916
+ 1.30
917
+ 1.96
918
+ 3.42
919
+ FDSR
920
+ 0.81
921
+ 1.91
922
+ 4.64
923
+ 1.16
924
+ 1.82
925
+ 3.06
926
+ RSAG
927
+ 0.79
928
+ 1.67
929
+ 4.30
930
+ 1.14
931
+ 1.75
932
+ 2.96
933
+ Table 3: Quantitative comparisons (in RMSE) on Lu dataset
934
+ and RGB-D-D dataset.
935
+ proposed method is implemented using PyTorch with one
936
+ RTX 2080Ti GPU. For simplicity, we name our Recurrent
937
+ Structure Attention Guided framework as RSAG.
938
+ Comparing to State-of-the-Arts
939
+ Quantitative Comparisons.
940
+ We first show the quantita-
941
+ tive evaluation results with SOTA methods under the same
942
+ conditions. Table 1 shows the results on Middlebury dataset
943
+ under three up-scaling factors. It can be observed that the
944
+ proposed RSAG outperforms the SOTA methods by signifi-
945
+ cant margins for all up-scaling factors. For example, RSAG
946
+ decreases the average MAD by 25%(×4), 48%(×8), and
947
+ 30%(×16) compared to CTKT (Sun et al. 2021). We fur-
948
+ ther evaluate the proposed method on NYU-v2 dataset in
949
+ Table 2. The proposed method yields the best performance
950
+ for ×4 and ×8 DSR and comparable performance for ×16
951
+ DSR. Compared with the second-best method, RSAG de-
952
+ creases the average RMSE by 17% for ×4 DSR.
953
+ To verify the generalization ability of our method on Lu
954
+ dataset and RGB-D-D dataset, we test RSAG for ×4, ×8,
955
+ and ×16 DSR, which is trained on NYU dataset. As shown
956
+ Model
957
+ Middlebury
958
+ NYU-v2
959
+ baseline
960
+ 0.26
961
+ 3.60
962
+ baseline + DCN
963
+ 0.24
964
+ 3.10
965
+ baseline + DCN + HLF
966
+ 0.23
967
+ 3.02
968
+ baseline + DCN + HLF + SA
969
+ 0.19
970
+ 2.51
971
+ Table 4: Ablation studies of RSAG (in MAD) on Middlebury
972
+ dataset and (in RMSE) on NYU-v2 dataset for ×8 DSR.
973
+ in Table 3, we can see that RSAG performs the competi-
974
+ tive generalization results for all up-sampling cases, which
975
+ demonstrates the accuracy and effectiveness of our method.
976
+ Visual Comparisons.
977
+ We provide the visual comparisons
978
+ of the ×8 upsampled results on Middlebury dataset in Fig. 7.
979
+ It is worth noted that edges and luxuriant details are hard to
980
+ be reconstructed by interpolation or simple feature concate-
981
+ nation. Even though CUNet (Deng and Dragotti 2020) and
982
+ DKN (Kim, Ponce, and Ham 2021) can recover most bound-
983
+ aries, they fail to reconstruct some complex structures, such
984
+ as texture beside pencils in Art and boundaries of antlers in
985
+ Reindeer. In contrast, our results show sharper edges and
986
+ smaller errors with the ground truth. Fig. 8 shows ×8 re-
987
+ sults on NYU-v2 dataset. Boundaries and details generated
988
+ by RSAG are more accurate without introducing the texture
989
+ copying artifacts, which demonstrates that RSAG can well
990
+ recover both HF structures and LF content.
991
+ Furthermore, Fig. 9 demonstrates the good generalization
992
+ ability of the proposed method on Lu dataset for ×16 DSR.
993
+ Most methods generally tend to over-smooth the results and
994
+ fail to recover the depth details with low-light guidance im-
995
+ ages, while our method produces more convincing results.
996
+
997
+ (g) GT
998
+ (f) Ours
999
+ (e) DKN
1000
+ (d) CUNet
1001
+ (c) DJF
1002
+ (b) Bicubic
1003
+ (a) GT and image
1004
+ Figure 7: Visual comparisons of Art and Laundry on Middlebury dataset (×8 case).
1005
+ (a) Image
1006
+ (b) DKN
1007
+ (c) FDSR
1008
+ (d) Ours (e) GT
1009
+ Figure 8: Visual comparisons on NYU-v2 dataset (×8 case).
1010
+ (d) Ours
1011
+ (b) DKN
1012
+ (c) FDSR
1013
+ (e) GT
1014
+ (b) DKN
1015
+ (c) FDSR
1016
+ (d) Ours
1017
+ (e) GT
1018
+ (a) Images
1019
+ (a) Images
1020
+ Figure 9: Visual comparisons on Lu dataset (×16 case).
1021
+ Ablation Study
1022
+ Effect of DCN and HLF modules. Table 4 reports the abla-
1023
+ tion studies on the DCN and HLF modules in our frame-
1024
+ work. As shown in the first row of Table 4, the baseline
1025
+ model uses a hand-designed operator for frequency-domain
1026
+ decomposition and direct concatenation for cross-modality
1027
+ feature fusion. The second row demonstrates that the pro-
1028
+ posed DCN module, which selects HF component adap-
1029
+ tively in a coarse-to-fine manner, can significantly improve
1030
+ the performance over the baseline. When the HLF module is
1031
+ added, the average RMSE of the NYU-v2 dataset shown in
1032
+ the third row can be reduced from 3.60 to 3.02, which further
1033
+ verifies the effectiveness of high-quality frequency-domain
1034
+ separation and HF&LF feature fusion modules.
1035
+ Effect of SA module. The last row in Table 4 demon-
1036
+ strates the effectiveness of the SA module, which iteratively
1037
+ utilizes the latest depth estimation to choose clear and con-
1038
+ sistent image features. We can see that the SA module can
1039
+ outperform them by a large margin. From the results of Ta-
1040
+ 2.50
1041
+ MAD
1042
+ NYU-v2
1043
+ 0(w/o RMA) 1
1044
+ 2
1045
+ 3
1046
+ 4
1047
+ RMSE
1048
+ 0(w/o RMA) 1
1049
+ 2
1050
+ 3
1051
+ 4
1052
+ Middlebury
1053
+ Recurrent Steps
1054
+ 3.00
1055
+ 3.50
1056
+ 0.25
1057
+ 0.20
1058
+ 0.15
1059
+ Figure 10: Ablation studies of SA with different recursive
1060
+ steps on Middlebury and NYU-v2 datasets (×8 case).
1061
+ ble 4, it is observed that all the modules proposed in the
1062
+ RSAG framework have made a positive contribution to the
1063
+ ultimate success of our method. To further study the impact
1064
+ of the recurrent steps of SA, we conduct experiments on
1065
+ Middlebury and NYU-v2 datasets by varying the step from
1066
+ 0 (w/o SA) to 4, as illustrated in Fig. 10. It can be found that
1067
+ the method achieves better performance when the recursion
1068
+ steps increase, where 2 recurrent steps obtain the best trade-
1069
+ off between speed and accuracy. It also proves that higher-
1070
+ quality depth information can help obtain a more reliable
1071
+ guidance structure for subsequent depth reconstruction.
1072
+ Conclusion
1073
+ In this paper, we proposed a novel recurrent structure atten-
1074
+ tion guided (RSAG) framework for depth super-resolution.
1075
+ In our framework, a deep contrastive network with multi-
1076
+ scale filters (DCN) block was designed to adaptively de-
1077
+ compose the high-quality HF and LF components by us-
1078
+ ing contrastive networks from large kernels to small ones.
1079
+ In addition, by leveraging the latest depth output and high-
1080
+ resolution image as guidance, we introduced recurrent struc-
1081
+ ture attention (SA) block, instead of the trivial feature con-
1082
+ catenation, to select consistent and clear image features
1083
+ for subsequent cross-modality fusion. Furthermore, we pre-
1084
+ sented the HF&LF feature fusion block to refine the blurred
1085
+ edges of the LF component. Extensive experiments on var-
1086
+ ious benchmark datasets demonstrated the superiority and
1087
+ effectiveness of the proposed framework.
1088
+
1089
+ Acknowledgement
1090
+ This work was supported by the National Science Fund of
1091
+ China under Grant Nos. U1713208 and 62072242.
1092
+ References
1093
+ AlBahar, B.; and Huang, J.-B. 2019. Guided image-to-image
1094
+ translation with bi-directional feature transformation.
1095
+ In
1096
+ ICCV, 9016–9025.
1097
+ Barron, J. T.; and Poole, B. 2016. The fast bilateral solver.
1098
+ In ECCV, 617–632.
1099
+ Butler, D. J.; Wulff, J.; Stanley, G. B.; and Black, M. J. 2012.
1100
+ A naturalistic open source movie for optical flow evaluation.
1101
+ In ECCV, 611–625.
1102
+ Caesar, H.; Bankiti, V.; Lang, A. H.; Vora, S.; Liong, V. E.;
1103
+ Xu, Q.; Krishnan, A.; Pan, Y.; Baldan, G.; and Beijbom, O.
1104
+ 2020. nuscenes: A multimodal dataset for autonomous driv-
1105
+ ing. In CVPR, 11621–11631.
1106
+ Chen, B.; and Jung, C. 2018.
1107
+ Single depth image super-
1108
+ resolution using convolutional neural networks. In ICASSP,
1109
+ 1473–1477.
1110
+ Chen, Y.; Fan, H.; Xu, B.; Yan, Z.; Kalantidis, Y.; Rohrbach,
1111
+ M.; Yan, S.; and Feng, J. 2019. Drop an octave: Reducing
1112
+ spatial redundancy in convolutional neural networks with
1113
+ octave convolution. In ICCV, 3435–3444.
1114
+ Deng, X.; and Dragotti, P. L. 2020. Deep convolutional neu-
1115
+ ral network for multi-modal image restoration and fusion.
1116
+ IEEE transactions on pattern analysis and machine intelli-
1117
+ gence, PP(99): 1–1.
1118
+ Ferstl, D.; Reinbacher, C.; Ranftl, R.; R¨uther, M.; and
1119
+ Bischof, H. 2013. Image guided depth upsampling using
1120
+ anisotropic total generalized variation. In ICCV, 993–1000.
1121
+ Gu, S.; Zuo, W.; Guo, S.; Chen, Y.; Chen, C.; and Zhang, L.
1122
+ 2017. Learning dynamic guidance for depth image enhance-
1123
+ ment. In CVPR, 3769–3778.
1124
+ Guo, C.; Li, C.; Guo, J.; Cong, R.; Fu, H.; and Han, P. 2019.
1125
+ Hierarchical Features Driven Residual Learning for Depth
1126
+ Map Super-Resolution. IEEE Transactions on Image Pro-
1127
+ cessing, 2545–2557.
1128
+ Guo, Y.; Chen, J.; Wang, J.; Chen, Q.; Cao, J.; Deng, Z.; Xu,
1129
+ Y.; and Tan, M. 2020. Closed-loop matters: Dual regression
1130
+ networks for single image super-resolution. In CVPR, 5407–
1131
+ 5416.
1132
+ Ham, B.; Cho, M.; and Ponce, J. 2017. Robust guided image
1133
+ filtering using nonconvex potentials. IEEE transactions on
1134
+ pattern analysis and machine intelligence, 40(1): 192–207.
1135
+ Hao, X.; Lu, T.; Zhang, Y.; Wang, Z.; and Chen, H. 2019.
1136
+ Multi-Source Deep Residual Fusion Network for Depth Im-
1137
+ age Super-resolution. In RSVT, 62–67.
1138
+ He, K.; Zhang, X.; Ren, S.; and Sun, J. 2015. Delving deep
1139
+ into rectifiers: Surpassing human-level performance on ima-
1140
+ genet classification. In ICCV, 1026–1034.
1141
+ He, L.; Zhu, H.; Li, F.; Bai, H.; Cong, R.; Zhang, C.; Lin,
1142
+ C.; Liu, M.; and Zhao, Y. 2021. Towards Fast and Accurate
1143
+ Real-World Depth Super-Resolution: Benchmark Dataset
1144
+ Baseline and. In CVPR, 9229–9238.
1145
+ Hirschmuller, H.; and Scharstein, D. 2007. Evaluation of
1146
+ cost functions for stereo matching. In CVPR, 1–8.
1147
+ Hou, J.; Dai, A.; and Nießner, M. 2019. 3d-sis: 3d semantic
1148
+ instance segmentation of rgb-d scans. In CVPR, 4421–4430.
1149
+ Hui, T.-W.; Loy, C. C.; and Tang, X. 2016.
1150
+ Depth Map
1151
+ Super-Resolution by Deep Multi-Scale Guidance. In ECCV,
1152
+ 353–369.
1153
+ Kim, B.; Ponce, J.; and Ham, B. 2021. Deformable kernel
1154
+ networks for joint image filtering. International Journal of
1155
+ Computer Vision, 129(2): 579–600.
1156
+ Li, Y.; Huang, J.-B.; Ahuja, N.; and Yang, M.-H. 2016. Deep
1157
+ joint image filtering. In ECCV, 154–169.
1158
+ Li, Y.; Huang, J.-B.; Ahuja, N.; and Yang, M.-H. 2019. Joint
1159
+ image filtering with deep convolutional networks.
1160
+ IEEE
1161
+ transactions on pattern analysis and machine intelligence,
1162
+ 41(8): 1909–1923.
1163
+ Lu, S.; Ren, X.; and Liu, F. 2014. Depth enhancement via
1164
+ low-rank matrix completion. In CVPR, 3390–3397.
1165
+ Lutio, R. d.; D’aronco, S.; Wegner, J. D.; and Schindler, K.
1166
+ 2019. Guided super-resolution as pixel-to-pixel transforma-
1167
+ tion. In ICCV, 8829–8837.
1168
+ Makarov, I.; Aliev, V.; and Gerasimova, O. 2017.
1169
+ Semi-
1170
+ dense depth interpolation using deep convolutional neural
1171
+ networks. In ACMMM, 1407–1415.
1172
+ Meuleman, A.; Baek, S.-H.; Heide, F.; and Kim, M. H. 2020.
1173
+ Single-shot monocular rgb-d imaging using uneven double
1174
+ refraction. In CVPR, 2465–2474.
1175
+ Pan, J.; Dong, J.; Ren, J. S.; Lin, L.; Tang, J.; and Yang, M.-
1176
+ H. 2019. Spatially variant linear representation models for
1177
+ joint filtering. In CVPR, 1702–1711.
1178
+ Silberman, N.; Hoiem, D.; Kohli, P.; and Fergus, R. 2012.
1179
+ Indoor segmentation and support inference from rgbd im-
1180
+ ages. In ECCV, 746–760.
1181
+ Song, X.; Dai, Y.; Zhou, D.; Liu, L.; Li, W.; Li, H.; and Yang,
1182
+ R. 2020. Channel attention based iterative residual learning
1183
+ for depth map super-resolution. In CVPR, 5631–5640.
1184
+ Su, H.; Jampani, V.; Sun, D.; Gallo, O.; Learned-Miller, E.;
1185
+ and Kautz, J. 2019. Pixel-adaptive convolutional neural net-
1186
+ works. In CVPR, 11166–11175.
1187
+ Sun, B.; Ye, X.; Li, B.; Li, H.; Wang, Z.; and Xu, R. 2021.
1188
+ Learning Scene Structure Guidance via Cross-Task Knowl-
1189
+ edge Transfer for Single Depth Super-Resolution. In CVPR,
1190
+ 7792–7801.
1191
+ Tang, Q.; Cong, R.; Sheng, R.; He, L.; Zhang, D.; Zhao, Y.;
1192
+ and Kwong, S. 2021. BridgeNet: A Joint Learning Network
1193
+ of Depth Map Super-Resolution and Monocular Depth Esti-
1194
+ mation. In ACMMM, 2148–2157.
1195
+ Wang, K.; Zhang, Z.; Yan, Z.; Li, X.; Xu, B.; Li, J.; and
1196
+ Yang, J. 2021. Regularizing nighttime weirdness: Ef��cient
1197
+ self-supervised monocular depth estimation in the dark. In
1198
+ ICCV, 16055–16064.
1199
+ Wen, Y.; Sheng, B.; Li, P.; Lin, W.; and Feng, D. D. 2019.
1200
+ Deep color guided coarse-to-fine convolutional network cas-
1201
+ cade for depth image super-resolution. IEEE Transactions
1202
+ on Image Processing, 28(2): 994–1006.
1203
+
1204
+ Woo, S.; Park, J.; Lee, J.-Y.; and Kweon, I. S. 2018. Cbam:
1205
+ Convolutional block attention module. In ECCV, 3–19.
1206
+ Xiao, Y.; Cao, X.; Zhu, X.; Yang, R.; and Zheng, Y. 2018.
1207
+ Joint convolutional neural pyramid for depth map super-
1208
+ resolution. arXiv preprint arXiv:1801.00968.
1209
+ Xu, K.; Yang, X.; Yin, B.; and Lau, R. W. 2020. Learn-
1210
+ ing to restore low-light images via decomposition-and-
1211
+ enhancement. In CVPR, 2281–2290.
1212
+ Yan, Z.; Wang, K.; Li, X.; Zhang, Z.; Li, G.; Li, J.; and Yang,
1213
+ J. 2022. Learning Complementary Correlations for Depth
1214
+ Super-Resolution With Incomplete Data in Real World.
1215
+ IEEE Transactions on Neural Networks and Learning Sys-
1216
+ tems.
1217
+ Yang, B.; Fan, X.; Zheng, Z.; Liu, X.; Zhang, K.; and Lei,
1218
+ J. 2019. Depth Map Super-Resolution via Multilevel Recur-
1219
+ sive Guidance and Progressive Supervision. IEEE Access,
1220
+ 7: 57616–57622.
1221
+ Yang, J.; Lan, H.; Song, X.; and Li, K. 2017. Depth super-
1222
+ resolution via fully edge-augmented guidance. In VCIP, 1–
1223
+ 4.
1224
+ Ye, X.; Duan, X.; and Li, H. 2018. Depth super-resolution
1225
+ with deep edge-inference network and edge-guided depth
1226
+ filling. In ICASSP, 1398–1402.
1227
+ Ye, X.; Sun, B.; Wang, Z.; Yang, J.; Xu, R.; Li, H.; and Li, B.
1228
+ 2020. Pmbanet: Progressive multi-branch aggregation net-
1229
+ work for scene depth super-resolution. IEEE Transactions
1230
+ on Image Processing, 29: 7427–7442.
1231
+ Zhang, H.; Goodfellow, I.; Metaxas, D.; and Odena, A.
1232
+ 2019.
1233
+ Self-attention generative adversarial networks.
1234
+ In
1235
+ ICML, 7354–7363.
1236
+ Zhong, Z.; Liu, X.; Jiang, J.; Zhao, D.; Chen, Z.; and Ji, X.
1237
+ 2021. High-resolution Depth Maps Imaging via Attention-
1238
+ based Hierarchical Multi-modal Fusion.
1239
+ arXiv preprint
1240
+ arXiv:2104.01530.
1241
+ Zhu, J.; Zhai, W.; Cao, Y.; and Zha, Z.-J. 2018. Co-occurrent
1242
+ structural edge detection for color-guided depth map super-
1243
+ resolution. In MMM, 93–105.
1244
+ Zuo, Y.; Fang, Y.; Yang, Y.; Shang, X.; and Wang, B. 2019a.
1245
+ Residual dense network for intensity-guided depth map en-
1246
+ hancement. Information Sciences, 495: 52–64.
1247
+ Zuo, Y.; Wu, Q.; Fang, Y.; An, P.; Huang, L.; and Chen,
1248
+ Z. 2019b. Multi-scale frequency reconstruction for guided
1249
+ depth map super-resolution via deep residual network. IEEE
1250
+ Transactions on Circuits and Systems for Video Technology,
1251
+ 30(2): 297–306.
1252
+
1dFQT4oBgHgl3EQf1TYk/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
2dFKT4oBgHgl3EQfPy1W/content/tmp_files/2301.11764v1.pdf.txt ADDED
@@ -0,0 +1,1955 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 3D GENOME RECONSTRUCTION FROM PARTIALLY
2
+ PHASED HI-C DATA
3
+ DIEGO CIFUENTES, JAN DRAISMA, OSKAR HENRIKSSON,
4
+ ANNACHIARA KORCHMAROS, AND KAIE KUBJAS
5
+ Abstract. The 3-dimensional (3D) structure of the genome is of significant importance for
6
+ many cellular processes. In this paper, we study the problem of reconstructing the 3D struc-
7
+ ture of chromosomes from Hi-C data of diploid organisms, which poses additional challenges
8
+ compared to the better-studied haploid setting. With the help of techniques from algebraic
9
+ geometry, we prove that a small amount of phased data is sufficient to ensure finite identifi-
10
+ ability, both for noiseless and noisy data. In the light of these results, we propose a new 3D
11
+ reconstruction method based on semidefinite programming, paired with numerical algebraic ge-
12
+ ometry and local optimization. The performance of this method is tested on several simulated
13
+ datasets under different noise levels and with different amounts of phased data. We also apply
14
+ it to a real dataset from mouse X chromosomes, and we are then able to recover previously
15
+ known structural features.
16
+ 1. Introduction
17
+ The eukaryotic chromatin has a three-dimensional (3D) structure in the cell nucleus which
18
+ has been shown to be important in regulating basic cellular functions, including gene regulation,
19
+ transcription, replication, recombination, and DNA repair [41, 43]. The 3D DNA organization is
20
+ also associated to brain development and function; in particular, it is shown to be misregulated
21
+ in schizophrenia [32, 34] and Alzheimer’s disease [28].
22
+ All genetic material is stored in chromosomes which interact in the cell nucleus, and the 3D
23
+ chromatin structure influences the frequencies of such interactions. A benchmark tool to measure
24
+ such frequencies is high-throughput chromosome conformation capture (Hi-C) [16]. Hi-C first
25
+ crosslinks cell genomes, which “freezes” contacts between DNA segments. Then the genome is
26
+ cut in fragments, the fragments are ligated together and then are associated to equally-sized
27
+ segments of the genome using high-throughput sequencing [33]. These segments of the genome
28
+ are called loci and their size is known as resolution (e.g., bins of size 1Mb or 50Kb). The result of
29
+ Hi-C is stored in a matrix called contact matrix whose elements are the contact counts between
30
+ pairs of loci.
31
+ According to the structure they generate, computational methods for inferring the 3D chro-
32
+ matin structure from a contact matrix fall into two classes: ensemble and consensus methods.
33
+ In a haploid setting (organisms having a single set of chromosomes), ensemble models such as
34
+ MCMC5C [35], BACH-MIX [11] and Chrom3D [30], try to account for structure variations on
35
+ the genome across cells by inferring a population of 3D structures. On the other hand, consensus
36
+ methods aim at reconstructing one single 3D structure which may be used as a model for fur-
37
+ ther analysis. In this category, probability-based methods such as PASTIS [42, 4] model contact
38
+ counts as Poisson random variables of the Euclidean distances between loci, and distance-based
39
+ methods such as ChromSDE [46] and ShRec3D [17] model contact counts as functions of the
40
+ Euclidean distances. An extensive overview of different 3D genome reconstruction techniques is
41
+ given in [29].
42
+ Date: January 30, 2023.
43
+ 1
44
+ arXiv:2301.11764v1 [q-bio.GN] 27 Jan 2023
45
+
46
+ 2
47
+ D. CIFUENTES, J. DRAISMA, O. HENRIKSSON, A. KORCHMAROS, AND K. KUBJAS
48
+ Most of the methods for 3D genome reconstructions from Hi-C data are for haploid organisms.
49
+ However, humans like most mammals are diploid organisms, in which the genetic information is
50
+ stored in pairs of chromosomes called homologs. Homologous chromosomes are almost identical
51
+ besides some single nucleotide polymorphisms (SNPs) [18]. In the case of diploid organisms,
52
+ the Hi-C data does not generally differentiate between homologous chromosomes. If we model
53
+ each chromosome as a string of beads, then we associate two beads to each locus i ∈ {1, . . . , n},
54
+ one bead for each homolog. Therefore, each observed contact count ci,j between loci i and j
55
+ represents aggregated contacts of four different types of interactions, more precisely one of the
56
+ two homologous beads associated to locus i gets in contact with one of the two homologous
57
+ beads associated to locus j, see Figure 1. This means that the Hi-C data is unphased. Phased
58
+ Hi-C data that distinguishes contacts for homologs is rare. In our setting, we assume that the
59
+ data is partially phased, i.e., some of the contact counts can be associated with a homolog. For
60
+ example, in the (mouse) Patski (BL6xSpretus) [6, 45] cell line, 35.6% of the contact counts are
61
+ phased; while this value is as low as 0.14% in the human GM12878 cell line [33, 45]. Therefore,
62
+ methods for inferring diploid 3D chromatin structure need to take into account the ambiguity
63
+ of diploid Hi-C data to avoid inaccurate reconstructions.
64
+ Figure 1. Ambiguity of phased data.
65
+ Each entry ci,j of the Hi-C matrix corresponds to four
66
+ different contacts between the two pairs (xi, yi) for locus i and (xj, yj) for locus j.
67
+ Methods for 3D genome reconstruction in diploid organisms have been studied in [40, 4, 23, 2,
68
+ 22, 37]. One approach is to phase Hi-C data [40, 23, 22], for example by assigning haplotypes to
69
+ contacts based on assignments at neighboring contacts [40, 22]. Cauer et al. [4] models contact
70
+ counts as Poisson random variables. To find the optimal 3D chromatin structure, the associated
71
+ likelihood function combined with two structural constraints is maximized. The first constraint
72
+ imposes that the distances between neighboring beads are similar and the second one requires
73
+ that homologous chromosomes are located in different regions of the cell nucleus. Belyaeva et
74
+ al. [2] shows identifiability of the 3D structure when the Euclidean distances between neighboring
75
+ beads and higher-order contact counts between three or more loci simultaneously are given.
76
+ Under these assumptions, the 3D reconstruction is obtained by combining distance geometry
77
+ with semidefinite programming. Segal [37] applies recently developed imaging technology, in
78
+ situ genome sequencing (IGS) [31], to point out issues in the assumptions made in [40, 4, 2], and
79
+ suggests as alternative assumptions that intra-homolog distances are smaller than corresponding
80
+ inter-homolog distances and intra-homolog distances are similar for homologous chromosomes.
81
+
82
+ ci
83
+ Reference Genome
84
+ Homologous Chromosomes
85
+ HiC-matrix3D GENOME RECONSTRUCTION FROM PARTIALLY PHASED HI-C DATA
86
+ 3
87
+ IGS [31] provides yet another method for inferring the 3D structure of the genome, however, at
88
+ present the resolution and availability of IGS data is limited.
89
+ Contributions. In this work, we focus on a distance-based approach for partially phased Hi-C
90
+ data. In particular, we assume that contacts only for some loci are phased. In the string of beads
91
+ model, the locations of the pair of beads associated to i-th loci are denoted by xi, yi ∈ R3. Then
92
+ homologs are represented by two sequences x1, x2, . . . , xn and y1, x2, . . . , yn in R3; see Figure 1.
93
+ Inferring the 3D chromatin structure corresponds to estimating the bead coordinates. Based
94
+ on Lieberman-Aiden et al. [21], we assume the power law dependency ci,j = γdα
95
+ i,j, where α is
96
+ a negative conversion factor, between the distance di,j and contact count ci,j of loci i and j.
97
+ Following Cauer et al. [4], we assume that a contact count between loci is given by the sum of
98
+ all possible contact counts between the corresponding beads. We call a bead unambiguous if
99
+ the contacts for the corresponding locus are phased; otherwise we call a bead ambiguous.
100
+ Our first main contribution is to show that for negative rational conversion factors α, knowing
101
+ the locations of six unambiguous beads ensures that there are generically finitely many possible
102
+ locations for the other beads, both in the noiseless (Theorem 3.1) and noisy (Corollary 3.5)
103
+ setting. Moreover, we prove finite identifiability also in the fully ambiguous setting when α = −2
104
+ and the number of loci is at least 13 (Theorem 3.6). Note that the identifiability does not hold
105
+ for α = 2 as shown in [2].
106
+ Our second main contribution is to provide a reconstruction method when α = −2, based
107
+ on semidefinite programming combined with numerical algebraic geometry and local optimiza-
108
+ tion (section 4). The general idea is the following: We first estimate the coordinates of the
109
+ unambiguous beads using only the unambiguous contact counts (which precisely corresponds
110
+ to the haploid setting) using the SDP-based solver implemented in ChromSDE [46]. We then
111
+ exploit our theoretical result on finite identifiability to estimate the coordinates of the ambigu-
112
+ ous beads, one by one, by solving several polynomial systems numerically. These estimates are
113
+ then improved by a local estimation step that take into account all contact counts. Finally, a
114
+ clustering algorithm is used to overcome the symmetry (xi, yi) �→ (yi, xi) in the estimation for
115
+ the ambiguous beads.
116
+ The paper is organized as follows. In section 2, we introduce our mathematical model for
117
+ the 3D genome reconstruction problem. In section 3, we recall identifiability results in the un-
118
+ ambigous setting (section 3.1), and then prove identifiability results in the partially ambiguous
119
+ setting (section 3.2) and in the fully ambiguous setting (section 3.3). We describe our recon-
120
+ struction method in section 4. We test the performance of our method on synthetic datasets
121
+ and on a real dataset from the mouse X chromosomes in section 5. We conclude with a dis-
122
+ cussion about future research directions in section 6. The code for computations and exper-
123
+ iments is available at https://github.com/kaiekubjas/3D-genome-reconstruction-from-
124
+ partially-phased-HiC-data.
125
+ 2. Mathematical model for 3D genome reconstruction
126
+ In this section we introduce the distance-based model under which we study 3D genome re-
127
+ construction. In section 2.1 we give the background on contact count matrices. In section 2.2 we
128
+ describe a power-law between contacts and distances, which allows to translate the information
129
+ about contacts into distances.
130
+ 2.1. Contact count matrices. We model the genome as a string of 2n beads, corresponding
131
+ to n pairs of homologous beads. The positions of the beads are recorded by a matrix
132
+ Z = [x1, . . . , xn, y1, . . . , yn]T ∈ R2n×3.
133
+
134
+ 4
135
+ D. CIFUENTES, J. DRAISMA, O. HENRIKSSON, A. KORCHMAROS, AND K. KUBJAS
136
+ The positions xi and yi correspond to homologous beads. When convenient, we use the notation
137
+ z1 := x1, . . . , zn := xn, zn+1 := y1, . . . , z2n := yn. In this notation,
138
+ Z = [z1, . . . , zn, zn+1, . . . , z2n]T ∈ R2n×3.
139
+ Let U be the subset of pairs that are unambiguous, i.e., beads in the pair can be distinguished,
140
+ and let A be the subset of pairs that are ambiguous, i.e., beads in the pair cannot be distin-
141
+ guished. The sets U and A form a partition of [n].
142
+ A Hi-C matrix C is a matrix with each row and column corresponding to a genomic locus.
143
+ Following Cauer et al. [4], we call these contact counts ambiguous and denote the corresponding
144
+ contact count matrix by CA. If parental genotypes are available, then one can use SNPs to
145
+ map some reads to each haplotype [6, 24, 33].
146
+ If both ends of a read contains SNPs that
147
+ can be associated to a single parent, then the contact count is called unambiguous and the
148
+ corresponding contact count matrix is denoted by CU. Finally, if only one of the genomic loci
149
+ present in an interaction can be mapped to one of the homologous chromosomes, then the count
150
+ is called partially ambiguous and the contact count matrix is denoted by CP .
151
+ The unambiguous count matrix CU is a 2n×2n matrix with the first n indices corresponding
152
+ to x1, . . . , xn and the last n indices corresponding to y1, . . . , yn. The ambiguous count matrix
153
+ CA is an n×n matrix and we assume that each ambiguous count is the sum of four unambiguous
154
+ counts:
155
+ cA
156
+ i,j = cU
157
+ i,j + cU
158
+ i,j+n + cU
159
+ i+n,j + cU
160
+ i+n,j+n.
161
+ The partially ambiguous count matrix CP is a 2n×n matrix and each partially ambiguous count
162
+ is the sum of two unambiguous counts:
163
+ cP
164
+ i,j = cU
165
+ i,j + cU
166
+ i,j+n.
167
+ xi
168
+ xj
169
+ yi
170
+ yj
171
+ (a) cA
172
+ i,j for i, j ∈ A
173
+ xi
174
+ xj
175
+ yi
176
+ yj
177
+ (b) cP
178
+ i,j for i ∈ U, j ∈ A
179
+ xi
180
+ xj
181
+ yi
182
+ yj
183
+ (c) cP
184
+ i+n,j for i ∈ U, j ∈ A
185
+ xi
186
+ xj
187
+ yi
188
+ yj
189
+ (d) cU
190
+ i,j for i, j ∈ U
191
+ xi
192
+ xj
193
+ yi
194
+ yj
195
+ (e) cU
196
+ i,j+n for i, j ∈ U
197
+ xi
198
+ xj
199
+ yi
200
+ yj
201
+ (f) cU
202
+ i+n,j for i, j ∈ U
203
+ xi
204
+ xj
205
+ yi
206
+ yj
207
+ (g) cU
208
+ i+n,j+n for i, j ∈ U
209
+ Figure 2. Seven different types of contacts between the ith and jth locus.
210
+ 2.2. Contacts and distances. Denoting the distance ∥zi − zj∥ between zi and zj by di,j, the
211
+ power law dependency observed by Lieberman-Aiden et al. [21] can be written as
212
+ cU
213
+ i,j = γdα
214
+ i,j,
215
+ (2.1)
216
+ where α < 0 is a conversion factor and γ > 0 is a scaling factor. This relationship between
217
+ contact counts and distances is assumed in [2, 46], while in [4, 42] the contact counts ci,j are
218
+ modeled as Poisson random variables with the Poisson parameter being βdα
219
+ i,j.
220
+
221
+ 3D GENOME RECONSTRUCTION FROM PARTIALLY PHASED HI-C DATA
222
+ 5
223
+ In our paper, we assume that contact counts are related to distances by (2.1). Similarly to [2],
224
+ we set γ = 1 and in parts of the article α = −2. In general, the conversion factor α depends on
225
+ a dataset and its estimation can be part of the reconstruction problem [42, 46]. Setting γ = 1
226
+ means that we recover the configuration up to a scaling factor. In practice, the configuration
227
+ can be rescaled using biological knowledge, e.g., the radius of the nucleus.
228
+ Our approach to 3D genome reconstruction builds on the power law dependency between
229
+ contacts and distances between unambiguous beads. We convert the empirical contact counts
230
+ to Euclidean distances and then aim to reconstruct the positions of beads from the distances.
231
+ This leads us to the following system of equations:
232
+
233
+
234
+
235
+
236
+
237
+
238
+
239
+
240
+
241
+ cA
242
+ i,j = ∥xi − xj∥α + ∥xi − yj∥α + ∥yi − xj∥α + ∥yi − yj∥α
243
+ ∀i, j ∈ A
244
+ cP
245
+ i,j = ∥xi − xj∥α + ∥xi − yj∥α,
246
+ cP
247
+ i+n,j = ∥yi − xj∥α + ∥yi − yj∥α
248
+ ∀i ∈ U, j ∈ A
249
+ cU
250
+ i,j = ∥xi − xj∥α,
251
+ cU
252
+ i,j+n = ∥xi − yj∥α,
253
+ cU
254
+ i+n,j = ∥yi − xj∥α,
255
+ cU
256
+ i+n,j+n = ∥yi − yj∥α
257
+ ∀i, j ∈ U
258
+ (2.2)
259
+ If α is an even integer, then (2.2) is a system of rational equations.
260
+ Determining the points xi, yi, where i ∈ U, is the classical Euclidean distance problem: We
261
+ know the (noisy) pairwise distances between points and would like to construct the locations of
262
+ points, see section 3.1 for details. Hence after section 3.1 we assume that we have estimated the
263
+ locations of points xi, yi, where i ∈ U, and we would like to determine the points xi, yi, where
264
+ i ∈ A.
265
+ 3. Identifiability
266
+ In this section, we study the uniqueness of the solutions of the system (2.2) up to rigid
267
+ transformations (translations, rotations and reflections), or in other words, the identifiability of
268
+ the locations of beads. We study the unambiguous, partially ambiguous and ambiguous settings
269
+ in sections 3.1, 3.2 and 3.3, respectively.
270
+ 3.1. Unambiguous setting and Euclidean distance geometry. If all pairs are unambigu-
271
+ ous, i.e., U = [n], then constructing the original points translates to a classical problem in
272
+ Euclidean distance geometry. The principal task in Euclidean distance geometry is to construct
273
+ original points from pairwise distances between them. In the rest of the subsection, we will recall
274
+ how to solve this problem. Since pairwise distances are invariant under translations, rotations
275
+ and reflections (rigid transformations), then the original points can be reconstructed up to rigid
276
+ transformations. For an overview of distance geometry and Euclidean distance matrices, we
277
+ refer the reader to [7, 15, 20, 26].
278
+ The Gram matrix of the points z1, . . . , z2n is defined as
279
+ G = ZZT = [z1, . . . , z2n]T · [z1, . . . , z2n] ∈ R2n×2n.
280
+ Let z =
281
+ 1
282
+ 2n
283
+ �2n
284
+ i=1 zi and ˜zi = zi − z for i = 1, . . . , 2n. The matrix ˜Z = [˜z1, . . . , ˜z2n]T gives the
285
+ locations of points after centering them around the origin. Let ˜G denote the Gram matrix of
286
+ the centered point configuration ˜z1, . . . , ˜z2n.
287
+ Let Di,j = ∥zi−zj∥2 denote the squared Euclidean distance between the points zi and zj. The
288
+ Euclidean distance matrix of the points z1, . . . , z2n is defined as D = (Di,j)1≤i,j≤2n ∈ R2n×2n.
289
+ To express the centered Gram matrix in terms of the Euclidean distance matrix, we define the
290
+ geometric centering matrix
291
+ J = I2n − 1
292
+ 2n11T ,
293
+
294
+ 6
295
+ D. CIFUENTES, J. DRAISMA, O. HENRIKSSON, A. KORCHMAROS, AND K. KUBJAS
296
+ where I2n is the 2n × 2n identity matrix and 1 is the vector of ones. The linear relationship
297
+ between ˜G and D is given by
298
+ ˜G = −1
299
+ 2JDJ.
300
+ Therefore, given the Euclidean distance matrix, we can construct the centered Gram matrix for
301
+ the points z1, . . . , z2n.
302
+ The centered points up to rigid transformations are extracted from the centered Gram matrix
303
+ ˜G using the eigendecomposition ˜G = QΛQ−1, where Q is orthonormal and Λ is a diagonal
304
+ matrix with entries ordered in decreasing order λ1 ≥ λ2 ≥ . . . ≥ λ2n ≥ 0. We define Λ1/2
305
+ 3
306
+ :=
307
+ [diag(√λ1, √λ2, √λ3), 03×(2n−3)]T and set ˆZ = QΛ1/2
308
+ 3
309
+ . In the case of noiseless distance matrix
310
+ D, the Gram matrix ˜G has rank three and the diagonal matrix Λ has precisely three non-zero
311
+ entries. Hence we could obtain ˆZ also from QΛ1/2 by truncating zero columns. Using Λ1/2
312
+ 3
313
+ has
314
+ the advantage that it gives an approximation for the points also for a noisy distance matrix D.
315
+ The uniqueness of ˆZ up to rotations and reflections follows from [14, Proposition 3.2], which
316
+ states that AAT = BBT if and only if A = BQ for some orthogonal matrix Q.
317
+ The procedure that transforms the distance matrix to origin centered Gram matrix and then
318
+ uses eigendecomposition for constructing original points is called classical multidimensional scal-
319
+ ing (cMDS) [5]. Although cMDS is widely used in practice, it does not always find the distance
320
+ matrix that minimizes the Frobenius norm to the empirical noisy distance matrix [39]. Other
321
+ approaches to solving the Euclidean distance and Euclidean completion problems include non-
322
+ convex [9, 25] as well semidefinite formulations [1, 10, 27, 44, 46, 47].
323
+ 3.2. Partially ambiguous setting. The next theorem establishes the uniqueness of the solu-
324
+ tions of the system (2.2) in the presence of ambiguous pairs. In particular, it states that there
325
+ are finitely many possible locations for beads in one ambiguous pair given the locations of six
326
+ unambiguous beads. The identifiability results in this subsection hold for all negative rational
327
+ numbers α. In the rest of the paper, we denote the true but unknown coordinates by x∗ and the
328
+ symbol x stands for a variable that we want to solve for. We write ∥ · ∥ for the standard inner
329
+ product on R3.
330
+ Theorem 3.1. Let α be a negative rational number. Then for a∗, b∗, . . . , f∗, x∗, y∗ ∈ R3 suffi-
331
+ ciently general, the system of six equations
332
+ ∥x − t∗∥α + ∥y − t∗∥α = ∥x∗ − t∗∥α + ∥y∗ − t∗∥α for t∗ = a∗, b∗, . . . , f∗
333
+ (3.1)
334
+ in the six unknowns x1, x2, x3, y1, y2, y3 ∈ R has only finitely many solutions.
335
+ Remark 3.2. The proof will show that this system has only finitely many solutions over the
336
+ complex numbers.
337
+ We believe that the theorem holds for general nonzero rational α.
338
+ Indeed, our argument
339
+ works, with a minor modification, also for α > 2, but for α in the range (0, 2] a refinement of
340
+ the argument is needed.
341
+ Proof. First write Q(x) := x2
342
+ 1 + x2
343
+ 2 + x2
344
+ 3, so that ∥x∥ =
345
+
346
+ Q(x) for x ∈ R3. The advantage of Q
347
+ over ∥x∥ is that it is well-defined on C3.
348
+ Write α
349
+ 2 =
350
+ m
351
+ n with m, n integers, m ̸= 0, and n > 0.
352
+ Consider the affine variety X ⊆
353
+ (C3)8 × (C2)6 consisting of all tuples
354
+ ((a∗, . . . , f∗, x∗, y∗), (rt∗, st∗)t∗=a∗,...,f∗)
355
+ such that
356
+ Q(x∗ − t∗)m = rn
357
+ t∗ ̸= 0 and Q(y∗ − t∗)m = sn
358
+ t∗ ̸= 0 for t∗ = a∗, . . . , f∗.
359
+
360
+ 3D GENOME RECONSTRUCTION FROM PARTIALLY PHASED HI-C DATA
361
+ 7
362
+ Note that, if x∗, t∗ are real, then it follows that
363
+ Q(x∗ − t∗)m = (��x∗ − t∗∥α)n,
364
+ and similarly for Q(y∗ − t∗). Hence if a∗, . . . , y∗ are all real, then the point
365
+ ((a∗, . . . , f∗, x∗, y∗), (∥x∗ − t∗∥α, ∥y∗ − t∗∥α)t∗)
366
+ (3.2)
367
+ is a point in X with real-valued coordinates.
368
+ The projection π from X to the open affine subset U ⊆ (C3)8 where all Q(x∗−t∗) and Q(y∗−t∗)
369
+ are nonzero is a finite morphism with fibres of cardinality n12; to see this cardinality note that
370
+ there are n possible choices for each of the numbers rt∗, st∗. Each irreducible component of X
371
+ is a smooth variety of dimension 24.
372
+ Consider the map ψ : X → (C3 × C1)6 defined by
373
+ ((a∗, . . . , f∗, x∗, y∗), (rt∗, st∗)t∗) �→ ((t∗, rt∗ + st∗))t∗
374
+ We claim that for q in some open dense subset of X, the derivative dqψ has full rank 24. For
375
+ this, it suffices to find one point p ∈ U such that dqψ has rank 24 at each of the n12 points
376
+ q ∈ π−1(p). We take a real-valued point p := (a∗, b∗, . . . , f∗, x∗, y∗) ∈ (R3)8 to be specified later
377
+ on. Let q ∈ π−1(p). Then, near q, the map ψ factorises via π and the unique algebraic map
378
+ ψ′ : U → (C3 × C1)6 (defined near p) which on a neighbourhood of p in U ∩ (R3)8 equals
379
+ ψ′(a, . . . , f, x, y) = ((t, ξt∗ · Q(x − t)α/2 + ηt∗ · Q(y − t)α/2))t=a,...,f ∈ (C3 × C1)6
380
+ where ξt∗ and ζt∗ are n-th roots of unity in C depending on which q is chosen among the n12
381
+ points in π−1(p). The situation is summarised in the following diagram:
382
+ (X, q)
383
+ π
384
+
385
+ ψ
386
+
387
+ (U, p)
388
+ ψ′
389
+ � ((C3 × C1)6, ψ(q)).
390
+ Now, dqψ = dpψ′ ◦ dqπ, and since dqπ is a linear isomorphism, it suffices to prove that dpψ′
391
+ is a linear isomorphism. Suppose that (a′, . . . , f′, x′, y′) ∈ ker dpψ′. Then, since the map ψ′
392
+ remembers a, . . . , f, it follows immediately that a′ = . . . = f′ = 0. On the other hand, by
393
+ differentiating we find that, for each t∗ ∈ {a∗, . . . , f∗},
394
+ ξt∗ · (α/2) · Q(x∗ − t∗)α/2−1 · 2 · ⟨x′, x∗ − t∗⟩
395
+ +ηt∗ · (α/2) · Q(y∗ − t∗)α/2−1 · 2 · ⟨y′, y∗ − t∗⟩ = 0,
396
+ where ⟨·, ·⟩ stands for the standard bilinear form on C3. In other words, the vector (x′, y′) ∈ C6
397
+ is in the kernel of the 6 × 6-matrix
398
+ M :=
399
+
400
+ ��
401
+ ∥x∗ − a∗∥α−2 · ξa∗ · (x∗ − a∗)
402
+ ∥y∗ − a∗∥α−2 · ηa∗ · (y∗ − a∗)
403
+ ...
404
+ ...
405
+ ∥x∗ − f∗∥α−2 · ξf∗ · (x∗ − f∗)
406
+ ∥y∗ − f∗∥α−2 · ηf∗ · (y∗ − f∗)
407
+
408
+ ��
409
+ where we have interpreted a∗, . . . , f∗, x∗, y∗ as row vectors. It suffices to show that, for some
410
+ specific choice of p = (a∗, . . . , f∗, x∗, y∗) ∈ (R3)8, this matrix is nonsingular for all n12 choices
411
+ of ((ξt∗, ηt∗))t∗.
412
+ We choose a∗, . . . , f∗, x∗, y∗ as the vertices of the unit cube, as follows:
413
+ a∗ = (1, 0, 0)
414
+ b∗ = (0, 1, 0)
415
+ c∗ = (0, 0, 1)
416
+ c∗ = (0, 1, 1)
417
+ d∗ = (1, 0, 1)
418
+ f∗ = (1, 1, 0)
419
+ x∗ = (0, 0, 0)
420
+ y∗ = (1, 1, 1).
421
+
422
+ 8
423
+ D. CIFUENTES, J. DRAISMA, O. HENRIKSSON, A. KORCHMAROS, AND K. KUBJAS
424
+ Then the matrix M becomes, with β = α − 2:
425
+
426
+ ���������
427
+ −ξa∗
428
+ 0
429
+ 0
430
+ 0
431
+ 2
432
+ β
433
+ 2 · ηa∗
434
+ 2
435
+ β
436
+ 2 · ηa∗
437
+ 0
438
+ −ξb∗
439
+ 0
440
+ 2
441
+ β
442
+ 2 · ηb∗
443
+ 0
444
+ 2
445
+ β
446
+ 2 · ηb∗
447
+ 0
448
+ 0
449
+ −ξc∗
450
+ 2
451
+ β
452
+ 2 · ηc∗
453
+ 2
454
+ β
455
+ 2 · ηc∗
456
+ 0
457
+ 0
458
+ −(2
459
+ β
460
+ 2 · ξd∗)
461
+ −(2
462
+ β
463
+ 2 · ξd∗)
464
+ ηd∗
465
+ 0
466
+ 0
467
+ −(2
468
+ β
469
+ 2 · ξe∗)
470
+ 0
471
+ −(2
472
+ β
473
+ 2 · ξe∗)
474
+ 0
475
+ ηe∗
476
+ 0
477
+ −(2
478
+ β
479
+ 2 · ξf∗)
480
+ −(2
481
+ β
482
+ 2 · ξf∗)
483
+ 0
484
+ 0
485
+ 0
486
+ ηf∗
487
+
488
+ ���������
489
+ .
490
+ Now, det(M) equals
491
+ − ξa∗ · ξb∗ · ξc∗ · ηd∗ · ηe∗ · ηf∗ + 22+3β · ηa∗ · ηb∗ · ηc∗ · ξd∗ · ξe∗ · ξf∗ + 22β · R
492
+ (3.3)
493
+ where R is a sum of (products of) roots of unity. Now α < 0 implies that β < −2, so that
494
+ 2 + 3β < 2β < 0. Since roots of unity have 2-adic valuation 0, the second term in the expression
495
+ above is the unique term with minimal 2-adic valuation. Hence det(M) ̸= 0, as desired.
496
+ It follows that ψ is a dominant morphism from each irreducible component of X into (C3 ×
497
+ C1)6, and hence for all q in an open dense subset of X, the fibre ψ−1(ψ(q)) is finite. This then
498
+ holds, in particular, for q in an open dense subset of the real points as in (3.2). This proves the
499
+ theorem.
500
+
501
+ Remark 3.3. If α > 2, then β > 0, and hence the unique term with minimal 2-adic valuation in
502
+ (3.3) is the first term. This can be used to show that the theorem holds then, as well. The only
503
+ subtlety is that for positive α, solutions where x or y equal one of the points a∗, . . . , f∗ are not
504
+ automatically excluded, and these are not seen by the variety X. But a straightforward argument
505
+ shows that such solutions do not exist for sufficiently general choices of a∗, . . . , f∗, x∗, y∗.
506
+ We now consider the setting when we know locations of seven unambiguous beads. In the
507
+ special case when α = −2, we construct the ideal generated by the polynomials obtained from
508
+ rational equations (3.1) for seven unambiguous beads after moving all terms to one side and
509
+ clearing the denominators. Based on symbolic computations in Macaulay2 for the degree of
510
+ this ideal, we conjecture that the location of a seventh unambiguous bead guarantees unique
511
+ identifiability of an ambiguous pair of beads:
512
+ Conjecture 3.4. Let a∗, b∗, c∗, d∗, e∗, f∗, g∗, x∗, y∗ ∈ R3 be sufficiently general. The system of
513
+ rational equations
514
+ 1
515
+ ∥t∗ − x∗∥2 +
516
+ 1
517
+ ∥t∗ − y∗∥2 =
518
+ 1
519
+ ∥t∗ − x∥2 +
520
+ 1
521
+ ∥t∗ − y∥2 for t∗ = a∗, b∗, c∗, d∗, e∗, f∗, g∗
522
+ (3.4)
523
+ has precisely two solutions (x∗, y∗) and (y∗, x∗).
524
+ In practice, we only have noisy estimates a, b, . . . , f ∈ R3 of the true positions of unambiguous
525
+ beads a∗, b∗, . . . , f∗ ∈ R3, and we have noisy observations ct of the true contact counts c∗
526
+ t :=
527
+ ∥x∗ − t∗∥α + ∥y∗ − t∗∥α. We aim to find x, y ∈ R3 such that
528
+ ∥x − t∥α + ∥y − t∥α = ct for t = a, b, . . . , f.
529
+ We may write ct = ∥x∗ − t∥α + ∥y∗ − t∥α + ϵt for some ϵt that depends on the noise level. Hence,
530
+ the above system of equations can be rephrased as
531
+ ∥x − t∥α + ∥y − t∥α = ∥x∗ − t∥α + ∥y∗ − t∥α + ϵt for t = a, b, . . . , f.
532
+ (3.5)
533
+ In the following corollary we show that this system has generically finitely many solutions.
534
+ Corollary 3.5. Let α be a negative rational number.
535
+ Then for a, b, . . . , f, x∗, y∗ ∈ R3 and
536
+ ϵa, ϵb, . . . , ϵf ∈ R sufficiently general, the system of six equations
537
+ ∥x − t∥α + ∥y − t∥α = ∥x∗ − t∥α + ∥y∗ − t∥α + ϵt for t = a, b, . . . , f
538
+ (3.6)
539
+
540
+ 3D GENOME RECONSTRUCTION FROM PARTIALLY PHASED HI-C DATA
541
+ 9
542
+ in the six unknowns x1, x2, x3, y1, y2, y3 ∈ R has only finitely many solutions.
543
+ Proof. Recall the map ψ : X → (C3 × C1)6 from the proof of Theorem 3.1 defined by
544
+ ((a, . . . , f, x∗, y∗), (rx∗,t, sy∗,t)t) �→ ((t, rx∗,t + sy∗,t))t.
545
+ We showed that ψ is a dominant morphism from each irreducible component of X into (C3×C1)6,
546
+ and that each irreducible component of X is 24-dimensional. Every solution to (3.6) is the (x, y)-
547
+ component of a point in the fibre
548
+ ψ−1((t, ||x∗ − t||α + ||y∗ − t||α + ϵt))t.
549
+ Since this is a fibre over a sufficiently general point, the fibre is finite.
550
+
551
+ Corollary 3.5 will be the basis of a numerical algebraic geometric based reconstruction method
552
+ in section 4.
553
+ 3.3. Ambiguous setting. Finally we consider the ambiguous setting, where one would like to
554
+ reconstruct the locations of beads only from ambiguous contact counts. It is shown in [2] that
555
+ for α = 2, one does not have finite identifiability no matter how many pairs of ambiguous beads
556
+ one considers. We show finite identifiability for the locations of beads given contact counts for
557
+ 13 pairs of ambiguous beads for α = −2. We believe that the result might be true for further
558
+ conversion factors α’s, however our proof technique does not directly generalize.
559
+ Theorem 3.6. Let α = −2. Then for x∗
560
+ 1, y∗
561
+ 1, . . . , x∗
562
+ 12, y∗
563
+ 12 ∈ R3 sufficiently general, the system
564
+ of 66 equations
565
+ ∥xi − xj∥α + ∥xi − yj∥α + ∥yi − xj∥α + ∥yi − yj∥α =
566
+ ∥x∗
567
+ i − x∗
568
+ j∥α + ∥x∗
569
+ i − y∗
570
+ j ∥α + ∥y∗
571
+ i − x∗
572
+ j∥α + ∥y∗
573
+ i − y∗
574
+ j ∥α for 1 ≤ i < j ≤ 12
575
+ (3.7)
576
+ in the 72 unknowns x1,1, x1,2, x1,3, y1,1, y1,2, y1,3, . . . , x12,1, x12,2, x12,3, y12,1, y12,2, y12,3 ∈ R has
577
+ only finitely many solutions up to rigid transformations.
578
+ Proof. As before, we write Q(x) := x2
579
+ 1 + x2
580
+ 2 + x2
581
+ 3, so that ∥x∥ =
582
+
583
+ Q(x) for x ∈ R3. Consider
584
+ the affine open subset X ⊆ (C3)24 consisting of all tuples (x∗
585
+ 1, y∗
586
+ 1, . . . , x∗
587
+ 12, y∗
588
+ 12) such that
589
+ Q(x∗
590
+ i − x∗
591
+ j) ̸= 0, Q(x∗
592
+ i − y∗
593
+ j ) ̸= 0, Q(y∗
594
+ i − x∗
595
+ j) ̸= 0 and Q(y∗
596
+ i − y∗
597
+ j ) ̸= 0 for 1 ≤ i < j ≤ 12.
598
+ Consider also the map ψ : X → C66 defined by
599
+ (x∗
600
+ 1, y∗
601
+ 1, . . . , x∗
602
+ 12, y∗
603
+ 12) �→ (Q(x∗
604
+ i − x∗
605
+ j)−1 + Q(x∗
606
+ i − y∗
607
+ j )−1 + Q(y∗
608
+ i − x∗
609
+ j)−1 + Q(y∗
610
+ i − y∗
611
+ j )−1)i<j
612
+ By a computer calculation (with exact arithmetic) we found that at a randomly chosen q ∈ X
613
+ with rational coordinates, the derivative dqψ had full rank 66. It then follows that for q in
614
+ some open dense subset of X, dqψ has rank 66. Hence ψ is dominant, and for any sufficiently
615
+ general q ∈ X, all irreducible components of the fibre ψ−1(ψ(q)) through q have dimension 6.
616
+ Moreover, each such component C is preserved by the 6-dimensional group G = SO(3, C) ⋉ C3.
617
+ If the stabilizer in G of a sufficiently general point in C has dimension 0, then it follows that
618
+ C is a 6-dimensional G-orbit. That this stabilizer is indeed zero-dimensional follows from a
619
+ Lie algebra argument: if a point (x∗
620
+ 1, . . . , y∗
621
+ 12) in X has a positive-dimensional stabiliser in G,
622
+ then there exists a nonzero element A in the Lie algebra of SO(3) that maps all di��erences
623
+ x∗
624
+ i − x∗
625
+ j, x∗
626
+ i − y∗
627
+ j , y∗
628
+ i − y∗
629
+ j to zero. But A is a skew-symmetric matrix of rank 2, and it follows
630
+ that all 24 points lie on a line parallel to the kernel of A. Such 24-tuples in X, consisting of
631
+ collinear points, cannot map dominantly into C66 for dimension reasons, hence we may assume
632
+ that the fibre through q does not containing any such tuple. Thus we have shown that, for q ∈ X
633
+ sufficiently general, ψ−1(ψ(q)) is a finite union of G-orbits C. If, furthermore, q has real-valued
634
+ coordinates, then a finite number of these G-orbits C contain a real-valued point q′. It then
635
+ readily follows that C ∩ (R3)24 = (SO(3, R) ⋉ R3) · q′, as desired.
636
+
637
+
638
+ 10
639
+ D. CIFUENTES, J. DRAISMA, O. HENRIKSSON, A. KORCHMAROS, AND K. KUBJAS
640
+ Remark 3.7. When α = 2, which corresponds to the setting studied in [2], then computationally
641
+ we found that for some special choices of x∗
642
+ 1, y∗
643
+ 1, . . . , x∗
644
+ 12, y∗
645
+ 12 ∈ R3 the rank of the Jacobian matrix
646
+ in Theorem 3.6 is 42. This is consistent with the fact that Theorem 3.6 fails for α = 2 [2].
647
+ 4. A new reconstruction method
648
+ In this section, we outline a new approach to diploid 3D genome reconstruction for partially
649
+ phased data, based on the theoretical results discussed in subsection 3.2. The method consists
650
+ of the following main steps:
651
+ (1) Estimation of the unambiguous beads {xi, yi}i∈U through semidefinite programming (dis-
652
+ cussed in subsection 4.1).
653
+ (2) A preliminary estimation of the ambiguous beads using numerical algebraic geometry,
654
+ based on Corollary 3.5 (discussed in subsection 4.2).
655
+ (3) A refinement of this estimation using local optimization (discussed in subsection 4.3).
656
+ (4) A final clustering step, where we disambiguate between the estimations (xi, yi) and
657
+ (yi, xi) for each i ∈ A, based on the assumption that homolog chromosomes are separated
658
+ in space (discussed in subsection 4.4).
659
+ In what follows, we will refer to this method by the acronym SNLC (formed from the initial letters
660
+ in semidefinite programming, numerical algebraic geometry, local optimization and clustering).
661
+ 4.1. Estimation of the positions of unambiguous beads. As discussed in section 3.1, the
662
+ unambiguous bead coordinates {xi, yi}i∈U = {zi}i∈U∪(n+U) can be estimated with semidefinite
663
+ programming. More specifically, we use ChromSDE [46, Section 2.1] for this part of our re-
664
+ construction, which relies on a specialized solver from [13], to solve an SDP relaxation of the
665
+ optimization problem
666
+ min
667
+ {zi}i∈U∪(n+U)
668
+
669
+ i,j∈U∪(n+U)
670
+ cU
671
+ ij̸=0
672
+
673
+ cU
674
+ ij
675
+
676
+ 1
677
+ cU
678
+ ij
679
+ − ∥zi − zj∥2
680
+ �2
681
+ + λ
682
+
683
+ i,j∈U∪(n+U)
684
+ cU
685
+ ij=0
686
+ ∥zi − zj∥2
687
+ (4.1)
688
+ with λ = 0.01 (cf. [46, Equation 4]). The terms in the first sum are weighted by the square root
689
+ for the corresponding contact counts, in order to account for the fact that higher counts can be
690
+ assumed to be less susceptible to noise.
691
+ 4.2. Preliminary estimation using numerical algebraic geometry. To estimate the co-
692
+ ordinates of the ambiguous beads {xi, yi}i∈A, we will use a method based on numerical equation
693
+ solving, where we estimate the ambiguous bead pairs one by one.
694
+ Let x, y be the unknown coordinates in R3 of a pair of ambiguous beads. We pick six unam-
695
+ biguous beads with already estimated coordinates a, b, c, d, e, f ∈ R3. For each t ∈ {a, . . . , f},
696
+ let ct ∈ R be the corresponding partially ambiguous counts between f and the ambiguous bead
697
+ pair (x, y). Clearing the denominators in the system (3.6), we obtain a system of polynomial
698
+ equations
699
+ ∥x − t∥2 + ∥y − t∥2 = ct∥x − t∥2∥y − t∥2 for t = a, b, c, d, e, f.
700
+ (4.2)
701
+ By Corollary 3.5, this system has finitely many complex solutions both in the noiseless and noisy
702
+ setting, which can be found using homotopy continuation.
703
+ We observe that the system (4.2) generally has 80 complex solutions, and we only expect one
704
+ pair of solutions (x, y), (y, x) to correspond to an accurate estimation. Naively adding another
705
+ polynomial arising from a seventh unambiguous bead (as in Conjecture 3.4) does not work; in
706
+ the noisy setting this over-determined system typically lacks solutions. Instead, we compute an
707
+ estimation based on the following two heuristic assumptions:
708
+
709
+ 3D GENOME RECONSTRUCTION FROM PARTIALLY PHASED HI-C DATA
710
+ 11
711
+ (1) The most accurate estimation should be approximately real, in the sense that the norm
712
+ of the imaginary part is below a certain tolerance (in this work, we used 0.2 for the
713
+ experiments in subsection 5.1, and 0.15 for the experiments in subsection 5.2).
714
+ (2) The most accurate estimation should be consistent when we change the choice of six
715
+ unambiguous beads.
716
+ Based on these assumptions, we apply the following strategy. We make a number N ≥ 2, choices
717
+ of sets of six unambiguous beads, and solve the corresponding N square systems of the form (4.2).
718
+ Since larger contact counts can be expected to have smaller relative noise, we make the choices
719
+ of beads among the 20 unambiguous beads t that have highest contact count ct to the ambiguous
720
+ locus at hand. For each system, we pick out the approximately real solutions, and obtain N
721
+ sets S1, . . . , SN ⊆ R6 consisting of the real parts of the approximately real solutions. Up to
722
+ the symmetry (x, y) �→ (y, x), we expect these sets to have a unique “approximately common”
723
+ element. We therefore compute, by an exhaustive search, the tuple (w1, . . . , wN) ∈ S1 ×· · ·×SN
724
+ that minimizes the sum
725
+ ����w1 − w1 + · · · + wN
726
+ N
727
+ ���� + · · · +
728
+ ����wN − w1 + · · · + wN
729
+ N
730
+ ���� ,
731
+ and use w1+···+wN
732
+ N
733
+ as our estimation of (x, y). For the computations presented in section 5, we
734
+ use N = 5.
735
+ To solve the systems, we use the Julia package HomotopyContinuation.jl [3], and follow the
736
+ two-phase procedure described in [38, Section 7.2]. For the first phase, we solve (4.2) with ran-
737
+ domly chosen parameters a∗, . . . , f∗ ∈ C3 and ca∗, . . . , cf∗ ∈ C, using a polyhedral start system
738
+ [12]. We trace 1280 paths in this first phase, since the Newton polytopes of the polynomials
739
+ appearing in the system (4.2) all contain the origin, and have a mixed volume of 1280, which
740
+ makes 1280 an upper bound on the number of complex solutions by [19, Theorem 2.4]. For the
741
+ second phase, we use a straight-line homotopy in parameter space from the randomly chosen
742
+ parameters a∗, . . . , f∗ ∈ C3 and ca∗, . . . , cf∗ ∈ C, to the values a, . . . , f and ca, . . . , cf ∈ C at
743
+ hand. We observe that we generally find 80 complex solutions in the first phase, which means
744
+ 40 orbits with respect to the symmetry (x, y) �→ (y, x). By the discussion in [38, Section 7.6], it
745
+ is enough to only trace one path per orbit, so in the end, we only trace 40 paths in the second
746
+ phase.
747
+ Remark 4.1. If the noise levels are sufficiently high, there could be choices of six unambiguous
748
+ beads for which the system lacks approximately-real solutions. If this situation is encountered,
749
+ we try to redraw the six unambiguous beads until we find an approximately-real solution. If this
750
+ does not succeed within a certain number of attempts (100 in the experiments conducted for this
751
+ paper), we use the average of the closest neighboring unambiguous beads instead.
752
+ 4.3. Local optimization. A disadvantage of the numerical algebraic geometry based estima-
753
+ tion discussed in the previous subsection is that it only takes into account “local” information
754
+ about the interactions for one ambiguous locus at a time, which might make it more sensitive to
755
+ noise. In our proposed method, we therefore refine this preliminary estimation of {xi, yi}i∈A fur-
756
+ ther in a local optimization step that takes into account the “global” information of all available
757
+ data.
758
+ The idea is to estimate {xi, yi}i∈A by solving the optimization problem
759
+ min
760
+ {xi,yi}i∈A
761
+
762
+ i∈U,j∈A
763
+ ��
764
+ cP
765
+ i,j −
766
+ 1
767
+ ∥xi−xj∥2 −
768
+ 1
769
+ ∥xi−yj∥2
770
+ �2
771
+ +
772
+
773
+ cP
774
+ i+n,j −
775
+ 1
776
+ ∥yi−xj∥2 −
777
+ 1
778
+ ∥yi−yj∥2
779
+ �2�
780
+ (4.3)
781
+
782
+ 12
783
+ D. CIFUENTES, J. DRAISMA, O. HENRIKSSON, A. KORCHMAROS, AND K. KUBJAS
784
+ while keeping the estimates of {xi, yi}i∈U from the ChromSDE step fixed. We use the quasi-
785
+ Newton method for unconstrained optimization implemented in the Matlab Optimization Tool-
786
+ box for this step. The already estimated coordinates of {xi, yi}i∈A from the numerical algebraic
787
+ geometry step are used for the initialization.
788
+ 4.4. Clustering to break symmetry. Our objective function remains invariant if we exchange
789
+ xi and yi for any i ∈ A. We can break symmetry by relying on the empirical observation that
790
+ homologous chromosomes typically are spatially separated in different so-called compartments
791
+ of the nucleus [8].
792
+ Let (¯xi, ¯yi)n
793
+ i=1 denote the estimates from the previous steps.
794
+ Our final
795
+ estimations will be obtained by solving the minimization problem
796
+ min
797
+ {xi,yi}i∈A
798
+ n−1
799
+
800
+ i=1
801
+ gi,i+1(x, y),
802
+ with
803
+ gi,i+1(x, y) :=
804
+
805
+ ∥xi − xi+1∥2 + ∥yi − yi+1∥2�
806
+ ,
807
+ (4.4)
808
+ where (xi, yi) = (¯xi, ¯yi) for i ∈ U are fixed, and (xi, yi) ∈ {(¯xi, ¯yi), (¯yi, ¯xi)} for i ∈ A are the
809
+ optimization variables. The optimal solution can be computed efficiently, as explained next.
810
+ We first decompose the problem into contiguous chunks of ambiguous beads. Let (i1, . . . , iL) :=
811
+ U be the indices of the unambiguous beads and let i0 := 1, iL+1 := n. The optimization problem
812
+ can be phrased as
813
+ min
814
+ {xi,yi}i∈A
815
+ L
816
+
817
+ ℓ=0
818
+ Gℓ(x, y),
819
+ with
820
+ Gℓ(x, y) :=
821
+ iℓ+1−1
822
+
823
+ i=iℓ
824
+ gi,i+1(x, y)
825
+ (4.5)
826
+ where there is one summand Gℓ(x, y) for each contiguous chunk of ambiguous beads. Since the
827
+ summands Gℓ(x, y) do not share any ambiguous bead, we can minimize them independently.
828
+ We proceed to describe the optimal solution of the problem. Let
829
+ si =
830
+
831
+ 1,
832
+ if (xi, yi) = (¯xi, ¯yi)
833
+ −1,
834
+ if (xi, yi) = (¯yi, ¯xi) ,
835
+ wi,i+1 = (¯xi − ¯yi)T (¯xi+1 − ¯yi+1).
836
+ The variable si indicates whether we keep using (¯xi, ¯yi) or we reverse it.
837
+ Note that si = 1
838
+ for i ∈ U. The next lemma gives the optimal assignment of si for i ∈ A. This assignment is
839
+ constructed by using inner products wi,i+1.
840
+ Lemma 4.2. The optimal solution of (4.4) can be constructed as follows:
841
+ (1) For the last chunk (ℓ = L) we have
842
+ s∗
843
+ iℓ = 1,
844
+ s∗
845
+ i+1 = sgn(wi,i+1)s∗
846
+ i
847
+ for i = iℓ, iℓ+1, . . . , iℓ+1−1
848
+ where sgn(·) is the sign function and sgn(0) can be either 1 or −1.
849
+ (2) For the first chunk (ℓ = 0) we have
850
+ s∗
851
+ iℓ+1 = 1,
852
+ s∗
853
+ i = sgn(wi,i+1)s∗
854
+ i+1
855
+ for i = iℓ+1−1, iℓ+1−2, . . . , iℓ
856
+ (3) For any other chunk, let k be the index of the smallest absolute value |wk,k+1|, among
857
+ iℓ ≤ k ≤ iℓ+1 − 1. The solution is
858
+ s∗
859
+ iℓ = 1,
860
+ s∗
861
+ i+1 = sgn(wi,i+1)s∗
862
+ i
863
+ for i = iℓ, iℓ+1, . . . , k−1
864
+ s∗
865
+ iℓ+1 = 1,
866
+ s∗
867
+ i = sgn(wi,i+1)s∗
868
+ i+1
869
+ for i = iℓ+1−1, iℓ+1−2, . . . , k+1
870
+ Proof. Denoting ¯ui := 1
871
+ 2(¯xi + ¯yi), ¯vi := 1
872
+ 2(¯xi − ¯yi), then xi = ui + sivi, yi = ui − sivi. Note that
873
+ ∥¯xi∥2 + ∥¯yi∥2 + ∥¯xi+1∥2 + ∥¯yi+1∥2 − gi,i+1(x, y) = 2(xT
874
+ i xi+1 + yT
875
+ i yi+1)
876
+ = 2(¯ui + si¯vi)T (¯ui+1 + si+1¯vi+1) + 2(¯ui − si¯vi)T (¯ui+1 − si+1¯vi+1)
877
+ = 4(¯uT
878
+ i ¯ui+1) + 4(¯vT
879
+ i ¯vi+1)sisi+1
880
+
881
+ 3D GENOME RECONSTRUCTION FROM PARTIALLY PHASED HI-C DATA
882
+ 13
883
+ = 4(¯uT
884
+ i ¯ui+1) + wi,i+1sisi+1
885
+ Since ¯xi, ¯yi, ¯ui, ¯vi are constants, minimizing gi,i+1(x, y) is equivalent to maximizing wi,i+1sisi+1.
886
+ Then for each chunk we have to solve the optimization problem
887
+ max
888
+ si∈{1,−1}
889
+ iℓ+1−1
890
+
891
+ i=iℓ
892
+ wi,i+1sisi+1 ,
893
+ (4.6)
894
+ The formulas from the first and last chunk are such that wi,i+1s∗
895
+ i s∗
896
+ i+1 ≥ 0 for all i. This is
897
+ possible because in these cases only one of the endpoints has a fixed value, and the remaining
898
+ values are computed recursively starting from such a fixed point.
899
+ Since all summands are
900
+ nonnegative, the sum in (4.6) is maximized.
901
+ For the inner chunks, the two endpoints are fixed, so it may not be possible to have that
902
+ wi,i+1s∗
903
+ i s∗
904
+ i+1 ≥ 0 for all indices. In an optimal assignment we should pick at most one term to
905
+ be negative, and such a term (if it exists) should be the one with the smallest absolute value
906
+ |wi,i+1|. This leads to the formula from the lemma.
907
+
908
+ 5. Experiments
909
+ In this section, we apply the SNLC scheme described in section 4 to synthetic and real datasets,
910
+ and compare its performance with the preexisting software package PASTIS.
911
+ All experiments are done using Julia 1.6.1, with ChromSDE being run in Matlab 2021a
912
+ and PASTIS in Python 3.8.10, and the Julia package MATLAB.jl (v0.8.3) acting as interface
913
+ to Matlab. The numerical algebraic geometry part of the estimation procedure is done with
914
+ HomotopyContinuation.jl (v2.5.5) [3].
915
+ For the PASTIS computations, we fix α = −2 to ensure compatibility with the modelling
916
+ assumptions made in this paper. We run PASTIS without filtering, in order to make it possible
917
+ to compare RMSD values. Since PASTIS only takes integer inputs, we multiply the theoretical
918
+ contact counts calculated by (2.2) by a factor 105 and round them to the nearest integer.
919
+ Following the approach taken in [4], we use a coarse grid search to find the optimal coefficients
920
+ for the homolog separating constraint and bead connectivity constraints. Specifically, we fix a
921
+ structure simulated with the same method as used in the experiments, and compute the RMSD
922
+ values for all λ1, λ2 ∈ {1, 101, 102, . . . , 1012}. In this way, we find that λ1 = 1011 and λ2 = 1012
923
+ give optimal results.
924
+ 5.1. Synthetic data. We conduct a number of experiments where we simulate a single chromo-
925
+ some pair (referred to as X and Y in figures) through Brownian motion with fixed step length,
926
+ compute unambiguous, partially ambiguous and ambiguous contact counts according to (2.2),
927
+ add noise, and then try to recover the structure of the chromosomes through the SNLC scheme
928
+ described in section 4. Following [2], we model noise by multiplying each entry of CU, CP and
929
+ CA by a factor 1 + δ, where δ is sampled uniformly from the interval (−ε, ε) for some chosen
930
+ noise level ε ∈ [0, 1].
931
+ As a measure of the quality of the reconstruction, we use the minimal root-mean square
932
+ distance (RMSD) between, on the one hand, the true coordinates (x∗
933
+ i , y∗
934
+ i )n
935
+ i=1, and, on the other
936
+ hand, the estimated coordinates (xi, yi)n
937
+ i=1 after rigid transformations and scaling, i.e., we find
938
+ the minimum
939
+ min
940
+ R∈O(3)
941
+ s>0, b∈R3
942
+
943
+
944
+
945
+ � 1
946
+ 2n
947
+ n
948
+
949
+ i=1
950
+
951
+ ∥(sRxi + b) − x∗
952
+ i ∥2 + ∥(sRyi + b) − y∗
953
+ i ∥2
954
+
955
+ .
956
+
957
+ 14
958
+ D. CIFUENTES, J. DRAISMA, O. HENRIKSSON, A. KORCHMAROS, AND K. KUBJAS
959
+ This can be seen as a version of the classical Procrustes problem solved in [36], which is imple-
960
+ mented in Matlab as the function procrustes.
961
+ Specific examples of reconstructions of the Brownian motion and helix-shaped chromosomes
962
+ obtained with SNLC at varying noise levels and 50% of ambiguous beads are shown in Figure 3.
963
+ For low noise levels the reconstructions by SNLC and the original structure highly overlap. For
964
+ higher noise levels the general region occupied by the reconstructions overlaps with the original
965
+ structure, while the local features become less aligned. Analogous reconstructions obtained with
966
+ SNLC without the local optimization step are shown in Figure S1.
967
+ A comparison of how the quality of the reconstruction depends on the noise level and pro-
968
+ portion of ambiguous beads for SNLC and PASTIS is done in Figure 4. We measure the RMSD
969
+ value between the reconstructed and original 3D structure for different noise levels over 20 runs.
970
+ The RMSD values obtained by SNLC are consistently lower than the ones obtained by PASTIS.
971
+ The difference is specially large for low to medium noise levels. While our method outperforms
972
+ PASTIS in the setting considered in this paper, it is worth mentioning that PASTIS works also
973
+ in a more general setting, where there might be contacts of all three types (ambiguous, partially
974
+ ambiguous and unambiguous) between every pair of loci.
975
+ -5
976
+ 0
977
+ 5
978
+ 10
979
+ -4
980
+ -2
981
+ 0
982
+ 2
983
+ 4
984
+ 6
985
+ 8
986
+ RMSD = 0.17757
987
+ X true
988
+ X estimated
989
+ Y true
990
+ Y estimated
991
+ Start
992
+ Unambiguous
993
+ (a) ε = 0.10
994
+ -5
995
+ 0
996
+ 5
997
+ 10
998
+ -4
999
+ -2
1000
+ 0
1001
+ 2
1002
+ 4
1003
+ 6
1004
+ 8
1005
+ RMSD = 0.5478
1006
+ X true
1007
+ X estimated
1008
+ Y true
1009
+ Y estimated
1010
+ Start
1011
+ Unambiguous
1012
+ (b) ε = 0.50
1013
+ -5
1014
+ 0
1015
+ 5
1016
+ 10
1017
+ -4
1018
+ -2
1019
+ 0
1020
+ 2
1021
+ 4
1022
+ 6
1023
+ 8
1024
+ RMSD = 0.9856
1025
+ X true
1026
+ X estimated
1027
+ Y true
1028
+ Y estimated
1029
+ Start
1030
+ Unambiguous
1031
+ (c) ε = 0.90
1032
+ 0.5
1033
+ RMSD = 0.052324
1034
+ 0
1035
+ -1
1036
+ -0.5
1037
+ -0.5
1038
+ 0
1039
+ 0.5
1040
+ -2
1041
+ 1
1042
+ 1.5
1043
+ 0
1044
+ 2
1045
+ 2.5
1046
+ 2
1047
+ 3
1048
+ -1
1049
+ 4
1050
+ 6
1051
+ X true
1052
+ X estimated
1053
+ Y true
1054
+ Y estimated
1055
+ Start
1056
+ Unambiguous
1057
+ (d) ε = 0.10
1058
+ 1
1059
+ RMSD = 0.19914
1060
+ 0
1061
+ -1
1062
+ -0.5
1063
+ 0
1064
+ 0.5
1065
+ -2
1066
+ 1
1067
+ 1.5
1068
+ 0
1069
+ 2
1070
+ 2.5
1071
+ 2
1072
+ -1
1073
+ 3
1074
+ 4
1075
+ 6
1076
+ X true
1077
+ X estimated
1078
+ Y true
1079
+ Y estimated
1080
+ Start
1081
+ Unambiguous
1082
+ (e) ε = 0.50
1083
+ 1
1084
+ RMSD = 0.54979
1085
+ 0
1086
+ -1
1087
+ -1
1088
+ -0.5
1089
+ 0
1090
+ 0.5
1091
+ -2
1092
+ 1
1093
+ 1.5
1094
+ 0
1095
+ 2
1096
+ 2.5
1097
+ 2
1098
+ 3
1099
+ -2
1100
+ 4
1101
+ 6
1102
+ X true
1103
+ X estimated
1104
+ Y true
1105
+ Y estimated
1106
+ Start
1107
+ Unambiguous
1108
+ (f) ε = 0.90
1109
+ Figure 3. Examples of reconstructions for varying noise levels, for a chromosome pair with 60 loci, out
1110
+ of which 50% are ambiguous. Subfigures (a)–(c) show chromosomes simulated with Brownian motion
1111
+ (projected onto the xy-plane), whereas figure (d)–(e) show helix-shaped chromosomes.
1112
+ 5.2. Experimentally obtained data. We compute SNLC reconstructions based on the real
1113
+ dataset explored in [4], which is obtained from Hi-C experiments on the X chromosomes in the
1114
+
1115
+ 3D GENOME RECONSTRUCTION FROM PARTIALLY PHASED HI-C DATA
1116
+ 15
1117
+ 0
1118
+ 0.2
1119
+ 0.4
1120
+ 0.6
1121
+ 0.8
1122
+ 1
1123
+ epsilon
1124
+ -0.5
1125
+ 0
1126
+ 0.5
1127
+ 1
1128
+ 1.5
1129
+ 2
1130
+ 2.5
1131
+ 3
1132
+ 3.5
1133
+ RMSD
1134
+ PASTIS
1135
+ SNLC
1136
+ (a) 25% ambiguous loci
1137
+ 0
1138
+ 0.2
1139
+ 0.4
1140
+ 0.6
1141
+ 0.8
1142
+ 1
1143
+ epsilon
1144
+ -0.5
1145
+ 0
1146
+ 0.5
1147
+ 1
1148
+ 1.5
1149
+ 2
1150
+ 2.5
1151
+ 3
1152
+ 3.5
1153
+ RMSD
1154
+ PASTIS
1155
+ SNLC
1156
+ (b) 50% ambiguous loci
1157
+ Figure 4. Comparison between our reconstruction method and PASTIS. The values are the average
1158
+ over 20 runs, with the error bars showing the standard deviation.
1159
+ All experiments took place with
1160
+ 60 loci, with varying levels of noise, as well as varying number of ambiguous loci, uniformly randomly
1161
+ distributed over the chromosomes.
1162
+ Patski (BL6xSpretus) cell line. The data has been recorded at a resolution of 500 kb, which
1163
+ corresponds to 343 bead pairs in our model.
1164
+ For some of these pairs, no or only very low contact counts have been recorded. Since such low
1165
+ contact counts are susceptible to high uncertainty and can be assumed to be a consequence of
1166
+ experimental errors, we exclude the 47 loci with the lowest total contact counts from the analysis.
1167
+ To select the cutoff, the loci are sorted according to the total contact counts (see Figure S2 (a)),
1168
+ and the ratios between the total contact counts for consecutive loci are computed. A peak for
1169
+ these ratios is observed at the 47th contact count, as shown in Figure S2 (b). After applying
1170
+ this filter, we obtain a dataset with 296 loci. Out of these, we consider as ambiguous all loci i
1171
+ for which less than 40% of the total contact count comes from contacts where xi and yi were
1172
+ not distinguishable. These proportions for all loci are shown in Figure S2 (c). For the Patski
1173
+ dataset, we obtain 46 ambiguous loci and 250 unambiguous loci in this way.
1174
+ In the PASTIS dataset, a locus can simultaneously participate in unambiguous, partially am-
1175
+ biguous and ambiguous contacts. To obtain the setting of our paper where loci are partitioned
1176
+ into unambiguous or ambiguous, we reassign the contacts according to whether a locus is unam-
1177
+ biguous or ambiguous. Our reassignment method is motivated by the assignment of haplotype
1178
+ to unphased Hi-C reads in [22]. The exact formulas are given in Supplementary Material.
1179
+ The reconstruction obtained via SNLC can be found in Figure 5 (a).
1180
+ The logarithmic
1181
+ heatmaps for contact count matrices for original data and the SNLC reconstruction are shown
1182
+ in Figure S3.
1183
+ It was discovered in [6] that the inactive homolog in the Patski X chromosome pair has a
1184
+ bipartite structure, consisting of two superdomains with frequent intra-chromosome contacts
1185
+ within the superdomains and a boundary region between the two superdomains. The active
1186
+ homolog does not exhibit the same behaviour. The boundary region on the inactive X chromo-
1187
+ some is centered at 72.8-72.9 MB [6] which at the 500 kB resolution corresponds to the bead
1188
+ 146 [4]. We show in Figure 5 (b) that the two chromosomes reconstructed using SNLC exhibit
1189
+ this structure by computing the bipartite index for the respective homologs as in [4, 6]. We
1190
+ recall that, in the setting of a single chromosome with beads z1, . . . , zn ∈ R3, the bipartite index
1191
+ is defined as the ratio of intra-superdomain to inter-superdomain contacts in the reconstruction:
1192
+ BI(h) =
1193
+ 1
1194
+ h2
1195
+ �h
1196
+ i=1
1197
+ �h
1198
+ j=1
1199
+ 1
1200
+ ∥zi−zj∥2 +
1201
+ 1
1202
+ (n−h)2
1203
+ �n
1204
+ i=h+1
1205
+ �n
1206
+ j=h+1
1207
+ 1
1208
+ ∥zi−zj∥2
1209
+ 2
1210
+ h(n−h)
1211
+ �h
1212
+ i=1
1213
+ �n
1214
+ j=h+1
1215
+ 1
1216
+ ∥zi−zj∥2
1217
+ .
1218
+
1219
+ 16
1220
+ D. CIFUENTES, J. DRAISMA, O. HENRIKSSON, A. KORCHMAROS, AND K. KUBJAS
1221
+ -0.5
1222
+ 0
1223
+ 0.5
1224
+ -0.6
1225
+ -0.4
1226
+ -0.2
1227
+ 0
1228
+ 0.2
1229
+ 0.4
1230
+ 0.6
1231
+ Inactive homolog
1232
+ Active homolog
1233
+ Ambiguous
1234
+ (a)
1235
+ 0
1236
+ 50
1237
+ 100
1238
+ 150
1239
+ 200
1240
+ 250
1241
+ 300
1242
+ 350
1243
+ h
1244
+ 0
1245
+ 5
1246
+ 10
1247
+ 15
1248
+ 20
1249
+ 25
1250
+ Bipartite index
1251
+ Inactive homolog
1252
+ Active homolog
1253
+ (b)
1254
+ Figure 5. (a) Reconstruction from a real dataset using our reconstruction method.
1255
+ A dashed line
1256
+ between two beads is used to indicate that there is one or more beads between them, for which we
1257
+ have not given an estimation (due to low contact counts). (b) Bipartite index for the reconstructed
1258
+ chromosomes. The dashed vertical line indicates the known hinge point at locus 146.
1259
+ 6. Discussion
1260
+ In this article we study the finite identifiability of 3D genome reconstruction from contact
1261
+ counts under the model where the distances di,j and contact counts ci,j between two beads i
1262
+ and j follow the power law dependency ci,j = dα
1263
+ i,j for a conversion factor α < 0. We show that
1264
+ if at least six beads are unambiguous, then the locations of the rest of the beads can be finitely
1265
+ identified from partially ambiguous contact counts for rational α satisfying α < 0 or α > 2.
1266
+ In the fully ambiguous setting, we prove finite identifiability for α = −2, given ambiguous
1267
+ contact counts for at least 12 pairs of beads. From [2] it is known that finite identifiability
1268
+ does not hold in the fully ambiguous setting for α = 2. It is an open question whether finite
1269
+ identifiability of 3D genome reconstruction holds for other α ∈ R\{−2, 2} in the fully ambiguous
1270
+ setting and for rational α ∈ (0, 2] in the partially ambiguous setting. We conjecture that in the
1271
+ partially ambiguous setting seven unambiguous loci guarantee unique identifiability of the 3D
1272
+ reconstruction for rational α < 0 or α > 2. When α = −2, then one approach to studying the
1273
+ unique identifiability might be via the degree of a parametrized family of algebraic varieties.
1274
+ After establishing the identifiability, we suggest a reconstruction method for the partially am-
1275
+ biguous setting with α = −2 that combines semidefinite programming, homotopy continuation
1276
+ in numerical algebraic geometry, local optimization and clustering. To speed up the homotopy
1277
+ continuation based part, we observe that the parametrized system of polynomial equations cor-
1278
+ responding to six unambiguous beads has 40 pairs of complex solutions and we trace one path
1279
+ for each orbit. It is an open question to prove that for sufficiently general parameters the sys-
1280
+ tem has 40 pairs of complex solution. This question again reduces to studying the degree of a
1281
+ family of algebraic varieties. While our goal is to highlight the potential of our method, one
1282
+ could further regularize its output and use interpolation for the beads that are far away from
1283
+ the neighboring beads. A future research direction is to explore whether numerical algebraic
1284
+ geometry or semidefinite programming based methods can be proposed also for other conversion
1285
+ factors α < 0.
1286
+ Acknowledgements
1287
+ Oskar Henriksson and Kaie Kubjas were partially supported by the Academy of Finland Grant
1288
+ No. 323416. We thank Anastasiya Belyaeva, Gesine Cauer, AmirHossein Sadegemanesh, Luca
1289
+ Sodomaco, and Caroline Uhler for very helpful discussions and answers to our questions.
1290
+
1291
+ 3D GENOME RECONSTRUCTION FROM PARTIALLY PHASED HI-C DATA
1292
+ 17
1293
+ References
1294
+ [1] Abdo Y Alfakih, Amir Khandani, and Henry Wolkowicz. Solving euclidean distance matrix completion
1295
+ problems via semidefinite programming. Computational optimization and applications, 12(1):13–30, 1999.
1296
+ Cited on page 6.
1297
+ [2] Anastasiya Belyaeva, Kaie Kubjas, Lawrence J Sun, and Caroline Uhler. Identifying 3D genome organiza-
1298
+ tion in diploid organisms via Euclidean distance geometry. SIAM J. Math. Data Sci., 4(1):204–228, 2022.
1299
+ Cited on pages 2, 3, 4, 5, 9, 10, 13, and 16.
1300
+ [3] Paul Breiding and Sascha Timme. Homotopycontinuation.jl: A package for homotopy continuation in julia.
1301
+ In James H. Davenport, Manuel Kauers, George Labahn, and Josef Urban, editors, Mathematical Software
1302
+ – ICMS 2018, pages 458–465, Cham, 2018. Springer International Publishing. Cited on pages 11 and 13.
1303
+ [4] Alexandra Gesine Cauer, G¨urkan Yardimci, Jean-Philippe Vert, Nelle Varoquaux, and William Stafford No-
1304
+ ble. Inferring diploid 3D chromatin structures from Hi-C data. In 19th International Workshop on Algorithms
1305
+ in Bioinformatics (WABI 2019), 2019. Cited on pages 1, 2, 3, 4, 13, 14, and 15.
1306
+ [5] Michael AA Cox and Trevor F Cox. Multidimensional scaling. In Handbook of data visualization, pages
1307
+ 315–347. Springer, 2008. Cited on page 6.
1308
+ [6] Xinxian Deng, Wenxiu Ma, Vijay Ramani, Andrew Hill, Fan Yang, Ferhat Ay, Joel B Berletch, Carl Anthony
1309
+ Blau, Jay Shendure, Zhijun Duan, et al. Bipartite structure of the inactive mouse X chromosome. Genome
1310
+ Biol., 16(1):1–21, 2015. Cited on pages 2, 4, and 15.
1311
+ [7] Ivan Dokmanic, Reza Parhizkar, Juri Ranieri, and Martin Vetterli. Euclidean distance matrices: Essential
1312
+ theory, algorithms, and applications. IEEE Signal Process. Mag., 32(6):12–30, 2015. Cited on page 5.
1313
+ [8] Kyle P Eagen. Principles of chromosome architecture revealed by Hi-C. Trends Biochem. Sci., 43(6):469–478,
1314
+ 2018. Cited on page 12.
1315
+ [9] Haw-ren Fang and Dianne P O’Leary. Euclidean distance matrix completion problems. Optim. Methods
1316
+ Softw., 27(4-5):695–717, 2012. Cited on page 6.
1317
+ [10] Maryam Fazel, Haitham Hindi, and Stephen P Boyd. Log-det heuristic for matrix rank minimization with
1318
+ applications to Hankel and Euclidean distance matrices. In Proceedings of the 2003 American Control Con-
1319
+ ference, 2003., volume 3, pages 2156–2162. IEEE, 2003. Cited on page 6.
1320
+ [11] Ming Hu, Ke Deng, Zhaohui Qin, Jesse Dixon, Siddarth Selvaraj, Jennifer Fang, Bing Ren, and Jun S
1321
+ Liu. Bayesian inference of spatial organizations of chromosomes. PLoS Comput. Biol., 9(1):e1002893, 2013.
1322
+ Cited on page 1.
1323
+ [12] Birkett Huber and Bernd Sturmfels. A polyhedral method for solving sparse polynomial systems. Math.
1324
+ Comput., 64(212):1541–1555, 1995. Cited on page 11.
1325
+ [13] Kaifeng Jiang, Defeng Sun, and Kim-Chuan Toh. A partial proximal point algorithm for nuclear norm
1326
+ regularized matrix least squares problems. Math. Program. Comput., 6, 09 2014. Cited on page 10.
1327
+ [14] Nathan Krislock. Semidefinite Facial Reduction for Low-Rank Euclidean Distance Matrix Completion. PhD
1328
+ thesis, University of Waterloo, 2010. Cited on page 6.
1329
+ [15] Nathan Krislock and Henry Wolkowicz. Euclidean distance matrices and applications. In Handbook on semi-
1330
+ definite, conic and polynomial optimization, pages 879–914. Springer, 2012. Cited on page 5.
1331
+ [16] Denis L Lafontaine, Liyan Yang, Job Dekker, and Johan H Gibcus. Hi-C 3.0: Improved protocol for genome-
1332
+ wide chromosome conformation capture. Curr. Protoc., 1(7):e198, 2021. Cited on page 1.
1333
+ [17] Annick Lesne, Julien Riposo, Paul Roger, Axel Cournac, and Julien Mozziconacci. 3D genome reconstruction
1334
+ from chromosomal contacts. Nat. methods, 11(11):1141–1143, 2014. Cited on page 1.
1335
+ [18] Jing Li, Yu Lin, Qianzi Tang, and Mingzhou Li. Understanding three-dimensional chromatin organization in
1336
+ diploid genomes. Comput. Struct. Biotechnol. J., 2021. Cited on page 2.
1337
+ [19] Tien-Yien Li and Xiaoshen Wang. The BKK root count in Cn. Math. Comput., 65(216):1477–1484, 1996.
1338
+ Cited on page 11.
1339
+ [20] Leo Liberti, Carlile Lavor, Nelson Maculan, and Antonio Mucherino. Euclidean distance geometry and ap-
1340
+ plications. SIAM Rev., 56(1):3–69, 2014. Cited on page 5.
1341
+ [21] Erez Lieberman-Aiden, Nynke L Van Berkum, Louise Williams, Maxim Imakaev, Tobias Ragoczy, Agnes
1342
+ Telling, Ido Amit, Bryan R Lajoie, Peter J Sabo, Michael O Dorschner, et al. Comprehensive mapping of
1343
+
1344
+ 18
1345
+ D. CIFUENTES, J. DRAISMA, O. HENRIKSSON, A. KORCHMAROS, AND K. KUBJAS
1346
+ long-range interactions reveals folding principles of the human genome. Science, 326(5950):289–293, 2009.
1347
+ Cited on pages 3 and 4.
1348
+ [22] Stephen Lindsly, Wenlong Jia, Haiming Chen, Sijia Liu, Scott Ronquist, Can Chen, Xingzhao Wen, Cooper
1349
+ Stansbury, Gabrielle A Dotson, Charles Ryan, et al. Functional organization of the maternal and paternal
1350
+ human 4D nucleome. IScience, 24(12):103452, 2021. Cited on pages 2 and 15.
1351
+ [23] Han Luo, Xinxin Li, Haitao Fu, and Cheng Peng. Hichap: a package to correct and analyze the diploid hi-c
1352
+ data. BMC Genomics, 21(1):1–13, 2020. Cited on page 2.
1353
+ [24] Anand Minajigi, John E Froberg, Chunyao Wei, Hongjae Sunwoo, Barry Kesner, David Colognori, Derek
1354
+ Lessing, Bernhard Payer, Myriam Boukhali, Wilhelm Haas, et al. A comprehensive Xist interactome reveals
1355
+ cohesin repulsion and an RNA-directed chromosome conformation. Science, 349(6245), 2015. Cited on page 4.
1356
+ [25] Bamdev Mishra, Gilles Meyer, and Rodolphe Sepulchre. Low-rank optimization for distance matrix com-
1357
+ pletion. In 2011 50th IEEE Conference on Decision and Control and European Control Conference, pages
1358
+ 4455–4460. IEEE, 2011. Cited on page 6.
1359
+ [26] Antonio Mucherino, Carlile Lavor, Leo Liberti, and Nelson Maculan. Distance geometry: theory, methods,
1360
+ and applications. Springer Science & Business Media, 2012. Cited on page 5.
1361
+ [27] Jiawang Nie. Sum of squares method for sensor network localization. Comput. Optim. Appl., 43(2):151–179,
1362
+ 2009. Cited on page 6.
1363
+ [28] Alexi Nott, Inge R Holtman, Nicole G Coufal, Johannes CM Schlachetzki, Miao Yu, Rong Hu, Claudia Z
1364
+ Han, Monique Pena, Jiayang Xiao, Yin Wu, et al. Brain cell type–specific enhancer–promoter interactome
1365
+ maps and disease-risk association. Science, 366(6469):1134–1139, 2019. Cited on page 1.
1366
+ [29] Oluwatosin Oluwadare, Max Highsmith, and Jianlin Cheng. An overview of methods for reconstructing 3-d
1367
+ chromosome and genome structures from hi-c data. Biol. Proced. Online, 21(1):1–20, 2019. Cited on page 1.
1368
+ [30] Jonas Paulsen, Monika Sekelja, Anja R Oldenburg, Alice Barateau, Nolwenn Briand, Erwan Delbarre, Akshay
1369
+ Shah, Anita L Sørensen, Corinne Vigouroux, Brigitte Buendia, et al. Chrom3D: Three-dimensional genome
1370
+ modeling from Hi-C and nuclear lamin-genome contacts. Genome Biol., 18(1):1–15, 2017. Cited on page 1.
1371
+ [31] Andrew C Payne, Zachary D Chiang, Paul L Reginato, Sarah M Mangiameli, Evan M Murray, Chun-
1372
+ Chen Yao, Styliani Markoulaki, Andrew S Earl, Ajay S Labade, Rudolf Jaenisch, et al. In situ genome
1373
+ sequencing resolves DNA sequence and structure in intact biological samples. Science, 371(6532):eaay3446,
1374
+ 2021. Cited on pages 2 and 3.
1375
+ [32] Prashanth Rajarajan, Tyler Borrman, Will Liao, Nadine Schrode, Erin Flaherty, Charlize Casi˜no, Samuel
1376
+ Powell, Chittampalli Yashaswini, Elizabeth A LaMarca, Bibi Kassim, et al. Neuron-specific signatures in the
1377
+ chromosomal connectome associated with schizophrenia risk. Science, 362(6420), 2018. Cited on page 1.
1378
+ [33] Suhas SP Rao, Miriam H Huntley, Neva C Durand, Elena K Stamenova, Ivan D Bochkov, James T Robinson,
1379
+ Adrian L Sanborn, Ido Machol, Arina D Omer, Eric S Lander, et al. A 3D map of the human genome at
1380
+ kilobase resolution reveals principles of chromatin looping. Cell, 159(7):1665–1680, 2014. Cited on pages 1,
1381
+ 2, and 4.
1382
+ [34] Suhn K Rhie, Shannon Schreiner, Heather Witt, Chris Armoskus, Fides D Lay, Adrian Camarena, Valeria N
1383
+ Spitsyna, Yu Guo, Benjamin P Berman, Oleg V Evgrafov, et al. Using 3D epigenomic maps of primary
1384
+ olfactory neuronal cells from living individuals to understand gene regulation. Sci. Adv., 4(12):eaav8550,
1385
+ 2018. Cited on page 1.
1386
+ [35] Mathieu Rousseau, James Fraser, Maria A Ferraiuolo, Jos´ee Dostie, and Mathieu Blanchette. Three-
1387
+ dimensional modeling of chromatin structure from interaction frequency data using markov chain monte
1388
+ carlo sampling. Bioinform., 12(1):414, 2011. Cited on page 1.
1389
+ [36] Peter H Sch¨onemann. A generalized solution of the orthogonal Procrustes problem. Psychometrika, 31(1):1–
1390
+ 10, 1966. Cited on page 14.
1391
+ [37] Mark R Segal. Can 3D diploid genome reconstruction from unphased Hi-C data be salvaged? NAR Genomics
1392
+ and Bioinformatics, 4(2):lqac038, 2022. Cited on page 2.
1393
+ [38] Andrew J. Sommese and Charles W. Wampler. Numerical Solution Of Systems Of Polynomials Arising In
1394
+ Engineering And Science. World Scientific Publishing Company, 2005. Cited on page 11.
1395
+ [39] Rishi Sonthalia, Greg Van Buskirk, Benjamin Raichel, and Anna Gilbert. How can classical multidimensional
1396
+ scaling go wrong? Adv. Neural Inf. Process. Syst, 34:12304–12315, 2021. Cited on page 6.
1397
+
1398
+ 3D GENOME RECONSTRUCTION FROM PARTIALLY PHASED HI-C DATA
1399
+ 19
1400
+ [40] Longzhi Tan, Dong Xing, Chi-Han Chang, Heng Li, and X Sunney Xie. Three-dimensional genome structures
1401
+ of single diploid human cells. Science, 361(6405):924–928, 2018. Cited on page 2.
1402
+ [41] Caroline Uhler and GV Shivashankar. Regulation of genome organization and gene expression by nuclear
1403
+ mechanotransduction. Nat. Rev. Mol. Cell Biol., 18(12):717–727, 2017. Cited on page 1.
1404
+ [42] Nelle Varoquaux, Ferhat Ay, William Stafford Noble, and Jean-Philippe Vert. A statistical approach for
1405
+ inferring the 3D structure of the genome. Bioinformatics, 30(12):i26–i33, 2014. Cited on pages 1, 4, and 5.
1406
+ [43] Haifeng Wang, Xiaoshu Xu, Cindy M Nguyen, Yanxia Liu, Yuchen Gao, Xueqiu Lin, Timothy Daley,
1407
+ Nathan H Kipniss, Marie La Russa, and Lei S Qi. CRISPR-mediated programmable 3D genome positioning
1408
+ and nuclear organization. Cell, 175(5):1405–1417, 2018. Cited on page 1.
1409
+ [44] Kilian Q Weinberger, Fei Sha, Qihui Zhu, and Lawrence K Saul. Graph Laplacian regularization for large-
1410
+ scale semidefinite programming. In Advances in neural information processing systems, pages 1489–1496,
1411
+ 2007. Cited on page 6.
1412
+ [45] Tiantian Ye and Wenxiu Ma. Ashic: Hierarchical Bayesian modeling of diploid chromatin contacts and
1413
+ structures. Nucleic Acids Res., 48(21):e123–e123, 2020. Cited on page 2.
1414
+ [46] ZhiZhuo Zhang, Guoliang Li, Kim-Chuan Toh, and Wing-Kin Sung. Inference of spatial organizations of
1415
+ chromosomes using semi-definite embedding approach and Hi-C data. In Annual international conference
1416
+ on research in computational molecular biology, pages 317–332. Springer, 2013. Cited on pages 1, 3, 4, 5, 6,
1417
+ and 10.
1418
+ [47] Shenglong Zhou, Naihua Xiu, and Hou-Duo Qi. Robust Euclidean embedding via EDM optimization. Math.
1419
+ Program. Comput., 12(3):337–387, 2020. Cited on page 6.
1420
+ Authors’ addresses:
1421
+ Diego Cifuentes, Georgia Institute of Technology
1422
+ diego.cifuentes@isye.gatech.edu
1423
+ Jan Draisma, University of Bern
1424
+ jan.draisma@math.unibe.ch
1425
+ Oskar Henriksson, University of Copenhagen
1426
+ oskar.henriksson@math.ku.dk
1427
+ Annachiara Korchmaros, University of Leipzig
1428
+ annachiara@bioinf.uni-leipzig.de
1429
+ Kaie Kubjas, Aalto University
1430
+ kaie.kubjas@aalto.fi
1431
+ Supplementary Material
1432
+ In this part of the paper, we include additional details and figures for the experiments in
1433
+ section 5.
1434
+ Figure S1 shows reconstructions of the same chromosomes as displayed in Figure 3 but with-
1435
+ out the local optimization step, indicating that semidefinite programming, numerical algebraic
1436
+ geometry and clustering alone can recover the main features of the 3D structure.
1437
+ Figure S2 illustrates the preprocessing steps of the real dataset where loci with low contact
1438
+ counts are removed and the rest of the loci are partitioned into unambiguous and ambiguous.
1439
+ The total contact count for the ith locus is defined as the sum of all contacts where it participates:
1440
+ T(i) =
1441
+
1442
+ j∈[n]
1443
+
1444
+ cA(i, j) + cP (i, j) + cP (i + n, j)
1445
+
1446
+ +
1447
+
1448
+ j∈[2n]
1449
+
1450
+ cP (j, i) + cU(i, j) + cU(i + n, j)
1451
+
1452
+ .
1453
+ Similarly, we define the unambiguity quotient as the proportion of T(i) that consists of contacts
1454
+ where xi and yi could be distinguished:
1455
+ UQ(i) =
1456
+ 1
1457
+ T(i)
1458
+
1459
+ � �
1460
+ j∈[n]
1461
+
1462
+ cP (i, j) + cP (i + n, j)
1463
+
1464
+ +
1465
+
1466
+ j∈[2n]
1467
+
1468
+ cU(i, j) + cU(i + n, j)
1469
+
1470
+
1471
+ � .
1472
+ To obtain the setting of our paper where loci are partitioned into unambiguous or ambiguous,
1473
+ we reassign the contact counts of ˜CU ˜CP and ˜CA of the Patski dataset according to whether a
1474
+
1475
+ 20
1476
+ D. CIFUENTES, J. DRAISMA, O. HENRIKSSON, A. KORCHMAROS, AND K. KUBJAS
1477
+ -5
1478
+ 0
1479
+ 5
1480
+ 10
1481
+ -4
1482
+ -2
1483
+ 0
1484
+ 2
1485
+ 4
1486
+ 6
1487
+ 8
1488
+ RMSD = 0.58575
1489
+ X true
1490
+ X estimated
1491
+ Y true
1492
+ Y estimated
1493
+ Start
1494
+ Unambiguous
1495
+ (a) ε = 0.10
1496
+ -6
1497
+ -4
1498
+ -2
1499
+ 0
1500
+ 2
1501
+ 4
1502
+ 6
1503
+ 8
1504
+ 10
1505
+ -4
1506
+ -2
1507
+ 0
1508
+ 2
1509
+ 4
1510
+ 6
1511
+ 8
1512
+ RMSD = 0.86406
1513
+ X true
1514
+ X estimated
1515
+ Y true
1516
+ Y estimated
1517
+ Start
1518
+ Unambiguous
1519
+ (b) ε = 0.50
1520
+ -6
1521
+ -4
1522
+ -2
1523
+ 0
1524
+ 2
1525
+ 4
1526
+ 6
1527
+ 8
1528
+ 10
1529
+ -4
1530
+ -2
1531
+ 0
1532
+ 2
1533
+ 4
1534
+ 6
1535
+ 8
1536
+ RMSD = 1.2564
1537
+ X true
1538
+ X estimated
1539
+ Y true
1540
+ Y estimated
1541
+ Start
1542
+ Unambiguous
1543
+ (c) ε = 0.90
1544
+ Figure S1. SNLC reconstructions, without the local optimization step.
1545
+ 0
1546
+ 50
1547
+ 100
1548
+ 150
1549
+ 200
1550
+ 250
1551
+ 300
1552
+ 350
1553
+ i
1554
+ 0
1555
+ 0.5
1556
+ 1
1557
+ 1.5
1558
+ 2
1559
+ 2.5
1560
+ 3
1561
+ 3.5
1562
+ 4
1563
+ 4.5
1564
+ 5
1565
+ 104
1566
+ The i-th smallest total contact count
1567
+ (a)
1568
+ 0
1569
+ 50
1570
+ 100
1571
+ 150
1572
+ 200
1573
+ 250
1574
+ 300
1575
+ 350
1576
+ i
1577
+ 1
1578
+ 1.2
1579
+ 1.4
1580
+ 1.6
1581
+ 1.8
1582
+ 2
1583
+ 2.2
1584
+ 2.4
1585
+ 2.6
1586
+ 2.8
1587
+ 3 Ratio between the i-th and (i+1)-th smallest total contact count
1588
+ (b)
1589
+ 0
1590
+ 50
1591
+ 100
1592
+ 150
1593
+ 200
1594
+ 250
1595
+ 300
1596
+ i
1597
+ 0.25
1598
+ 0.3
1599
+ 0.35
1600
+ 0.4
1601
+ 0.45
1602
+ 0.5
1603
+ 0.55
1604
+ 0.6
1605
+ The i-th smallest unambiguity quotient
1606
+ (c)
1607
+ Figure S2. (a) Total contact counts sorted in increasing order. (b) Ratios between total contact counts.
1608
+ The peak corresponding to the ratio between the 48th and the 47th smallest count is used as a motivation
1609
+ for excluding the 47 loci with smallest total contact from the analysis. (c) Unambiguity quotients for
1610
+ each of the remaining 296 loci, sorted in increasing order. We consider a locus as ambiguous if this ratio
1611
+ is less than 0.4; otherwise, we consider it as unambiguous.
1612
+ locus is unambiguous or ambiguous. For i, j ∈ U, we define
1613
+ cU
1614
+ i,j = ˜cU
1615
+ i,j + ˜cP
1616
+ i,j
1617
+ ˜cU
1618
+ i,j
1619
+ ˜cU
1620
+ i,j + ˜cU
1621
+ i,j+n
1622
+ + ˜cP
1623
+ j,i
1624
+ ˜cU
1625
+ i,j
1626
+ ˜cU
1627
+ i,j + ˜cU
1628
+ i+n,j
1629
+ + ˜cA
1630
+ i,j
1631
+ ˜cU
1632
+ i,j
1633
+ ˜cU
1634
+ i,j + ˜cU
1635
+ i,j+n + ˜cU
1636
+ i+n,j + ˜cU
1637
+ i+n,j+n
1638
+ ,
1639
+ cU
1640
+ i,j+n = ˜cU
1641
+ i,j+n + ˜cP
1642
+ i,j
1643
+ ˜cU
1644
+ i,j+n
1645
+ ˜cU
1646
+ i,j + ˜cU
1647
+ i,j+n
1648
+ + ˜cP
1649
+ j+n,i
1650
+ ˜cU
1651
+ i,j+n
1652
+ ˜cU
1653
+ i,j+n + ˜cU
1654
+ i+n,j+n
1655
+ + ˜cA
1656
+ i,j
1657
+ ˜cU
1658
+ i,j+n
1659
+ ˜cU
1660
+ i,j + ˜cU
1661
+ i,j+n + ˜cU
1662
+ i+n,j + ˜cU
1663
+ i+n,j+n
1664
+ ,
1665
+ cU
1666
+ i+n,j = ˜cU
1667
+ i+n,j + ˜cP
1668
+ i+n,j
1669
+ ˜cU
1670
+ i+n,j
1671
+ ˜cU
1672
+ i+n,j + ˜cU
1673
+ i+n,j+n
1674
+ + ˜cP
1675
+ j,i
1676
+ ˜cU
1677
+ i+n,j
1678
+ ˜cU
1679
+ i,j + ˜cU
1680
+ i+n,j
1681
+ + ˜cA
1682
+ i,j
1683
+ ˜cU
1684
+ i+n,j
1685
+ ˜cU
1686
+ i,j + ˜cU
1687
+ i,j+n + ˜cU
1688
+ i+n,j + ˜cU
1689
+ i+n,j+n
1690
+ ,
1691
+ cU
1692
+ i+n,j+n = ˜cU
1693
+ i+n,j+n + ˜cP
1694
+ i+n,j
1695
+ ˜cU
1696
+ i+n,j+n
1697
+ ˜cU
1698
+ i+n,j + ˜cU
1699
+ i+n,j+n
1700
+ + ˜cP
1701
+ j+n,i
1702
+ ˜cU
1703
+ i+n,j+n
1704
+ ˜cU
1705
+ i,j+n + ˜cU
1706
+ i+n,j+n
1707
+ + ˜cA
1708
+ i,j
1709
+ ˜cU
1710
+ i+n,j+n
1711
+ ˜cU
1712
+ i,j + ˜cU
1713
+ i,j+n + ˜cU
1714
+ i+n,j + ˜cU
1715
+ i+n,j+n
1716
+ .
1717
+ For i ∈ U, j ∈ A, we define
1718
+ cP
1719
+ i,j = ˜cU
1720
+ i,j + ˜cU
1721
+ i,j+n + ˜cP
1722
+ i,j + ˜cP
1723
+ j,i
1724
+ ˜cU
1725
+ i,j
1726
+ ˜cU
1727
+ i,j + ˜cU
1728
+ i+n,j
1729
+ + ˜cP
1730
+ j+n,i
1731
+ ˜cU
1732
+ i,j+n
1733
+ ˜cU
1734
+ i,j+n + ˜cU
1735
+ i+n,j+n
1736
+ + ˜cA
1737
+ i,j
1738
+ ˜cP
1739
+ i,j
1740
+ ˜cP
1741
+ i,j + ˜cP
1742
+ i+n,j
1743
+ ,
1744
+
1745
+ 3D GENOME RECONSTRUCTION FROM PARTIALLY PHASED HI-C DATA
1746
+ 21
1747
+ cP
1748
+ i+n,j = ˜cU
1749
+ i+n,j + ˜cU
1750
+ i+n,j+n + ˜cP
1751
+ i+n,j + ˜cP
1752
+ j,i
1753
+ ˜cU
1754
+ i+n,j
1755
+ ˜cU
1756
+ i,j + ˜cU
1757
+ i+n,j
1758
+ + ˜cP
1759
+ j+n,i
1760
+ ˜cU
1761
+ i+n,j+n
1762
+ ˜cU
1763
+ i,j+n + ˜cU
1764
+ i+n,j+n
1765
+ + ˜cA
1766
+ i,j
1767
+ ˜cP
1768
+ i+n,j
1769
+ ˜cP
1770
+ i,j + ˜cP
1771
+ i+n,j
1772
+ .
1773
+ Finally, for i, j ∈ A, we define
1774
+ cA
1775
+ i,j = ˜cU
1776
+ i,j + ˜cU
1777
+ i,j+n + ˜cU
1778
+ i+n,j + ˜cU
1779
+ i+n,j+n + ˜cP
1780
+ i,j + ˜cP
1781
+ i+n,j + ˜cP
1782
+ j,i + ˜cP
1783
+ j+n,i + ˜cA
1784
+ i,j.
1785
+ In Figure S3, the experimental contact counts from the Patski dataset are compared with the
1786
+ contact counts from the SNLC reconstruction.
1787
+
1788
+ 22
1789
+ D. CIFUENTES, J. DRAISMA, O. HENRIKSSON, A. KORCHMAROS, AND K. KUBJAS
1790
+ Patski data
1791
+ 100
1792
+ 200
1793
+ 300
1794
+ 400
1795
+ 500
1796
+ 50
1797
+ 100
1798
+ 150
1799
+ 200
1800
+ 250
1801
+ 300
1802
+ 350
1803
+ 400
1804
+ 450
1805
+ 500
1806
+ 0
1807
+ 0.5
1808
+ 1
1809
+ 1.5
1810
+ 2
1811
+ 2.5
1812
+ 3
1813
+ 3.5
1814
+ (a)
1815
+ SNLC reconstruction
1816
+ 100
1817
+ 200
1818
+ 300
1819
+ 400
1820
+ 500
1821
+ 50
1822
+ 100
1823
+ 150
1824
+ 200
1825
+ 250
1826
+ 300
1827
+ 350
1828
+ 400
1829
+ 450
1830
+ 500
1831
+ 0
1832
+ 0.5
1833
+ 1
1834
+ 1.5
1835
+ 2
1836
+ 2.5
1837
+ 3
1838
+ 3.5
1839
+ (b)
1840
+ Patski data
1841
+ 5
1842
+ 10
1843
+ 15
1844
+ 20
1845
+ 25
1846
+ 30
1847
+ 35
1848
+ 40
1849
+ 45
1850
+ 50
1851
+ 100
1852
+ 150
1853
+ 200
1854
+ 250
1855
+ 300
1856
+ 350
1857
+ 400
1858
+ 450
1859
+ 500
1860
+ 0
1861
+ 0.5
1862
+ 1
1863
+ 1.5
1864
+ 2
1865
+ 2.5
1866
+ 3
1867
+ 3.5
1868
+ (c)
1869
+ SNLC reconstruction
1870
+ 5
1871
+ 10
1872
+ 15
1873
+ 20
1874
+ 25
1875
+ 30
1876
+ 35
1877
+ 40
1878
+ 45
1879
+ 50
1880
+ 100
1881
+ 150
1882
+ 200
1883
+ 250
1884
+ 300
1885
+ 350
1886
+ 400
1887
+ 450
1888
+ 500
1889
+ 0
1890
+ 0.5
1891
+ 1
1892
+ 1.5
1893
+ 2
1894
+ 2.5
1895
+ 3
1896
+ 3.5
1897
+ (d)
1898
+ Patski data
1899
+ 5
1900
+ 10
1901
+ 15
1902
+ 20
1903
+ 25
1904
+ 30
1905
+ 35
1906
+ 40
1907
+ 45
1908
+ 5
1909
+ 10
1910
+ 15
1911
+ 20
1912
+ 25
1913
+ 30
1914
+ 35
1915
+ 40
1916
+ 45
1917
+ 0
1918
+ 0.5
1919
+ 1
1920
+ 1.5
1921
+ 2
1922
+ 2.5
1923
+ 3
1924
+ (e)
1925
+ SNLC reconstruction
1926
+ 5
1927
+ 10
1928
+ 15
1929
+ 20
1930
+ 25
1931
+ 30
1932
+ 35
1933
+ 40
1934
+ 45
1935
+ 5
1936
+ 10
1937
+ 15
1938
+ 20
1939
+ 25
1940
+ 30
1941
+ 35
1942
+ 40
1943
+ 45
1944
+ 0
1945
+ 0.5
1946
+ 1
1947
+ 1.5
1948
+ 2
1949
+ 2.5
1950
+ 3
1951
+ (f)
1952
+ Figure S3. Logarithmic heat maps for the reassigned contact count matrices obtained from the original
1953
+ Patski dataset and from the SNLC reconstruction: (a) and (b) CU; (c) and (d) CP ; (e) and (f) CA.
1954
+ The axis labels correspond to the 500 unambiguous beads, and the 46 ambiguous loci.
1955
+
2dFKT4oBgHgl3EQfPy1W/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
2dFST4oBgHgl3EQfXzgB/content/2301.13785v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc44c2b6a011949a743fabd6fd9b8a7bc33f8625cb95078c512f2fda6d3c5b43
3
+ size 572562
2dFST4oBgHgl3EQfXzgB/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e44c372dbe51162275ef626773a11fc2a43137a7b6ab15c0028cae93c1b1f7b3
3
+ size 128984
3NAzT4oBgHgl3EQffPyj/content/tmp_files/2301.01450v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
3NAzT4oBgHgl3EQffPyj/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
3tE1T4oBgHgl3EQfAgIm/content/tmp_files/2301.02839v1.pdf.txt ADDED
@@ -0,0 +1,1162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+  Method to deterministically generate large‐amplitude Optical Schrödinger‐cat states  
2
+ Zheng-Hong Li,1,2,* Zhen-Ya Li,1 Fei Yu,1 M. Al-Amri,3,4,5 and M. Suhail Zubairy3
3
+ 1 Department of Physics, Shanghai University, Shanghai 200444, China 
4
+ 2 Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University, Shanghai 200444, 
5
+ China 
6
+ 3 Institute for Quantum Science and Engineering (IQSE) and Department of Physics and Astronomy, Texas 
7
+ A&M University, College Station, Texas 77843‐4242, USA 
8
+ 4 NCQOQI, KACST, P.O.Box 6086, Riyadh 11442, Saudi Arabia 
9
+ 5 The National Center for Quantum Optics and Quantum Informatics, KACST, Riyadh 11442, Saudi Arabi 
10
+  
11
+ A deterministic preparation method for large‐amplitude optical Schrödinger‐cat state is proposed. The 
12
+ key ingredient is to entangle an atom buried in a single‐side cavity with a large‐amplitude coherent light 
13
+ pulse. To achieve this purpose, a multiple reflection Michelson interferometer is used. The light pulse can 
14
+ go back and forth inside the interferometer and interact with the atom many times. However, in every 
15
+ interaction, the average photon number of the light field that manipulated by the atom is much less than 
16
+ 1, which ensures that the atom‐cavity system can properly control the phase of the reflected field, and thus 
17
+ achieve the entanglement. Not only that, but we also further demonstrate that due to quantum Zeno effect, 
18
+ our scheme is insensitive to both atomic spontaneous emission and detuning between the atom and the 
19
+ cavity. Therefore, the fidelity of the cat state can be increased by improving the linear optical system.  
20
+  
21
+ Introduction 
22
+ Schrödinger’s gedanken experiment involving a cat in a superposition of dead and alive states 
23
+ played a crucial role in elucidating certain counterintuitive aspects of quantum mechanics [1]. In 
24
+ modern physics, this Schrödinger cat state (CS) is usually represented by the superposition of two 
25
+ distinct  coherent  states  |�𝛼⟩ .  With  the  increase  of  amplitude  |𝛼| ,  CS  gets  closer  to  the 
26
+ macroscopic superposition. It is not only attractive from a fundamental point of view [2,3], but 
27
+ also valuable for applications including quantum teleportation [4‐7], quantum computing [8‐13], 
28
+ quantum error correction [14‐17] and quantum metrology [18‐24].  
29
+ It is well‐known that a quasi‐ideal CS requires |𝛼| to be large. In response to the above demands, 
30
+ after decades of efforts, CS has been generated on various platforms [3,25‐28]. However, in the 
31
+ optical domain, in the best experimental results so far, |𝛼| remains less than 2 [29‐37]. Needless 
32
+ to say, optical field is an excellent medium for information transmission [37]. It is necessary and 
33
+ valuable to create optical CS of large amplitudes with propagation properties that are on demand.  
34
+ Although there have been some probabilistic methods, for example, the photon subtraction 
35
+ method [29‐33,38,39], they have low probability of success for generating large‐amplitude CS. As 
36
+ for  synthesis  method  proposed  in  Refs.[36,40,41],  it  is  limited  by  the  amplitude  of  the  pre‐
37
+ prepared CS. In addition, the light‐matter interaction to generate CS has become an important 
38
+ research direction recently [37,42].  
39
+ In the experiment of Ref.[37], CS is deterministically generated by the interaction of an incident 
40
+ coherent pulse with a single‐side cavity containing a single atom.  According to different atomic 
41
+ states,  the  reflected  light  field  evolves  in  different  ways,  and  eventually  produces  π  phase 
42
+ difference leading to entanglement between the atom and the field. Applying the measurement 
43
+
44
+ on the atom collapses the wave function into the optical CS. It is worth noting that in such scheme 
45
+ [37,42], only one reflection happens between the light and the atom‐cavity system (Hereinafter 
46
+ we call it the single reflection scheme). This means preparing a large‐amplitude CS requires the 
47
+ atom to control a strong coherent light field through a single interaction. It is obviously unrealistic, 
48
+ and in the experiment [37], the amplitude of the output CS is only |𝛼| � 1.4.  
49
+ In light of this discussion, it is clear that a deterministic generation of large‐amplitude CS in the 
50
+ optical regime remains elusive. In this article, we propose a deterministic method to generate 
51
+ flying optical CS whose amplitude��can be arbitrarily large.  Our  starting point  is  Refs. [37,42]. 
52
+ However, our approach differs distinctly by employing a multiple reflection model to achieve 
53
+ multiple phase operations. This allows, on one hand, for more interactions between the light field 
54
+ and the atom, but, on the other hand, only a small fraction of light is reflected by the atom‐cavity 
55
+ system during each interaction. Through repeated interactions, we demonstrate that just one 
56
+ atom is possible to control a macroscopic light field and become entangled with it. In addition, it 
57
+ is worth emphasizing that the atom‐cavity system presented in Refs. [37,42] is not the keystone 
58
+ for our multiple reflection scheme. It can be replaced by any other quantum systems say Rydberg 
59
+ blockade [43‐45], photon blockade [46], nondemolition measurement of an optical photon [47,48] 
60
+ and so on. The physics behind our scheme is similar to the interaction free measurement along 
61
+ with quantum Zeno effect [49‐51], which explain another important result of this work. When the 
62
+ atom‐cavity system is used, the simulation shows that our scheme becomes insensitive to both 
63
+ atomic spontaneous emission and detuning between the atom and the cavity. The insensitivity 
64
+ increases as the number of interactions increases. Consequently, our scheme can achieve better 
65
+ performance by just enhancing the quality of the linear optical system.  
66
+
67
+ RESULTS 
68
+ Multiple reflection scheme 
69
+ As shown in Fig.1, the scheme consists of a Michelson interferometer and a single‐side cavity‐
70
+ atom system [37,42,52‐54]. The interference occurs between the light fields in Zones 0 and 1, 
71
+ which are located on the left and right sides of the beam splitter �𝐵𝑆�, respectively, separated by 
72
+ a dotted line. Assume that 𝑎�
73
+ � (𝑧 � 0,1) represents the creation operator of the light field in Zone 
74
+ 𝑧.  The  function  of 𝐵𝑆 can  be  described  by 𝑎�
75
+ � → 𝑎�
76
+ � cos 𝜃� � 𝑎�
77
+ � sin 𝜃� and 𝑎�
78
+ � → 𝑎�
79
+ � cos 𝜃� �
80
+ 𝑎�
81
+ � sin 𝜃�  [51],  where  cos� 𝜃�  represents  the  reflectivity  of 𝐵𝑆  and    𝜃� � 𝜋 2𝑀
82
+
83
+  ( 𝑀  is  an 
84
+ integer).  In  addition, 𝑆 stands  for  light  source, 𝐶 stands  for  optical  circulator, 𝑆𝑀 stands  for 
85
+ switchable mirror (In the experiment, it can be realized by fiber switch and mirrors [55]), which is 
86
+ transparent when it is turned off, and 𝑃𝑆 stands for phase shifter, which adds a π phase shift to 
87
+ the light field only as it propagates from 𝐵𝑆 to single‐side cavity 𝑆𝑆𝐶. When 𝑃𝑆 works, its function 
88
+ can be described as 𝑎�
89
+ � → �𝑎�
90
+ �. As for 𝑆𝑆𝐶����, it is constituted by two facing mirrors 𝐶𝑀����� and 
91
+ 𝐶𝑀�����.  Ideally, 𝐶𝑀� is  assumed  to  have  perfect  reflection,  but 𝐶𝑀� is  allowed  for  in‐  and 
92
+ outcoupling of light. 𝑆𝑆𝐶� is an empty cavity, while 𝑆𝑆𝐶� traps a three‐level atom whose level 
93
+ configuration is shown in Fig.1. Only the transition between levels |↑⟩ and |𝑒⟩ is strongly coupled 
94
+ by the cavity mode. According to Refs. [37,42], when the atom is in |↑⟩, due to normal‐mode 
95
+ splitting [53], an incident weak coherent light pulse |𝛼⟩, which is resonant with the empty cavity, 
96
+ does not  enter the  cavity, but  is  reflected  directly  with  no phase change. The corresponding 
97
+ description of the reflection due to 𝑆𝑆𝐶� is 𝑎�
98
+ � → 𝑎�
99
+ �. As for the transition between |↓⟩ and |↑⟩, it 
100
+
101
+ is decoupled from the cavity mode due to large detuning. Therefore, when the atom is in |↓⟩, the 
102
+ cavity can be treated as empty. The incident pulse enters the cavity and is reflected back but with 
103
+ a 𝜋 phase [37,42], i.e., 𝑎�
104
+ � → �𝑎�
105
+ �. Last but not least, the feature of our scheme is that 𝑆𝑀 can be 
106
+ turned on so that a coherent light pulse travels back and forth inside the interferometer and hence 
107
+ interacts with the atom 𝑀 cycles. One cycle is defined as a wave packet starting at 𝑆𝑀, going 
108
+ through 𝐵𝑆 twice, and returning to 𝑆𝑀. 
109
+  
110
+  
111
+ FIG. 1 Multiple reflection scheme based on a Michelson interferometer. When the switchable mirrors (𝑆𝑀) 
112
+ are turned on, the coherent light pulse is bounced inside the interferometer and interact with the single‐
113
+ side cavity (𝑆𝑆𝐶) for 𝑀 times. Inside 𝑆𝑆𝐶� there is an atom whose level structure is shown on the up‐left 
114
+ side.  
115
+ At the beginning of the preparation, 𝑆𝑀 is transparent. The light source emits a coherent pulse 
116
+ into the interferometer, while the light field in Zone 1 is in a vacuum state. The corresponding 
117
+ initial state of the light field is |𝛼, 0⟩ � exp�𝛼𝑎�
118
+ � � 𝛼∗𝑎��|0,0⟩. When the pulse passes, 𝑆𝑀 turns 
119
+ on to start 𝑀 cycles. Supposing that the atom is prepared in a superposition state �|↑⟩ � |↓⟩�/√2 
120
+ initially, after 𝑚 cycles, the wave‐function of the whole system becomes [56] 
121
+ �𝜓����� � 1
122
+ √2
123
+ �|𝛼, 0⟩|↑⟩ � |𝛼 cos 2 𝑚𝜃�, 𝛼 sin 2 𝑚𝜃�⟩|↓⟩�.
124
+ �1� 
125
+ When  𝑚 � 𝑀, we have the light‐atom entangled state �|𝛼, 0⟩|↑⟩ � |�𝛼, 0⟩|↓⟩� √2
126
+
127
+ . Apparently, 
128
+ no  photons  appear  at  𝑆𝑀�  side.  After  measuring  the  atom  with  basis  �|↑⟩ � |↓⟩� √2
129
+
130
+ ,  the 
131
+ corresponding even/odd optical CS, i.e., �|𝛼⟩ � |�𝛼⟩� √2
132
+
133
+ , is output from 𝑆𝑀� side.  
134
+ So far, we have only focused on the ideal case. In the following, nonetheless, we analyze the 
135
+ performance of the multiple reflection scheme for non‐ideal situation. We show that our scheme 
136
+ highly durable when it comes to parameter variations such as atomic spontaneous emission decay 
137
+ and atom‐cavity detuning. 
138
+  
139
+ Practical parameter analysis 
140
+ Regarding the practical atom‐cavity system (𝑆𝑆𝐶�), the incident light field is not only reflected, 
141
+ but also transmitted and scattered [37]. To evaluate these effects, we set that 2𝛾 and 𝜔� as the 
142
+
143
+ Atomiclevelstructure
144
+ CMTO
145
+ ISSCO
146
+ e)
147
+ Cavity
148
+ Empty
149
+ CMROD
150
+ 11>
151
+ PS
152
+ (/+<)PS
153
+ Input
154
+
155
+ SM
156
+ BS
157
+ c
158
+ Atom
159
+ S
160
+ CMR1
161
+ CMT1
162
+ Output
163
+ SM,
164
+ Zone 0
165
+ Zone 1spontaneous emission decay rate and transition frequency of the atomic transition between |𝑒⟩ 
166
+ and |↑⟩, respectively. The coupling constant between the cavity mode with frequency 𝜔� and the 
167
+ atomic transition is 𝑔. The atom‐cavity detuning is Δ � 𝜔� � 𝜔�. Moreover, we set 𝜅���� as the 
168
+ cavity field decay rate into the external light field on the 𝐶𝑀���� side. Considering that the atom 
169
+ is hardly excited  in  our scheme, as long as the  condition of slowly varying light intensities is 
170
+ satisfied [37,54,57], 𝑆𝑆𝐶� can be well described by the input‐output theory [58,59]. Suppose that 
171
+ |𝛼�,�↑⟩ is the incident coherent light field from 𝐶𝑀�� side when the atom is in |↑⟩. The cavity 
172
+ reflection |𝛼�,�↑⟩ satisfies [56] 
173
+ 𝛼�,�↑ � �1 �
174
+ 2𝜅��𝑖𝛥 � 𝛾�
175
+ 𝜅�𝑖𝛥 � 𝛾� � 𝑔�� 𝛼�,�↑ � �𝜂�,�↑�𝑒���,�↑𝛼�,�↑,
176
+ �2� 
177
+ where 𝜅 � 𝜅� � 𝜅�, �𝜂�,�↑�
178
+ � is the reflectivity and 𝛽�,�↑ describes the  phase  of the reflection. 
179
+ Similarly, for the transmission of the cavity �𝛼�,�↑�, we have  
180
+ 𝛼�,�↑ � � 2�𝑖𝛥 � 𝛾�√𝜅�𝜅�
181
+ 𝜅�𝑖𝛥 � 𝛾� � 𝑔� 𝛼�,�↑.
182
+ �3� 
183
+ Regarding the scattering field �𝛼�,�↑� due to the atomic spontaneous emission, we have 
184
+ 𝛼�,�↑ �
185
+ 2𝑔√𝜅�𝛾
186
+ 𝜅�𝑖𝛥 � 𝛾� � 𝑔� 𝑎�,�↑.
187
+ �4� 
188
+ As for the situation that the atom is in |↓⟩, we still assume that the atom is completely unaffected 
189
+ by the cavity mode due to the large detuning. Therefore, 𝑆𝑆𝐶� in such case can be treated the 
190
+ same as the empty cavity 𝑆𝑆𝐶�. By setting 𝑔 � 0 in Eqs. (2)‐(4), we can immediately obtain the 
191
+ corresponding reflection and transmission. As for the scattering light field, it is obviously 0. 
192
+ Based on the above mathematical description of 𝑆𝑆𝐶� and 𝑆𝑆𝐶�, we can numerically simulate 
193
+ the dynamic evolution process of the input coherent pulse |𝛼⟩ and the fidelity of the output. We 
194
+ suppose that the target state is |𝜓�⟩ � �|𝛼⟩|↑⟩ � |�𝛼⟩|↓⟩� √2
195
+
196
+ , and the final state of the whole 
197
+ system  after  𝑀  cycles  is  �𝜓�� � �|𝐶�↑⟩|𝑙𝑜𝑠𝑠↑⟩|↑⟩ � |𝐶�↓⟩|𝑙𝑜𝑠𝑠↓⟩|↓⟩� √2
198
+
199
+ with  �𝑙𝑜𝑠𝑠↑�↓�� �
200
+ �𝐶�↑�↓�� ⊗ ∏
201
+ �𝛼�,�↑�↓�
202
+ ���
203
+ � ������,�↑�↓�
204
+ ���
205
+ � �𝛼�,�↑�↓�
206
+ ���
207
+ � �𝛼�,�↑�↓�
208
+ ���
209
+
210
+
211
+ ���
212
+ . Here state |𝐶�↑�↓�⟩ (𝑧 � 0,1) denotes the 
213
+ outputs  appearing  at 𝑆𝑀� side  when  the  atom  is  in  state |↑ �↓�⟩,  and   �𝛼�,�↑�↓�
214
+ ���
215
+ �  ��𝛼�,�↑�↓�
216
+ ���
217
+ �� 
218
+ denotes the transmission (scattering) field generated by 𝑆𝑆𝐶�  in 𝑚‐th cycle. Therefore, �𝑙𝑜𝑠𝑠↑�↓�� 
219
+ includes  all  optical  losses,  while  the  fidelity  is  obtained  by  tracing  �𝑙𝑜𝑠𝑠↑�↓�� ,  i.e.,  𝐹 �
220
+ 𝑇𝑟�����⟨𝜓�|𝜓�〉�𝜓��𝜓�〉� � �|⟨𝛼|𝐶�↑⟩|� � |⟨�𝛼|𝐶�↓⟩|� � 2Re�⟨𝛼|𝐶�↑〉⟨𝐶�↓|�𝛼⟩⟨𝑙𝑜𝑠𝑠↓|𝑙𝑜𝑠𝑠↑⟩��/4. 
221
+ As a comparison, we also consider the single reflection model in Ref.[37]. More specifically, the 
222
+ input  |𝛼⟩  is  directly  reflected  by  𝑆𝑆𝐶� ,  and  the  corresponding  output  state  is 
223
+ ��𝛼�,�↑�|𝑙𝑜𝑠𝑠↑⟩|↑⟩ � �𝛼�,�↓�|𝑙𝑜𝑠𝑠↓⟩|↓⟩� √2
224
+
225
+  with   �𝑙𝑜𝑠𝑠↑�↓�� � �𝛼�,�↑�↓���𝛼�,�↑�↓��.  In  this  model, 
226
+ the constraints on the atomic parameters 𝛾 and Δ can be directly obtained from Eq. (2). For the 
227
+ empty  cavity  case  (atom  is  in |↓⟩),  as  long  as 𝜅� � 0,  the  ideal  reflection 𝛼� � �𝛼�  can  be 
228
+ obtained. As for the case where the atom is in |↑⟩, the condition for ideal reflection 𝛼� � 𝛼� is 
229
+ Δ � 𝛾 � 𝜅� � 0. If only 𝛾 is non‐zero, we can see that the ideal reflection can be approximately 
230
+ achieved  when  𝛾 ≪ 𝑔�/𝜅� .  As  𝛾  increases,  the  cavity  reflectivity  �𝜂�,�↑�
231
+ � decreases 
232
+ monotonically until it drops to 0 when 𝛾 � 𝑔�/𝜅�. If we focus on Δ, however, it only affects 𝛽�,�↑ 
233
+
234
+ when 𝛾 � 𝜅� � 0, since �𝜂�,�↑�
235
+ � � 1. As Δ varies from �∞ to ∞, 𝛽�,↑ decreases monotonically 
236
+ from 𝜋 to �𝜋.  In order to ensure that 𝛽�,�↑ is close to 0, the constraint Δ ≪ 𝑔�/𝜅� is required.  
237
+  
238
+ 0.0
239
+ 0.2
240
+ 0.4
241
+ 0.6
242
+ 0.8
243
+ 1.0
244
+ 0.0
245
+ 0.2
246
+ 0.4
247
+ 0.6
248
+ 0.8
249
+ 1.0
250
+ 0.0
251
+ 0.2
252
+ 0.4
253
+ 0.6
254
+ 0.8
255
+ 1.0
256
+ =2x3.0MHz
257
+ max
258
+ Color:
259
+ ||2=4
260
+ ||2=10
261
+ ||2=16
262
+ Style:
263
+ M=5
264
+ M=20
265
+ M=100
266
+ max
267
+ Multiple reflection model
268
+ Fidelity
269
+
270
+ ||2=4
271
+ Single reflection model
272
+  
273
+ Fig.2.  Fidelity 𝐹 versus  dimensionless 𝛾� � 𝜅�𝛾/𝑔�with 𝑔 � 2𝜋 � 7.8𝑀𝐻𝑧, 𝜅� � 𝜅 � 2𝜋 � 2.3𝑀𝐻𝑧 and 
274
+ 𝛥 � 0. The dashed double doted pink curve is for the single reflection case. Other curves are for the multiple 
275
+ reflection case. Different colors represent different |𝛼|�. Different styles represent different 𝑀, except that 
276
+ the dotted curves are plotted for 𝑣��� with 𝑀 � 20, which is the maximum value of the average photon 
277
+ number reaching 𝑆𝑆𝐶� in each cycle when the atom is in |↑⟩. 
278
+  
279
+ In our multiple reflection scheme, however, the above constraints are relaxed. In the following, 
280
+ we show that our scheme can be insensitive to atomic parameters 𝛾 and Δ, thus the fidelity of 
281
+ the CS depends only on the quality of the linear optical system. 
282
+ In  order  to  analyze  the  effect  of  𝛾 ,  we  plot  the  fidelity  against  𝛾� � 𝜅�𝛾/𝑔�  with  𝑔 �
283
+ 2𝜋 � 7.8𝑀𝐻𝑧 , 𝜅� � 𝜅 � 2𝜋 � 2.3𝑀𝐻𝑧  and  Δ � 0  in  Fig.  2.  The  pink  dot‐dot‐dash  curve  is 
284
+ plotted for the single reflection model with |𝛼|� � 4, which has almost reached the upper limit 
285
+ of  such  model  [37].  Other  curves  are  plotted  for  the  multiple  reflection  model.  The  color 
286
+ black/red/blue represents |𝛼|� � 4 10 16
287
+
288
+
289
+ . The curve style dash/solid/dot‐dash denotes 𝑀 �
290
+ 5 20 100
291
+
292
+
293
+ , while the dotted curves are drawn for 𝑣��� with 𝑀 � 20 instead of fidelity, where 
294
+ 𝑣��� � max ��𝛼�,�↑
295
+ ��� �
296
+
297
+ , �𝛼�,�↑
298
+ ��� �
299
+
300
+ , … , �𝛼�,�↑
301
+ ����
302
+
303
+ … �  is  the  maximum  value  of  the  average  photon 
304
+ number reaching 𝑆𝑆𝐶� in each cycle when the atom is in |↑⟩. As shown in the figure,  𝑣��� is 
305
+ always less than 1 (For other 𝑀, the situation is similar), which validates the low atomic excitation 
306
+ probability condition, hence Eqs. (2)‐(4) are valid for simulations.  
307
+ By  comparison,  we  can  see  that  the  multiple  reflection  scheme  outperforms  the  single 
308
+ reflection scheme. In our scheme, it is evident that fidelity increases as 𝑀 increases. Whereas for 
309
+ larger |𝛼|�, larger 𝑀 is required to achieve the same fidelity. More importantly, for 𝛾 much larger 
310
+ than 2𝜋 � 3.0𝑀𝐻𝑧 (This value is taken from the experiment in Ref. [37]. It corresponds to 𝛾� �
311
+ 0.11 and has been marked in the figure), our scheme can still provide large 𝐹. To better explain 
312
+
313
+ the result, we consider the extreme case when 𝛾� � 1, which means all photons reaching 𝑆𝑆𝐶� in 
314
+ a single cycle are lost when the atom is in |↑⟩. Under such conditions, the interference between 
315
+ Zone 0 and Zone 1 is continuously interrupted, resulting in the output light field state in Zone 0 
316
+ becomes |𝛼 cos� 𝜃� cos��� 2 𝜃�⟩ [50,51]. Since cos� 𝜃� cos��� 2 𝜃� � 1 � 𝜋� 2𝑀
317
+
318
+  tends to 1 
319
+ as 𝑀 tends to infinity, this implies that the light field is frozen in its initial state. Such result is 
320
+ exactly what we look for, and the mechanism is called the quantum Zeno effect [49,50]. In practice, 
321
+ 𝑀 is finite, hence, the quantum Zeno effect is inevitably accompanied by photon loss, which is 
322
+ proportional to |𝛼|�, but tends to 0 as 𝑀 increases. Subsequently, this can explain that in Fig.2, 
323
+ the larger 𝑀 and the smaller |𝛼|�, the better the fidelity. So far, our discussion is about 𝛾� � 1. As 
324
+ for the case of 0 � 𝛾� � 1, the situation is similar. There is a mixture of two physical mechanisms. 
325
+ The first is to maintain the initial state by phase modulation, which does not bring any photon 
326
+ loss. The second is the quantum Zeno effect. It is worth  mentioning that the fidelity in Fig.2 
327
+ decreases monotonically as 𝛾� increases, which implies that the upper limit of the total photon 
328
+ loss of our scheme is determined by the quantum Zeno effect, i.e., 𝑀 and |𝛼| only. Together, the 
329
+ two mechanisms ensure that our scheme has higher fidelity and higher tolerance to 𝛾 than the 
330
+ single reflection scheme as 𝑀 increases. In addition, since the condition 𝛾 ≪ 𝑔�/𝜅� is relaxed, it 
331
+ implies that our scheme does not require strong coupling between atom and cavity. 
332
+ Following the analysis of 𝛾, we discuss the impact of Δ. We have shown that by interrupting the 
333
+ interference, the transmission of the light field from Zone 0 to Zone 1 can be suppressed. Note 
334
+ that the phase mismatch between the two Zones also interrupts the interference, we expect that 
335
+ our scheme can have high tolerance of Δ as well. In Fig. 3, we plot the fidelity against Δ� � 𝜅�Δ/𝑔�. 
336
+ Solid curves are for 𝛾 � 0. Dotted dashed curves are for 𝛾 � 2𝜋 � 3.0𝑀𝐻𝑧. The values of 𝑔, 𝜅� 
337
+ and 𝜅� are the same as in Fig. 2. In addition, the pink curves are plotted for the single reflection 
338
+ model with |𝛼|� � 4. As for the multiple reflection model, the black curves are for |𝛼|� � 4, 𝑀 �
339
+ 5, the red curves are for |𝛼|� � 10, 𝑀 � 20 and the blue curves are for |𝛼|� � 16, 𝑀 � 100, 
340
+ respectively.  As  shown  in  Fig.3,  even  for  large |𝛼|,  as  long  as 𝑀 is  large,  our  scheme  can  be 
341
+ insensitive to Δ. 
342
+  
343
+  
344
+
345
+ -1.0
346
+ -0.5
347
+ 0.0
348
+ 0.5
349
+ 1.0
350
+ 0.0
351
+ 0.2
352
+ 0.4
353
+ 0.6
354
+ 0.8
355
+ 1.0
356
+ Style:
357
+ =0
358
+ =2x3.0MHz
359
+ Color:
360
+ Single reflection model
361
+ ||2=4, M=5
362
+
363
+ ||2=16, M=100
364
+ ||2=10, M=20
365
+ Fidelity
366
+
367
+  
368
+ Fig.3. Fidelity 𝐹 versus dimensionless Δ� � 𝜅�Δ/𝑔� with 𝑔 � 2𝜋 � 7.8𝑀𝐻𝑧 and 𝜅� � 𝜅 � 2𝜋 � 2.3𝑀𝐻𝑧. 
369
+ The solid curves are for 𝛾 � 0, and the dotted dashed curves are for 𝛾 � 2𝜋 � 3.0𝑀𝐻𝑧. The pink curves 
370
+ are for the single reflection model with |𝛼|� � 4, and other curves are for the multiple reflection cases.  
371
+  
372
+ In  the  above  analyses,  we  ignore  the  influence  of  the  cavity  parameter 𝜅�,  which  will  be 
373
+ discussed  below.  According  to  Eq.  (2),  the  reflectivity  of  an  empty  cavity  is  
374
+ |�𝜅� � 𝜅�� �𝜅� � 𝜅�
375
+
376
+ �|� .  In  Ref.  [37],  𝜅� � 2𝜋 � 0.2 𝑀𝐻𝑧  and  𝜅� � 2𝜋 � 2.3 𝑀𝐻𝑧 ,  which 
377
+ results in a reflectivity of only about 0.7 for single reflection, while after a few reflections, almost 
378
+ all photons are lost. Therefore, the cavity employed in Ref. [37] is unfortunately not suitable for 
379
+ our scheme. To increase reflectivity, one needs either decrease 𝜅�, or increase 𝜅�. The latter is 
380
+ simpler  in  practice.  However,  although  increasing 𝜅� can  reduce  the  photon  loss  during  the 
381
+ interference of two empty cavities (The atom is in state |↓⟩), it also increases the photon loss in 
382
+ the presence of atom‐cavity coupling (The atom is in state |↑⟩). To verify this, we plot effective 
383
+ fidelity 𝐹�� � 𝑇𝑟������𝜓���𝜓�⟩ � against 𝜅� with |𝛼|� � 8, 𝑀 � 10, 𝛾 � 2𝜋 � 3.0𝑀𝐻𝑧 and Δ � 0 
384
+ in Fig.4. Here, the target state is set as �𝜓��� � ��𝛼���|↑⟩ � ��𝛼���|↓⟩� √2
385
+
386
+  with 𝛼�� � �𝐶�↓ �
387
+ 𝛼 ��𝜅� � 𝜅�� �𝜅� � 𝜅��
388
+
389
+ �� .  Note  that  |𝐶�↓⟩  is  the  output  when  the  atom  is  in  |↓⟩ ,  where 
390
+ interference  occurs  between  the  two  empty  cavities.  If  the  optical  parameters  of  these  two 
391
+ cavities are the same, only intensity of the output is affected and reduced from |𝛼|� to �𝛼���
392
+ �. In 
393
+ the  figure,  the  solid  (dashed)  curves  are  plotted  for  𝜅� � 2𝜋 � 0.02 �0.002�𝑀𝐻𝑧 .  The 
394
+ black/red/blue curves are plotted for 𝑔 � 2𝜋 � 7.8 15 30
395
+
396
+
397
+ 𝑀𝐻𝑧. In addition, the pink curves are 
398
+ plotted for �𝛼���
399
+ �. We can see that 𝐹�� can be significantly improved as 𝜅� decreases. As for 𝜅�, 
400
+ when it increases at the beginning, �𝛼���
401
+ � rapidly rises to its maximum value 8, which causes 𝐹�� 
402
+ to increase. Subsequently, photon loss due to atom‐cavity coupling plays a major role, resulting 
403
+ in the decrease of 𝐹��. Particularly, we note that for the black curve, when 𝐹�� starts to decrease, 
404
+ its corresponding �𝛼���
405
+ � is not close to 8. The reason is that 𝜅� is approaching to the limit 𝑔� 𝛾
406
+ ⁄ . 
407
+ Under such limit, the photon loss of a single reflection on 𝑆𝑆𝐶� when the atom is in |↑⟩ is almost 
408
+
409
+ 100%. Therefore, we plot for larger 𝑔 in order to increase the limit so that �𝛼���
410
+ � can get closer 
411
+ to the maximum value 8. We can see that the maximum value of 𝐹�� increases as 𝑔 increases.  
412
+ Moreover, 𝜅� maintains wide range of high fidelity (see blue curve). This is because the constraint 
413
+ 𝑔� ≫ 𝜅�𝛾 in  our  scheme  is  relaxed.  However,  we  must  emphasize  that  the  larger 𝑔 is  not 
414
+ necessary  for  high  fidelity.  By  decreasing 𝜅�,  we  can  achieve  the  same  purpose.  In  fact,  the 
415
+ motivation of this work is to reduce the influence of the atom, and to show that the performance 
416
+ of  our  protocol  can  be  improved  by  just  upgrading  the  linear  optical  system,  such  as  the 
417
+ parameters 𝑀 and 𝜅�. 
418
+ Besides the atomic parameters (𝛾, Δ) and linear optical system parameters (𝜅�, 𝑀), next we 
419
+ provide a discussion about the influence of the decoherence between the atomic states |↓⟩ and 
420
+ |↑⟩. Obviously, our scheme requires the atom to remain in superposition at least until the end of 
421
+ 𝑀 cycles. Nevertheless, we need to mention that the multiple reflection processes hardly affect 
422
+ the atomic decoherence. When the atom is in |↑⟩, the low atomic excitation probability can be 
423
+ satisfied. As for the atom in |↓⟩, it is not coupled to the light field. While the atomic superposition 
424
+ state has been reported to last about 400𝜇𝑠 [60,61]. The full‐width at half‐maximum of the light 
425
+ pulse that is employed in the experiment of single reflection model is 2.3𝜇𝑠 [37]. Therefore, it is 
426
+ possible for our scheme to be completed before the decoherence.  
427
+ 10
428
+ 20
429
+ 30
430
+ 40
431
+ 50
432
+ 0.0
433
+ 0.2
434
+ 0.4
435
+ 0.6
436
+ 0.8
437
+ 1.0
438
+ 10
439
+ 20
440
+ 30
441
+ 40
442
+ 50
443
+ 0
444
+ 2
445
+ 4
446
+ 6
447
+ 8
448
+ Effective Fidelity, Fef
449
+ Color :
450
+ Fef , g=2x7.8MHz
451
+ Fef , g=2x15MHz
452
+
453
+ Fef , g=2x30MHz
454
+ Style :
455
+ =2x0.02MHz
456
+ =2x0.002MHz
457
+ Multiple reflection model ||2=8 M=10
458
+ |ef|2
459
+ R(x2MHz)
460
+ |ef|2
461
+ 0.5
462
+  
463
+ Fig.4.  Effective  fidelity 𝐹��  and  the  output  intensity���𝛼���
464
+ �  versus 𝜅�  with  different 𝑔  and 𝜅�  for  the 
465
+ multiple reflection model. In addition, |𝛼|� � 8, 𝑀 � 10, 𝛾 � 2𝜋 � 3.0𝑀𝐻𝑧 and 𝛥 � 0. The initial state of 
466
+ the system is  �|𝛼⟩|↑⟩ � |�𝛼⟩| ↓⟩� √2
467
+
468
+  and the target state is ��𝛼���|↑⟩ � ��𝛼���� ↓�� √2
469
+
470
+
471
+  
472
+ DISCUSSION 
473
+ Advantages of multiple reflection scheme 
474
+ Compared  with  the  single  reflection  model,  our  multiple  reflection  scheme  has  two  main 
475
+ advantages.  
476
+
477
+ First, our scheme provides the single atom with the means to manipulate a strong coherent 
478
+ light field. When the atom is in |↓ �↑�⟩, the light field |𝛼⟩ evolves to | � 𝛼⟩�|𝛼⟩�. We emphasizes 
479
+ that in the single reflection model [37], the above phase manipulation can only be realized when 
480
+ |𝛼|� is small. As |𝛼|� increases, the single atom can no longer prevent the light field from entering 
481
+ the cavity (In this case, regardless of the state of the atom, the reflected light field carries a 𝜋 
482
+ phase shift just like the empty cavity case), causing the atom to be excited from state |↑⟩ to |𝑒⟩. 
483
+ As a result, Eq. (2) is no longer valid. In our scheme, however, when the atom is in |↑⟩, only a small 
484
+ fraction  of  light  touches  𝑆𝑆𝐶�  in  each  cycle.  Its  average  photon  number  is  |𝛼 sin 𝜃�|� .  By 
485
+ adjusting the transmittance of 𝐵𝑆, this value can be far less than 1, thus preventing the atom from 
486
+ being excited. Consequently, even after a large number of cycles, the phase of a strong coherent 
487
+ light field still can be manipulated by the single atom. This result illustrates that our multiple 
488
+ reflection scheme provides a single qubit with the ability to control large amplitude light field, 
489
+ even at macroscopic level. 
490
+ Second, our scheme does not require a high‐quality atom‐cavity coupling system, and it has a 
491
+ high  tolerance  for  atomic  parameters  (𝛾 and Δ ).  In  the  single  reflection  model,  the  phase 
492
+ manipulation depends on the interaction between the atom and the cavity. Hence, the constraint 
493
+ 𝑔� ≫ 𝜅�𝛾  is  necessary.  In  our  multiple  reflection  model,  however,  the  phase  manipulation 
494
+ depends  on  the  interference  of  light  between  Zones  0  and  1.  If  the  interference  continues 
495
+ uninterrupted,  the  light  field  eventually  carries  a  𝜋  phase  shift  ( |𝛼⟩ → | � 𝛼⟩ ),  whereas  if 
496
+ interrupted, the phase remains unchanged (|𝛼⟩ → |𝛼⟩). It is worth noting that in the process of 
497
+ generating 𝜋 phase, the interference occurs only between two empty cavities and the atom is not 
498
+ involved. Unlike the interference case, the interruption of the interference is more likely to occur, 
499
+ bearing  in  mind  that  atom‐cavity  system  from  Ref.  [37]  is  not  the  only  way  to  realize  the 
500
+ interruption. For example, if we replace 𝑆𝑆𝐶�(𝑆𝑆𝐶�) by a photon‐absorbing object (mirror), the 
501
+ scheme in Fig.1 becomes a typical interaction‐free measurement scheme based on quantum Zeno 
502
+ effect [49] (the difference from Ref. [49] is that here we use a Michelson interferometer instead 
503
+ of  a  chain  of  Mach‐Zehnder  interferometers,  and  a  coherent  light  source  instead  of  a  single 
504
+ photon source). Since the photons entering Zone 1 are absorbed in each cycle, the light field is 
505
+ suppressed in Zone 0, maintaining its initial state |𝛼⟩. In fact, some studies have further shown 
506
+ that even if the object causes only a partial loss of light, it still can interrupt the interference 
507
+ process and prevent the evolution of the light field [62], which is consistent with our numerical 
508
+ analysis results. Note that in our CS preparation scheme, the main role of atom‐cavity system is 
509
+ just to interrupt the interference. Therefore, our scheme does not require a high‐quality atom‐
510
+ cavity coupling. Even if the atom‐cavity system has imperfections such as photon scattering by 
511
+ the atom, CS can be still prepared.  
512
+  
513
+ Scalability of multiple reflection scheme 
514
+ From the above analysis, we can see that the atom‐cavity system from Ref. [37] is not necessary 
515
+ to accomplish our CS preparation. It can certainly be replaced by any quantum object that is in a 
516
+ superposition  of  passing/absorbing  photons  such  as  Rydberg  blockade  [43‐45]  and  photon 
517
+ blockade  [46].  Moreover,  Fig.  3  implies  that  if  the  object  adds  an  additional  phase  to  those 
518
+ photons passing through it instead of absorbing them, it also leads to freezing the evolution of 
519
+ the  initial  state |𝛼⟩.  This  suggests  that  the  three‐level  atomic  model,  used  in  nondemolition 
520
+ measurement [47,48], can also be used to replace the atom‐cavity system. Therefore, in our CS 
521
+
522
+ preparation method, the multiple reflection model is more indispensable. In addition, our scheme 
523
+ can be used beyond the preparation of CS, and realize the entangled coherent state required in 
524
+ Ref. [20,21]. To do so, we just need to turn off 𝑆𝑀 when 𝑚 � 𝑀/2 instead of 𝑚 � 𝑀,  so that Eq. 
525
+ (2) becomes  �|𝛼, 0⟩|↑⟩ � |0, 𝛼⟩|↓⟩� √2
526
+
527
+ . Last but not least, we focus on the optical platform so far, 
528
+ nevertheless, our method also works for other platforms such as superconducting microwave 
529
+ resonator [63,64]. 
530
+  
531
+ In  summary,  we  have  proposed  a  deterministic  method  to  entangle  an  atom  to  a  large‐
532
+ amplitude  coherent  pulse,  thus  realizing  the  preparation  of  a  large‐amplitude  optical  CS.  A 
533
+ multiple reflection scheme is used, which brings two advantages. First, in each reflection, the 
534
+ actual number of photons manipulated by the atom is very small, which ensures that the single 
535
+ atom can properly control the phase of the reflected field. Second, due to quantum Zeno effect, 
536
+ our  scheme  becomes  insensitive  to  atomic  parameters 𝛾 and Δ.  The  sensitivity  continues  to 
537
+ decrease as the number of reflections 𝑀 increases. This allows our scheme to improve the fidelity 
538
+ of the output CS only by improving the linear optical system. 
539
+  
540
+ Data availability: 
541
+ Data sharing not applicable to this article as no datasets were generated or analyzed during the 
542
+ current study. 
543
+  
544
+ Code availability: 
545
+ The code generated to analyze the protocol is available from the corresponding author upon 
546
+ reasonable request. 
547
+  
548
+ Acknowledgements: 
549
+ This work is supported by a grant from the King Abdulaziz City for Science and Technology (KACST), 
550
+ and Project No. NPRP 13S‐0205‐200258 of the Qatar National Research Fund (QNRF). 
551
+  
552
+ Author contributions:  
553
+ The theory was conceived by Z‐H.L. Numerical calculations were performed by Z‐Y.L. and F.Y. 
554
+ under the supervision of Z‐H.L. The project was supervised by M.A. and M.S.Z. All the authors 
555
+ participated in the manuscript preparation, discussions, and checks of the results. 
556
+  
557
+ Competing interests: 
558
+ The authors declare no competing interests. 
559
+  
560
+ Additional information: 
561
+ Correspondence and requests for materials should be addressed to Z‐H.L. 
562
+  
563
+  
564
+ Reference: 
565
+ [1] E. Schrödinger, “Die gegenwärtige Situation in der Quantenmechanik”, Naturwissenschaften 
566
+ 23, 807 (1935). 
567
+
568
+ [2]  S.  Haroche,  “Nobel  Lecture:  Controlling  photons  in  a  box  and  exploring  the  quantum  to 
569
+ classical boundary”, Rev. Mod. Phys. 85, 1083 (2013). 
570
+ [3] D. J. Wineland, “Nobel Lecture: Superposition, entanglement, and raising Schrödinger’s cat”, 
571
+ Rev. Mod. Phys. 85, 1103 (2013). 
572
+ [4] L. Li, C.‐L. Zou, V. V. Albert, S. Muralidharan, S. M. Girvin, and L. Jiang, “Cat codes with optimal 
573
+ decoherence suppression for a lossy bosonic channel”, Phys. Rev. Lett. 119, 030502 (2017). 
574
+ [5] S.‐W. Lee, and H. Jeong, “Near‐deterministic quantum teleportation and resource efficient 
575
+ quantum computation using linear optics and hybrid qubits”, Phys. Rev. A 87, 022326 (2013). 
576
+ [6]  N.  Sangouard,  C.  Simon,  N.  Gisin,  J.  Laurat,  R.  Tualle‐Brouri,  and  P.  Grangier,  “Quantum 
577
+ repeaters with entangled coherent states”, J. Opt. Soc. Am. B 27, A137 (2010). 
578
+ [7] J. B. Brask, I. Rigas, E. S. Polzik, U. L. Andersen, and A. S. Sørensen, “Hybrid long distance 
579
+ entanglement distribution protocol”, Phys. Rev. Lett. 105, 160501 (2010). 
580
+ [8] H. Jeong and M. S. Kim, “Efficient quantum computation using coherent states”, Phys. Rev. A 
581
+ 65, 042305 (2002). 
582
+ [9] T. C. Ralph, A. Gilchrist, G. J. Milburn, W. J. Munro, and S. Glancy, “Quantum computation with 
583
+ optical coherent states”, Phys. Rev. A 68, 042319 (2003).  
584
+ [10] A. P. Lund, T. C. Ralph, and H. L. Haselgrove, “ Fault‐tolerant linear optical quantum computing 
585
+ with small‐amplitude coherent states”, Phys. Rev. Lett. 100, 030503 (2008).  
586
+ [11] M. Mirrahimi, Z. Leghtas, V. V. Albert, S. Touzard, R. J. Schoelkopf, L. Jiang, and M. H. Devoret, 
587
+ “Dynamically protected cat‐qubits: a new paradigm for universal quantum computation”, New 
588
+ Journal of Physics 16, 045014 (2014).   
589
+ [12]  D.  Su,  I.  Dhand,  and  T.  C.  Ralph,  “Universal  quantum  computation  with  optical  four‐
590
+ component cat qubits”, arXiv:2109.12278 (2021). 
591
+ [13]  J.  Hastrup  and  U.  L.  Andersen,  “All‐optical  catcode  quantum  error  correction”, 
592
+ arXiv:2108.12225 (2021). 
593
+ [14]  P.  T.  Cochrane,  G.  J.  Milburn,  and  W.  J.  Munro,  “Macroscopically  distinct  quantum‐
594
+ superposition states as a bosonic code for amplitude damping”, Phys. Rev. A 59, 2631 (1999). 
595
+ [15] Z. Leghtas, G. Kirchmair, B. Vlastakis, R. J. Schoelkopf, M. H. Devoret, and M. Mirrahimi, 
596
+ “Hardware‐efficient  autonomous  quantum  memory  protection”,  Phys.  Rev.  Lett.  111,  120501 
597
+ (2013). 
598
+ [16]  M.  Bergmann  and  P.  van  Loock,  “Quantum  error  correction  against  photon  loss  using 
599
+ multicomponent cat states”, Phys. Rev. A 94, 042332 (2016).  
600
+ [17] N. Ofek, A. Petrenko, R. Heeres, P. Reinhold, Z. Leghtas, B. Vlastakis, Y. Liu, L. Frunzio, S. M. 
601
+ Girvin, L. Jiang, M. Mirrahimi, M. H. Devoret, and R. J. Schoelkopf, Extending the lifetime of a 
602
+ quantum bit with error correction in superconducting circuits, Nature 536, 441 (2016). 
603
+ [18] W. J. Munro, K. Nemoto, G. J. Milburn, and S. L. Braunstein, “Weak‐force detection with 
604
+ superposed coherent states”, Phys. Rev. A 66, 023819 (2002). 
605
+ [19] A. Gilchrist, K. Nemoto, W. J. Munro, T. C. Ralph, S. Glancy, S. L. Braunstein, and G. J. Milburn, 
606
+ “Schrödinger cats and their power for quantum information processing”, J. Opt. B 6, S828 (2004).  
607
+ [20] J. Joo, W. J. Munro, and T. P. Spiller, “Quantum metrology with entangled coherent states”, 
608
+ Phys. Rev. Lett. 107, 083601 (2011). 
609
+ [21] Y. M. Zhang, X. W. Li, W. Yang, and G. R. Jin, “Quantum Fisher information of entangled 
610
+ coherent states in the presence of photon loss”, Phys. Rev. A 88, 043832 (2013). 
611
+
612
+ [22] S. Ghosh, R. Sharma, U. Roy, and P. K. Panigrahi, “Mesoscopic quantum superposition of the 
613
+ generalized cat state: A diffraction limit”, Phys. Rev. A 92, 053819 (2015).  
614
+ [23] A. Facon, E.‐K. Dietsche, D. Grosso, S. Haroche, J.‐M. Raimond, M. Brune, and S. Gleyzes, “A 
615
+ sensitive electrometer based on a Rydberg atom in a Schrödinger‐cat state”, Nature 535, 262–
616
+ 265 (2016). 
617
+ [24]  E.  Polino,  M.  Valeri,  N.  Spagnolo,  and  F.  Sciarrino,  “Photonic  quantum  metrology”,  AVS 
618
+ Quantum Science 2, 024703 (2020). 
619
+ [25] C. Monroe, D. Meekhof, B. King, and D. J. Wineland, “A “Schrödinger cat” superposition state 
620
+ of an atom”, Science 272, 1131 (1996). 
621
+ [26] D. Kienzler, C. Flühmann, V. Negnevitsky, H.‐Y. Lo, M. Marinelli, D. Nadlinger, and J. P. Home, 
622
+ “Observation of quantum interference between separated mechanical oscillator wave packets”, 
623
+ Phys. Rev. Lett. 116, 140402 (2016).  
624
+ [27]  S.  Deleglise,  I.  Dotsenko,  C.  Sayrin,  J.  Bernu,  M.  Brune,  J.‐M.  Raimond,  and  S.  Haroche, 
625
+ “Reconstruction of non‐classical cavity field states with snapshots of their decoherence”, Nature 
626
+ 455, 510 (2008). 
627
+ [28] B. Vlastakis, G. Kirchmair, Z. Leghtas, S. E. Nigg, L. Frunzio, S. M. Girvin, M. Mirrahimi, M. H. 
628
+ Devoret,  and  R.  J.  Schoelkopf,  “Deterministically  encoding  quantum  information  using  100‐
629
+ photon Schrödinger cat states”, Science 342, 607 (2013).  
630
+ [29] J. S. Neergaard‐Nielsen, B. M. Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, “Generation of 
631
+ a superposition of odd photon number states for quantum information networks”, Phys. Rev. Lett. 
632
+ 97, 083604 (2006). 
633
+ [30] A. Ourjoumtsev, R. Tualle‐Brouri, J. Laurat, and P. Grangier, “Generating optical Schrödinger 
634
+ kittens for quantum information processing”, Science 312, 83 (2006). 
635
+ [31] T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. W. Nam, 
636
+ R. P. Mirin, and E. Knill, “Generation of optical coherent‐state superpositions by number‐resolved 
637
+ photon subtraction from the squeezed vacuum”, Phys. Rev. A 82, 031802(R) (2010). 
638
+ [32] H. Takahashi, K. Wakui, S. Suzuki, M. Takeoka, K. Hayasaka, A. Furusawa, and M. Sasaki, 
639
+ “Generation  of  Large‐Amplitude  Coherent‐State  Superposition  Via  Ancilla‐Assisted  Photon 
640
+ Subtraction”, Phys. Rev. Lett. 101, 233605 (2008). 
641
+ [33] K. Huang, H. Le Jeannic, J. Ruaudel, V. B. Verma, M. D. Shaw, F. Marsili, S.W. Nam, E Wu, H. 
642
+ Zeng, Y.‐C. Jeong, R. Filip, O. Morin, and J. Laurat, “Optical Synthesis of Large‐Amplitude Squeezed 
643
+ Coherent‐State Superpositions with Minimal Resources”, Phys. Rev. Lett. 115, 023602 (2015). 
644
+ [34]  A.  Ourjoumtsev,  H.  Jeong,  R.  Tualle‐Brouri,  and  P.  Grangier,  “Generation  of  optical 
645
+ ‘Schrödinger cats’ from photon number states”, Nature (London) 448, 784 (2007). 
646
+ [35] A. E. Ulanov, I. A. Fedorov, D. Sychev, P. Grangier, and A. I. Lvovsky, “Loss‐tolerant state 
647
+ engineering  for  quantum  enhanced  metrology  via  the  reverse  Hong‐Ou‐Mandel  effect”,  Nat. 
648
+ Commun. 7, 11925 (2016). 
649
+ [36] D. V. Sychev, A. E. Ulanov, A. A. Pushkina, M. W. Richards, I. A. Fedorov, and A. I. Lvovsky, 
650
+ “Enlargement of optical Schrödinger's cat states”, Nature Photonics 11, 379 (2017). 
651
+ [37] B. Hacker, S. Welte, S. Daiss, A. Shaukat, S. Ritter, L. Li, and G. Rempe, “Deterministic creation 
652
+ of entangled atom–light Schrödinger‐cat states”, Nature Photonics 13, 110 (2019).  
653
+ [38] M. Dakna, T. Anhut, T. Opatrný, L. Knöll, and D.‐G. Welsch, “Generating Schrödinger‐cat‐like 
654
+ states by means of conditional measurements on a beam splitter”, Phys. Rev. A 55, 3184 (1997). 
655
+ [39] K. Takase, J.‐i. Yoshikawa, W. Asavanant, M. Endo, and A. Furusawa, “Generation of optical 
656
+
657
+ Schrödinger cat states by generalized photon subtraction”, Phys. Rev. A 103, 013710 (2021). 
658
+ [40] A. P. Lund, H. Jeong, T. C. Ralph, and M. S. Kim, “Conditional production of superpositions of 
659
+ coherent states with inefficient photon detection”, Phys. Rev. A 70, 020101(R) (2004).
660
+ [41] A. Laghaout, J. S. Neergaard‐Nielsen, I. Rigas, C. Kragh, A. Tipsmark, and U. L. Andersen, 
661
+ “Amplification of realistic Schrödinger‐cat‐state‐like states by homodyne heralding”, Phys. Rev. A 
662
+ 87, 043826 (2013). 
663
+ [42] B. Wang and L.‐M. Duan, “Engineering superpositions of coherent states in coherent optical 
664
+ pulses through cavity‐assisted interaction”, Phys. Rev. A 72, 022320 (2005). 
665
+ [43] E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, 
666
+ “Observation of Rydberg blockade between two atoms”, Nat. Phys. 5, 110 (2009). 
667
+ [44] T. A. Johnson, E. Urban, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, 
668
+ “Rabi Oscillations between Ground and Rydberg States with Dipole‐Dipole Atomic Interactions”, 
669
+ Phys. Rev. Lett. 100, 113003 (2008). 
670
+ [45] Q. Guo, L. Y. Cheng, L. Chen, H. F. Wang, and S. Zhang, “Counterfactual quantum‐information 
671
+ transfer without transmitting any physical particles”, Sci. Rep. 5, 8416 (2015). 
672
+ [46] K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon 
673
+ blockade in an optical cavity with one trapped atom”, Nature (London) 436, 87 (2005) 
674
+ [47] G. Nogues, A. Rauschenbeutel, S. Osnaghi, M. Brune, J. M. Raimond, and S. Haroche, “Seeing 
675
+ a single photon without destroying it”, Nature (London) 400, 239 (1999). 
676
+ [48] M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 
677
+ 1997). 
678
+ [49]  P.  G.  Kwiat,  H.  Weinfurter,  T.  Herzog,  A.  Zeilinger,  and  M.  A.  Kasevich,  “Interaction‐free 
679
+ measurement”, Phys. Rev. Lett. 74, 4763 (1995). 
680
+ [50] H. Salih, Z.‐H. Li, M. Al‐Amri, and M. S. Zubairy, “Protocol for direct counterfactual quantum 
681
+ communication”, Phys. Rev. Lett. 110, 170502 (2013). 
682
+ [51]  Z.‐H.  Li,  S.‐Y.  Feng,  M.  Al‐Amri,  and  M.  S.  Zubairy,  “Direct  counterfactual  quantum 
683
+ communication protocol beyond single photon source”, Phys. Rev. A 106, 032610 (2022). 
684
+ [52]  L.‐M.  Duan,  and  H.  J.  Kimble,  “Scalable  Photonic  Quantum  Computation  through  Cavity‐
685
+ Assisted Interactions”, Phys. Rev. Lett. 92, 127902 (2004). 
686
+ [53] A. Reiserer, S. Ritter, and G. Rempe, “Nondestructive Detection of an Optical Photon”, Science 
687
+ 342, 1349 (2013). 
688
+ [54] A. Reiserer, and G. Rempe, “Cavity‐ based quantum networks with single atoms and optical 
689
+ photons”, Rev. Mod. Phys. 87, 1379 (2015). 
690
+ [55] Y. Liu, L. Ju, X.‐L. Liang, S.‐B. Tang, G.‐L. Shen Tu, L. Zhou, C.‐Z. Peng, K. Chen, T.‐Y. Chen, Z.‐B. 
691
+ Chen, and J.‐W. Pan, “Experimental Demonstration of Counterfactual Quantum Communication”, 
692
+ Phys. Rev. Lett. 109, 030501 (2012). 
693
+ [56] See supplementary materials. 
694
+ [57] C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation 
695
+ induced by a single‐electron spin in a quantum dot: Applications to entangling remote spins via a 
696
+ single photon”, Phys. Rev. B 78, 085307 (2008). 
697
+ [58] C. W. Gardiner, and M. J. Collett, “Input and output in damped quantum systems: Quantum 
698
+ stochastic differential equations and the master equation”, Phys. Rev. A 31, 3761 (1985). 
699
+ [59] D. F. Walls, and G. J. Milburn, Quantum Optics (Springer‐ Verlag, Berlin, 1994). 
700
+ [60] S. Daiss, S. Langenfeld, S. Welte, E. Distante, P. Thomas, L. Hartung, O. Morin, G. Rempe, “A 
701
+
702
+ quantum‐logic gate between distant quantum‐network modules”, Science 371, 614 (2021). 
703
+ [61] S. Welte, P. Thomas, L. Hartung, S. Daiss, S. Langenfeld, O. Morin, G. Rempe and E. Distante, 
704
+ “A nondestructive Bell‐state measurement on two distant atomic qubits”, Nature Photonics 15, 
705
+ 504 (2021). 
706
+ [62] L. J. Wang, Z.‐H. Li, J. P. Xu, Y. P. Yang, M. Al‐Amri, and M. S. Zubairy, “Exchange unknown 
707
+ quantum states with almost invisible photons”, Opt. Express 27, 20525 (2019). 
708
+ [63] Z. L. Wang, Z. H. Bao, Y. K. Wu, Y. Li, W. Z. Cai, W. T. Wang, Y. W. Ma, T. Q. Cai, X. Y. Han, J. H. 
709
+ Wang, Y. P. Song, L. Y. Sun, H. Y. Zhang, L. M. Duan, “A flying Schrödinger’s cat in multipartite 
710
+ entangled states”, Sci. Adv. 8, eabn1778 (2022). 
711
+ [64] Z. H. Bao, Z. L. Wang, Y. K. Wu, Y. Li, W. Z. Cai, W. T. Wang, Y. W. Ma, T. Q. Cai, X. Y. Han, J. H. 
712
+ Wang, Y. P. Song, L. Y. Sun, H. Y. Zhang, and L. M. Duan,  “Experimental preparation of generalized 
713
+ cat states for itinerant microwave photons”, arXiv:2207.04617 (2022). 
714
+  
715
+
716
+ Supplementary material 
717
+ A. Calculations for Equation 1 
718
+ In the main text, we have mentioned that 𝑎� and 𝑎� represent the annihilation operators of 
719
+ the  light  field  in  Zone  0  and  Zone  1,  respectively.  Based  on  this,  the  function  of 𝐵𝑆 can  be 
720
+ described as  𝑎�
721
+ � → 𝑎�
722
+ � cos 𝜃� � 𝑎�
723
+ � sin 𝜃� and 𝑎�
724
+ � → 𝑎�
725
+ � cos 𝜃� � 𝑎�
726
+ � sin 𝜃� where 𝜃� � 𝜋/2𝑀. 
727
+ Now, we consider an arbitrary initial photon state  
728
+  
729
+ |𝐼𝑛𝑖𝑡𝑖𝑎𝑙⟩ � |𝑢, 𝑣⟩ � exp�𝑢𝑎�
730
+ � � 𝑢∗𝑎��exp�𝑣𝑎�
731
+ � � 𝑣∗𝑎��|0,0⟩, 
732
+ (A1) 
733
+ which represents that a coherent state |𝑢⟩ is in Zone 0 and a coherent state |𝑣⟩ is in Zone 1. After 
734
+ passing through the 𝐵𝑆, we have the final state 
735
+  
736
+ |𝐹𝑖𝑛𝑎𝑙⟩ � exp�𝑢�𝑎�
737
+ � cos 𝜃� � 𝑎�
738
+ � sin 𝜃�� � 𝑢∗�𝑎� cos 𝜃� � 𝑎� sin 𝜃���,  
739
+  
740
+ � exp�𝑣�𝑎�
741
+ � cos 𝜃� � 𝑎�
742
+ � sin 𝜃�� � 𝑣∗�𝑎� cos 𝜃� � 𝑎� sin 𝜃��� |0,0⟩ 
743
+ � |𝑢 cos 𝜃� � 𝑣 sin 𝜃� , 𝑢 sin 𝜃� � 𝑣 cos 𝜃�⟩.  
744
+ (A2) 
745
+ Similarly, consider an arbitrary phase operation 𝑎� → 𝑒��𝑎�. For the initial state |𝐼𝑛𝑖𝑡𝑖𝑎𝑙⟩ �
746
+ |𝑢⟩, after the operation, the final state is 
747
+ |𝐹𝑖𝑛𝑎𝑙⟩ � exp �� 1
748
+ 2 |𝑢|�� � 𝑢�
749
+ √𝑛!
750
+ 1
751
+ √𝑛!
752
+ �𝑒��𝑎��
753
+ �|0⟩
754
+
755
+ ���
756
+  
757
+ � exp ��
758
+
759
+ � |𝑢|�� ∑
760
+
761
+ √�! �𝑢𝑒���
762
+ �|𝑛⟩
763
+
764
+ ���
765
+ � |𝑢𝑒��⟩                          (A3) 
766
+ Based on Eqs. (A2) and (A3), we provide the calculation of Eq. (1) in the main text.  
767
+ At the beginning of the preparation, the wave‐function of the whole system is 
768
+  
769
+ �𝜓���� � √�
770
+ � |𝛼, 0⟩�|↑⟩ � |↓⟩�  
771
+ (A4) 
772
+ In the first cycle, after the photons pass through  𝐵𝑆 for the first time, the system state is 
773
+  
774
+ �𝜓���� � √�
775
+ � |𝛼 cos 𝜃� , 𝛼 sin 𝜃�⟩�|↑⟩ � |↓⟩�  
776
+ (A5) 
777
+ Before 
778
+ the 
779
+ photons 
780
+ are 
781
+ reflected 
782
+ by 
783
+ 𝑆𝑆𝐶
784
+
785
+ the 
786
+ system 
787
+ state 
788
+ becomes 
789
+ √�
790
+ � |�𝛼 cos 𝜃� , �𝛼 sin 𝜃�⟩�|↑⟩ � |↓⟩� due  to 𝑃𝑆.  Regarding  the  reflection,  we  emphasize  that 
791
+ only when the atom is in |↑⟩, 𝑆𝑆𝐶� does not change the phase of the reflected field. As a result, 
792
+ the 
793
+ wave‐function 
794
+ of 
795
+ the 
796
+ whole 
797
+ system 
798
+ becomes 
799
+ √�
800
+ � |𝛼 𝑐𝑜𝑠 𝜃� , ���� 𝑠𝑖𝑛 𝜃�⟩|↑⟩ �
801
+ √�
802
+ � |𝛼 𝑐𝑜𝑠 𝜃� , 𝛼 𝑠𝑖𝑛 𝜃�⟩|↓⟩. Subsequently, after the second time that the photons pass through 
803
+ 𝐵𝑆, we have 
804
+  
805
+ �𝜓���� � √�
806
+ � |𝛼, 0⟩|↑⟩ � √�
807
+ � |cos 2 𝜃�𝛼, sin 2 𝜃�𝛼⟩|↓⟩  
808
+ (A6) 
809
+
810
+ This state becomes the initial state of the second cycle, and the process is repeated. It is not 
811
+ difficult to obtain that after 𝑚 cycles, the wave‐function of the whole system is 
812
+  
813
+ �𝜓����� � √�
814
+ � |𝛼, 0⟩|↑⟩ � √�
815
+ � |𝛼 cos 2 𝑚𝜃�, 𝛼 sin 2 𝑚𝜃�⟩|↓⟩ 
816
+ (A7) 
817
+ Here the superscript of �𝜓����� represents the photons pass through 𝐵𝑆 2𝑚 times. 
818
+  
819
+ B. Calculations for Equations 2‐4 
820
+ The Hamiltonian of cavity‐atom system (𝑆𝑆𝐶�) can be described as 
821
+ 𝐻 � ℏ𝜔�𝜎�� � ℏ𝜔↑𝜎↑↑ � ℏ𝜔�𝑎�𝑎 � ℏ �
822
+
823
+ 𝜔�𝑏�
824
+ ��𝜔��𝑏��𝜔��𝑑𝜔�
825
+
826
+ -�
827
+ ���,�,�
828
+  
829
+ �ℏ𝑔�𝜎↑�𝑎� � 𝜎�↑𝑎� � ℏ�
830
+
831
+ � �
832
+ �𝜎↑�𝑏�
833
+ ��𝜔�� � 𝜎�↑𝑏��𝜔���𝑑𝜔�
834
+
835
+ -�
836
+   
837
+      �𝑖ℏ�
838
+ ��
839
+ � �
840
+ �𝑎𝑏�
841
+ ��𝜔�� � 𝑎�𝑏��𝜔���𝑑𝜔�
842
+
843
+ -�
844
+ � 𝑖ℏ�
845
+ ��
846
+ � �
847
+ �𝑎𝑏�
848
+ ��𝜔�� � 𝑎�𝑏��𝜔���𝑑𝜔�
849
+
850
+ -�
851
+        (B1) 
852
+ where ℏ𝜔� is the energy of excited atomic state |𝑒⟩, ℏ𝜔↑ is the energy of the atomic state |↑⟩, 𝜔𝑐 
853
+ is the frequency of the cavity mode described by annihilation operator 𝑎, 𝜔𝐽 is the frequency of 
854
+ external field described by annihilation operator 𝑏�𝜔�� with �𝑏𝐽�𝜔𝐽�, 𝑏𝐽
855
+ †�𝜔𝐽
856
+ ′�� � 𝛿�𝜔𝐽 � 𝜔𝐽
857
+ ′�, and 
858
+ the subscript 𝑅 represents the external multi‐mode field on 𝐶𝑀� side, 𝑇 represents the external 
859
+ field on 𝐶𝑀� side, 𝑆 represents the scattering field due to the atomic spontaneous emission. In 
860
+ addition, 𝑔 is coupling constant between the cavity and the atomic transition between |𝑒⟩ and |↑⟩, 
861
+ 2𝛾 is the spontaneous atomic decay rate on the same transition, 𝜅𝑅 and 𝜅𝑇 are cavity field decay 
862
+ rates. We also set that 𝜎↑𝑒 � |↑⟩⟨𝑒|, 𝜎𝑒𝑒 � |𝑒⟩⟨𝑒| and 𝜎↑↑ � |↑⟩⟨↑|.       
863
+ Based on the above Hamiltonian, it is not difficult to obtain the following Heisenberg equations 
864
+  
865
+ 𝑑𝑎�𝑡�
866
+ 𝑑𝑡 � �𝑖𝜔𝑐𝑎�𝑡� � 𝑖𝑔𝜎↑𝑒�𝑡� � ∑
867
+
868
+ 𝜅𝐽
869
+ 𝜋
870
+ 𝐽�𝑅,𝑇
871
+
872
+ 𝑏𝐽�𝜔𝐽, 𝑡�𝑑𝜔𝐽
873
+
874
+ -∞
875
+ ,  
876
+ (B2) 
877
+ 𝑑
878
+ 𝑑𝑡 𝜎↑𝑒�𝑡� � �𝑖�𝜔𝑒 � 𝜔↑�𝜎↑𝑒�𝑡� � 𝑖𝑔�𝜎𝑒𝑒�𝑡� � 𝜎↑↑�𝑡��𝑎�𝑡�  
879
+ �𝑖�
880
+
881
+ � �
882
+ �𝜎���𝑡� � 𝜎↑↑�𝑡��
883
+
884
+ -�
885
+ 𝑏��𝜔�, 𝑡�𝑑𝜔�  
886
+  
887
+ � �𝑖�𝜔� � 𝜔↑�𝜎↑��𝑡� � 𝑖𝑔𝑎�𝑡� � 𝑖�
888
+
889
+ � �
890
+ 𝑏��𝜔�, 𝑡�𝑑𝜔�
891
+
892
+ -�
893
+ .  
894
+ (B3) 
895
+ In the approximation, we have assumed that [1‐3] 
896
+  
897
+ ⟨�𝜎𝑒𝑒 � 𝜎↑↑�𝑎⟩ � �⟨𝑎⟩,  
898
+ (B4) 
899
+ which indicates that the atom stays in the state |↑⟩ most of the time. This can be satisfied when 
900
+ the input is weak. 
901
+
902
+ In addition, we can also obtain Heisenberg equations for 𝑏�𝜔�. They are 
903
+  
904
+ 𝑑𝑏𝐽�𝜔𝐽,𝑡�
905
+ 𝑑𝑡
906
+ � �𝑖𝜔𝐽𝑏𝐽�𝜔𝐽, 𝑡� � �
907
+ 𝜅𝑅
908
+ 𝜋 𝑎�𝑡�, 𝐽 � 𝑅, 𝑇, 
909
+ (B5) 
910
+  
911
+ 𝑑𝑏𝑆�𝜔𝑆,𝑡�
912
+ 𝑑𝑡
913
+ � �𝑖𝜔𝑆𝑏𝑆�𝜔𝑆, 𝑡� � 𝑖�
914
+ 𝛾
915
+ 𝜋 𝜎↑𝑒�𝑡�. 
916
+ (B6) 
917
+ Eqs. (B5) and (B6) can be rewritten in integral form. If we assume that the atom‐light interaction 
918
+ begins at time 𝑇𝑖𝑛 � 𝑡, we have 
919
+  
920
+ 𝑏𝐽�𝜔𝐽, 𝑡� � 𝑏𝐽�𝜔𝐽, 𝑇𝑖𝑛�𝑒𝑖𝜔𝐽�𝑇𝑖𝑛�𝑡� � �
921
+ 𝜅𝐽
922
+ 𝜋 �
923
+ 𝑎�𝑡′�𝑒𝑖𝜔𝐽�𝑡′�𝑡�𝑑𝑡′
924
+ 𝑡
925
+ 𝑇𝑖𝑛
926
+ ,  
927
+ (B7) 
928
+  
929
+ 𝑏𝑆�𝜔𝑆, 𝑡� � 𝑏𝑆�𝜔𝑆, 𝑇𝑖𝑛�𝑒𝑖𝜔𝑆�𝑇𝑖𝑛�𝑡� � 𝑖�
930
+ 𝛾
931
+ 𝜋 �
932
+ 𝜎↑𝑒�𝑡′�𝑒𝑖𝜔𝑆�𝑡′�𝑡�𝑑𝑡′
933
+ 𝑡
934
+ 𝑇𝑖𝑛
935
+ .  
936
+ (B8) 
937
+ If we assume that the atom‐light interaction ends at time 𝑇𝑜𝑢𝑡 � 𝑡, we have 
938
+  
939
+ 𝑏𝐽�𝜔𝐽, 𝑡� � 𝑏𝐽�𝜔𝐽, 𝑇𝑜𝑢𝑡�𝑒𝑖𝜔𝐽�𝑇𝑜𝑢𝑡�𝑡� � �
940
+ 𝜅𝐽
941
+ 𝜋 �
942
+ 𝑎�𝑡′�𝑒𝑖𝜔𝐽�𝑡′�𝑡�𝑑𝑡′
943
+ 𝑇𝑜𝑢𝑡
944
+ 𝑡
945
+ ,  
946
+ (B9) 
947
+  
948
+ 𝑏𝑆�𝜔𝑆, 𝑡� � 𝑏𝑆�𝜔𝑆, 𝑇𝑜𝑢𝑡�𝑒𝑖𝜔𝑆�𝑇𝑜𝑢𝑡�𝑡� � 𝑖�
949
+ 𝛾
950
+ 𝜋 �
951
+ 𝜎↑𝑒�𝑡′�𝑒𝑖𝜔𝑆�𝑡′�𝑡�𝑑𝑡′
952
+ 𝑇𝑜𝑢𝑡
953
+ 𝑡0
954
+ .  
955
+ (B10) 
956
+ By integrating Eq. (B7) with frequency, it is not difficult to obtain that 
957
+
958
+ 𝜅𝐽
959
+ 𝜋 �
960
+ 𝑏𝐽�𝜔𝐽, 𝑡�𝑑𝜔𝐽
961
+
962
+ -∞
963
+   
964
+ � �
965
+ ��
966
+ � �
967
+ 𝑏��𝜔�, 𝑇���𝑒����������𝑑𝜔�
968
+
969
+ -�
970
+ � 2𝜅� �
971
+ 𝑎�𝑡��𝑑𝑡�
972
+
973
+ ���
974
+
975
+ �� �
976
+ 𝑒���������𝑑𝜔�
977
+
978
+ -�
979
+   
980
+  
981
+ � �2𝜅�𝑎�,���𝑡� � 𝜅�𝑎�𝑡�.  
982
+ (B11) 
983
+ where we have used the relation [4] 
984
+  
985
+ � 𝑓�𝑡′�𝛿�𝑡 � 𝑡′�𝑑𝑡′
986
+ 𝑡
987
+ 𝑡0
988
+ � �
989
+ 𝑓�𝑡′�𝛿�𝑡 � 𝑡′�𝑑𝑡′
990
+ 𝑡1
991
+ 𝑡
992
+ � 1
993
+ 2 𝑓�𝑡�, �𝑡0 � 𝑡 � 𝑡1�,  
994
+ (B12) 
995
+ and the assumptions (𝐽 � 𝑅, 𝑇) 
996
+  
997
+ 𝑎𝐽,𝑖𝑛�𝑡� �
998
+ 1
999
+ √2𝜋 �
1000
+ 𝑏𝐽�𝜔𝐽, 𝑇𝑖𝑛�𝑒𝑖𝜔𝐽�𝑇𝑖𝑛�𝑡�𝑑𝜔𝐽
1001
+
1002
+ -∞
1003
+
1004
+ (B13) 
1005
+  
1006
+ 𝑎𝐽,𝑜𝑢𝑡�𝑡� �
1007
+ 1
1008
+ √2𝜋 �
1009
+ 𝑏𝐽�𝜔𝐽, 𝑇𝑜𝑢𝑡�𝑒𝑖𝜔𝐽�𝑇𝑜𝑢𝑡�𝑡�𝑑𝜔𝐽
1010
+
1011
+ -∞
1012
+
1013
+ (B14) 
1014
+  
1015
+ 𝑎𝑆,𝑖𝑛�𝑡� �
1016
+ 1
1017
+ √2𝜋 �
1018
+ 𝑏𝑆�𝜔𝑆, 𝑇𝑖𝑛�𝑒𝑖𝜔𝑆�𝑇𝑖𝑛�𝑡�𝑑𝜔𝑆
1019
+
1020
+ -∞
1021
+
1022
+ (B15) 
1023
+  
1024
+ 𝑎𝑆,𝑜𝑢𝑡�𝑡� �
1025
+ 1
1026
+ √2𝜋 �
1027
+ 𝑏𝑆�𝜔𝑆, 𝑇𝑜𝑢𝑡�𝑒𝑖𝜔𝑆�𝑇𝑜𝑢𝑡�𝑡�𝑑𝜔𝑆
1028
+
1029
+ -∞
1030
+
1031
+ (B16) 
1032
+ Similarly, from Eqs. (B8)‐(B10), we have 
1033
+  
1034
+
1035
+ 𝛾
1036
+ 𝜋 �
1037
+ 𝑏𝑆�𝜔𝑆, 𝑡�𝑑𝜔𝑆
1038
+
1039
+ -∞
1040
+ � �2𝛾𝑎𝑆,𝑖𝑛�𝑡� � 𝑖𝛾𝜎↑𝑒�𝑡�,  
1041
+ (B17) 
1042
+
1043
+  
1044
+
1045
+ 𝜅𝐽
1046
+ 𝜋 �
1047
+ 𝑏𝐽�𝜔𝐽, 𝑡�𝑑𝜔𝐽
1048
+
1049
+ -∞
1050
+ � �2𝜅𝐽𝑎𝐽,𝑜𝑢𝑡�𝑡� � 𝜅𝐽𝑎�𝑡�,  
1051
+ (B18) 
1052
+  
1053
+
1054
+ 𝛾
1055
+ 𝜋 �
1056
+ 𝑏𝑆�𝜔𝑆, 𝑡�𝑑𝜔𝑆
1057
+
1058
+ -∞
1059
+ � �2𝛾𝑎𝑆,𝑜𝑢𝑡�𝑡� � 𝑖𝛾𝜎↑𝑒�𝑡�.  
1060
+ (B19) 
1061
+ Then, by substituting Eqs. (B11)(B18) into (B2), we can obtain the dynamic equations 
1062
+  
1063
+ 𝑑𝑎�𝑡�
1064
+ 𝑑𝑡 � �𝑖𝜔𝑐𝑎�𝑡� � 𝑖𝑔𝜎↑𝑒�𝑡� � �2𝜅𝑅𝑎𝑅,𝑖𝑛�𝑡� � 𝜅𝑅𝑎�𝑡� � �2𝜅𝑇𝑎𝑇,𝑖𝑛�𝑡� � 𝜅𝑇𝑎�𝑡�,   (B20) 
1065
+  
1066
+ 𝑑𝑎�𝑡�
1067
+ 𝑑𝑡 � �𝑖𝜔𝑐𝑎�𝑡� � 𝑖𝑔𝜎↑𝑒�𝑡� � �2𝜅𝑅𝑎𝑅,𝑜𝑢𝑡�𝑡� � 𝜅𝑅𝑎�𝑡� � �2𝜅𝑇𝑎𝑇,𝑖𝑛�𝑡� � 𝜅𝑇𝑎�𝑡�,   (B21) 
1068
+  
1069
+ 𝑑𝑎�𝑡�
1070
+ 𝑑𝑡 � �𝑖𝜔𝑐𝑎�𝑡� � 𝑖𝑔𝜎↑𝑒�𝑡� � �2𝜅𝑅𝑎𝑅,𝑖𝑛�𝑡� � 𝜅𝑅𝑎�𝑡� � �2𝜅𝑇𝑎𝑇,𝑜𝑢𝑡�𝑡� � 𝜅𝑇𝑎�𝑡�.   (B22) 
1071
+ By substituting Eqs. (B17)(B19) into (B3), we have 
1072
+  
1073
+ 𝑑
1074
+ 𝑑𝑡 𝜎↑𝑒�𝑡� � �𝑖�𝜔𝑒 � 𝜔↑�𝜎↑𝑒�𝑡� � 𝑖𝑔𝑎�𝑡� � 𝑖�2𝛾𝑎𝑆,𝑖𝑛�𝑡� � 𝛾𝜎↑𝑒�𝑡�,  
1075
+ (B23) 
1076
+  
1077
+ 𝑑
1078
+ 𝑑𝑡 𝜎↑𝑒�𝑡� � �𝑖�𝜔𝑒 � 𝜔↑�𝜎↑𝑒�𝑡� � 𝑖𝑔𝑎�𝑡� � 𝑖�2𝛾𝑎𝑆,𝑜𝑢𝑡�𝑡� � 𝛾𝜎↑𝑒�𝑡�.  
1079
+ (B24) 
1080
+ In  the  following,  we  assume  that  only  the  input  on  𝐶𝑀�  side  is  none‐zero,  i.e.,  𝑎𝑇,𝑖𝑛�𝑡� �
1081
+ 𝑎𝑆,𝑖𝑛�𝑡� � 0. Then, by subtracting (B20) and (B21), we can get the relation between the input 
1082
+ 𝑎𝑅,𝑖𝑛�𝑡� and output 𝑎𝑅,𝑜𝑢𝑡�𝑡�, 
1083
+  
1084
+ 𝑎𝑅,𝑖𝑛�𝑡� � �2𝜅𝑅𝑎�𝑡� � 𝑎𝑅,𝑜𝑢𝑡�𝑡�.  
1085
+ (B25) 
1086
+ By subtracting (B20) and (B22), we have 
1087
+  
1088
+ 𝑎𝑇,𝑜𝑢𝑡�𝑡� � �2𝜅𝑇𝑎�𝑡�. 
1089
+ (B26) 
1090
+ By subtracting (B23) and (B24), we have 
1091
+  
1092
+ 𝑎𝑆,𝑜𝑢𝑡�𝑡� � �𝑖�2𝛾𝜎↑𝑒�𝑡�.  
1093
+ (B27) 
1094
+ In addition to the above relations, we next calculate the steady‐state solution of the dynamic 
1095
+ equations (B20)(B21)(B23) by assuming that the cavity‐atom system is driven by the input light 
1096
+ field with frequency 𝜔. We suppose that  
1097
+ 𝑎𝑅,𝑖𝑛�𝑡� � 𝛼𝑖,1↑𝑒�𝑖𝜔𝑡,
1098
+ 𝑎�𝑡� � 𝛼𝑒����,
1099
+ 𝜎↑𝑒�𝑡� � 𝜎�𝑒�𝑖𝜔𝑡,
1100
+ 𝑎𝑅,𝑜𝑢𝑡�𝑡� � 𝛼𝑅,1↑𝑒�𝑖𝜔𝑡,
1101
+ 𝑎𝑇,𝑜𝑢𝑡�𝑡� � 𝛼𝑇,1↑𝑒�𝑖𝜔𝑡, 
1102
+                                                                    𝑎𝑆,𝑜𝑢𝑡�𝑡� � 𝛼𝑆,1↑𝑒�𝑖𝜔𝑡.                                
1103
+ (B28) 
1104
+ Then, we can obtain that 
1105
+  
1106
+ ��𝑖�𝜔𝑐 � 𝜔� � 𝜅𝑅 � 𝜅𝑇�𝛼 � 𝑖𝑔𝜎� � �2𝜅𝑅𝛼𝑖,1↑ � 0,  
1107
+ (B29) 
1108
+  
1109
+ ��𝑖�𝜔𝑐 � 𝜔� � 𝜅𝑅 � 𝜅𝑇�𝛼 � 𝑖𝑔𝜎� � �2𝜅𝑅𝛼𝑅,1↑ � 0,  
1110
+ (B30) 
1111
+
1112
+  
1113
+ ��𝑖�𝜔𝑒 � 𝜔↑ � 𝜔� � 𝛾�𝜎� � 𝑖𝑔𝛼 � 0.  
1114
+ (B31) 
1115
+ It is not difficult to get that 
1116
+  
1117
+ 𝛼𝑖,1↑ � �
1118
+ �𝑖�𝜔𝑐�𝜔��𝜅𝑅�𝜅𝑇��𝑖�𝜔𝑒�𝜔↑�𝜔��𝛾��𝑔2
1119
+ �2𝜅𝑅�𝑖�𝜔𝑒�𝜔↑�𝜔��𝛾�
1120
+ 𝛼,  
1121
+ (B32) 
1122
+  
1123
+ 𝛼𝑅,1↑ � �
1124
+ �𝑖�𝜔𝑐�𝜔��𝜅𝑅�𝜅𝑇��𝑖�𝜔𝑒�𝜔↑�𝜔��𝛾��𝑔2
1125
+ �2𝜅𝑅�𝑖�𝜔𝑒�𝜔↑�𝜔��𝛾�
1126
+ 𝛼.  
1127
+ (B33) 
1128
+ Eq. (B32) shows that when the input increases, the intensity of the cavity field also increase, 
1129
+ resulting in the condition (B4) not being satisfied. 
1130
+ With Eqs. (B32) and (B33), we can calculate Eq. (2) in the main text. Suppose that the cavity and 
1131
+ the external field are resonant, i.e., 𝜔 � 𝜔�, and 𝛥 � 𝜔� � 𝜔↑ � 𝜔�, we obtain  
1132
+  
1133
+ 𝛼𝑅,1↑
1134
+ 𝛼𝑖,1↑ � 1 �
1135
+ 2𝜅𝑅�𝑖𝛥�𝛾�
1136
+ �𝜅𝑅�𝜅𝑇��𝑖𝛥�𝛾��𝑔2.  
1137
+ (B34) 
1138
+ By using Eqs. (B26) and (B27), we can also have Eqs. (3) and (4) in the main text, which are 
1139
+  
1140
+ 𝛼𝑇,1↑
1141
+ 𝛼𝑖,1↑ � �
1142
+ 2√𝜅𝑅𝜅𝑇�𝑖𝛥�𝛾�
1143
+ �𝜅𝑅�𝜅𝑇��𝑖𝛥�𝛾��𝑔2,  
1144
+ (B35) 
1145
+  
1146
+ 𝛼𝑆,1↑
1147
+ 𝛼𝑖,1↑ �
1148
+ 2�𝜅𝑅𝛾𝑔
1149
+ �𝜅𝑅�𝜅𝑇��𝑖𝛥�𝛾��𝑔2.  
1150
+ (B36) 
1151
+  
1152
+  
1153
+  
1154
+ [1] C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation 
1155
+ induced by a single‐electron spin in a quantum dot: Applications to entangling remote spins via a 
1156
+ single photon”, Phys. Rev. B 78, 085307 (2008). 
1157
+ [2] A. Reiserer, and G. Rempe, “Cavity‐ based quantum networks with single atoms and optical 
1158
+ photons”, Rev. Mod. Phys. 87, 1379 (2015). 
1159
+ [3] B. Hacker, S. Welte, S. Daiss, A. Shaukat, S. Ritter, L. Li, and G. Rempe, “Deterministic creation 
1160
+ of entangled atom–light Schrödinger‐cat states”, Nature Photonics 13, 110 (2019).  
1161
+ [4] D. F. Walls, and G. J. Milburn, Quantum Optics (Springer‐ Verlag, Berlin, 1994). 
1162
+
3tE1T4oBgHgl3EQfAgIm/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
49A0T4oBgHgl3EQfNv86/content/2301.02150v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:126873c8147edd46a8e68fc2ba8da86e66275b0c56b755a3c84a4cb8fb4d8ad7
3
+ size 1769868
49A0T4oBgHgl3EQfNv86/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf34a89706b94efd14805a62411b345770883abb90bc7edd0be1dc19aaec6a1e
3
+ size 162413
4dAyT4oBgHgl3EQfpPgc/content/2301.00520v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd03a23739d175176df918e97d10e9323251f526a6ea8783bab536bf9da44643
3
+ size 1877329
4dAyT4oBgHgl3EQfpPgc/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5cc82f502af0cb397cfc9149a97540b8c33254c6dbef3b3816a8aed0abcf1177
3
+ size 170200
6dFAT4oBgHgl3EQfnh1q/content/tmp_files/2301.08629v1.pdf.txt ADDED
@@ -0,0 +1,290 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Assessment of the reliability of Deconvolution
2
+ Procedures for RCF Spectroscopy of Laser-Driven
3
+ Ion Beams
4
+ S. McCalluma, b, G. Milluzzoc, a, M. Borghesia, A. Subielb, F. Romanod
5
+ a Centre for Plasma Physics, Queen’s University Belfast,
6
+ BT7 1NN, United Kingdom
7
+ b Medical Radiation Science, National Physical Laboratory,
8
+ Teddington, TW11 0LW, United Kingdom
9
+ c Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud,
10
+ Via S. Sofia 62, 95123 Catania, Italy
11
+ d Istituto Nazionale di Fisica Nucleare, Sezione di Catania,
12
+ Via S. Sofia 64, 95123 Catania, Italy
13
+
14
+ E-mail: smccallum05@qub.ac.uk
15
+ ABSTRACT: Laser-driven ion beams are defined by a number of unique features, including a large
16
+ spread in energy. A stack configuration of radiochromic film (RCF) can be utilized to characterize
17
+ such beams through measurements of their energy spectra. A spectroscopic procedure is reported
18
+ that allows the proton energy density within each active layer of a radiochromic film (RCF) stack
19
+ to be retrieved. This is based upon on a deconvolution algorithm developed through Geant4 Monte
20
+ Carlo simulations to correct the contributions of energy depositions within a given film layer.
21
+ Through Monte Carlo calculations, the spectrum retrieved from a simulated film stack can be
22
+ retrieved and compared with a known energy spectrum, providing an examination of the efficacy
23
+ of this tool. Application of the developed deconvolution procedure thus offers the potential to
24
+ correctly reconstruct the incident energy spectrum of a laser-driven proton and ion beam from a
25
+ stack of irradiated RCF.
26
+ KEYWORDS: Detector modelling and simulations I, dE/dx detectors, Plasma diagnostics -
27
+ charged-particle spectroscopy, Simulation methods and programs.
28
+
29
+
30
+
31
+
32
+
33
+ – 1 –
34
+ Contents
35
+ 1. Introduction
36
+ 1
37
+ 2. Methodology
38
+ 2
39
+ 3. Monte Carlo Analysis
40
+
41
+ 4. Conclusions
42
+
43
+ 5. References
44
+ 2
45
+
46
+
47
+ 1. Introduction
48
+ Whilst laser-driven proton and light ion acceleration has attracted significant interest for over 20
49
+ years [1, 2], conducting accurate measurements of these beams has proven to be technically
50
+ challenging [3-5]. In particular, the ultra-high dose rates and wide spectral distributions make
51
+ conventional measurement techniques impracticable [6-8]. For applications, including clinical
52
+ and radiobiological ones requiring a precise energy selection, characterisation of such beams
53
+ through accurate measurement of their energy spectra is necessary. Spectroscopic methods reliant
54
+ on stacked configurations of radiochromic films (RCF) are well-established for measurements of
55
+ accelerated proton beams, with several approaches of radiochromic film imaging spectroscopy
56
+ (RIS) reported in the literature [9-14]. A stacked configuration of films placed perpendicularly to
57
+ the beam orientation can be used to perform an energy resolved measurement of an impinging ion
58
+ beam. Differential energy loss results in each particle depositing a fraction of its initial kinetic
59
+ energy on every film it passes before coming to arrest. For polyenergetic sources such as laser-
60
+ driven beams, a superposition of kinetic energy contributions is amassed across the films,
61
+ requiring a calculation for correction of higher energies. This is achieved through a deconvolution
62
+ or unfolding of the energy transferred to each film in the stack, so that only the particles stopping
63
+ within a given film remain. The aim of the work reported here was to investigate and assess a
64
+ developed algorithm for spectroscopy of laser-driven proton and ion beams through Monte Carlo
65
+ simulations, studying the possible limitations. This procedure requires knowledge of the RCF
66
+ energy sensitivity values, and an algorithm to unfold the proton energy spectrum from the RCF
67
+ response, both of which have been evaluated using the Geant4 toolkit [15-17]. Further, the same
68
+ Monte Carlo methods were utilised to conduct analysis of the performance and limitations of the
69
+ developed technique in acquiring the energy spectrum. Once validated, the spectroscopic
70
+ procedure reported offers the potential to reliably extract the laser-driven proton spectra from a
71
+ stack of irradiated RCF.
72
+
73
+ 2. Methodology
74
+ Energy resolved measurements of impinging proton and ion beams can be performed using
75
+ multiple RCF arranged into a stack configuration. The differing stopping positions for protons of
76
+ a given energy within an RCF stack, means each layer can be defined by a unique energy
77
+
78
+
79
+
80
+ – 2 –
81
+ sensitivity. This is chosen to correspond to the energy required to generate a Bragg peak at that
82
+ given depth, defining the energy of protons that will be referred to as peak region protons. Low
83
+ energy components stop in the first few layers of the stack, whilst higher energies penetrate
84
+ further downstream, giving a total energy composition of stopping protons, in addition to the
85
+ fractional contributions of those exceeding the energy sensitivity of a given film layer. Unfolding
86
+ the peak energy from the total energy deposited within any RCF can be achieved through the
87
+ development of a deconvolution procedure for proton spectroscopy. This relies on an algorithm
88
+ utilising weight factors to describe the fractional contributions of each energy component within
89
+ every film. This process is detailed in figure 1.
90
+
91
+
92
+
93
+ The developed algorithm performs a backwards weighted subtraction of contributions, starting
94
+ from the final layer, as a singular energy is contained on this film. Careful subtraction of weighted
95
+ components discriminates the energy of stopping protons within each film from passing energies.
96
+ This remaining peak or stopping energy is then converted into a measurement of the stopping
97
+ particle fluence through the corresponding stopping power of every given layer.
98
+
99
+ 𝑁!"#$#%& =
100
+ '!"
101
+ !#'
102
+ $%&
103
+ '()*+,(!
104
+ ' !"
105
+ !#../'
106
+ 0(12,3
107
+ (𝐸𝑞. 1),
108
+
109
+ The numerator of Eq. 1 represents the remaining peak stopping energy within every active layer
110
+ after the deconvolution algorithm has been applied to the total deposited energy within each. The
111
+ denominator denotes the energy transfer as a function of the thickness of film material crossed,
112
+ found through Monte Carlo simulation. A processing script was written using the MATLAB
113
+ software [18], that compiles all of the required input parameters and procedures of this
114
+ spectroscopic method into a single program. This provides the possibility to directly input scanned
115
+ Figure 1. Visual representation of the calculation of weight factors. The water equivalent depths of the
116
+ active layers, in addition to the energy required to produce a Bragg peak at the depth of each, are both
117
+ well-known. Extrapolating the peak contributions allowed weighting factors to be calculated through
118
+ normalization of the deposited energy contribution to that of the respective peak value. For example, to
119
+ calculate the weighting factor provided by peak B to peak A, the ratio of the energy deposited by peak B
120
+ at the position of peak A, EdepB(x), to the maximum ionization of B itself, EdepB(peak), is found. This
121
+ process is performed for each energy component, at each active layer depth, and a matrix of weight factors
122
+ is then constructed.
123
+
124
+ 0.0007
125
+ 0.0006
126
+ Edepa(peak)
127
+ 0.0005
128
+ Edep(peak)
129
+ Dose [a.u.]
130
+ 0.0004
131
+ Edepc(peak)
132
+ Peak (A)
133
+ 0.0003
134
+ Peak (B)
135
+ Peak (C)
136
+ 0.0002
137
+ EdepB(x)
138
+ 0.0001
139
+ Edepc(x)
140
+ 0
141
+ 0
142
+ 0.5
143
+ 1
144
+ 1.5
145
+ 2
146
+ 2.5
147
+ 3
148
+ Depthin water[mm]
149
+
150
+ – 3 –
151
+ RCF images, and through simple modification, data from simulation, for a direct reconstruction
152
+ of the proton energy spectrum. A typical reconstructed spectrum is highlighted in figure 2, with
153
+ data obtained at a laser-driven proton facility.
154
+
155
+
156
+ The resultant energy spectrum displays an exponentially decreasing behaviour typical of laser-
157
+ driven beams produced through the target normal sheath acceleration process [1, 2]. The fact
158
+ that this is observed in the data in figure 2 gives some confidence that the procedure can
159
+ reproduce the expected spectral profile.
160
+
161
+ 3. Monte Carlo Analysis
162
+ To further assess the effectiveness of the developed deconvolution procedure, a Monte Carlo
163
+ analysis was conducted through Geant4. A replicated RCF stack configuration of the model
164
+ GafChromic EBT3, with symmetrical structure of a 28 𝜇𝑚 active layer, sandwiched between two
165
+ polyester dead layers, was constructed as outlined within the manufacturer’s specifications [19].
166
+ Detailed simulation of this film stack is a vital first step in the spectroscopic procedure
167
+ development, allowing the energy sensitivity and corresponding stopping power values to be
168
+ evaluated for each film layer, in addition to the weighting factors required in the deconvolution
169
+ algorithm.
170
+
171
+ The reliability of the developed deconvolution procedure as a tool for spectroscopy was assessed
172
+ through examination of the retrieved deconvolution spectrum, with one that is known. Through
173
+ Geant4 simulation, a proton source with tailored energy could be sent into the constructed RCF
174
+ stack, and the deposited energy converted to a measurement of the particle number (energy
175
+ fluence) at each active layer node using the deconvolution algorithm developed. This arrangement
176
+ was used for input proton sources with both exponential and flat energy spectra. The latter of
177
+ these source spectra proved more useful in highlighting potential discrepancies between the actual
178
+ and expected spectra. From analysis, it was noticed that particularly for laser-driven energy
179
+ spectra, with particle numbers extending orders of magnitude, the differences between the
180
+ Figure 2. Proton energy spectrum found from an irradiated stack of RCF of the model GafChromic
181
+ HDV2. This data was taken from a laser-plasma experiment at the LULI facility (Laboratoire pour
182
+ l'Utilisation des Lasers Intenses, École Polytechnique, France). The stack was placed immediately after
183
+ the target, from which protons were generated with the typical TNSA exponential behaviour.
184
+
185
+ 14
186
+ 1010
187
+ 12
188
+ 10
189
+ Number of Protons
190
+ 8
191
+ 9
192
+ 4
193
+ 2
194
+ 0
195
+ 0
196
+ 5
197
+ 10
198
+ 15
199
+ 20
200
+ 25
201
+ 30
202
+ Energy [MeV]
203
+
204
+ – 4 –
205
+ retrieved spectral particle numbers can be quite large, whilst still maintaining an apparently good
206
+ degree of agreement. During cross-comparison, the potential to disguise discrepancies between
207
+ spectra was reduced with the use of a flat spectrum. Once the proton energy spectrum had been
208
+ recovered from the energy deconvolution data, it was cross-compared with the original energy
209
+ spectrum. A measurement of the spectrum that originates at the source can be obtained from the
210
+ simulation through examination of the particle flux at a thin region coinciding with the front face
211
+ of the film stack. This eliminates interaction of the impinging proton beam with the RCF material,
212
+ and potential errors induced through conversion of the measured deposited energy to particle flux.
213
+ Analysis of the retrieved spectrum through application of the deconvolution algorithm in Geant4
214
+ is shown in figure 3.
215
+
216
+
217
+
218
+ A reasonable agreement between the deconvolution and entrance spectra is observed from fig. 4,
219
+ outlining the accuracy of the developed procedure in obtaining the correct particle flux at each
220
+ measurement node. This systematic Monte Carlo investigation thus gives an insight into the
221
+ working order of the algorithm for deconvolution, providing an indication of its reliability in
222
+ correctly reconstructing the energy spectrum. Within previous works concerning RCF
223
+ spectroscopy, the final spectrum is often assumed to be correct, with no such systematic check
224
+ performed. Analysis has shown that this cannot be taken for granted, and so by carrying out this
225
+ procedure some confidence is gained concerning the reliability of this spectroscopic tool.
226
+
227
+ Conclusions
228
+ A spectroscopic procedure for the measurement of laser-driven proton energy spectra based on
229
+ the use of a stacked configuration of radiochromic films has been developed and reported here. A
230
+ deconvolution algorithm that operates through an iterative backwards weighted subtraction of
231
+ energy components from successive films has been developed to unfold the stopping proton
232
+ energy from the total energy deposited in each film layer. Initial tests demonstrated reconstruction
233
+ of a typical exponential-like spectrum with large energy spread for films irradiated using a laser-
234
+ driven proton beam. Further analysis of the developed spectroscopic procedure was conducted
235
+ through Monte Carlo methods utilising the Geant4 particle simulation toolkit. Comparison of the
236
+ Figure 3. Cross-comparison of the proton energy spectrum obtained through a deconvolution of the total
237
+ energy deposited in each film layer, with the proton fluence spectrum originating at the source as measured
238
+ at the stack entrance.
239
+
240
+ 250000
241
+ 200000
242
+ 150000
243
+ 100000
244
+ Energydeconvolution
245
+ Spectrum originatingatsource
246
+ 50000
247
+ 0
248
+ 0
249
+ 10
250
+ 20
251
+ 30
252
+ 40
253
+ 50
254
+ 60
255
+ Kineticenergy[MeV]
256
+
257
+ – 5 –
258
+ spectrum retrieved through deconvolution of the energy transferred to each film, to that
259
+ originating at the source for a flat energy spectrum showed a good agreement, indicating the
260
+ applicability of this tool in the spectral reconstruction of a laser-driven proton source. Although
261
+ the analysis reported is promising, a thorough examination of experimental data should be carried
262
+ out to validate the developed procedure. A reasonable result would outline the potential of this
263
+ tool in deriving a fast measurement of the energy spectrum from an irradiated stack of
264
+ radiochromic films. Nonetheless, this systematic investigation based on analysis of spectral
265
+ deconvolution through detailed Monte Carlo simulations represents one that has not been tried
266
+ before. Through cross-comparison within simulation, this has allowed an effective evaluation of
267
+ the performance of such a spectroscopic tool required for accurate measurement of the proton
268
+ energy spectrum generated through laser-driven beams.
269
+
270
+ References
271
+ [1] Macchi, A., et al, (2013), Rev. Mod. Phys. 85, 751
272
+ [2] Gibbon, P., (2005), Imperial College Press
273
+ [3] Badziak, J., et al, (2010), Appl. Phys. Lett. 96, 251502
274
+ [4] Bolton, P., et al, (2018), CRC Press
275
+ [5] Borghesi, M., (2014), NIMA, 740;6-9
276
+ [6] Bolton, P., et al, (2014), Physica Medica, 30, 3;255-270
277
+ [7] Schreiber, J., et al, (2016), Review of Scientific Instruments, 87, 7
278
+ [8] Margarone, D., et al, (2018), Quantum Beam Sci. 2(2), 8
279
+ [9] Breschi, E., et al., (2004), Laser Part. Beams, 22, 393.
280
+ [10] Schollmeier, M., et al., (2008), Phys. Rev. Lett. 101, 055004
281
+ [11] Cowan, T. E., et al., (2004), Phys. Rev. Lett. 92, 204801
282
+ [12] Hey, D. S., et al, (2008), Rev. Sci. Instrum. 79, 053501
283
+ [13] Nuernberg, F., et al., (2009), Rev. Sci. Instrum. 80, 033301
284
+ [14] Kirby, D., et al., (2011), Laser and Particle Beams 29(02)
285
+ [15] Agostinelli, S., et al. Nuclear Methods and Instruments in Physics Research, 506(3), (2003) 250
286
+ [16] Allison, J., et al. Nucl. Instrum. Meth. A 835 (2016) 186-225
287
+ [17] http://geant4.web.cern.ch
288
+ [18] MATLAB, R2019b, (www.mathworks.com)
289
+ [19] Ashland ISP Advanced Materials, NJ, USA, (www.gafchromic.com)
290
+
6dFAT4oBgHgl3EQfnh1q/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf,len=172
2
+ page_content='Assessment of the reliability of Deconvolution Procedures for RCF Spectroscopy of Laser-Driven Ion Beams S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
3
+ page_content=' McCalluma, b, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
4
+ page_content=' Milluzzoc, a, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
5
+ page_content=' Borghesia, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
6
+ page_content=' Subielb, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
7
+ page_content=' Romanod a Centre for Plasma Physics, Queen’s University Belfast, BT7 1NN, United Kingdom b Medical Radiation Science, National Physical Laboratory, Teddington, TW11 0LW, United Kingdom c Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
8
+ page_content=' Sofia 62, 95123 Catania, Italy d Istituto Nazionale di Fisica Nucleare, Sezione di Catania, Via S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
9
+ page_content=' Sofia 64, 95123 Catania, Italy E-mail: smccallum05@qub.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
10
+ page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
11
+ page_content='uk ABSTRACT: Laser-driven ion beams are defined by a number of unique features, including a large spread in energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
12
+ page_content=' A stack configuration of radiochromic film (RCF) can be utilized to characterize such beams through measurements of their energy spectra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
13
+ page_content=' A spectroscopic procedure is reported that allows the proton energy density within each active layer of a radiochromic film (RCF) stack to be retrieved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
14
+ page_content=' This is based upon on a deconvolution algorithm developed through Geant4 Monte Carlo simulations to correct the contributions of energy depositions within a given film layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
15
+ page_content=' Through Monte Carlo calculations, the spectrum retrieved from a simulated film stack can be retrieved and compared with a known energy spectrum, providing an examination of the efficacy of this tool.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
16
+ page_content=' Application of the developed deconvolution procedure thus offers the potential to correctly reconstruct the incident energy spectrum of a laser-driven proton and ion beam from a stack of irradiated RCF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
17
+ page_content=' KEYWORDS: Detector modelling and simulations I, dE/dx detectors, Plasma diagnostics - charged-particle spectroscopy, Simulation methods and programs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
18
+ page_content=' – 1 – Contents 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
19
+ page_content=' Introduction 1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
20
+ page_content=' Methodology 2 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
21
+ page_content=' Monte Carlo Analysis 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
22
+ page_content=' Conclusions 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
23
+ page_content=' References 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
24
+ page_content=' Introduction Whilst laser-driven proton and light ion acceleration has attracted significant interest for over 20 years [1, 2], conducting accurate measurements of these beams has proven to be technically challenging [3-5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
25
+ page_content=' In particular, the ultra-high dose rates and wide spectral distributions make conventional measurement techniques impracticable [6-8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
26
+ page_content=' For applications, including clinical and radiobiological ones requiring a precise energy selection, characterisation of such beams through accurate measurement of their energy spectra is necessary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
27
+ page_content=' Spectroscopic methods reliant on stacked configurations of radiochromic films (RCF) are well-established for measurements of accelerated proton beams, with several approaches of radiochromic film imaging spectroscopy (RIS) reported in the literature [9-14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
28
+ page_content=' A stacked configuration of films placed perpendicularly to the beam orientation can be used to perform an energy resolved measurement of an impinging ion beam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
29
+ page_content=' Differential energy loss results in each particle depositing a fraction of its initial kinetic energy on every film it passes before coming to arrest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
30
+ page_content=' For polyenergetic sources such as laser- driven beams, a superposition of kinetic energy contributions is amassed across the films, requiring a calculation for correction of higher energies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
31
+ page_content=' This is achieved through a deconvolution or unfolding of the energy transferred to each film in the stack, so that only the particles stopping within a given film remain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
32
+ page_content=' The aim of the work reported here was to investigate and assess a developed algorithm for spectroscopy of laser-driven proton and ion beams through Monte Carlo simulations, studying the possible limitations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
33
+ page_content=' This procedure requires knowledge of the RCF energy sensitivity values, and an algorithm to unfold the proton energy spectrum from the RCF response, both of which have been evaluated using the Geant4 toolkit [15-17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
34
+ page_content=' Further, the same Monte Carlo methods were utilised to conduct analysis of the performance and limitations of the developed technique in acquiring the energy spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
35
+ page_content=' Once validated, the spectroscopic procedure reported offers the potential to reliably extract the laser-driven proton spectra from a stack of irradiated RCF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
36
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
37
+ page_content=' Methodology Energy resolved measurements of impinging proton and ion beams can be performed using multiple RCF arranged into a stack configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
38
+ page_content=' The differing stopping positions for protons of a given energy within an RCF stack, means each layer can be defined by a unique energy – 2 – sensitivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
39
+ page_content=' This is chosen to correspond to the energy required to generate a Bragg peak at that given depth, defining the energy of protons that will be referred to as peak region protons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
40
+ page_content=' Low energy components stop in the first few layers of the stack, whilst higher energies penetrate further downstream, giving a total energy composition of stopping protons, in addition to the fractional contributions of those exceeding the energy sensitivity of a given film layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
41
+ page_content=' Unfolding the peak energy from the total energy deposited within any RCF can be achieved through the development of a deconvolution procedure for proton spectroscopy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
42
+ page_content=' This relies on an algorithm utilising weight factors to describe the fractional contributions of each energy component within every film.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
43
+ page_content=' This process is detailed in figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
44
+ page_content=' The developed algorithm performs a backwards weighted subtraction of contributions, starting from the final layer, as a singular energy is contained on this film.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
45
+ page_content=' Careful subtraction of weighted components discriminates the energy of stopping protons within each film from passing energies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
46
+ page_content=' This remaining peak or stopping energy is then converted into a measurement of the stopping particle fluence through the corresponding stopping power of every given layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
47
+ page_content=' 𝑁!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
48
+ page_content=' "#$#%& = \'!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
49
+ page_content='" !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
50
+ page_content="#' $%& '() +,(!" metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
51
+ page_content=" ' !" metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
52
+ page_content='" !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
53
+ page_content='#.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
54
+ page_content="./' 0(12,3 (𝐸𝑞." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
55
+ page_content=' 1), The numerator of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
56
+ page_content=' 1 represents the remaining peak stopping energy within every active layer after the deconvolution algorithm has been applied to the total deposited energy within each.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
57
+ page_content=' The denominator denotes the energy transfer as a function of the thickness of film material crossed, found through Monte Carlo simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
58
+ page_content=' A processing script was written using the MATLAB software [18], that compiles all of the required input parameters and procedures of this spectroscopic method into a single program.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
59
+ page_content=' This provides the possibility to directly input scanned Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
60
+ page_content=' Visual representation of the calculation of weight factors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
61
+ page_content=' The water equivalent depths of the active layers, in addition to the energy required to produce a Bragg peak at the depth of each, are both well-known.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
62
+ page_content=' Extrapolating the peak contributions allowed weighting factors to be calculated through normalization of the deposited energy contribution to that of the respective peak value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
63
+ page_content=' For example, to calculate the weighting factor provided by peak B to peak A, the ratio of the energy deposited by peak B at the position of peak A, EdepB(x), to the maximum ionization of B itself, EdepB(peak), is found.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
64
+ page_content=' This process is performed for each energy component, at each active layer depth, and a matrix of weight factors is then constructed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
65
+ page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
66
+ page_content='0007 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
67
+ page_content='0006 Edepa(peak) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
68
+ page_content='0005 Edep(peak) Dose [a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
69
+ page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
70
+ page_content='] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
71
+ page_content='0004 Edepc(peak) Peak (A) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
72
+ page_content='0003 Peak (B) Peak (C) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
73
+ page_content='0002 EdepB(x) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
74
+ page_content='0001 Edepc(x) 0 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
75
+ page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
76
+ page_content='5 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
77
+ page_content='5 3 Depthin water[mm] – 3 – RCF images, and through simple modification, data from simulation, for a direct reconstruction of the proton energy spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
78
+ page_content=' A typical reconstructed spectrum is highlighted in figure 2, with data obtained at a laser-driven proton facility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
79
+ page_content=' The resultant energy spectrum displays an exponentially decreasing behaviour typical of laser- driven beams produced through the target normal sheath acceleration process [1, 2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
80
+ page_content=' The fact that this is observed in the data in figure 2 gives some confidence that the procedure can reproduce the expected spectral profile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
81
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
82
+ page_content=' Monte Carlo Analysis To further assess the effectiveness of the developed deconvolution procedure, a Monte Carlo analysis was conducted through Geant4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
83
+ page_content=' A replicated RCF stack configuration of the model GafChromic EBT3, with symmetrical structure of a 28 𝜇𝑚 active layer, sandwiched between two polyester dead layers, was constructed as outlined within the manufacturer’s specifications [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
84
+ page_content=' Detailed simulation of this film stack is a vital first step in the spectroscopic procedure development, allowing the energy sensitivity and corresponding stopping power values to be evaluated for each film layer, in addition to the weighting factors required in the deconvolution algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
85
+ page_content=' The reliability of the developed deconvolution procedure as a tool for spectroscopy was assessed through examination of the retrieved deconvolution spectrum, with one that is known.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
86
+ page_content=' Through Geant4 simulation, a proton source with tailored energy could be sent into the constructed RCF stack, and the deposited energy converted to a measurement of the particle number (energy fluence) at each active layer node using the deconvolution algorithm developed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
87
+ page_content=' This arrangement was used for input proton sources with both exponential and flat energy spectra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
88
+ page_content=' The latter of these source spectra proved more useful in highlighting potential discrepancies between the actual and expected spectra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
89
+ page_content=' From analysis, it was noticed that particularly for laser-driven energy spectra, with particle numbers extending orders of magnitude, the differences between the Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
90
+ page_content=' Proton energy spectrum found from an irradiated stack of RCF of the model GafChromic HDV2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
91
+ page_content=" This data was taken from a laser-plasma experiment at the LULI facility (Laboratoire pour l'Utilisation des Lasers Intenses, École Polytechnique, France)." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
92
+ page_content=' The stack was placed immediately after the target, from which protons were generated with the typical TNSA exponential behaviour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
93
+ page_content=' 14 1010 12 10 Number of Protons 8 9 4 2 0 0 5 10 15 20 25 30 Energy [MeV] – 4 – retrieved spectral particle numbers can be quite large, whilst still maintaining an apparently good degree of agreement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
94
+ page_content=' During cross-comparison, the potential to disguise discrepancies between spectra was reduced with the use of a flat spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
95
+ page_content=' Once the proton energy spectrum had been recovered from the energy deconvolution data, it was cross-compared with the original energy spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
96
+ page_content=' A measurement of the spectrum that originates at the source can be obtained from the simulation through examination of the particle flux at a thin region coinciding with the front face of the film stack.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
97
+ page_content=' This eliminates interaction of the impinging proton beam with the RCF material, and potential errors induced through conversion of the measured deposited energy to particle flux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
98
+ page_content=' Analysis of the retrieved spectrum through application of the deconvolution algorithm in Geant4 is shown in figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
99
+ page_content=' A reasonable agreement between the deconvolution and entrance spectra is observed from fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
100
+ page_content=' 4, outlining the accuracy of the developed procedure in obtaining the correct particle flux at each measurement node.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
101
+ page_content=' This systematic Monte Carlo investigation thus gives an insight into the working order of the algorithm for deconvolution, providing an indication of its reliability in correctly reconstructing the energy spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
102
+ page_content=' Within previous works concerning RCF spectroscopy, the final spectrum is often assumed to be correct, with no such systematic check performed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
103
+ page_content=' Analysis has shown that this cannot be taken for granted, and so by carrying out this procedure some confidence is gained concerning the reliability of this spectroscopic tool.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
104
+ page_content=' Conclusions A spectroscopic procedure for the measurement of laser-driven proton energy spectra based on the use of a stacked configuration of radiochromic films has been developed and reported here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
105
+ page_content=' A deconvolution algorithm that operates through an iterative backwards weighted subtraction of energy components from successive films has been developed to unfold the stopping proton energy from the total energy deposited in each film layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
106
+ page_content=' Initial tests demonstrated reconstruction of a typical exponential-like spectrum with large energy spread for films irradiated using a laser- driven proton beam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
107
+ page_content=' Further analysis of the developed spectroscopic procedure was conducted through Monte Carlo methods utilising the Geant4 particle simulation toolkit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
108
+ page_content=' Comparison of the Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
109
+ page_content=' Cross-comparison of the proton energy spectrum obtained through a deconvolution of the total energy deposited in each film layer, with the proton fluence spectrum originating at the source as measured at the stack entrance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
110
+ page_content=' 250000 200000 150000 100000 Energydeconvolution Spectrum originatingatsource 50000 0 0 10 20 30 40 50 60 Kineticenergy[MeV] – 5 – spectrum retrieved through deconvolution of the energy transferred to each film, to that originating at the source for a flat energy spectrum showed a good agreement, indicating the applicability of this tool in the spectral reconstruction of a laser-driven proton source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
111
+ page_content=' Although the analysis reported is promising, a thorough examination of experimental data should be carried out to validate the developed procedure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
112
+ page_content=' A reasonable result would outline the potential of this tool in deriving a fast measurement of the energy spectrum from an irradiated stack of radiochromic films.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
113
+ page_content=' Nonetheless, this systematic investigation based on analysis of spectral deconvolution through detailed Monte Carlo simulations represents one that has not been tried before.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
114
+ page_content=' Through cross-comparison within simulation, this has allowed an effective evaluation of the performance of such a spectroscopic tool required for accurate measurement of the proton energy spectrum generated through laser-driven beams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
115
+ page_content=' References [1] Macchi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
116
+ page_content=', et al, (2013), Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
117
+ page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
118
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
119
+ page_content=' 85, 751 [2] Gibbon, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
120
+ page_content=', (2005), Imperial College Press [3] Badziak, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
121
+ page_content=', et al, (2010), Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
122
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
123
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
124
+ page_content=' 96, 251502 [4] Bolton, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
125
+ page_content=', et al, (2018), CRC Press [5] Borghesi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
126
+ page_content=', (2014), NIMA, 740;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
127
+ page_content='6-9 [6] Bolton, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
128
+ page_content=', et al, (2014), Physica Medica, 30, 3;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
129
+ page_content='255-270 [7] Schreiber, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
130
+ page_content=', et al, (2016), Review of Scientific Instruments, 87, 7 [8] Margarone, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
131
+ page_content=', et al, (2018), Quantum Beam Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
132
+ page_content=' 2(2), 8 [9] Breschi, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
133
+ page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
134
+ page_content=', (2004), Laser Part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
135
+ page_content=' Beams, 22, 393.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
136
+ page_content=' [10] Schollmeier, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
137
+ page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
138
+ page_content=', (2008), Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
139
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
140
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
141
+ page_content=' 101, 055004 [11] Cowan, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
142
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
143
+ page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
144
+ page_content=', (2004), Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
145
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
146
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
147
+ page_content=' 92, 204801 [12] Hey, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
148
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
149
+ page_content=', et al, (2008), Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
150
+ page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
151
+ page_content=' Instrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
152
+ page_content=' 79, 053501 [13] Nuernberg, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
153
+ page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
154
+ page_content=', (2009), Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
155
+ page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
156
+ page_content=' Instrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
157
+ page_content=' 80, 033301 [14] Kirby, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
158
+ page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
159
+ page_content=', (2011), Laser and Particle Beams 29(02) [15] Agostinelli, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
160
+ page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
161
+ page_content=' Nuclear Methods and Instruments in Physics Research, 506(3), (2003) 250 [16] Allison, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
162
+ page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
163
+ page_content=' Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
164
+ page_content=' Instrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
165
+ page_content=' Meth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
166
+ page_content=' A 835 (2016) 186-225 [17] http://geant4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
167
+ page_content='web.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
168
+ page_content='cern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
169
+ page_content='ch [18] MATLAB, R2019b, (www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
170
+ page_content='mathworks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
171
+ page_content='com) [19] Ashland ISP Advanced Materials, NJ, USA, (www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
172
+ page_content='gafchromic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
173
+ page_content='com)' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dFAT4oBgHgl3EQfnh1q/content/2301.08629v1.pdf'}
79AyT4oBgHgl3EQfp_gy/content/tmp_files/2301.00534v1.pdf.txt ADDED
@@ -0,0 +1,2438 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM MORPHISM CATEGORIES TO FUNCTOR CATEGORIES
2
+ HOSSEIN ESHRAGHI AND RASOOL HAFEZI
3
+ Abstract. For a nice-enough category C, we construct both the morphism category H(C) of
4
+ C and the category mod-C of all finitely presented contravariant additive functors over C with
5
+ values in Abelian groups. The main theme of this paper, is to translate some representation-
6
+ theoretic attributes back and forth from one category to the other. This process is done by
7
+ using an appropriate functor between these two categories, an approach which seems quite
8
+ promising in particular when we show that many of almost split sequences are preserved by
9
+ this functor. We apply our results to the case of wide subcategories of module categories to
10
+ obtain certain auto-equivalences over them. Another part of the paper deals with Auslander
11
+ algebras arising from algebras of finite representation type. In fact, we apply our results to
12
+ study the Auslander-Reiten translates of simple modules over such algebras. In the last parts,
13
+ we try to recognize particular components in the stable Auslander-Reiten quiver of Auslander
14
+ algebras arising from self-injective algebras of finite representation type.
15
+ 1. Introduction
16
+ As a popular belief, it is said that the introduction of the language of functor categories to
17
+ the study of categories of modules over rings dates back to Auslander and his colleagues’ works.
18
+ These works trace back mainly to the papers [A65, A71, A76, AR74, AR78].
19
+ In particular
20
+ Auslander’s Formulae [A65] that suggests to recover the category mod-Λ of finitely generated
21
+ modules over an Artin algebra Λ as the quotient
22
+ mod-Λ ≃ mod-(mod-Λ)
23
+ {F : F(Λ) = 0}
24
+ deserves attention; here and throughout, mod-(mod-Λ) denotes the category of additive con-
25
+ travariant coherent functors on mod-Λ with values in Ab, the category of Abelian groups. While
26
+ talking about the exchange between two categories consisting objects that are apparently of
27
+ different types, one expects to encounter with functors transferring from one category to the
28
+ other. Concerning the morphism categories and the functor categories, such a study has initi-
29
+ ated probably in [A71]. Roughly, the general theme of the current paper is to figure out how some
30
+ representation-theoretic attributes transfer between functor and morphism categories. However,
31
+ to be more precise, we prefer to provide a layout of the paper section by section. Prior to this,
32
+ we want to point out that the morphism category of Λ has on its own right been systematically
33
+ studied from various aspects: deriving its Auslander-Reiten theory in the language of AR-theory
34
+ of Λ [RS, XZZ, E, HE], establishing its links to Gorenstein homological algebra [Z, LZ, ZX], and
35
+ looking at a particular subcategory of it, namely the monomorphism category, in order to study
36
+ the so-called Auslander algebras [AR76, HM].
37
+ 2020 Mathematics Subject Classification. 18A25, 16G70, 16G10.
38
+ Key words and phrases. Functor Category, Morphism Category, Auslander-Reiten Components.
39
+ 1
40
+ arXiv:2301.00534v1 [math.RT] 2 Jan 2023
41
+
42
+ 2
43
+ HOSSEIN ESHRAGHI AND RASOOL HAFEZI
44
+ First of all, to keep the results as general as possible, we try to deal with the morphism category
45
+ H(C) of a nice-enough category C (definitions are recalled later on). Namely, if we assume that
46
+ C is an idempotent-complete additive category that admits pseudokernels then, in Section 3, we
47
+ endow H(C) with an exact structure defined by degree-wise split exact sequences in C, denoted
48
+ Hcw(C). Even though such constructions have been considered in some particular cases, e.g.
49
+ in [Ba] where the category of morphisms between projective modules over an Artin algebra
50
+ have come to play, we do it in a most general possible circumstance as declared above. The
51
+ motivation behind such considerations comes from two origins. Firstly, we look for a reasonable
52
+ structure on H(C) with respect to which one may define almost split sequences. Note, secondly,
53
+ that if one imposes tougher conditions on C, for instance taking C to be an extension-closed
54
+ subcategory of mod-Λ, then H(C) inherits an exact structure as an extension-closed subcategory
55
+ of the morphism category of Λ. So now a natural question arises: What are intrinsic similarities
56
+ between these two exact structures on H(C)?
57
+ To get more involved with the aforementioned question, we need to take a glance at the
58
+ contents of Section 4. For, we recall form [A71] that there exists a functor Θ : H(C) −→ mod-C,
59
+ where mod-C is the category of contravariant additive coherent functors on C. The objective in
60
+ Section 4 is to study Θ form the point of view of Auslander-Reiten theory. We show that Θ
61
+ induces an equivalence H(C)/
62
+
63
+ (M → 0), (M
64
+ 1→ M)
65
+
66
+ ≃ mod-C where M runs through the objects
67
+ of C. Using this, we show that Hcw(C) admits almost split sequences whenever C is assumed
68
+ to be a dualizing variety. Furthermore, to conquer the question posed above, it is shown that
69
+ if C is an extension-closed dualizing subvariety of mod-Λ then, in many cases, the almost split
70
+ sequences in Hcw(C) and H(C) coincide. Not going off-topic, one more thing will be proved: Θ
71
+ respects almost split sequences.
72
+ In Section 5, we turn to apply some of the results to the case of wide subcategories. To
73
+ illuminate the role and importance of wide subcategories of mod-Λ, we must point out that such
74
+ subcategories arise naturally in the study of τ-tiling theory of Λ [AIR] and in connection with
75
+ determination of certain torsion classes in mod-Λ [MS]. These also play significant role in the
76
+ study of certain classes of universal localizations over Λ [MS, HMV1, HMV2]. Such classes of
77
+ modules also appear in classification problems for the so-called τ-tilting finite algebras. Among
78
+ other things, for a given functorially finite wide subcategory X of mod-Λ we construct, based on
79
+ our previous results, an auto-equivalence σX : X → X which fulfills the exact sequence
80
+ 0 → (−, σX τX (X)) → D(P, −) → D(Q, −) → D(X, −)
81
+ in mod-X for every indecomposable module X which is not projective in X; here τX denotes the
82
+ Auslander-Reiten translation of X and P → Q → X → 0 is the minimal projective presentation
83
+ of X with respect to X. In this regard, recall that for a non-projective Λ-module M with minimal
84
+ projective presentation P → Q → M → 0, there exists an exact sequence 0 → τ(M) → ν(P) →
85
+ ν(Q) → ν(M) → 0 where τ and ν stand respectively for the Auslander-Reiten translation and the
86
+ Nakayama functor over mod-Λ. Hence the aforementioned exact sequence of functors resembles,
87
+ and generalizes, the latter one. This is more clarified by showing that when X is the whole
88
+ category mod-Λ, then σX is nothing but the identity functor. We believe that this observation
89
+ is convincing-enough to say that the rich treasury behind functorially finite wide subcategories
90
+ of mod-Λ might be discovered by applying some instruments from functor categories.
91
+ In Section 6, we switch to algebras Λ of finite representation type. The main impetus for such
92
+ a study comes from the fact that in this case, one may construct the Auslander algebra A of Λ
93
+ which is, by definition, the endomorphism algebra of a representation-generator M of Λ. Then
94
+
95
+ FROM MORPHISM CATEGORIES TO FUNCTOR CATEGORIES
96
+ 3
97
+ there is a nice interpretation of the category mod-A in terms of the functor category; namely,
98
+ there is a categorical equivalence mod-A ≃ mod-(mod-Λ). In the meanwhile, it is known [A76]
99
+ that simple functors over mod-Λ correspond bijectively to indecomposable Λ-modules. Hence
100
+ this categorical equivalence provides a framework in which one tries to understand in more details
101
+ the simple modules over A and its projectively stable version A. The results presented in this
102
+ section come up by analyzing certain almost split sequences mainly provided in [HE] and also in
103
+ [HZ]. The main results discover a relation between the (inverse) Auslander-Reiten translation of
104
+ simple A-(resp. A-) modules and the cosyzygies (resp. syzygies) of simple A-(resp. A-) modules.
105
+ The last section is devoted to study certain components in the (stable) Auslander-Reiten
106
+ quiver ΓA of the Auslander algebra A whenever Λ is self-injective of finite representation type.
107
+ Note that recognition of such components have already been the subject of some earlier researches
108
+ [IPTZ].
109
+ To this end, we firstly deal with τH-periodic objects by invoking some almost split
110
+ sequences already obtained in [HE]. In this direction, it turns out that the auto-equivalence
111
+ A = ντ 3 of the stable category mod-Λ, as defined in [HE], plays a significant role. In fact,
112
+ we show that the existence of certain A -periodic Λ- modules makes ΓA into a finite oriented
113
+ cycle, and in particular, makes A into an algebra of finite representation type. Another result
114
+ asserts that for Λ self-injective of finite representation type, any component Ξ of the stable
115
+ Auslander-Reiten quiver of A that contains a certain simple module is either infinite or is of the
116
+ form Z∆/G for a Dynkin quiver ∆ and an automorphism group G of Z∆; this is based on a
117
+ structural theorem due to Liu [L].
118
+ 2. preliminaries and notation
119
+ In this section, we collect very briefly some necessary background material of the paper. When
120
+ required, explicit references are provided.
121
+ 2.1. Functor Categories. Let k be a commutative Artinian ring and let C be a k-linear Krull-
122
+ Schmidt category. A C-module is a contravariant additive functor from C to the category Ab
123
+ of Abelian groups.
124
+ We denote by Mod-C the category of all C-modules, and by mod-C the
125
+ full subcategory of Mod-C consisting of finitely presented modules. Recall from [A65] that a
126
+ C-module M is called finitely presented if there exists an exact sequence
127
+ HomC(−, A) → HomC(−, B) → M → 0
128
+ in Mod-C, for some objects A, B of C. Moreover, proj-C and inj-C denote the full subcategories of
129
+ mod-C consisting of projective and injective objects in mod-C, respectively. The category mod-C
130
+ is an abelian category if and only if C admits pseudokernels; see page 315 of [AR74]. We shall
131
+ sometimes write (−, X) instead of the representable functor HomC(−, X).
132
+ 2.2. Dualizing k-varieties. Let r be the radical of k and E(k/r) be the injective envelope of
133
+ the k-module k/r. A Hom-finite k-linear Krull-Schmidt category C is called a dualizing k-variety
134
+ [AR74] if the k-dual functors D : Mod-C → Mod-(Cop) and D : Mod-(Cop) → Mod-C given by
135
+ D(F)(C) = Homk(F(C), E(k/r)) for every object C of C and F ∈ Mod-(C) or Mod-(Cop) induce
136
+ dualities
137
+ D : mod-C → mod-(Cop) and D : mod-(Cop) → mod-C.
138
+ In this case, it turns out that mod-C is an abelian subcategory of Mod-C that admits enough pro-
139
+ jective and enough injective objects [AR74, Theorem 2.4]. As an example, proj-Λ, the category
140
+ of finitely generated projective modules over an Artin k-algebra Λ, is a dualizing k-variety. We
141
+
142
+ 4
143
+ HOSSEIN ESHRAGHI AND RASOOL HAFEZI
144
+ note from [AR74, Proposition 2.6] that if C is a dualizing k-variety then so is mod-C. Further-
145
+ more, any functorially finite subcategory of a dualizing k-variety is itself a dualizing k-variety
146
+ by [AS81, Theorem 2.3].
147
+ 2.3. Morphism Categories. Let C be a category.
148
+ The morphism category H(C) of C is a
149
+ category whose objects are morphisms f : X → Y in C, and whose morphisms are given by
150
+ commutative diagrams. If we regard the morphism f : X → Y as an object in H(C), we will
151
+ usually present it as (X
152
+ f→ Y ). However, due to typographical considerations, we have to use
153
+ also the vertical notation ( X
154
+ Y )f. A morphism between the objects (X
155
+ f→ Y ) and (X′ f ′
156
+ → Y ′) is
157
+ presented as (σ1, σ2) : (X
158
+ f→ Y ) → (X′ f ′
159
+ → Y ′) or, ( σ1
160
+ σ2 ) : ( X
161
+ Y )f →
162
+ � X′
163
+ Y ′
164
+
165
+ f ′, where σ1 : X → X′
166
+ and σ2 : Y → Y ′ are morphisms in C with σ2f = f ′σ1.
167
+ Adapting the notation, the morphism category raised from C = mod-Λ, the category of finitely
168
+ generated right modules over an Artin k-algebra Λ, will be denoted simply by H; this will cause
169
+ no ambiguity. The same rule also applies to the monomorphism category S of Λ whose objects
170
+ are just monic Λ-maps.
171
+ 2.4. Auslander-Reiten-Serre Duality. Let (C, E) be an exact category in the sense of Quillen
172
+ [Q, K] (see next section for an introduction).
173
+ Recall that a morphism v: E → Y in C is
174
+ called right almost split if it is not a retraction and each f : Z → Y which is not a retraction
175
+ factors through v. Dually, a morphism u: X → E in C is called left almost split if it is not a
176
+ section and each f : X → Z which is not a section factors through u. An admissible sequence
177
+ δ: 0 → X
178
+ u−→ E
179
+ v−→ Y → 0 in E is an almost split sequence if u is left almost split and v is right
180
+ almost split. Since δ determines X and Z in a unique way, we call X the Auslander-Reiten
181
+ translation X = τC(Y ) of Y in C.
182
+ A non-zero object X ∈ C is said to be endo-local if its
183
+ endomorphism ring EndC(X) is local. Following [INY, Definition 3.1], we say that C has almost
184
+ split sequences if endo-local non projective objects of C and endo-local non-injective objects of
185
+ C are respectively the terminal and the initial terms of some almost split sequence in E.
186
+ Assume now that C is further a k-linear category and let D be the k-dual functor. Put C and
187
+ C denote respectively the projectively and the injectively stable categories of C. An Auslander-
188
+ Reiten-Serre duality (ARS duality, in brief) is a pair (τC, η) consisting of an equivalence functor
189
+ τC : C → C together with a bi-natural isomorphism
190
+ ηX,Y : HomC(X, Y ) ≃ DExt1
191
+ C(Y, τC(X))
192
+ for any X, Y ∈ C.
193
+ The following lemma, taken from [INY, Theorem 3.6] (see also [J]), provides a close connection
194
+ between the existence of almost split sequences in C and the existence of an ARS-duality. Let us
195
+ recall that under the above hypothesis, C is Ext-finite if the k-modules Ext1
196
+ C(X, Y ) are finitely
197
+ generated.
198
+ Lemma 2.1. Let C be a k-linear Ext-finite Krull-Schmidt exact category. Then the following
199
+ conditions are equivalent.
200
+ (1) C has almost split sequences.
201
+ (2) C has an Auslander-Reiten-Serre duality.
202
+ (3) The stable category C is a dualizing k-variety.
203
+ (4) The stable category C is a dualizing k-variety.
204
+ Throughout the paper, Λ will stand for a fixed Artin k-algebra and modules are, by default,
205
+ finitely generated right modules.
206
+ The Auslander-Reiten translation, the Nakayama functor,
207
+
208
+ FROM MORPHISM CATEGORIES TO FUNCTOR CATEGORIES
209
+ 5
210
+ the syzygy and the cosyzygy functor of Λ are respectively denoted by τ, ν, Ω, and Ω−1. If
211
+ we deal with an algebra other than Λ or with a category, these functors will be accompanied
212
+ with necessary subscripts. The symbols Ker, Coker, and Im, used freely in all contexts, stand
213
+ respectively for the kernel, cokernel, and the image of morphisms.
214
+ 3. Exact structures on the morphism category
215
+ An exact category (C, E) is formed by an additive category C, and a class E of composable
216
+ pairs of morphisms in C (also called kernel-cokernel pairs) satisfying certain axioms that we
217
+ refrain to exhibit here and refer the reader e.g. to [K]. The composable pair (i, p) in E is usually
218
+ denoted by 0 → A′
219
+ i→ A
220
+ p→ A′′ → 0, where i : A′ → A and p : A → A′′ are respectively called
221
+ an E-admissible monic and an E-admissible epic.
222
+ Composable pairs, admissible monics and
223
+ admissible epics are sometimes referred to respectively as conflations, inflations and deflations.
224
+ The notion of an exact category was first introduced by Quillen in [Q] and then Keller [K] proved
225
+ the redundancy of some axioms.
226
+ Let C be an additive category. In this section, we shall put an exact structure on the morphism
227
+ category H(C) of C [Ba]. For let Ecw be the class of all pairs of composable morphisms
228
+ δ :
229
+ � X1
230
+ X2
231
+
232
+ f
233
+ � φ1
234
+ φ2
235
+
236
+ �� Z1
237
+ Z2
238
+
239
+ h
240
+ � ψ1
241
+ ψ2
242
+
243
+ �� Y1
244
+ Y2
245
+
246
+ g
247
+ such that the induced composable morphisms Xi
248
+ φi
249
+ → Zi
250
+ ψi
251
+ → Yi split in C for i = 1, 2. It can be
252
+ easily seen that any pair of composable morphisms in Ecw is isomorphic to a pair of composable
253
+ morphisms of the form
254
+ δ′ :
255
+ � X1
256
+ X2
257
+
258
+ f
259
+ �[ 1
260
+ 0]
261
+ [ 1
262
+ 0]
263
+
264
+ �� X1⊕Y1
265
+ X2⊕Y2
266
+
267
+ h
268
+ � [0 1]
269
+ [0 1]
270
+
271
+ �� Y1
272
+ Y2
273
+
274
+ g
275
+ where h =
276
+
277
+ f q
278
+ 0 g
279
+
280
+ and q : Y1 → X2 is a possibly non-zero morphism in C. Regarding this easy
281
+ observation, without loss of generality, we usually take all kernel-cokernel pairs in H(C) to be of
282
+ this form; this is justified by the following lemma.
283
+ Lemma 3.1. Any object in Ecw is a kernel-cokernel pair in H(C).
284
+ Proof. Take the element δ′ of Ecw and assume that the composite of the morphisms (σ1, σ2) :
285
+ (X1 ⊕ Y1
286
+ h→ X2 ⊕ Y2) → (V
287
+ s→ W) and ([ 1
288
+ 0 ], [ 1
289
+ 0 ]) vanishes. This means that the restriction of σi
290
+ on Xi, for i = 1, 2, is the zero map. This enables us to define the morphisms σ1|Y1 and σ2|Y2 and
291
+ it readily follows that (σ1, σ2) factors uniquely over ([0 1], [0 1]) via the morphism (σ1|Y1, σ2|Y2).
292
+ The remaining axioms are verified similarly.
293
+
294
+ Recall that an additive category D is called idempotent-complete if every idempotent endo-
295
+ morphism in D admits a kernel.
296
+ Proposition 3.2. Assume C is idempotent-complete and admits pseudokernels. Then Ecw de-
297
+ fines an exact structure on the additive category H(C).
298
+ Proof. Since C is idempotent-complete, it is known that the Yoneda functor gives an equivalence
299
+ C ≃ proj-C. This equivalence is naturally extended to an equivalence between corresponding
300
+ morphism categories; i.e., H(C) ≃ H(proj-C). One observes that, under this equivalence, the
301
+
302
+ 6
303
+ HOSSEIN ESHRAGHI AND RASOOL HAFEZI
304
+ kernel-cokernel pairs in Ecw provided by Lemma 3.1 correspond bijectively to the short exact se-
305
+ quences in the abelian category H(mod-C) whose terms lie inside H(proj-C). But the subcategory
306
+ H(proj-C) is closed under extensions and inherits an exact structure from H(mod-C).
307
+
308
+ Remark 3.3. To make our arguments work, we had to impose some restrictions on the additive
309
+ category C to get a suitable exact structure out of H(C). However, it may be the case that
310
+ the aforementioned set of requirements is not minimal in the sense that the above family of
311
+ kernel-cokernel pairs may equip H(C) with an exact structure even if some of the hypothesis in
312
+ Proposition 3.2 are dropped.
313
+ From now on we assume that C is idempotent-complete and admits pseudokernels, and the
314
+ symbol Hcw(C) stands for the exact category (H(C), Ecw), sometimes also called the cw-exact
315
+ category. The following proposition is recorded for future use.
316
+ Proposition 3.4. Suppose (X1
317
+ f→ X2) is an object in Hcw(C).
318
+ (1) f defines an indecomposable projective object in Hcw(C) if and only if it is isomorphic
319
+ either to (X
320
+ 1→ X) or (0 → X) for some indecomposable object X in C.
321
+ (2) f defines an indecomposable injective object in Hcw(C) if and only if it is isomorphic
322
+ either to (X
323
+ 1→ X) or (X → 0) for some indecomposable object X in C.
324
+ Furthermore, Hcw(C) has enough projectives and enough injectives.
325
+ Proof. This should be compared to [Ba, Corollary 3.2].
326
+ We just remark that the last claim
327
+ follows from the short exact sequences
328
+ 0
329
+ �� 0
330
+ X1
331
+
332
+ 0
333
+
334
+ 0
335
+ � f
336
+ −1
337
+
338
+
339
+ �� 0
340
+ X2
341
+
342
+ 0 ⊕
343
+ � X1
344
+ X1
345
+
346
+ 1
347
+
348
+ 1
349
+ [ 1 f ]
350
+
351
+ �� X1
352
+ X2
353
+
354
+ f
355
+ �0
356
+ and
357
+ 0
358
+ �� X1
359
+ X2
360
+
361
+ f
362
+ � � f
363
+ 1
364
+
365
+ 1
366
+
367
+ �� X2
368
+ X2
369
+
370
+ 1 ⊕
371
+ � X1
372
+ 0
373
+
374
+ 0
375
+ � [ −1 f ]
376
+ 0
377
+
378
+ �� X2
379
+ 0
380
+
381
+ �0
382
+ in Ecw.
383
+
384
+ Now assume C is an extension-closed subcategory of mod-Λ for an Artin algebra Λ. We may
385
+ consider C as an exact category through the structure induced by the abelian category mod-Λ.
386
+ Then also H(C), as an extension-closed subcategory of the abelian category H is endowed with
387
+ the canonical exact structure inherited from H, still denoted by H(C). We also keep the cw-
388
+ exact structure Hcw(C) defined by degree-wise split sequences. It will be indicated in the next
389
+ section that if C is a k-dualizing variety, then Hcw(C) admits almost split sequences. Further,
390
+ the canonical exact category H(C) admits almost split sequences provided C is a k-dualizing
391
+ subvariety of mod-Λ.
392
+ It also becomes clear how the canonical exact category H(C) inherits
393
+ almost split sequence from Hcw(C) in the latter case. However, for technical reasons, we have to
394
+ defer the proofs until next section.
395
+ Remark 3.5. Suppose for a moment that C is further functorially finite in mod-Λ. In this case,
396
+ another approach one may take to show that H(C) has almost split sequences is to explore when
397
+ H(C) is functorially finite in H. This seems natural in view of the fact that, by [AS81, Theorem
398
+ 2.4], any functorially finite extension-closed subcategory of H admits almost split sequences.
399
+
400
+ FROM MORPHISM CATEGORIES TO FUNCTOR CATEGORIES
401
+ 7
402
+ Restricting to the case where C = mod-Λ, in the last part of this section, we put a third exact
403
+ structure on H that will turn out in Section 7 to be in connection with the stable Auslander-
404
+ Reiten quiver of Auslander algebras; see Remark 7.8. An indecomposable object in H is said
405
+ to be of type (a) (resp. (b), or (c)) provided it is isomorphic to (0 → M) (resp. (M
406
+ 1→ M),
407
+ or (M → 0)) for some Λ-module M. Further, an indecomposable object is said to be of type
408
+ (d) if it is isomorphic to (P
409
+ f→ Q) where P, Q are projective Λ-modules. Let X be the smallest
410
+ subcategory of H containing all objects of types (a), (b), (c) and (d). Let also EX be the class of
411
+ all short exact sequences 0 → X → Y → Z → 0 in H such that the induced sequence
412
+ 0 → HomH(V, X) → HomH(V, Y) → HomH(V, Z) → 0
413
+ is exact for every V ∈ X. We know from [AS93] and [Bu] that EX induces an exact structure on
414
+ H denoted by HX = (H, EX ). One infers from [AS93, Theorem 1.12] that the exact category HX
415
+ has enough projectives and enough injectives. Denote by P(HX ) (resp. I(HX )) the subcategory
416
+ of projective (resp. injective) objects in HX . In view of [AS93, Corollary 1.6 and Proposition
417
+ 1.10], we have P(HX ) = X ∪ proj-H and I(HX ) = τH(X) ∪ inj-H, where proj-H and inj-H
418
+ stand respectively for the subcategories of projective and injective objects in H and τH is the
419
+ Auslander-Reiten translation of H. We exploit [AS93, Proposition 1.9] to examine the almost
420
+ split sequences in HX ; it turns out that an almost split sequence 0 → X → Y → Z → 0 in H is
421
+ an almost split sequence in HX if and only if neither X ∈ I(HX ) nor Z ∈ P(HX ).
422
+ 4. Interplay between morphism and functor categories
423
+ Until further notice, we assume throughout the section that C is a dualizing k-variety. In
424
+ this section, we will be involved with a functor going from morphism category to the functor
425
+ category, originally defined and studied in [A71] and then reconsidered in [HM]. This functor
426
+ is our main tool to exchange between these two categories. The construction is based on the
427
+ Yoneda functor.
428
+ Construction 4.1. Let (X1
429
+ f→ X2) be an object of H(C). Define
430
+ (X1
431
+ f→ X2)
432
+ Θ
433
+ �→ Coker(C(−, X1)
434
+ C(−,f)
435
+ −→ C(−, X2)).
436
+ If h =
437
+ � h1
438
+ h2
439
+
440
+ : X =
441
+ � X1
442
+ X2
443
+
444
+ f →
445
+
446
+ X′
447
+ 1
448
+ X′
449
+ 2
450
+
451
+ f ′ = X′ is a morphism in H(Λ), then we let Θ(h) be the
452
+ unique morphism σ that makes the following diagram commute.
453
+ HomC(−, X1)
454
+ HomC(−,f) �
455
+ HomC(−,h1)
456
+
457
+ HomC(−, X2)
458
+
459
+ HomC(−,h2)
460
+
461
+ Θ(X)
462
+
463
+ σ
464
+
465
+ 0
466
+ HomC(−, X′
467
+ 1)
468
+ HomC(−,f ′) � HomC(−, X′
469
+ 2)
470
+ � Θ(X′)
471
+ � 0.
472
+ It is routine to verify that this rules introduce a well-defined functor Θ : H(C) → mod-C. The
473
+ purpose of this section is to study this functor from the perspective of almost split sequences.
474
+ It turns out that Θ behaves well over such sequences. Firstly, we need to recall some facts on
475
+ objective functors; more details are provided in the Appendix of [RZ]. Let F : C −→ D be an
476
+ additive functor between additive categories. F is called an objective functor if any morphism
477
+ f in C with F(f) = 0 factors through an object K of C with F(K) = 0; such a K is then called
478
+ a kernel object of F. We say that the kernel of a functor F is generated by a subcategory X of
479
+ C if add-X, the additive closure of X in C, is the class of all kernel objects of F.
480
+
481
+ 8
482
+ HOSSEIN ESHRAGHI AND RASOOL HAFEZI
483
+ Let F : C −→ D be a full, dense and objective functor and let the kernel of F be generated
484
+ by X. Then F induces an equivalence F : C/X −→ D where the additive quotient category C/X
485
+ of C with respect to X has the same objects as C and the morphisms are defined via the rule
486
+ C/X(X, Y ) := C(X, Y )/{φ | φ factors through an object in add-X}
487
+ for any pair of objects X, Y of C.
488
+ Theorem 4.2. The functor Θ : H(C) −→ mod-C is full, dense and objective. Thus, there exists
489
+ an equivalence Θ of categories that makes the following diagram commute.
490
+ H(C)
491
+ Θ �
492
+ π
493
+
494
+ mod-C
495
+ H(C)
496
+ V
497
+ Θ
498
+
499
+ Here, π is the natural quotient map and V is the full subcategory of H(C) generated by all finite
500
+ direct sums of objects of type (b) or (c), that is to say, objects of the form (M
501
+ 1
502
+ −→ M) and
503
+ (M −→ 0), where M runs through the objects of C.
504
+ Proof. Θ is dense; for take F ∈ mod-C with a projective presentation (−, X)
505
+ (−,g)
506
+
507
+ (−, Y ) →
508
+ F → 0. It is plain that Θ(X
509
+ g→ Y ) = F. To see the fullness of Θ, take two objects (X
510
+ g→ Y )
511
+ and (X′
512
+ g′
513
+ �� Y ′) of H(C). As the representable functors (−, Y ) and (−, Y ′) are projective, it
514
+ follows that any morphism σ : F = Θ(X
515
+ g→ Y ) → Θ(X′
516
+ g′
517
+ → Y ′) = F ′ in mod-C might be
518
+ lifted to a map from the augmented projective presentation (−, X)
519
+ (−,g)
520
+
521
+ (−, Y ) → F → 0
522
+ to (−, X′)
523
+ (−,g′)
524
+
525
+ (−, Y ′) → F ′ → 0.
526
+ Then using Yoneda’s Lemma and the aforementioned
527
+ construction, one obtains a morphism h : (X
528
+ g→ Y ) → (X′ g′
529
+ → Y ′) in H(C) with σ = Θ(h).
530
+ Now assume Θ(X
531
+ g→ Y ) = 0, for some object (X
532
+ g→ Y ). Then by the construction, we have
533
+ the exact sequence 0 → (−, X)
534
+ (−,g)
535
+ −→ (−, Y ) → 0 in mod-C. One then observes that the identity
536
+ map 1 : Y → Y factors over g via, say, h : Y → X. Therefore, X = Im(h) ⊕ Ker(g). This leads
537
+ to the decomposition (X
538
+ g→ Y ) = (Ker(g) → 0) ⊕ (Im(h)
539
+ g|
540
+ → Y ) where g| is the restricted map
541
+ which must be an isomorphism since gh = 1Y . This settles that the kernel of Θ is generated by
542
+ V.
543
+ Finally, suppose Θ(h) = 0, for h = (h, h′) : (X
544
+ g→ Y ) → (X′
545
+ g′
546
+ → Y ′) in H(C).
547
+ Setting
548
+ F = Θ(X
549
+ g→ Y ) and F ′ = Θ(X′ g′
550
+ → Y ′), this induces a chain map between complexes of functors
551
+ · · ·
552
+ � (−, Z0)
553
+ (−,α0)
554
+
555
+ � (−, X)
556
+ (−,h)
557
+
558
+ (−,g) � (−, Y )
559
+ (−,h′)
560
+
561
+ � F
562
+ 0
563
+
564
+ � 0
565
+ · · ·
566
+ � (−, Z′
567
+ 0)
568
+ � (−, X′)
569
+ (−,g′)� (−, Y ′)
570
+ � F ′
571
+ � 0
572
+ raised by taking projective presentations of F and F ′.
573
+ Evidently, this chain map is null-
574
+ homotopic and, according to [G, Corollary 3.5], factors through a contractible complex.
575
+ As
576
+
577
+ FROM MORPHISM CATEGORIES TO FUNCTOR CATEGORIES
578
+ 9
579
+ any contractible complex of functors might be imagined to be a direct sum of complexes of the
580
+ form
581
+ · · · → 0 → (−, W)
582
+ 1→ (−, W) → 0 → · · ·
583
+ for various objects W of C, this induces a commutative diagram
584
+ · · ·
585
+ � (−, Z0)
586
+ (−,α0)
587
+
588
+
589
+ � (−, X)
590
+ (−,h)
591
+
592
+
593
+ (−,g)
594
+ � (−, Y )
595
+ (−,h′)
596
+
597
+
598
+ � 0
599
+ · · ·
600
+ � (−, Z0 ⊕ X′)
601
+
602
+
603
+ (−, X′ ⊕ Y ′)
604
+
605
+
606
+ (−, Y ′)
607
+
608
+ � 0
609
+ · · ·
610
+ � (−, Z′
611
+ 0)
612
+ � (−, X′)
613
+ (−,g′) � (−, Y ′)
614
+ � 0.
615
+ Therefore, there exists a factorization of h through the object (X′ → 0) ⊕ (Y ′
616
+ 1→ Y ′), which is
617
+ a kernel object according to the above paragraph. This shows that Θ is an objective functor.
618
+ Now the existence of the equivalence Θ comes up from observations prior to the theorem.
619
+
620
+ Let us record here that applying a dual construction to the opposite category Cop results in
621
+ a contravariant functor
622
+ Θ′ : H(C) → mod-Cop,
623
+ (X
624
+ f→ Y ) �→ Coker(C(Y, −)
625
+ C(f,−)
626
+ −→ C(X, −))
627
+ which is seen to induce a duality Θ′ that makes the diagram
628
+ H(C)
629
+ Θ′ �
630
+ π′
631
+
632
+ mod-Cop
633
+ H(C)
634
+ V′
635
+ Θ′
636
+
637
+ commute. Here, V′ is the full subcategory of H(C) generated by all finite direct sums of objects
638
+ of type (a) or (b).
639
+ Consider the morphism category H(C), endowed with the exact structure given by Ecw. Ac-
640
+ cording to Proposition 3.4, V (resp. V′) is nothing but the subcategory of injective (resp. pro-
641
+ jective) objects of the exact category Hcw(C). Consequently, the factor categories H(C)/V′ and
642
+ H(C)/V are equivalent respectively to the projectively and injectively stable categories Hcw(C)
643
+ and Hcw(C). Hence the following proposition emerges to settle that Hcw(C) admits almost split
644
+ sequences.
645
+ Proposition 4.3. For a dualizing k-variety C, the following statements hold.
646
+ (1) Hcw(C) admits almost split sequences.
647
+ (2) Hcw(C) has an Auslander-Reiten-Serre duality.
648
+ Proof. The above observations along with Theorem 4.2 provide the equivalences H(C)/V ≃
649
+ mod-C ≃ Hcw(C). Note that by [AR74, Proposition 2.6], mod-C is a dualizing k-variety as well.
650
+ Hence Lemma 2.1 completes the proof.
651
+
652
+ We are now in a position to prove the assertion in previous section concerning the existence
653
+ of almost split sequences in H(C) where C is an extension-closed dualizing subvariety of mod-Λ
654
+ for an Artin algebra Λ. The following lemma which is taken from [MO, Proposition 3.1] will be
655
+
656
+ 10
657
+ HOSSEIN ESHRAGHI AND RASOOL HAFEZI
658
+ fruitful. While the special case C = mod-Λ has been dealt with in [MO], the same proof still
659
+ works for general C as we consider here.
660
+ Lemma 4.4. Assume δ : 0 → A
661
+ f→ B
662
+ g→ C → 0 is an almost split sequence in C. Then
663
+ (1) The almost split sequence in H(C) ending at (0 → C) is of the form
664
+ 0
665
+ �( A
666
+ A )1
667
+ � 1
668
+ f
669
+
670
+ �( A
671
+ B )f
672
+ � 0
673
+ g
674
+
675
+ �( 0
676
+ C )0
677
+ �0.
678
+ (2) The almost split sequence in H(C) ending at (C
679
+ 1→ C) is of the form
680
+ 0
681
+ �( A
682
+ 0 )0
683
+ � f
684
+ 0
685
+
686
+ �( B
687
+ C )g
688
+ ( g
689
+ 1)
690
+ �( C
691
+ C )1
692
+ �0.
693
+ Proposition 4.5. Let C be an extension-closed k-dualizing subvariety of mod-Λ.
694
+ Then the
695
+ canonical exact category H(C) admits almost split sequences.
696
+ Proof. Let Z be an indecomposable non-projective object in H(C). Assume first that Z is of either
697
+ types (0 → X) or (X
698
+ 1→ X), for an object X ∈ C. Then since C admits almost split sequences
699
+ by [AS81, Theorem 1.1], from Lemma 4.4 we infer that Z is the end term of an almost split
700
+ sequence in H(C). Otherwise, Z is not projective in the exact category Hcw(C) by Proposition
701
+ 3.4. Hence, by Proposition 4.3, there exists an almost split sequence ending at Z in the exact
702
+ category Hcw(C). However, following the definitions, it is easy to verify that this is an almost
703
+ split sequence in H(C) as well.
704
+
705
+ The following corollary is an immediate consequence of the arguments above.
706
+ Corollary 4.6. Let C be an extension-closed k-dualizing subvariety of mod-Λ and let
707
+ 0
708
+ �� X1
709
+ X2
710
+
711
+ f
712
+ � φ1
713
+ φ2
714
+
715
+ �� Z1
716
+ Z2
717
+
718
+ h
719
+ � ψ1
720
+ ψ2
721
+
722
+ �� Y1
723
+ Y2
724
+
725
+ g
726
+ �0
727
+ be an almost split sequence in H(C). Then the sequences 0 → Xi
728
+ φi
729
+ → Zi
730
+ Ψi
731
+ → Yi → 0, i = 1, 2, split
732
+ provided that either of the following situations occur.
733
+ (1) The terminal term (Y1
734
+ g→ Y2) is not of type (a) or (b).
735
+ (2) The initial term (X1
736
+ f→ X2) is not of type (b) or (c).
737
+ We now turn to show that Θ respects almost split sequences; so we return to the setting that
738
+ C is a dualizing k-variety. Let Y = (Y1
739
+ g→ Y2) be an indecomposable non-projective object in
740
+ H(C). Take
741
+ δ :
742
+ � X1
743
+ X2
744
+
745
+ f
746
+ � φ1
747
+ φ2
748
+
749
+ �� Z1
750
+ Z2
751
+
752
+ h
753
+ � ψ1
754
+ ψ2
755
+
756
+ �� Y1
757
+ Y2
758
+
759
+ g
760
+ to be the almost split sequence in Hcw(C) ending at Y. For simplicity, set Z = (Z1
761
+ h→ Z2),
762
+ X = (X1
763
+ f→ X2), φ = (φ1, φ2) and ψ = (ψ1, ψ2). Note that δ induces degree-wise split sequences
764
+
765
+ FROM MORPHISM CATEGORIES TO FUNCTOR CATEGORIES
766
+ 11
767
+ and, applying Θ, one gets the commutative diagram with exact rows
768
+ 0
769
+
770
+ 0
771
+
772
+ 0
773
+
774
+ 0
775
+ � K1
776
+
777
+ � K2
778
+ i
779
+
780
+ η
781
+ � K3
782
+ λ
783
+
784
+ 0
785
+ � (−, X1)
786
+ (−,f)
787
+
788
+ � (−, Z1)
789
+ (−,h)
790
+
791
+ (−,ψ1)� (−, Y1)
792
+ (−,g)
793
+
794
+ � 0
795
+ 0
796
+ � (−, X2)
797
+
798
+ � (−, Z2)
799
+
800
+ (−,ψ2)� (−, Y2)
801
+
802
+ � 0
803
+ Θ(X)
804
+ Θ(φ)
805
+
806
+
807
+ Θ(Z)
808
+ Θ(ψ) �
809
+
810
+ Θ(Y)
811
+
812
+
813
+ 0
814
+ 0
815
+ 0
816
+ 0
817
+ in mod-C whose bottom row is indeed the image Θ(δ) of δ under the functor Θ.
818
+ Lemma 4.7. The map η in the above diagram is an epimorphism. As an upshot, Θ(δ) is a
819
+ short exact sequence in mod-C.
820
+ Proof. Let (−, P)
821
+ σ→ K3 → 0 be an epimorphism in mod-C and let d : P → Y1 be a morphism
822
+ in C which represents the composite λσ : (−, P) → K3 → (−, Y1). Since gd = 0, Yoneda’s
823
+ lemma induces a morphism (d, 0) : (P → 0) → Y which is plainly not a retraction. Hence it
824
+ must factor over the right almost split map (ψ1, ψ2) via, say, (a, 0) for some a : P → Z1 in
825
+ C. Consequently, the map (−, a) in mod-C satisfies (−, h)(−, a) = 0. Adding that (−, P) is a
826
+ projective functor, this gives a map γ : (−, P) → K2 in mod-C with (−, a) = iγ. Note that
827
+ ληγ = (−, ψ1)iγ = (−, ψ1)(−, a) = λσ. But λ is a monomorphism; thus ηγ = σ whence the
828
+ surjectivity of η. The second claim comes up immediately from the Snake Lemma.
829
+
830
+ The following theorem is another main result of the section.
831
+ Theorem 4.8. Under the above notation, Θ(δ) is an almost split sequence in mod-C.
832
+ Proof. The indecomposability of X and Y imply that Θ(X) and Θ(Y) are indecomposable. By
833
+ previous lemma, Θ(δ) is an exact sequence that, moreover, does not split. Indeed, if it did, then
834
+ (−, f) ⊕ (−, g) would be a minimal projective presentation for Θ(Z) which should comply with
835
+ the one provided by the middle column of the above diagram. In view of the form of kernel
836
+ elements of the functor Θ declared by Theorem 4.2, an application of Yoneda’s lemma gives
837
+ that, for some objects A, B of C, there should exist an isomorphism
838
+ (Z1
839
+ h→ Z2) = (X1
840
+ f→ X2) ⊕ (Y1
841
+ g→ Y2) ⊕ (A
842
+ 1→ A) ⊕ (B → 0)
843
+ of objects in H(C). As stated before, we may assume Zi ≃ Xi ⊕ Yi, i = 1, 2 since δ belongs to
844
+ Ecw. However, C being a Krull-Schmidt category implies A = B = 0 which makes δ split. This
845
+ contradiction shows that Θ(δ) does not split.
846
+
847
+ 12
848
+ HOSSEIN ESHRAGHI AND RASOOL HAFEZI
849
+ Now, as [AR74, Theorem 2.4] guarantees that mod-C is abelian in this case, invoking [AR77,
850
+ Theorem 2.14], it suffices to show that Θ(ψ) is right almost split. For let q : F → Θ(Y) be a
851
+ non-retraction in mod-C and take a projective presentation (−, W1)
852
+ (−,d)
853
+ → (−, W2) → F → 0 of
854
+ F. Note that by definition, Θ(W1
855
+ d→ W2) = F. The morphism q lifts to a morphism between the
856
+ projective presentations (−, W1)
857
+ (−,d)
858
+ → (−, W2) → F → 0 and (−, Y1)
859
+ (−,g)
860
+ → (−, Y2) → Θ(Y ) → 0.
861
+ The lifted morphism induces, again by the Yoneda lemma, a map
862
+ ( σ1
863
+ σ2 ) :
864
+ � W1
865
+ W2
866
+
867
+ d →
868
+ � Y1
869
+ Y2
870
+
871
+ g
872
+ in H(C) such that Θ(σ1, σ2) = q.
873
+ Then (σ1, σ2) is not a retraction since otherwise q would
874
+ be so.
875
+ Now, δ being an almost split sequence in Hcw(C), (σ1, σ2) factors over ψ via some
876
+ (η1, η2) : (W1
877
+ d→ W2) → (Z1
878
+ h→ Z2). Then applying Θ, we see that the morphism q factors over
879
+ Θ(ψ) via Θ(η1, η2).
880
+
881
+ 5. The case of wide subcategories
882
+ Our objective in this section is to study the morphism categories raised by functorially finite
883
+ wide subcategories of mod-Λ.
884
+ Some results from previous section will come to play.
885
+ After-
886
+ wards, we shall switch to functor categories and obtain some results in this direction that extend
887
+ others from the module category. So let firstly X be a functorially finite idempotent-complete
888
+ subcategory of mod-Λ. By [AS81, Theorem 2.3], X itself is a dualizing variety.
889
+ Following Proposition 4.3, for a dualizing k-variety C, there is an equivalence τH(C) : Hcw(C) →
890
+ Hcw(C) that, based on what we said in previous section, might be considered as an equivalence
891
+ from H(C)/V′ to H(C)/V. Pictorially, there exists a composition of equivalences
892
+ H(C)/V
893
+ τ −1
894
+ H(C) � H(C)/V′
895
+ Θ′
896
+
897
+ mod-C
898
+ (Θ)−1
899
+
900
+ � mod-Cop
901
+ D
902
+ � mod-C
903
+ denoted throughout by ∆C, or simply by ∆. Applied to the functorially finite subcategory X
904
+ of mod-Λ, this yields an equivalence ∆X : mod-X → mod-X which is restricted to the category
905
+ proj-X of projective functors. Since X is idempotent-complete, the Yoneda functor induces an
906
+ equivalence proj-X ≃ X. Summing up, one obtains an equivalence σX : X → X which agrees
907
+ with the restricted equivalence ∆X via the latter identification. We notice that, going through
908
+ the definitions, one figures out that for an object X of X, there are A, B ∈ X and an exact
909
+ sequence
910
+ (B, −)
911
+ (f,−)
912
+ → (A, −) → D(−, σX (X)) → 0
913
+ in mod-X such that τ −1
914
+ H(X)(0 → X) = (A
915
+ f→ B).
916
+ Definition 5.1. A minimal projective presentation of an object C ∈ X with respect to X is
917
+ an exact sequence P1
918
+ f→ P0
919
+ h→ C with P1, P0 ∈ P(X), the class of projective objects of X,
920
+ and is computed by taking minimal right P(X)-approximations consecutively. Minimal injective
921
+ presentations with respect to X are defined dually via I(X), the class of injective objects of X.
922
+ Recall that a subcategory M of mod-Λ is said to be closed under kernels (resp. cokernels,
923
+ images) if for every morphism X
924
+ f→ Y in M also Ker(f) (resp. Coker(f), Im(f)) belongs to
925
+
926
+ FROM MORPHISM CATEGORIES TO FUNCTOR CATEGORIES
927
+ 13
928
+ M. Further, M is called a wide subcategory of mod-Λ if it is closed under extensions, kernels
929
+ and cokernels. It is clear that a wide subcategory is closed under images and is automatically
930
+ idempotent-complete.
931
+ The following couple of propositions are quite useful.
932
+ Proposition 5.2. Assume X is a functorially finite wide subcategory of mod-Λ and δ : 0 →
933
+ A
934
+ f→ B
935
+ g→ C → 0 is an almost split sequence in X. Let also A
936
+ d→ I0
937
+ q→ I1 be a minimal injective
938
+ presentation with respect to X, where b : Coker(d) → I1 is a minimal left I(X)-approximation,
939
+ a : I0 → Coker(d) is the canonical quotient map and q = ba. Then the exact sequence
940
+ 0
941
+ �� I0
942
+ I1
943
+
944
+ q
945
+ ( u
946
+ 1 )
947
+ �� W
948
+ I1
949
+
950
+ br
951
+ ( v
952
+ 0 )
953
+ �( C
954
+ 0 )0
955
+ �0
956
+ in H(X) raised by forming the push out diagram
957
+ A
958
+ d
959
+
960
+ f
961
+ � B
962
+ h
963
+
964
+ g
965
+ � C
966
+ I0
967
+ a
968
+
969
+ u
970
+ � W
971
+ r
972
+
973
+ v
974
+ � C
975
+ Coker(d)
976
+ Coker(d)
977
+ in the exact category X, is almost split.
978
+ Proof. Using that A
979
+ d→ I0
980
+ s→ I1 is a minimal injective presentation and A is indecomposable,
981
+ we deduce that (I0
982
+ s→ I1) is indecomposable. Hence it suffices to show that any non-retraction
983
+ (φ, 0) : (M
984
+ p→ N) → (C → 0) in X factors over (v, 0). If φ is a non-retraction, then, since δ is
985
+ an almost split sequence, it factors in X over g via, say, w : M → B. Then it is easy that the
986
+ morphism (hw, 0) : (M
987
+ p→ N) → (W
988
+ br
989
+ → I1) factors the morphism (φ, 0) over (v, 0). So now take
990
+ φ to be a retraction. Without loss of generality, we may assume M = C and φ = 1C. Two cases
991
+ might be distinguished:
992
+ Case 1: p is a monomorphism. Since v is a retraction in X, there exists s : C → W such that
993
+ vs = 1. As p : C → N is a monomorphism in X, there exists an extension of brs : C → I1 to a
994
+ map z : N → I1; that is to say, zp = brs. It follows then that (s, z) : (C
995
+ p→ N) → (W
996
+ br
997
+ → I1)
998
+ produces the desired factorization.
999
+ Case 2: Assume Ker(p) ̸= 0. Note that since X is a wide subcategory, Ker(p) lies in X. The
1000
+ fact that (φ, 0) is a non-retraction implies that Ker(p) is a proper submodule of C and thus the
1001
+ canonical inclusion i : Ker(p) → C is a non-retraction in X. According to the hypothesis, we
1002
+ infer the existence of a map y : Ker(p) → B such that gy = i. Note further that, since v is
1003
+ retraction, one may write W = Im(s)⊕Ker(v) and, consequently, present h as h = [l1, l2]t, where
1004
+ l1 : B → Im(s) and l2 : B → Ker(v). Using the injectivity of Ker(v) in X yields an extension of
1005
+ l2y : Ker(p) → Ker(v) to C; that is, there exists y′ : C → Ker(v) such that y′i = l2y. Putting
1006
+ together, we get a diagram
1007
+
1008
+ 14
1009
+ HOSSEIN ESHRAGHI AND RASOOL HAFEZI
1010
+ Ker(p)
1011
+ y
1012
+
1013
+ i
1014
+ � C
1015
+ [s y′]t
1016
+
1017
+ � Im(p)
1018
+ � 0
1019
+ B
1020
+ h
1021
+ � W
1022
+ r � Coker(h)
1023
+ � 0
1024
+ with commutative left part. This induces a map y′′ : Im(p) → Cok(h) completing the diagram.
1025
+ Again, as X is wide, the monomorphism Im(p)
1026
+ i′
1027
+ → N lies inside X and, hence, the injectivity
1028
+ of I1 in X gives a map z′ : N → I1 with z′i′ = by′′. Finally, one verifies that the morphism
1029
+ ([s y′]t, z′) : (C
1030
+ p→ N) → (W
1031
+ br
1032
+ → I1) gives the required factorization.
1033
+
1034
+ As a dual statement, we record the following proposition.
1035
+ Proposition 5.3. Assume X is a functorially finite wide subcategory of mod-Λ and δ : 0 → A
1036
+ f→
1037
+ B
1038
+ g→ C → 0 is an almost split sequence in X. Let also P1
1039
+ ℓ→ P0
1040
+ h→ C be a minimal projective
1041
+ presentation with respect to X, where k : P1 → Ker(h) is a minimal right P(X)-approximation,
1042
+ i : Ker(h) → P0 is the canonical inclusion and ℓ = ik. Then the exact sequence
1043
+ 0
1044
+ �( 0
1045
+ A )
1046
+ ( 0
1047
+ u)
1048
+ �� P1
1049
+ Z
1050
+
1051
+ wk
1052
+ ( 1
1053
+ v )
1054
+ �� P1
1055
+ P0
1056
+
1057
+
1058
+ �0
1059
+ in H(X) raised by forming the pull back diagram
1060
+ Ker(h)
1061
+ w
1062
+
1063
+ Ker(h)
1064
+ i
1065
+
1066
+ A
1067
+ u
1068
+ � Z
1069
+ r
1070
+
1071
+ v
1072
+ � P0
1073
+ h
1074
+
1075
+ A
1076
+ f
1077
+ � B
1078
+ g
1079
+ � C
1080
+ in the exact category X, is almost split.
1081
+ Any functorially finite wide subcategory X of mod-Λ admits almost split sequences by [AS81,
1082
+ Theorem 2.4]. Hence, following Lemma 2.1, we let τX denote the Auslander-Reiten translation
1083
+ over X.
1084
+ Corollary 5.4. Let X be a functorially finite wide subcategory of mod-Λ and consider the auto-
1085
+ equivalence σX : X → X introduced earlier. Assume that X ∈ X is an indecomposable module
1086
+ not belonging to P(X), and that P
1087
+ f→ Q → X is a minimal projective presentation with respect
1088
+ to X. Then there is an exact sequence
1089
+ 0 → (−, σX τX (X)) → D(P, −) → D(Q, −) → D(X, −)
1090
+ in mod-X
1091
+ Proof. Proposition 5.3 yields that the inverse Auslander-Reiten translation τ −1
1092
+ H(X)(0 → τX (X))
1093
+ of (0 → τX (X)) in H(X) coincides with (P
1094
+ f→ Q). Taking into account our previous observations
1095
+ on the functor σX gives the result.
1096
+
1097
+
1098
+ FROM MORPHISM CATEGORIES TO FUNCTOR CATEGORIES
1099
+ 15
1100
+ Remark 5.5. For every non-projective indecomposable Λ-module M, we know that there exists
1101
+ an exact sequence
1102
+ 0 → τ(M) → ν(P) → ν(Q) → ν(M) → 0
1103
+ where P → Q → M → 0 is the minimal projective presentation of M. In some sense, the
1104
+ sequence presented by Corollary 5.4 goes parallel to, and generalizes this observation. This is
1105
+ more justified as we show in the sequel that for the case X = mod-Λ, σX is just the identity
1106
+ functor. However, it would be interesting to explore σX further by considering other functorially
1107
+ finite wide subcategories X.
1108
+ Denote by σ := σX : mod-Λ → mod-Λ the auto-equivalence obtained above in the case
1109
+ where X = mod-Λ. We refer e.g. to [HE] for further explanation on how the Auslander-Reiten
1110
+ translation τH and its inverse τ −1
1111
+ H work in this case and suffice to recall that the standard duality
1112
+ functor DH might be computed in a local manner in terms of the standard duality D of Λ. That
1113
+ is to say, DH(X
1114
+ f→ Y ) = (D(Y )
1115
+ D(f)
1116
+ → D(X)).
1117
+ Note that since σ is an equivalence, it clearly restricts to an equivalence σ′ : inj-Λ → inj-Λ on
1118
+ the subcategory of injective modules. In the sequel, it will be shown that σ′, and consequently
1119
+ σ, are nothing but the identity functor on the corresponding categories.
1120
+ Lemma 5.6. The restricted equivalence σ′ is isomorphic to the identity functor on inj-Λ.
1121
+ Proof. Let I be an injective Λ-module. There exists a minimal injective resolution in H
1122
+ 0 → ( 0
1123
+ I )0 → ( I
1124
+ I )1 → ( I
1125
+ 0 )0 → 0
1126
+ of the object (0 → I). Applying the duality DH leads to the projective presentation in Hop
1127
+ 0 → ( 0
1128
+ DI )0 → ( DI
1129
+ DI )1 → ( DI
1130
+ 0 )0 → 0
1131
+ of the object DH(0 → I). Then, we compute the transpose and deduce that τ −1
1132
+ H (0 → I) ≃
1133
+ (ν−1(I) → 0). As we pointed out earlier in this section, this results in an equivalence (ν−1(I), −) ≃
1134
+ D(−, σ(I)) in mod-(mod-Λ)op. Hence, evaluating on the regular module Λ, yields a natural iso-
1135
+ morphism σ(I) ≃ νν−1(I) ≃ I.
1136
+
1137
+ Theorem 5.7. The equivalence σ is isomorphic to the identity functor on mod-Λ.
1138
+ Proof. According to Lemma 5.6, the restricted equivalence σ′ is naturally isomorphic to the
1139
+ identity functor on the subcategory of injective modules. Using injective resolutions, it is then
1140
+ straightforward to see that the same holds for σ itself.
1141
+
1142
+ In the rest of this section, we will provide some applications of the aforementioned theorem.
1143
+ Corollary 5.8. Let F be a functor in mod-(mod-Λ) with a minimal projective presentation
1144
+ (−, X)
1145
+ (−,f)
1146
+ → (−, Y ) → F → 0. Then there is an exact sequence
1147
+ (Y ′, −)
1148
+ (g,−)
1149
+ → (X′, −) → DF → 0
1150
+ in mod-(mod-Λ)op where (X′
1151
+ g→ Y ′) is the inverse Auslander-Reiten translation of (X
1152
+ f→ Y ) in
1153
+ H.
1154
+ Proof. Again we specify our constructions to the dualizing variety C = mod-Λ. By virtue of
1155
+ Theorem 5.7, the functor ∆ := ∆mod-Λ acts identically on projective functors. Using projective
1156
+ presentations, it follows that ∆ is isomorphic to the identity functor on the whole mod-(mod-Λ).
1157
+ Definition of ∆ then implies that the duality functor D : mod-(mod-Λ) → mod-(mod-Λ)op is
1158
+
1159
+ 16
1160
+ HOSSEIN ESHRAGHI AND RASOOL HAFEZI
1161
+ isomorphic to Θ′ ◦τ −1
1162
+ H ◦(Θ)−1. This proves the claim by following the definitions of the functors
1163
+ involved.
1164
+
1165
+ Corollary 5.9. Let M be an indecomposable Λ-module with a minimal projective presentation
1166
+ P
1167
+ f→ Q → M → 0. Then there is an exact sequence
1168
+ 0 → (−, τ(M)) → D(P, −) → D(Q, −) → D(M, −) → 0
1169
+ in mod-(mod-Λ).
1170
+ Proof. If M is projective, then such a sequence exists trivially. Otherwise, applying Corollary
1171
+ 5.4 for X = mod-Λ, there exists an exact sequence
1172
+ 0 → (−, σX τX (M)) → D(P, −) → D(Q, −) → D(M, −) → 0
1173
+ in mod-(mod-Λ). Now Theorem 5.7 settles the statement.
1174
+
1175
+ Let us exploit Corollary 5.9 to observe a connection between the inverse Auslander-Reiten
1176
+ translation of an indecomposable non-projective Λ-module M with the second syzygies of injec-
1177
+ tive functors. For, replace M in Corollary 5.9 by τ −1M to get the exact sequence
1178
+ 0 → (−, M) → D(P, −) → D(Q, −) → D(τ −1(M), −) → 0
1179
+ in mod-(mod-Λ)op in which P → Q → τ −1(M) → 0 is a minimal projective presentation.
1180
+ Applying the duality D : mod-(mod-Λ)op → mod-(mod-Λ) gives the exact sequence
1181
+ 0 → (τ −1(M), −) → (Q, −) → (P, −) → D(−, M) → 0.
1182
+ This shows that the functor (τ −1(M), −) might be interpreted as a second syzygy of the injective
1183
+ functor D(−, M).
1184
+ 6. simple modules over (stable) Auslander algebra
1185
+ Assume Λ is of finite representation type and let M be a basic representation generator of
1186
+ mod-Λ; that is, M is the direct sum of all pairwise non-isomorphic indecomposable finitely
1187
+ generated Λ-modules.
1188
+ The endomorphism algebra A(Λ) = EndΛ(M), simply denoted by A
1189
+ throughout the section, is called the Auslander algebra of Λ. Moreover, the stable Auslander
1190
+ algebra of Λ is by definition A = EndΛ(M)/P, where P is the ideal in EndΛ(M) consisting of
1191
+ those endomorphisms factoring through a projective module. In this case, we can identify mod-A
1192
+ with mod-(mod-Λ) via the equivalence induced by the evaluation functor eM : mod-(mod-Λ) →
1193
+ mod-A, F �→ F(M). It is also easy to see that eM induces an equivalence between mod-(mod-Λ)
1194
+ and mod-A.
1195
+ It is known [A76] that indecomposable modules in mod-Λ correspond bijectively to sim-
1196
+ ple functors in mod-(mod-Λ) by sending an indecomposable module M to the simple functor
1197
+ SM := (−, M)/rad(−, M). Further, for any indecomposable non-projective module M, there is
1198
+ a minimal projective resolution
1199
+ 0 → (−, N)
1200
+ (−,f)
1201
+ → (−, K)
1202
+ (−,g)
1203
+ → (−, M) → SM → 0
1204
+ of SM such that 0 → N
1205
+ f→ K
1206
+ g→ M → 0 is an almost split sequence in mod-Λ ([A76, §2]).
1207
+ Combined to the above observations on the Auslander algebra A, one may identify simple A-
1208
+ modules (resp. simple A-modules) and indecomposable (resp. indecomposable non-projective)
1209
+ Λ-modules.
1210
+
1211
+ FROM MORPHISM CATEGORIES TO FUNCTOR CATEGORIES
1212
+ 17
1213
+ Specializing [H, Construction 3.1] to the module category mod-Λ gives a functor Ψ : S →
1214
+ mod-(mod-Λ), S being the monomorphism category of Λ. This is defined by sending (X
1215
+ f→ Y )
1216
+ in S to the functor F ∈ mod-(mod-Λ) lying in the exact sequence
1217
+ 0 → (−, X)
1218
+ (−,f)
1219
+ → (−, Y ) → (−, Coker(f)) → F → 0
1220
+ in mod-(mod-Λ).
1221
+ As the following result says, Ψ behaves well with respect to almost split
1222
+ sequences.
1223
+ Lemma 6.1. ([H, Proposition 5.7]) Let 0 → U → V → W → 0 be an almost split sequence
1224
+ in S. Assume W is neither of types (a) or (b), nor of the form (Ω(X) → P), where X is a
1225
+ non-projective indecomposable Λ-module with projective cover P. Then
1226
+ 0 → Ψ(U) → Ψ(V) → Ψ(W) → 0
1227
+ is an almost split sequence in mod-(mod-Λ).
1228
+ The following theorem is one of the main results in this section.
1229
+ Theorem 6.2. Assume Λ is of finite representation type and A is its stable Auslander algebra.
1230
+ Let S be a simple non-projective A-module. Then, exactly one of the followings hold:
1231
+ (1) the Auslander-Reiten translate τA(S) is projective.
1232
+ (2) there exists a simple A-module S′ such that τA(S) ≃ Ω−1
1233
+ A (S′). In this case, Ext2
1234
+ A(S, S′) ≃
1235
+ DHomA(S, S).
1236
+ Proof. According to aforementioned remarks, the simple non-projective module S corresponds
1237
+ to a simple functor (−, C)/rad(−, C) lying in the exact sequence
1238
+ 0 → (−, A)
1239
+ (−,f)
1240
+ → (−, B)
1241
+ (−,g)
1242
+ → (−, C) → (−, C)/rad(−, C) → 0
1243
+ in mod-(mod-Λ) in such a way that λ : 0 → A
1244
+ f→ B
1245
+ g→ C → 0 is an almost split sequence
1246
+ in mod-Λ. Note that the middle term B may not be projective since otherwise there exists an
1247
+ isomorphism (−, C)/rad(−, C) ≃ (−, C) which is against non-projectivity of S.
1248
+ We distinguish two cases: Assume first that A is projective. So by Proposition 3.3 of [HE],
1249
+ there exists an almost split sequence
1250
+ 0
1251
+ �� rad(A)
1252
+ A
1253
+
1254
+ i
1255
+ �( A
1256
+ A )1 ⊕
1257
+ � rad(A)
1258
+ B
1259
+
1260
+ fi
1261
+ �( A
1262
+ B )f
1263
+ �0
1264
+ in S(Λ). Hence, in view of Lemma 6.1, we get the almost split sequence
1265
+ 0 → Ψ
1266
+ � rad(A)
1267
+ A
1268
+
1269
+ i → Ψ
1270
+ � rad(A)
1271
+ B
1272
+
1273
+ fi → Ψ( A
1274
+ B )f → 0
1275
+ in mod-(mod-Λ).
1276
+ Since A is projective, the definition of Ψ shows that Ψ(rad(A)
1277
+ i→ A) ≃
1278
+ (−, A/rad(A)). Likewise, as λ does not split, we have Ψ(A
1279
+ f→ B) ≃ (−, C)/rad(−, C). Hence
1280
+ τA((−, C)/rad(−, C)) ≃ (−, A/rad(A)) that proves the claim in this case.
1281
+ Assume next that A is not projective. Then there exists an almost split sequence
1282
+ ϵ : 0 → A′ → B′ → A → 0
1283
+ in mod-Λ. Applying [H, Lemma 6.3] on λ and ϵ, one infers the almost split sequences
1284
+ 0
1285
+ �( A
1286
+ A )1
1287
+ �( A
1288
+ B )f
1289
+ �( 0
1290
+ C )0
1291
+ �0 and
1292
+
1293
+ 18
1294
+ HOSSEIN ESHRAGHI AND RASOOL HAFEZI
1295
+ 0
1296
+ �� A′
1297
+ I
1298
+
1299
+ e
1300
+ �� B′
1301
+ I⊕A
1302
+
1303
+ h
1304
+ �( A
1305
+ A )1
1306
+ �0
1307
+ in S where the second one is obtained from the push-out diagram
1308
+ A′
1309
+ e
1310
+
1311
+ � B′
1312
+ h
1313
+
1314
+ � A
1315
+ (†)
1316
+ I
1317
+ e
1318
+
1319
+ � I ⊕ A
1320
+ d
1321
+
1322
+ � A
1323
+ Ω−1
1324
+ Λ (A)
1325
+ Ω−1
1326
+ Λ (A)
1327
+ in which e : A′ → I is the injective envelope. From [HZ, Lemma 3.3], we can write (B′
1328
+ h→
1329
+ I ⊕ A) ≃ X ⊕ (J
1330
+ 1→ J), where X is an indecomposable non-projective object and J is either zero
1331
+ or isomorphic to I. It follows then that τS(A
1332
+ f→ B) ≃ X. Accordingly, by taking into account
1333
+ that (−, C)/rad(−, C) ≃ Ψ(A
1334
+ f→ B) by the exact sequence mentioned at the beginning of the
1335
+ proof, another application of Lemma 6.1 shows that
1336
+ (6.1)
1337
+ F := τmod-(mod-Λ)((−, C)/rad(−, C)) ≃ Ψ(X).
1338
+ However, the definition of Ψ yields F = Ψ(B′
1339
+ h→ I ⊕ A). Therefore, abusing the notation, we
1340
+ may write τA(S) ≃ F.
1341
+ Regarding the definition of Ψ, the middle column of (†) gives the long exact sequence
1342
+ 0
1343
+ � (−, B′)
1344
+ � (−, I ⊕ A)
1345
+ � (−, Ω−1
1346
+ Λ (A))
1347
+
1348
+
1349
+ Ext1
1350
+ Λ(−, B′)
1351
+ � Ext1
1352
+ Λ(−, I ⊕ A)
1353
+ F
1354
+
1355
+ in mod-(mod-Λ) that implies F = Ker(Ext1
1356
+ Λ(−, B′) → Ext1
1357
+ Λ(−, A)) because I is injective. On
1358
+ the other hand, since ϵ is an almost split sequence, our previous considerations show that there
1359
+ exists an exact sequence
1360
+ 0
1361
+ � (−, A′)
1362
+ � (−, B′)
1363
+ � (−, A)
1364
+
1365
+
1366
+ Ext1
1367
+ Λ(−, A′)
1368
+
1369
+
1370
+ Ext1
1371
+ Λ(−, B′)
1372
+ � Ext1
1373
+ Λ(−, A)
1374
+ (−, A)/rad(−, A)
1375
+
1376
+ F
1377
+
1378
+ of functors. Invoking [AR74, Proposition 7.4], we see that Ext1
1379
+ Λ(−, A′) is an injective functor in
1380
+ mod-(mod-Λ) and so the induced short exact sequence 0 → (−, A)/rad(−, A) → Ext1
1381
+ Λ(−, A′) →
1382
+ F → 0 gives F = Ω−1
1383
+ A ((−, A)/rad(−, A)). Now it suffices to set S′ = (−, A)/rad(−, A). Notice
1384
+ that the last assertion in the theorem is an upshot of the Auslander-Reiten formula.
1385
+
1386
+ Based on previous theorem, in the following result we establish a bijection between certain
1387
+ simple modules over A and Λ. This provides an interesting application concerning the stable
1388
+ equivalences of Artin algebras.
1389
+ Corollary 6.3. Let Λ be of finite representation type and A be its stable Auslander algebra.
1390
+ There exists a bijection between
1391
+
1392
+ FROM MORPHISM CATEGORIES TO FUNCTOR CATEGORIES
1393
+ 19
1394
+ (1) the set of isomorphism classes of non-projective simple modules S ∈ mod-A whose
1395
+ Auslander-Reiten translate τA(S) is projective; and
1396
+ (2) the set of isomorphism classes of indecomposable non-injective projective modules P ∈
1397
+ mod-Λ such that the middle term of the almost split sequence starting from P is not
1398
+ projective; and
1399
+ (3) the set of isomorphism classes of simple modules S ∈ mod-Λ whose projective cover P(S)
1400
+ is non-injective, and the middle term of the almost split sequence starting from P(S) is
1401
+ not projective.
1402
+ Proof. The bijection between (2) and (3) might be shown by restricting the well-known bijection
1403
+ between simple and indecomposable projective modules. The map from (2) to (1) is given by
1404
+ sending P to (−, τ −1(P))/rad(−, τ −1(P)), which is well-defined due to the argument given in
1405
+ Theorem 6.2. Let now S be a simple non-projective module in mod-A with τA(S) projective.
1406
+ We already know that there is an indecomposable non-projective Λ-module C such that S ≃
1407
+ (−, C)/rad(−, C). We claim that τ(C) is projective; otherwise, as in Theorem 6.2, there exists
1408
+ a simple A-module S′ such that τA(S) ≃ Ω−1
1409
+ A (S′). Hence the short exact sequence 0 → S′ →
1410
+ I → Ω−1
1411
+ A (S′) → 0, in which I′ is the injective envelop of S′, splits. This means that Ω−1
1412
+ A (S′) = 0
1413
+ and so τA(S) = 0 which is against non-projectivity of S. Thus τ(C) is projective and setting
1414
+ P := τ(C) completes the proof.
1415
+
1416
+ Recall that two Artin algebras Λ and Λ′ are said to be stably equivalent if there is an equiv-
1417
+ alence of categories mod-Λ ≃ mod-Λ′.
1418
+ Denote by n(Λ) the number of iso classes of simple
1419
+ Λ-modules satisfying the third condition of the above corollary. As a byproduct, we show that
1420
+ n(Λ) is an invariant of the stable equivalences.
1421
+ Proposition 6.4. Let Λ and Λ′ be of finite representation type and stably equivalent. Then
1422
+ n(Λ) = n(Λ′).
1423
+ Proof. Since Λ and Λ′ are stably equivalent, it follows that the corresponding stable Auslander
1424
+ algebras A and A′ are Morita equivalent. By Corollary 6.3, we see that simple modules in mod-Λ
1425
+ (resp. mod-Λ′) that satisfy condition (3) correspond bijectively to non-projective simple modules
1426
+ over the stable Auslander algebra A (resp. A′) with projective Auslander-Reiten translates. We
1427
+ are done since the modules of latter type are preserved under Morita equivalences.
1428
+
1429
+ The following lemma is taken from [HE, Proposition 3.2].
1430
+ Lemma 6.5. Let δ : 0 → A
1431
+ f→ B
1432
+ g→ C → 0 and δ′ : 0 → A′ f ′
1433
+ → B′ g′
1434
+ → A → 0 be almost split
1435
+ sequences in mod-Λ. Then
1436
+ 0
1437
+ �� B′
1438
+ A
1439
+
1440
+ g′
1441
+
1442
+
1443
+ � g′
1444
+ 1
1445
+
1446
+ � 1
1447
+ f
1448
+
1449
+
1450
+
1451
+ �( A
1452
+ A )1 ⊕
1453
+ � B′
1454
+ B
1455
+
1456
+ fg′
1457
+ � [ −1 g′ ]
1458
+ [ −f 1 ]
1459
+
1460
+ �( A
1461
+ B )f
1462
+ �0,
1463
+ is an almost split sequence in H. Further,
1464
+ � B′
1465
+ B
1466
+
1467
+ fg′ is an indecomposable object.
1468
+ The following theorem should be served as the second main result of this section.
1469
+ Theorem 6.6. Assume Λ is a self-injective algebra of finite representation type and let A be
1470
+ its Auslander algebra. Let also S be a simple A-module of projective dimension two. Then there
1471
+ exists a simple A-module S′ of projective dimension two such that ΩA(S′) ≃ τ −1
1472
+ A (S). In this
1473
+ case, Ext2
1474
+ A(S′, S) ≃ DHomA(S, S).
1475
+
1476
+ 20
1477
+ HOSSEIN ESHRAGHI AND RASOOL HAFEZI
1478
+ Proof. We may identify the simple module S by the simple functor (−, A)/rad(−, A) lying in
1479
+ the exact sequence
1480
+ 0 → (−, A′)
1481
+ (−,f ′)
1482
+
1483
+ (−, B′)
1484
+ (−,g′)
1485
+
1486
+ (−, A) → (−, A)/rad(−, A) → 0
1487
+ (†)
1488
+ in mod-(mod-Λ) in such a way that δ : 0 → A′ f ′
1489
+ → B′ g′
1490
+ → A → 0 is an almost split sequence in
1491
+ mod-Λ. Let also δ′ : 0 → A
1492
+ f→ B
1493
+ g→ C → 0 be an almost split sequence in mod-Λ. Then by
1494
+ Lemma 6.5 there exists an almost split sequence
1495
+ 0
1496
+ �� B′
1497
+ A
1498
+
1499
+ g′
1500
+
1501
+
1502
+ � g′
1503
+ 1
1504
+
1505
+ � 1
1506
+ f
1507
+
1508
+
1509
+
1510
+ �( A
1511
+ A )1 ⊕
1512
+ � B′
1513
+ B
1514
+
1515
+ fg′
1516
+ � [ −1 g′ ]
1517
+ [ −f 1 ]
1518
+
1519
+ �( A
1520
+ B )f
1521
+ �0
1522
+ in H. Thanks to Theorem 4.8, this induces the almost split sequence
1523
+ 0 → Θ(B′ g′
1524
+ → A) → Θ(B′ fg′
1525
+ → B) → Θ(A
1526
+ f→ B) → 0
1527
+ (††)
1528
+ in mod-(mod-Λ). Note that (†) implies Θ(B′
1529
+ g′
1530
+ → A) = (−, A)/rad(−, A) = S. Hence by (††),
1531
+ τ −1
1532
+ A (S) = Θ(A
1533
+ f→ B). Set now W = (A
1534
+ f→ B). Then, by definitions, there exists an exact
1535
+ sequence
1536
+ (−, A)
1537
+ � (−, B)
1538
+
1539
+
1540
+ (−, C)
1541
+
1542
+
1543
+ Ext1
1544
+ Λ(−, A)
1545
+ � Ext1
1546
+ Λ(−, B).
1547
+ Θ(W)
1548
+
1549
+ (−, C)/rad(−, C)
1550
+
1551
+ Set S′ be the simple functor (−, C)/rad(−, C). Then the short exact sequence 0 → Θ(W) →
1552
+ (−, C) → S′ → 0 proves the claim.
1553
+
1554
+ 7. Auslander-Reiten components of Auslander algebras
1555
+ Throughout the section, we assume that Λ is a non-semisimple self-injective algebra of finite
1556
+ representation type and A denotes its Auslander algebra. In the whole section, we use the iden-
1557
+ tification mod-A ≃ mod-(mod-Λ) described earlier. Once more, in this section, the quadruple
1558
+ family of objects in H of types (a), (b), (c), and (d) become important. We aim to identify cer-
1559
+ tain components of the (stable) Auslander-Reiten quiver of A. To this end, we need firstly study
1560
+ particular τH-periodic objects in H and their periodicity.
1561
+ 7.1. τH-periodic objects. As we observed in Theorem 4.8, the functor Θ : H → mod-A behaves
1562
+ well with respect to almost split sequences in the sense that if there exists an almost split sequence
1563
+ 0 → X → Y → Z → 0 in H where Z is not of type (b) or (c), then 0 → Θ(X) → Θ(Y) → Θ(Z) → 0
1564
+ is also an almost split sequence in mod-A. Also we have seen in Theorem 4.2 that one is given an
1565
+ equivalence H/V ≃ mod-A where V is generated by the objects of type (b) or (c). Therefore, the
1566
+ Auslander-Reiten quiver ΓA of the Auslander algebra A might be computed via the Auslander-
1567
+ Reiten quiver ΓH of H by removing vertices corresponding to iso-classes of indecomposable
1568
+ objects of either types (b) or (c).
1569
+ The following construction is vital for the rest of this section. It is mainly based on an analysis
1570
+ of various almost split sequences already obtained in [HE]. For the sake of brevity, we prefer not
1571
+ to rewrite most of them here and suffice to give the precise reference number therein.
1572
+
1573
+ FROM MORPHISM CATEGORIES TO FUNCTOR CATEGORIES
1574
+ 21
1575
+ Construction 7.1. Let C be an indecomposable non-projective Λ-module. There exist almost
1576
+ split sequences ϵ1 : 0 → τ(C)
1577
+ f→ B
1578
+ g→ C → 0 and ϵ2 : 0 → τ 2(C)
1579
+ f ′
1580
+ → B′ g′
1581
+ → τ(C) → 0 in mod-Λ.
1582
+ Applying Lemmas 6.5 and 4.4 we deduce the almost split sequences
1583
+ 0
1584
+
1585
+
1586
+ B′
1587
+ τ(C)
1588
+
1589
+ g′
1590
+
1591
+
1592
+ � g′
1593
+ 1
1594
+
1595
+ � 1
1596
+ f
1597
+
1598
+
1599
+
1600
+
1601
+
1602
+ τ(C)
1603
+ τ(C)
1604
+
1605
+ 1 ⊕
1606
+ � B′
1607
+ B
1608
+
1609
+ fg′
1610
+ � [ −1 g′ ]
1611
+ [ −f 1 ]
1612
+
1613
+ �� τ(C)
1614
+ B
1615
+
1616
+ f
1617
+ �0,
1618
+ 0
1619
+
1620
+
1621
+ τ(C)
1622
+ τ(C)
1623
+
1624
+ 1
1625
+ � 1
1626
+ f
1627
+
1628
+ �� τ(C)
1629
+ B
1630
+
1631
+ f
1632
+ � 0
1633
+ g
1634
+
1635
+ �( 0
1636
+ C )0
1637
+ �0,
1638
+ and
1639
+ 0
1640
+ �� τ(C)
1641
+ 0
1642
+
1643
+ 0
1644
+ � f
1645
+ 0
1646
+
1647
+ �( B
1648
+ C )g
1649
+ ( g
1650
+ 1)
1651
+ �( C
1652
+ C )1
1653
+ �0
1654
+ in H. Evidently, the indecomposable object (B′ fg′
1655
+ → B) is not projective; so let X := τH(B′ fg′
1656
+ → B).
1657
+ Also, as (B′ g′
1658
+ → τ(C)) is not projective, we let Y := τH(B′ g′
1659
+ → τ(C)) and note that X and Y are
1660
+ not projective. In view of [HE, Propositions 2.2, 4.1], there exists an almost split sequence
1661
+ 0
1662
+
1663
+
1664
+ ν(P )
1665
+ ν(Q)
1666
+
1667
+ ν(h)
1668
+ �Y ⊕ ( I
1669
+ 0 )0
1670
+
1671
+
1672
+ τ 2(C)
1673
+ 0
1674
+
1675
+ 0
1676
+ �0
1677
+ in H where P
1678
+ h→ Q → τ 2(C) → 0 is the minimal projective presentation, and I is an injective
1679
+ module. On the other hand, by [HE, Propositions 2.4, 4.2], we have the almost split sequence
1680
+ 0
1681
+
1682
+
1683
+ 0
1684
+ τντ 2(C)
1685
+
1686
+ 0
1687
+ �τH(Y) ⊕ ( 0
1688
+ P )0
1689
+
1690
+
1691
+ ν(P )
1692
+ ν(Q)
1693
+
1694
+ ν(h)
1695
+ �0
1696
+ in H where P is projective. Putting all together, one obtains the mesh
1697
+ τ(X)
1698
+
1699
+ X
1700
+
1701
+
1702
+ � B′
1703
+ B
1704
+
1705
+ fg′
1706
+
1707
+
1708
+ τ(Y)
1709
+
1710
+
1711
+ Y
1712
+
1713
+
1714
+
1715
+
1716
+ B′
1717
+ τ(C)
1718
+
1719
+ g′
1720
+
1721
+
1722
+
1723
+ � τ(C)
1724
+ B
1725
+
1726
+ f
1727
+
1728
+
1729
+
1730
+ 0
1731
+ ντ 3(C)
1732
+
1733
+ 0
1734
+
1735
+
1736
+ ν(P )
1737
+ ν(Q)
1738
+
1739
+ ν(h)
1740
+
1741
+
1742
+
1743
+ τ 2(C)
1744
+ 0
1745
+
1746
+ 0
1747
+
1748
+
1749
+
1750
+ τ(C)
1751
+ τ(C)
1752
+
1753
+ 1
1754
+
1755
+
1756
+ ( 0
1757
+ C )0
1758
+
1759
+ in the Auslander-Reiten quiver ΓA of A in which the vertices (I → 0) and (0 → P) have been
1760
+ ignored.
1761
+ Let us recall from [HE, Remark 5.7] that A = ντ 3 defines an auto-equivalence on the stable
1762
+ category mod-Λ. As is expected, the A -orbit of an indecomposable non-projective Λ-module M
1763
+ consists of the modules A m(M) where m ranges over the integer numbers.
1764
+ Proposition 7.2. Suppose every indecomposable non-projective Λ-module possesses a finite A -
1765
+ orbit. Then any indecomposable non-projective object X in H of either types (a), (b), (c) or (d)
1766
+ is of τH-periodicity a multiple of 4.
1767
+
1768
+ 22
1769
+ HOSSEIN ESHRAGHI AND RASOOL HAFEZI
1770
+ Proof. According to our previous observations, all mentioned objects lie in the τH-orbit of some
1771
+ indecomposable object of type (a). Hence it suffices to prove the statement only for X = (0 → N)
1772
+ with N an indecomposable non-projective module. Justified by the hypothesis, choose a least
1773
+ integer n with A n(N) = N. Considering the particular mesh in ΓA as illustrated in Construction
1774
+ 7.1, we get τ 4
1775
+ H(0 → N) ≃ (0 → A (N)) and thus τ 4n
1776
+ H (0 → N) ≃ (0 → A n(N)) = (0 → N).
1777
+
1778
+ Based on previous proposition, we are now able to prove the following theorem which will
1779
+ prove useful later on.
1780
+ Theorem 7.3. Assume every indecomposable non-projective Λ-module possesses a finite A -
1781
+ orbit. Then every simple A-module of projective dimension 2 is τA-periodic of periodicity divided
1782
+ by 4.
1783
+ Proof. Recall that such simple A-modules might be identified with simple functors SM =
1784
+ (−, M)/rad(−, M) where M is an indecomposable non-projective Λ-module lying in an almost
1785
+ split sequence 0 → τ(M)
1786
+ g→ N
1787
+ f→ M → in mod-Λ. By Proposition 7.2, (0 → τ −1(M)) is of
1788
+ τH-periodicity 4n for a suitable integer n. Since (0 → τ −1(M)) and (M
1789
+ 1→ M) lie in the same
1790
+ τH-orbit, if it follows that (M
1791
+ 1→ M) is also of the same periodicity 4n. Thus the irreducible
1792
+ morphism (N
1793
+ f→ M) → (M
1794
+ 1→ M) in ΓH remains fixed after 4n applications of τH and ac-
1795
+ cordingly, (N
1796
+ f→ M) should be of τH-periodicity 4n. Consequently, according to Theorem 4.8,
1797
+ τ 4n
1798
+ A (SM) = τ 4n
1799
+ A Θ(N
1800
+ f→ M) = Θτ 4n
1801
+ H (N
1802
+ f→ M) = Θ(N
1803
+ f→ M) = SM.
1804
+
1805
+ 7.2. Modules M with τ(M) = Ω(M).
1806
+ Definition 7.4. Let M be an indecomposable non-projective module.
1807
+ We say M has the
1808
+ property (∗) if 0 → Ω(M) → P(M) → M → 0 is an almost split sequence in mod-Λ where
1809
+ P(M) is the projective cover of M.
1810
+ Modules satisfying this property have already been classified in [ARS, Theorem V.3.3]: these
1811
+ are exactly non-injective simple Λ-modules M that are not a composition factor of rad(I)/soc(I)
1812
+ for every injective Λ-module I. This clearly yields that such modules are necessarily A-periodic.
1813
+ Note also that in the situation of the definition, τ(M) = Ω(M). The goal in this subsection is to
1814
+ see that existence of modules with this property may heavily affect the shape of the AR-quiver
1815
+ of A and in particular cases may even make it into an algebra of finite representation type. As
1816
+ a first pace to study modules with property (∗), the following lemma shows that this property
1817
+ carries over from a module to its (co)syzygies.
1818
+ Lemma 7.5. Let M be an indecomposable non-projective Λ-module. If M has the property (∗),
1819
+ then so do all its syzygies (resp. cosyzygies). In particular, the short exact sequences
1820
+ 0 → Ωi+1(M) → P i → Ωi(M) → 0 for i ≥ 0, and
1821
+ 0 → Ωi(M) → Ii → Ωi−1(M) → 0 for i ≤ 0
1822
+ in mod-Λ induced by the minimal projective (resp. injective) resolution of M are almost split.
1823
+ Proof. We prove the lemma for integers i ≥ 0 by using an inductive argument whose basis
1824
+ i = 0 is satisfied by the assumption; so we put i > 0.
1825
+ Consider the almost split sequence
1826
+ 0 → τΩi(M) → B → Ωi(M) → 0 in mod-Λ.
1827
+ We claim that B is projective.
1828
+ Assume to
1829
+ the contrary that B has a non-projective indecomposable direct summand C. The induction
1830
+
1831
+ FROM MORPHISM CATEGORIES TO FUNCTOR CATEGORIES
1832
+ 23
1833
+ hypothesis then implies that τ −1(C) is a non-projective direct summand of P i−1, which is
1834
+ absurd. Now use the fact that the morphisms involved in an almost split sequence are minimal
1835
+ to deduce that τΩi(M) = Ωi+1(M).
1836
+
1837
+ The following lemma shows a property of the modules M for which (∗) is satisfied; this will
1838
+ be used later on in this section.
1839
+ Lemma 7.6. Under the hypothesis of Lemma 7.5, one has ν(P i+1) ≃ P i for i ≥ 0 and
1840
+ ν−1(Ii−1) ≃ Ii for i ≤ 0.
1841
+ Proof. We prove the first assertion. The minimal projective presentation P 1 → P 0 → M → 0
1842
+ induces the short exact sequence 0 → τ(M) → ν(P 1) → ν(P 0) → ν(M) → 0 in mod-Λ.
1843
+ Note that, as ν is an auto-equivalence of mod-Λ, the map τ(M) → ν(P 1) is minimal and
1844
+ thus defines the injective envelope of τ(M) as ν(P 1) is injective. However, by definition, the
1845
+ monomorphism τ(M) → P 0 obtained by composing the isomorphism τ(M) ≃ Ω(M) and the
1846
+ inclusion Ω(M) → P 0 is also minimal with P 0 injective.
1847
+ Therefore ν(P 1) ≃ P 0 since the
1848
+ injective envelope is unique up to isomorphism.
1849
+ Now we deduce the result by applying an
1850
+ inductive argument in conjunction with Lemma 7.5.
1851
+
1852
+ The following theorem is the promised one.
1853
+ Theorem 7.7. Assume there exists an indecomposable non-projective Λ-module M with the
1854
+ property (∗). Then the Auslander-Reiten quiver ΓA of A is a finite oriented cycle. In particular,
1855
+ the Auslander algebra A is of finite representation type.
1856
+ Proof. The minimal projective presentation
1857
+ · · · → P n wn
1858
+ → P n−1 → · · · P 1 w1
1859
+ → P 0 → M → 0
1860
+ of M induces, according to Lemma 7.5, the almost split sequences
1861
+ ϵi : 0 → Ωi+1(M)
1862
+ vi
1863
+ → P i ui
1864
+ → Ωi(M) → 0
1865
+ in mod-Λ. Applying Lemma 6.5 on ϵ0 and ϵ1 gives the almost split sequence
1866
+ 0
1867
+
1868
+
1869
+ P 1
1870
+ Ω(M)
1871
+
1872
+ u1
1873
+
1874
+
1875
+ Ω(M)
1876
+ Ω(M)
1877
+
1878
+ 1 ⊕
1879
+
1880
+ P 1
1881
+ P 0
1882
+
1883
+ w1
1884
+
1885
+
1886
+ Ω(M)
1887
+ P 0
1888
+
1889
+ v0
1890
+ �0.
1891
+ Note that, by Lemma 4.4, τH(( 0
1892
+ M )) =
1893
+
1894
+ Ω(M)
1895
+ Ω(M)
1896
+
1897
+ 1 and τH
1898
+ ��
1899
+ Ω(M)
1900
+ Ω(M)
1901
+
1902
+ 1
1903
+
1904
+ =
1905
+
1906
+ Ω2(M)
1907
+ 0
1908
+
1909
+ . Moreover, in
1910
+ light of [HE, Proposition 2.4], we get τH(P 1 w1
1911
+ → P 0) = (0 → Ω(M)) and so there exists an almost
1912
+ split sequence
1913
+ 0
1914
+ ��
1915
+ 0
1916
+ Ω(M)
1917
+
1918
+ 0
1919
+
1920
+
1921
+ P 1
1922
+ Ω(M)
1923
+
1924
+ u1
1925
+
1926
+ � 0
1927
+ P 0
1928
+
1929
+ 0
1930
+
1931
+
1932
+ P 1
1933
+ P 0
1934
+
1935
+ w1
1936
+ �0.
1937
+ Furthermore, an application of [HE, Proposition 3.5] provides us with another almost split
1938
+ sequence
1939
+ 0
1940
+
1941
+
1942
+ Ω2(M)
1943
+ P 1
1944
+
1945
+ v1
1946
+ ��
1947
+ 0
1948
+ Ω(M)
1949
+
1950
+ 0 ⊕
1951
+
1952
+ P 1
1953
+ P 1
1954
+
1955
+ 1 ⊕
1956
+
1957
+ Ω2(M)
1958
+ 0
1959
+
1960
+ 0
1961
+
1962
+
1963
+ P 1
1964
+ Ω(M)
1965
+
1966
+ u1
1967
+ �0.
1968
+ Also [HE, Proposition 2.2] combined to Lemma 7.6 results in the almost split sequence
1969
+ 0
1970
+
1971
+
1972
+ ν(P 3)
1973
+ ν(P 2)
1974
+
1975
+ ν(w3)
1976
+
1977
+
1978
+ Ω2(M)
1979
+ P 1
1980
+
1981
+ v1 ⊕
1982
+
1983
+ ν(P 3)
1984
+ 0
1985
+
1986
+ 0
1987
+
1988
+
1989
+ Ω2(M)
1990
+ 0
1991
+
1992
+ 0
1993
+ �0.
1994
+
1995
+ 24
1996
+ HOSSEIN ESHRAGHI AND RASOOL HAFEZI
1997
+ It is easy to see that, as Ω2(M) satisfies (∗), so does νΩ2(M) and consequently, τνΩ2(M) =
1998
+ ΩνΩ2(M) ≃ νΩ3(M) = A (M). Therefore, by [HE, Proposition 2.4], we have τH(ν(P 3)
1999
+ ν(w3)
2000
+
2001
+ ν(P 2)) = (0 → A (M)).
2002
+ Continuing in this manner, one obtains the following mesh in the
2003
+ Auslander-Reiten quiver of H.
2004
+
2005
+ 0
2006
+ P 0
2007
+
2008
+ 0
2009
+
2010
+
2011
+ Ω2(M)
2012
+ Ω2(M)
2013
+
2014
+ 1
2015
+
2016
+
2017
+ 0
2018
+ Ω(M)
2019
+
2020
+ 0
2021
+
2022
+
2023
+
2024
+
2025
+ P 1
2026
+ P 0
2027
+
2028
+ w1
2029
+
2030
+
2031
+
2032
+ P 2
2033
+ Ω2(M)
2034
+
2035
+ u2
2036
+
2037
+
2038
+
2039
+
2040
+ ν(P 3)
2041
+ ν(P 3)
2042
+
2043
+ 1
2044
+
2045
+
2046
+ Ω2(M)
2047
+ P 1
2048
+
2049
+ v1
2050
+
2051
+
2052
+
2053
+
2054
+ P 1
2055
+ P 1
2056
+
2057
+ 1
2058
+
2059
+
2060
+ P 1
2061
+ Ω(M)
2062
+
2063
+ u1
2064
+
2065
+
2066
+ � Ω(M)
2067
+ P 0
2068
+
2069
+ v0
2070
+
2071
+
2072
+
2073
+ 0
2074
+ A (M)
2075
+
2076
+ 0
2077
+
2078
+
2079
+ ν(P 3)
2080
+ ν(P 2)
2081
+
2082
+ ν(w3)
2083
+
2084
+
2085
+
2086
+
2087
+ Ω2(M)
2088
+ 0
2089
+
2090
+ 0
2091
+
2092
+
2093
+ � Ω(M)
2094
+ Ω(M)
2095
+
2096
+ 1
2097
+
2098
+
2099
+ � 0
2100
+ M
2101
+
2102
+ 0
2103
+
2104
+
2105
+ ν(P 3)
2106
+ 0
2107
+
2108
+ 0
2109
+
2110
+ Starting then with the vertex (0 → A (M)) and iterating the above arguments, one may
2111
+ calculate the vertices lying on the left side of (0 → M) in ΓH. Also, by considering the minimal
2112
+ injective resolution of M, the vertices on the right part appear. Summarizing, it follows that the
2113
+ component in ΓH containing the vertex (0 → M) is obtained by putting together all parts of the
2114
+ above shape corresponding to modules in the A -orbit of M. By virtue of previous considerations,
2115
+ ΓA comes up from ΓH by removing vertices of types (b) and (c). Hence the AR-quiver ΓA is
2116
+ obtained by gluing together all pieces of the following shape.
2117
+
2118
+ 0
2119
+ Ω(M)
2120
+
2121
+ 0
2122
+
2123
+
2124
+ P 1
2125
+ P 0
2126
+
2127
+ w1
2128
+
2129
+
2130
+
2131
+ P 2
2132
+ Ω2(M)
2133
+
2134
+ u2
2135
+
2136
+
2137
+ Ω2(M)
2138
+ P 1
2139
+
2140
+ v1
2141
+
2142
+
2143
+
2144
+ P 1
2145
+ Ω(M)
2146
+
2147
+ u1
2148
+
2149
+
2150
+ � Ω(M)
2151
+ P 0
2152
+
2153
+ v0
2154
+
2155
+
2156
+
2157
+ 0
2158
+ A (M)
2159
+
2160
+ 0
2161
+
2162
+
2163
+ ν(P 3)
2164
+ ν(P 2)
2165
+
2166
+ ν(w3)
2167
+
2168
+
2169
+ � 0
2170
+ M
2171
+
2172
+ 0
2173
+ Now, since M is A -periodic, we get a finite oriented cycle as a component in ΓA that by [ARS,
2174
+ Theorem VII.2.1] must be the whole of ΓA.
2175
+
2176
+ 7.3. Components of the stable Auslander-Reiten quiver of A. We let Γs
2177
+ A, the stable
2178
+ Auslander-Reiten quiver of A, be the subquiver of ΓA obtained by removing projective vertices
2179
+ and their τA-orbits.
2180
+ It should be clarified that here, we distinguish with a usual custom in
2181
+ the corresponding literature where this terminology applies while removing vertices that are
2182
+ both projective and injective. Also we notice that, generally, this has nothing to do with the
2183
+ Auslander-Reiten quiver of the stable Auslander algebra A. For instance, despite A which is
2184
+ self-injective in this case, A can not be self-injective since it is of global dimension 2.
2185
+ Below, we use results from [AS93] to get a nice intuition of the stable Auslander-Reiten quiver
2186
+ Γs
2187
+ A of A in terms of the AR quiver of a triangulated category.
2188
+ Remark 7.8. Recall from Section 3 that the class X in H consisting of all objects of type
2189
+ (a), (b), (c), or (d) determines an exact structure HX on H which has enough projectives and
2190
+ enough injectives.
2191
+ We claim that P(HX ) = X ∪ proj-H and I(HX ) = τH(X) ∪ inj-H, the
2192
+ subcategories of projectives and injectives of HX , coincide.
2193
+ Indeed, as in Construction 7.1,
2194
+
2195
+ FROM MORPHISM CATEGORIES TO FUNCTOR CATEGORIES
2196
+ 25
2197
+ τH(X) ⊆ X. Since every indecomposable injective object in H is of type (b) or (c), we get
2198
+ I(HX ) ⊆ P(HX ). To settle the reverse inclusion, note that by [HE, Proposition 3.6], for an
2199
+ indecomposable projective Λ-module P there exists a projective Λ-module Q with τH(Q →
2200
+ 0) = (0 → P). Besides that projective objects of type (P
2201
+ 1→ P) lie in inj-H, this ensures that
2202
+ proj-H ⊆ I(HX ). Now take a non-injective object M of X. If M is of type (a), then M = (0 → M)
2203
+ for an indecomposable Λ-module M. If M is projective then as above, M = τH(Q → 0) for some
2204
+ Q; otherwise M is non-injective and Proposition 2.4 of [HE] shows that M = τH(P1 → P0)
2205
+ where P1 → P0 → τ −1(M) → 0 is the minimal projective presentation. If M = (M
2206
+ 1→ M) is of
2207
+ type (b) with M non-injective, then Lemma 4.4 gives M ≃ τH(0 → τ −1(M)). Furthermore, if
2208
+ M = (M → 0) is of type (c), then again Lemma 4.4 shows that M ≃ τH(τ −1(M)
2209
+ 1→ τ −1(M))
2210
+ as M is non-injective. Finally if M = (P
2211
+ f→ Q) is of type (d) then, setting N = Coker(ν(f)),
2212
+ we deduce from [HE, Proposition 2.2] that M = τH(N → 0). Summarizing, these imply that
2213
+ X ⊆ I(HX ) and the above claim follows; that is to say, HX is a Frobenius exact category and,
2214
+ consequently, the stable category HX is triangulated.
2215
+ On the other hand, according to [AS93, Proposition 1.9], we infer that an almost split sequence
2216
+ 0 → X → Y → Z → 0 in H is an almost split sequence in HX if and only if neither X ∈ I(HX )
2217
+ nor Z ∈ P(HX ). Thus, in order to get the Auslander-Reiten quiver of the triangulated category
2218
+ HX , it is enough to remove the iso-classes of indecomposable objects in X and arrows attached
2219
+ to them from the Auslander-Reiten quiver ΓH of H. But, as stated before, what remains after
2220
+ deleting, is exactly the stable Auslander-Reiten quiver Γs
2221
+ A of A.
2222
+ The following theorem is the main result in this subsection. Note that if Λ admits a module
2223
+ M with property (∗) then, according to Theorem 7.7, Γs
2224
+ A is just a set of single vertices. That’s
2225
+ why one has to exclude this case from the hypothesis below.
2226
+ Theorem 7.9. Assume Λ is self-injective of finite representation type and Ξ is a component
2227
+ of Γs
2228
+ A containing a simple module SM for an indecomposable non-projective Λ-module M not
2229
+ fulfilling (∗). Then
2230
+ (i) If Ξ is finite, then Ξ = Z∆/G, where ∆ is a Dynkin quiver and G is an automorphism
2231
+ group of Z∆ containing a positive power of the translation. Moreover, Ξ is Γs
2232
+ A itself if
2233
+ we further assume that Λ is indecomposable.
2234
+ (ii) If Ξ is infinite, then it is a stable tube.
2235
+ Proof. We have seen before that the AR-quiver ΓA of the Auslander algebra A is obtained from
2236
+ ΓH by removing the vertices of types (b) and (c). Note that indecomposable objects of type (a)
2237
+ correspond to indecomposable projective A-modules and those of type (d) lie in the τA-orbit of
2238
+ indecomposable projective A-modules by Construction 7.1. So in fact, Ξ emerges by deleting
2239
+ vertices of either types (a), (b), (c) and (d) and the arrows attached to them from a component
2240
+ Ξ′ of ΓH containing the vertex (0 → M).
2241
+ Note that such a Ξ is connected as M does not
2242
+ satisfy the property (∗). Note also that all vertices in Γs
2243
+ A are stable in the sense that τ m
2244
+ A (−) is
2245
+ well-defined over them for arbitrary integers m. Therefore Theorem 7.3 implies that the vertex
2246
+ SM in Ξ is τA-periodic and both the assertions in (i) and (ii) follow from [L, Theorem 5.5]. For
2247
+ the second statement in (i), note that indecomposability of Λ implies that the lower triangular
2248
+ matrix algebra T2(Λ) = ( Λ 0
2249
+ Λ Λ ) is also indecomposable and recall that H is naturally equivalent to
2250
+ the category mod-T2(Λ). Now if Ξ is finite, then so is Ξ′. As such, Ξ′ itself is a finite component
2251
+ of ΓH which, according to [ARS, Theorem VII.2.1], should be the whole of ΓH. Hence Ξ = Γs
2252
+ A,
2253
+ as desired.
2254
+
2255
+
2256
+ 26
2257
+ HOSSEIN ESHRAGHI AND RASOOL HAFEZI
2258
+ We conclude this section by quoting an observation from [HE]. Assume M is an indecom-
2259
+ posable non-projective Λ-module. Denote by [M]A the A -orbit of M. Let also ΓH(M) be the
2260
+ unique component of ΓH containing the vertex (0 → M). Moreover, we set
2261
+ T = {ΓH(M) | M is indecomposable non-projective}
2262
+ E = {[M]A | M is indecomposable non-projective}
2263
+ Then there exists a well-defined map δ : E → T which is given by sending [M]A to ΓH(M).
2264
+ Further, if we let T∞ denote the subset of T consisting of all infinite components, and E∞ be the
2265
+ inverse image of T∞ under δ, then by [HE, Proposition 5.8], δ is surjective and the restricted map
2266
+ δ |: E∞ → T∞ is a bijection whenever Λ is indecomposable self injective of finite representation
2267
+ type.
2268
+ Inspired by this result, we let L be the set of all components of ΓA containing a simple
2269
+ module. Define λ : T −→ L by λ(ΓH(M)) = ΓA(SM) where ΓA(SM) is the component of ΓA
2270
+ that contains the simple vertex SM.
2271
+ Proposition 7.10. Suppose Λ is indecomposable self-injective of finite representation type.
2272
+ (i) The map λ is well-defined and surjective.
2273
+ (ii) λ restricts to a bijection λ |: T∞ → L∞, where L∞ is the subset of L consisting of all
2274
+ infinite components.
2275
+ (iii) The sets E∞ and L∞ are in bijection.
2276
+ Proof. (i). Take M0 and M1 to be indecomposable non-projective Λ-modules with ΓH(M0) =
2277
+ ΓH(M1). Then there exist almost split sequences 0 → A0
2278
+ f0
2279
+ → B0
2280
+ g0
2281
+ → M0 → 0 and 0 → A1
2282
+ f1
2283
+
2284
+ B1
2285
+ g′
2286
+ 1
2287
+ → M1 → 0 in mod-Λ. By Lemma 4.4, there exist almost split sequences
2288
+ 0
2289
+ �� Ai
2290
+ 0
2291
+
2292
+ 0
2293
+ � fi
2294
+ 1
2295
+
2296
+ �� Bi
2297
+ Mi
2298
+
2299
+ gi
2300
+ � 0
2301
+ gi
2302
+
2303
+ �� 0
2304
+ Mi
2305
+
2306
+ 0
2307
+ �0
2308
+ in H for i = 0, 1. Accordingly, (B0
2309
+ g0
2310
+ → M0) and (B1
2311
+ g1
2312
+ → M1) lie inside ΓH(M0) and the connected-
2313
+ ness of ΓH(M0) gives the existence of a walk (B0
2314
+ g0
2315
+ → M0) ←→ x1 ←→ · · · xn−1 ←→ (B1
2316
+ g1
2317
+ → M1)
2318
+ in ΓH. If none of the xi is of the form (b) or (c), then using Theorem 4.8 we get a walk in ΓA be-
2319
+ tween Θ(B0
2320
+ g0
2321
+ → M0) = SM0 and Θ(B1
2322
+ g1
2323
+ → M1) = SM1. Consequently, λ(ΓH(M0)) = λ(ΓH(M1)).
2324
+ Otherwise we may, without loss of generality, assume that the xi are all non-projective and apply
2325
+ the arguments used in Construction 7.1 to obtain a walk in ΓH passing through (Bi
2326
+ gi
2327
+ → Mi),
2328
+ i = 0, 1, none of the vertices over which are of the forms (b) or (c).
2329
+ To settle (ii), assume
2330
+ ΓA(SM) is an infinite component of ΓA for an indecomposable non-projective Λ-module M. By
2331
+ Theorem 7.9, ΓA(SM) is a stable tube and the τA-orbit of SM generates the mouth of ΓA(SM).
2332
+ The fact that the mouth of a stable tube is unique reveals that ΓA(SM) is uniquely determined
2333
+ by ΓH(M). The last statement is a combination of (ii) and [HE, Proposition 5.8].
2334
+
2335
+ References
2336
+ [AIR] T. Adachi, O. Iyama, and I. Reiten, τ-tilting theory, Compos. Math., 150(3):415–452, 2014.
2337
+ [A65] M. Auslander, Coherent functors, in Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965), 189231,
2338
+ Springer, New York, 1966.
2339
+ [A71] M. Auslander, Representation dimension of artin algebras, Queen Mary College Notes (1971).
2340
+
2341
+ FROM MORPHISM CATEGORIES TO FUNCTOR CATEGORIES
2342
+ 27
2343
+ [A76] M. Auslander, Functors and morphisms determined by objects. Representation theory of algebras (Proc.
2344
+ Conf., Temple Univ., Philadelphia, Pa., 1976), pp. 1-244. Lecture Notes in Pure Appl. Math., Vol. 37,
2345
+ Dekker, New York, 1978.
2346
+ [AR74] M. Auslander and I. Reiten, Stable equivalence of dualizing R-varieties, Advances in Math. 12 (1974),
2347
+ 306-366.
2348
+ [AR76] M. Auslander and I. Reiten, On the representation type of triangular matrix rings, J. London Math.
2349
+ Soc. (2), 12 (1976), 371-382.
2350
+ [AR77] M. Auslander and I. Reiten, Representation theory of Artin algebras. IV. Invariants given by almost
2351
+ split sequences, Comm. Algebra 5 (1977), 443-518.
2352
+ [AR78] M. Auslander and I. Reiten, Representation theory of Artin algebras. VI. A functorial approach to
2353
+ almost split sequences, Comm. Algebra 6 (1978), no. 3, 257-300.
2354
+ [ARS] M. Auslander, I. Reiten and S. O. Smalø, Representation theory of Artin algebras, Cambridge Studies
2355
+ in Advanced Mathematics, 36. Cambridge University Press, Cambridge, 1995. xiv+423 pp. ISBN: 0-521-
2356
+ 41134-3.
2357
+ [AS81] M. Auslander, and S. O. Smalø, Almost split sequences in subcategories, Journal of Algebra, 69 (1981),
2358
+ 426-454.
2359
+ [AS93] M. Auslander and O. Solberg, Relative homology and representation theory I, relative homology and
2360
+ homologically finite categories, Comm. Algebra 21 (9) (1993), 2995-3031.
2361
+ [Ba]
2362
+ R. Bautista, The category of morphisms between projective modules, Comm. Algebra 32 (2004), no. 11,
2363
+ 4303-4331.
2364
+ [Bu]
2365
+ A. B. Buan, Closed subbifunctors of the extension functor, J. Algebra 244 (2001), no. 2, 407-428.
2366
+ [E]
2367
+ H. Eshraghi, The Auslander-Reiten translation in morphism categories, J. Algebra Appl. 13 (2014), no.
2368
+ 3, 1350119, 12 pp.
2369
+ [G]
2370
+ J. Gillespie, The homotopy category of N-complexes is a homotopy category, J. Homotopy Relat. Struct.
2371
+ 10 (2015), 93-106.
2372
+ [H]
2373
+ R. Hafezi, From subcategories to the entire module categories, Forum Math. 33 (2021), no. 1, 245-270.
2374
+ [HE]
2375
+ R.Hafezi and H. Eshraghi, Determination of some almost split sequences in morphism categories, avail-
2376
+ able via arXiv:2103.08883 [Math.RT].
2377
+ [HM]
2378
+ R. Hafezi and E. Mahdavi, Covering theory, (mono)morphism categories and stable Auslander algebras,
2379
+ available via arXiv:2011.08646 [Math.RT].
2380
+ [HMV1] L. Angeleri H¨ugel, F. Marks, and J. Vit´oria, silting modules and ring epimorphisms, Adv. Math.
2381
+ 303 (2016), no. 5, 1044-1076.
2382
+ [HMV2] L. Angeleri H¨ugel, F. Marks, and J. Vit´oria, A characterization of τ-tilting finite algebras, available
2383
+ via arXiv:1801.04312 [math.RT].
2384
+ [HZ]
2385
+ R. Hafezi and Y. Zhang, Stable Auslander-Reiten components of monomorphism categories, available
2386
+ via arXiv:2204.11705 [Math.RT].
2387
+ [INY] O. Iyama, H. Nakaoka and Yann Palu, Auslander-Reiten theory in extriangulated categories, available
2388
+ via arXiv:1805.03776 [Math.RT].
2389
+ [IPTZ] K. Igusa, M.-I. Platzeck, G. Todorov and D. Zacharia, Auslander algebras of finite representation
2390
+ type, Comm. Algebra 15 (1987), no. 1-2, 377-424.
2391
+ [J]
2392
+ P. Jiao, The generalized Auslander-Reiten duality on an exact category, J. Algebra Appl. 17 (2018), no.
2393
+ 12, 1850227.
2394
+ [K]
2395
+ B. Keller, Chain complexes and stable categories, Manuscripta Math. 67 (1990), 379-417.
2396
+ [L]
2397
+ S. Liu, Auslander-Reiten theory in a Krull-Schmidt category, S˜ao Paulo J. Math. Sci. 4 (2010), no. 3,
2398
+ 425-472.
2399
+ [LZ]
2400
+ X-H. Luo and P. Zhang, Separated monic representations I: Gorenstein-projective modules, J. Algebra
2401
+ 479 (2017), 1-34.
2402
+ [MO]
2403
+ R. Mart´ınez-Villa and M. Ortiz-Morales, Tilting theory and functor categories III. The maps category,
2404
+ Int. J. Algebra 5 (2011), no. 9-12, 529-561.
2405
+ [MS]
2406
+ F. Marks and J. ˘S´tov´ı˘cek, Torsion classes, wide subcategories and localisations, Bull. London Math.
2407
+ Soc. 49 (2017), 405-416.
2408
+ [Q]
2409
+ D.Quillen, Higher algebraic K-theory. I, in: Algebraic K-theory, I: Higher K-theories, Proceedings of the
2410
+ Conference, Battelle Memorial Institute, Seattle, Washington,1972, Lecture Notes in Mathematics, 341,
2411
+ Springer, Berlin, (1973), 85-147.
2412
+ [RS]
2413
+ C. M. Ringel and M. Schmidmeier, The Auslander-Reiten translation in submodule categories, Trans.
2414
+ Amer. Math. Soc. 360 (2008), no. 2, 691-716.
2415
+
2416
+ 28
2417
+ HOSSEIN ESHRAGHI AND RASOOL HAFEZI
2418
+ [RZ]
2419
+ C. M. Ringel and P. Zhang, From submodule categories to preprojective algebras, Math. Z. 278 (2014),
2420
+ no. 1-2, 55-73.
2421
+ [SY]
2422
+ A. Skowro´nski and K. Yamagata, Frobenius algebras. I. Basic representation theory. EMS Textbooks in
2423
+ Mathematics. European Mathematical Society (EMS), Z¨urich, 2011. xii+650 pp. ISBN: 978-3-03719-102-6.
2424
+ [XZZ] B-L. Xiong, P. Zhang and Y-H. Zhang, Auslander-Reiten translations in monomorphism categories,
2425
+ Forum Math. 26 (2014), no. 3, 863-912.
2426
+ [Z]
2427
+ P. Zhang, Monomorphism categories, cotilting theory, and Gorenstein projective modules, J. Algebra 339
2428
+ (2011), 181-202.
2429
+ [ZX]
2430
+ P. Zhang and B-L. Xiong, Separated monic representations II: Frobenius subcategories and RSS equiv-
2431
+ alences, Trans. Amer. Math. Soc. 372 (2019), 981-1021.
2432
+ Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, PO
2433
+ Box 87317-51167, Kashan, Iran
2434
+ Email address: eshraghi@kashanu.ac.ir
2435
+ School of Mathematics and Statistics, Nanjing University of Information Science & Technology,
2436
+ Nanjing, Jiangsu 210044, P. R. China
2437
+ Email address: hafezi@nuist.edu.cn
2438
+
79AyT4oBgHgl3EQfp_gy/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
8NFJT4oBgHgl3EQfnSyO/content/tmp_files/2301.11591v1.pdf.txt ADDED
@@ -0,0 +1,1867 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Information Entropy-based Camera Path Estimation for In-Situ
2
+ Visualization
3
+ Ken Iwata*
4
+ Kobe University
5
+ Naohisa Sakamoto†
6
+ Kobe University
7
+ Jorji Nonaka‡
8
+ RIKEN R-CCS
9
+ Chongke Bi§
10
+ Tianjin University
11
+ Information Entropy
12
+ (for viewpoint selection)
13
+ Depth and Lightness Information
14
+ 𝑑!𝑑"𝑑#⋯ 𝑑"$%
15
+
16
+ 𝐷𝑒𝑝𝑡ℎ
17
+ 𝑙! 𝑙" 𝑙# ⋯ 𝑙"$%
18
+
19
+ 𝐿𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠
20
+ Selected Viewpoint “A”
21
+ Camera Path
22
+ Selected Viewpoint “A”
23
+ Selected Viewpoint “B”
24
+ Intermediate Images
25
+ Selected
26
+ Image “A”
27
+ Selected
28
+ Image “B”
29
+ Selected Image “A”
30
+ ︓Viewpoints
31
+ Rendering Image
32
+ (Information Source)
33
+ Figure 1: Depth and lightness entropy-based viewpoint selection and camera path estimation for generating a smooth video, with as
34
+ much information as possible, to assist the rapid understanding of the underlying simulation phenomena.
35
+ ABSTRACT
36
+ In-situ processing has widely been recognized as an effective ap-
37
+ proach for the visualization and analysis of large-scale simulation
38
+ outputs from modern HPC systems. One of the most common
39
+ approaches for batch-based in-situ visualization is the image- or
40
+ video-based approach. In this kind of approach, a large number of
41
+ rendered images are generated from different viewpoints at each
42
+ time step and has proven useful for detailed analysis of the main
43
+ simulation results. However, during test runs and model calibration
44
+ runs before the main simulation run, a quick overview might be
45
+ sufficient and useful. In this work, we focused on selecting the
46
+ viewpoints which provide as much information as possible by using
47
+ information entropy to maximize the subsequent visual analysis task.
48
+ However, by simply following the selected viewpoints at each of
49
+ the visualization time steps will probably lead to a rapidly changing
50
+ video, which can impact the understanding. Therefore, we have
51
+ also worked on an efficient camera path estimation approach for
52
+ connecting selected viewpoints, at regular intervals, to generate a
53
+ smooth video. This resulting video is expected to assist in rapid
54
+ understanding of the underlying simulation phenomena and can
55
+ be helpful to narrow down the temporal region of interest to min-
56
+ imize the turnaround time during detailed visual exploration via
57
+ image- or video-based visual analysis of the main simulation run.
58
+ We implemented and evaluated the proposed approach using the
59
+ OpenFOAM CFD application, on an x86-based Server and an ARM
60
+ A64FX-based supercomputer (Fugaku), and we obtained positive
61
+ evaluations from domain scientists.
62
+ Index Terms:
63
+ Human-centered computing—Visualization—
64
+ *e-mail: 228x202x@stu.kobe-u.ac.jp
65
+ †e-mail: naohisa.sakamoto@people.kobe-u.ac.jp
66
+ ‡e-mail: jorji@riken.jp
67
+ §e-mail: bichongke@tju.edu.cn
68
+ Visualization systems and tools—Visualization toolkits
69
+ 1
70
+ INTRODUCTION
71
+ High-end high performance computing (HPC) systems have contin-
72
+ uously become more and more capable with higher computational
73
+ capacity with every new system replacement. This was the case for
74
+ the replacement of the K computer to the supercomputer Fugaku at
75
+ the RIKEN R-CCS. The increased number of CPUs and computa-
76
+ tional cores have been applied for Capability Computing to tackle
77
+ even larger numerical simulations with higher spatio-temporal reso-
78
+ lutions. In addition, this also has been used for Capacity Computing
79
+ to handle an even larger number of parameters and members during
80
+ parametric sweep and ensemble simulations. On the other hand,
81
+ this proportionately generates even larger simulation outputs, thus,
82
+ making the visualization and analysis tasks even more challenging.
83
+ As a result, the importance of in-situ visualization and analysis has
84
+ continuously become even more evident.
85
+ A variety of approaches have already been proposed and applied
86
+ for the in-situ visualization and analysis as discussed in [6]. We can
87
+ also verify that there are also a variety of existing applications and
88
+ libraries for realizing in-situ visualization and analysis. However,
89
+ since in-situ processing is executed simultaneously with the simu-
90
+ lation, it becomes highly important to collaborate with the domain
91
+ scientists . We have been working with domain scientists working
92
+ with computational fluid dynamics (CFD) simulation of the sound
93
+ generation mechanisms [27], and we already worked on an adaptive
94
+ in situ time-step sampling approach [26]. In this work, we have
95
+ used the same OpenFOAM CFD application and simulation model
96
+ and obtained assistance from them for necessary technical feedback
97
+ during the developments.
98
+ Probably the most widely used image-based in-situ visualization
99
+ approach is ParaView Cinema [1]. In that approach, a large set of
100
+ pre-computed images are generated in-situ on the HPC system side
101
+ for the interactive post-hoc visual exploration on a local machine
102
+ such as desktop PC and laptop. There is also an image-based in-situ
103
+ visualization approach that generates a set of images from omni-
104
+ directional camera positions [9], and its extension for video-based
105
+ arXiv:2301.11591v1 [cs.GR] 27 Jan 2023
106
+
107
+ in-situ visualization [8]. These image- or video-based in-situ visual-
108
+ ization approaches have proven useful for detailed analysis of the
109
+ main simulation results. In this work, we have focused on rapid un-
110
+ derstanding of the underlying simulation during test runs and model
111
+ calibration runs before the main simulation run. For this purpose,
112
+ we focused on selecting the most appropriate viewpoints, based on
113
+ information entropy, at regular time intervals of the simulation in
114
+ order to obtain as much information as possible trying to facilitate
115
+ the rapid understanding of such kinds of simulations.
116
+ 2
117
+ RELATED WORK
118
+ There is an extensive work that culminated in the creation of a classi-
119
+ fication and terminology for the in-situ visualization approaches [6].
120
+ Here, we will only focus on related works for realizing tightly cou-
121
+ pled in-situ visualization, and techniques for selecting time steps
122
+ and viewpoints that can be used for minimizing the amount of im-
123
+ ages for the image- or video-based in-situ visualization. VTK-based
124
+ ParaView and VisIt are probably the most widely used visualization
125
+ application for large data visualization. Both applications provide in-
126
+ situ visualization APIs, ParaView Catalyst [2] and VisIt LibSim [11],
127
+ for integrating to the simulation code. In a batch-based in-situ visu-
128
+ alization, a large amount of images can be generated for assisting
129
+ the post-hoc visualization [9]. To facilitate this post-hoc visual anal-
130
+ ysis, Ahrens et al. [1] proposed an image-based approach for the
131
+ in-situ visualization and analysis, and was implemented as Paraview
132
+ Cinema. In this approach a large set of images are generated in-
133
+ situ, and a custom visualization application is used, on the local
134
+ machine, to perform interactive visual analysis by automatically
135
+ switching between the generated set of images. Similar to this ap-
136
+ proach, Kageyama et al. [8] proposed a video-based approach by
137
+ generating an omnidirectional animated video, from the set of in-situ
138
+ generated images, which are explorable from a custom visualization
139
+ application. Although these approaches have proven efficient, most
140
+ of the generated images may have small or even no contribution to
141
+ the visual analysis, thus it may be unnecessarily increasing the time
142
+ spent on the post-hoc visual analysis task.
143
+ An approach to minimize the aforementioned amount of gen-
144
+ erated images is the selection of the most valuable time steps for
145
+ rendering the images. For this purpose, Ling et al. [12] proposed a
146
+ method to estimate the probability density function of the simulation
147
+ field, at each time step, by using the kernel density estimation. They
148
+ also applied machine learning for extracting feature quantity from
149
+ the obtained estimation, and detected potentially valuable time steps
150
+ where an important phenomena may occur. However, this method
151
+ can cause false detections depending on the high correlation among
152
+ the physical quantities on the simulation field as mentioned by the
153
+ authors. Yamaoka et al. [26] extend the aforementioned work, and
154
+ proposed an adaptive time sampling method for in-situ visualization.
155
+ In this method, kernel density function and Kullback–Leibler diver-
156
+ gence is applied to estimate the amount of change on the simulation
157
+ field. The sampling intervals are adaptively changed according to
158
+ the estimated amount of change in the simulation.
159
+ Another approach for reducing the amount of images is the se-
160
+ lection of viewpoints for generating the images. For this purpose,
161
+ Kamada et al. [10] considered the viewpoints capable of minimizing
162
+ the number of degenerated face as being the optimal viewpoints.
163
+ However, they did not extend their work for the case when there
164
+ exist multiple viewpoints with the same number of degenerated
165
+ faces. Barral et al. [3] solved this problem by adding the projected
166
+ area as a weight to the number of degenerated faces. However,
167
+ there still remains a problem on how to properly set these weights.
168
+ Vazquez et al. [23] proposed a method to select the optimal view-
169
+ point defined by the viewpoint entropy based on the information
170
+ entropy. Since this method cannot handle the movement of view-
171
+ points, the authors improved the viewpoint entropy and applied it
172
+ to molecular objects [25] as well as to image-based modeling [24].
173
+ Page et al. [18] proposed a method to analyze the object shape by
174
+ calculating the entropy for the silhouette and surface curvature of
175
+ the model. Polonsky et al. [19] discussed evaluation indices for the
176
+ viewpoint selection, and concluded that none of them could make
177
+ the best choice in any situation. However, they also said that by
178
+ improving each of these indices, it will become possible to make a
179
+ better choice by using a combination of them.
180
+ Secord et al. [21] proposed some evaluation indices for the view-
181
+ point selection, and showed that optimal viewpoints can be selected
182
+ by combining these metrics. Takahashi et al. [22] proposed a method
183
+ for estimating the optimal viewpoint for volume data by using in-
184
+ formation entropy. Bordoloi et al. [5] proposed an information
185
+ entropy-based evaluation metric for the viewpoints during volume
186
+ rendering by using the transfer function, data distribution, and voxel
187
+ visibility information. Zhang et al. [28] also proposed an evaluation
188
+ metric for volume rendering based on the opacity, brightness, and
189
+ structural features. Ji et al. [7] proposed a method to find the optimal
190
+ time-varying views by using the viewpoint selection method to max-
191
+ imize the amount of information for time-series volume data. They
192
+ showed that it is possible to create an animation with the largest
193
+ amounts of information. This was realized by searching for a move-
194
+ ment route with the largest amounts of information using dynamic
195
+ programming. Marsaglia et al. [14] proposed a viewpoint quality
196
+ evaluation metric based on information entropy involving the visible
197
+ field data, depth, and shading values belonging to each of the pixels
198
+ in the image. In another work, they also utilized a trigger-based ap-
199
+ proach in combination with information entropy to determine when
200
+ to search for a new camera position as a simulation evolves [15].
201
+ Our work was inspired in their viewpoint quality evaluation metric,
202
+ which we extended with the lightness information for evaluating
203
+ the viewpoint quality. We will detail the methodology behind our
204
+ proposed method in the next section.
205
+ 3
206
+ METHODOLOGY
207
+ 3.1
208
+ Overview
209
+ In this work, we focused on a viewpoint selection approach, based
210
+ on information entropy, and on a camera path estimation approach,
211
+ based on quaternion interpolation. The viewpoints selected at regular
212
+ intervals are used as markers to estimate the smooth camera path.
213
+ Following are the necessary requirements to meet this goal:
214
+ R1. Images from the selected viewpoints should capture important
215
+ phenomenon from the underlying simulation.
216
+ R2. The resulting video generated from the rendered outputs should
217
+ be smooth for post-hoc analysis.
218
+ Below is the adopted approach to satisfy the aforementioned
219
+ requirements, and they are divided into the following three parts:
220
+ A. Viewpoint evaluation
221
+ The viewpoint quality will be evaluated using information
222
+ entropy and will be used to select the most appropriate image
223
+ for each evaluated time step. Only images from the selected
224
+ viewpoints will be output (R1).
225
+ B. Camera path estimation
226
+ The camera path connecting these selected viewpoints will be
227
+ estimated, and the rendered images through this camera path
228
+ will also be output as intermediate images (R2).
229
+ C. Video generation
230
+ At the end of the simulation, these output images will be se-
231
+ quentially concatenated to produce a video (R2).
232
+ Regarding part A, the simulation state usually does not often
233
+ significantly change within a single simulation time step. Therefore,
234
+
235
+ Simulation time step
236
+ • Execute simulation
237
+ Visualization time step
238
+ • Store simulation data
239
+ Entropy evaluation time step
240
+ • Select optimal viewpoint
241
+ • Calculate camera path
242
+ Times and Intervals
243
+ • Simulation time
244
+ 𝑇! = 𝑖∆𝑇
245
+ • Visualization time
246
+ 𝑇"
247
+ ! = 𝑖∆𝑇" = 𝑖𝑁"∆𝑇
248
+ • Entropy evaluation time
249
+ 𝑇#
250
+ ! = 𝑖∆𝑇# = 𝑖𝑁"𝑁#∆𝑇
251
+ data1
252
+ time [ 𝑇" ]
253
+ ∆𝑇"
254
+ time [ 𝑇# ]
255
+ ∆𝑇#
256
+ time [ 𝑇 ]
257
+ ∆𝑇
258
+ data2
259
+ data3
260
+ Rendering
261
+ Selected Viewpoint “A”
262
+ Selected Viewpoint “B”
263
+ Intermediate Images
264
+ Figure 2: Different time step intervals for the simulation, visualization and entropy evaluation.
265
+ there is usually no need to visualize at every simulation time step,
266
+ and the visualization can be performed at every set of simulation time
267
+ steps. In the same manner, the viewpoint evaluation for viewpoint
268
+ selection will be performed at every set of visualization time steps to
269
+ satisfy R1. In this paper, as shown in Fig. 2, we use T to represent
270
+ the simulation time step, TV to represent the visualization time step,
271
+ and TE to represent the entropy evaluation time step, ∆T to represent
272
+ the simulation time step interval, ∆TV to represent the visualization
273
+ time step interval, and ∆TE to represent the entropy evaluation time
274
+ step interval. The elapsed time for the ith simulation time step T i can
275
+ be expressed as T i = i∆T. In the same manner, the visualization time
276
+ step and entropy evaluation time steps can be expressed respectively
277
+ as T i
278
+ V = i∆TV and T i
279
+ E = i∆TE. Considering that the simulation is
280
+ performed NV times for every visualization, and the visualization is
281
+ performed NE times for every optimal viewpoint selection, then we
282
+ can express these intervals as ∆TV = NV ∆T and ∆TE = NENV ∆T.
283
+ Regarding part B, a camera path connecting viewpoints selected at
284
+ every ∆TE entropy evaluation time step will be estimated. Although
285
+ visualization is not performed during the visualization time steps
286
+ in between the entropy evaluation time steps, the simulation data
287
+ for each ∆TV visualization time step is stacked. From the obtained
288
+ camera path, the rendered images at the intermediate visualization
289
+ time steps will be output as the intermediate images for generating a
290
+ smooth video, and this satisfies R2. It is worth noting that it is also
291
+ possible to generate the full set of images from the entire viewpoints
292
+ for the detailed post-hoc analysis when necessary.
293
+ Regarding part C, the set of output images generated at each ∆TV
294
+ visualization time step will be joined sequentially to create a video
295
+ file. For this purpose, we can use existing tools such as the well-
296
+ known FFmpeg available to a variety of platforms. In the resulting
297
+ video, the camera will automatically move and capture the important
298
+ phenomenon, and this allows the R2 to be satisfied. Traditional
299
+ approach requires the user to search for the best location, in the
300
+ trial-and-error manner, to visually explore when searching for an
301
+ important phenomenon during the simulation. However, by using
302
+ the proposed method, this search for the best camera position may
303
+ be alleviated and may facilitate narrowing down the spatio-temporal
304
+ region of interest for the detailed visual analysis.
305
+ 3.2
306
+ Viewpoint Selection
307
+ In this section, we will detail the utilized viewpoint selection ap-
308
+ proach. The evaluation of the viewpoints is based on information
309
+ entropy. We used depth and lightness values from the rendered
310
+ images for calculating the associated information entropy, that is,
311
+ the depth entropy and lightness entropy.
312
+ 3.2.1
313
+ Information Entropy
314
+ Information entropy used in this work can be defined as the expected
315
+ value for the amount of information obtained from a certain infor-
316
+ mation source [4]. The information entropy H(X) from a source
317
+ X given by the set of probabilities P(x1),P(x2),··· ,P(xn) corre-
318
+ sponding respectively to the set of information x1,x2,··· ,xn can be
319
+ represented as follows:
320
+ H(X) = −
321
+ n
322
+
323
+ i=1
324
+ P(xi)logP(xi)
325
+ (1)
326
+ Here, when P(xi) = 0, we will consider P(xi)logP(xi) = 0. Re-
327
+ garding the selection of the logarithm’s base, the base influences
328
+ the multiplication factor and, thus, is arbitrary. Base 2 is commonly
329
+ used in information theory, and was used in this work. Taking into
330
+ consideration the probability distribution of the information source,
331
+ the larger the information bias, the smaller the value of information
332
+ entropy, and vice versa.
333
+ 3.2.2
334
+ Depth Entropy
335
+ Depth entropy used in this work is based on the viewpoint quality
336
+ evaluation metric proposed by Marsaglia et al. [14]. The information
337
+ entropy is calculated by considering the image as the source of
338
+ information, and by using the depth values belonging to each of the
339
+ pixels in the image. The depth values can vary in the range of 0 ∼ 1,
340
+ and the closer the distance to the object, the smaller the value. The
341
+ background portion in the image where there is no object is set to
342
+ infinity and will have their depth values corresponding to 1.
343
+ The depth values from all pixels of the rendered image are binned
344
+ into 256 groups d0,d1,··· ,d255 for creating a discrete probability
345
+ distribution D, which will be used to calculate the information en-
346
+ tropy. At this time, the background portion in the image is considered
347
+ to have no information, and only the pixels with some information
348
+ will be used in the calculation. By using the discrete probability
349
+ distribution, the depth entropy Hd can be calculated as follows:
350
+ Hd = −
351
+ 255
352
+
353
+ i=0
354
+ D(di)log2 D(di)
355
+ (2)
356
+ Here, D(di) corresponds to the probability for a given value,
357
+ selected based on the probability distribution D, being di. When
358
+ evaluating a viewpoint using depth entropy, the resulting value will
359
+ be larger for images with large dispersion in the distribution of depth
360
+ values. Therefore, the viewpoints of images showing objects with
361
+ high undulations will be highly evaluated.
362
+
363
+ 3.2.3
364
+ Lightness Entropy
365
+ In this work, in addition to the depth entropy, we propose the use of
366
+ lightness entropy to also take into consideration the color informa-
367
+ tion in the image. Diverging color maps, proposed by Moreland [16],
368
+ have become prevalent in scientific visualization as the substitute
369
+ for the traditional but problematic rainbow color map. Although the
370
+ change in color values, such as RGB values, in a color map may
371
+ follow different behavior depending on the color map, diverging
372
+ color maps usually show similar behavior in the lightness values in
373
+ CIELAB color space as shown in the Fig. 3. Therefore, lightness
374
+ entropy is expected to work robustly for the diverging color maps.
375
+ The proposed lightness entropy can be defined as an information en-
376
+ tropy using the lightness values from the target image as the source
377
+ of information. The lightness value is calculated from RGB values
378
+ and can vary in the range of 0 ∼ 100.
379
+ PiYG
380
+ RdBu
381
+ PuOr
382
+ Lightness L*
383
+ Figure 3: Lightness values for different diverging color maps.
384
+ The lightness values, as well as the depth values, obtained
385
+ from all pixels of the rendered image, are binned into 256 groups
386
+ l0,l1,··· ,l255 for creating a discrete probability distribution L, which
387
+ will be used to calculate the information entropy. At this time, the
388
+ background portion in the image is considered to have no infor-
389
+ mation, and only the pixels with some information will be used in
390
+ the calculation. By using the discrete probability distribution, the
391
+ lightness entropy Hl can be calculated as follows:
392
+ Hl = −
393
+ 255
394
+
395
+ i=0
396
+ L(li)log2 L(li)
397
+ (3)
398
+ Here, L(li) corresponds to the probability for a given value, se-
399
+ lected based on the probability distribution L, being li. When a
400
+ viewpoint is evaluated using the lightness entropy, the resulting
401
+ value will be larger for images with large dispersion in the distribu-
402
+ tion of lightness values. Therefore, the viewpoints of images with
403
+ clear brightness and darkness will be highly evaluated.
404
+ 3.3
405
+ Path Estimation between Selected Viewpoints
406
+ In this section, we will detail the utilized camera path estimation
407
+ between the viewpoints selected by using the depth and/or lightness
408
+ entropy. In this work, we considered that the viewpoints are pre-
409
+ arranged in a spherical surface as shown in Fig. 4, and the camera
410
+ path from one viewpoint to another will move over this spherical
411
+ surface. More specifically, the position and orientation of a given
412
+ viewpoint will be represented as a quaternion, and the movement
413
+ from one to another viewpoint will be obtained by using quaternion
414
+ interpolation. In this work, we investigated two quaternion interpola-
415
+ tion methods: spherical linear interpolation (SLERP) and spherical
416
+ quadrangle interpolation (SQUAD). In the following subsections,
417
+ we will explain about spherical linear interpolation and spherical
418
+ quadrangle interpolation.
419
+ 3.3.1
420
+ Spherical Linear Interpolation (SLERP)
421
+ SLERP is an abbreviation for spherical linear interpolation, and is
422
+ a quaternion interpolation method for connecting two points over a
423
+ sphere in the straight line direction, or the shortest path, as shown
424
+ in Fig. 5. SLERP-based interpolation from a quaternion qA to the
425
+ quaternion qB can be calculated by using time t ∈ [0, 1] as follows:
426
+ : Viewpoints
427
+ Figure 4: Viewpoint distribution over spherical surface.
428
+ slerp(qA, qB, t) = sin(1−t)φ
429
+ sinφ
430
+ qA + sintφ
431
+ sinφ qB
432
+ (4)
433
+ Here, φ = arccos⟨qA, qB⟩. In addition, in the case of ⟨qA, qB⟩ < 0,
434
+ the interpolation will be interpolated in the contrary direction over
435
+ the sphere surface, that is by the longest path in the straight-line
436
+ direction. To interpolate by the shortest path, then either qA or qB
437
+ should be replaced with a quaternion with same rotation but in the
438
+ opposite direction. For instance, by replacing qA with −qA.
439
+ 3.3.2
440
+ Spherical Quadrangle Interpolation (SQUAD)
441
+ SQUAD is an abbreviation for spherical quadrangle interpolation,
442
+ and is a quaternion interpolation method to connect multiple points
443
+ in a smoothness way so that the derivatives are continuous in the
444
+ neighborhood of the points (Fig. 5). Considering a quaternion list
445
+ {q1, q2, ... qn}, then the SQUAD-based interpolation from qi to
446
+ qi+1 can be calculated by using the time t ∈ [0, 1] as follows:
447
+ squad(qi, qi+1, ai, ai+1, t)
448
+ = slerp(slerp(qi, qi+1, t), slerp(ai, ai+1, t), 2t(1−t))
449
+ (5)
450
+ ai = qi exp
451
+
452
+ −logq∗
453
+ i qi−1 +logq∗
454
+ i qi+1
455
+ 4
456
+
457
+ (6)
458
+ Here, the exponential of the quaternion exp(q) and the logarithm
459
+ of the quaternion logq for the quaternion q = a+bi+c j +dk are
460
+ defined as follows:
461
+ exp(q) = ea
462
+
463
+ cos∥bi+c j +dk∥+ bi+c j +dk
464
+ ∥bi+c j +dk∥ sin∥bi+c j +dk∥
465
+
466
+ (7)
467
+ logq = log∥q∥+ bi+c j +dk
468
+ ∥bi+c j +dk∥ arctan ∥bi+c j +dk∥
469
+ a
470
+ (8)
471
+ In addition, in the case of performing SQUAD-based interpolation
472
+ from q1 to q2, and from qn−1 to qn, we consider q0 = q1 and qn+1 =
473
+ qn.
474
+ Unit Sphere in Quaternion Space
475
+ : SLERP
476
+ : SQUAD
477
+ : Rotation Quaternion
478
+ Figure 5: Comparison of SLERP and SQUAD interpolation methods.
479
+
480
+ 7
481
+ 100
482
+ 80
483
+ 60
484
+ 40
485
+ RdBu
486
+ 20
487
+ PiYG
488
+ PuOr3.3.3
489
+ Implementation
490
+ We utilized the Kyoto Visualization System (KVS) [20] for imple-
491
+ menting the proposed viewpoint selection approach, based on depth
492
+ and lightness entropy, as well as the sequential camera path between
493
+ the selected viewpoints via SLERP- and SQUAD-based interpolation
494
+ methods. KVS is a cross-platform, open-source C++ visualization
495
+ library capable of running on a variety of hardware systems from
496
+ traditional x86/GPU systems to GPU-less HPC systems including
497
+ IBM Blue Gene L/P (PowerPC), K computer (SPARC VIIIfx), and
498
+ Fugaku (ARM A64FX). KVS supports hybrid MPI/OpenMP paral-
499
+ lelism and implements a sort-last parallel image composition method
500
+ based on Binary-Swap [13], with an extension to support non-power-
501
+ of-two number of nodes, which is named 234Compositor [17].
502
+ The pseudocode of our implementation, using the SQUAD-based
503
+ interpolation, is described in Algorithm 1. In this pseudocode, I[],
504
+ V[], and Q[] respectively represent the queues for storing the out-
505
+ put image, simulation data, and the quaternion for the selected
506
+ viewpoint. In addition, is initial step(t) and is final step(t) are
507
+ functions that respectively return the true information in the first
508
+ and the final time step. The Vis(V, q) function renders the simu-
509
+ lation data V from the viewpoint represented by the quaternion of
510
+ q. Entropy Evaluation(V) is the function that calculates the en-
511
+ tropy for the simulation data V at all pre-arranged viewpoints on
512
+ the spherical surface, and returns the quaternion information of the
513
+ viewpoint with highest entropy value. Its pseudocode is described in
514
+ Algorithm 2. In this pseudocode, L represents the set of viewpoints
515
+ and the read back(V, l) is a function that renders the simulation data
516
+ V from the viewpoint l and returns its frame buffer. entropy( f) is
517
+ a function that calculates the entropy for the frame buffer f and re-
518
+ turns its value. quaternion() is a function that returns the quaternion
519
+ information from a given viewpoint.
520
+ 4
521
+ EXPERIMENTAL EVALUATIONS
522
+ We used the OpenFOAM CFD code and model for the experimental
523
+ evaluations. The simulation model used for the evaluations was
524
+ obtained from our collaborators [27], and refers to a sound propaga-
525
+ tion in the oral cavity by using irregular volume data composed of
526
+ 3,197,279 hexahedral elements. We integrated the in situ KVS mod-
527
+ ule to the OpenFOAM code, and evaluated on two systems shown
528
+ in Tables 1 and 2. The irregular volume data was decomposed into 8
529
+ blocks for the x86 Server, and up to 1,024 blocks for the Fugaku.
530
+ Table 1: x86/GPU-based Server System.
531
+ Nodes
532
+ 1
533
+ CPU
534
+ Intel Xeon Gold 6238R 2.20GHz 28Core×2
535
+ Cores
536
+ 28×2 = 56
537
+ RAM
538
+ 384 GB DRAM
539
+ GPU
540
+ NVIDIA Quadro RTX8000
541
+ Compiler
542
+ GCC version 7.5.0
543
+ MPI
544
+ OpenMPI 2.1.1
545
+ Table 2: ARM-based Supercomputer Fugaku.
546
+ Nodes
547
+ 158,976
548
+ CPU
549
+ Fujitsu A64FX (Armv8.2-A SVE)
550
+ Cores
551
+ 48 + 2 Assistant Cores
552
+ RAM
553
+ 32GB HBM2
554
+ Compiler
555
+ GCC-based Fujitsu Compiler Ver. 4.8.0
556
+ MPI
557
+ OpenMPI with Fujitsu expensions for Tofu
558
+ Algorithm 1 In-situ visualization (using SQUAD interpolation).
559
+ 1: function IN SITU VISUALIZATION(∆TV , ∆TE)
560
+ 2:
561
+ I[], V[], Q[], t;
562
+ 3:
563
+ while t ≤ tend do
564
+ 4:
565
+ Vt = Sim();
566
+ 5:
567
+ if is initial step(t) then
568
+ 6:
569
+ Qt = Entropy Evaluation(Vt);
570
+ 7:
571
+ Q.push(Qt); Q.push(Qt);
572
+ 8:
573
+ else if t%∆TV == 0 then
574
+ 9:
575
+ if t%∆TE == 0 then
576
+ 10:
577
+ Qt = Entropy Evaluation(Vt);
578
+ 11:
579
+ Q.push(Qt);
580
+ 12:
581
+ if Q.size() == 4 then
582
+ 13:
583
+ q1 = Q.front(); Q.pop();
584
+ 14:
585
+ q2 = Q.front(); Q.pop();
586
+ 15:
587
+ q3 = Q.front(); Q.pop();
588
+ 16:
589
+ q4 = Q.front(); Q.pop();
590
+ 17:
591
+ for i = 0, 1, ··· , ∆TE −1 do
592
+ 18:
593
+ s = i/TE;
594
+ 19:
595
+ qs = squad(q1, q2, q3, q4, s);
596
+ 20:
597
+ Vs = V. front(); V.pop();
598
+ 21:
599
+ Is = Vis(Vs, qs);
600
+ 22:
601
+ I.push(Is);
602
+ 23:
603
+ end for
604
+ 24:
605
+ end if
606
+ 25:
607
+ end if
608
+ 26:
609
+ end if
610
+ 27:
611
+ if is final step(t) then
612
+ 28:
613
+ q1 = Q.front(); Q.pop();
614
+ 29:
615
+ q2 = Q.front(); Q.pop();
616
+ 30:
617
+ q3 = Q.front(); Q.pop();
618
+ 31:
619
+ q4 = q3;
620
+ 32:
621
+ for i = 0, 1, ··· , ∆TE −1 do
622
+ 33:
623
+ s = i/TE;
624
+ 34:
625
+ qs = squad(q1, q2, q3, q4, s);
626
+ 35:
627
+ Vs = V. front(); V.pop();
628
+ 36:
629
+ Is = Vis(Vs, qs);
630
+ 37:
631
+ I.push(Is);
632
+ 38:
633
+ end for
634
+ 39:
635
+ while V.size() > 0 do
636
+ 40:
637
+ Vs = V. front(); V.pop();
638
+ 41:
639
+ Is = Vis(Vs, q3);
640
+ 42:
641
+ I.push(Is);
642
+ 43:
643
+ end while
644
+ 44:
645
+ end if
646
+ 45:
647
+ t ++;
648
+ 46:
649
+ end while
650
+ 47:
651
+ return I;
652
+ 48: end function
653
+ 4.1
654
+ Some Results
655
+ For the initial experimental evaluations, we selected the pressure
656
+ variable and used multi-isosurface rendering with three distinct iso-
657
+ values that are rendered as different colors. The total number of
658
+ simulation time steps for the utilized CFD model was 15,000, and
659
+ we used the parameters shown in Table 3 for the evaluations. We
660
+ evaluated the use of our proposed lightness entropy (Lightness) in ad-
661
+ dition to the depth entropy (Depth) proposed by Marsaglia et al. [14],
662
+ and also the use of the average of depth and lightness entropy (Depth
663
+ & Lightness). For the use of only lightness entropy, we experi-
664
+ mented with three diverging color maps (RdBu, PiYG, PuOr). We
665
+ selected three entropy evaluation intervals (10, 30, 50), which repre-
666
+ sent the visualization time step interval for performing the entropy
667
+ calculation. We also selected three sets of viewpoints with differ-
668
+
669
+ Algorithm 2 Entropy Evaluation.
670
+ 1: function ENTROPY EVALUATION(V)
671
+ 2:
672
+ E = 0.0;
673
+ 3:
674
+ Q = 1+0i+0j +0k;
675
+ 4:
676
+ for l ∈ L do
677
+ 5:
678
+ f = read back(V, l);
679
+ 6:
680
+ e = entropy( f);
681
+ 7:
682
+ if e > E then
683
+ 8:
684
+ E = e;
685
+ 9:
686
+ Q = l.quaternion();
687
+ 10:
688
+ end if
689
+ 11:
690
+ end for
691
+ 12:
692
+ return Q;
693
+ 13: end function
694
+ ent numbers of viewpoints in the latitude and longitude directions
695
+ (latitude × longitude). Both SLERP- and SQUAD-based quaternion
696
+ interpolation methods were also evaluated for estimating the camera
697
+ path between the selected viewpoints. The x86/GPU Server was
698
+ used for the detailed evaluation using these different parameters, and
699
+ the supercomputer Fugaku was used for the scalability analysis by
700
+ using up to 1024 nodes, that is, 49,152 cores in hybrid MPI/OpenMP
701
+ parallelism.
702
+ Table 3: Parameters used for the experimental evaluations.
703
+ Entropy source
704
+ Depth; Lightness; Depth & Lightness
705
+ Color maps
706
+ RdBu; PiYG; PuOr
707
+ # of viewpoints
708
+ 15×30; 25×50; 35×70
709
+ Intervals (NE)
710
+ 10; 30; 50
711
+ Interpolation
712
+ SLERP; SQUAD
713
+ Fig. 6 shows some entropy heatmaps evaluated by using all three
714
+ entropy sources at different simulation time steps (2400, 6000, 9600,
715
+ and 13200). The set of viewpoints evenly distributed on the spherical
716
+ surface is mapped onto the 2D heatmap where the viewpoints on
717
+ the same latitude are placed on the same horizontal axis, and in the
718
+ same manner, the viewpoints on the same longitude are placed on
719
+ the same vertical axis. The blue-colored regions show the portions
720
+ where the evaluated entropy has low value, and on the other hand,
721
+ the red-colored regions show the portions where the evaluated en-
722
+ tropy has high value. Fig. 7 shows the multi-isosurface rendered
723
+ results from the selected viewpoints obtained in Fig. 6; Fig. 9 shows
724
+ the multi-isosurface rendered results from the selected viewpoints
725
+ obtained in Fig. 8; Fig. 11 shows the multi-isosurface rendered
726
+ results from the selected viewpoints obtained in Fig. 10. Table 4
727
+ shows the average elapsed time of entropy calculation per image for
728
+ different entropy sources when using an image size of 512 × 512
729
+ on the x86/GPU-based Server System. Compared to depth entropy,
730
+ we can observe that the computational costs when using lightness
731
+ become much higher. In addition, we can verify that the number
732
+ of viewpoints directly influences the computational cost. Code op-
733
+ timizations and the use of parallel processing for trying to reduce
734
+ this computational cost are planned as future works.Table 5 shows
735
+ a comparison of output images’ average entropy when varying the
736
+ number of viewpoints. Here, the utilized entropy source is Depth &
737
+ Lightness, the entropy evaluation interval is 30, and the interpolation
738
+ method is SQUAD. We can observe that the difference in the average
739
+ entropy when varying the number of viewpoints is small.
740
+ Fig. 12 shows a comparison of the accumulative distance from
741
+ the estimated camera path position to the viewpoint with the high-
742
+ est entropy, at each visualization time step, for different entropy
743
+ evaluation intervals; Fig. 13 shows a comparison of the accumula-
744
+ tive distance for different interpolation methods.Table 6 shows a
745
+ comparison of output images’ average entropy for different entropy
746
+ Table 4: Average elapsed time of entropy calculation for different
747
+ entropy sources (x86 System).
748
+ Entropy Sources
749
+ Average elapsed time [s]
750
+ Depth
751
+ 2.24e-4
752
+ Lightness
753
+ 1.30e-3
754
+ Depth & Lightness
755
+ 1.53e-3
756
+ Table 5: Average entropy when varying the number of viewpoints.
757
+ # of viewpoints
758
+ Average entropy
759
+ 15×30
760
+ 3.09
761
+ 25×50
762
+ 3.10
763
+ 35×50
764
+ 3.09
765
+ evaluation intervals. Here, the utilized entropy source is Depth &
766
+ Lightness, the number of viewpoints is 25×50, and the interpolation
767
+ method is SQUAD. In the case of NE = 1, rendered images of the
768
+ viewpoint with the highest entropy at each visualization time step
769
+ are output. From this figure and table, we can observe that as the
770
+ entropy evaluation interval increases, the accumulative distance also
771
+ increases, and the amount of average entropy decreases. Table 7
772
+ shows the average elapsed time for path calculation between two
773
+ selected viewpoints for different interpolation methods. We can
774
+ observe that the computational cost is proportional to the number
775
+ of intervals, and the cost of SQUAD is much higher than that of
776
+ SLERP. However, it is worth noting that the influence on the total
777
+ computational cost compared to the entropy calculation cost is small
778
+ and almost neglectable. Table 8 shows a comparison of output im-
779
+ ages’ average entropy for different interpolation methods. Here, the
780
+ entropy source is Depth & Lightness, the number of viewpoints is
781
+ 25×50, and the entropy evaluation interval is 30. We can observe
782
+ that when selecting SQUAD, the accumulative distance becomes
783
+ smaller and achieves a slight increase in average entropy.
784
+ Table 6: Average entropy for different entropy evaluation intervals.
785
+ Intervals (NE)
786
+ Average entropy
787
+ 1
788
+ 3.17
789
+ 10
790
+ 3.12
791
+ 30
792
+ 3.10
793
+ 50
794
+ 3.08
795
+ Table 7: Average elapsed time for path calculation between two se-
796
+ lected viewpoints using different interpolation methods (x86 System).
797
+ Interpolation
798
+ Intervals (NE)
799
+ method
800
+ 10
801
+ 30
802
+ 50
803
+ SLERP
804
+ 2.80e-6
805
+ 5.16e-6
806
+ 6.93e-6
807
+ SQUAD
808
+ 9.80e-6
809
+ 3.04e-5
810
+ 3.54e-5
811
+ Table 8: Average entropy for different interpolation methods.
812
+ Interpolation method
813
+ Average entropy
814
+ SLERP
815
+ 3.09
816
+ SQUAD
817
+ 3.10
818
+ 4.2
819
+ Discussions
820
+ Regarding the influence of different entropy sources (Fig. 6), we
821
+ observed that the lightness entropy has a higher influence than the
822
+
823
+ Simulation step:
824
+ 2400
825
+ 6000
826
+ 9600
827
+ 13200
828
+ Depth:
829
+ Depth & Lightness:
830
+ Lightness:
831
+ Figure 6: Entropy heatmaps for different entropy sources.
832
+ Depth:
833
+ Simulation step:
834
+ 2400
835
+ 6000
836
+ 9600
837
+ 13200
838
+ Lightness:
839
+ Depth & Lightness:
840
+ Figure 7: Rendered images from the selected viewpoints.
841
+ depth entropy, and has an even higher influence when using both
842
+ depth and lightness entropy. Therefore, we opted to add both depth
843
+ and lightness entropies after normalization. In addition, due to a
844
+ large number of viewpoints with high entropy, the sequentially se-
845
+ lected viewpoints can be separated far apart from each other thus
846
+ resulting in an intense camera movement over the entire visualization
847
+ time steps. We also observed that when using the lightness entropy,
848
+ the entropy calculation took a little more time than using the depth
849
+ entropy. This was because of the necessary conversion from RGB
850
+ values to lightness values. It is worth noting that the selection of the
851
+ viewpoint evaluation metric will depend on the targeted simulation,
852
+ visualization method, and users’ analysis goals. Therefore, to satisfy
853
+ R1, it becomes important to implement a variety of viewpoint evalu-
854
+ ation metrics to handle different use case combinations. In addition,
855
+ depending on the use case, it may be helpful that different evaluation
856
+ metrics are interchangeable at run time in an adaptive manner.
857
+ Regarding the influence of the diverging color maps for the light-
858
+ ness entropy, we initially perceived almost no difference between
859
+ the heatmaps. However, there was a slight difference among them,
860
+ and at certain time steps, we observed that the selected viewpoints
861
+ were also different. Among the color maps, heatmaps for the PuOr
862
+ was especially different from the others. This may be because the
863
+ change in the lightness of the PuOr was also different from the other
864
+ diverging color maps.
865
+ Regarding the influence of the entropy evaluation intervals, as this
866
+ interval becomes smaller there will be fewer complementary images
867
+ between the selected viewpoints. As a result, changes in viewpoint
868
+ may become intense in a short period of time, this will lead to a non-
869
+ smooth video which affects the users’ post-hoc visual analysis tasks.
870
+ It is worth noting that when the simulation state is not expected
871
+ to change rapidly, there will be no necessity to frequently evaluate
872
+ the viewpoints. However, when utilizing larger entropy evaluation
873
+ intervals, a larger amount of memory will be required for temporarily
874
+ storing the simulation data. That is, there is a trade-off between the
875
+ entropy evaluation intervals and the memory consumption, and as a
876
+ result, depending on the simulation time step range and simulation
877
+ data size, large entropy evaluation intervals, such as the utilized
878
+ NE = 30 and NE = 50, may be sufficient to satisfy the R2.
879
+ Regarding the influence of the number of viewpoints on the spher-
880
+ ical surface, we verify that there was no significant difference for
881
+
882
+ 1.8
883
+ 2.6
884
+ 37.5
885
+ 2.4
886
+ Colatitude
887
+ 75.0
888
+ 2.2
889
+ - 2.0
890
+ 112.5
891
+ 1.8
892
+ 150.0
893
+ 1.6
894
+ 1.4
895
+ 0.0
896
+ 72.0
897
+ 144.0
898
+ 216.0
899
+ 288.0
900
+ Longitude1.8
901
+ 6.8
902
+ 37.5
903
+ 6.6
904
+ latitude
905
+ 75.0
906
+ 6.4
907
+ Col
908
+ 112.5
909
+ 6.2
910
+ 150.0
911
+ 6.0
912
+ 5.8
913
+ 0.0
914
+ 70.6
915
+ 141.2
916
+ 211.8
917
+ 282.4
918
+ 352.9
919
+ Longitude1.8
920
+ 6.9
921
+ 37.5
922
+ 6.8
923
+ Colatitude
924
+ 6.7
925
+ 75.0
926
+ 6.6
927
+ 112.5
928
+ 6.5
929
+ 150.0
930
+ 6.4
931
+ 6.3
932
+ 0.0
933
+ 70.6
934
+ 141.2
935
+ 211.8
936
+ 282.4
937
+ 352.9
938
+ Longitude1.8
939
+ 6.75
940
+ 37.5
941
+ 6.50
942
+ 6.25
943
+ latitude
944
+ 75.0
945
+ 6.00
946
+ Col
947
+ 112.5
948
+ 5.75
949
+ 5.50
950
+ 150.0
951
+ 5.25
952
+ 0.0
953
+ 70.6
954
+ 141.2
955
+ 211.8
956
+ 282.4
957
+ 352.9
958
+ Longitude1.8
959
+ 3.00
960
+ 2.75
961
+ 37.5
962
+ 2.50
963
+ Colatitude
964
+ 75.0
965
+ 2.25
966
+ 2.00
967
+ 112.5
968
+ - 1.75
969
+ 150.0
970
+ 1.50
971
+ 1.25
972
+ 0.0
973
+ 72.0
974
+ 144.0
975
+ 216.0
976
+ 288.0
977
+ Longitude1.8
978
+ 2.8
979
+ 37.5
980
+ 2.6
981
+ Colatitude
982
+ 75.0
983
+ 2.4
984
+ - 2.2
985
+ 112.5
986
+ 2.0
987
+ 150.0
988
+ 1.8
989
+ 0.0
990
+ 72.0
991
+ 144.0
992
+ 216.0
993
+ 288.0
994
+ Longitude1.8
995
+ 2.8
996
+ 37.5
997
+ 2.6
998
+ Colatitude
999
+ 75.0
1000
+ 2.4
1001
+ 112.5
1002
+ 2.2
1003
+ 2.0
1004
+ 150.0
1005
+ 1.8
1006
+ 0.0
1007
+ 72.0
1008
+ 144.0
1009
+ 216.0
1010
+ 288.0
1011
+ Longitude1.8
1012
+ 4.6
1013
+ 37.5
1014
+ 4.4
1015
+ latitude
1016
+ 4.2
1017
+ 75.0
1018
+ 4.0
1019
+ Col
1020
+ 112.5
1021
+ 3.8
1022
+ 150.0
1023
+ 3.6
1024
+ 3.4
1025
+ 0.0
1026
+ 70.6
1027
+ 141.2
1028
+ 211.8
1029
+ 282.4
1030
+ 352.9
1031
+ Longitude1.8
1032
+ 4.8
1033
+ 37.5
1034
+ 4.6
1035
+ latitude
1036
+ 4.4
1037
+ 75.0
1038
+ 4.2
1039
+ Col
1040
+ 112.5
1041
+ 4.0
1042
+ 150.0
1043
+ 3.8
1044
+ 3.6
1045
+ 0.0
1046
+ 70.6
1047
+ 141.2
1048
+ 211.8
1049
+ 282.4
1050
+ 352.9
1051
+ Longitude1.8
1052
+ 4.8
1053
+ 37.5
1054
+ 4.7
1055
+ Colatitude
1056
+ 4.6
1057
+ 75.0
1058
+ 4.5
1059
+ 112.5
1060
+ 4.4
1061
+ 150.0
1062
+ 4.3
1063
+ 4.2
1064
+ 0.0
1065
+ 70.6
1066
+ 141.2
1067
+ 211.8
1068
+ 282.4
1069
+ 352.9
1070
+ Longitude1.8
1071
+ 4.6
1072
+ 37.5
1073
+ latitude
1074
+ - 4.4
1075
+ 75.0
1076
+ 4.2
1077
+ Col
1078
+ 112.5
1079
+ 4.0
1080
+ 150.0
1081
+ 3.8
1082
+ 0.0
1083
+ 70.6
1084
+ 141.2
1085
+ 211.8
1086
+ 282.4
1087
+ 352.9
1088
+ Longitude1.8
1089
+ 6.8
1090
+ 6.6
1091
+ 37.5
1092
+ 6.4
1093
+ Colatitude
1094
+ 75.0
1095
+ 6.2
1096
+ - 6.0
1097
+ 112.5
1098
+ 5.8
1099
+ 150.0
1100
+ 5.6
1101
+ 5.4
1102
+ 0.0
1103
+ 70.6
1104
+ 141.2
1105
+ 211.8
1106
+ 282.4
1107
+ 352.9
1108
+ LongitudeCSimulation step:
1109
+ 2400
1110
+ 6000
1111
+ 9600
1112
+ 13200
1113
+ 25x50:
1114
+ 15x30:
1115
+ 35x70:
1116
+ Figure 8: Lightness Entropy heatmaps for different diverging color maps.
1117
+ varying number of viewpoints. However, it is worth noting that the
1118
+ computational time required to select the viewpoints will increase
1119
+ proportionately with the increase in the number of viewpoints.
1120
+ Regarding the influence of the quaternion interpolation method
1121
+ for estimating the camera path between selected viewpoints, we
1122
+ observed that the camera path using SQUAD-based interpolation
1123
+ passes closer to the viewpoint with highest entropy at the interme-
1124
+ diate time steps. We also observed that jerky camera movements
1125
+ tend to occur when using the SLERP-based interpolation. On the
1126
+ other hand, smoother camera movement was observed when using
1127
+ the SQUAD-based interpolation, and as a result, we can consider
1128
+ that it will cause less discomfort to the user when seeing the ani-
1129
+ mated rendering results since the camera movement will be more
1130
+ natural. Therefore, we can consider that SQUAD-based quaternion
1131
+ interpolation satisfies the R2.
1132
+ Moreover, we carried out some evaluations with the domain sci-
1133
+ entists who assisted in the development of previous work on in-situ
1134
+ adaptive timestep selection [26]. We obtained technical feedback
1135
+ from the generated visualization results in the form of animated
1136
+ videos. According to them, the video generated by using the pro-
1137
+ posed method seems to present more information than the video
1138
+ generated by using fixed viewpoint camera settings, which has tradi-
1139
+ tionally been used in their simulation analysis. However, they also
1140
+ pointed out that the proposed video gives the impression of exces-
1141
+ sive movement and sometimes tracking phenomena that do not need
1142
+ much attention. As some suggestions, they mentioned that it would
1143
+ be better to slightly reduce high viewpoint variations or suppress
1144
+ unnecessary movement, and to improve evaluation methods for the
1145
+ viewpoint selection. As an additional suggestion, they would prefer
1146
+ to have the ability to zoom in on the target object to enable closer
1147
+ observation. These suggestions will be taken into consideration for
1148
+ further developments planned as future works.
1149
+ In our current implementation, the set of volume data in the en-
1150
+ tropy evaluation interval needs to be stored in the memory before
1151
+ the processing, and this memory cost can become an impediment
1152
+ for memory-hungry simulations. However, we consider that this
1153
+ approach can be useful during test runs and model calibration runs,
1154
+ before the main simulation run, when smaller models are usually
1155
+ sufficient. In addition, the in-transit approach for flushing the simu-
1156
+ lation data from the memory to another node or even system can be
1157
+ considered helpful for minimizing this problem and is planned for
1158
+ future work. Another planned future work is the application of the
1159
+ adaptive timestep sampling [26] where larger time intervals will be
1160
+ assigned to timestep regions with small variations between the simu-
1161
+ lation results. This larger entropy evaluation time step by skipping
1162
+ some simulation results may be helpful for accelerating the visu-
1163
+ alization processing as well as reducing the excessive movements
1164
+ pointed out by the domain scientists.
1165
+ 5
1166
+ CONCLUSIONS
1167
+ In this work, we proposed an information entropy-based camera path
1168
+ estimation method for in-situ visualization. Considering that most
1169
+ of the images generated by traditional batch-based tightly coupled
1170
+ in-situ visualization may have small or even no contribution for the
1171
+ post-hoc visual analysis, we focused on generating a smooth video
1172
+ that tries to provide as much information as possible to facilitate the
1173
+ rapid understanding of the simulation or to narrow down the spatio-
1174
+ temporal region of interest for posterior detailed analysis such as by
1175
+ using traditional image-based visualization. The proposed method
1176
+ focuses on selecting the most appropriate viewpoints, based on in-
1177
+ formation entropy, at regular intervals. Intermediate images are
1178
+ generated from the estimated camera path connecting these selected
1179
+ viewpoints, and the produced smooth video that is produced is ex-
1180
+ pected to be helpful for understanding the underlying simulation
1181
+ phenomena. From the experimental evaluations and feedback from
1182
+ domain scientists, we can confirm that the video generated by the
1183
+ proposed approach provides more information compared to those
1184
+ generated by using fixed viewpoint camera settings. However, there
1185
+ is still need for improvements, and we can cite the following targets
1186
+ for future works: implementation of better evaluation methods for
1187
+ the viewpoint selection; implementation of zoom in and out func-
1188
+ tionalities; integration with the adaptive timestep sampling (irregular
1189
+ time intervals); improvement of computational performance such as
1190
+ by applying parallel processing; and estimation of the focal point
1191
+ for the camera.
1192
+ ACKNOWLEDGMENTS
1193
+ The authors are grateful to Tsukasa Yoshinaga (Toyohashi Univer-
1194
+ sity of Technology) and Kazunori Nozaki (Osaka University) for
1195
+ the simulation model and technical feedback. This work was par-
1196
+ tially supported by JSPS KAKENHI (Grant Numbers: 20H04194,
1197
+ 21H04903, 22H03603), and the National Key R&D Program of
1198
+ China under Grant No. 2021YFE0108400. This work used compu-
1199
+ tational resources of supercomputer Fugaku provided by the RIKEN
1200
+ Center for Computational Science.
1201
+ REFERENCES
1202
+ [1] J. Ahrens, S. Jourdain, P. O’Leary, J. Patchett, D. H. Rogers, and M. Pe-
1203
+ tersen. An image-based approach to extreme scale in situ visualization
1204
+ and analysis. In SC’14: Proceedings of the International Conference
1205
+ for High Performance Computing, Networking, Storage and Analysis,
1206
+ pp. 424–434. IEEE, 2014.
1207
+ [2] U. Ayachit, A. Bauer, B. Geveci, P. O’Leary, K. Moreland, N. Fabian,
1208
+ and J. Mauldin. Paraview Catalyst: Enabling in situ data analysis
1209
+ and visualization. In Proceedings of the First Workshop on In Situ
1210
+ Infrastructures for Enabling Extreme-Scale Analysis and Visualization,
1211
+ pp. 25–29, 2015.
1212
+
1213
+ 1.8
1214
+ 4.6
1215
+ 37.5
1216
+ 4.4
1217
+ latitude
1218
+ 4.2
1219
+ 75.0
1220
+ 4.0
1221
+ Col
1222
+ 112.5
1223
+ 3.8
1224
+ 150.0
1225
+ 3.6
1226
+ 3.4
1227
+ 0.0
1228
+ 70.6
1229
+ 141.2
1230
+ 211.8
1231
+ 282.4
1232
+ 352.9
1233
+ Longitude1.8
1234
+ 4.8
1235
+ 37.1
1236
+ 4.6
1237
+ latitude
1238
+ 74.1
1239
+ 4.4
1240
+ 4.2
1241
+ 111.2
1242
+ 4.0
1243
+ 148.2
1244
+ 3.8
1245
+ 3.6
1246
+ 0.0
1247
+ 72.0
1248
+ 144.0
1249
+ 216.0
1250
+ 288.0
1251
+ Longitude1.8
1252
+ 4.8
1253
+ 37.1
1254
+ 4.7
1255
+ Colatitude
1256
+ 4.6
1257
+ 74.1
1258
+ 4.5
1259
+ 111.2
1260
+ 4.4
1261
+ 148.2
1262
+ 4.3
1263
+ 4.2
1264
+ 0.0
1265
+ 72.0
1266
+ 144.0
1267
+ 216.0
1268
+ 288.0
1269
+ Longitude1.8
1270
+ 4.6
1271
+ 37.1
1272
+ latitude
1273
+ 4.4
1274
+ 74.1
1275
+ 4.2
1276
+ 8
1277
+ 111.2
1278
+ 4.0
1279
+ 148.2
1280
+ 3.8
1281
+ 0.0
1282
+ 72.0
1283
+ 144.0
1284
+ 216.0
1285
+ 288.0
1286
+ Longitude1.8
1287
+ 2.6
1288
+ 37.5
1289
+ 2.4
1290
+ Colatitude
1291
+ 75.0
1292
+ 2.2
1293
+ - 2.0
1294
+ 112.5
1295
+ 1.8
1296
+ 150.0
1297
+ 1.6
1298
+ 1.4
1299
+ 0.0
1300
+ 72.0
1301
+ 144.0
1302
+ 216.0
1303
+ 288.0
1304
+ Longitude1.8
1305
+ 4.8
1306
+ 37.5
1307
+ 4.6
1308
+ latitude
1309
+ 4.4
1310
+ 75.0
1311
+ 4.2
1312
+ Col
1313
+ 112.5
1314
+ 4.0
1315
+ 150.0
1316
+ 3.8
1317
+ 3.6
1318
+ 0.0
1319
+ 70.6
1320
+ 141.2
1321
+ 211.8
1322
+ 282.4
1323
+ 352.9
1324
+ Longitude1.8
1325
+ 4.8
1326
+ 37.5
1327
+ 4.7
1328
+ Colatitude
1329
+ 4.6
1330
+ 75.0
1331
+ 4.5
1332
+ 112.5
1333
+ 4.4
1334
+ 150.0
1335
+ 4.3
1336
+ 4.2
1337
+ 0.0
1338
+ 70.6
1339
+ 141.2
1340
+ 211.8
1341
+ 282.4
1342
+ 352.9
1343
+ Longitude1.8
1344
+ 4.6
1345
+ 37.5
1346
+ latitude
1347
+ - 4.4
1348
+ 75.0
1349
+ 4.2
1350
+ Col
1351
+ 112.5
1352
+ 4.0
1353
+ 150.0
1354
+ 3.8
1355
+ 0.0
1356
+ 70.6
1357
+ 141.2
1358
+ 211.8
1359
+ 282.4
1360
+ 352.9
1361
+ Longitude1.8 -
1362
+ 4.6
1363
+ 38.6
1364
+ 4.4
1365
+ Colatitude
1366
+ 4.2
1367
+ 77.1
1368
+ 4.0
1369
+ 115.7
1370
+ 3.8
1371
+ 154.3
1372
+ 3.6
1373
+ 3.4
1374
+ 0.0
1375
+ 72.0
1376
+ 144.0
1377
+ 216.0
1378
+ 288.0
1379
+ Longitude1.8 -
1380
+ 4.8
1381
+ 38.6
1382
+ 4.6
1383
+ Colatitude
1384
+ 4.4
1385
+ 77.1
1386
+ 4.2
1387
+ 115.7
1388
+ 4.0
1389
+ 154.3
1390
+ 3.8
1391
+ 3.6
1392
+ 0.0
1393
+ 72.0
1394
+ 144.0
1395
+ 216.0
1396
+ 288.0
1397
+ Longitude1.8 -
1398
+ 4.8
1399
+ 38.6
1400
+ 4.7
1401
+ Colatitude
1402
+ 4.6
1403
+ 77.1
1404
+ 4.5
1405
+ 115.7
1406
+ 4.4
1407
+ 4.3
1408
+ 154.3
1409
+ 4.2
1410
+ 0.0
1411
+ 72.0
1412
+ 144.0
1413
+ 216.0
1414
+ 288.0
1415
+ Longitude1.8
1416
+ 4.6
1417
+ 38.6
1418
+ Colatitude
1419
+ 4.4
1420
+ 77.1
1421
+ 4.2
1422
+ 115.7
1423
+ 4.0
1424
+ 154.3
1425
+ 3.8
1426
+ 0.0
1427
+ 72.0
1428
+ 144.0
1429
+ 216.0
1430
+ 288.0
1431
+ Longitude1.8
1432
+ 4.6
1433
+ 37.1
1434
+ 4.4
1435
+ latitude
1436
+ 4.2
1437
+ 74.1
1438
+ 4.0
1439
+ Col
1440
+ 111.2
1441
+ 3.8
1442
+ 3.6
1443
+ 148.2
1444
+ 3.4
1445
+ 0.0
1446
+ 72.0
1447
+ 144.0
1448
+ 216.0
1449
+ 288.0
1450
+ LongitudeFigure 9: Rendered images from the selected viewpoints for different diverging color maps.
1451
+ [3] P. Barral, G. Dorme, and D. Plemenos. Scene understanding techniques
1452
+ using a virtual camera. 2000.
1453
+ [4] R. E. Blahut. Principles and practice of information theory. Addison-
1454
+ Wesley Longman Publishing Co., Inc., 1987.
1455
+ [5] U. Bordoloi and H.-W. Shen. View selection for volume rendering.
1456
+ In VIS 05. IEEE Visualization, 2005., pp. 487–494, 2005. doi: 10.
1457
+ 1109/VISUAL.2005.1532833
1458
+ [6] H. Childs, S. D. Ahern, J. Ahrens, A. C. Bauer, J. Bennett, E. W. Bethel,
1459
+ P.-T. Bremer, E. Brugger, J. Cottam, M. Dorier, et al. A terminology for
1460
+ in situ visualization and analysis systems. The International Journal of
1461
+ High Performance Computing Applications, 34(6):676–691, 2020.
1462
+ [7] G. Ji and H.-W. Shen. Dynamic view selection for time-varying vol-
1463
+ umes. IEEE Transactions on Visualization and Computer Graphics,
1464
+ 12(5):1109–1116, 2006. doi: 10.1109/TVCG.2006.137
1465
+ [8] A. Kageyama and N. Sakamoto.
1466
+ 4D street View: A video-based
1467
+ visualization method. PeerJ Computer Science, (6:e305), 2020.
1468
+ [9] A. Kageyama and T. Yamada. An approach to exascale visualiza-
1469
+ tion: Interactive viewing of in-situ visualization. Computer Physics
1470
+ Communications, 185(1):79–85, 2014.
1471
+ [10] T. Kamada and S. Kawai. A simple method for computing general
1472
+ position in displaying three-dimensional objects. Computer Vision,
1473
+ Graphics, and Image Processing, 41(1):43–56, 1988.
1474
+ [11] T. Kuhlen, R. Pajarola, and K. Zhou. Parallel in situ coupling of
1475
+ simulation with a fully featured visualization system. In Proceedings
1476
+ of the 11th Eurographics Conference on Parallel Graphics and Visu-
1477
+ alization (EGPGV), vol. 10, pp. 101–109. Eurographics Association
1478
+ Aire-la-Ville, Switzerland, 2011.
1479
+ [12] J. Ling, W. P. Kegelmeyer, K. Aditya, H. Kolla, K. A. Reed, T. M.
1480
+ Shead, and W. L. Davis. Using feature importance metrics to detect
1481
+ events of interest in scientific computing applications. In 2017 IEEE
1482
+ 7th Symposium on Large Data Analysis and Visualization (LDAV), pp.
1483
+ 55–63. IEEE, 2017.
1484
+ [13] K.-L. Ma, J. S. Painter, C. D. Hansen, and M. F. Krogh. Parallel volume
1485
+ rendering using binary-swap compositing. IEEE Computer Graphics
1486
+ and Applications, 14(4):59–68, 1994.
1487
+ [14] N. Marsaglia, Y. Kawakami, S. D. Schwartz, S. Fields, and H. Childs.
1488
+ An entropy-based approach for identifying user-preferred camera po-
1489
+ sitions. In 2021 IEEE 11th Symposium on Large Data Analysis and
1490
+ Visualization (LDAV), pp. 73–83. IEEE, 2021.
1491
+ [15] N. Marsaglia, M. Majumder, and H. Childs. A trigger-based approach
1492
+ for optimizing camera placement over time. 9 2022.
1493
+ [16] K. Moreland. Diverging color maps for scientific visualization. In
1494
+ International Symposium on Visual Computing, pp. 92–103. Springer,
1495
+ 2009.
1496
+
1497
+ Simulation step:
1498
+ 2400
1499
+ 6000
1500
+ 9600
1501
+ 13200
1502
+ 25x50:
1503
+ 15x30:
1504
+ 35x70:
1505
+ Figure 10: Entropy heatmaps when varying the number of viewpoints.
1506
+ Simulation step:
1507
+ 2400
1508
+ 6000
1509
+ 9600
1510
+ 13200
1511
+ 25x50:
1512
+ 15x30:
1513
+ 35x70:
1514
+ Figure 11: Rendered images from the selected viewpoints when varying the number of viewpoints.
1515
+ Figure 12: Accumulative distance from the interpolated camera path
1516
+ to the viewpoints, with the highest entropy, at each visualization time
1517
+ step, for different entropy evaluation intervals.
1518
+ [17] J. Nonaka, K. Ono, and M. Fujita. 234Compositor: A flexible parallel
1519
+ image compositing framework for massively parallel visualization
1520
+ environments. Future Generation Computer Systems, 82:647–655,
1521
+ Figure 13: Accumulative distance to the viewpoints, with the highest
1522
+ entropy, at each visualization time step, for different interpolation
1523
+ methods.
1524
+ 2018.
1525
+ [18] D. L. Page, A. F. Koschan, S. R. Sukumar, B. Roui-Abidi, and M. A.
1526
+ Abidi. Shape analysis algorithm based on information theory. In
1527
+ Proceedings 2003 International Conference on Image Processing (Cat.
1528
+ No. 03CH37429), vol. 1, pp. I–229. IEEE, 2003.
1529
+ [19] O. Polonsky, G. Patan´e, S. Biasotti, C. Gotsman, and M. Spagnuolo.
1530
+
1531
+ 1.8
1532
+ 4.6
1533
+ 37.5
1534
+ 4.4
1535
+ latitude
1536
+ 4.2
1537
+ 75.0
1538
+ 4.0
1539
+ Col
1540
+ 112.5
1541
+ 3.8
1542
+ 150.0
1543
+ 3.6
1544
+ 3.4
1545
+ 0.0
1546
+ 70.6
1547
+ 141.2
1548
+ 211.8
1549
+ 282.4
1550
+ 352.9
1551
+ Longitude1.8
1552
+ 4.8
1553
+ 37.1
1554
+ 4.6
1555
+ latitude
1556
+ 74.1
1557
+ 4.4
1558
+ 4.2
1559
+ 111.2
1560
+ 4.0
1561
+ 148.2
1562
+ 3.8
1563
+ 3.6
1564
+ 0.0
1565
+ 72.0
1566
+ 144.0
1567
+ 216.0
1568
+ 288.0
1569
+ Longitude1.8
1570
+ 4.8
1571
+ 37.1
1572
+ 4.7
1573
+ Colatitude
1574
+ 4.6
1575
+ 74.1
1576
+ 4.5
1577
+ 111.2
1578
+ 4.4
1579
+ 148.2
1580
+ 4.3
1581
+ 4.2
1582
+ 0.0
1583
+ 72.0
1584
+ 144.0
1585
+ 216.0
1586
+ 288.0
1587
+ Longitude1.8
1588
+ 4.6
1589
+ 37.1
1590
+ latitude
1591
+ 4.4
1592
+ 74.1
1593
+ 4.2
1594
+ 8
1595
+ 111.2
1596
+ 4.0
1597
+ 148.2
1598
+ 3.8
1599
+ 0.0
1600
+ 72.0
1601
+ 144.0
1602
+ 216.0
1603
+ 288.0
1604
+ Longitude1.8
1605
+ 2.6
1606
+ 37.5
1607
+ 2.4
1608
+ Colatitude
1609
+ 75.0
1610
+ 2.2
1611
+ - 2.0
1612
+ 112.5
1613
+ 1.8
1614
+ 150.0
1615
+ 1.6
1616
+ 1.4
1617
+ 0.0
1618
+ 72.0
1619
+ 144.0
1620
+ 216.0
1621
+ 288.0
1622
+ Longitude1.8
1623
+ 4.8
1624
+ 37.5
1625
+ 4.6
1626
+ latitude
1627
+ 4.4
1628
+ 75.0
1629
+ 4.2
1630
+ Col
1631
+ 112.5
1632
+ 4.0
1633
+ 150.0
1634
+ 3.8
1635
+ 3.6
1636
+ 0.0
1637
+ 70.6
1638
+ 141.2
1639
+ 211.8
1640
+ 282.4
1641
+ 352.9
1642
+ Longitude1.8
1643
+ 4.8
1644
+ 37.5
1645
+ 4.7
1646
+ Colatitude
1647
+ 4.6
1648
+ 75.0
1649
+ 4.5
1650
+ 112.5
1651
+ 4.4
1652
+ 150.0
1653
+ 4.3
1654
+ 4.2
1655
+ 0.0
1656
+ 70.6
1657
+ 141.2
1658
+ 211.8
1659
+ 282.4
1660
+ 352.9
1661
+ Longitude1.8
1662
+ 4.6
1663
+ 37.5
1664
+ latitude
1665
+ - 4.4
1666
+ 75.0
1667
+ 4.2
1668
+ Col
1669
+ 112.5
1670
+ 4.0
1671
+ 150.0
1672
+ 3.8
1673
+ 0.0
1674
+ 70.6
1675
+ 141.2
1676
+ 211.8
1677
+ 282.4
1678
+ 352.9
1679
+ Longitude1.8 -
1680
+ 4.6
1681
+ 38.6
1682
+ 4.4
1683
+ Colatitude
1684
+ 4.2
1685
+ 77.1
1686
+ 4.0
1687
+ 115.7
1688
+ 3.8
1689
+ 154.3
1690
+ 3.6
1691
+ 3.4
1692
+ 0.0
1693
+ 72.0
1694
+ 144.0
1695
+ 216.0
1696
+ 288.0
1697
+ Longitude1.8 -
1698
+ 4.8
1699
+ 38.6
1700
+ 4.6
1701
+ Colatitude
1702
+ 4.4
1703
+ 77.1
1704
+ 4.2
1705
+ 115.7
1706
+ 4.0
1707
+ 154.3
1708
+ 3.8
1709
+ 3.6
1710
+ 0.0
1711
+ 72.0
1712
+ 144.0
1713
+ 216.0
1714
+ 288.0
1715
+ Longitude1.8 -
1716
+ 4.8
1717
+ 38.6
1718
+ 4.7
1719
+ Colatitude
1720
+ 4.6
1721
+ 77.1
1722
+ 4.5
1723
+ 115.7
1724
+ 4.4
1725
+ 4.3
1726
+ 154.3
1727
+ 4.2
1728
+ 0.0
1729
+ 72.0
1730
+ 144.0
1731
+ 216.0
1732
+ 288.0
1733
+ Longitude1.8
1734
+ 4.6
1735
+ 38.6
1736
+ Colatitude
1737
+ 4.4
1738
+ 77.1
1739
+ 4.2
1740
+ 115.7
1741
+ 4.0
1742
+ 154.3
1743
+ 3.8
1744
+ 0.0
1745
+ 72.0
1746
+ 144.0
1747
+ 216.0
1748
+ 288.0
1749
+ Longitude1.8
1750
+ 4.6
1751
+ 37.1
1752
+ 4.4
1753
+ latitude
1754
+ 4.2
1755
+ 74.1
1756
+ 4.0
1757
+ Col
1758
+ 111.2
1759
+ 3.8
1760
+ 3.6
1761
+ 148.2
1762
+ 3.4
1763
+ 0.0
1764
+ 72.0
1765
+ 144.0
1766
+ 216.0
1767
+ 288.0
1768
+ LongitudeAccumulativeDistance
1769
+ 7000
1770
+ interval: 10
1771
+ interval: 30
1772
+ 6000
1773
+ interval: 50
1774
+ ance
1775
+ Distal
1776
+ 5000
1777
+ Accumulative
1778
+ 4000
1779
+ 3000
1780
+ 2000
1781
+ 1000
1782
+ 0
1783
+ 0
1784
+ 2000
1785
+ 4000
1786
+ 6000
1787
+ 8000100001200014000
1788
+ TimestepAccumulativeDistance
1789
+ interval: 10
1790
+ 6000
1791
+ interval: 30
1792
+ interval: 50
1793
+ 4000
1794
+ 2000
1795
+ 0
1796
+ 2500
1797
+ 5000
1798
+ 7500
1799
+ 10000
1800
+ 12500
1801
+ 15000AccumulativeDistance
1802
+ 10000
1803
+ SLERP
1804
+ SQUAD
1805
+ Distance
1806
+ 8000
1807
+ Accumulative
1808
+ 6000
1809
+ 4000
1810
+ 2000
1811
+ 0
1812
+ 0
1813
+ 2000
1814
+ 4000
1815
+ 6000
1816
+ 8000
1817
+ 10000
1818
+ 1200014000
1819
+ Time stepAccumulativeDistance
1820
+ 10000
1821
+ SLERP
1822
+ SQUAD
1823
+ 7500
1824
+ 5000
1825
+ 2500
1826
+ 0
1827
+ 0
1828
+ 2500
1829
+ 5000
1830
+ 7500
1831
+ 100001250015000What’s in an image? The Visual Computer, 21(8):840–847, 2005.
1832
+ [20] N. Sakamoto and K. Koyamada. KVS: A simple and effective frame-
1833
+ work for scientific visualization. Journal of Advanced Simulation in
1834
+ Science and Engineering, 2(1):76–95, 2015.
1835
+ [21] A. Secord, J. Lu, A. Finkelstein, M. Singh, and A. Nealen. Perceptual
1836
+ models of viewpoint preference.
1837
+ ACM Transactions on Graphics
1838
+ (TOG), 30(5):1–12, 2011.
1839
+ [22] S. Takahashi, I. Fujishiro, Y. Takeshima, and T. Nishita. A feature-
1840
+ driven approach to locating optimal viewpoints for volume visualiza-
1841
+ tion. In VIS 05. IEEE Visualization, 2005., pp. 495–502, 2005. doi: 10.
1842
+ 1109/VISUAL.2005.1532834
1843
+ [23] P.-P. V´azquez, M. Feixas, M. Sbert, and W. Heidrich. Viewpoint selec-
1844
+ tion using viewpoint entropy. In VMV, vol. 1, pp. 273–280. Citeseer,
1845
+ 2001.
1846
+ [24] P.-P. V´azquez, M. Feixas, M. Sbert, and W. Heidrich. Automatic view
1847
+ selection using viewpoint entropy and its application to image-based
1848
+ modeling. In Computer Graphics Forum, vol. 22, pp. 689–700. Wiley
1849
+ Online Library, 2003.
1850
+ [25] P.-P. V´azquez, M. Feixas, M. Sbert, and A. Llobet. Viewpoint en-
1851
+ tropy: A new tool for obtaining good views of molecules. In ACM
1852
+ International Conference Proceeding Series, vol. 22, pp. 183–188,
1853
+ 2002.
1854
+ [26] Y. Yamaoka, K. Hayashi, N. Sakamoto, and J. Nonaka. In situ adap-
1855
+ tive timestep control and visualization based on the spatio-temporal
1856
+ variations of the simulation results. In Proceedings of the Workshop
1857
+ on In Situ Infrastructures for Enabling Extreme-Scale Analysis and
1858
+ Visualization, pp. 12–16, 2019.
1859
+ [27] T. Yoshinaga, K. Nozaki, and S. Wada. Experimental and numerical
1860
+ investigation of the sound generation mechanisms of sibilant fricatives
1861
+ using a simplified vocal tract model. Physics of Fluids, 30(3):035104,
1862
+ 2018.
1863
+ [28] Y. Zhang and B. Wang. Optimal viewpoint selection for volume ren-
1864
+ dering based on shuffled frog leaping algorithm. In 2010 IEEE Inter-
1865
+ national Conference on Progress in Informatics and Computing, vol. 2,
1866
+ pp. 706–709. IEEE, 2010.
1867
+
8NFJT4oBgHgl3EQfnSyO/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
8tE4T4oBgHgl3EQfCwu_/content/tmp_files/2301.04864v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
8tE4T4oBgHgl3EQfCwu_/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
9NAzT4oBgHgl3EQfgvyq/content/tmp_files/2301.01474v1.pdf.txt ADDED
@@ -0,0 +1,1012 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.01474v1 [eess.SY] 4 Jan 2023
2
+ 1
3
+ UAV-aided Metaverse over Wireless
4
+ Communications: A Reinforcement Learning
5
+ Approach
6
+ Peiyuan Si1, Wenhan Yu1, Jun Zhao1, Kwok-Yan Lam1, Qing Yang2
7
+ 1School of Computer Science & Engineering
8
+ Nanyang Technological University, Singapore
9
+ 2University of North Texas, United States
10
+ {peiyuan001, wenhan002}@e.ntu.edu.sg, {junzhao, kwokyan.lam}@ntu.edu.sg, Qing.yang@unt.edu
11
+ Abstract—Metaverse is expected to create a virtual world
12
+ closely connected with reality to provide users with immersive
13
+ experience with the support of 5G high data rate communication
14
+ technique. A huge amount of data in physical world needs to be
15
+ synchronized to the virtual world to provide immersive experi-
16
+ ence for users, and there will be higher requirements on coverage
17
+ to include more users into Metaverse. However, 5G signal suffers
18
+ severe attenuation, which makes it more expensive to maintain
19
+ the same coverage. Unmanned aerial vehicle (UAV) is a promising
20
+ candidate technique for future implementation of Metaverse
21
+ as a low-cost and high-mobility platform for communication
22
+ devices. In this paper, we propose a proximal policy optimization
23
+ (PPO) based double-agent cooperative reinforcement learning
24
+ method for channel allocation and trajectory control of UAV
25
+ to collect and synchronize data from the physical world to the
26
+ virtual world, and expand the coverage of Metaverse services
27
+ economically. Simulation results show that our proposed method
28
+ is able to achieve better performance compared to the benchmark
29
+ approaches.
30
+ Index
31
+ Terms—Metaverse,
32
+ UAV,
33
+ cooperative
34
+ reinforcement
35
+ learning, PPO
36
+ I. INTRODUCTION
37
+ The proposal of Metaverse has been promoted by the im-
38
+ plementation of 5G communication technology and maturing
39
+ AR/VR devices in recent years [1]–[4]. Metaverse aims to
40
+ create a virtual world for all kinds of activities, including
41
+ education, trading and gaming, and is considered the next
42
+ generation of the Internet [?], [5], [7], [8]. With the support of
43
+ AR/VR applications, online users are provided with immersive
44
+ services that are similar to in-person activities, and the trading
45
+ of virtual items brings job opportunities.
46
+ To support the Metaverse applications, data synchronization
47
+ and wide wireless network coverage are two practical prob-
48
+ lems to be solved as the Metaverse services usually involve
49
+ wearable wireless devices. For the first problem, 5G commu-
50
+ nication technology is able to provide high-speed and low-
51
+ latency data transmission, but it is not necessary to update all
52
+ the collected data immediately, e.g., environment information
53
+ to build the background of Metaverse and offline trading
54
+ records [9]–[11]. For the second problem, 5G network suffers
55
+ higher costs for the same coverage area due to severe signal
56
+ attenuation. Thus, it is not economically efficient to deploy
57
+ base stations in suburban with low population density, and in
58
+ wild areas it is not even applicable to traditional base stations
59
+ [12].
60
+ Unmanned aerial vehicle (UAV) is a cheaper substitution
61
+ solution to set up network coverage for Metaverse data syn-
62
+ chronization in the suburban area due to its ability to carry
63
+ communication devices. The UAV technique has been fully
64
+ studied and commercialized, and there are numerous works
65
+ on UAV-based communication scenarios for traditional appli-
66
+ cations, e.g., research on communication resource allocation,
67
+ UAV trajectory control and the internet of vehicles [13]–
68
+ [15]. The UAV-based optimization problems which take the
69
+ trajectory of UAV into consideration usually segment the flight
70
+ time of UAV into discrete time slots for the convenience of
71
+ computation. The resource allocation variables need to be
72
+ optimized in each time slot to obtain the global or local
73
+ optimal. Although these methods ensure the convergence of
74
+ the solution, the increasing number of time slots results to
75
+ the increment of algorithm complexity. Besides, the integer
76
+ characteristic of channel allocation variables results to mixed
77
+ integer programming problems, which can be hard to solve if
78
+ the variables are inseparable.
79
+ Related Work. In some cases, reinforcement learning (RL)
80
+ is more suitable for UAV-based optimization problems than
81
+ convex methods because it gives a feasible solution with
82
+ relatively good performance even if the global optimal is
83
+ extremely hard to find, and it can handle time-sequential
84
+ problems without increasing the number of variables. Cui et
85
+ al. [16] proposed multi-agent reinforcement learning resource
86
+ allocation algorithm for multi-UAV networks, and showed fast
87
+ convergence with the basic Q-learning algorithm. Luong et
88
+ al. [17] utilized the deep Q-learning algorithm to learn the
89
+ network state for the decision of the movement of UAV, and
90
+ improved the network performance by up to 70%. Rodriguez-
91
+ Ramos et al. [18] implemented a versatile Gazebo-based rein-
92
+ forcement learning framework for UAV landing on a moving
93
+ platform, which is a novel experiment of DDPG on UAV
94
+ controlling research.
95
+ For communication optimization problems with discrete
96
+ channels and continuous resource allocation, both discrete and
97
+ continuous action spaces need to be considered. To solve
98
+
99
+ 2
100
+ discrete-continuous hybrid action space reinforcement learning
101
+ problems, multi-agent architecture is commonly adopted. Fu
102
+ et al. [19] proposed two multi-agent reinforcement learning
103
+ architectures for hybrid action spaces based on deep Q-
104
+ learning (DQN), where agents work in a parallel manner to
105
+ generate joint actions. Jiang et al. [20] designed a hybrid action
106
+ algorithm for massive access control, which optimized the
107
+ discrete action selection for back-off and distributed queuing
108
+ problems and generate continuous action for access class
109
+ barring.
110
+ The agents of most existing hybrid action space reinforce-
111
+ ment learning algorithms work in a parallel manner, which
112
+ does not build the inter-agent relationship. In this paper,
113
+ we propose a hybrid reinforcement learning architecture to
114
+ optimize the discrete channel allocation variable and the
115
+ continuous trajectory controlling variable. Two agents work
116
+ in a sequential manner motivated by the alternative optimiza-
117
+ tion algorithms, i.e., the output of an agent is the input of
118
+ another agent. Compared to the existing works, our paper
119
+ considers the inter-agent relationship for better convergence
120
+ performance. The advantage of our scenario over traditional
121
+ convex optimization is that the number of variables does not
122
+ increase when the number of time slots increases, which is
123
+ more friendly to time-sequential problems.
124
+ Contribution. The contributions of this paper are as fol-
125
+ lows:
126
+ • A PPO-based double-agent cooperative hybrid action
127
+ reinforcement learning architecture (PPO-PPO) for UAV-
128
+ enabled Metaverse data synchronization is proposed.
129
+ • Proximal policy optimization (PPO) algorithm is imple-
130
+ mented in both discrete action agents and continuous ac-
131
+ tion agents, and two agents work in a sequential manner.
132
+ • The simulation shows the comparison between the pro-
133
+ posed algorithm and two baselines (DQN and duelling
134
+ DQN), which verifies the advantage of our proposed
135
+ PPO-PPO algorithm.
136
+ The rest of this paper is organized as follows. Section
137
+ II introduces the proposed system model. The double-agent
138
+ policy generation model and its implementation are presented
139
+ in Section III and Section IV, respectively. Section V shows
140
+ the simulation results and the corresponding explanation. The
141
+ conclusion of this paper is discussed in Section VI.
142
+ II. SYSTEM MODEL
143
+ As shown in Fig. 1, we consider a UAV-based uplink data
144
+ collection system for Metaverse service. In a given L × L
145
+ area which is beyond the coverage of 5G base station, N
146
+ Metaverse data collectors (MDCs) are deployed to collect
147
+ delay-insensitive local data, such as offline digital currency
148
+ trading and weather information, which are generated by
149
+ Metaverse users or the sensors [21], [22]. The location of
150
+ MDC n is denoted by (xn, yn, 0). MDCs are assumed to have
151
+ enough energy but limited transmission power.
152
+ To synchronize the local data with the Metaverse server,
153
+ one mobile base station (MBS) carried by UAV is deployed
154
+ to collect the local data saved at MDCs through M channels.
155
+ Each MDC can occupy only one channel, but multiple MDCs
156
+ are able to share one channel. The set of MDCs in channel m is
157
+ denoted by Nm, and the number of MDCs in the set is denoted
158
+ as Nm. We assume that the UAV flies at a fixed height H, and
159
+ the location of UAV is denoted by (xuav[t], yuav[t], H). Once
160
+ the data is received by the MBS, MDCs clear the historical
161
+ data and get ready for the future data collection. In this paper,
162
+ we assume that the local data size of each receiver is U.
163
+ A. Channel Settings
164
+ According to the experimental characterization of the
165
+ vehicle-to-infrastructure radio channels in suburban environ-
166
+ ments implemented by M. Yusuf et al, the small-scale fading
167
+ of the strongest path is found to be Rician distributed [23].
168
+ The channel gain between UAV and MDC n in channel m
169
+ and time slot t is given by [24]
170
+ hn,m[t] =
171
+
172
+ βn[t]gn,m[t],
173
+ (1)
174
+ where βn[t] denotes the large-scale average channel gain
175
+ at time slot t, and gn,m[t] denotes the small-scale fading
176
+ coefficient, which is modelled as Rician fading. βn[t] and
177
+ gn,m[t] are given by
178
+ βn[t] = β0d−α
179
+ n [t],
180
+ (2)
181
+ and
182
+ gn,m[t] =
183
+
184
+ K
185
+ K + 1g +
186
+
187
+ 1
188
+ K + 1 ˜g,
189
+ (3)
190
+ where β0 denotes the channel gain at the reference distance
191
+ d0 = 1m, α denotes the path loss exponent, which varies from
192
+ 2 to 6 (in this paper we assume that α = 2). g denotes the
193
+ deterministic LoS channel component with |g| = 1, which
194
+ denotes the randomly scattered component. The Rician factor
195
+ is denoted by K. dn[t] denotes the distance from UAV to MDC
196
+ n in time slot t, which is given by
197
+ dn[t] =
198
+
199
+ (xn − xuav[t])2 + (yn − yuav[t])2 + H2.
200
+ (4)
201
+ The channel-to-noise-ratio (CNR) is given by
202
+ Γn,m[t] = hn,m[t]
203
+ Bσ2
204
+ (5)
205
+ where σ2 denotes the power of additive white Gaussian noise
206
+ (AWGN) at the receiver. The signal to interference plus noise
207
+ ratio (SINR) of MDC n in channel m in time slot t is given
208
+ by
209
+ γn,m[t] =
210
+ pn,m[t]Γn,m[t]
211
+ 1 +
212
+ |Nm|−1
213
+
214
+ i=1
215
+ pi,m[t]Γi,m[t]
216
+ ,
217
+ (6)
218
+ where pn,m denotes the transmission power of MDCs. Thus,
219
+ the transmission rate of MDC n in channel m and time slot t
220
+ is given by
221
+ Rn,m[t] = Blog2(1 + γ).
222
+ (7)
223
+
224
+ 3
225
+ Fig. 1: System model.
226
+ Channel Allocation
227
+ Trajectory Control
228
+ Environment
229
+ UAV
230
+ MDR
231
+ MDR
232
+ Discrete PPO
233
+ Continuous PPO
234
+ Combined Action
235
+ Reward
236
+ uav
237
+ uav
238
+ ˆ
239
+ { [ ],
240
+ [
241
+ 1],
242
+ [
243
+ 1]}
244
+ I t
245
+ x
246
+ t
247
+ y
248
+ t
249
+
250
+
251
+ Critic
252
+ ch
253
+ ta
254
+ Actor
255
+ BP
256
+ Critic
257
+ ch
258
+ ta
259
+ Actor
260
+ BP
261
+ Critic
262
+ ch
263
+ ta
264
+ Actor
265
+ BP
266
+ Critic
267
+ ch
268
+ ta
269
+ Actor
270
+ BP
271
+ ch
272
+ ta
273
+ Fig. 2: Double-agent policy generation model.
274
+ III. DOUBLE-AGENT POLICY GENERATION MODEL
275
+ In this section, we introduce the double-agent policy gener-
276
+ ation model based on PPO (PPO-PPO) for channel allocation
277
+ and UAV trajectory control, which is shown in Fig. 2.
278
+ The objective is to minimize the total required time for UAV
279
+ to finish collecting the data saved at MDCs with the constraint
280
+ of maximum UAV speed by optimizing channel allocation
281
+ indicator matrix I[t], and UAV trajectory {xuav[t], yuav[t]}.
282
+ Each agent only focuses on a specific type of variable, and
283
+ the values of other variables are loaded from the results
284
+ of another agent in the previous step. In each step, the
285
+ discrete proximal policy optimization (PPO) agent generates
286
+ the channel allocation according to its policy, and forwards the
287
+ result to the continuous PPO agent for trajectory generation.
288
+ The combined action is generated by concatenating the output
289
+ of two RL agents which interact with the environment to get
290
+ reward for both RL agents.
291
+ A. Discrete Agent for Channel Allocation
292
+ In this subsection, we will introduce the action space, state
293
+ space and reward settings of the discrete agent for channel
294
+ allocation.
295
+ 1) Action of the Discrete Agent: Intuitively, the channel
296
+ allocation indicator I[t] can be defined as an one-hot matrix,
297
+ i.e., In,m[t] ∈ {0, 1} denotes if channel m is selected by MDC
298
+ n. An example with the number of users N = 4 and number
299
+ of channels M = 3 is given by
300
+ I[t] =
301
+
302
+ 
303
+ I1,1[t]
304
+ I1,2[t]
305
+ I1,3[t]
306
+ I2,1[t]
307
+ I2,2[t]
308
+ I2,3[t]
309
+ I3,1[t]
310
+ I3,2[t]
311
+ I3,3[t]
312
+ I4,1[t]
313
+ I4,2[t]
314
+ I4,3[t]
315
+
316
+  ,
317
+ (8)
318
+ whose dimension is N × M. The one-hot definition of I[t] is
319
+ intuitive but increases the dimension of action space. To reduce
320
+ the dimension, we re-define the channel allocation indicator
321
+ matrix as ˆI[t], whose elements are ˆIn[t] ∈ {0, 1, .., M}. Under
322
+ this definition, ˆIn[t] = m indicates that MDC n is assigned
323
+ with channel m, and ˆIn[t] = 0 indicates that it is not assigned
324
+ with any channel.
325
+ ˆ[ ]
326
+ I t
327
+ 1ˆ [ ]
328
+ I t
329
+ 2ˆ [ ]
330
+ I t
331
+ 3ˆ [ ]
332
+ I t
333
+ 4ˆ [ ]
334
+ I t
335
+ 5ˆ [ ]
336
+ I t
337
+ 6ˆ [ ]
338
+ I t
339
+ Action
340
+
341
+
342
+
343
+ 0
344
+ M
345
+ 1
346
+
347
+
348
+
349
+
350
+
351
+ 1
352
+ M
353
+ 1
354
+
355
+
356
+
357
+
358
+
359
+
360
+
361
+
362
+
363
+
364
+
365
+ 2
366
+ M
367
+ 1
368
+
369
+
370
+
371
+ 3
372
+ M
373
+ 1
374
+
375
+
376
+
377
+ 4
378
+ M
379
+ 1
380
+
381
+
382
+
383
+ 5
384
+ M
385
+ 1
386
+
387
+ Fig. 3: Action encoding.
388
+ As shown in Fig. 3, the action of the agent is encoded
389
+ according to the channel allocation indicator matrix. The
390
+ encoded action is given by
391
+ ach
392
+ t =
393
+ N
394
+
395
+ n=1
396
+ ˆIn[t](M + 1)n−1
397
+ (9)
398
+ 2) State of the Discrete Agent: The decisions of RL agents
399
+ are generated based on the current state. In this paper, the
400
+ state of the discrete agent includes the channel gain and the
401
+ remaining data at MDCs in the current step. The state of the
402
+ discrete agent is concatenated by two parts, which is given by
403
+ Sch
404
+ t = {Ures[t], h[t]},
405
+ (10)
406
+ where Ures denotes the matrix of remaining data in MDCs,
407
+ and h[t] denotes the matrix of channel gain at tth step.
408
+ 3) Reward of the Discrete Agent: The optimization objec-
409
+ tive in this paper is the required time for UAV to finish the
410
+ data collection mission, i.e., to minimize the number of steps
411
+ in each episode. Intuitively, the more steps the agent takes, the
412
+
413
+ 181(0)UAV
414
+ MDCT
415
+ BS4
416
+ less reward it should receive. Thus, we set a time-based penalty
417
+ rtime
418
+ t
419
+ with negative value in each step to build the connection
420
+ between reward and our objective. If the agent fails to finish
421
+ the mission in given time limit Tmax, it will receive a failure
422
+ penalty rfail
423
+ t .
424
+ The time-based penalty rtime
425
+ t
426
+ is further modified according
427
+ to the data size collected by UAV in the current step to give
428
+ higher reward to the actions which result to larger transmission
429
+ rate. The reward of the discrete agent is given by
430
+ rch
431
+ t =
432
+
433
+
434
+
435
+
436
+
437
+ rtime
438
+ t
439
+ U
440
+ N
441
+
442
+ n=1
443
+ M
444
+
445
+ m=1
446
+ tslotRn,m[t], if t ≤ Tmax
447
+ rfail
448
+ t , if t > Tmax
449
+ (11)
450
+ B. Continuous Agent for Trajectory Optimization
451
+ The trajectory of UAV is optimized by a continuous RL
452
+ agent, whose action, state and reward are defined as follows.
453
+ Mission Area
454
+ slot
455
+ max
456
+ 2t
457
+ V
458
+ slot
459
+ max
460
+ 2t
461
+ V
462
+ Action
463
+ Space (t+1)
464
+ Traj
465
+ ta
466
+ Action
467
+ Space (t)
468
+ Fig. 4: Action space of the continuous agent.
469
+ 1) Action of the continuous agent: As shown in Fig. 4, the
470
+ action of the continuous agent atraj
471
+ t
472
+ determines the location of
473
+ UAV in the next step. atraj
474
+ t
475
+ is defined as
476
+ atraj
477
+ t
478
+ = {ax
479
+ t , ay
480
+ t }, ax
481
+ t , ay
482
+ t ∈ [−tslotVmax, tslotVmax] ,
483
+ (12)
484
+ where ax
485
+ t , ay
486
+ t denote the movement of UAV on the x-axis and
487
+ y-axis respectively.
488
+ 2) State of the Continuous Agent: The state of the con-
489
+ tinuous agent is similar to the discrete agent, which includes
490
+ the current channel gain h[t] and remaining data at MDCs
491
+ Ures[t]. In addition, the current horizontal location of UAV
492
+ (xuav[t], yuav[t]) is also included in the state Straj
493
+ t , which is
494
+ given by
495
+ Straj
496
+ t
497
+ = {Ures[t], h[t], (xuav[t], yuav[t])}
498
+ (13)
499
+ 3) Reward of the Continuous Agent: The reward of the
500
+ continuous agent is modified based on rch
501
+ t . We give additional
502
+ penalty to the agent if the location of UAV exceeds reasonable
503
+ region to regularize the trajectory decision. The reward of the
504
+ continuous agent is given by
505
+ rtraj
506
+ t
507
+ =
508
+
509
+ rch
510
+ t , if xuav[t] ∈ [xmin, xmax], yuav[t] ∈ [ymin, ymax]
511
+ rch
512
+ t + rpenalty
513
+ t
514
+ , otherwise
515
+ (14)
516
+ IV. IMPLEMENTATION OF PROXIMAL POLICY
517
+ OPTIMIZATION (PPO)
518
+ PPO is a state-of-art on policy reinforcement learning al-
519
+ gorithm which supports both discrete and continuous actions
520
+ spaces. In this section, we introduce the preliminary and
521
+ implementation of PPO algorithm for discrete agent (channel
522
+ allocation) and continuous agent (UAV trajectory optimiza-
523
+ tion).
524
+ A. Implementation of Continuous and Discrete PPO
525
+ 1) Critic Network: The critic network is responsible to
526
+ give scores to the actor according to the current state. The
527
+ architectures of both discrete and continuous critic networks
528
+ are the same, which consists of multiple fully connected layers.
529
+ Loss function of continuous and discrete critic networks
530
+ are given by
531
+ Jtraj(φ) =
532
+
533
+ V traj
534
+ φ (straj
535
+ t ) −
536
+
537
+ rtraj
538
+ t
539
+ + γV traj
540
+ φ′ (straj
541
+ t+1)
542
+ ��2
543
+ ,
544
+ (15)
545
+ Jch(φ) =
546
+
547
+ V ch
548
+ φ (sch
549
+ t ) −
550
+
551
+ rch
552
+ t + γV ch
553
+ φ′ (sch
554
+ t+1)
555
+ ��2,
556
+ (16)
557
+ where Ltraj
558
+ t (φ) and Lch
559
+ t (φ) denote the loss function for the
560
+ critic network of continuous and discrete agent respectively.
561
+ V traj
562
+ φ′ (straj
563
+ t+1) and V ch
564
+ φ′ (sch
565
+ t+1) are the state value estimations
566
+ generated by the old critic networks φ
567
+
568
+ traj and φ
569
+
570
+ ch respectively,
571
+ which are saved in during the interaction with environment.
572
+ V traj
573
+ φ (straj
574
+ t ) and V ch
575
+ φ (sch
576
+ t ) are the state value estimations gener-
577
+ ated by the current critic networks φtraj and φch , which are
578
+ updated in each training iteration.
579
+ 2) Actor Network: As shown in Fig. 5, the architecture of
580
+ discrete and continuous actor network are different due to the
581
+ difference in action space.
582
+ The continuous actor network for trajectory control is a
583
+ network for value approximation, which outputs a µ head and
584
+ a σ head which denotes the mean and variance of Gaussian dis-
585
+ tributions respectively. Each head includes two variables, i.e.,
586
+ {µx, µy} and {σx, σy}, which denotes the x-axis and y-axis
587
+ respectively. The action {ax[t], ay[t]} is generated by sampling
588
+ from the obtained distribution N(µx, σ2
589
+ x) and N(µy, σ2
590
+ y).
591
+ The discrete actor network for channel allocation is a
592
+ network for classification, which outputs the probabilities
593
+ Pr(a) of each action. The agent sample its action from the
594
+ obtained action probabilities with ε-greedy, i.e., the output
595
+ action is generated by sampling from Pr(a) with probability
596
+ 1−ǫ, and selected randomly with probability ǫ for exploration.
597
+ The output action of the discrete actor network is encoded,
598
+ which will be decoded into one-hot indicators before being
599
+ utilized for further calculation.
600
+ Loss functions of actor networks in our implementation
601
+ adopt the trick of clipping to simplify the calculation, which
602
+ is proposed by J. Schulman et al [25].
603
+ The PPO-PPO algorithm is summarized in Algorithm 1.
604
+
605
+ (0)5
606
+ Fully Conneted Layers
607
+ Softmax Layer
608
+ State
609
+ Head
610
+ � Head
611
+
612
+ Head
613
+ � Head
614
+
615
+ Trajectory
616
+ 2
617
+ ( ,
618
+ )
619
+ N � �
620
+ Sample From
621
+ 2
622
+ ( ,
623
+ )
624
+ N � �
625
+ Sample From
626
+ Fully Conneted Layers
627
+ Softmax Layer
628
+ State
629
+ Channel Allocation
630
+ Pr( )
631
+ a
632
+ Action Probability
633
+
634
+ Sample with -Greedy
635
+ Fig. 5: Actor Network Architecture.
636
+ Algorithm 1 PPO-PPO
637
+ Initiate: Remaining data at MDCs, UAV location, network
638
+ parameters of discrete and continuous agent
639
+ 1: for iteration t = 1, 2, .. do
640
+ 2:
641
+ Discrete agent execute action according to the current
642
+ state and policy πch
643
+ θ′
644
+
645
+ ach
646
+ t |sch
647
+ t
648
+
649
+ to obtain the channel
650
+ allocation indicator matrix ˆI[t]
651
+ 3:
652
+ With given ˆI[t], the continuous agent for trajectory
653
+ control execute action according to the current state and
654
+ policy πtraj
655
+ θ′
656
+
657
+ atraj
658
+ t |straj
659
+ t
660
+
661
+ ˆI[t]
662
+ 4:
663
+ Agent interact with environment to get reward rch
664
+ t and
665
+ rtraj
666
+ t
667
+ for discrete agent and continuous agent respectively
668
+ 5:
669
+ Update state straj
670
+ t
671
+ ← straj
672
+ t+1, sch
673
+ t ← sch
674
+ t+1
675
+ 6:
676
+ Save
677
+ trajectory
678
+
679
+ sch
680
+ t , ach
681
+ t , rch
682
+ t , sch
683
+ t+1, V ch
684
+ φ′ (sch
685
+ t )
686
+
687
+ and
688
+
689
+ straj
690
+ t , atraj
691
+ t , rtraj
692
+ t , straj
693
+ t , V traj
694
+ φ′ (straj
695
+ t )
696
+
697
+ 7:
698
+ for every i iterations do
699
+ 8:
700
+ Shuffle data order and make batch with size bs.
701
+ 9:
702
+ for j=0, 1, ..., T
703
+ bs − 1 do
704
+ 10:
705
+ Calculate loss functions of critic and actor net-
706
+ works and update network parameters by gradient
707
+ ascent
708
+ 11:
709
+ end for
710
+ 12:
711
+ end for
712
+ 13: end for
713
+ V. SIMULATION RESULTS
714
+ The performance of our proposed double-agent reinforce-
715
+ ment learning approach for Metaverse data collecting is tested
716
+ and compared with two benchmark scenarios (DQN-PPO and
717
+ duelling DQN-PPO), whose discrete agents are replaced with
718
+ DQN or duelling DQN algorithm respectively. The simulation
719
+ settings are given in Table I.
720
+ Fig. 6 presents the required time to complete data collecting
721
+ mission of our proposed algorithm and two benchmark algo-
722
+ rithms with given data size U = 50Mb. At the beginning of
723
+ the training process (0-1000 episodes), all three algorithms
724
+ TABLE I: Constant Parameter Setting
725
+ Parameter and Physical Meaning
726
+ Value
727
+ Number of channels(M)
728
+ 3
729
+ Default number of users (N)
730
+ 5
731
+ Bandwidth (B)
732
+ 5MHz
733
+ Transmission power of MDCs
734
+ 5W
735
+ Frequency (f)
736
+ 28GHz (5G spectrum)
737
+ Power of Gaussian noise (σ2)
738
+ 5 × 10−8W
739
+ Maximum speed of UAV
740
+ 10m/s
741
+ Mission area size (L)
742
+ 200m
743
+ are unstable because the reasonable policy has not been
744
+ established, and the agents are exploring the environment fre-
745
+ quently. From 1000 episodes to 2000 episodes, our proposed
746
+ PPO-PPO algorithm shows the tendency of convergence while
747
+ the benchmark DQN-PPO algorithm is still very unstable.
748
+ The duelling DQN-PPO algorithm also starts to finish the
749
+ mission within a shorter time period, but is less stable than
750
+ the PPO-PPO algorithm. DQN-PPO algorithm shows poor
751
+ convergence performance in this task, but both PPO-PPO and
752
+ duelling DQN-PPO algorithms are able to converge within
753
+ 5000 episodes with similar performance due to their common
754
+ implementation of the advantage function.
755
+ 0
756
+ 500
757
+ 1000
758
+ 1500
759
+ 2000
760
+ 2500
761
+ 3000
762
+ 3500
763
+ 4000
764
+ 4500
765
+ 5000
766
+ Episodes
767
+ 30
768
+ 35
769
+ 40
770
+ 45
771
+ 50
772
+ 55
773
+ 60
774
+ Time (s)
775
+ DQN-PPO
776
+ Duelling DQN-PPO
777
+ PPO-PPO
778
+ Fig. 6: Comparison of required time to finish mission with
779
+ data size U = 50Mb.
780
+ Fig. 7 presents the mission completing time experiment with
781
+ a similar parameter setting as in Fig. 6, but the data size is
782
+ increased to U = 100Mb. All three algorithms need more
783
+ time to finish the data collecting mission due to larger data
784
+ size, and the PPO-PPO algorithm shows similar convergence
785
+ performance as in Fig. 6. However, the dueling DQN-PPO
786
+ algorithm becomes unstable in the training process, i.e., some
787
+ sudden increase in the required time. The superior stability
788
+ of PPO over dueling DQN can be attributed to its policy
789
+ update constraint by equipping it with a KL-divergence penalty
790
+ between the old policy (the policy for sampling data) and the
791
+ updated policy (the policy used for training and evaluating).
792
+ Fig. 8 and Fig. 9 are the corresponding rewards in the train-
793
+ ing processes of Fig. 6 and Fig. 7 respectively. We consider
794
+ the reward given to the agent as guidance but not the exact
795
+ objective function in the implementation of reinforcement
796
+
797
+ 6
798
+ 0
799
+ 500
800
+ 1000
801
+ 1500
802
+ 2000
803
+ 2500
804
+ 3000
805
+ 3500
806
+ 4000
807
+ 4500
808
+ 5000
809
+ Episodes
810
+ 60
811
+ 70
812
+ 80
813
+ 90
814
+ 100
815
+ 110
816
+ 120
817
+ 130
818
+ 140
819
+ 150
820
+ 160
821
+ Time (s)
822
+ DQN-PPO
823
+ Duelling DQN-PPO
824
+ PPO-PPO
825
+ Fig. 7: Comparison of required time to finish mission with
826
+ data size U = 100Mb.
827
+ learning algorithm. The tendencies of the reward and the
828
+ required time are highly similar although they are generated
829
+ from different formulas, which indicates that our reward design
830
+ successfully leads the agent to learn a better policy.
831
+ 0
832
+ 500
833
+ 1000
834
+ 1500
835
+ 2000
836
+ 2500
837
+ 3000
838
+ 3500
839
+ 4000
840
+ 4500
841
+ 5000
842
+ Episodes
843
+ -3000
844
+ -2500
845
+ -2000
846
+ -1500
847
+ -1000
848
+ -500
849
+ 0
850
+ Reward
851
+ DQN-PPO
852
+ Duelling DQN-PPO
853
+ PPO-PPO
854
+ Fig. 8: Comparison of reward with data size U = 50Mb.
855
+ The mission completing time comparison for the case with
856
+ eight users is shown in Fig. 10. The duelling DQN-PPO
857
+ algorithm shows similar average performance as the PPO-PPO
858
+ algorithm but less stability, i.e., the required time sometimes
859
+ jumps to extremely large values. Taking the stability into
860
+ consideration, the PPO-PPO algorithm is better than duelling
861
+ DQN-PPO algorithm in general. The DQN-PPO algorithm is
862
+ obviously not able to converge in this experiment, so we do
863
+ not consider it a candidate for our double-agent reinforcement
864
+ learning algorithm.
865
+ VI. CONCLUSION
866
+ In this paper, we propose a double-agent reinforcement ar-
867
+ chitecture for data collecting and synchronization in Metavese,
868
+ and adopt PPO algorithm for both discrete and continuous
869
+ agents. Two agents with different action space and state space
870
+ work in a cascade manner for channel allocation and UAV
871
+ 0
872
+ 500
873
+ 1000
874
+ 1500
875
+ 2000
876
+ 2500
877
+ 3000
878
+ 3500
879
+ 4000
880
+ 4500
881
+ 5000
882
+ Episodes
883
+ -3000
884
+ -2500
885
+ -2000
886
+ -1500
887
+ -1000
888
+ -500
889
+ Reward
890
+ DQN-PPO
891
+ Duelling DQN-PPO
892
+ PPO-PPO
893
+ Fig. 9: Comparison of reward with data size U = 100Mb.
894
+ 0
895
+ 500
896
+ 1000
897
+ 1500
898
+ 2000
899
+ 2500
900
+ 3000
901
+ 3500
902
+ 4000
903
+ 4500
904
+ 5000
905
+ Episodes
906
+ 50
907
+ 100
908
+ 150
909
+ 200
910
+ Time (s)
911
+ DQN-PPO
912
+ Duelling DQN-PPO
913
+ PPO-PPO
914
+ Fig. 10: Comparison of reward with data size U = 50Mb and
915
+ 8 users.
916
+ trajectory control to form a combined action in each iteration.
917
+ Our experiments indicate the advantage of the PPO-PPO in
918
+ both the required time for the mission and the stability. In
919
+ future work, we will consider transmission power allocation
920
+ and test the performance of other state-of-art reinforcement
921
+ learning algorithms in our proposed architecture.
922
+ REFERENCES
923
+ [1] Y. Wang and J. Zhao, “Mobile Edge Computing, Metaverse, 6G Wireless
924
+ Communications, Artificial Intelligence, and Blockchain: Survey and
925
+ Their Convergence,” arXiv preprint arXiv:2209.14147, 2022.
926
+ [2] L.-H. Lee, T. Braud, P. Zhou, L. Wang, D. Xu, Z. Lin, A. Kumar,
927
+ C. Bermejo, and P. Hui, “All one needs to know about metaverse: A
928
+ complete survey on technological singularity, virtual ecosystem, and
929
+ research agenda,” arXiv preprint arXiv:2110.05352, 2021.
930
+ [3] P. Si, J. Zhao, H. Han, K.-Y. Lam, and Y. Liu, “Resource Allocation and
931
+ Resolution Control in the Metaverse with Mobile Augmented Reality,”
932
+ arXiv preprint arXiv:2209.13871, 2022.
933
+ [4] T. J. Chua, W. Yu, and J. Zhao, “Resource allocation for mobile
934
+ metaverse with the Internet of Vehicles over 6G wireless commu-
935
+ nications: A deep reinforcement learning approach,” arXiv preprint
936
+ arXiv:2209.13425, 2022.
937
+ [5] H.-C. Han et al., “From visual culture in the immersive metaverse to
938
+ visual cognition in education,” in Cognitive and Affective Perspectives
939
+ on Immersive Technology in Education. IGI Global, 2020, pp. 67–84.
940
+ [6] J.-E. Yu, “Exploration of educational possibilities by four metaverse
941
+ types in physical education,” Technologies, vol. 10, no. 5, p. 104, 2022.
942
+
943
+ 7
944
+ [7] Murat Yilmaz, Tuna Hacalo˘glu and Paul Clarke , “Examining the use of
945
+ non-fungible tokens (NFTs) as a trading mechanism for the metaverse,”
946
+ in European Conference on Software Process Improvement. Springer,
947
+ 2022, pp. 18–28.
948
+ [8] A. Jungherr and D. B. Schlarb, “The Extended Reach of Game Engine
949
+ Companies: How Companies Like Epic Games and Unity Technologies
950
+ Provide Platforms for Extended Reality Applications and the Metaverse,”
951
+ Social Media+ Society, vol. 8, no. 2, 2022.
952
+ [9] M. Agiwal, A. Roy, and N. Saxena, “Next generation 5G wireless
953
+ networks: A comprehensive survey,” IEEE Communications Surveys &
954
+ Tutorials, vol. 18, no. 3, pp. 1617–1655, 2016.
955
+ [10] J. Refonaa, G. G. Sebastian, D. Ramanan, and M. Lakshmi, “Effective
956
+ identification of black money and fake currency using NFC, IoT and an-
957
+ droid,” in 2018 International Conference on Communication, Computing
958
+ and Internet of Things (IC3IoT). IEEE, 2018, pp. 275–278.
959
+ [11] J. Kohli and A. Kohli, “A Study of Preference for Online Trading
960
+ Account versus Offline Trading Account by Different Age Group,” From
961
+ the Desk of Editor, p. 42, 2020.
962
+ [12] P. V. Mane-Deshmukh, “Designing of Wireless Sensor Network to
963
+ Protect Agricultural Farm from Wild Animals,” i-Manager’s Journal on
964
+ Information Technology, vol. 7, no. 4, p. 30, 2018.
965
+ [13] Q. Wu, Y. Zeng, and R. Zhang, “Joint trajectory and communication
966
+ design for multi-UAV enabled wireless networks,” IEEE Transactions
967
+ on Wireless Communications, vol. 17, no. 3, pp. 2109–2121, 2018.
968
+ [14] W. Lu, P. Si, Y. Gao, H. Han, Z. Liu, Y. Wu, and Y. Gong, “Trajectory
969
+ and Resource Optimization in OFDM-Based UAV-Powered IoT Net-
970
+ work,” IEEE Transactions on Green Communications and Networking,
971
+ vol. 5, no. 3, pp. 1259–1270, 2021.
972
+ [15] J. S. Ng, W. Y. B. Lim, H.-N. Dai, Z. Xiong, J. Huang, D. Niyato, X.-S.
973
+ Hua, C. Leung, and C. Miao, “Joint auction-coalition formation frame-
974
+ work for communication-efficient federated learning in UAV-enabled
975
+ internet of vehicles,” IEEE Transactions on Intelligent Transportation
976
+ Systems, vol. 22, no. 4, pp. 2326–2344, 2020.
977
+ [16] J. Cui, Y. Liu, and A. Nallanathan, “Multi-agent reinforcement learning-
978
+ based resource allocation for UAV networks,” IEEE Transactions on
979
+ Wireless Communications, vol. 19, no. 2, pp. 729–743, 2019.
980
+ [17] P. Luong, F. Gagnon, L.-N. Tran, and F. Labeau, “Deep reinforcement
981
+ learning-based resource allocation in cooperative UAV-assisted wireless
982
+ networks,” IEEE Transactions on Wireless Communications, vol. 20, no.
983
+ 11, pp. 7610–7625, 2021.
984
+ [18] A. Rodriguez-Ramos, C. Sampedro, H. Bavle, P. De La Puente, and P.
985
+ Campoy, “A deep reinforcement learning strategy for UAV autonomous
986
+ landing on a moving platform,” Journal of Intelligent & Robotic Sys-
987
+ tems, vol. 93, no. 1, pp. 351–366, 2019.
988
+ [19] H. Fu, H. Tang, J. Hao, Z. Lei, Y. Chen, and C. Fan, “Deep multi-agent
989
+ reinforcement learning with discrete-continuous hybrid action spaces,”
990
+ arXiv preprint arXiv:1903.04959, 2019.
991
+ [20] N. Jiang, Y. Deng, and A. Nallanathan, “Deep reinforcement learning
992
+ for discrete and continuous massive access control optimization,” in ICC
993
+ 2020-2020 IEEE International Conference on Communications (ICC).
994
+ IEEE, 2020, pp. 1–7.
995
+ [21] Y. Chu, J. Lee, S. Kim, H. Kim, Y. Yoon, and H. Chung, “Review of Of-
996
+ fline Payment Function of CBDC Considering Security Requirements,”
997
+ Applied Sciences, vol. 12, no. 9, p. 4488, 2022.
998
+ [22] M. Christodorescu, W. C. Gu, R. Kumaresan, M. Minaei, M. Ozdayi,
999
+ B. Price, S. Raghuraman, M. Saad, C. Sheffield, M. Xu et al., “Towards
1000
+ a two-tier hierarchical infrastructure: An offline payment system for
1001
+ Central Bank digital currencies,” arXiv preprint arXiv:2012.08003, 2020.
1002
+ [23] M. Yusuf, E. Tanghe, F. Challita et al., “Experimental characterization of
1003
+ V2I radio channel in a suburban environment,” in 2019 13th European
1004
+ Conference on Antennas and Propagation (EuCAP). IEEE, 2019, pp.
1005
+ 1–5.
1006
+ [24] C. You and R. Zhang, “3D trajectory optimization in Rician fading for
1007
+ UAV-enabled data harvesting,” IEEE Transactions on Wireless Commu-
1008
+ nications, vol. 18, no. 6, pp. 3192–3207, 2019.
1009
+ [25] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
1010
+ imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
1011
+ 2017.
1012
+
9NAzT4oBgHgl3EQfgvyq/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,419 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf,len=418
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
3
+ page_content='01474v1 [eess.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
4
+ page_content='SY] 4 Jan 2023 1 UAV-aided Metaverse over Wireless Communications: A Reinforcement Learning Approach Peiyuan Si1, Wenhan Yu1, Jun Zhao1, Kwok-Yan Lam1, Qing Yang2 1School of Computer Science & Engineering Nanyang Technological University, Singapore 2University of North Texas, United States {peiyuan001, wenhan002}@e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
5
+ page_content='ntu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
6
+ page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
7
+ page_content='sg, {junzhao, kwokyan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
8
+ page_content='lam}@ntu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
9
+ page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
10
+ page_content='sg, Qing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
11
+ page_content='yang@unt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
12
+ page_content='edu Abstract—Metaverse is expected to create a virtual world closely connected with reality to provide users with immersive experience with the support of 5G high data rate communication technique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
13
+ page_content=' A huge amount of data in physical world needs to be synchronized to the virtual world to provide immersive experi- ence for users, and there will be higher requirements on coverage to include more users into Metaverse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
14
+ page_content=' However, 5G signal suffers severe attenuation, which makes it more expensive to maintain the same coverage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
15
+ page_content=' Unmanned aerial vehicle (UAV) is a promising candidate technique for future implementation of Metaverse as a low-cost and high-mobility platform for communication devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
16
+ page_content=' In this paper, we propose a proximal policy optimization (PPO) based double-agent cooperative reinforcement learning method for channel allocation and trajectory control of UAV to collect and synchronize data from the physical world to the virtual world, and expand the coverage of Metaverse services economically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
17
+ page_content=' Simulation results show that our proposed method is able to achieve better performance compared to the benchmark approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
18
+ page_content=' Index Terms—Metaverse, UAV, cooperative reinforcement learning, PPO I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
19
+ page_content=' INTRODUCTION The proposal of Metaverse has been promoted by the im- plementation of 5G communication technology and maturing AR/VR devices in recent years [1]–[4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
20
+ page_content=' Metaverse aims to create a virtual world for all kinds of activities, including education, trading and gaming, and is considered the next generation of the Internet [?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
21
+ page_content=' ], [5], [7], [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
22
+ page_content=' With the support of AR/VR applications, online users are provided with immersive services that are similar to in-person activities, and the trading of virtual items brings job opportunities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
23
+ page_content=' To support the Metaverse applications, data synchronization and wide wireless network coverage are two practical prob- lems to be solved as the Metaverse services usually involve wearable wireless devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
24
+ page_content=' For the first problem, 5G commu- nication technology is able to provide high-speed and low- latency data transmission, but it is not necessary to update all the collected data immediately, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
25
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
26
+ page_content=', environment information to build the background of Metaverse and offline trading records [9]–[11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
27
+ page_content=' For the second problem, 5G network suffers higher costs for the same coverage area due to severe signal attenuation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
28
+ page_content=' Thus, it is not economically efficient to deploy base stations in suburban with low population density, and in wild areas it is not even applicable to traditional base stations [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
29
+ page_content=' Unmanned aerial vehicle (UAV) is a cheaper substitution solution to set up network coverage for Metaverse data syn- chronization in the suburban area due to its ability to carry communication devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
30
+ page_content=' The UAV technique has been fully studied and commercialized, and there are numerous works on UAV-based communication scenarios for traditional appli- cations, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
31
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
32
+ page_content=', research on communication resource allocation, UAV trajectory control and the internet of vehicles [13]– [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
33
+ page_content=' The UAV-based optimization problems which take the trajectory of UAV into consideration usually segment the flight time of UAV into discrete time slots for the convenience of computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
34
+ page_content=' The resource allocation variables need to be optimized in each time slot to obtain the global or local optimal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
35
+ page_content=' Although these methods ensure the convergence of the solution, the increasing number of time slots results to the increment of algorithm complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
36
+ page_content=' Besides, the integer characteristic of channel allocation variables results to mixed integer programming problems, which can be hard to solve if the variables are inseparable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
37
+ page_content=' Related Work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
38
+ page_content=' In some cases, reinforcement learning (RL) is more suitable for UAV-based optimization problems than convex methods because it gives a feasible solution with relatively good performance even if the global optimal is extremely hard to find, and it can handle time-sequential problems without increasing the number of variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
39
+ page_content=' Cui et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
40
+ page_content=' [16] proposed multi-agent reinforcement learning resource allocation algorithm for multi-UAV networks, and showed fast convergence with the basic Q-learning algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
41
+ page_content=' Luong et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
42
+ page_content=' [17] utilized the deep Q-learning algorithm to learn the network state for the decision of the movement of UAV, and improved the network performance by up to 70%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
43
+ page_content=' Rodriguez- Ramos et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
44
+ page_content=' [18] implemented a versatile Gazebo-based rein- forcement learning framework for UAV landing on a moving platform, which is a novel experiment of DDPG on UAV controlling research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
45
+ page_content=' For communication optimization problems with discrete channels and continuous resource allocation, both discrete and continuous action spaces need to be considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
46
+ page_content=' To solve 2 discrete-continuous hybrid action space reinforcement learning problems, multi-agent architecture is commonly adopted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
47
+ page_content=' Fu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
48
+ page_content=' [19] proposed two multi-agent reinforcement learning architectures for hybrid action spaces based on deep Q- learning (DQN), where agents work in a parallel manner to generate joint actions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
49
+ page_content=' Jiang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
50
+ page_content=' [20] designed a hybrid action algorithm for massive access control, which optimized the discrete action selection for back-off and distributed queuing problems and generate continuous action for access class barring.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
51
+ page_content=' The agents of most existing hybrid action space reinforce- ment learning algorithms work in a parallel manner, which does not build the inter-agent relationship.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
52
+ page_content=' In this paper, we propose a hybrid reinforcement learning architecture to optimize the discrete channel allocation variable and the continuous trajectory controlling variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
53
+ page_content=' Two agents work in a sequential manner motivated by the alternative optimiza- tion algorithms, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
54
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
55
+ page_content=', the output of an agent is the input of another agent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
56
+ page_content=' Compared to the existing works, our paper considers the inter-agent relationship for better convergence performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
57
+ page_content=' The advantage of our scenario over traditional convex optimization is that the number of variables does not increase when the number of time slots increases, which is more friendly to time-sequential problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
58
+ page_content=' Contribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
59
+ page_content=' The contributions of this paper are as fol- lows: A PPO-based double-agent cooperative hybrid action reinforcement learning architecture (PPO-PPO) for UAV- enabled Metaverse data synchronization is proposed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
60
+ page_content=' Proximal policy optimization (PPO) algorithm is imple- mented in both discrete action agents and continuous ac- tion agents, and two agents work in a sequential manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
61
+ page_content=' The simulation shows the comparison between the pro- posed algorithm and two baselines (DQN and duelling DQN), which verifies the advantage of our proposed PPO-PPO algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
62
+ page_content=' The rest of this paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
63
+ page_content=' Section II introduces the proposed system model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
64
+ page_content=' The double-agent policy generation model and its implementation are presented in Section III and Section IV, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
65
+ page_content=' Section V shows the simulation results and the corresponding explanation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
66
+ page_content=' The conclusion of this paper is discussed in Section VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
67
+ page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
68
+ page_content=' SYSTEM MODEL As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
69
+ page_content=' 1, we consider a UAV-based uplink data collection system for Metaverse service.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
70
+ page_content=' In a given L × L area which is beyond the coverage of 5G base station, N Metaverse data collectors (MDCs) are deployed to collect delay-insensitive local data, such as offline digital currency trading and weather information, which are generated by Metaverse users or the sensors [21], [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
71
+ page_content=' The location of MDC n is denoted by (xn, yn, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
72
+ page_content=' MDCs are assumed to have enough energy but limited transmission power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
73
+ page_content=' To synchronize the local data with the Metaverse server, one mobile base station (MBS) carried by UAV is deployed to collect the local data saved at MDCs through M channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
74
+ page_content=' Each MDC can occupy only one channel, but multiple MDCs are able to share one channel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
75
+ page_content=' The set of MDCs in channel m is denoted by Nm, and the number of MDCs in the set is denoted as Nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
76
+ page_content=' We assume that the UAV flies at a fixed height H, and the location of UAV is denoted by (xuav[t], yuav[t], H).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
77
+ page_content=' Once the data is received by the MBS, MDCs clear the historical data and get ready for the future data collection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
78
+ page_content=' In this paper, we assume that the local data size of each receiver is U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
79
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
80
+ page_content=' Channel Settings According to the experimental characterization of the vehicle-to-infrastructure radio channels in suburban environ- ments implemented by M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
81
+ page_content=' Yusuf et al, the small-scale fading of the strongest path is found to be Rician distributed [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
82
+ page_content=' The channel gain between UAV and MDC n in channel m and time slot t is given by [24] hn,m[t] = � βn[t]gn,m[t], (1) where βn[t] denotes the large-scale average channel gain at time slot t, and gn,m[t] denotes the small-scale fading coefficient, which is modelled as Rician fading.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
83
+ page_content=' βn[t] and gn,m[t] are given by βn[t] = β0d−α n [t], (2) and gn,m[t] = � K K + 1g + � 1 K + 1 ˜g, (3) where β0 denotes the channel gain at the reference distance d0 = 1m, α denotes the path loss exponent, which varies from 2 to 6 (in this paper we assume that α = 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
84
+ page_content=' g denotes the deterministic LoS channel component with |g| = 1, which denotes the randomly scattered component.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
85
+ page_content=' The Rician factor is denoted by K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
86
+ page_content=' dn[t] denotes the distance from UAV to MDC n in time slot t, which is given by dn[t] = � (xn − xuav[t])2 + (yn − yuav[t])2 + H2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
87
+ page_content=' (4) The channel-to-noise-ratio (CNR) is given by Γn,m[t] = hn,m[t] Bσ2 (5) where σ2 denotes the power of additive white Gaussian noise (AWGN) at the receiver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
88
+ page_content=' The signal to interference plus noise ratio (SINR) of MDC n in channel m in time slot t is given by γn,m[t] = pn,m[t]Γn,m[t] 1 + |Nm|−1 � i=1 pi,m[t]Γi,m[t] , (6) where pn,m denotes the transmission power of MDCs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
89
+ page_content=' Thus, the transmission rate of MDC n in channel m and time slot t is given by Rn,m[t] = Blog2(1 + γ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
90
+ page_content=' (7) 3 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
91
+ page_content=' 1: System model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
92
+ page_content=' Channel Allocation Trajectory Control Environment UAV MDR MDR Discrete PPO Continuous PPO Combined Action Reward uav uav ˆ { [ ], [ 1], [ 1]} I t x t y t � � Critic ch ta Actor BP Critic ch ta Actor BP Critic ch ta Actor BP Critic ch ta Actor BP ch ta Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
93
+ page_content=' 2: Double-agent policy generation model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
94
+ page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
95
+ page_content=' DOUBLE-AGENT POLICY GENERATION MODEL In this section, we introduce the double-agent policy gener- ation model based on PPO (PPO-PPO) for channel allocation and UAV trajectory control, which is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
96
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
97
+ page_content=' The objective is to minimize the total required time for UAV to finish collecting the data saved at MDCs with the constraint of maximum UAV speed by optimizing channel allocation indicator matrix I[t], and UAV trajectory {xuav[t], yuav[t]}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
98
+ page_content=' Each agent only focuses on a specific type of variable, and the values of other variables are loaded from the results of another agent in the previous step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
99
+ page_content=' In each step, the discrete proximal policy optimization (PPO) agent generates the channel allocation according to its policy, and forwards the result to the continuous PPO agent for trajectory generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
100
+ page_content=' The combined action is generated by concatenating the output of two RL agents which interact with the environment to get reward for both RL agents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
101
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
102
+ page_content=' Discrete Agent for Channel Allocation In this subsection, we will introduce the action space, state space and reward settings of the discrete agent for channel allocation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
103
+ page_content=' 1) Action of the Discrete Agent: Intuitively, the channel allocation indicator I[t] can be defined as an one-hot matrix, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
104
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
105
+ page_content=', In,m[t] ∈ {0, 1} denotes if channel m is selected by MDC n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
106
+ page_content=' An example with the number of users N = 4 and number of channels M = 3 is given by I[t] = \uf8ee \uf8ef\uf8ef\uf8f0 I1,1[t] I1,2[t] I1,3[t] I2,1[t] I2,2[t] I2,3[t] I3,1[t] I3,2[t] I3,3[t] I4,1[t] I4,2[t] I4,3[t] \uf8f9 \uf8fa\uf8fa\uf8fb , (8) whose dimension is N × M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
107
+ page_content=' The one-hot definition of I[t] is intuitive but increases the dimension of action space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
108
+ page_content=' To reduce the dimension, we re-define the channel allocation indicator matrix as ˆI[t], whose elements are ˆIn[t] ∈ {0, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
109
+ page_content='., M}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
110
+ page_content=' Under this definition, ˆIn[t] = m indicates that MDC n is assigned with channel m, and ˆIn[t] = 0 indicates that it is not assigned with any channel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
111
+ page_content=' ˆ[ ] I t 1ˆ [ ] I t 2ˆ [ ] I t 3ˆ [ ] I t 4ˆ [ ] I t 5ˆ [ ] I t 6ˆ [ ] I t Action � � � 0 M 1 � � � � � 1 M 1 � � � � � � � � � � � 2 M 1 � � � 3 M 1 � � � 4 M 1 � � � 5 M 1 � Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
112
+ page_content=' 3: Action encoding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
113
+ page_content=' As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
114
+ page_content=' 3, the action of the agent is encoded according to the channel allocation indicator matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
115
+ page_content=' The encoded action is given by ach t = N � n=1 ˆIn[t](M + 1)n−1 (9) 2) State of the Discrete Agent: The decisions of RL agents are generated based on the current state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
116
+ page_content=' In this paper, the state of the discrete agent includes the channel gain and the remaining data at MDCs in the current step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
117
+ page_content=' The state of the discrete agent is concatenated by two parts, which is given by Sch t = {Ures[t], h[t]}, (10) where Ures denotes the matrix of remaining data in MDCs, and h[t] denotes the matrix of channel gain at tth step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
118
+ page_content=' 3) Reward of the Discrete Agent: The optimization objec- tive in this paper is the required time for UAV to finish the data collection mission, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
119
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
120
+ page_content=', to minimize the number of steps in each episode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
121
+ page_content=' Intuitively, the more steps the agent takes, the 181(0)UAV MDCT BS4 less reward it should receive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
122
+ page_content=' Thus, we set a time-based penalty rtime t with negative value in each step to build the connection between reward and our objective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
123
+ page_content=' If the agent fails to finish the mission in given time limit Tmax, it will receive a failure penalty rfail t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
124
+ page_content=' The time-based penalty rtime t is further modified according to the data size collected by UAV in the current step to give higher reward to the actions which result to larger transmission rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
125
+ page_content=' The reward of the discrete agent is given by rch t = \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 rtime t U N � n=1 M � m=1 tslotRn,m[t], if t ≤ Tmax rfail t , if t > Tmax (11) B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
126
+ page_content=' Continuous Agent for Trajectory Optimization The trajectory of UAV is optimized by a continuous RL agent, whose action, state and reward are defined as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
127
+ page_content=' Mission Area slot max 2t V slot max 2t V Action Space (t+1) Traj ta Action Space (t) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
128
+ page_content=' 4: Action space of the continuous agent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
129
+ page_content=' 1) Action of the continuous agent: As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
130
+ page_content=' 4, the action of the continuous agent atraj t determines the location of UAV in the next step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
131
+ page_content=' atraj t is defined as atraj t = {ax t , ay t }, ax t , ay t ∈ [−tslotVmax, tslotVmax] , (12) where ax t , ay t denote the movement of UAV on the x-axis and y-axis respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
132
+ page_content=' 2) State of the Continuous Agent: The state of the con- tinuous agent is similar to the discrete agent, which includes the current channel gain h[t] and remaining data at MDCs Ures[t].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
133
+ page_content=' In addition, the current horizontal location of UAV (xuav[t], yuav[t]) is also included in the state Straj t , which is given by Straj t = {Ures[t], h[t], (xuav[t], yuav[t])} (13) 3) Reward of the Continuous Agent: The reward of the continuous agent is modified based on rch t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
134
+ page_content=' We give additional penalty to the agent if the location of UAV exceeds reasonable region to regularize the trajectory decision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
135
+ page_content=' The reward of the continuous agent is given by rtraj t = � rch t , if xuav[t] ∈ [xmin, xmax], yuav[t] ∈ [ymin, ymax] rch t + rpenalty t , otherwise (14) IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
136
+ page_content=' IMPLEMENTATION OF PROXIMAL POLICY OPTIMIZATION (PPO) PPO is a state-of-art on policy reinforcement learning al- gorithm which supports both discrete and continuous actions spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
137
+ page_content=' In this section, we introduce the preliminary and implementation of PPO algorithm for discrete agent (channel allocation) and continuous agent (UAV trajectory optimiza- tion).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
138
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
139
+ page_content=' Implementation of Continuous and Discrete PPO 1) Critic Network: The critic network is responsible to give scores to the actor according to the current state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
140
+ page_content=' The architectures of both discrete and continuous critic networks are the same, which consists of multiple fully connected layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
141
+ page_content=' Loss function of continuous and discrete critic networks are given by Jtraj(φ) = � V traj φ (straj t ) − � rtraj t + γV traj φ′ (straj t+1) ��2 , (15) Jch(φ) = � V ch φ (sch t ) − � rch t + γV ch φ′ (sch t+1) ��2, (16) where Ltraj t (φ) and Lch t (φ) denote the loss function for the critic network of continuous and discrete agent respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
142
+ page_content=' V traj φ′ (straj t+1) and V ch φ′ (sch t+1) are the state value estimations generated by the old critic networks φ ′ traj and φ ′ ch respectively, which are saved in during the interaction with environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
143
+ page_content=' V traj φ (straj t ) and V ch φ (sch t ) are the state value estimations gener- ated by the current critic networks φtraj and φch , which are updated in each training iteration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
144
+ page_content=' 2) Actor Network: As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
145
+ page_content=' 5, the architecture of discrete and continuous actor network are different due to the difference in action space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
146
+ page_content=' The continuous actor network for trajectory control is a network for value approximation, which outputs a µ head and a σ head which denotes the mean and variance of Gaussian dis- tributions respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
147
+ page_content=' Each head includes two variables, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
148
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
149
+ page_content=', {µx, µy} and {σx, σy}, which denotes the x-axis and y-axis respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
150
+ page_content=' The action {ax[t], ay[t]} is generated by sampling from the obtained distribution N(µx, σ2 x) and N(µy, σ2 y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
151
+ page_content=' The discrete actor network for channel allocation is a network for classification, which outputs the probabilities Pr(a) of each action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
152
+ page_content=' The agent sample its action from the obtained action probabilities with ε-greedy, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
153
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
154
+ page_content=', the output action is generated by sampling from Pr(a) with probability 1−ǫ, and selected randomly with probability ǫ for exploration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
155
+ page_content=' The output action of the discrete actor network is encoded, which will be decoded into one-hot indicators before being utilized for further calculation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
156
+ page_content=' Loss functions of actor networks in our implementation adopt the trick of clipping to simplify the calculation, which is proposed by J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
157
+ page_content=' Schulman et al [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
158
+ page_content=' The PPO-PPO algorithm is summarized in Algorithm 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
159
+ page_content=' (0)5 Fully Conneted Layers Softmax Layer State Head � Head � Head � Head � Trajectory 2 ( , ) N � � Sample From 2 ( , ) N � � Sample From Fully Conneted Layers Softmax Layer State Channel Allocation Pr( ) a Action Probability � Sample with -Greedy Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
160
+ page_content=' 5: Actor Network Architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
161
+ page_content=' Algorithm 1 PPO-PPO Initiate: Remaining data at MDCs, UAV location, network parameters of discrete and continuous agent 1: for iteration t = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
162
+ page_content='.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
163
+ page_content=' do 2: Discrete agent execute action according to the current state and policy πch θ′ � ach t |sch t � to obtain the channel allocation indicator matrix ˆI[t] 3: With given ˆI[t],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
164
+ page_content=' the continuous agent for trajectory control execute action according to the current state and policy πtraj θ′ � atraj t |straj t � ˆI[t] 4: Agent interact with environment to get reward rch t and rtraj t for discrete agent and continuous agent respectively 5: Update state straj t ← straj t+1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
165
+ page_content=' sch t ← sch t+1 6: Save trajectory � sch t ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
166
+ page_content=' ach t ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
167
+ page_content=' rch t ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
168
+ page_content=' sch t+1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
169
+ page_content=' V ch φ′ (sch t ) � and � straj t ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
170
+ page_content=' atraj t ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
171
+ page_content=' rtraj t ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
172
+ page_content=' straj t ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
173
+ page_content=' V traj φ′ (straj t ) � 7: for every i iterations do 8: Shuffle data order and make batch with size bs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
174
+ page_content=' 9: for j=0, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
175
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
176
+ page_content=', T bs − 1 do 10: Calculate loss functions of critic and actor net- works and update network parameters by gradient ascent 11: end for 12: end for 13: end for V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
177
+ page_content=' SIMULATION RESULTS The performance of our proposed double-agent reinforce- ment learning approach for Metaverse data collecting is tested and compared with two benchmark scenarios (DQN-PPO and duelling DQN-PPO), whose discrete agents are replaced with DQN or duelling DQN algorithm respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
178
+ page_content=' The simulation settings are given in Table I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
179
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
180
+ page_content=' 6 presents the required time to complete data collecting mission of our proposed algorithm and two benchmark algo- rithms with given data size U = 50Mb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
181
+ page_content=' At the beginning of the training process (0-1000 episodes),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
182
+ page_content=' all three algorithms TABLE I: Constant Parameter Setting Parameter and Physical Meaning Value Number of channels(M) 3 Default number of users (N) 5 Bandwidth (B) 5MHz Transmission power of MDCs 5W Frequency (f) 28GHz (5G spectrum) Power of Gaussian noise (σ2) 5 × 10−8W Maximum speed of UAV 10m/s Mission area size (L) 200m are unstable because the reasonable policy has not been established,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
183
+ page_content=' and the agents are exploring the environment fre- quently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
184
+ page_content=' From 1000 episodes to 2000 episodes, our proposed PPO-PPO algorithm shows the tendency of convergence while the benchmark DQN-PPO algorithm is still very unstable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
185
+ page_content=' The duelling DQN-PPO algorithm also starts to finish the mission within a shorter time period, but is less stable than the PPO-PPO algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
186
+ page_content=' DQN-PPO algorithm shows poor convergence performance in this task, but both PPO-PPO and duelling DQN-PPO algorithms are able to converge within 5000 episodes with similar performance due to their common implementation of the advantage function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
187
+ page_content=' 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 Episodes 30 35 40 45 50 55 60 Time (s) DQN-PPO Duelling DQN-PPO PPO-PPO Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
188
+ page_content=' 6: Comparison of required time to finish mission with data size U = 50Mb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
189
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
190
+ page_content=' 7 presents the mission completing time experiment with a similar parameter setting as in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
191
+ page_content=' 6, but the data size is increased to U = 100Mb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
192
+ page_content=' All three algorithms need more time to finish the data collecting mission due to larger data size, and the PPO-PPO algorithm shows similar convergence performance as in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
193
+ page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
194
+ page_content=' However, the dueling DQN-PPO algorithm becomes unstable in the training process, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
195
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
196
+ page_content=', some sudden increase in the required time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
197
+ page_content=' The superior stability of PPO over dueling DQN can be attributed to its policy update constraint by equipping it with a KL-divergence penalty between the old policy (the policy for sampling data) and the updated policy (the policy used for training and evaluating).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
198
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
199
+ page_content=' 8 and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
200
+ page_content=' 9 are the corresponding rewards in the train- ing processes of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
201
+ page_content=' 6 and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
202
+ page_content=' 7 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
203
+ page_content=' We consider the reward given to the agent as guidance but not the exact objective function in the implementation of reinforcement 6 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 Episodes 60 70 80 90 100 110 120 130 140 150 160 Time (s) DQN-PPO Duelling DQN-PPO PPO-PPO Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
204
+ page_content=' 7: Comparison of required time to finish mission with data size U = 100Mb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
205
+ page_content=' learning algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
206
+ page_content=' The tendencies of the reward and the required time are highly similar although they are generated from different formulas, which indicates that our reward design successfully leads the agent to learn a better policy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
207
+ page_content=' 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 Episodes 3000 2500 2000 1500 1000 500 0 Reward DQN-PPO Duelling DQN-PPO PPO-PPO Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
208
+ page_content=' 8: Comparison of reward with data size U = 50Mb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
209
+ page_content=' The mission completing time comparison for the case with eight users is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
210
+ page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
211
+ page_content=' The duelling DQN-PPO algorithm shows similar average performance as the PPO-PPO algorithm but less stability, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
212
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
213
+ page_content=', the required time sometimes jumps to extremely large values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
214
+ page_content=' Taking the stability into consideration, the PPO-PPO algorithm is better than duelling DQN-PPO algorithm in general.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
215
+ page_content=' The DQN-PPO algorithm is obviously not able to converge in this experiment, so we do not consider it a candidate for our double-agent reinforcement learning algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
216
+ page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
217
+ page_content=' CONCLUSION In this paper, we propose a double-agent reinforcement ar- chitecture for data collecting and synchronization in Metavese, and adopt PPO algorithm for both discrete and continuous agents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
218
+ page_content=' Two agents with different action space and state space work in a cascade manner for channel allocation and UAV 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 Episodes 3000 2500 2000 1500 1000 500 Reward DQN-PPO Duelling DQN-PPO PPO-PPO Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
219
+ page_content=' 9: Comparison of reward with data size U = 100Mb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
220
+ page_content=' 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 Episodes 50 100 150 200 Time (s) DQN-PPO Duelling DQN-PPO PPO-PPO Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
221
+ page_content=' 10: Comparison of reward with data size U = 50Mb and 8 users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
222
+ page_content=' trajectory control to form a combined action in each iteration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
223
+ page_content=' Our experiments indicate the advantage of the PPO-PPO in both the required time for the mission and the stability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
224
+ page_content=' In future work, we will consider transmission power allocation and test the performance of other state-of-art reinforcement learning algorithms in our proposed architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
225
+ page_content=' REFERENCES [1] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
226
+ page_content=' Wang and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
227
+ page_content=' Zhao, “Mobile Edge Computing, Metaverse, 6G Wireless Communications, Artificial Intelligence, and Blockchain: Survey and Their Convergence,” arXiv preprint arXiv:2209.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
228
+ page_content='14147, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
229
+ page_content=' [2] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
230
+ page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
231
+ page_content=' Lee, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
232
+ page_content=' Braud, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
233
+ page_content=' Zhou, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
234
+ page_content=' Wang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
235
+ page_content=' Xu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
236
+ page_content=' Lin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
237
+ page_content=' Kumar, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
238
+ page_content=' Bermejo, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
239
+ page_content=' Hui, “All one needs to know about metaverse: A complete survey on technological singularity, virtual ecosystem, and research agenda,” arXiv preprint arXiv:2110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
240
+ page_content='05352, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
241
+ page_content=' [3] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
242
+ page_content=' Si, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
243
+ page_content=' Zhao, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
244
+ page_content=' Han, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
245
+ page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
246
+ page_content=' Lam, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
247
+ page_content=' Liu, “Resource Allocation and Resolution Control in the Metaverse with Mobile Augmented Reality,” arXiv preprint arXiv:2209.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
248
+ page_content='13871, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
249
+ page_content=' [4] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
250
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
251
+ page_content=' Chua, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
252
+ page_content=' Yu, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
253
+ page_content=' Zhao, “Resource allocation for mobile metaverse with the Internet of Vehicles over 6G wireless commu- nications: A deep reinforcement learning approach,” arXiv preprint arXiv:2209.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
254
+ page_content='13425, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
255
+ page_content=' [5] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
256
+ page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
257
+ page_content=' Han et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
258
+ page_content=', “From visual culture in the immersive metaverse to visual cognition in education,” in Cognitive and Affective Perspectives on Immersive Technology in Education.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
259
+ page_content=' IGI Global, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
260
+ page_content=' 67–84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
261
+ page_content=' [6] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
262
+ page_content='-E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
263
+ page_content=' Yu, “Exploration of educational possibilities by four metaverse types in physical education,” Technologies, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
264
+ page_content=' 10, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
265
+ page_content=' 5, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
266
+ page_content=' 104, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
267
+ page_content=' 7 [7] Murat Yilmaz, Tuna Hacalo˘glu and Paul Clarke , “Examining the use of non-fungible tokens (NFTs) as a trading mechanism for the metaverse,” in European Conference on Software Process Improvement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
268
+ page_content=' Springer, 2022, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
269
+ page_content=' 18–28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
270
+ page_content=' [8] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
271
+ page_content=' Jungherr and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
272
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
273
+ page_content=' Schlarb, “The Extended Reach of Game Engine Companies: How Companies Like Epic Games and Unity Technologies Provide Platforms for Extended Reality Applications and the Metaverse,” Social Media+ Society, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
274
+ page_content=' 8, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
275
+ page_content=' 2, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
276
+ page_content=' [9] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
277
+ page_content=' Agiwal, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
278
+ page_content=' Roy, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
279
+ page_content=' Saxena, “Next generation 5G wireless networks: A comprehensive survey,” IEEE Communications Surveys & Tutorials, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
280
+ page_content=' 18, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
281
+ page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
282
+ page_content=' 1617–1655, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
283
+ page_content=' [10] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
284
+ page_content=' Refonaa, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
285
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
286
+ page_content=' Sebastian, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
287
+ page_content=' Ramanan, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
288
+ page_content=' Lakshmi, “Effective identification of black money and fake currency using NFC, IoT and an- droid,” in 2018 International Conference on Communication, Computing and Internet of Things (IC3IoT).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
289
+ page_content=' IEEE, 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
290
+ page_content=' 275–278.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
291
+ page_content=' [11] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
292
+ page_content=' Kohli and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
293
+ page_content=' Kohli, “A Study of Preference for Online Trading Account versus Offline Trading Account by Different Age Group,” From the Desk of Editor, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
294
+ page_content=' 42, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
295
+ page_content=' [12] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
296
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
297
+ page_content=' Mane-Deshmukh, “Designing of Wireless Sensor Network to Protect Agricultural Farm from Wild Animals,” i-Manager’s Journal on Information Technology, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
298
+ page_content=' 7, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
299
+ page_content=' 4, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
300
+ page_content=' 30, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
301
+ page_content=' [13] Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
302
+ page_content=' Wu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
303
+ page_content=' Zeng, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
304
+ page_content=' Zhang, “Joint trajectory and communication design for multi-UAV enabled wireless networks,” IEEE Transactions on Wireless Communications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
305
+ page_content=' 17, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
306
+ page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
307
+ page_content=' 2109–2121, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
308
+ page_content=' [14] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
309
+ page_content=' Lu, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
310
+ page_content=' Si, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
311
+ page_content=' Gao, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
312
+ page_content=' Han, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
313
+ page_content=' Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
314
+ page_content=' Wu, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
315
+ page_content=' Gong, “Trajectory and Resource Optimization in OFDM-Based UAV-Powered IoT Net- work,” IEEE Transactions on Green Communications and Networking, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
316
+ page_content=' 5, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
317
+ page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
318
+ page_content=' 1259–1270, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
319
+ page_content=' [15] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
320
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
321
+ page_content=' Ng, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
322
+ page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
323
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
324
+ page_content=' Lim, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
325
+ page_content='-N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
326
+ page_content=' Dai, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
327
+ page_content=' Xiong, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
328
+ page_content=' Huang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
329
+ page_content=' Niyato, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
330
+ page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
331
+ page_content=' Hua, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
332
+ page_content=' Leung, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
333
+ page_content=' Miao, “Joint auction-coalition formation frame- work for communication-efficient federated learning in UAV-enabled internet of vehicles,” IEEE Transactions on Intelligent Transportation Systems, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
334
+ page_content=' 22, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
335
+ page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
336
+ page_content=' 2326–2344, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
337
+ page_content=' [16] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
338
+ page_content=' Cui, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
339
+ page_content=' Liu, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
340
+ page_content=' Nallanathan, “Multi-agent reinforcement learning- based resource allocation for UAV networks,” IEEE Transactions on Wireless Communications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
341
+ page_content=' 19, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
342
+ page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
343
+ page_content=' 729–743, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
344
+ page_content=' [17] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
345
+ page_content=' Luong, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
346
+ page_content=' Gagnon, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
347
+ page_content='-N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
348
+ page_content=' Tran, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
349
+ page_content=' Labeau, “Deep reinforcement learning-based resource allocation in cooperative UAV-assisted wireless networks,” IEEE Transactions on Wireless Communications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
350
+ page_content=' 20, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
351
+ page_content=' 11, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
352
+ page_content=' 7610–7625, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
353
+ page_content=' [18] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
354
+ page_content=' Rodriguez-Ramos, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
355
+ page_content=' Sampedro, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
356
+ page_content=' Bavle, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
357
+ page_content=' De La Puente, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
358
+ page_content=' Campoy, “A deep reinforcement learning strategy for UAV autonomous landing on a moving platform,” Journal of Intelligent & Robotic Sys- tems, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
359
+ page_content=' 93, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
360
+ page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
361
+ page_content=' 351–366, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
362
+ page_content=' [19] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
363
+ page_content=' Fu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
364
+ page_content=' Tang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
365
+ page_content=' Hao, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
366
+ page_content=' Lei, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
367
+ page_content=' Chen, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
368
+ page_content=' Fan, “Deep multi-agent reinforcement learning with discrete-continuous hybrid action spaces,” arXiv preprint arXiv:1903.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
369
+ page_content='04959, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
370
+ page_content=' [20] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
371
+ page_content=' Jiang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
372
+ page_content=' Deng, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
373
+ page_content=' Nallanathan, “Deep reinforcement learning for discrete and continuous massive access control optimization,” in ICC 2020-2020 IEEE International Conference on Communications (ICC).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
374
+ page_content=' IEEE, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
375
+ page_content=' 1–7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
376
+ page_content=' [21] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
377
+ page_content=' Chu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
378
+ page_content=' Lee, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
379
+ page_content=' Kim, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
380
+ page_content=' Kim, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
381
+ page_content=' Yoon, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
382
+ page_content=' Chung, “Review of Of- fline Payment Function of CBDC Considering Security Requirements,” Applied Sciences, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
383
+ page_content=' 12, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
384
+ page_content=' 9, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
385
+ page_content=' 4488, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
386
+ page_content=' [22] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
387
+ page_content=' Christodorescu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
388
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
389
+ page_content=' Gu, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
390
+ page_content=' Kumaresan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
391
+ page_content=' Minaei, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
392
+ page_content=' Ozdayi, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
393
+ page_content=' Price, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
394
+ page_content=' Raghuraman, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
395
+ page_content=' Saad, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
396
+ page_content=' Sheffield, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
397
+ page_content=' Xu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
398
+ page_content=', “Towards a two-tier hierarchical infrastructure: An offline payment system for Central Bank digital currencies,” arXiv preprint arXiv:2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
399
+ page_content='08003, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
400
+ page_content=' [23] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
401
+ page_content=' Yusuf, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
402
+ page_content=' Tanghe, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
403
+ page_content=' Challita et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
404
+ page_content=', “Experimental characterization of V2I radio channel in a suburban environment,” in 2019 13th European Conference on Antennas and Propagation (EuCAP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
405
+ page_content=' IEEE, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
406
+ page_content=' 1–5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
407
+ page_content=' [24] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
408
+ page_content=' You and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
409
+ page_content=' Zhang, “3D trajectory optimization in Rician fading for UAV-enabled data harvesting,” IEEE Transactions on Wireless Commu- nications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
410
+ page_content=' 18, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
411
+ page_content=' 6, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
412
+ page_content=' 3192–3207, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
413
+ page_content=' [25] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
414
+ page_content=' Schulman, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
415
+ page_content=' Wolski, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
416
+ page_content=' Dhariwal, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
417
+ page_content=' Radford, and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
418
+ page_content=' Klimov, “Prox- imal policy optimization algorithms,” arXiv preprint arXiv:1707.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
419
+ page_content='06347, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9NAzT4oBgHgl3EQfgvyq/content/2301.01474v1.pdf'}
9NE4T4oBgHgl3EQf3Q1N/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f3d114cf7ca565c0d655a62b822febfcc5ca036060f579d1855a44fe947ac53a
3
+ size 3407917
9tE5T4oBgHgl3EQfRQ5h/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:22250dc24c8e6afb9e831e5f4f8b13d04ea39afa3014ecf3deee7287a050f6dd
3
+ size 12779565
AdFAT4oBgHgl3EQfrh5X/content/2301.08653v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0f0baaa5e94e25cdaf3292272fd3179a525cec1a57c5606bb44856a29985ba14
3
+ size 855657
AdFAT4oBgHgl3EQfrh5X/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67fe2720ceb1f1dd23b366e223c544a76f63d58579fd8b43a0a35268a6acb110
3
+ size 2818093
AdFAT4oBgHgl3EQfrh5X/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3bd9c0a9fc2a0ae69f78f07f4ab312fc40bc5d5f01aa6bd952314dbfe0341341
3
+ size 99734
B9AzT4oBgHgl3EQfh_2U/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a82b969c9ed4fc228e106edcf195b43531fbc615df8ee9d8c78d6478fadbf6c4
3
+ size 10747949
B9E4T4oBgHgl3EQf5Q72/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e9848aae298ddec78e3689d566c9d3f09f7d18c39ee91b7e00df3ba190005212
3
+ size 3538989
B9E4T4oBgHgl3EQf5Q72/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a52f80558a819d40806b69cadfe90dc20a13b8a268f19ce77d66d26b763a3d66
3
+ size 141624
BNE1T4oBgHgl3EQfVgSF/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c01b385dcdfcf21405ce9d95d889b4ff490216134451e4eed6f35b925c956f1
3
+ size 242222
BtAzT4oBgHgl3EQfh_1H/content/tmp_files/2301.01492v1.pdf.txt ADDED
@@ -0,0 +1,1191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.01492v1 [cs.IT] 4 Jan 2023
2
+ A Pulse-Shape Binary Multiplex Modulation
3
+ Pavel Loskot, Senior Member, IEEE
4
+ Abstract
5
+ The root raised-cosine pulse commonly used in linear digital modulations yields exactly two
6
+ intersymbol interference components from the preceding and the subsequent data symbols, provided
7
+ that the roll-off factor is 100% and the modulation packing factor is set to 50%. This can be exploited
8
+ to symmetrically multiplex two data streams of transmitted symbols. Hence, the proposed scheme is
9
+ referred to as pulse-shape binary multiplex modulation. The demodulation of the two multiplexed
10
+ data streams at the receiver can be aided by making the streams mutually orthogonal. It can be
11
+ achieved by superposition modulation with symbol-by-symbol interference cancellation, proper design
12
+ of transmission sequences interleaving pilot and data symbols in order to also enable channel estimation,
13
+ and using orthogonal spreading sequences. The presented numerical results indicate that the proposed
14
+ modulation scheme can outperform Nyquist signaling in terms of transmission reliability or the time
15
+ required for transmitting the whole sequence of data symbols. For instance, differentially encoded
16
+ modulation symbols can be transmitted twice as fast by the proposed modulation scheme with a 3
17
+ dB penalty in signal-to-noise ratio over additive white Gaussian noise channels.
18
+ Index Terms
19
+ Intersymbol-interference; linear modulation; Nyquist signaling; partial response signaling; root raise
20
+ cosine pulse; sequence multiplexing.
21
+ I. INTRODUCTION
22
+ The spectrum scarcity necessities the use of spectrally efficient modulations. The Nyquist
23
+ signaling is a well established and robust technique for constructing linear digital modulations
24
+ which are employed in a vast majority of today’s communication systems. These modulation
25
+ schemes are often combined with channel encoding to improve the transmission reliability and
26
+ even approach the channel capacity. An alternative strategy is to assume modulations having
27
+ a controlled level of intersymbol interference (ISI), which can increase the rate of information
28
+ transmission as well as act as a form of information encoding for improving the transmission
29
+ The author is with ZJU-UIUC Institute, Haining, China (e-mail: pavelloskot@intl.zju.edu.cn).
30
+ This work was supported by a research grant from Zhejiang University.
31
+
32
+ PULSE-SHAPE BINARY MULTIPLEX MODULATION
33
+ 1
34
+ reliability [1], albeit at the cost of increased detection complexity at the receiver. Such so-called
35
+ faster-than-Nyquist (FTN) schemes are linear modulations that can be used over band-limited
36
+ channels [2].
37
+ The renewed interest in FTN signaling schemes goes back to the early 2000’s [3]. However,
38
+ a closely related idea of partial response linear modulations with controlled ISI appeared much
39
+ earlier [4]. The achievable spectral efficiency of coded and uncoded FTN schemes is evaluated
40
+ in [2], [5], and [6]. The observation that up to 25% increase in the transmission rate is possible
41
+ without deteriorating the error performance is known as the Mazo limit [3], [2], [7], [6]. The
42
+ energy and complexity costs of FTN signaling are reviewed in [2].
43
+ The FTN schemes can be implemented both in time and in frequency domains [2], [8]. An
44
+ orthogonal FTN scheme based on OFDM was designed in [9]. Alternatively, Nyquist signaling
45
+ with dual root raised-cosine (RRC) pulses akin to duobinary modulation has been investigated
46
+ in [10]. This scheme was further refined for the RRC pulses with zero roll-off in [11]. The link
47
+ between duobinary modulation and FTN signaling has been pointed out in [1].
48
+ An important issue is how to efficiently perform the detection of transmitted symbols at the
49
+ receiver. Unlike the ISI due to multipath propagation, the ISI created by FTN signaling also
50
+ correlates samples of additive noise. The optimum detection necessitates the use of whitening
51
+ matched filter (WMF) prior to symbol decisions. The ISI at the detector input can be equivalently
52
+ represented as an auxiliary channel [5], [6]. The output signal of such channel has a trellis-like
53
+ structure, which can be optimally equalized by the Viterbi, BCJR and other such algorithms
54
+ with varying complexity [2], [7], [6]. These decoding methods can approach the performance
55
+ of zero-ISI (Nyquist) modulations over additive white Gaussian noise (AWGN) channels [2].
56
+ The symbol-by-symbol detector for FTN signals was devised in [6] and [12]. The detection of
57
+ FTN signals with oversampling and one-bit quantization was developed in [5]. A low complexity
58
+ linear equalization for FTN signaling was designed in [13]. The joint channel estimation and
59
+ decoding of FTN signals was studied in [14] and in [15].
60
+ Nearly all investigations of FTN signaling schemes in the literature assume the RRC modulation
61
+ pulse. The RRC pulse is parameterized by a time period, Tp, and a roll-off factor, α. Linear
62
+ modulations combine the RRC pulses weighted by data symbols, which are then transmitted
63
+ once every symbol period, Ts. The packing factor defines the relationship between Tp and Ts,
64
+ i.e., τ = 1 − Ts/Tp. The design and analysis of FTN signaling in the literature usually assumes
65
+ arbitrary values of 0 ≤ α ≤ 1 and 0 ≤ τ < 1. The search for good values of α and τ over an
66
+
67
+ PULSE-SHAPE BINARY MULTIPLEX MODULATION
68
+ 2
69
+ entire α − τ plane to allow symbol-by-symbol decisions was carried out in [12]. However and
70
+ importantly, the case of 100% bandwidth roll-off is rarely explicitly considered in the literature
71
+ [6]. The authors in [5] noticed that, for α = 1 and an arbitrary value of τ, the ISI is approximately
72
+ limited to the two previous and the two subsequent symbol samples.
73
+ In this paper, we show that the RRC pulse with 100% roll-off and 50% packing has a well-
74
+ defined ISI, which is exactly and symmetrically constrained to one previous and one subsequent
75
+ symbol. Such a unique property of the RRC pulse appears to remain unnoticed in the literature.
76
+ Interestingly, reference [1] states that ISI with only two components can be obtained with 100%
77
+ roll-off and 50% packing assuming prolate spheroidal wave pulses, but not RRC pulses. Although
78
+ such a modulation scheme can be assumed to be a special case of FTN signaling, it is argued
79
+ that RRC pulses having 100% roll-off and 50% packing offers symmetric multiplexing of the
80
+ two transmitted data streams. For this reason, such a partial response signaling is referred to
81
+ in this paper as a pulse-shape binary multiplexing (PSBM) modulation. The main task then
82
+ is how to separate the two multiplexed data streams at the receiver with acceptable reliability
83
+ and complexity. As with other partial response signalings, the modulation constellation and
84
+ the dependency between transmitted symbols must be carefully selected in order to trade-
85
+ off the performance and the decoding complexity. We design several transmission sequences
86
+ interleaving pilot and data symbols, discuss superposition modulation with symbol-by-symbol
87
+ sequential interference cancellation (SIC), and also consider orthogonal spreading sequences to
88
+ aid separation of the data streams at the receiver. In addition, the performance of multiplexed
89
+ differentially encoded phase-shift keying (PSK) modulation symbols is evaluated numerically.
90
+ The numerical results identify several cases when the proposed PSBM modulation outperforms
91
+ the Nyquist signaling in terms of either transmission reliability or the time required to transmit
92
+ a given number of data symbols.
93
+ The rest of this paper is organized as follows. Linear modulation schemes that are related to
94
+ the proposed pulse-shape multiplexing signaling are outlined in Section II. System model and
95
+ the received signal structure are described in Section III. The proposed pulse-shape multiplexing
96
+ modulation is defined in Section IV including the design of transmitted symbol sequences.
97
+ Numerical results are presented in Section V. Section VI concludes the paper.
98
+ We adopt the following notations: E[·] is expectation, ⊛ is convolution, | · | is absolute value,
99
+ (·)∗ is complex conjugate, Re{·} and Im{·}, respectively, denote the real and imaginary part
100
+ of a complex number, Card{·} is cardinality of a set, (·)T is matrix transpose, (·)−1 is matrix
101
+
102
+ PULSE-SHAPE BINARY MULTIPLEX MODULATION
103
+ 3
104
+ inverse, and ∥·∥ is the Euclidean norm of a matrix or vector.
105
+ II. RELATED LINEAR MODULATION SCHEMES
106
+ A linearly modulation signal is constructed as,
107
+ x(t) =
108
+
109
+ k
110
+ sk p(t − kTs)
111
+ (1)
112
+ where sk are M-ary modulation symbols transmitted every symbol period, Ts, and p(t) denotes
113
+ a deterministic pulse-shape, which is also known at the receiver. The stationary sequence of
114
+ transmitted symbols, sk, has zero-mean, and the variance, E[|sk|2] = Es. The symbols are usually
115
+ obtained as output of a finite-state modulator, i.e.,
116
+ sk = s(qk, ck)
117
+ (2)
118
+ where the states, qk, represent modulation memory, and the data symbols, ck, each carry, log2 M,
119
+ bits of input information. In this paper, p(t) is assumed to be the unit-energy RRC pulse, [4]
120
+ p(t) = rrcα(t/Ts)
121
+ √Ts
122
+ (3)
123
+ where
124
+ rrcα(t) =
125
+ 1
126
+ 1 − 16α2t2
127
+ �sin ((1 − α)πt)
128
+ πt
129
+ + 4α cos ((1 + α)πt)
130
+ π
131
+
132
+ .
133
+ (4)
134
+ The roll-off factor, 0 ≤ α ≤ 1, however, it is possible to also consider pulse shapes having a
135
+ roll-off greater than 100%.
136
+ Since the sequence of symbols, sk, is stationary, the auto-correlation, Rs(i − j) = E
137
+
138
+ sis∗
139
+ j
140
+
141
+ .
142
+ The corresponding power-spectrum density (PSD) of signal (1) is computed as, [4]
143
+ Sx(f) = 1
144
+ Ts
145
+ |P(f)|2 �
146
+ k
147
+ Rs(k) ej2πfkTs
148
+ (5)
149
+ where P(f) denotes the Fourier transform of p(t).
150
+ Correlative coding assumes the discrete modulator (2) to be a finite impulse response (FIR)
151
+ filter, i.e.,
152
+ sk =
153
+ K−1
154
+
155
+ i=0
156
+ vick−i.
157
+ (6)
158
+
159
+ PULSE-SHAPE BINARY MULTIPLEX MODULATION
160
+ 4
161
+ The filter weights, vi, are normalized, so that, �
162
+ i |vi|2 = 1. More importantly, with a change in
163
+ indices, modulated signal (1) with symbols (6) can be rewritten as,
164
+ x(t) =
165
+
166
+ k
167
+ K−1
168
+
169
+ i=0
170
+ vi ck−ip(t − kTs)
171
+ =
172
+
173
+ k
174
+ ck
175
+ K−1
176
+
177
+ i=0
178
+ vi p(t − (k + i)Ts) =
179
+
180
+ k
181
+ ck ˜p(t − kTs)
182
+ (7)
183
+ where the compound pulse, ˜p(t) = �K−1
184
+ i=0 vi p(t − iTs).
185
+ Duobinary modulation is a special case of correlative coding, such that the FIR filter has
186
+ only two non-zero weights, vo = v1 = 1/
187
+
188
+ 2, the modulation symbols are binary, i.e., ck ∈
189
+ {−√Es, +√Es}, and the RRC pulse has the smallest possible roll-off, α = 0. Modified duobinary
190
+ modulation assumes instead the weights, v0 = 1/
191
+
192
+ 2, v1 = 0, and v2 = −1/
193
+
194
+ 2.
195
+ The following modulations assume the RRC pulse-shape with an arbitrary roll-off value.
196
+ Differential PSK constructs the transmitted symbols as,
197
+ sk = ck sk−1
198
+ (8)
199
+ where the data symbols, ck ∈ {√Es ej2π(i−1)/M}, i = 1, 2, . . . , M. Generalized shift-keying
200
+ extends the modulation alphabet of amplitude or phase shift-keying modulations with a zero
201
+ symbol [16]. Offset-quadrature (M = 4) PSK delays the imaginary part of the modulated signal
202
+ by half a symbol period, i.e.,
203
+ x(t) =
204
+
205
+ k
206
+ Re{ck} p(t − kTs) + j Im{ck} p(t − kTs − Ts/2).
207
+ (9)
208
+ Finally, FTN signaling is a linear modulation described by eq. (1). More importantly, the RRC
209
+ pulse-shape in (3) can now be scaled by, Tp = Ts/(1 − τ), instead of Ts, where 0 ≤ τ < 1 is
210
+ so-called the packing factor, i.e.,
211
+ x(t) =
212
+
213
+ k
214
+ skp(t − k(1 − τ)Tp) =
215
+
216
+ k
217
+ skp(t − kTs)
218
+ (10)
219
+ so that Tp is a design parameter of the pulse, p(t), whereas, Ts = (1 −τ)Tp, denotes the symbol
220
+ period. Thus, τ = 0 packing corresponds to a conventional Nyquist signaling, whereas τ = 1
221
+ packing would completely overlap the transmitted symbols. More importantly, the PSD of (10)
222
+ is still given by eq. (5), and it is otherwise completely independent of the packing factor, τ.
223
+
224
+ PULSE-SHAPE BINARY MULTIPLEX MODULATION
225
+ 5
226
+ III. RECEIVED SIGNAL
227
+ The standard wireless channel model with L propagation paths is an FIR filter with the impulse
228
+ response,
229
+ ˜h(t) =
230
+ L
231
+
232
+ l=1
233
+ hl(t)δ(t − τl).
234
+ (11)
235
+ The signal delays, τl, are assumed to be constant. The path attenuations, hl(t), are zero-mean
236
+ circularly symmetric Gaussian processes. These processes are stationary, and generally mutually
237
+ correlated. They have a defined auto-correlation, Rh(∆t), which determines the coherence bandwidth.
238
+ For narrow-band signals, the number of paths, L, is small. For L = 1, the channel model (11)
239
+ becomes frequency non-selective. In low-mobility scenarios, the channel attenuations, hl(t), are
240
+ often assumed to be constant over blocks of transmitted symbols, and independent between the
241
+ successive blocks, which is often referred to as a block fading model.
242
+ The received signal corresponding to multi-path propagation model (11) is written as,
243
+ y(t) = ˜h(t) ⊛ x(t) + w(t)
244
+ =
245
+ L
246
+
247
+ l=1
248
+ hl(t)x(t − τl) + w(t)
249
+ (12)
250
+ where w(t) is a zero-mean stationary circularly symmetric AWGN with the variance, σ2
251
+ w =
252
+ E[|w(t)|2].
253
+ The received signal is filtered through a filter matched to the transmitted pulse, p(t), and
254
+ synchronously sampled at a rate, 1/Ts. In particular, assuming RRC pulses, the matched filter,
255
+ p∗(−t) = p(t), and provided that the channel attenuations are constant over blocks of transmitted
256
+
257
+ PULSE-SHAPE BINARY MULTIPLEX MODULATION
258
+ 6
259
+ symbols, the received samples are modeled as,
260
+ rn =y(t) ⊛ p∗(−t)
261
+ ���
262
+ t=nTs+τ0
263
+ =
264
+ L
265
+
266
+ l=1
267
+ hl x(t − τl) ⊛ p(t)
268
+ ���
269
+ t=nTs+τ0 + w(t) ⊛ p(t)
270
+ ���
271
+ t=nTs+τ0
272
+ =
273
+ L
274
+
275
+ l=1
276
+ hl
277
+
278
+ k
279
+ sk
280
+ � ∞
281
+ −∞
282
+ p(ζ + (n − k)Ts − τl)p(ζ − τ0) dζ
283
+ +
284
+ � ∞
285
+ −∞
286
+ w(ζ + nTs)p(ζ − τ0) dζ
287
+ =
288
+
289
+ k
290
+ sk
291
+ L
292
+
293
+ l=1
294
+ hl pn−k,l + wn =
295
+
296
+ k
297
+ sk˜pn−k + wn
298
+ =sk˜p0 +
299
+
300
+ k
301
+ n̸=k
302
+ sk˜pn−k
303
+
304
+ ��
305
+
306
+ ISI
307
+ +wn.
308
+ (13)
309
+ The timing offset, τ0, at the receiver can be optimized to minimize the ISI term (in some sense)
310
+ in (13) defined as,
311
+ ˜pn−k =
312
+ L
313
+
314
+ l=1
315
+ hl
316
+ � ∞
317
+ −∞
318
+ p(ζ + (n − k)Ts − τl)p(ζ − τ0) dζ, n ̸= k.
319
+ (14)
320
+ Thus, the ISI arises when the orthogonality between the transmitter and the receiver pulses
321
+ is violated, for example, due to multi-path propagation, time-synchronization errors between
322
+ transmitter and receiver, and also due to symbol-period compression in FTN signaling schemes
323
+ [4].
324
+ An interesting question is how much ISI is produced for different combinations of parameters
325
+ α and τ in FTN signaling schemes using RRC pulses. Hence, define the function,
326
+ ISI(µ) = Card{|˜pk| > µ, k ̸= 0}
327
+ (15)
328
+ to be the number of ISI components that are greater than a given threshold, µ. Note that,
329
+ ISI(µ) ∈ {0, 2, 4, . . .}, due to even symmetry of the RRC pulses. Assuming different thresholds,
330
+ µ, the roll-off, 0 ≤ α ≤ 2, and the RRC pulses truncated to (−4Ts, +4Ts), the values ISI(µ) = 0
331
+ (red points) and ISI(µ) = 2 (blue points) in the α − τ plane are shown in Fig. 1. The empty
332
+ (white) spaces in Fig. 1 indicate the values, ISI(µ) > 2. It can be observed that by decreasing
333
+ the threshold, µ, several cases of interest for designing FTN signaling schemes start to emerge.
334
+ In particular, exactly two ISI components can be obtained for these parameters: α = 1.0 and
335
+ τ = 0.5, α = 1.07 and τ ∈ (0.70, 0.71), and α ∈ (1.65, 1.85) and τ ∈ (0.47, 0.50).
336
+
337
+ PULSE-SHAPE BINARY MULTIPLEX MODULATION
338
+ 7
339
+ 0
340
+ � ��
341
+ 1
342
+
343
+
344
+ 2
345
+ =0.01
346
+
347
+ �� �
348
+
349
+
350
+
351
+
352
+ =0.005
353
+
354
+  
355
+ 
356
+ 
357
+ 
358
+ 
359
+ =0.003
360
+ 0
361
+ 0.5
362
+ 1
363
+ 0
364
+ 1
365
+ 2
366
+ =0.002
367
+ 1−τ
368
+ 1−τ
369
+ α
370
+ α
371
+ Fig. 1. The ISI(µ) = 0 components (red points) and ISI(µ) = 2 components (blue points) for four different thresholds, µ.
372
+ IV. PULSE-SHAPE BINARY MULTIPLEX MODULATION
373
+ As indicated in Fig. 1, the RRC pulse with 100% roll-off and 50% packing has well-defined
374
+ and finite ISI components. In particular, the RRC pulse (4) for α = 1 becomes,
375
+ rrc1(t) = 4 cos(2πt)
376
+ π(1 − 16t2).
377
+ (16)
378
+ This pulse has the following ISI components in an AWGN channel without multi-path. Such a
379
+ fundamental property appears to remain unnoticed in the literature.
380
+ Lemma 1: Let n be a non-negative integer. The ISI integral involving the RRC pulse, rrc1(t),
381
+ with 100% roll-off has the exact solution,
382
+ � ∞
383
+ −∞
384
+ rrc1(t) × rrc1(t − n/4) dt
385
+ =
386
+
387
+
388
+
389
+
390
+
391
+
392
+
393
+
394
+
395
+
396
+
397
+
398
+
399
+
400
+
401
+
402
+
403
+
404
+
405
+ 8/(3π)
406
+ n = 1
407
+ 8
408
+ π(n−2)n(n+2)
409
+ n − odd, n > 1
410
+ 1
411
+ n = 0
412
+ 1/2
413
+ n = 2
414
+ 0
415
+ n − even, n > 2.
416
+ (17)
417
+
418
+ PULSE-SHAPE BINARY MULTIPLEX MODULATION
419
+ 8
420
+ n=0
421
+ n=2
422
+ n=4
423
+ 1
424
+ 2
425
+ 3
426
+ 4
427
+ 5
428
+ 0.998
429
+ 0.999
430
+ 1.000
431
+ 1.001
432
+ 1.002
433
+ d
434
+ truncated integral values
435
+ Fig. 2. Numerically computed integral (17) truncated to interval, (−d, +d), as a function of d (solid lines). The exact values
436
+ for an infinite interval are shifted to be all equal to unity in order to enable comparison. The dashed lines are mirrored solid
437
+ lines about the unit value.
438
+ Lemma 1 can be proved by solving the integral for the first few values of n (for example, using
439
+ Mathematica software), and then using induction.
440
+ However, the result (17) is exact only when the integration is performed over an infinite
441
+ interval. In practice, the pulse shapes must be truncated to a finite interval. The numerically
442
+ computed values of integral (17) when the interval of integration is truncated to (−d, +d) are
443
+ shown in Fig. 2. It can be observed that the RRC pulse shape, rrc1(t), should not be truncated
444
+ to the intervals shorter than, (−4, +4), in order to achieve the RRC property given in Lemma 1
445
+ with at least 99.9% accuracy.
446
+ Definition 2: The modulated signal of pulse-shape binary multiplex modulation is written as,
447
+ x(t) =
448
+
449
+ k
450
+ sk
451
+ rrc1
452
+
453
+ t−kTs
454
+ 2Ts
455
+
456
+ √2Ts
457
+ .
458
+ (18)
459
+ The synchronously sampled matched filter output of modulated signal (18) received in AWGN,
460
+ w(t), is,
461
+ rn =(x(t) + w(t)) ⊛
462
+ rrc1
463
+
464
+ t
465
+ 2Ts
466
+
467
+ √2Ts
468
+ ���
469
+ t=nTs
470
+ =
471
+
472
+ k
473
+ sk
474
+ � ∞
475
+ −∞
476
+ rrc1(ζ + (n − k)/2) rrc1(ζ) dζ + wn
477
+ =
478
+ �1
479
+ 2sn−1 + sn + 1
480
+ 2sn+1
481
+
482
+ + wn.
483
+ (19)
484
+
485
+ PULSE-SHAPE BINARY MULTIPLEX MODULATION
486
+ 9
487
+ a1
488
+ a1+a2
489
+ 2
490
+ a3
491
+ a2+a3
492
+ 2
493
+ a4
494
+ a3+a4
495
+ 2
496
+ a2
497
+ Stream #1:
498
+ Stream #2:
499
+ b1
500
+ b1+b2
501
+ 2
502
+ b3
503
+ b2+b3
504
+ 2
505
+ b3+b4
506
+ 2
507
+ b2
508
+ T1
509
+ T2
510
+ T3
511
+ T4
512
+ T5
513
+ T6
514
+ T7
515
+ Fig. 3. A visualization of pulse-shape multiplex modulated signal.
516
+ The noise samples, wn, in (19) are zero-mean, have the variance, E[|wn|2] = E[|w(t)|2] = σ2
517
+ w,
518
+ and their stationary auto-correlation is,
519
+ Rw(n − m) = E[wnw∗
520
+ m] =
521
+
522
+
523
+
524
+
525
+
526
+
527
+
528
+
529
+
530
+ σ2
531
+ w
532
+ n = m
533
+ σ2
534
+ w/2
535
+ |n − m| = 1
536
+ 0
537
+ |n − m| > 1.
538
+ (20)
539
+ Such noise samples can be equivalently modeled by a simple FIR filter,
540
+ wn = un + un−1
541
+
542
+ 2
543
+ (21)
544
+ where un are the samples of a zero-mean, circularly symmetric Gaussian process having the
545
+ variance, E[|un|2] = σ2
546
+ w. In addition, it is straightforward to show that the variance of the sum
547
+ of N noise samples having the correlations (20) is,
548
+ var
549
+ � N
550
+
551
+ n=1
552
+ wn
553
+
554
+ = (2N − 1)σ2
555
+ w
556
+ (22)
557
+ which is greater than the variance, Nσ2
558
+ w, of the sum of N uncorrelated samples.
559
+ The modulated signal (18) in Definition 2 can be visualized as shown in Fig. 3. In particular,
560
+ the transmitted data symbols can be viewed as consisting of two multiplexed streams of data
561
+ symbols, ak, and, bk, which are each transmitted with a period 2Ts, but mutually shifted by Ts.
562
+ The corresponding received symbol samples after the matched filtering are,
563
+ rn =
564
+
565
+
566
+
567
+ an + bn−1+bn
568
+ 2
569
+ + wn
570
+ n − odd
571
+ bn + an+an+1
572
+ 2
573
+ + wn
574
+ n − even.
575
+ (23)
576
+ Using (5), the PSD of modulated signal (18) is computed as,
577
+ Sx(f) = 2|RRC1(2Tsf)|2 �
578
+ k
579
+ E[s0s∗
580
+ k] ej2πfkTs
581
+ (24)
582
+ where the Fourier transform of the pulse, rrc1(t), is,
583
+ RRC1(f) =
584
+
585
+
586
+
587
+ cos(πf/2)
588
+ |f| ≤ 1
589
+ 0
590
+ otherwise.
591
+ (25)
592
+
593
+ PULSE-SHAPE BINARY MULTIPLEX MODULATION
594
+ 10
595
+ A. Transmitted Sequence Design
596
+ The optimum detection of transmitted symbols in the presence of ISI must consider complete
597
+ sequences of received samples. However, in the absence of multi-path, the received samples
598
+ have structure (19), and the transmitted sequences can be designed, so that the complexity of
599
+ detection at the receiver can be reduced.
600
+ The key strategy for reducing the detection complexity is to exploit orthogonality among
601
+ sub-sequences of transmitted symbols. Offset-quadrature PSK modulation (9) alternates one-
602
+ dimensional modulation symbols along the in-phase and quadrature components, which allows
603
+ the optimum symbol-by-symbol decisions.
604
+ Multiplexing two data streams as described by (23) can exploit the design principles of
605
+ superposition modulation and multiuser detection. In such a case, symbol-by-symbol decisions
606
+ can be performed by SIC. Specifically, provided that symbols, bn, can be reliably detected, even
607
+ if the symbols, (an + an+1)/2, are not yet known, then the symbol, an, can be reliably detected
608
+ after canceling the ISI term, (bn−1 + bn)/2.
609
+ In the sequel, three other sequence design strategies are discussed in more detail. The first
610
+ strategy combines pilot and data symbols to aid the data detection and channel estimation. The
611
+ second strategy employs orthogonal spreading codes in order to separate the two multiplexed
612
+ data sequences. The third strategy adopts the differential encoding of transmitted symbols.
613
+ B. Sequences with Interleaved Pilot Symbols
614
+ In general, pilot symbols for channel estimation can be interleaved with data symbols or
615
+ superimposed onto data symbols [17]. Here, the more common former approach is adopted.
616
+ Thus, consider a transmitted sequence consisting of alternating groups of Ld data symbols and
617
+ Lp ≪ Ld pilot symbols, which are separated by a single zero-symbol as shown in Fig. 4.
618
+ For instance, the following sub-sequences with reduced or no ISI can be considered with pilot
619
+ symbol, p, and arbitrary data symbols, d1, and, d2: (0, p, 0), (d1, p, −d1), (d1, p, −d1, −p, d1),
620
+ and (d1, p, −d1, −p, d2, p, −d2). These sub-sequences enable ISI-free data detection and channel
621
+ estimation, as can be deduced from eq. (23) and Fig. 3. Recall also that the noise samples, wn,
622
+ and, wn±2, are uncorrelated, i.e., independent.
623
+
624
+ PULSE-SHAPE BINARY MULTIPLEX MODULATION
625
+ 11
626
+ 0 pilots
627
+ 0
628
+ data
629
+ 0 pilots
630
+ 0
631
+ data
632
+ 0
633
+ Lp
634
+ separator
635
+ Ld
636
+ Fig. 4. The transmitted sequence with interleaved sub-sequences of data and pilot symbols and a single zero-symbol separator.
637
+ In order to illustrate the ISI-free channel estimation, consider the sequence, (d1, p, p, −d1).
638
+ The received samples corresponding to the two pilot symbols in the middle are,
639
+ rn =h3
640
+ 2p + h1
641
+ 2d1 + wn
642
+ rn+1 =h3
643
+ 2p − h1
644
+ 2d1 + wn+1
645
+ (26)
646
+ where h denotes the complex-valued channel attenuation (i.e., frequency non-selective slow
647
+ fading). The samples, rn, and, rn+1, can be simply combined as,
648
+ rn + rn+1 = 3hp + wn + wn+1
649
+ (27)
650
+ where the total variance of the additive noise samples is equal to 3σ2
651
+ w due to correlations (20).
652
+ More generally, the transmitted sequence,
653
+ (−p, d1, p, d2, −p, d3, p, d4, −p, d5, . . . , dN, ±p)
654
+ (28)
655
+ where the last pilot symbol is p, if N is odd, and −p, if N is even, allows the ISI-free symbol-
656
+ by-symbol decisions of all data symbols. Moreover, assuming again a slow fading channel, the
657
+ received samples corresponding to the pilot symbols can be summed up to obtain,
658
+ N
659
+
660
+ n=1
661
+ (−1)n r2n−1 = N h p +
662
+
663
+ Nw
664
+ where the noise sample, w, has the variance, σ2
665
+ w, so the signal-to-noise ratio (SNR) for estimating
666
+ the channel coefficient, h, has been improved N-times. Note also that once the channel has been
667
+ estimated, the pilot symbols can be subtracted from the received samples in order to aid decisions
668
+ of the remaining data symbols.
669
+ Finally, consider the case of a symbol repetition diversity. The transmitted sequence, (d, 0, d, 0, . . ., 0, d),
670
+ of a data symbol, d, repeated (N ≥ 2)-times corresponds to the canonical Nyquist signaling.
671
+ The pulse-shape multiplex modulation instead transmits the sequence, (d, d, . . . , d), of N1-times
672
+ repeated data symbol, d. For the same sequence length, N1 = 2N − 1. Assuming slowly
673
+
674
+ PULSE-SHAPE BINARY MULTIPLEX MODULATION
675
+ 12
676
+ fading channel, the detector combines the received samples for the two modulation schemes,
677
+ respectively, as,
678
+ r =N h d +
679
+
680
+ Nw
681
+ r =(2 · 3/2 + 2(N1 − 2)) h d/
682
+
683
+ 2 +
684
+
685
+ 2N1 − 1w
686
+ (29)
687
+ where the scaling by
688
+
689
+ 2 was introduced for the second modulation in order to account for the
690
+ larger number of symbols in its transmitted sequence. The resulting SNR of these two schemes
691
+ is proportional to, γ ∝ N, and, γ ∝ 2N −3/2, respectively. Consequently, for symbol repetition
692
+ diversity, the SNR gain of the pulse-shape binary multiplexing is asymptotically 3 dB larger than
693
+ for the Nyquist signaling.
694
+ C. Sequences with Orthogonal Spreading
695
+ Another strategy for transmitting interleaved, but orthogonal symbols in modulated signal (18)
696
+ is to use orthogonal spreading codes. In particular, assume transmitted symbols,
697
+ an = d1c(1)
698
+ n ,
699
+ bn = d2c(2)
700
+ n
701
+ (30)
702
+ where d1 and d2 are two data symbols, and, c(1)
703
+ n and c(2)
704
+ n , n = 1, 2, . . . , N, are generally complex-
705
+ valued, orthogonal spreading sequences, so that,
706
+ N
707
+
708
+ n=1
709
+ c(i)
710
+ n c∗(j)
711
+ n
712
+ =
713
+
714
+
715
+
716
+ N,
717
+ i = j
718
+ 0,
719
+ i ̸= j.
720
+ (31)
721
+ Then, the sequences of received samples (23) are linearly combined as,
722
+ N
723
+
724
+ n=1
725
+ r2n−1c∗(1)
726
+ n
727
+ =d1 + d2
728
+ N
729
+
730
+ n=1
731
+ c(2)
732
+ n + c(2)
733
+ n+1
734
+ 2
735
+ c∗(1)
736
+ n
737
+ +
738
+ N
739
+
740
+ n=1
741
+ w2n−1c∗(1)
742
+ n
743
+ =d1 + ˜w1
744
+ N
745
+
746
+ n=1
747
+ r2nc∗(2)
748
+ n
749
+ =d2 + d1
750
+ N
751
+
752
+ n=1
753
+ c(1)
754
+ n + c(1)
755
+ n+1
756
+ 2
757
+ c∗(2)
758
+ n
759
+ +
760
+ N
761
+
762
+ n=1
763
+ w2nc∗(2)
764
+ n
765
+ =d2 + ˜w2
766
+ (32)
767
+ provided that the spreading sequences, c(1)
768
+ n , and, c(2)
769
+ n , are exactly orthogonal. In such a case, the
770
+ SNR improvement for transmitting two data symbols with orthogonal spreading sequences using
771
+ the pulse-shape binary multiplex modulation (18) is proportional to,
772
+ γ ∝
773
+ N2
774
+ 2N − 1.
775
+ (33)
776
+
777
+ PULSE-SHAPE BINARY MULTIPLEX MODULATION
778
+ 13
779
+ 0
780
+ 50
781
+ 100
782
+ 150
783
+ 200
784
+ 250
785
+ 0.1
786
+ 0.2
787
+ 0.3
788
+ 0.4
789
+ 0.5
790
+ 0.6
791
+ 0.7
792
+ 0.8
793
+ 0.9
794
+ 1
795
+ r=10%
796
+ r=5%
797
+ N
798
+ Probability
799
+ Fig. 5. The probability (35) vs. the spreading sequence length, N, assuming κ = 5% and κ = 10%, respectively.
800
+ For instance, if the spreading symbols, cn, are generated independently at random and with an
801
+ equal probability from the set, {−1, +1}, the probability that two such sequences are orthogonal
802
+ is,
803
+ Pr
804
+ � N
805
+
806
+ n=1
807
+ c(1)
808
+ n c∗(2)
809
+ n
810
+ = 0
811
+
812
+ =
813
+ � N
814
+ N/2
815
+ � �1
816
+ 2
817
+ �N/2 �1
818
+ 2
819
+ �N−N/2
820
+ =
821
+ � N
822
+ N/2
823
+
824
+ 2−N.
825
+ (34)
826
+ Since the probability (34) of exact orthogonality asymptotically goes to zero with large N,
827
+ consider instead the probability,
828
+ Pr
829
+
830
+ −⌈κ N/2⌋ ≤
831
+ N
832
+
833
+ n=1
834
+ c(1)
835
+ n c∗(2)
836
+ n
837
+ ≤ ⌈κ N/2⌋
838
+
839
+ =
840
+ ⌈κ N/2⌋
841
+
842
+ n=−⌈κ N/2⌋
843
+ �N
844
+ n
845
+ � �1
846
+ 2
847
+ �N
848
+ (35)
849
+ for some small κ ≥ 0. The probabilities (35) as a function of N for two different values of
850
+ factor, κ, are shown in Fig. 5. These probabilities are indicative of how many random spreading
851
+ sequences need to be generated in order to select the required number of such sequences having
852
+ an acceptable level of mutual orthogonality.
853
+
854
+ PULSE-SHAPE BINARY MULTIPLEX MODULATION
855
+ 14
856
+ c0
857
+ c0
858
+ 2 (1 + c1)
859
+ c0
860
+ 2 (1 + c1c2 + 2c1)
861
+ c0
862
+ 2 (1 + c0c1 + 2c0)
863
+ c0
864
+ 2 (1 + c1c2)
865
+ c0c1
866
+ c0c1
867
+ 2 (1 + c2c3 + 2c2)
868
+ c0c1
869
+ 2 (1 + c2c3)
870
+ c0c1c2
871
+ c0c1c2
872
+ 2
873
+ (1 + c3c4 + 2c3)
874
+ c0c1c2c3
875
+ c0c1c2
876
+ 2
877
+ (1 + c3c4)
878
+ c0
879
+ c0c1c2c3c4
880
+ T1
881
+ T0
882
+ T2
883
+ T3
884
+ T5
885
+ T4
886
+ Stream #1:
887
+ Stream #2:
888
+ Tx symbols:
889
+ Fig. 6. Differentially encoded M-ary PSK symbols transmitted via pulse-shape binary multiplex modulation.
890
+ D. Sequences with Differential Encoding
891
+ Differential PSK is a popular modulation scheme for fast fading channels, since it alleviates
892
+ the need for recovering the absolute phase reference. Fig. 6 shows differentially encoded M-ary
893
+ PSK symbols (8) transmitted via pulse-shape binary multiplex modulation. In particular, the n-th
894
+ transmitted symbol is,
895
+ sn =
896
+ �n−2
897
+
898
+ k=0
899
+ ck
900
+
901
+ 1 + cn−1cn + 2cn−1
902
+ 2
903
+ =1
904
+ 2
905
+ �n−2
906
+
907
+ k=0
908
+ ck
909
+
910
+ + 1
911
+ 2
912
+ �n−1
913
+
914
+ k=0
915
+ ck
916
+
917
+ cn +
918
+ �n−1
919
+
920
+ k=0
921
+ ck
922
+
923
+ .
924
+ (36)
925
+ Consequently, the differential decoding can be performed as,
926
+ cn =
927
+
928
+ 2sn −
929
+ �n−2
930
+
931
+ k=0
932
+ ck
933
+
934
+ − 2
935
+ �n−1
936
+
937
+ k=0
938
+ ck
939
+ �� �n−1
940
+
941
+ k=0
942
+ ck
943
+ �∗
944
+ =2sn
945
+ �n−1
946
+
947
+ k=0
948
+ c∗
949
+ k
950
+
951
+ − c∗
952
+ n−1 − 2.
953
+ (37)
954
+ The performance of this modulation scheme is evaluated in the next section.
955
+ V. NUMERICAL EXAMPLES
956
+ It is convenient to use a vector notation to generate samples of pulse-shape binary multiplex
957
+ modulation (18) received over a frequency non-selective fading channel. The vector, r, of N
958
+ received samples corresponding to the vector, s, of N transmitted symbols can be obtained as,
959
+ r = s A diag(h) + w AT
960
+ 0
961
+
962
+ PULSE-SHAPE BINARY MULTIPLEX MODULATION
963
+ 15
964
+ where h is a vector of fading channel coefficients, w are samples of AWGN, and the (N × N)
965
+ ISI matrix,
966
+ A =
967
+
968
+ 
969
+ 1
970
+ 1/2
971
+ 1/2
972
+ 1
973
+ 1/2
974
+ ...
975
+ ...
976
+ 1/2
977
+ 1
978
+
979
+ 
980
+ = A0 AT
981
+ 0 .
982
+ The optimum detection requires that the additive noise is first whitened as, [4]
983
+ r A−T
984
+ 0
985
+ = s A diag(h) A−T
986
+ 0
987
+ + w.
988
+ Then the maximum likelihood (ML) detection of sequence s is,
989
+ ˆs = arg min
990
+ s
991
+ ���r A−T
992
+ 0
993
+ − s A diag
994
+
995
+ ˆh
996
+
997
+ A−T
998
+ 0
999
+ ���
1000
+ 2
1001
+ (38)
1002
+ where ˆh is the estimate of h representing channel state information (CSI).
1003
+ An uncoded binary phase shift keying (BPSK) modulation and Rayleigh-distributed fading
1004
+ amplitudes, h, are assumed for simplicity. The transmitted sequence interleaves pilot symbols and
1005
+ data symbols as shown in Fig. 4. The pilot symbols are used to estimate the channel coefficients,
1006
+ h, by linear minimum mean-square error (LMMSE) algorithm. The spectral efficiency of pulse-
1007
+ shape binary multiplexing is, 2, which is always larger than the spectral efficiency of the Nyquist
1008
+ signaling being equal to, 2/(1 + α).
1009
+ The BER curves, Pe, for short data sequences of Ld = 4 and Ld = 8 binary symbols,
1010
+ respectively, separated by a single zero-symbol are shown in Fig. 7 and Fig. 8. The SNR is
1011
+ defined as, γb = 1/(2σ2
1012
+ w). Both cases of perfect and estimated CSI are considered. The Nyquist
1013
+ signaling (no ISI) with symbol-by-symbol decisions is assumed as a reference. The ML data
1014
+ detector (38) is used for pulse-shape multiplexing signaling.
1015
+ It can be observed that the performance penalty due to channel estimation is much larger for
1016
+ pulse-shape multiplexing than for the Nyquist signaling, which is to be expected. The WMF
1017
+ improves the performance by several dB’s for both signaling schemes. More importantly, the
1018
+ performance of pulse-shape multiplexing improves with the data block length by exploiting the
1019
+ time diversity over a fading channel, so it can significantly outperform the Nyquist signaling
1020
+ at medium to large SNR values. It is likely that by employing more sophisticated channel
1021
+ estimation and equalization techniques, the performance of pulse-shape multiplexing can be
1022
+ further improved. In order to demonstrate the effect of time diversity, Fig. 9 shows that, over
1023
+
1024
+ PULSE-SHAPE BINARY MULTIPLEX MODULATION
1025
+ 16
1026
+ 0
1027
+ 5
1028
+ 10
1029
+ 15
1030
+ 20
1031
+ 10-5
1032
+ 10-4
1033
+ 10-3
1034
+ 10-2
1035
+ 10-1
1036
+ 100
1037
+ estim.
1038
+ CSI
1039
+ perfect
1040
+ CSI
1041
+ No-ISI
1042
+ ISI
1043
+ estim. CSI
1044
+ perfect CSI
1045
+ ML
1046
+ WMF-ML
1047
+ γb [dB]
1048
+ Pe
1049
+ LLLddd === 444
1050
+ Fig. 7. The BER of BPSK vs. SNR over Rayleigh fading channel for sequences of 4 binary symbols.
1051
+ an AWGN channel, the performance of pulse-shape multiplexing is worse than that of Nyquist
1052
+ signaling, even though some performance loss can be recovered by WMF.
1053
+ Lastly, the BER performance of Nyquist modulation and pulse-shape multiplex modulation
1054
+ transmitting differentially encoded quadrature PSK (QPSK) symbols over an AWGN channel is
1055
+ compared in Fig. 10. It can be observed that even though the pulse-shape multiplexing suffers
1056
+ asymptotically a 3 dB penalty in SNR, it reduces the time required for transmitting the whole
1057
+ symbol sequence to one half.
1058
+ VI. CONCLUSION
1059
+ The paper introduced a pulse-shape binary multiplex modulation. Such a modulation scheme is
1060
+ akin to partial-response signaling, correlative coding, offset-QPSK modulation and FTN signaling.
1061
+ It combines two data streams under controlled ISI created by the RRC pulses having 100%
1062
+ roll-off, and transmitted at twice the Nyquist rate. The ISI analysis showed that this is unique
1063
+ property among all the roll-off factors being at most 100% and the packing factors greater
1064
+ than 5%. However, the successive samples of additive noises at the output of matched filter at
1065
+
1066
+ PULSE-SHAPE BINARY MULTIPLEX MODULATION
1067
+ 17
1068
+ 0
1069
+ 5
1070
+ 10
1071
+ 15
1072
+ 20
1073
+ 10-5
1074
+ 10-4
1075
+ 10-3
1076
+ 10-2
1077
+ 10-1
1078
+ 100
1079
+ estim.
1080
+ CSI
1081
+ perfect
1082
+ CSI
1083
+ No-ISI
1084
+ ISI
1085
+ estim. CSI
1086
+ perfect CSI
1087
+ ML
1088
+ WMF-ML
1089
+ γb [dB]
1090
+ Pe
1091
+ LLLddd === 888
1092
+ Fig. 8. The BER of BPSK vs. SNR over Rayleigh fading channel for sequences of 8 binary symbols.
1093
+ the receiver become correlated, which incurs a SNR performance penalty. This penalty could
1094
+ be reduced or even removed by using more complex sequence-based detection schemes as
1095
+ shown elsewhere in the literature. The BER performance as well as decoding complexity of
1096
+ the proposed pulse-shape binary multiplexing modulation scheme is critically affected by the
1097
+ choice of transmitted sequences. One can consider superposition modulation with SIC decoding,
1098
+ interleave data symbols with pilot and zero-symbols to aid channel estimation and data decoding,
1099
+ and also employ orthogonal spreading sequences to separate the multiplexed data streams. The
1100
+ numerical results indicate that pulse-shape binary multiplexing can exploit time-diversity in
1101
+ fading channels to outperform the Nyquist signaling. In addition, it has been shown numerically
1102
+ that a sequence of differentially encoded PSK symbols can be transmitted twice as fast by the
1103
+ proposed modulation scheme compared to canonical Nyquist signaling, although with a 3 dB
1104
+ SNR penalty over AWGN channels.
1105
+
1106
+ PULSE-SHAPE BINARY MULTIPLEX MODULATION
1107
+ 18
1108
+ 4
1109
+ 5
1110
+ 6
1111
+ 7
1112
+ 8
1113
+ 9
1114
+ 10
1115
+ 11
1116
+ 10 -5
1117
+ N=2
1118
+ ML
1119
+ WHF-ML
1120
+ BPSK
1121
+ 4
1122
+ 5
1123
+ 6
1124
+ 7
1125
+ 8
1126
+ 9
1127
+ 10
1128
+ 11
1129
+ 10-5
1130
+ N=4
1131
+ γb [dB]
1132
+ Pe
1133
+ Pe
1134
+ Fig. 9. The BER of BPSK vs. SNR over AWGN channel for sequences of 2 and 4 binary symbols, respectively.
1135
+ 6
1136
+ 8
1137
+ 10
1138
+ 12
1139
+ 14
1140
+ 16
1141
+ 18
1142
+ 10-6
1143
+ 10-5
1144
+ 10-4
1145
+ 10-3
1146
+ 10-2
1147
+ DQPSK
1148
+ DQPSK-PSBM
1149
+ γb [dB]
1150
+ Pe
1151
+ Fig. 10.
1152
+ The BER comparison of differentially encoded QPSK with Nyquist and pulse-shape binary multiplexing (PSBM)
1153
+ modulation transmitted over an AWGN channel.
1154
+
1155
+ PULSE-SHAPE BINARY MULTIPLEX MODULATION
1156
+ 19
1157
+ REFERENCES
1158
+ [1] J. Zhou, D. Li, and X. Wang, “Generalized Faster-Than-Nyquist signaling,” in ISIT, 2012, pp. 1478–1482.
1159
+ [2] J. B. Anderson, F. Rusek, and V. Öwall, “Faster-Than-Nyquist signaling,” Proc. of the IEEE, vol. 101, no. 8, pp. 1817–1830,
1160
+ August 2013.
1161
+ [3] A. Liveris and C. Georghiades, “Exploiting Faster-Than-Nyquist signaling,” IEEE Transactions Communications, vol. 51,
1162
+ no. 9, pp. 1502–1511, September 2003.
1163
+ [4] J. G. Proakis and M. Salehi, Digital Communications, 5th ed.
1164
+ McGraw-Hill Education, NY, USA, 2008.
1165
+ [5] L. Landau, M. Dörpinghaus, and G. P. Fettweis, “1-bit quantization and oversampling at receiver: Communication over
1166
+ bandlimited channels with noise,” IEEE Comm. Letters, vol. 21, no. 5, pp. 1007–1010, May 2017.
1167
+ [6] A. Modenini, G. Colavolpe, and N. Alagha, “How to significantly improve the spectral efficiency of linear modulations
1168
+ through time-frequency packing and advanced processing,” in Proc. ICC, 2012, pp. 3260–3264.
1169
+ [7] J. Fan, S. Guo, X. Zhou, Y. Ren, G. Y. Li, and X. Chen, “Faster-Than-Nyquist signaling: An overview,” IEEE Access,
1170
+ vol. 5, pp. 1925–1940, February 2017.
1171
+ [8] Y. Yamada, M. Sawahashi, and K. Saito, “Performance of time and frequency compression of Faster-than-Nyquist signaling
1172
+ in frequency-selective fading channels,” in APCC, 2015, pp. 550–554.
1173
+ [9] T. E. Bogale, L. B. Le, X. Wang, and L. Vandendorpe, “Multipath multiplexing for capacity enhancement in SIMO wireless
1174
+ systems,” IEEE Transactions Wireless Communications, vol. 16, no. 10, pp. 6895–6911, October 2017.
1175
+ [10] H. Zhang, X. Huang, J. A. Zhang, and Y. J. Guo, “Dual pulse shaping transmission and equalization for high-speed
1176
+ wideband wireless communication systems,” IEEE Transactions on Circuits and Systems I, vol. 67, no. 7, pp. 1549–8328,
1177
+ July 2020.
1178
+ [11] H. Li, X. Huang, J. A. Zhang, H. Zhang, and Z. Cheng, “Dual pulse shaping transmission with sinc-function based
1179
+ complementary Nyquist pulses,” IET Communications, vol. 16, no. 17, pp. 2091–2104, October 2022.
1180
+ [12] E. Bedeer, M. H. Ahmed, and H. Yanikomeroglu, “A very low complexity successive symbol-by-symbol sequence estimator
1181
+ for Faster-Than-Nyquist signaling,” IEEE Access, vol. 5, pp. 7414–7422, June 2017.
1182
+ [13] J. Bas and A. A. Dowhuszko, “Linear time-packing detectors for optical feeder link in high throughput satellite systems,”
1183
+ in GC-ElecEng, 2020, pp. 21–26.
1184
+ [14] Q. Shi, N. Wu, X. Ma, and H. Wang, “Frequency-domain joint channel estimation and decoding for Faster-Than-Nyquist
1185
+ signaling,” IEEE Transactions Communications, vol. 66, no. 2, pp. 781–795, February 2018.
1186
+ [15] N. Wu, W. Yuan, Q. Guo, and J. Kuang, “A hybrid BP-EP-VMP approach to joint channel estimation and decoding for
1187
+ FTN signaling over frequency selective fading channels,” IEEE Access, vol. 5, pp. 6849–6858, May 2017.
1188
+ [16] P. Loskot, “A generalized FSK-based PHY layer design for wireless sensor networks,” in Chinacom, 2012, pp. 362–367.
1189
+ [17] A. K. Jagannatham and B. D. Rao, “Superimposed pilots vs. conventional pilots for channel estimation,” in ACSSC, 2006,
1190
+ pp. 767–771.
1191
+
BtAzT4oBgHgl3EQfh_1H/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
D9E4T4oBgHgl3EQf6Q7Z/content/tmp_files/2301.05331v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
D9E4T4oBgHgl3EQf6Q7Z/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
DNE0T4oBgHgl3EQfggEA/content/2301.02417v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec50890a5eab6aecacd32dcc958b7aca440097c92c41e4c544d01406bbe7707b
3
+ size 1360879
DNE0T4oBgHgl3EQfggEA/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:287deb2a24e608854ddc0b67786f8891bec6f7e25dbe7449c808286d314c290e
3
+ size 212792
ENAzT4oBgHgl3EQfGvvx/content/tmp_files/2301.01035v1.pdf.txt ADDED
@@ -0,0 +1,1232 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.01035v1 [math.FA] 3 Jan 2023
2
+ BOUNDARY REPRESENTATIONS OF INTERMEDIATE FORMS
3
+ BETWEEN A REGULAR DIRICHLET FORM AND ITS ACTIVE
4
+ MAIN PART
5
+ MATTHIAS KELLER, DANIEL LENZ, MARCEL SCHMIDT, MICHAEL SCHWARZ,
6
+ AND MELCHIOR WIRTH
7
+ Abstract. We characterize all semigroups sandwiched between the semigroup of
8
+ a Dirichlet form and the semigroup of its active main part. In case the Dirichlet
9
+ form is regular, we give a more explicit description of the quadratic forms of the
10
+ sandwiched semigroups in terms of pairs consisting of an open set and a measure
11
+ on an abstract boundary.
12
+ Introduction
13
+ One prime example of different self-adjoint realizations of the same differential
14
+ expression are the Dirichlet and Neumann Laplacian on a bounded domain, i.e. two
15
+ operators that only differ by the choice of boundary conditions.
16
+ More generally
17
+ one may ask which self-adjoint realizations of a differential expression arise from
18
+ choosing boundary conditions.
19
+ For the Laplacian, one possible answer was given by Arendt and Warma in [AW03]:
20
+ If Ω is a domain with Lipschitz boundary, a self-adjoint positive operator L on L2(Ω)
21
+ is a Laplacian with Robin-type boundary conditions if and only if the associated
22
+ semigroup (e−tL) is sandwiched between the Dirichlet and Neumann heat semigroup
23
+ in the sense that
24
+ et∆(D)f ≤ e−tLf ≤ et∆(N)f
25
+ for all f ≥ 0 and t > 0. Here the Laplacians with Robin-type boundary conditions
26
+ can best be described in terms of associated quadratic forms: The Dirichlet form Q
27
+ associated with L satisfies D(Q) = {f ∈ H1(Ω) | f = 0 quasi everywhere on Ω \ O}
28
+ and
29
+ Q(f) =
30
+
31
+ Ω |∇f|2dx +
32
+
33
+ ∂Ω | ˜f|2dµ
34
+ for some open O ⊆ ∂Ω and a measure µ on ∂Ω not charging sets of capacity zero.
35
+ Here ˜f denotes a quasi-continuous modification of f.
36
+ Note that in the original work of Arendt and Warma there was an additional
37
+ condition that L be local, but this was later shown to be superfluous by Akhlil
38
+ [Akh18].
39
+ This result has been generalized in several directions. Chill and Warma [CW12]
40
+ gave a similar characterization of (nonlinear) semigroups sandwiched between the
41
+ 1
42
+
43
+ 2
44
+ M. KELLER, D. LENZ, M. SCHMIDT, M. SCHWARZ, AND M. WIRTH
45
+ semigroup generated by the p-Laplacian with Dirichlet boundary conditions and the
46
+ p-Laplacian with Neumann boundary conditions. Later this characterization was
47
+ extended to semigroups associated with local nonlinear Dirichlet forms by Claus
48
+ [Cla21]. In [ACD21] Arora, Chill and Djida do not study sandwiched semigroups
49
+ but give a characterization of all semigroups dominating a semigroup induced by a
50
+ regular form.
51
+ A related problem was studied by Posilicano in [Pos14]. For a bounded domain
52
+ with smooth boundary he characterizes all self-adjoint realizations of the Laplacian
53
+ that generate Markovian semigroups via certain Dirichlet forms on the boundary of
54
+ the domain. Applying his findings to realizations with sandwiched semigroups one
55
+ obtains the result of Arendt and Warma under higher regularity assumptions on
56
+ the boundary of the domain. For discrete Laplacians associated with infinite graphs
57
+ similar characterizations of Markovian realizations were obtained by the first four
58
+ authors in [KLSS19]. In this case, the employed boundary is the Royden boundary
59
+ of the graph, which is defined using Gelfand theory.
60
+ In this article we treat the question of sandwiched semigroups in the abstract
61
+ context of Dirichlet forms. We start with a regular Dirichlet form without killing
62
+ whose generator we take as an abstract analogue of the Dirichlet Laplacian.
63
+ In
64
+ this setting there is a natural analogue of the Neumann Laplacian, namely the
65
+ generator of the active main part of our given regular Dirichlet form, which was
66
+ introduced in [Sch17, Sch20a]. Our framework includes not only the Laplacian on
67
+ domains treated by Arendt and Warma, but also various Laplace-like operators
68
+ like fractional Laplacians, Laplacians on manifolds and metric measure spaces or
69
+ Laplacians on weighted graphs and quantum graphs.
70
+ We first give an abstract characterization of the generators of semigroups that are
71
+ sandwiched between the semigroup associated with a regular Dirichlet form and the
72
+ semigroup associated with its active main part in terms of order properties.
73
+ To connect these sandwiched semigroups to boundary conditions, the first problem
74
+ is to find a good notion of boundary in this setting. As all the quadratic forms
75
+ involved are defined on the L2-space of some abstract topological measure space,
76
+ there is no immediate geometric notion of boundary available. As in [KLSS19] and
77
+ [ACD21] we introduce a notion of boundary that is defined using Gelfand theory
78
+ and depends on the given regular Dirichlet form.
79
+ With this notion of boundary, we can prove an abstract version of the main result
80
+ of Arendt and Warma (Theorem 4.6):
81
+ Theorem. Let Q be a regular Dirichlet form on L2(X, m) without killing and Q(M)
82
+ its active main part. For a Dirichlet form Q′ on L2(X, m), the following assertions
83
+ are equivalent:
84
+ (i) There exists an open subset O of X ∪ ∂X and a measure µ on O ∩ ∂X that
85
+ does not charge polar sets such that Q′ is the closure of the quadratic form Qc
86
+ O,µ
87
+
88
+ INTERMEDIATE DIRICHLET FORMS
89
+ 3
90
+ given by D(Qc
91
+ O,µ) = D(Q) ∩ Cc(O) and
92
+ Qc
93
+ O,µ(f) = Q(f) +
94
+
95
+ O∩∂X f 2 dµ.
96
+ (ii) The semigroup associated with Q′ is sandwiched between the semigroup associ-
97
+ ated with Q and the semigroup associated with Q(M), and D(Q′) ∩ Cc(X ∪ ∂X)
98
+ is a form core for Q′.
99
+ In other words, the Dirichlet forms sandwiched between Q and Q(M) (in the sense
100
+ of domination of semigroups) are parametrized by measures on open subsets of an
101
+ abstract boundary.
102
+ In spirit our main result for regular Dirichlet forms is similar to the one of
103
+ [ACD21], which treats an even more general setting without assuming the Markov
104
+ property. The main differences are that for the first abstract part we need not as-
105
+ sume any regularity of the forms and when we assume regularity, our results are
106
+ more explicit.
107
+ The article is organized as follows: In Section 1 we introduce the notation used
108
+ throughout this article and recall some basic facts about Dirichlet forms and domina-
109
+ tion of semigroups. In Section 2 we review the active main part of a regular Dirichlet
110
+ form and give an abstract characterization of the Dirichlet forms sandwiched between
111
+ the given regular Dirichlet form and its active main part (Theorem 2.8). In Section
112
+ 3 we study some properties of the forms Qc
113
+ O,µ in the main theorem stated above,
114
+ in particular their closability. In Section 4 we introduce our notion of boundary
115
+ and show how sandwiched Dirichlet forms can be represented by measures on open
116
+ subsets of the boundary (Theorem 4.6). Finally, in the appendix we collect some
117
+ facts about bilinear forms on spaces of compactly supported continuous functions.
118
+ Parts of this paper are based on the PhD thesis of the fourth-named author
119
+ [Sch20b].
120
+ Acknowledgments. The first three authors acknowledge financial support of the
121
+ DFG within the priority programme Geometry at Infinity. M.W. acknowledges fi-
122
+ nancial support by the German Academic Scholarship Foundation, by the Austrian
123
+ Science Fund (FWF) through grant number F65 and the Esprit Programme [ESP
124
+ 156], and by the European Research Council (ERC) under the European Union’s
125
+ Horizon 2020 research and innovation programme (grant agreement No 716117).
126
+ For the purpose of Open Access, the authors have applied a CC BY public copy-
127
+ right licence to any Author Accepted Manuscript (AAM) version arising from this
128
+ submission.
129
+ 1. Dirichlet forms and domination of associated semigroups
130
+ In this section we introduce notation and review some basic definitions and results
131
+ about Dirichlet forms and domination of the associated semigroups. Unless stated
132
+ otherwise, all functions are real-valued. Throughout (X, A, m) is a σ-finite measure
133
+
134
+ 4
135
+ M. KELLER, D. LENZ, M. SCHMIDT, M. SCHWARZ, AND M. WIRTH
136
+ space and Q denotes a nonnegative quadratic form with domain D(Q) ⊆ L2(X, m).
137
+ We tacitly identify Q and the bilinear form it induces by polarization. In particular,
138
+ we have the convention Q(f) = Q(f, f) for f ∈ D(Q). The form norm ∥·∥Q is the
139
+ norm on D(Q) defined by
140
+ ∥f∥2
141
+ Q = Q(f) + ∥f∥2,
142
+ where ∥·∥ is the norm on L2(X, m). If Q′ is another quadratic form we write Q ⊑ Q′
143
+ if D(Q) ⊆ D(Q′) and Q(f) ≥ Q′(f) for all f ∈ D(Q). The induced order relation
144
+ ⊑ on all quadratic forms is called the natural order.
145
+ We say that a quadratic form is positive if Q(f, g) ≥ 0 for all nonnegative f, g ∈
146
+ D(Q). It is called local if fg = 0 implies Q(f, g) = 0 for all f, g ∈ D(Q). Moreover,
147
+ Q is called monotone if |f| ≤ |g| implies Q(f) ≤ Q(g) whenever f, g ∈ D(Q). In this
148
+ case, Q(f) only depends on the absolute value of f and not on its sign. We discuss
149
+ these properties for forms whose domains are continuous functions in Appendix A.
150
+ 1.1. (Regular) Dirichlet forms. A densely defined closed quadratic form Q on
151
+ L2(X, m) is called Dirichlet form if f ∈ D(Q) implies f+∧1 ∈ D(Q) and Q(f+∧1) ≤
152
+ Q(f). The second Beurling-Deny criterion [RS78, Theorem XIII.51] asserts that Q
153
+ is a Dirichlet form if and only if the semigroup (e−tL) generated by the positive
154
+ self-adjoint operator L associated with Q is Markovian, i.e., 0 ≤ f ≤ 1 implies
155
+ 0 ≤ e−tLf ≤ 1 for all t ≥ 0.
156
+ If Q is a Dirichlet form, then D(Q) ∩ L∞(X, m) is an algebra with respect to
157
+ pointwise multiplication and
158
+ Q(fg)1/2 ≤ ∥g∥∞Q(f)1/2 + ∥f∥∞Q(g)1/2
159
+ for all f, g ∈ D(Q) ∩ L∞(X, m), see [FOT11, Theorem 1.4.2].
160
+ A Dirichlet form Q is called regular if the following are satisfied:
161
+ • X is a locally compact separable metric space and m is a Radon measure of
162
+ full support.
163
+ • D(Q)∩Cc(X) is uniformly dense in Cc(X) and in D(Q) with respect to ∥·∥Q.
164
+ In this case, the Q-capacity (or simply capacity if Q is fixed) of an open set O ⊆ X
165
+ is defined by
166
+ cap(O) = inf{∥f∥2
167
+ Q | f ∈ D(Q) with f ≥ 1 m-a.e. on O}.
168
+ Here we use the convention cap(O) = ∞ if there does not exist f ∈ D(Q) with
169
+ f ≥ 1 on O. For an arbitrary set A ⊆ X, the capacity is defined by
170
+ cap(A) = inf{cap(O) | O open with A ⊆ O}.
171
+ The capacity is inner regular, i.e., for any Borel set A ⊆ X it satisfies
172
+ cap(A) = sup{cap(K) | K compact with K ⊆ A},
173
+ see [FOT11, Theorem 2.1.1]. Moreover, by [FOT11, Lemma 2.2.7], the capacity for
174
+ compact K ⊆ X can alternatively be described as
175
+ cap(K) = inf{∥f∥2
176
+ Q | f ∈ D(Q) ∩ Cc(X) with f ≥ 1 on K}.
177
+
178
+ INTERMEDIATE DIRICHLET FORMS
179
+ 5
180
+ A subset A of X is called polar if Cap(A) = 0 holds. A property is said to hold
181
+ quasi everywhere, abbreviated q.e., if it holds on the complement of a polar set.
182
+ A measurable function f : X → [−∞, ∞] is said to be quasi continuous if for every
183
+ ε > 0 there is an open set O with Cap(O) < ε such that f|X\O is finite-valued and
184
+ continuous. If Q is a regular Dirichlet form, then every f in D(Q) has a unique (up
185
+ to equality quasi everywhere) quasi continuous representative ˜f, cf. [CF12, Theorem
186
+ 2.3.4].
187
+ 1.2. Domination of Dirichlet forms and semigroups. If U, V are sublattices
188
+ of L2(X, m), we say that U is an order ideal in V if f ∈ U, g ∈ V and |g| ≤ |f|
189
+ implies g ∈ U.
190
+ If U, V are subalgebras of L∞(X, m) we say U is an algebraic ideal in V if f ∈ U
191
+ and g ∈ V implies fg ∈ U.
192
+ We will frequently use the following characterization. The equivalence of (i) and
193
+ (ii) is Ouhabaz’ domination criterion [Ouh96, Theorem 3.7], whereas the equivalence
194
+ with (iii) is taken from [Sch20a, Lemma 2.2].
195
+ Proposition 1.1 (Characterization of Domination). Let Q, Q′ be Dirichlet forms
196
+ with associated self-adjoint operators L, L′. The following assertions are equivalent.
197
+ (i) For all nonnegative f ∈ L2(X, m) and all t ≥ 0 we have
198
+ e−tLf ≤ e−tL′f.
199
+ (ii) D(Q) ⊆ D(Q′), D(Q) is an order ideal in D(Q′) and
200
+ Q(f, g) ≥ Q′(f, g)
201
+ for all non-negative f, g ∈ D(Q).
202
+ (iii) D(Q) ⊆ D(Q′), D(Q) ∩ L∞(X, m) is an algebraic ideal in D(Q′) ∩ L∞(X, m)
203
+ and
204
+ Q(f, g) ≥ Q′(f, g)
205
+ for all non-negative f, g ∈ D(Q).
206
+ If Q and Q′ satisfy one of the conditions of this proposition, we say that Q′
207
+ dominates Q and write Q ⪯ Q′. Similarly, in this situation we write (e−tL) ⪯ (e−tL′)
208
+ and say that the semigroup (e−tL′) dominates the semigroup (e−tL).
209
+ Domination also induces an order relation on the set of all Dirichlet forms on
210
+ L2(X, m). Note that in general Q ⪯ Q′ does not imply Q ⊑ Q′ nor the other way
211
+ round.
212
+ 2. The maximal dominating form and an abstract characterization
213
+ of sandwiched semigroups
214
+ For every Dirichlet form Q there is a maximal Dirichlet form Q(M) (with respect
215
+ to the natural order) that dominates the given Dirichlet form Q. In this section we
216
+ describe the construction of this maximal form and give an abstract characterization
217
+
218
+ 6
219
+ M. KELLER, D. LENZ, M. SCHMIDT, M. SCHWARZ, AND M. WIRTH
220
+ of all Dirichlet forms Q′ that satisfy Q ⪯ Q′ ⪯ Q(M) provided that Q(M) is an
221
+ extension of Q.
222
+ We denote by (Tt) the semigroup generated by Q and by (T (M)
223
+ t
224
+ ) the semigroup
225
+ generated by Q(M). According to the discussion in Subsection 1.2, any self-adjoint
226
+ C0-semigroup (St) with
227
+ (Tt) ⪯ (St) ⪯ (T (M)
228
+ t
229
+ )
230
+ corresponds to a Dirichlet form Q′ with Q ⪯ Q′ ⪯ Q(M). Hence, our result can be
231
+ seen as an abstract characterization of all semigroups sandwiched between (Tt) and
232
+ (T (M)
233
+ t
234
+ ).
235
+ 2.1. The active main part and the killing part. We will next recall the def-
236
+ inition of the active main part and the killing part of a Dirichlet form. For two
237
+ concrete examples see Examples 2.5, 2.6 below.
238
+ Let Q be a Dirichlet form on L2(X, m). For ϕ ∈ D(Q) with 0 ≤ ϕ ≤ 1 we define
239
+ the domain of the quadratic form ˜Qϕ on L2(X, m) by
240
+ D( ˜Qϕ) = {f ∈ L2(X, m) ∩ L∞(X, m) | fϕ, f 2ϕ ∈ D(Q)},
241
+ on which it acts by
242
+ ˜Qϕ(f) = Q(ϕf) − Q(ϕf 2, ϕ).
243
+ Since D(Q) ∩ L∞(X, m) is an algebra, we have D(Q) ∩ L∞(X, m) ⊆ D( ˜Qϕ). The
244
+ form ˜Qϕ is closable on L2(X, m). Indeed, [Sch20a, Theorem 3.1] shows that ˜Qϕ is
245
+ lower semicontinuous on its domain with respect to local convergence in measure
246
+ and hence it is lower semicontinuous on its domain with respect to L2-convergence.
247
+ We denote its closure by Qϕ. The next proposition summarizes further important
248
+ properties of Qϕ.
249
+ Proposition 2.1. Let ϕ, ψ ∈ D(Q) with 0 ≤ ϕ ≤ ψ ≤ 1.
250
+ (a) Qϕ is a Dirichlet form and its domain satisfies
251
+ D(Qϕ) ∩ L∞(X, m) = D( ˜Qϕ) = {f ∈ L2(X, m) ∩ L∞(X, m) | fϕ ∈ D(Q)}.
252
+ (b) D(Q) ⊆ D(Qϕ) and
253
+ Qϕ(f) ≤ Q(f),
254
+ f ∈ D(Q).
255
+ (c) D(Qψ) ⊆ D(Qϕ) and
256
+ Qϕ(f) ≤ Qψ(f),
257
+ f ∈ D(Qψ).
258
+ Proof. This follows from [Sch20a, Theorem 3.18]. The proofs given there treat an
259
+ extension of Qϕ to all measurable m-a.e. defined functions that is lower semicontin-
260
+ uous with respect to local convergence in measure. Restricting this form with larger
261
+ domain to L2(X, m) yields all the claims.
262
+
263
+
264
+ INTERMEDIATE DIRICHLET FORMS
265
+ 7
266
+ Remark 2.2. Part (a) of this proposition is important because it yields a formula
267
+ for Qϕ for bounded functions in its domain. Namely, for f, g ∈ D(Qϕ) ∩ L∞(X, m)
268
+ we have f, g ∈ D( ˜Qϕ) and hence
269
+ Qϕ(f, g) = ˜Qϕ(f, g) = Q(ϕf, ϕg) − Q(ϕfg, ϕ).
270
+ For the last equality, we used the definition of ˜Qϕ and polarization.
271
+ Definition 2.3 (Active main part). The active main part Q(M) of Q is defined as
272
+ follows: Its domain D(Q(M)) consists of all f ∈ L2(X, m) that satisfy f ∈ D(Qϕ)
273
+ for all ϕ ∈ D(Q) with 0 ≤ ϕ ≤ 1 such that
274
+ {ϕ ∈ D(Q) | 0 ≤ ϕ ≤ 1} → [0, ∞),
275
+ ϕ �→ Qϕ(f)
276
+ is bounded. On it Q(M) acts by
277
+ Q(M)(f) = sup{Qϕ(f) | ϕ ∈ D(Q) with 0 ≤ ϕ ≤ 1}.
278
+ Since ϕ �→ Qϕ(f) is monotone increasing, the form Q(M) is indeed a Dirichlet
279
+ form, see [Sch20a, Theorem 3.6]. It turns out that Q(M) is the maximal Dirichlet
280
+ form with respect to the natural order that dominates Q, i.e., Q ⪯ Q(M) and for all
281
+ Dirichlet forms Q′ with Q ⪯ Q′ we have Q′ ⊑ Q(M), see [Sch20a, Theorem 3.19].
282
+ However, Q(M) need not be an extension of Q and hence we introduce the following
283
+ definition.
284
+ Definition 2.4 (Killing part). The difference
285
+ Q(k) = Q − Q(M)
286
+ with domain D(Q(k)) = D(Q) is called the killing part of Q.
287
+ The killing part is a local and positive quadratic form. Both properties are a
288
+ consequence of Q(k) being monotone, see [Sch20a, Lemma 3.11] for monotonicity
289
+ and [Sch20a, Lemma B.1] for how monotonicity implies the other properties. In
290
+ particular, the value of Q(k)(f) only depends on |f| and not on the sign of f.
291
+ We illustrate these objects with an example. It shows that the active main part is
292
+ an abstract way of constructing operators with Neumann boundary conditions from
293
+ the quadratic forms leading to Dirichlet boundary conditions.
294
+ Example 2.5 (Dirichlet and Neumann Laplacian on domains). Let Ω ⊆ Rn be
295
+ open (or more generally let Ω be a Riemannian manifold) and let V ∈ L1
296
+ loc(Ω) be
297
+ nonnegative. We consider the Dirichlet form E(N)
298
+ V
299
+ with domain D(E(N)
300
+ V
301
+ ) = {f ∈
302
+ H1(Ω) | V 1/2f ∈ L2(Ω)}, on which it acts by
303
+ E(N)
304
+ V
305
+ (f) =
306
+
307
+ Ω |∇f|2dx +
308
+
309
+ Ω |f|2V dx.
310
+ The associated operator is the self-adjoint realization of the Schrödinger operator
311
+ H = −∆ + V with (abstract) Neumann boundary conditions, which we denote by
312
+ H(N). Moreover, we let E(D)
313
+ V
314
+ be the restriction of E(N)
315
+ V
316
+ to D(E(D)
317
+ V
318
+ ) = {f ∈ H1
319
+ 0(Ω) |
320
+
321
+ 8
322
+ M. KELLER, D. LENZ, M. SCHMIDT, M. SCHWARZ, AND M. WIRTH
323
+ V 1/2f ∈ L2(Ω)}. This is a regular Dirichlet form and the associated operator is the
324
+ self-adjoint realization of the Schrödinger operator H = −∆ + V with (abstract)
325
+ Dirichlet boundary conditions, which we denote by H(D).
326
+ The active main part of E(D)
327
+ V
328
+ is given by E(N)
329
+ 0
330
+ . Hence, the self-adjoint operator
331
+ associated to the active main part is −∆(N). For f ∈ D(E(D)
332
+ V
333
+ ), the killing part of
334
+ E(D)
335
+ V
336
+ is given by
337
+ (E(D)
338
+ V
339
+ )(k)(f) =
340
+
341
+ Ω |f|2V dx.
342
+ In particular, if V = 0, this discussion shows that a Dirichlet form Q satisfies E(D)
343
+ 0
344
+
345
+ Q ⪯ (E(D)
346
+ 0
347
+ )(M) if and only if the associated semigroup (St) satisfies (et∆(D)) ⪯ (St) ⪯
348
+ (et∆(N)). Hence, forms sandwiched between E(D)
349
+ 0
350
+ and (E(D)
351
+ 0
352
+ )(M) = E(N)
353
+ 0
354
+ correspond
355
+ to semigroups sandwiched between the Dirichlet and the Neumann semigroup of the
356
+ Laplacian. This is precisely the situation studied in [AW03].
357
+ Proof. Here we only sketch the main ideas of the proof. For the details we refer to
358
+ [Sch20a, Example 3.9]. We only consider bounded functions, the general case can
359
+ be treated through approximations.
360
+ Let f ∈ H1(Ω)∩L∞(Ω) and let ϕ ∈ C∞
361
+ c (Ω) with 0 ≤ ϕ ≤ 1. A direct computation
362
+ using the product rule for ∇ shows f ∈ D((E(D)
363
+ V
364
+ )ϕ) and
365
+ (E(D)
366
+ V
367
+ )ϕ(f) =
368
+
369
+ Ω ϕ2|∇f|2dx.
370
+ Letting ϕ ր 1 and taking into account that C∞
371
+ c (Ω) is dense in D(E(D)
372
+ V
373
+ ) yields
374
+ f ∈ D((E(D)
375
+ V
376
+ )(M)) and the formula for the action of (E(D)
377
+ V
378
+ )(M).
379
+ Similarly, if f ∈ D((E(D)
380
+ V
381
+ )(M))∩L∞(Ω), by the definition of (E(D)
382
+ V
383
+ )ϕ and the active
384
+ main part, we have ϕf ∈ D(E(D)
385
+ V
386
+ ) = H1
387
+ 0(Ω) ∩ L2(Ω, V · dx) for every ϕ ∈ C∞
388
+ c (Ω).
389
+ This yields ∇f ∈ ⃗L2
390
+ loc(Ω). With this at hand, an application of the product rule for
391
+ ∇ as above shows (E(D)
392
+ V
393
+ )ϕ(f) =
394
+
395
+ Ω ϕ2|∇f|2dx. Since (E(D)
396
+ V
397
+ )ϕ(f) ≤ (E(D)
398
+ V
399
+ )(M)(f) and
400
+ ϕ is arbitrary, we conclude ∇f ∈ ⃗L2(Ω) so that f ∈ H1(Ω).
401
+ The statement on the killing part is an immediate consequence.
402
+
403
+ Example 2.6 (Fractional Laplacians). As above we let Ω ⊆ Rn be open. For a
404
+ background on fractional Sobolev spaces we refer to [DNPV12]. For 0 < s < 1, we
405
+ denote by Qs,(N) the Dirichlet form with domain D(Qs,(N)) = W s(Ω) on which it
406
+ acts by
407
+ Qs,(N)(f) = 1
408
+ 2
409
+
410
+ Ω×Ω
411
+ |f(x) − f(y)|2
412
+ |x − y|n+2s
413
+ dx dy.
414
+ The restriction of this form to W s
415
+ 0 (Ω) is denoted by Qs,(D), it is a regular Dirichlet
416
+ form. Note that at least if Ω is bounded and has C∞-boundary, the spaces W s
417
+ 0 (Ω)
418
+ and W s(Ω) coincide for 0 < s ≤
419
+ 1
420
+ 2 by [LM72, Theorem 11.1], which makes the
421
+ problem of finding the Dirichlet forms sandwiched between Qs,(D) and Qs,(N) trivial.
422
+
423
+ INTERMEDIATE DIRICHLET FORMS
424
+ 9
425
+ It is well-known that the associated self-adjoint operators H(N)
426
+ s
427
+ and H(D)
428
+ s
429
+ are
430
+ restrictions of the restricted fractional Laplacian Hs given by
431
+ Hsf(x) = P.V.
432
+
433
+
434
+ f(x) − f(y)
435
+ |x − y|n+2s dy = lim
436
+ ε→0+
437
+
438
+ Ω\Bε(x)
439
+ f(x) − f(y)
440
+ |x − y|n+2s dy.
441
+ Hence, they can be viewed as realizations of Hs with abstract Neumann and Dirich-
442
+ let boundary conditions.
443
+ Note that we ignore a constant so that our fractional
444
+ Laplacian is only a constant multiple of the ’usual’ restricted fractional Laplacian,
445
+ cf. [DNPV12, Section 3]. Similar as in the previous example the active main part
446
+ of Qs,(D) is Qs,(N).
447
+ Proof. Here we only show the statement on the active main part of Qs,(D), the rest
448
+ is well-known. Since Qs,(N) and (Qs,(D))(M) are Dirichlet forms, it suffices to prove
449
+ D(Qs,(N)) ∩ L∞(Ω) = D((Qs,(D))(M)) ∩ L∞(Ω) and that Qs,(N) and (Qs,(D))(M) agree
450
+ on these sets (use that bounded functions are dense in the domains of Dirichlet
451
+ forms, see [FOT11, Theorem 1.4.2]).
452
+ We first proof that Qs,(N) is a restriction of (Qs,(D))(M) (on L∞(Ω)). Let f ∈
453
+ W s(Ω) ∩ L∞(Ω) and let ϕ ∈ W s
454
+ 0 (Ω) with 0 ≤ ϕ ≤ 1. Then fϕ ∈ W s
455
+ 0 (Ω). We infer
456
+ Qs,(D)(ϕf) − Qs,(D)(ϕf 2, ϕ) = 1
457
+ 2
458
+
459
+ Ω×Ω
460
+ (ϕ(x)f(x) − ϕ(y)f(y))2
461
+ |x − y|n+2s
462
+ dx dy
463
+ − 1
464
+ 2
465
+
466
+ Ω×Ω
467
+ (ϕ(x)f(x)2 − ϕ(y)f(y)2)(ϕ(x) − ϕ(y))
468
+ |x − y|n+2s
469
+ dx dy
470
+ = 1
471
+ 2
472
+
473
+ Ω×Ω ϕ(x)ϕ(y)|f(x) − f(y)|2
474
+ |x − y|n+2s
475
+ dx dy.
476
+ Taking the supremum over such ϕ yields f ∈ D((Qs,(D))(M)) and (Qs,(D))(M)(f) =
477
+ Qs,(N)(f).
478
+ It remains to prove D((Qs,(D))(M)) ∩ L∞(Ω) ⊆ W s(Ω). Let f ∈ D((Qs,(D))(M)) ∩
479
+ L∞(Ω). For ϕ ∈ W s
480
+ 0(Ω) with 0 ≤ ϕ ≤ 1, we have by definition of the main part
481
+ ϕf, ϕf 2 ∈ W s
482
+ 0 (Ω) and
483
+ (Qs,(D))(M)(f) ≥ Qs,(D)(ϕf) − Qs,(D)(ϕf 2, ϕ)
484
+ = 1
485
+ 2
486
+
487
+ Ω×Ω ϕ(x)ϕ(y)|f(x) − f(y)|2
488
+ |x − y|n+2s
489
+ dx dy.
490
+ For the last equality we used the same computation as above. Since ϕ was arbitrary,
491
+ this shows f ∈ W s(Ω).
492
+
493
+ Remark 2.7. These examples show that it is a good intuition to think of a regular
494
+ Dirichlet form Q with Q(k) = 0 as being a form with ‘Dirichlet type’ boundary con-
495
+ ditions and Q(M) being the ’same’ form with ‘Neumann type’ boundary conditions.
496
+
497
+ 10
498
+ M. KELLER, D. LENZ, M. SCHMIDT, M. SCHWARZ, AND M. WIRTH
499
+ 2.2. An abstract characterization of sandwiched semigroups and forms.
500
+ The main abstract result of this paper is the following characterization of Dirichlet
501
+ forms sandwiched between a Dirichlet form without killing and its active main part.
502
+ Theorem 2.8. Let Q, Q′ be Dirichlet forms on L2(X, m) with Q(k) = 0. The fol-
503
+ lowing assertions are equivalent.
504
+ (i) Q ⪯ Q′ ⪯ Q(M).
505
+ (ii) (a) D(Q′) ⊆ D(Q(M)) and D(Q′) is an order ideal in D(Q(M)).
506
+ (b) Q′ − Q(M) is a positive and local form on D(Q′).
507
+ (c) Q′ is an extension of Q.
508
+ Proof. (i) =⇒ (ii): (a) This is a consequence of Proposition 1.1.
509
+ (b) The positivity of Q′ − Q(M) follows directly from Q′ ⪯ Q(M), cf. Proposi-
510
+ tion 1.1. In order to see that Q′ − Q(M) is local, we let f, g ∈ D(Q′) with fg = 0.
511
+ Without loss of generality we may assume f, g ≥ 0, for otherwise we can decom-
512
+ pose f, g into positive and negative parts and use f±g± = 0. Since Q′ and Q(M)
513
+ are Dirichlet forms, we can further assume that f, g are bounded. As we already
514
+ established positivity, it remains to prove Q′(f, g) − Q(M)(f, g) ≤ 0.
515
+ Let ϕ ∈ D(Q) with 0 ≤ ϕ ≤ 1. According to Proposition 1.1 we have fϕ, gϕ ∈
516
+ D(Q), so that by Proposition 2.1 f, g ∈ D(Qϕ). Using fg = 0 and Q ⪯ Q′ we obtain
517
+ Q′(f, g) − Qϕ(f, g) = Q′(f, g) − Q(ϕf, ϕg) + Q(ϕfg, ϕ)
518
+ = Q′(f, g) − Q′(ϕf, ϕg)
519
+ = Q′((1 − ϕ)f, g) + Q′(ϕf, (1 − ϕ)g).
520
+ The functions η = (1 − ϕ)f and ζ = g are nonnegative and satisfy ηζ = 0. The
521
+ Dirichlet form property of Q′ implies
522
+ Q′(η + ζ) = Q′(|η + ζ|) = Q′(|η − ζ|) ≤ Q′(η − ζ),
523
+ from which we deduce Q′(η, ζ) ≤ 0 by bilinearity. The same argument applies to
524
+ η = ϕf and ζ = (1 − ϕ)g so that we obtain
525
+ Q′(f, g) − Qϕ(f, g) = Q′((1 − ϕ)f, g) + Q′(ϕf, (1 − ϕ)g) ≤ 0.
526
+ By the definition of Q(M) we can choose ϕ such that Qϕ(f, g) is arbitrarily close to
527
+ Q(M)(f, g) and hence obtain locality.
528
+ (c) The domination Q ⪯ Q′ ⪯ Q(M) and Q(k) = 0 yield for all nonnegative
529
+ f, g ∈ D(Q) the inequality
530
+ Q(f, g) = Q(M)(f, g) ≤ Q′(f, g) ≤ Q(f, g).
531
+ By splitting functions into positive and negative parts this shows Q = Q′ on D(Q).
532
+ (ii) =⇒ (i): Q′ ⪯ Q(M) follows directly from (a) and (b) and the characterization
533
+ of domination Proposition 1.1.
534
+
535
+ INTERMEDIATE DIRICHLET FORMS
536
+ 11
537
+ Q ⪯ Q′: Since D(Q′) is contained in D(Q(M)) and D(Q) is an order ideal in
538
+ D(Q(M)) we obtain that D(Q) is also an order ideal in D(Q′).
539
+ Since Q′ is an
540
+ extension of Q, this already implies domination.
541
+
542
+ We can rephrase this theorem slightly. Let Q be a Dirichlet form with Q(k) = 0.
543
+ We say that a pair (F, q) consisting of a vector lattice F ⊆ D(Q(M)) that is an order
544
+ ideal in D(Q(M)) and a quadratic form q with D(q) = F is an abstract admissible
545
+ pair for Q, if it satisfies the following properties:
546
+ • D(Q) ⊆ D(q) and q(f) = 0 for f ∈ D(Q),
547
+ • q is local and positive,
548
+ • the form QF,q = Q(M)|F + q is closed.
549
+ Corollary 2.9. Let Q be Dirichlet forms with Q(k) = 0. The following assertions
550
+ are equivalent.
551
+ (i) Q′ is a Dirichlet form with Q ⪯ Q′ ⪯ Q(M).
552
+ (ii) There exists an abstract admissible pair (F, q) such that Q′ = QF,q.
553
+ Proof. (i) =⇒ (ii): This is a reformulation of the previous theorem.
554
+ (ii) =⇒ (i): Using the previous theorem it suffices to show that QF,q is a Dirichlet
555
+ form. Since closedness and density of D(QF,q) = F are part of the definition of
556
+ abstract admissible pairs, it suffices to prove the Markov property. By assumption
557
+ F is an order ideal in D(Q(M)) and for f ∈ F we have f+ ∧ 1 ∈ D(Q(M)) and
558
+ |f+ ∧ 1| ≤ |f|. This shows f+ ∧ 1 ∈ F whenever f ∈ F. Moreover, as already
559
+ discussed after introducing the killing part, q being local and positive yields that q is
560
+ monotone, see [Sch20a, Lemma B.1]. These observations and Q(M) being Markovian
561
+ imply
562
+ QF,q(f+ ∧ 1) = Q(M)(f+ ∧ 1) + q(f+ ∧ 1) ≤ Q(M)(f) + q(f) = QF,q(f).
563
+
564
+ Remark 2.10. This corollary shows that in order to determine all sandwiched forms
565
+ between Q and Q(M) we need to characterize all abstract admissible pairs. This is
566
+ possible when Q(M) is a regular Dirichlet form on a metric space K containing X as
567
+ a dense open subset. In the next section we will prove that in this case:
568
+ (a) Positive and local forms correspond to measures if their domain contains suf-
569
+ ficiently many continuous functions, see Appendix A. If these forms satisfy
570
+ q(f) = 0 for f ∈ D(Q), the corresponding measure is supported on the boundary
571
+ K \ X.
572
+ (b) Closed order ideals in D(Q(M)) correspond to functions vanishing outside an
573
+ open set (under some additional density assumption for continuous functions).
574
+ This then allows us to identify abstract admissible pairs with pairs of open subsets
575
+ of the boundary and certain measures on them.
576
+
577
+ 12
578
+ M. KELLER, D. LENZ, M. SCHMIDT, M. SCHWARZ, AND M. WIRTH
579
+ 3. Domination for parts of regular Dirichlet forms
580
+ Let Q be a regular Dirichlet form on L2(X, m). Let O ⊆ X be an open set and let
581
+ µ be a Radon measure on the Borel σ-algebra of O. We define the quadratic form
582
+ Qc
583
+ O,µ by letting D(Qc
584
+ O,µ) = D(Q) ∩ Cc(O) and
585
+ Qc
586
+ O,µ(f) = Q(f) +
587
+
588
+ O f 2dµ.
589
+ Here Cc(O) is tacitly identified with {ϕ ∈ Cc(X) | supp ϕ ⊆ O}.
590
+ Proposition 3.1. The following assertions are equivalent.
591
+ (i) µ charges no sets of Q-capacity zero.
592
+ (ii) The quadratic form Qc
593
+ O,µ is closable.
594
+ In this case, the closure QO,µ of Qc
595
+ O,µ is given by
596
+ D(QO,µ) = {f ∈ D(Q) | ˜f = 0 q.e. on X \ O and
597
+
598
+ O
599
+ ˜f 2dµ < ∞},
600
+ QO,µ(f) = Q(f) +
601
+
602
+ O
603
+ ˜f 2dµ.
604
+ Proof. (i) =⇒ (ii): This follows as in [Sto92, Theorem 1.2].
605
+ (ii) =⇒ (i): By the inner regularity of the capacity and the inner regularity of
606
+ the Radon measure µ it suffices to show for compact sets K ⊆ O that cap(K) = 0
607
+ implies µ(K) = 0.
608
+ Let now K ⊆ O be compact with cap(K) = 0. Since Q is regular, there exists a
609
+ sequence (ϕn) in D(Q) ∩ Cc(X) such that ∥ϕn∥Q → 0, 0 ≤ ϕn ≤ 1 and ϕn ≥ 1 on
610
+ K. Let G be open and relatively compact with K ⊆ G ⊆ O. Using regularity of Q
611
+ again yields the existence of a function ψ ∈ D(Q) ∩ Cc(X) with 0 ≤ ψ ≤ 1, ψ = 1
612
+ on K and supp ψ ⊆ G.
613
+ We now consider fn := ψ · ϕn.
614
+ Since Q is a Dirichlet form, it satisfies fn ∈
615
+ D(Q) ∩ Cc(O) = D(Qc
616
+ O,µ) and
617
+ Q(fn)1/2 ≤ Q(ψ)1/2 + Q(ϕn)1/2.
618
+ The inequality 0 ≤ fn ≤ 1 and supp fn ⊆ G imply ∥fn∥ → 0 as n → ∞ and
619
+
620
+ O |fn|2dµ ≤ µ(G),
621
+ n ≥ 1.
622
+ In particular, these estimates show that (fn) is bounded with respect to the form
623
+ norm ∥·∥QO,µ. Let QO,µ be the closure of Qc
624
+ O,µ, which exists by (ii). The Banach–Saks
625
+ theorem implies that for some subsequence (fnk) the sequence of Césaro means
626
+ gN := 1
627
+ N
628
+ N
629
+
630
+ k=1
631
+ fnk
632
+ converges to some g ∈ D(QO,µ) with respect to ∥·∥QO,µ. The form norm of QO,µ
633
+ is larger than ∥·∥ and hence we obtain gn → g with respect to ∥·∥.
634
+ But since
635
+
636
+ INTERMEDIATE DIRICHLET FORMS
637
+ 13
638
+ ∥fn∥ → 0, we conclude g = 0. By the choice of (fn) we also have gN ∈ D(Q)∩Cc(O),
639
+ 0 ≤ gN ≤ 1 and gN ≥ 1 on K. Putting everything together we obtain
640
+ µ(K) ≤
641
+
642
+ O |gN|2dµ ≤ QO,µ(gN) → 0 as N → ∞.
643
+ This yields the desired µ(K) = 0.
644
+ The proof of the formula for QO,µ follows as in [SV96, Proposition 1.1].
645
+
646
+ Definition 3.2. A pair (O, µ) satisfying one of the conditions of the previous the-
647
+ orem is called an admissible pair for the form Q. In this case, we write QO,µ for the
648
+ closure of the form Qc
649
+ O,µ above.
650
+ Proposition 3.3. Let (Oi, µi), i = 1, 2, be admissible pairs for Q. The following
651
+ assertions are equivalent:
652
+ (i) QO1,µ1 ⪯ QO2,µ2.
653
+ (ii) cap(O1 \ O2) = 0 and µ2(A) ≤ µ1(A) for every Borel set A ⊆ O1 ∩ O2.
654
+ Proof. (ii) =⇒ (i): This follows immediately from (ii) and the formula for QOi,µi
655
+ given in Proposition 3.1.
656
+ (i) =⇒ (ii): Since D(QO1,µ1) is a lattice and an order ideal in D(QO2,µ2), we have
657
+ D(QO1,µ1) ⊆ D(QO2,µ2). Hence, every f ∈ D(QO1,µ1) satisfies ˜f = 0 q.e. on X \ O2.
658
+ Now, suppose cap(O1 \ O2) > 0.
659
+ By [FOT11, Theorem 2.1.1] there exists a
660
+ compact set K ⊆ O1 \ O2 with cap(K) > 0 and by [FOT11, Theorem 2.1.5] there
661
+ exists f ∈ D(Q) with 0 ≤ f ≤ 1 and ˜f = 1 q.e. on K. By the regularity of Q there
662
+ exists ϕ ∈ D(Q) ∩ Cc(O1) with ϕ ≥ 1 on K. We obtain ϕf ∈ D(QO1,µ1) as ϕ ˜f = 0
663
+ q.e. on X \ O1 and
664
+
665
+ O1
666
+ |ϕ ˜f|2dµ1 ≤
667
+
668
+ O1
669
+ |ϕ|2dµ1 < ∞.
670
+ Furthermore, ϕ ˜f ≥ 1 q.e. on K ⊆ X \ O2. This and cap(K) > 0 are a contradiction
671
+ to the fact that functions in D(QO1,µ1) vanish q.e. on X \ O2.
672
+ It remains to prove the inequality for the measures. Domination implies
673
+ Q(ϕ) +
674
+
675
+ O2
676
+ |ϕ|2dµ2 ≤ Q(ϕ) +
677
+
678
+ O1
679
+ |ϕ|2dµ1
680
+ for all nonnegative ϕ ∈ D(Q) ∩ Cc(O1). For any compact set K ⊆ O1 ∩ O2 and any
681
+ open neighborhood G of K with G ⊆ O1 ∩ O2 there exists ψ ∈ Cc(X) ∩ D(Q) with
682
+ supp ψ ⊆ G, 0 ≤ ψ ≤ 1 and ψ ≥ 1 on K. Plugging this into the last inequality
683
+ yields
684
+ µ2(K) ≤
685
+
686
+ O2
687
+ |ψ|2dµ2 ≤
688
+
689
+ O1
690
+ |ψ|2dµ1 ≤ µ1(G).
691
+ Thus we obtain µ2(K) ≤ µ1(K) from the outer regularity of the Radon measure
692
+ µ1. By inner regularity of Radon measures this implies the statement for all Borel
693
+ sets.
694
+
695
+
696
+ 14
697
+ M. KELLER, D. LENZ, M. SCHMIDT, M. SCHWARZ, AND M. WIRTH
698
+ 4. A boundary for regular Dirichlet forms and a characterization
699
+ of sandwiched semigroups
700
+ 4.1. A boundary for regular Dirichlet forms. Let Q be a regular Dirichlet form
701
+ on L2(X, m). In this subsection we introduce a locally compact separable metric
702
+ space K that contains X as an open subset and extend m to a Radon measure ˆm
703
+ on K such that Q(M) can be considered to be a regular form on L2(K, ˆm).
704
+ The spaces Cc(X) and L2(X, m) are separable because X is locally compact sep-
705
+ arable metric space and m is a Radon measure. The map
706
+ L2(X, m) → D(Q(M)),
707
+ f �→ (L(M) + 1)−1f
708
+ is continuous with respect to the form norm ∥·∥Q(M) (here L(M) denotes the positive
709
+ self-adjoint operator associated with Q(M)). It has dense image D(L(M)) in D(Q(M))
710
+ with respect to ∥·∥Q(M), showing that (D(Q(M)), ∥·∥Q(M)) is also separable. Moreover,
711
+ [Sch20a, Theorem 4.3] asserts that for a regular Dirichlet form Q the space D(Q(M))∩
712
+ Cb(X) is dense in D(Q(M)) with respect to ∥·∥Q(M) (this is an abstract version of the
713
+ Meyers-Serrin theorem).
714
+ Combining these observations yields the existence of a subalgebra C of D(Q(M))∩
715
+ Cb(X) with the following three properties:
716
+ • C is countably generated.
717
+ • C is ∥·∥Q(M)-dense in D(Q(M)).
718
+ • C ∩ Cc(X) is uniformly dense in Cc(X).
719
+ Let A be the uniform closure of C. Its complexification AC = {f + ig | f, g ∈ A}
720
+ is a commutative C∗-algebra that satisfies C0(X; C) ⊆ AC ⊆ Cb(X; C). By Gelfand
721
+ theory there exists a unique (up to homeomorphism) locally compact, separable
722
+ Hausdorff space K with the following properties:
723
+ • X is a dense and open subset of K.
724
+ • Every f ∈ AC can be extended to a function ˆf ∈ C0(K; C) and
725
+ C0(K; C) = { ˆf | f ∈ AC}.
726
+ As C is countably generated, the space K is metrizable. Hence, K is Polish, that is,
727
+ separable and completely metrizable, since every locally compact, separable, second
728
+ countable space is Polish. Since X is dense in K, the continuous extension of a
729
+ function from A to K is unique and we will therefore not distinguish between ele-
730
+ ments of A and their extension. For real-valued functions this interpretation leads
731
+ to A = C0(K)(= C0(K; R)).
732
+ The measure m on X can be extended to a Borel measure ˆm on K by setting
733
+ ˆm(A) = m(A ∩ X),
734
+ A ∈ B(K).
735
+ The measure ˆm is again a Radon measure of full support. By this definition the
736
+ space L2(K, ˆm) can be naturally identified with L2(X, m) via the unitary map
737
+ R: L2(K, ˆm) → L2(X, m),
738
+ f �→ f|X.
739
+
740
+ INTERMEDIATE DIRICHLET FORMS
741
+ 15
742
+ Our discussion shows R−1(A∩L2(X, m)) = C0(K)∩L2(K, ˆm). Since R also preserves
743
+ the order relation, any Dirichlet form on L2(X, m) can be viewed as a Dirichlet form
744
+ on L2(K, ˆm) under this transformation. In particular, the form Q(M) is a regular
745
+ Dirichlet form on L2(K, ˆm), see [Sch20a, Theorem 4.4].
746
+ The following remark sketches the uniqueness of the space K. We leave details
747
+ (especially the involved definitions, which can be found in [FOT11, Appendix A.4])
748
+ to the reader.
749
+ Remark 4.1 (Uniqueness of K). The space K depends on the choice of the algebra C.
750
+ However, given two algebras C, C′ with the required properties and the corresponding
751
+ spaces K, K′, there exists a unitary order isomorphism
752
+ U : L2(K, ˆm) → L2(K′, ˆm′)
753
+ such that 0 ≤ fn ≤ 1, fn ր 1 implies Ufn ր 1 and U intertwines Q(M) and Q(M)
754
+ (when considererd as a form on the corresponding space). This implies that both
755
+ forms are equivalent in the sense of [FOT11, Appendix A.4]. Since they are also
756
+ regular, [FOT11, Theorem A.4.2] yields that K and K′ are quasi-homeomorphic (and
757
+ establishes further properties of a corresponding quasi-homeomorphism).
758
+ In view of the previous remark we make the following definition.
759
+ Definition 4.2. The set ∂X = K \ X is called the boundary of X relative to the
760
+ form Q.
761
+ Example 4.3 (Dirichlet and Neumann Laplacian – continued). We use the situation
762
+ and notation of Example 2.5 and assume that the potential vanishes, i.e., V = 0.
763
+ As discussed in Example 2.5 we have (E(D)
764
+ 0
765
+ )(M) = E(N)
766
+ 0
767
+ so that D((E(D)
768
+ 0
769
+ )(M)) =
770
+ H1(Ω) and the standard Sobolev norm on H1(Ω) coincides with the form norm of
771
+ (E(D)
772
+ 0
773
+ )(M).
774
+ If Ω ⊆ Rn has continuous boundary (for a precise definition see e.g.
775
+ [EE18, Definition 4.1]), the space {f|Ω | f ∈ C∞
776
+ c (Rn)} is dense in H1(Ω) with
777
+ respect to the standard Sobolev norm. Hence, in this case we can choose the algebra
778
+ C to be a subset of {f|Ω | f ∈ C∞
779
+ c (Rn)} ⊆ Cc(Ω).
780
+ Since by Stone-Weierstraß
781
+ {f|Ω | f ∈ C∞
782
+ c (Rn)} is dense in C0(Ω), we can further assume that C is dense
783
+ in C0(Ω), so that the algebra A, the uniform closure of C, equals C0(Ω).
784
+ Our
785
+ construction then yields K = Ω (up to homeomorphism) and that the boundary of
786
+ Ω relative to E(D)
787
+ 0
788
+ coincides with the metric boundary ∂Ω = Ω \ Ω in Rn.
789
+ Example 4.4 (Fractional Laplacian – continued). We use the situation and notation
790
+ of Example 2.6. As discussed above we have D((Qs,(D))(M)) = W s(Ω). Moreover, if
791
+ Ω has Lipschitz boundary, then {f|Ω | f ∈ C∞
792
+ c (Rn)} is dense in W s(Ω) with respect
793
+ to the form norm of Qs,(N), which coincides with the ususal norm on W s(Ω), see
794
+ [DNPV12, Corollary 5.5]. With this at hand the same argument as in the previous
795
+ example yields that we can choose K = Ω such that the boundary of Ω relative to
796
+ Qs,(D) coincides with the metric boundary ∂Ω = Ω \ Ω in Rn.
797
+
798
+ 16
799
+ M. KELLER, D. LENZ, M. SCHMIDT, M. SCHWARZ, AND M. WIRTH
800
+ 4.2. A characterization of sandwiched semigroups for regular Dirichlet
801
+ forms. In this subsection we prove the main result of this paper.
802
+ Let Q be a
803
+ regular Dirichlet form on L2(X, m). We apply the theory developed in Section 3 to
804
+ the form Q(M) when considered as a regular Dirichlet form on L2(K, ˆm). We start
805
+ with a simple observation that follows from the previous discussion.
806
+ Proposition 4.5. Let Q be a regular Dirichlet form. Then (K, 0) and (X, 0) are
807
+ admissible pairs for the regular Dirichlet form Q(M) on L2(K, ˆm) and we have Q(M) =
808
+ (Q(M))K, 0 and Q = (Q(M))X, 0. In particular,
809
+ D(Q) = {f ∈ D(Q(M)) | ˜f = 0 q.e. on ∂X}.
810
+ The following is the main result of the paper.
811
+ Theorem 4.6. Let Q be a regular Dirichlet form with Q(k) = 0. For a Dirichlet
812
+ form Q′ the following assertions are equivalent:
813
+ (i) There exists an admissible pair (O, µ) for Q(M) with X ⊆ O and µ(X) = 0
814
+ such that Q′ = (Q(M))O,µ.
815
+ (ii) (a) Q ⪯ Q′ ⪯ Q(M)
816
+ (b) D(Q′) ∩ Cc(K) is dense in D(Q′) with respect to ∥·∥Q′.
817
+ Proof. (i) =⇒ (ii): (a) follows from Proposition 3.3 and the identities discussed in
818
+ Propostion 4.5. The density of D((Q(M))O,µ) ∩ Cc(O) in D((Q(M))O,µ) with respect
819
+ to ∥·∥(Q(M))O,µ is part of the definition of the form (Q(M))O,µ.
820
+ (ii) =⇒ (i): Let D be the uniform closure of the algebra D(Q′) ∩ Cc(K). Since
821
+ D(Q′) ∩ Cc(K) is an algebraic ideal in D(Q(M)) ∩ Cc(K) (here we use domination
822
+ and Proposition 3.3), D is a uniformly closed ideal in
823
+ D(Q(M)) ∩ Cc(K)
824
+ ∥·∥∞ = C0(K)
825
+ (here we use the regularity of Q(M)). Moreover, by Theorem 2.8 we have D(Q) ⊆
826
+ D(Q′) so that D(Q)∩Cc(X) ⊆ D(Q′)∩Cc(K). Since Q is regular on L2(X, m), this
827
+ yields C0(X) ⊆ D. By the characterization of closed ideals in C0(K) there exists an
828
+ open set X ⊆ O ⊆ K such that
829
+ D = {f ∈ C0(K) | f = 0 on K \ O}.
830
+ Altogether this discussion shows that D(Q′) ∩ Cc(O) is ∥·∥Q′ dense in D(Q′) and
831
+ uniformly dense in Cc(O).
832
+ Next, we show D(Q′) ∩ Cc(O) = D(Q(M)) ∩ Cc(O). Let ϕ ∈ D(Q(M)) ∩ Cc(O)
833
+ and let K = supp ϕ ⊆ O.
834
+ Since Q′ is a Dirichlet form and D(Q′) ∩ Cc(O) is
835
+ uniformly dense in Cc(O), there exists ψ ∈ D(Q′) ∩ Cc(O) with ψ = 1 on K.
836
+ We obtain ϕ = ψϕ ∈ D(Q′) ∩ Cc(O) since D(Q′) ∩ Cc(O) is an algebraic ideal in
837
+ D(Q(M)) ∩ Cc(O) (here we use domination and Proposition 3.3).
838
+ According to Theorem 2.8 the domination (a) implies that the form q = Q′−Q(M)
839
+ with domain D(q) = D(Q(M)) ∩ Cc(O) is positive, local and satisfies q(f) = 0 for
840
+
841
+ INTERMEDIATE DIRICHLET FORMS
842
+ 17
843
+ all f ∈ D(Q) ∩ Cc(X). By Corollary A.4 there exists a Radon measure µ on O such
844
+ that
845
+ q(f) =
846
+
847
+ O |f|2dµ,
848
+ f ∈ D(Q(M)) ∩ Cc(O).
849
+ Since D(Q) ∩ Cc(X) is uniformly dense in Cc(X), the property q(f) = 0 for f ∈
850
+ D(Q) ∩ Cc(X) implies µ(X) = 0.
851
+ For f ∈ D(Q(M)) ∩ Cc(O), we have by definition of q that
852
+ Q′(f) = Q(M)(f) +
853
+
854
+ O |f|2dµ = (Q(M))c
855
+ O,µ(f).
856
+ Since Q′ is closed and D(Q(M)) ∩ Cc(O) is ∥·∥Q′-dense in D(Q′), this implies that
857
+ (O, µ) is an admissible pair for Q(M) and Q′ = (Q(M))O,µ.
858
+
859
+ We can reformulate this theorem as follows.
860
+ Corollary 4.7. Let Q be a regular Dirichlet form with Q(k) = 0. For a Dirichlet
861
+ form Q′, the following assertions are equivalent.
862
+ (i) There exists an open subset ∂µX ⊆ ∂X and a Radon measure µ on ∂µX that
863
+ does not charge sets of Q(M)-capacity zero such that
864
+ D(Q′) = {f ∈ D(Q(M)) | ˜f = 0 q.e. on ∂X \ ∂µX and
865
+
866
+ ∂µX | ˜f|2dµ < ∞}
867
+ and
868
+ Q′(f) = Q(M)(f) +
869
+
870
+ ∂µX | ˜f|2dµ.
871
+ (ii) (a) Q ⪯ Q′ ⪯ Q(M)
872
+ (b) D(Q′) ∩ Cc(K) is dense in D(Q′) with respect to ∥·∥Q′.
873
+ As an application of this result and our examples we obtain one of the main results
874
+ of [AW03] under slightly less restrictive assumptions.
875
+ Example 4.8. Again we use the situation of Schrödinger operators on Ω of Exam-
876
+ ple 2.5 with V = 0. Assume further that Ω ⊆ Rn has continuous boundary and
877
+ let Q be a Dirichlet form on L2(Ω) with associated Markovian semigroup (St). Let
878
+ ∂Ω = Ω \ Ω be the metric boundary of Ω. The disscusion in Example 2.5 and Ex-
879
+ ample 4.3 combined with the previous corollary yield that the following assertions
880
+ are equivalent.
881
+ (i) There exists an open subset ∂µΩ ⊆ ∂Ω and a Radon measure µ on ∂µΩ that
882
+ does not charge sets of E(N)
883
+ 0
884
+ -capacity zero such that
885
+ D(Q) = {f ∈ H1(Ω) | ˜f = 0 q.e. on ∂Ω \ ∂µΩ and
886
+
887
+ ∂µΩ | ˜f|2dµ < ∞}
888
+ and
889
+ Q(f) =
890
+
891
+ Ω |∇f|2dx +
892
+
893
+ ∂µΩ | ˜f|2dµ.
894
+ (ii) (a) (et∆(D)) ⪯ (St) ⪯ (et∆(N))
895
+
896
+ 18
897
+ M. KELLER, D. LENZ, M. SCHMIDT, M. SCHWARZ, AND M. WIRTH
898
+ (b) D(Q) ∩ Cc(Ω) is dense in D(Q) with respect to ∥·∥Q.
899
+ This is precisely the statement of [AW03, Theorem 4.1] under the slightly less restric-
900
+ tive assumption of Ω having continuous boundary instead of Lipschitz boundary.
901
+ Example 4.9. We use the situation of fractional Laplacians of Example 2.6. Assume
902
+ further that Ω ⊆ Rn has Lipschitz boundary and let Q be a Dirichlet form on L2(Ω)
903
+ with associated Markovian semigroup (St). Let ∂Ω = Ω \ Ω be the metric boundary
904
+ of Ω. The disscusion in Example 2.6 and Example 4.4 combined with the previous
905
+ corollary yield that the following assertions are equivalent.
906
+ (i) There exists an open subset ∂µΩ ⊆ ∂Ω and a Radon measure µ on ∂µΩ that
907
+ does not charge sets of Qs,(N)-capacity zero such that
908
+ D(Q) = {f ∈ W s(Ω) | ˜f = 0 q.e. on ∂Ω \ ∂µΩ and
909
+
910
+ ∂µΩ | ˜f|2dµ < ∞}
911
+ and
912
+ Q(f) = 1
913
+ 2
914
+
915
+ Ω×Ω
916
+ |f(x) − f(y)|2
917
+ |x − y|n+2s
918
+ dx dy +
919
+
920
+ ∂µΩ | ˜f|2dµ.
921
+ (ii) (a) (e−tH(D)
922
+ s
923
+ ) ⪯ (St) ⪯ (e−tH(N)
924
+ s
925
+ )
926
+ (b) D(Q) ∩ Cc(Ω) is dense in D(Q) with respect to ∥·∥Q.
927
+ The implication (i) =⇒ (ii) was also proved for Dirichlet forms associated with a re-
928
+ lated, but different fractional Laplacian by Claus and Warma [CW20, Theorem 4.2].
929
+ As mentioned in the introducion we wanted to provide a version of the results of
930
+ [AW03] for general Dirichlet forms. In the abstract framework we were as general
931
+ as possible but held back in generality for regular Dirichlet forms. In the following
932
+ remarks we collect what else can be deduced from our general framework (at the
933
+ cost of brevity and technical simplicity).
934
+ Remark 4.10. (a) Another result of [AW03] is the descritption of the operators
935
+ corresponding to semigroups (et∆(D)) ⪯ (St) ⪯ (et∆(N)) as Laplacians with Robin
936
+ type boundary conditions. Something similar is possible here after equipping
937
+ the abstract boundary ∂X with so-called harmonic measures. This allows for
938
+ the definition of densities of normal derivatives and leads to abstract Robin
939
+ boundary conditions. In the Euclidean setting with Ω having Lipschitz boundary
940
+ the harmonic measures are mutually absolutely continuous with respect to the
941
+ surface measure on ∂Ω and the abstract normal derivatives are given by the
942
+ usual normal derivative.
943
+ (b) In Theorem 4.6 we used that D(Q′) ∩ Cc(K) is dense in D(Q′) because we
944
+ constructed the set O as the complement of the zero set of the closed ideal
945
+ D(Q′) ∩ Cc(K)
946
+ ∥·∥∞
947
+ in C0(K). One can drop the density assumption and replace this argument by
948
+ the characterization of closed ideals in regular Dirichlet spaces given in [Sto93].
949
+
950
+ INTERMEDIATE DIRICHLET FORMS
951
+ 19
952
+ In this case, Theorem 4.6 remains true without assertion (ii)(b) but with O open
953
+ replaced by O quasi-open.
954
+ (c) We always assumed that the killing part vanishes. If Q(k) ̸= 0, then there are
955
+ two possible choices of reference for the maximal form:
956
+ (1) One can characterize all Dirichlet forms Q′ with Q ⪯ Q′ ⪯ Q(M) via abstract
957
+ admissible pairs. Since in this case Q(M) is not an extension of Q, the form q
958
+ of the abstract admissible pair corresponding to Q′ does not vanish on D(Q)
959
+ but is bounded above by Q(k). In the regular setting this implies that the
960
+ measure µ from the admissible pair corresponding to Q′ is not necessarily
961
+ supported only on ∂X. It satisfies µ ≤ k on X, where k is the measure
962
+ corresponding to the local and positive form Q(k) (cf. Appendix A).
963
+ (2) Instead of comparing Q′ with Q(M) one can characterize Q ⪯ Q′ ⪯ Qref,
964
+ where Qref is the active reflected Dirichlet form of Q. It arises by adding a
965
+ suitable extension of Q(k) to Q(M), cf. [Sch20a, Section 3.3]. In this case, our
966
+ main theorems still hold true but the proofs become substantially longer.
967
+ Appendix A. Bilinear forms on Cc(X)
968
+ Let X be a locally compact metric space. In this section we provide a character-
969
+ ization of positive and local forms defined on Cc(X). First we show that densely
970
+ defined positive forms on Cc(X) can be extended to the whole of Cc(X) if their
971
+ domain is a lattice. In a second step we prove a representation theorem. Certainly
972
+ both results are well-known to experts. Since we could not find a proper reference,
973
+ we include the proofs for the convenience of the reader.
974
+ In the following lemma we write C(K) for the subspace {f ∈ Cc(X) | supp f ⊆
975
+ K}.
976
+ Lemma A.1. Let q be a densely defined (with respect to the uniform norm) quadratic
977
+ form on D(q) ⊆ Cc(X). Suppose q is positive and D(q) is a lattice.
978
+ (a) For any compact K ⊆ X the restriction of q to D(q) ∩ C(K) is continuous.
979
+ (b) q can be uniquely extended to a positive quadratic form on Cc(X).
980
+ Proof. We first show that for any compact set K ⊆ X the restriction of q to D(q) ∩
981
+ C(K) is continuous with respect to the supremum norm.
982
+ Let f, g ∈ D(q) ∩ C(K) be nonnegative. Let θK ∈ D(q) be such that θK ≥ 0 and
983
+ θK ≥ 1 on K. Such a functions exists because D(q) is a dense lattice in Cc(X).
984
+ Without loss of generality we assume
985
+ q(∥f∥∞θK, g) − q(∥g∥∞θK, f) ≤ 0,
986
+ for otherwise we could interchange f and g. Then, using the positivity of q, we get
987
+ 0 ≤ q(∥f∥∞θK − f, ∥g∥∞θK + g)
988
+ = −q(f, g) + ∥f∥∞∥g∥∞q(θK, θK) + q(∥f∥∞θK, g) − q(∥g∥∞θK, f)
989
+ ≤ −q(f, g) + ∥f∥∞∥g∥∞q(θK, θK).
990
+
991
+ 20
992
+ M. KELLER, D. LENZ, M. SCHMIDT, M. SCHWARZ, AND M. WIRTH
993
+ This implies
994
+ 0 ≤ q(f, g) ≤ ∥f∥∞∥g∥q(θK, θK).
995
+ For arbitrary f, g ∈ D(q) ∩ C(K) we have f +, f −, g+, g− ∈ D(q) ∩ C(K) because
996
+ D(q) is a lattice. We obtain
997
+ |q(f, g)| ≤ q(f +, g+) + q(f +, g−) + q(f −, g+) + q(f −, g−)
998
+ ≤ 4∥f∥∞∥g∥∞q(θK, θK).
999
+ Using this continuity in order to prove that q can be uniquely extended to a posi-
1000
+ tive quadratic form on Cc(X) it suffices to show the following: For every nonnegative
1001
+ ϕ ∈ Cc(X) there exists a compact K ⊆ X with supp ϕ ⊆ K such that ϕ can be
1002
+ approximated by nonnegative functions in D(q) ∩ C(K).
1003
+ To this end, we choose a nonnegative θ ∈ D(q) with θ ≥ ∥ϕ∥∞ on supp ϕ. Such a
1004
+ function exists because D(q) is a dense lattice. Let K = supp θ. Since q is densely
1005
+ defined, there exists ( ˜ϕn) in D(q) with ˜ϕn → ϕ uniformly, as n → ∞. Since D(q) is
1006
+ a lattice, the sequence
1007
+ ϕn = ( ˜ϕn)+ ∧ θ
1008
+ belongs to D(q).
1009
+ It is nonnegative and supp ϕn ⊆ supp θ = K for all n ≥ 1.
1010
+ Moreover, using that 0 ≤ ϕ ≤ θ, we obtain ϕn → ϕ uniformly, as n → ∞.
1011
+
1012
+ The following theorem provides a characterization of monotone quadratic forms
1013
+ on Cc(X).
1014
+ Theorem A.2. Let q: Cc(X) → [0, ∞) be a quadratic form. The following asser-
1015
+ tions are equivalent:
1016
+ (i) q is positive and local.
1017
+ (ii) For all f, g ∈ Cc(X) the inequality fg ≥ 0 implies q(f, g) ≥ 0.
1018
+ (iii) For all f, f ′, g, g′ ∈ Cc(X) the inequality fg ≥ f ′g′ implies q(f, g) ≥ q(f ′, g′).
1019
+ (iv) q is monotone.
1020
+ (v) There exists a Radon measure µ on X such that
1021
+ q(u) =
1022
+
1023
+ X f 2dµ,
1024
+ f ∈ Cc(X).
1025
+ In this case, the measure µ is unique.
1026
+ Proof. Clearly, (ii) implies (i), (iii) implies (ii) and (v) implies all other assertions.
1027
+ (i) =⇒ (iv): Let f, g ∈ Cc(X) with |g| ≤ |f|. The positivity of q yields
1028
+ q(|f|) = q(|g|, |f|) + q(|f| − |g|, |f|) ≥ q(|g|, |f|) = q(|g|) + q(|g|, |f| − |g|) ≥ q(|g|).
1029
+ It is left to show q(f) = q(|f|) for every f ∈ Cc(X). Since f +, f − ∈ Cc(X) and
1030
+ f +f − = 0, the locality of q implies q(f +, f −) = 0 and hence
1031
+ q(f) = q(f +) − 2q(f +, f −) + q(f −) = q(f +) + 2q(f +, f −) + q(f −) = q(|f|).
1032
+
1033
+ INTERMEDIATE DIRICHLET FORMS
1034
+ 21
1035
+ (iv) =⇒ (ii): Let f, g ∈ Cc(X) with fg ≥ 0. Then |f + g| ≥ |f − g| so that by
1036
+ monotonicty
1037
+ q(f) + q(g) − 2q(f, g) = q(f − g) ≤ q(f + g) ≤ q(f) + q(g) + 2q(f, g).
1038
+ This shows (ii).
1039
+ We already proved the equivalence of (i),(ii) and (iv) and that these assertions
1040
+ are implied by (iii). Next we prove that they imply (iii).
1041
+ Let f, f ′, g, g′ ∈ Cc(X) with fg ≥ f ′g′. If f = f ′, the inequality q(f, g) ≥ q(f ′, g′)
1042
+ directly follows from (ii). With the help of an approximation we reduce the case
1043
+ f ̸= f ′ to this one.
1044
+ We start with the following observation: Locality of q implies that for ϕ, χ ∈
1045
+ Cc(X) the value q(ϕ, χ) is independent of χ as long as χ = 1 on supp ϕ. In this
1046
+ case, we write I(ϕ) := q(ϕ, χ).
1047
+ Let ε > 0. By compacteness of the supports we can choose finitely many rela-
1048
+ tively compact open sets Gj, j = 1, . . . , N, that cover the union of the supports of
1049
+ f, f ′, g, g′, and choose ξj ∈ Gj, such that
1050
+ sup
1051
+ x∈Gj
1052
+ |f(x) − f(ξj)| < ε and sup
1053
+ x∈Gj
1054
+ |f ′(x) − f ′(ξj)| < ε.
1055
+ We let χj ∈ Cc(X), j = 1, . . ., N, be a subordinate partition of unity, i.e. 0 ≤ χj ≤ 1,
1056
+ suppχj ⊆ Gj and
1057
+ N
1058
+
1059
+ j=1
1060
+ χj = 1 on
1061
+ N
1062
+
1063
+ j=1
1064
+ Gj.
1065
+ Such a partition of unity exists because metric spaces are normal. We define
1066
+ ˜f =
1067
+ N
1068
+
1069
+ j=1
1070
+ f(ξj)χj and ˜f ′ =
1071
+ N
1072
+
1073
+ j=1
1074
+ f ′(ξj)χj.
1075
+ Then, using
1076
+
1077
+ j χj = 1 on the supports of f, g, we obtain
1078
+ |q( ˜f, g) − q(f, g)| ≤
1079
+ N
1080
+
1081
+ j=1
1082
+ |q(χj(f − f(ξj)), g)| ≤ εq(
1083
+ N
1084
+
1085
+ j=1
1086
+ χj, |g|) = εI(|g|).
1087
+ For the second inequality we used |q(ϕ, ψ)| ≤ q(|ϕ|, |ψ|), which directly follows from
1088
+ the positivity of q, and the fact that |χj(f − f(ξj))| ≤ εχj.
1089
+ Similarly, we have
1090
+
1091
+ 22
1092
+ M. KELLER, D. LENZ, M. SCHMIDT, M. SCHWARZ, AND M. WIRTH
1093
+ |q( ˜f ′, g′) − q(f ′, g′)| ≤ εI(|g′|). Moreover,
1094
+ q( ˜f, g) − q( ˜f ′, g′) =
1095
+ N
1096
+
1097
+ j=1
1098
+ (q(f(ξj)χj, g) − q(f ′(ξj)χj, g′))
1099
+ =
1100
+ N
1101
+
1102
+ j=1
1103
+ q(χj, f(ξj)g − f ′(ξj)g′)
1104
+
1105
+ N
1106
+
1107
+ j=1
1108
+ q(χj, fg − f ′g′) − εq(
1109
+ N
1110
+
1111
+ j=1
1112
+ χj, |g| + |g|′)
1113
+ ≥ −εI(|g| + |g′|).
1114
+ For the first inequality we used (ii) and the estimate
1115
+ χj(f(ξj)g − f ′(ξj)g′) ≥ χj(fg − f ′g′ − ε(|g| + |g′|)).
1116
+ The last inequality follows from χj(fg − f ′g′) ≥ 0 and
1117
+
1118
+ j χj = 1 on the support of
1119
+ |g| + |g′|. Since ε > 0 was arbitrary, these estimates show (iii).
1120
+ (iii) =⇒ (v): As above we define I : Cc(X) → R by letting
1121
+ I(ϕ) = q(χ, ϕ)
1122
+ for some χ ∈ Cc(X) with χ = 1 on the support of ϕ. It follows from (iii) that this
1123
+ is well-defined and positive. Moreover, I is linear. By the Riesz-Markov-Kakutani
1124
+ representation theorem there exists a unique Radon measure µ such that
1125
+ I(ϕ) =
1126
+
1127
+ X ϕdµ
1128
+ for all ϕ ∈ Cc(X). Let now f, g ∈ Cc(X) an let χ ∈ Cc(X) such that χ = 1 on the
1129
+ supports of f and g. Since fg = χ(fg), property (iii) yields
1130
+ q(f, g) = q(χ, fg) = I(fg) =
1131
+
1132
+ X fgdµ.
1133
+ Thus, µ is the desired measure.
1134
+
1135
+ Remark A.3. The statement of the theorem is not only valid for quadratic forms
1136
+ on continuous functions. The equivalence of (ii) and (iv) was observed in [Sch20a,
1137
+ Appendix B] for quadratic forms on sublattices of L0(Y, m), where Y is an arbitrary
1138
+ set and m is a measure on Y . Indeed, the above proof yields the equivalence of (i),(ii)
1139
+ and (iv) in this situation. The equivalence with (iii) requires the existence of suitable
1140
+ partitions of unity in the domain of q and the equivalence with (v) requires that the
1141
+ domain of q is an algebra and a representation theorem for positive functionals.
1142
+ Corollary A.4. Let q be a densely defined positive and local quadratic form on
1143
+ Cc(X) such that D(q) is a lattice. Then there exists a unique Radon measure µ on
1144
+ X such that
1145
+ q(f) =
1146
+
1147
+ X f 2dµ,
1148
+ f ∈ D(q).
1149
+
1150
+ INTERMEDIATE DIRICHLET FORMS
1151
+ 23
1152
+ Proof. As noted in the previous remark the form q is also monotone. By Lemma A.1
1153
+ it can be uniquely extended to a positive quadratic form on Cc(X) and by the
1154
+ continuity of restrictions to compact sets this extension is also monotone. Hence,
1155
+ the statement follows from the previous theorem.
1156
+
1157
+ References
1158
+ [ACD21] Sahiba Arora, Ralph Chill, and Jean-Daniel Djida. Domination of semigroups generated
1159
+ by regular forms. 2021.
1160
+ [Akh18] Khalid Akhlil. Locality and domination of semigroups. Results Math., 73(2):Art. 59, 11,
1161
+ 2018.
1162
+ [AW03]
1163
+ Wolfgang Arendt and Mahamadi Warma. Dirichlet and Neumann boundary conditions:
1164
+ What is in between? J. Evol. Equ., 3(1):119–135, 2003. Dedicated to Philippe Bénilan.
1165
+ [CF12]
1166
+ Zhen-Qing Chen and Masatoshi Fukushima. Symmetric Markov processes, time change,
1167
+ and boundary theory, volume 35 of London Mathematical Society Monographs Series.
1168
+ Princeton University Press, Princeton, NJ, 2012.
1169
+ [Cla21]
1170
+ Burkhard Claus. Non-linear Dirichlet forms. PhD thesis, TU Dresden, Dresden, 2021.
1171
+ [CW12]
1172
+ Ralph Chill and Mahamadi Warma. Dirichlet and Neumann boundary conditions for the
1173
+ p-Laplace operator: what is in between? Proceedings of the Royal Society of Ediburgh:
1174
+ Section A Mathematics, 142(5):975–1002, 2012.
1175
+ [CW20]
1176
+ Burkhard Claus and Mahamadi Warma. Realization of the fractional Laplacian with
1177
+ nonlocal exterior conditions via form methods. J. Evol. Equ., 20(4):1597–1631, 2020.
1178
+ [DNPV12] Eleonora Di Nezza, Giampiero Palatucci, and Enrico Valdinoci. Hitchhiker’s guide to
1179
+ the fractional Sobolev spaces. Bull. Sci. Math., 136(5):521–573, 2012.
1180
+ [EE18]
1181
+ D. E. Edmunds and W. D. Evans. Spectral theory and differential operators. Oxford
1182
+ Mathematical Monographs. Oxford University Press, Oxford, 2018.
1183
+ [FOT11] Masatoshi Fukushima, Yoichi Oshima, and Masayoshi Takeda. Dirichlet forms and sym-
1184
+ metric Markov processes, volume 19 of De Gruyter Studies in Mathematics. Walter de
1185
+ Gruyter & Co., Berlin, extended edition, 2011.
1186
+ [KLSS19] Matthias Keller, Daniel Lenz, Marcel Schmidt, and Michael Schwarz. Boundary repre-
1187
+ sentation of Dirichlet forms on discrete spaces. J. Math. Pures Appl. (9), 126:109–143,
1188
+ 2019.
1189
+ [LM72]
1190
+ J.-L. Lions and E. Magenes. Non-homogeneous boundary value problems and applications.
1191
+ Vol. I. Die Grundlehren der mathematischen Wissenschaften, Band 181. Springer-Verlag,
1192
+ New York-Heidelberg, 1972. Translated from the French by P. Kenneth.
1193
+ [Ouh96] E. Ouhabaz. Invariance of closed convex sets and domination criteria for semigroups.
1194
+ Potential Analysis, 5(6):611–625, 1996.
1195
+ [Pos14]
1196
+ Andrea Posilicano. Markovian extensions of symmetric second order elliptic differential
1197
+ operators. Math. Nachr., 287(16):1848–1885, 2014.
1198
+ [RS78]
1199
+ Michael Reed and Barry Simon. Methods of modern mathematical physics. IV. Analysis of
1200
+ operators. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London,
1201
+ 1978.
1202
+ [Sch17]
1203
+ Marcel Schmidt. Energy forms. PhD thesis, Mar 2017.
1204
+ [Sch20a] Marcel Schmidt. A note on reflected Dirichlet forms. Potential Anal., 52(2):245–279, 2020.
1205
+ [Sch20b] Michael Schwarz. Nodal Domains and Boundary Representation for DirichletForms. PhD
1206
+ thesis, Jan 2020.
1207
+ [Sto92]
1208
+ Peter Stollmann. Smooth perturbations of regular Dirichlet forms. Proc. Amer. Math.
1209
+ Soc., 116(3):747–752, 1992.
1210
+ [Sto93]
1211
+ Peter Stollmann. Closed ideals in Dirichlet spaces. Potential Anal., 2(3):263–268, 1993.
1212
+
1213
+ 24
1214
+ M. KELLER, D. LENZ, M. SCHMIDT, M. SCHWARZ, AND M. WIRTH
1215
+ [SV96]
1216
+ Peter Stollmann and Jürgen Voigt. Perturbation of Dirichlet forms by measures. Potential
1217
+ Anal., 5(2):109–138, 1996.
1218
+ M.Keller, Institut für Mathematik, Universität Potsdam, Campus Golm, Haus 9,
1219
+ Karl-Liebknecht-Str. 24-25, 14476 Potsdam OT Golm, Germany
1220
+ Email address: matthias.keller@uni-potsdam.de
1221
+ D.Lenz, Institut für Mathematik, Friedrich-Schiller-Universität Jena, 07737 Jena,
1222
+ Germany
1223
+ Email address: daniel.lenz@uni-jena.de
1224
+ M. Schmidt, Mathematisches Institut, Universität Leipzig, Augustusplatz 10, 04109
1225
+ Leipzig, Germany
1226
+ Email address: marcel.schmidt@math.uni-leipzig.de
1227
+ M. Schwarz, dotSource GmbH, Goethestr. 1, 07743 Jena, Germany
1228
+ Email address: m.schwarz@dotSource.de
1229
+ M. Wirth, Institute of Science and Technology Austria (ISTA), Am Campus 1,
1230
+ 3400 Klosterneuburg, Austria
1231
+ Email address: melchior.wirth@ist.ac.at
1232
+
ENAzT4oBgHgl3EQfGvvx/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
EdFRT4oBgHgl3EQfBDfd/content/2301.13464v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cab12ad8bf2a20dde026abc6624020f55b33b8607dfa3da569542690d7c76511
3
+ size 6153325
F9AzT4oBgHgl3EQfxP6U/content/tmp_files/2301.01735v1.pdf.txt ADDED
@@ -0,0 +1,552 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.01735v1 [math.MG] 4 Jan 2023
2
+ NORMED SPACES USING INTRINSICALLY LIPSCHITZ SECTIONS
3
+ AND EXTENSION THEOREM FOR THE INTRINSICALLY HÖLDER
4
+ SECTIONS
5
+ DANIELA DI DONATO
6
+ Abstract. The purpose of this article is twofold: first of all, we want to define two norms
7
+ using the space of intrinsically Lipschitz sections. On the other hand, we want to generalize
8
+ an Extension Theorem proved by the author in the context of the intrinsically Hölder sections
9
+ with target a topological space Y. Here our target will be Y × Rs with s ≥ 1 instead of Y.
10
+ Contents
11
+ 1.
12
+ Introduction
13
+ 1
14
+ 2.
15
+ Intrinsically Hölder sections
16
+ 3
17
+ 2.1.
18
+ Intrinsically Hölder sections: when Y is bounded
19
+ 3
20
+ 2.2.
21
+ Equivalent definition for intrinsic Hölder sections
22
+ 4
23
+ 3.
24
+ Normed space for the intrinsically Lipschitz sections
25
+ 5
26
+ 3.1.
27
+ Normed space: Version 1
28
+ 5
29
+ 3.2.
30
+ Normed space: Version 2
31
+ 6
32
+ 4.
33
+ Level sets and extensions
34
+ 7
35
+ References
36
+ 9
37
+ 1. Introduction
38
+ In this paper, we focus our attention on a new point of view for the intrinsically Lipschitz
39
+ graphs in the Franchi-Serapioni-SerraCassano sense [FSSC01, FSSC03b, FSSC03a] (see also
40
+ [SC16, FS16]) in metric spaces.
41
+ They introduced and analized this notion in order to establish a good notion of rectifi-
42
+ ability in a particular metric spaces called subRiemannian Carnot groups [ABB19, BLU07,
43
+ CDPT07].
44
+ In the usual way, Federer [Fed69] says that a subset of Rn is countably d-rectifiable if it is
45
+ possible to cover it with a countable union of suitable graphs. More precisely, he considers
46
+ graphs of Lipschitz maps f : Rd → Rn−d. However, Ambrosio and Kirchheim [AK00] (see
47
+ also [Mag04]) proved that this definition does not work in Carnot groups and so many
48
+ mathematicians give other notions of rectifiability. The reader can see [AM22a, AM22b,
49
+ Bat21, DS91, DS93, CP06, Pau04, NY18]. As we said, another possible solution is given
50
+ by Franchi-Serapioni-SerraCassano with the so-called "Intrinsic Lipschitz maps" in Carnot
51
+ Date: 5th January 2023.
52
+ 1
53
+
54
+ groups. The idea is similar to Euclidean case: firstly, they introduce suitable cones called
55
+ intrinsic cones which are not equivalent with the Euclidean ones; and, then, they say that a
56
+ map ϕ is intrinsic Lipschitz if it is possible to have for any point p belongs to the graph of ϕ
57
+ an empty intersection between a suitable intrinsic cone with vertex p and the graph of this
58
+ map.
59
+ Recently, Le Donne and the author generalize this concept in metric spaces (see [DDLD22]).
60
+ A basic difference is the following: in Franchi, Serapioni and Serra Cassano approach, they
61
+ consider intrinsically Lipschitz maps. On the other hand, in our approach we consider the
62
+ graphs and this a bit change is so important because:
63
+ • The setting are more general: the class of the metric spaces is larger than the class
64
+ of Carnot groups.
65
+ • The proofs are elegantly short and simple.
66
+ • We use basic mathematical tools in the proofs.
67
+ In a natural way, in [DD22c] the author introduce the notion of intrinsically Hölder sections
68
+ which extend the Lipschitz ones. Here, our setting is the following. We have a metric space
69
+ X, a topological space Y , and a quotient map π : X → Y , meaning continuous, open, and
70
+ surjective. The standard example for us is when X is a metric Lie group G (meaning that the
71
+ Lie group G is equipped with a left-invariant distance that induces the manifold topology),
72
+ for example a subRiemannian Carnot group, and Y is the space of left cosets G/H, where
73
+ H < G is a closed subgroup and π : G → G/H is the projection modulo H, g �→ gH.
74
+ Definition 1.1 (Intrinsic Hölder section). Let (X, d) be a metric space and let Y be a
75
+ topological space. We say that a map ϕ : Y → X is a section of a quotient map π : X → Y
76
+ if
77
+ π ◦ ϕ = idY .
78
+ Moreover, we say that ϕ is an intrinsically (L, α)-Hölder section with constant L > 0 and
79
+ α ∈ (0, 1) if in addition
80
+ (1)
81
+ d(ϕ(y1), ϕ(y2)) ≤ Ld(ϕ(y1), π−1(y2))α + d(ϕ(y1), π−1(y2)),
82
+ for all y1, y2 ∈ Y.
83
+ Equivalently, we are requesting that
84
+ d(x1, x2) ≤ Ld(x1, π−1(π(x2)))α + d(x1, π−1(π(x2))),
85
+ for all x1, x2 ∈ ϕ(Y ).
86
+ When α = 1, a section ϕ is intrinsic Lipschitz in the sense of [DDLD22]; and, if in addition,
87
+ π is a Lipschitz quotient or submetry [BJL+99, VN88], the results trivialize, since in this
88
+ case being intrinsically Lipschitz is equivalent to biLipschitz embedding, see Proposition
89
+ 2.4 in [DDLD22]. In a natural way, following the seminal papers [AGS14a, LV09, Sav22]
90
+ (see also [AGS15, AGS14b, FSS22, Stu06, Vil09]), the author introduced and studied the
91
+ link between the intrinsic sections/intrinsic Lipschitz sections and the intrinsic Hopf-Lax
92
+ semigroups [DD22b, DD22e].
93
+ The purpose of this article is twofold: first of all, we want to define two norms using
94
+ the notion of Lipschitz sections. Second, we want to generalize an Extension Theorem with
95
+ target Y which is a topological space; in this paper, our target will be Y × Rs instead of Y.
96
+ More precisely, in Section 3, the main results are Theorem 3.1 and 3.4. Here, we define
97
+ two possible normed spaces using the following ingredients:
98
+ 2
99
+
100
+ • we know that there is a large class of intrinsically Hölder sections and so Lipschitz
101
+ sections that is a vector space over R or C (see Theorem 2.7);
102
+ • we can define two different norms noting the following simple fact: in the usual
103
+ case, we have that d(x, y) = d(y, x) for any point x, y ∈ X; on the other hand, in
104
+ our intrinsic context, in general, we have that d(f(x), π−1(y)) ̸= d(f(y), π−1(x)), for
105
+ every x, y ∈ X.
106
+ • we obtain the homogeneity of our norms defined in (5) and in (9) thanks to linearity
107
+ of π and, in particular, to Lemma 3.2.
108
+ Finally, in Section 4 the main result is Theorem 4.1 which generalizes Extension Theorem
109
+ for the intrinsically Hölder sections proved in [DD22c, Theorem 1.3]. The main difference is
110
+ that, in this project, the target space is a topological space Y × Rs with s ≥ 1 instead of Y.
111
+ As in Vittone’s case, we build each component fi for i = 1, . . . , s separately and then join
112
+ them without any additional assumptions. However, the final step when the target space is
113
+ only Y does not provide a Lipschitz map f = (f1, . . . , fs).
114
+ 2. Intrinsically Hölder sections
115
+ 2.1. Intrinsically Hölder sections: when Y is bounded. Definition 1.1 it is very natural
116
+ if we think that what we are studying graphs of appropriate maps. However, in the following
117
+ proposition, we introduce an equivalent condition of (1) when Y is a bounded set.
118
+ Proposition 2.1. Let π : X → Y be a quotient map between a metric space X and a
119
+ topological and bounded space Y and let α ∈ (0, 1). The following are equivalent:
120
+ (1) there is L > 0 such that
121
+ d(ϕ(y1), ϕ(y2)) ≤ Ld(ϕ(y1), π−1(y2))α + d(ϕ(y1), π−1(y2)),
122
+ for all y1, y2 ∈ Y.
123
+ (2) there is K ≥ 1 such that
124
+ (2)
125
+ d(ϕ(y1), ϕ(y2)) ≤ Kd(ϕ(y1), π−1(y2))α,
126
+ for all y1, y2 ∈ Y.
127
+ We further rephrase the definition as saying that ϕ(Y ), which we call the graph of ϕ,
128
+ avoids some particular sets (which depend on α, L and ϕ itself):
129
+ Proposition 2.2. Let π : X → Y be a quotient map between a metric space and a topological
130
+ space, ϕ : Y → X be a section of π, α ∈ (0, 1) and L > 0. Then ϕ is intrinsically (L, α)-
131
+ Hölder if and only if
132
+ ϕ(Y ) ∩ Rx,L = ∅,
133
+ for all x ∈ ϕ(Y ),
134
+ where
135
+ Rx,L :=
136
+
137
+ x′ ∈ X | Ld(x′, π−1(π(x)))α + d(x′, π−1(π(x))) < d(x′, x)
138
+
139
+ .
140
+ Proposition 2.2 is a triviality, still its purpose is to stress the analogy with the intrinsically
141
+ Lipschitz sections theory introduced in [DDLD22] when α = 1. In particular, the sets Rx,L
142
+ are the intrinsic cones in the sense of Franchi, Serapioni and Serra Cassano when X is a
143
+ subRiemannian Carnot group and α = 1. The reader can see [DD22d] for a good notion of
144
+ intrinsic cones in metric groups.
145
+ 3
146
+
147
+ 2.2. Equivalent definition for intrinsic Hölder sections.
148
+ Definition 2.3 (Intrinsically Hölder with respect to a section). Given sections ϕ, ψ : Y → X
149
+ of π. We say that ϕ is intrinsically (L, α)-Hölder with respect to ψ at point ˆx, with L >
150
+ 0, α ∈ (0, 1) and ˆx ∈ X, if
151
+ (1) ˆx ∈ ψ(Y ) ∩ ϕ(Y );
152
+ (2) ϕ(Y ) ∩ Cψ
153
+ ˆx,L = ∅,
154
+ where
155
+
156
+ ˆx,L := {x ∈ X : d(x, ψ(π(x))) > Ld(ˆx, ψ(π(x)))α + d(ˆx, ψ(π(x)))}.
157
+ Remark 2.4. Definition 2.3 can be rephrased as follows. A section ϕ is intrinsically (L, α)-
158
+ Hölder with respect to ψ at point ˆx if and only if there is ˆy ∈ Y such that ˆx = ϕ(ˆy) = ψ(ˆy)
159
+ and
160
+ (3)
161
+ d(x, ψ(π(x))) ≤ Ld(ˆx, ψ(π(x)))α + d(ˆx, ψ(π(x))),
162
+ ∀x ∈ ϕ(Y ),
163
+ which equivalently means
164
+ (4)
165
+ d(ϕ(y), ψ(y)) ≤ Ld(ψ(ˆy), ψ(y))α + d(ψ(ˆy), ψ(y)),
166
+ ∀y ∈ Y.
167
+ Notice that Definition 2.3 does not induce an equivalence relation because of lack of
168
+ symmetry in the right-hand side of (4). However, following Cheeger theory [Che99] (see also
169
+ [Kei04, KM16]), in [DD22c, Theorem 4.2] we give an equivalent property of Hölder section.
170
+ Being intrinsically Lipschitz section is equivalent to the last definition as proved in [DD22c,
171
+ Proposition 1.5]
172
+ Proposition 2.5. Let X be a metric space, Y a topological and bounded space, π : X → Y
173
+ a quotient map, L ≥ 1 and α, β, γ ∈ (0, 1). Assume that every point x ∈ X is contained in
174
+ the image of an intrinsic (L, α)-Hölder section ψx for π. Then for every section ϕ : Y → X
175
+ of π the following are equivalent:
176
+ (1) for all x ∈ ϕ(Y ) the section ϕ is intrinsically (L1, β)-Hölder with respect to ψx at x;
177
+ (2) the section ϕ is intrinsically (L2, γ)-Hölder.
178
+ We conclude this section recall an important concept which we will be used later.
179
+ Definition 2.6 (Intrinsic Hölder set with respect to ψ). Let α ∈ (0, 1] and ψ : Y → X a
180
+ section of π. We define the set of all intrinsically Hölder sections of π with respect to ψ at
181
+ point ˆx as
182
+ Hψ,ˆx,α := {ϕ : Y → X a section of π : ϕ is intrinsically (˜L, α)-Hölder w.r.t. ψ at point ˆx
183
+ for some ˜L > 0}.
184
+ In particular, in [DD22c] we have the following statement regarding the set Hψ,ˆx,α.
185
+ Theorem 2.7 (Theorem 3.5 [DD22c]). Let π : X → Y is a linear and quotient map from a
186
+ normed space X to a topological space Y. Assume also that ψ : Y → X is a section of π and
187
+ {λˆx : λ ∈ R+} ⊂ X with ˆx ∈ ψ(Y ).
188
+ Then, for any α ∈ (0, 1], the set �
189
+ λ∈R+ Hλψ,λˆx,α ∪ {0} is a vector space over R or C.
190
+ Notice that it is no possible to obtain the statement for Hψ,ˆx,α since the simply observation
191
+ that if ψ(ˆy) = ˆx then ψ(ˆy) + ψ(ˆy) ̸= ˆx.
192
+ 4
193
+
194
+ 3. Normed space for the intrinsically Lipschitz sections
195
+ 3.1. Normed space:
196
+ Version 1. In this section, we consider the case of intrinsically
197
+ Lipschitz sections, i.e., α = 1.
198
+ Let π : Rκ → Y be a quotient map with Y ⊂ Rκ.
199
+ Assume also that K ⊂ Y is a
200
+ compact set and ψ|K : K → R is an intrinsically L-Lipschitz section of π with L ≥ 1 and
201
+ ˆx = ψ(¯y) ∈ ψ(Y ). We will use the following notation
202
+ ILSλψ|K,λˆx := Hλψ|K,λˆx,1.
203
+ Here, we show that
204
+ (L, ∥.∥) :=
205
+ � �
206
+ λ∈R+
207
+ ILSλψ|K,λˆx ∪ {0}, ∥.∥
208
+
209
+ is a normed space for a suitable norm ∥.∥= ∥.∥ILSλψ,λˆx: L → R+ defined as for any ϕ ∈ L,
210
+ (5)
211
+ ∥ϕ∥ILSλψ,λˆx:= ∥ϕ∥∞+[ϕ]λψ,λˆx,
212
+ where ∥ϕ∥∞:= supy∈K|ϕ(y)| and
213
+ [ϕ]λψ,λˆx := sup
214
+ y∈K
215
+ d(λϕ(y), (1/λπ)−1(π(ˆx))).
216
+ Then, we are able to give the main result of this section.
217
+ Theorem 3.1. Let π : Rκ → Y be a linear and quotient map with Y ⊂ Rκ. Assume also
218
+ that ψ : K → Rκ is an intrinsically L-Lipschitz section of π with K ⊂ Y compact, L ≥ 1
219
+ and ˆx ∈ X. Then, the set L endowed with ∥·∥ILSψ,ˆx is a normed space.
220
+ We need the following lemma.
221
+ Lemma 3.2 (Lemma 4.7 [DD22a]). Let X be a normed space, Y be a topological space and
222
+ π : X → Y be a linear and quotient map. Then
223
+ (6)
224
+ |λ|d(x1, π−1(y2)) = d(λx1, (1/λπ)−1(y2)),
225
+ ∀x1 ∈ Rκ, y2 ∈ Y, λ ∈ R − {0}.
226
+ Remark 3.3. An easy corollary of Lemma 3.2 when Y ⊂ R and X = Rκ is that
227
+ lim
228
+ h→0+
229
+ d(hϕ(t + h), (1/hπ)−1(t)))
230
+ h
231
+ = 0,
232
+ lim
233
+ h→0+
234
+ d(hϕ(t), (1/hπ)−1(t + h)))
235
+ h
236
+ = 0,
237
+ for t ∈ Y. Indeed, for h > 0
238
+ d(hϕ(t + h), (1/hπ)−1(t))
239
+ h
240
+ = d(ϕ(t + h), π−1(t)) ≤ d(ϕ(t + h), ϕ(t)),
241
+ and so take to the limit for h → 0, we obtain the first limit thank to the continuity of ϕ. In
242
+ a similar way, it is possible to see the second limit.
243
+ At this point, we give the proof of Theorem 3.1.
244
+ 5
245
+
246
+ Proof of Theorem 3.1. The fact ∥ϕ∥≡ 0 if and only if ϕ ≡ 0 follows because ∥.∥∞ is a norm.
247
+ On the other hand, since π is linear map and thanks to Lemma 3.2, we have
248
+ sup
249
+ y∈K
250
+ d(δϕ(y), (1/δπ)−1(π(ˆx))) = sup
251
+ y∈K
252
+ |δ|d(ϕ(y), π−1(π(ˆx)))
253
+ for any δ ∈ R − {0} and so
254
+ (7)
255
+ ∥δϕ∥∞+[δϕ]ψ,ˆx = |δ|(∥ϕ∥∞+[ϕ]ψ,ˆx),
256
+ for any ϕ ∈ L.
257
+ Finally, the triangle inequality follows using again the linearity of π. Indeed, if ϕ, η ∈
258
+ L − {0} and, in particular, ϕ, η ∈ ILS(λ1+λ2)ψ|K,(λ1+λ2)ˆx then for xϕ, xη ∈ Rκ such that
259
+ [ϕ](λ1+λ2)ψ,(λ1+λ2)ˆx = sup
260
+ y∈K
261
+ d((λ1 + λ2)ϕ(y), (1/(λ1 + λ2)π)−1(π(ˆx))) = d((λ1 + λ2)ϕ(y), xϕ)
262
+ [η](λ1+λ2)ψ,(λ1+λ2)ˆx = sup
263
+ y∈K
264
+ d((λ1 + λ2)η(y), (1/(λ1 + λ2)π)−1(π(ˆx))) = d((λ1 + λ2)η(y), xη)
265
+ one gets
266
+ [ϕ + η](λ1+λ2)ψ,(λ1+λ2)ˆx = sup
267
+ y∈K
268
+ d((λ1 + λ2)(ϕ(y) + η(y)), (2/(λ1 + λ2)π)−1(π(ˆx)))
269
+ ≤ ∥(λ1 + λ2)ϕ(y) + (λ1 + λ2)η(y) − (xϕ + xη)∥
270
+ ≤ ∥(λ1 + λ2)ϕ(y) − xϕ∥+∥(λ1 + λ2)η(y) − xη∥,
271
+ [ϕ](λ1+λ2)ψ,(λ1+λ2)ˆx + [η](λ1+λ2)ψ,(λ1+λ2)ˆx,
272
+ where in the first equality, by linearity of π, we used the fact
273
+ π((λ1 + λ2)(ϕ(y) + η(y))) = π((λ1 + λ2)ϕ(y)) + π((λ1 + λ2)η(y))
274
+ = (λ1 + λ2)(π(ϕ(y)) + (π(η(y)))
275
+ = 2(λ1 + λ2)y.
276
+ Hence,
277
+ [ϕ + η](λ1+λ2)ψ,(λ1+λ2)ˆx ≤ [ϕ](λ1+λ2)ψ,(λ1+λ2)ˆx + [η](λ1+λ2)ψ,(λ1+λ2)ˆx,
278
+ and this complete the proof of the statement.
279
+
280
+ 3.2. Normed space: Version 2. In the usual case, we have that d(x, y) = d(y, x) for any
281
+ point x, y ∈ X; on the other hand, in our intrinsic context, in general, we have that
282
+ d(f(x), π−1(y)) ̸= d(f(y), π−1(x)),
283
+ for every x, y ∈ X. In particular, it holds
284
+ (8)
285
+ d(f(y), π−1(x)) − d(f(z), π−1(x)) ≤ d(f(y), f(z)),
286
+ ∀x, y, z ∈ Y
287
+ d(f(x), π−1(y)) − d(f(x), π−1(z)) ≰ d(f(y), f(z)),
288
+ for some x, y, z ∈ Y.
289
+ In fact, for any fixed x, y, z ∈ Y, if we choose a ∈ π−1(x) such that
290
+ d(f(z), π−1(x)) = d(f(z), a),
291
+ 6
292
+
293
+ we deduce that
294
+ d(f(y), π−1(x)) − d(f(z), π−1(x)) ≤ d(f(y), a) − d(f(z), π−1(x))
295
+ ≤ d(f(y), f(z)) + d(f(z), a) − d(f(z), π−1(x))
296
+ = d(f(y), f(z)),
297
+ i.e., the first inequality of (8) holds. On the other hand, for the second inequality in (8),
298
+ we give the following example. let X ⊂ R2 the set given by the three lines with vertex
299
+ (0, 8), (8, 8); (1, 4), (8, 6) and (0, 3), (8, 7) and the subset Y of R2 defined as the line with
300
+ vertex (0, 0) and (8, 0). On X we consider the usual distance on R2. Then, if we consider a
301
+ continuous section f : Y → X of the projection on the first component π : X → Y with
302
+ f(x) = f((1, 0)) = (1, 4), f(y) = f((7, 0)) = (8, 7) and f(z) = f((6, 0)) = (8, 6), it is easy to
303
+ see that
304
+ d(f(x), π−1(y)) − d(f(x), π−1(z)) =
305
+
306
+ 5
307
+ 4,
308
+ d(f(y), f(z)) = 1,
309
+ and so
310
+ d(f(x), π−1(y)) − d(f(x), π−1(z)) ≰ d(f(y), f(z)).
311
+ Then, it is not trivial to consider the norm |||.||| defined as
312
+ (9)
313
+ |||ϕ|||ILSψ,ˆx:= ∥ϕ∥∞+{ϕ}λψ,λˆx,
314
+ where ∥ϕ∥∞:= supy∈K|ϕ(y)| and
315
+ {ϕ}λψ,λˆx := sup
316
+ y∈K
317
+ d(λˆx, (1/λπ)−1(y)).
318
+ and to prove as above the following statement.
319
+ Theorem 3.4. Let π : Rκ → Y be a linear and quotient map with Y a metric space. Assume
320
+ also that ψ : K → Rκ is an intrinsically L-Lipschitz section of π with K ⊂ Y compact, L ≥ 1
321
+ and ˆx ∈ X. Then, the set L endowed with |||·|||ILSψ,ˆx as in (9) is a normed space.
322
+ Proof. The proof follows in a similar way as in Theorem 3.1.
323
+
324
+ 4. Level sets and extensions
325
+ In this section we prove the following theorem.
326
+ Theorem 4.1 (Extensions as level sets). Let π : X → Y × Rs be a quotient map between a
327
+ metric space X and a topological space Y × Rs.
328
+ Assume that X is geodesic and that there exist k ≥ 1, ρ : X × X → R k-biLipschitz
329
+ equivalent to the distance of X, and τ = (τ1, . . . , τs) : X → Rs k-Lipschitz and k-biLipschitz
330
+ on fibers such that for all τ0 ∈ Rs
331
+ (1) the set τ −1
332
+ 1 (τ0) is an intrinsically k-Lipschitz graph of a section ϕ1,τ0 : Y × R ×
333
+ {0}s−1 → X; the set τ −1
334
+ 2 (τ0) is an intrinsically k-Lipschitz graph of a section ϕ2,τ0 :
335
+ Y × {0} × R × {0}s−2 → X; . . . , the set τ −1
336
+ s (τ0) is an intrinsically k-Lipschitz graph
337
+ of a section ϕs,τ0 : Y × {0}s−1 × R → X;
338
+ 7
339
+
340
+ (2) for all x0 ∈ τ −1
341
+ i
342
+ (τ0) the map X → R, x �→ δi,τ0(x) := ρ(x0, ϕi,τ0(π(x))) is k-Lipschitz
343
+ on the set {|τi|≤ δi,τ0}.
344
+ Let Y ′ × Rs ⊂ Y × Rs a set and L ≥ 1. Then for every intrinsically L-Lipschitz section
345
+ ϕ : Y ′ × Rs → π−1(Y ′ × Rs) of π|π−1(Y ′×Rs): π−1(Y ′ × Rs) → Y ′ × Rs, there exists a map
346
+ f : X → Rs that is K-Lipschitz and K-biLipschitz on fibers, with K = 2k(Lk + 2), such that
347
+ (10)
348
+ ϕ(Y ′ × Rs) ⊆ f −1(0).
349
+ In particular, each ‘partially defined’ intrinsically Lipschitz graph ϕ(Y ′ × Rs) is a subset of
350
+ a ‘globally defined’ intrinsically Lipschitz graph f −1(0).
351
+ We need to mention that there have been several earlier partial results on extensions of
352
+ Lipschitz graphs, as for example in [FSSC06], [Vit, Theorem 1.5], [Mon14, Proposition 4.8],
353
+ in the Heisenberg group with codimension larger than one; [Vit12, Proposition 3.4], for the
354
+ case of codimension one in the Heisenberg groups; [FS16, Theorem 4.1], for the case of
355
+ codimension one in Carnot groups. Finally, for the general metric spaces the reader can see
356
+ [AP20, LN05, Oht09].
357
+ Proof of Theorem 4.1 (4.1.i). It is proved in [DDLD22].
358
+
359
+ Proof of Theorem 4.1 (4.1.ii). Step 1. Fix i = 1, . . . , s and, for simplicity, we write τ −1, fx0
360
+ instead of τ −1
361
+ i
362
+ and fx0,i. Fix x0 ∈ τ −1(τ0). We consider the map fx0 : X → R defined as
363
+ (11)
364
+ fx0(x) =
365
+
366
+
367
+
368
+ 2(τ(x) − τ(x0) − αδτ0(x))
369
+ if |τ(x) − τ(x0)|≤ 2αδτ0(x)
370
+ τ(x) − τ(x0)
371
+ if τ(x) − τ(x0) > 2αδτ0(x)
372
+ 3(τ(x) − τ(x0))
373
+ if τ(x) − τ(x0) < −2αδτ0(x)
374
+ where α := kL + 1. We prove that fx0 satisfies the following properties:
375
+ (i): fx0 is K-Lipschitz;
376
+ (ii): fx0(x0) = 0;
377
+ (iii): fx0 is biLipschitz on fibers.
378
+ where K = max{3k, 2k + 2αk} = 2k + 2αk because α > 1. The property (i) derives using
379
+ that τ, δτ0 are both Lipschitz and X is a geodesic space. On the other hand, (ii) is true
380
+ noting that δτ0(x0) = ρ(x0, ϕτ0(π(x0))) = 0 because x0 ∈ ϕτ0(Y ).
381
+ Finally, for any x, x′ ∈ π−1(y) we have that ρ(x0, ϕτ0(π(x))) = ρ(x0, ϕτ0(π(x′))) and so f
382
+ is biLipschitz on fibers because τ is so too. Hence (iii) holds.
383
+ At this point, we consider the map f : X → R given by
384
+ f(x) :=
385
+ sup
386
+ x0∈ϕ(Y )
387
+ fx0(x),
388
+ ∀x ∈ X,
389
+ and we want to prove that it is the map we are looking for. The Lipschitz properties are
390
+ true recall that the function δx0 is constant on the fibers. Consequently, the only non trivial
391
+ fact to show is (10). Fix ¯x0 ∈ ϕ(Y ′). By (ii) we have that f¯x0(¯x0) = 0 and so it is sufficient
392
+ to prove that fx0(¯x0) ≤ 0 for x0 ∈ ϕ(Y ′). Let x0 ∈ ϕ(Y ′). Then using in addition that τ is
393
+ k-Lipschitz, and that ϕ is intrinsically L-Lipschitz, we have
394
+ |τ(¯x0) − τ(x0)|≤ kd(¯x0, x0) ≤ Lkd(x0, π−1(π(¯x0))) ≤ Lkd(x0, ϕτ0(π(¯x0))) < αδτ0(¯x0),
395
+ 8
396
+
397
+ and so
398
+ fx0(¯x0) = 2(τ(¯x0) − τ(x0) − αδτ0(¯x0)) < 0,
399
+ i.e., (10) holds.
400
+ Step 2. We consider f = (f1, . . . , fs) where each fi is given by τ −1
401
+ i
402
+ . Roughly speaking,
403
+ here the problem is that when we put together (f1, . . . , fs) using τ −1
404
+ 1 , . . . , τ −1
405
+ s
406
+ then f can not
407
+ Lipschitz. But now f is Lipschitz thanks to the construction of Y × Rs and in particular of
408
+ ϕ1,τ0 : Y × R × {0}s−1 → X; . . . ; ϕs,τ0 : Y × {0}s−1 × R → X.
409
+
410
+ References
411
+ [ABB19]
412
+ Andrei Agrachev, Davide Barilari, and Ugo Boscain. A comprehensive introduction to sub-
413
+ Riemannian geometry. Cambridge Studies in Advanced Mathematics, Cambridge Univ. Press,
414
+ 181:762, 2019.
415
+ [AGS14a]
416
+ L. Ambrosio, N. Gigli, and G. Savaré. Calculus and heat flow in metric measure spaces and
417
+ applications to spaces with Ricci bounds from below. Invent. Math., 195(2):289–391, 2014.
418
+ [AGS14b]
419
+ L. Ambrosio, N. Gigli, and G. Savaré. Metric measure spaces with Riemannian Ricci curvature
420
+ bounded from below. Duke Math. J., 163(7):1405–1490, 2014.
421
+ [AGS15]
422
+ L. Ambrosio, N. Gigli, and G. Savaré. Bakry-Émery curvature-dimension condition and Rieman-
423
+ nian Ricci curvature bounds. Ann. Probab., 43(1):339–404, 2015.
424
+ [AK00]
425
+ Luigi Ambrosio and Bernd Kirchheim. Rectifiable sets in metric and Banach spaces. Math. Ann.,
426
+ 318(3):527–555, 2000.
427
+ [AM22a]
428
+ G. Antonelli and A. Merlo. On rectifiable measures in Carnot groups: existence of density.
429
+ Accepted in Journal of Geometric Analysis, 2022.
430
+ [AM22b]
431
+ G. Antonelli and A. Merlo. On rectifiable measures in Carnot groups: Marstrand–Mattila recti-
432
+ fiability criterion. Accepted in Journal of Functional Analysis, 2022.
433
+ [AP20]
434
+ Luigi Ambrosio and Daniele Puglisi. Linear extension operators between spaces of Lipschitz maps
435
+ and optimal transport. Journal für die reine und angewandte Mathematik (Crelles Journal),
436
+ 2020(764):1–21, 2020.
437
+ [Bat21]
438
+ D. Bate. Characterising rectifiable metric spaces using tangent spaces. Accepted, Invent. math.,
439
+ 2021.
440
+ [BJL+99]
441
+ S. Bates, W. B. Johnson, J. Lindenstrauss, D. Preiss, and G. Schechtman. Affine approximation
442
+ of Lipschitz functions and nonlinear quotients. Geom. Funct. Anal., 9(6):1092–1127, 1999.
443
+ [BLU07]
444
+ A. Bonfiglioli, E. Lanconelli, and F. Uguzzoni. Stratified Lie groups and potential theory for their
445
+ sub-Laplacians. Springer Monographs in Mathematics. Springer, Berlin, 2007.
446
+ [CDPT07] Luca Capogna, Donatella Danielli, Scott D. Pauls, and Jeremy T. Tyson. An introduction to
447
+ the Heisenberg group and the sub-Riemannian isoperimetric problem, volume 259 of Progress in
448
+ Mathematics. Birkhäuser Verlag, Basel, 2007.
449
+ [Che99]
450
+ J. Cheeger. Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal.,
451
+ 9(8):428–517, 1999.
452
+ [CP06]
453
+ D.R. Cole and S.D. Pauls. C1 hypersurfaces of the Heisenberg group are N-rectifiable. Houston
454
+ J. Math., 32(3):713–724, 2006.
455
+ [DD22a]
456
+ Daniela Di Donato. Intrinsic Cheeger energy for the intrinsically Lipschitz constants. preprint,
457
+ 2022.
458
+ [DD22b]
459
+ Daniela Di Donato. The intrinsic Hopf-Lax semigroup vs. the intrinsic slope. preprint, 2022.
460
+ [DD22c]
461
+ Daniela Di Donato. Intrinsically Hölder sections in metric spaces. preprint, 2022.
462
+ [DD22d]
463
+ Daniela Di Donato. Intrinsically Lipschitz graphs on semidirect products of groups. preprint,
464
+ 2022.
465
+ [DD22e]
466
+ Daniela Di Donato. Non-symmetric intrinsic Hopf-Lax semigroup vs. intrinsic Lagrangian. pre-
467
+ print, 2022.
468
+ 9
469
+
470
+ [DDLD22] Daniela Di Donato and Enrico Le Donne. Intrinsically Lipschitz sections and applications to
471
+ metric groups. preprint, 2022.
472
+ [DS91]
473
+ G. David and S. Semmes. Singular integrals and rectifiable sets in Rn: Beyond lipschitz graphs,
474
+ astérisque. (193):171–279, 1991.
475
+ [DS93]
476
+ G. David and S. Semmes. Analysis of and on uniformly rectifiable sets. Mathematical Surveys
477
+ and Monographs, 38, 1993.
478
+ [Fed69]
479
+ Herbert Federer. Geometric measure theory. Die Grundlehren der mathematischen Wis-
480
+ senschaften, Band 153. Springer-Verlag New York Inc., New York, 1969.
481
+ [FS16]
482
+ Bruno Franchi and Raul Paolo Serapioni. Intrinsic Lipschitz graphs within Carnot groups. J.
483
+ Geom. Anal., 26(3):1946–1994, 2016.
484
+ [FSS22]
485
+ M. Fornasier, G. Savaré, and G.E. Sodini. Density of subalgebras of lipschitz functions in metric
486
+ sobolev spaces and applications to wasserstein sobolev spaces. preprint, 2022.
487
+ [FSSC01]
488
+ B. Franchi, R. Serapioni, and F. Serra Cassano. Rectifiability and perimeter in the Heisenberg
489
+ group. Math. Ann., 321(3):479–531, 2001.
490
+ [FSSC03a] B. Franchi, R. Serapioni, and F. Serra Cassano. Regular hypersurfaces, intrinsic perimeter and
491
+ implicit function theorem in Carnot groups. Comm. Anal. Geom., 11(5):909–944, 2003.
492
+ [FSSC03b] Bruno Franchi, Raul Serapioni, and Francesco Serra Cassano. On the structure of finite perimeter
493
+ sets in step 2 Carnot groups. The Journal of Geometric Analysis, 13(3):421–466, 2003.
494
+ [FSSC06]
495
+ Bruno Franchi, Raul Serapioni, and Francesco Serra Cassano. Intrinsic Lipschitz graphs in Heis-
496
+ enberg groups. J. Nonlinear Convex Anal., 7(3):423–441, 2006.
497
+ [Kei04]
498
+ S. Keith. A differentiable structure for metric measure spaces. Adv. Math. 183, pages 271–315,
499
+ 2004.
500
+ [KM16]
501
+ B. Kleiner and J.M. Mackay. Differentiable structures on metric measure spaces: a primer. Ann.
502
+ Sc. Norm. Super. Pisa Cl. Sci. (5) Vol. XVI, pages 41–64, 2016.
503
+ [LN05]
504
+ J.R. Lee and A. Naor. Extending lipschitz functions via random metric partitions. Invent. Math.,
505
+ 160(1):59–95, 2005.
506
+ [LV09]
507
+ John Lott and Cédric Villani. Ricci curvature for metric-measure spaces via optimal transport.
508
+ Ann. of Math. (2), 169(3):903–991, 2009.
509
+ [Mag04]
510
+ V. Magnani. Unrectifiability and rigidity in stratified groups. Arch. Math., 83(6):568–576, 2004.
511
+ [Mon14]
512
+ Roberto Monti. Lipschitz approximation of H-perimeter minimizing boundaries. Calc. Var. Par-
513
+ tial Differential Equations, 50(1-2):171–198, 2014.
514
+ [NY18]
515
+ Assaf Naor and Robert Young. Vertical perimeter versus horizontal perimeter. Ann. of Math.,
516
+ (2) 188, (1):171–279, 2018.
517
+ [Oht09]
518
+ S.I. Ohta. Extending Lipschitz and Hölder maps between metric spaces. Positivity 13, 2:407–425,
519
+ 2009.
520
+ [Pau04]
521
+ S.D. Pauls. A notion of rectifiability modeled on Carnot groups. Indiana Univ. Math. J., 53(1):49–
522
+ 81, 2004.
523
+ [Sav22]
524
+ G. Savaré. Sobolev spaces in extended metric-measure spaces. In New Trends on Analysis and
525
+ Geometry in Metric Spaces, Springer, pages 117–276, 2022.
526
+ [SC16]
527
+ Francesco Serra Cassano. Some topics of geometric measure theory in Carnot groups. In Geo-
528
+ metry, analysis and dynamics on sub-Riemannian manifolds. Vol. 1, EMS Ser. Lect. Math.,
529
+ pages 1–121. Eur. Math. Soc., Zürich, 2016.
530
+ [Stu06]
531
+ K.T. Sturm. On the geometry of metric measure spaces. I, II. Acta Math., 196(1):65– 131 and
532
+ 133–177, 2006.
533
+ [Vil09]
534
+ Cédric Villani. Optimal transport, Old and new, volume 338 of Grundlehren der Mathemat-
535
+ ischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Ber-
536
+ lin, 2009.
537
+ [Vit]
538
+ Davide Vittone. Lipschitz graphs and currents in Heisenberg groups. Forum of Mathematics,
539
+ Sigma, 10, E6, 2022.
540
+ [Vit12]
541
+ Davide Vittone. Lipschitz surfaces, perimeter and trace theorems for BV functions in Carnot-
542
+ Carathéodory spaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 11(4):939–998, 2012.
543
+ 10
544
+
545
+ [VN88]
546
+ Berestovskii Valerii Nikolaevich. Homogeneous manifolds with intrinsic metric. Sib Math J,
547
+ I(29):887–897, 1988.
548
+ Daniela Di Donato: Dipartimento di Ingegneria Industriale e Scienze Matematiche, Via
549
+ Brecce Bianche, 12 60131 Ancona, Universitá Politecnica delle Marche.
550
+ Email address: d.didonato@staff.univpm.it
551
+ 11
552
+
F9AzT4oBgHgl3EQfxP6U/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff