diff --git "a/DNAzT4oBgHgl3EQfiP3j/content/tmp_files/load_file.txt" "b/DNAzT4oBgHgl3EQfiP3j/content/tmp_files/load_file.txt" new file mode 100644--- /dev/null +++ "b/DNAzT4oBgHgl3EQfiP3j/content/tmp_files/load_file.txt" @@ -0,0 +1,1986 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf,len=1985 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='01498v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='RT] 4 Jan 2023 FANS AND POLYTOPES IN TILTING THEORY II: g-FANS OF RANK 2 TOSHITAKA AOKI, AKIHIRO HIGASHITANI, OSAMU IYAMA, RYOICHI KASE, AND YUYA MIZUNO Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' g-fan of a finite dimensional algebra is a fan in its real Grothendieck group defined by tilting theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We give a classification of complete g-fans of rank 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' More explicitly, our first main result asserts that every complete sign-coherent fan of rank 2 is a g-fan of some finite dimensional algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Our proof is based on three fundamental results, Gluing Theorem, Rotation Theorem and Subdivision Theorem, which realize basic operations on fans in the level of finite dimensional algebras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Our second main result gives a necessary and sufficient condition for algebras of rank 2 to be g-convex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Contents 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Introduction 1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Preliminaries 5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Preliminaries on fans 5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Sign-coherent fans of rank 2 6 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Basic results in silting theory 10 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Preliminaries 10 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Silting complexes in terms of matrices 12 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Uniserial property of g-finite algebras 14 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Gluing, Rotation and Subdivision of g-fans 15 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Gluing fans 15 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Rotation and Mutation 17 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Subdivision and Extension 19 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='3 22 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Gluing fans II 23 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' g-Convex algebras of rank 2 26 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Characterizations of g-convex algebras of rank 2 26 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Proof of Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='1 27 Acknowledgments 29 References 29 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Introduction The notion of tilting complexes is central to control equivalences of derived categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' The class of silting complexes [KV] gives a completion of the class of tilting complexes with respect to mutation, which is an operation to replace a direct summand of a given silting complex to construct a new silting complex [AI].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' The subclass of 2-term silting complexes enjoys remarkable properties [AIR, DF].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' They give rise to a fan in the real Grothendieck group of a finite dimensional algebra A, see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' [H1, H2, Pl, B, DIJ, BST, As].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' In our previous article [AHIKM1], we introduced a g-fan Σ(A) of A and established a basic theory of g-fans and the associated g-polytopes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' A g-fan of each finite dimensional algebra A belongs to the following special class of nonsingular fans [AHIKM1, Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' A sign-coherent fan is a pair (Σ, σ+) satisfying the following conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' 1 2 TOSHITAKA AOKI, AKIHIRO HIGASHITANI, OSAMU IYAMA, RYOICHI KASE, AND YUYA MIZUNO (a) Σ is a nonsingular fan in Rd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (b) σ+, −σ+ ∈ Σd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (c) Take a Z-basis e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , ed of Zd such that σ+ = cone{ei | 1 ≤ i ≤ d}, and denote the orthant corresponding to ǫ ∈ {±1}d by Rd ǫ := cone{ǫ(1)e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , ǫ(d)ed} = {x1e1 + · · · + xded | ǫ(i)xi ≥ 0 for each 1 ≤ i ≤ d}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Then for each σ ∈ Σ, there exists ǫ ∈ {±1}d such that σ ⊆ Rd ǫ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We denote by Fansc(d) the set of complete sign-coherent fans in Rd, and by k-Fan(d) the set of complete g-fans of finite dimensional k-algebras of rank d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Note that a g-fan Σ(A) is complete if and only if A is g-finite (Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Then we have Fansc(d) ⊃ k-Fan(d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' It is very natural to study the following problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Problem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Characterize complete sign-coherent fans in Rd which can be realized as a g-fan of some finite dimensional algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' This paper is devoted to give a complete answer to this problem for the case d = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' The result was very simple and came as a surprise to us.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='3 (Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='13).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' For each field k, we have Fansc(2) = k-Fan(2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Thus any complete sign-coherent fan in R2 can be realized as a g-fan of some finite dimensional k-algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We explain our method to prove Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Each sign-coherent fan of rank 2 is obtained by gluing two fans of the following form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Σ = + − ❄❄❄❄❄ ⑧⑧⑧⑧⑧ ❄❄❄❄❄ Σ′ = + − ❄❄❄❄❄ ⑧⑧⑧⑧⑧ ❄❄❄❄❄ Recall that a finite dimensional k-algbera Λ is elementary if the k-algebra Λ/JΛ is isomorphic to a product of k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' This is automatic if Λ is basic and k is algebraically closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We prove Gluing Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='1, which asserts that if both Σ and Σ′ are g-fans of finite dimensional elementary k- algebras, then so is their gluing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Therefore by symmetry, it suffices to consider sign-coherent fans Σ of the form above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Now such Σ can be obtained from the fan + − ❄❄❄❄❄ ⑧⑧⑧⑧⑧ ❄❄❄❄❄ ⑧⑧⑧⑧⑧ by applying subdivision in the fourth quadrant repeatedly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We prove Rotation Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='3 and Subdivision Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='7, which imply that if Σ is a g-fan of a finite dimensional k-algebra, then so are the subdivisions of Σ in the fourth quadrant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Figure 1 gives fans in Fan+− sc (2) with at most 8 facet, where each edge shows a subdivision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Figure 2 gives examples of algebras whose g-fans are given in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' For each finite dimensional algebra A, we define a g-polytope P(A) by gluing each simplex associated with the cones in Σ(A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' If P(A) is convex, we call Σ(A) convex and A g-convex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' For example, Brauer tree algebras A are g-convex, and this fact plays an important role in the classification of 2-term tilting complexes of A [AMN].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' From tilting theoretic point of view, g-convex algebras are the most fundamental.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Therefore it is important to study the following problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Problem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Classify convex g-fans in Rd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' FANS AND POLYTOPES IN TILTING THEORY II: g-FANS OF RANK 2 3 Σ00 Σ111 Σ2121 Σ1212 Σ31221 Σ22131 Σ12213 Σ21312 Σ13122 Σ412221 Σ321321 Σ313131 Σ312312 Σ231231 Σ222141 Σ221412 Σ122214 Σ123123 Σ214122 Σ131313 Σ213213 Σ132132 Σ141222 Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Fans in Fan+− sc (2) with at most 8 facets An answer to the case d = 2 was given in [AHIKM1, Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' There are precisely 7 convex g-fans up to isomorphism of g-fans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' + − ❄❄❄❄❄ ⑧⑧⑧⑧⑧ ❄❄❄❄❄ ⑧⑧⑧⑧⑧ + − ❄❄❄❄❄ ❄❄❄❄❄ ⑧⑧⑧⑧⑧ ❄❄❄❄❄ + − ❄❄❄❄❄ ❄❄❄❄❄ ❄❄❄❄❄ ❄❄❄❄❄ + − ⑧⑧⑧⑧⑧ ❄❄❄❄❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄❖❖❖❖❖❖❖ ❄❄❄❄❄ + − ❄❄❄❄❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄❄❄❄❄ ❖❖❖❖❖❖❖ ❄❄❄❄❄ + − ❄❄❄❄❄❄❄❄❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄❄❄❄❄ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖❖❖❖❖❖❖ ❄���❄❄❄ + − ❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄❄❄❄❄ ✴✴✴✴✴✴✴ ❄❄❄❄❄ ❖❖❖❖❖❖❖ ❄❄❄❄❄ More precisely, in the last Section 5, we show that there are 16 convex g-fans in Fansc(2) Σa;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='b with a, b ∈ {(0, 0), (1, 1, 1), (1, 2, 1, 2), (2, 1, 2, 1)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We also give a characterization of algebras whose g-fans are one of them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let t(ΛM) (respectively, t(MΛ)) be the minimal number of generators of a left (respectively, right) Λ-module M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' 4 TOSHITAKA AOKI,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' AKIHIRO HIGASHITANI,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' OSAMU IYAMA,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' RYOICHI KASE,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' AND YUYA MIZUNO Σ00 k [ • ] Σ111 k � a � � Σ2121 k � a � c � � ⟨c2⟩ Σ1212 k � a � c � � ⟨c2⟩ Σ31221 k \uf8ee \uf8ef\uf8ef\uf8ef\uf8ef\uf8f0 a � c1 � c2 � \uf8f9 \uf8fa\uf8fa\uf8fa\uf8fa\uf8fb ⟨c2 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2c1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' ac2⟩ Σ22131 k \uf8ee \uf8ef\uf8ef\uf8ef\uf8ef\uf8f0 a � b � c0 � c1 � \uf8f9 \uf8fa\uf8fa\uf8fa\uf8fa\uf8fb �b2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c1c0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' ba − ac0 � Σ12213 k \uf8ee \uf8ef\uf8ef\uf8ef\uf8ef\uf8f0 a � c1 � c2 � \uf8f9 \uf8fa\uf8fa\uf8fa\uf8fa\uf8fb � c2 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c1c2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2a � Σ21312 k � a � b � c � � ⟨b2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' bac⟩ Σ13122 k \uf8ee \uf8ef\uf8ef\uf8ef\uf8ef\uf8f0 a � c0 � c1 � b � \uf8f9 \uf8fa\uf8fa\uf8fa\uf8fa\uf8fb �b2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c0c1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' ab − c0a � Σ412221 k \uf8ee \uf8ef\uf8ef\uf8ef\uf8ef\uf8f0 a � c1 � c2 � c3 � \uf8f9 \uf8fa\uf8fa\uf8fa\uf8fa\uf8fb �c2 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2 3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c3c2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c3c1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2c1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c1c3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' ac2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' ac3 � Σ321321 k \uf8ee \uf8ef\uf8ef\uf8ef\uf8ef\uf8f0 a � b � c0 � c1 � c2 � \uf8f9 \uf8fa\uf8fa\uf8fa\uf8fa\uf8fb � b2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' ac0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' ac2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2c1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2c0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c0c2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c0c1c0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' ba − ac1c0 � Σ313131 k \uf8ee \uf8ef\uf8ef\uf8ef\uf8ef\uf8f0 a � b � c0 � c1 � c2 � \uf8f9 \uf8fa\uf8fa\uf8fa\uf8fa\uf8fb � b2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' ac2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2c1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2c0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c1c0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c0c2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c0c1c2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' ba − ac0 � Σ312312 k \uf8ee \uf8ef\uf8ef\uf8ef\uf8ef\uf8f0 a � b � c1 � c2 � \uf8f9 \uf8fa\uf8fa\uf8fa\uf8fa\uf8fb �b2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' ac2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' bac1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2c1 � Σ231231 k \uf8ee \uf8ef\uf8ef\uf8ef\uf8ef\uf8f0 a � b0 � b1 � c0 � c1 � c2 � \uf8f9 \uf8fa\uf8fa\uf8fa\uf8fa\uf8fb �b2 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' b2 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' ac2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' b1b0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2c1c2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2c0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c1c0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c0c2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' b0a − ac0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' b1a − ac1c2 � Σ222141 k \uf8ee \uf8ef\uf8ef\uf8ef\uf8ef\uf8f0 a � b0 � b1 � c0 � c1 � c2 � \uf8f9 \uf8fa\uf8fa\uf8fa\uf8fa\uf8fb �b2 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' b2 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' b1b0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2c1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2c0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c1c0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c0c2 b0a − ac0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' b1a − ac1 � Σ221412 k \uf8ee \uf8ef\uf8ef\uf8ef\uf8ef\uf8f0 a � b0 � b1 � c0 � c1 � \uf8f9 \uf8fa\uf8fa\uf8fa\uf8fa\uf8fb �b2 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' b2 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' b1b0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' b0b1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c1c0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' b1ac0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' b1ac1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' b0a − ac0 � Σ122214 k \uf8ee \uf8ef\uf8ef\uf8ef\uf8ef\uf8f0 a � c1 � c2 � c3 � \uf8f9 \uf8fa\uf8fa\uf8fa\uf8fa\uf8fb �c2 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2 3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2c3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c1c3 c1c2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c3c1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c3a � Σ123123 k \uf8ee \uf8ef\uf8ef\uf8ef\uf8ef\uf8f0 a � c0 � c1 � c2 � b � \uf8f9 \uf8fa\uf8fa\uf8fa\uf8fa\uf8fb � b2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c0a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c1c2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c0c2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2c0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c0c1c0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' ab − c0c1a � Σ214122 k \uf8ee \uf8ef\uf8ef\uf8ef\uf8ef\uf8f0 a � c0 � c1 � b0 � b1 � \uf8f9 \uf8fa\uf8fa\uf8fa\uf8fa\uf8fb �b2 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' b2 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' b0b1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' b1b0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c0c1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c0ab1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c1ab1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' ab0 − c0a � Σ131313 k \uf8ee \uf8ef\uf8ef\uf8ef\uf8ef\uf8f0 a � c0 � c1 � c2 � b � \uf8f9 \uf8fa\uf8fa\uf8fa\uf8fa\uf8fb � b2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c1c2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c0c2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c0c1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2c0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2c1c0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' ab − c0a � Σ213213 k \uf8ee \uf8ef\uf8ef\uf8ef\uf8ef\uf8f0 a � c1 � c2 � b � \uf8f9 \uf8fa\uf8fa\uf8fa\uf8fa\uf8fb �b2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c1ab,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c1c2 � Σ132132 k \uf8ee \uf8ef\uf8ef\uf8ef\uf8ef\uf8f0 a � c0 � c1 � c2 � b0 � b1 � \uf8f9 \uf8fa\uf8fa\uf8fa\uf8fa\uf8fb �b2 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' b2 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' b0b1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2c1c2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c0c2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c0c1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2c0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' ab0 − c0a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' ab1 − c2c1a � Σ141222 k \uf8ee \uf8ef\uf8ef\uf8ef\uf8ef\uf8f0 a � c0 � c1 � c2 � b0 � b1 � \uf8f9 \uf8fa\uf8fa\uf8fa\uf8fa\uf8fb �b2 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' b2 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' b0b1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c2c0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c1c2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c0c2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' c0c1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' ab0 − c0a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' ab1 − c1a � Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Algebras whose g-fans are given in Figure 1 FANS AND POLYTOPES IN TILTING THEORY II: g-FANS OF RANK 2 5 Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='5 (Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let A be a basic finite dimensional algebra, {e1, e2} a complete set of primitive orthogonal idempotents in A, and Pi = eiA (i = 1, 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (a) A is g-convex if and only if Σ(A) = Σa;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='b for some a, b ∈ {(0, 0), (1, 1, 1), (1, 2, 1, 2), (2, 1, 2, 1)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (b) Let (l, r) := (t(e1Ae1e1Ae2), t(e1Ae2e2Ae2)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Then we have the following statements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Σ(A) = Σ00;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='b for some b if and only if (l, r) = (0, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Σ(A) = Σ111;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='b for some b if and only if (l, r) = (1, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Σ(A) = Σ1212;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='b for some b if and only if (l, r) = (1, 2) and t(Rxe1Ae1) = 2 hold for some left generator x of e1Ae2 and Rx := {a ∈ e1Ae1 | ax ∈ xAe2}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Σ(A) = Σ2121;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='b for some b if and only if (l, r) = (2, 1) and t(e2Ae2Lx) = 2 hold for some right generator x of e1Ae2 and Lx := {b ∈ e2Ae2 | xb ∈ e1Ax}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Σ00;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='b P2 P1 ❄❄❄❄❄❄ ❄ ❄ ❄ ❄ ❄ ❄ ⑧⑧⑧⑧⑧⑧ Σ111;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='b P2 P1 ❄ ❄ ❄ ❄ ❄ ❄ ❄❄❄❄❄❄ ❄ ❄ ❄ ❄ ❄ ❄ Σ1212;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='b P2 P1 ❄ ❄ ❄ ❄ ❄ ❄ ✴✴✴✴✴✴✴✴✴ ❄❄❄❄❄❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄❄❄❄❄❄ Σ2121;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='b P2 P1 ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❄ ❄ ❄ ❄ ❄ ❄ ❄❄❄❄❄❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄❄❄❄❄❄ Further, in a forthcoming paper [AHIKM2], we will give a complete answer to Problem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='4 for d = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Preliminaries 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Preliminaries on fans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We recall some fundamental materials on fans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We refer the reader to e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' [F, BR, BP] for these materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' A convex polyhedral cone σ is a set of the form σ = {���s i=1 rivi | ri ≥ 0}, where v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , vs ∈ Rd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We denote it by σ = cone{v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , vs}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Note that {0} is regarded as a convex polyhedral cone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We collect some notions concerning convex polyhedral cones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let σ be a convex polyhedral cone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' The dimension of σ is the dimension of the linear space generated by σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We say that σ is strongly convex if σ ∩ (−σ) = {0} holds, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=', σ does not contain a linear subspace of positive dimension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We call σ rational if each vi can be taken from Qd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We denote by ⟨·, ·⟩ the usual inner product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' A supporting hyperplane of σ is a hyperplane {v ∈ σ | ⟨u, v⟩ = 0} in Rd given by some u ∈ Rd satisfying σ ⊂ {v ∈ Rd | ⟨u, v⟩ ≥ 0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' A face τ of σ is the intersection of σ with a supporting hyperplane of σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' In what follows, a cone means a strongly convex rational polyhedral cone for short.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' A fan Σ in Rd is a collection of cones in Rd such that (a) each face of a cone in Σ is also contained in Σ, and (b) the intersection of two cones in Σ is a face of each of those two cones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' For each i ≥ 0, we denote by Σi the subset of cones of dimension i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' For example, Σ0 consists of the trivial cone {0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We call each element in Σ1 a ray of Σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We collect some notions concerning fans used in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let Σ be a fan in Rd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We call Σ finite if it consists of a finite number of cones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We call Σ complete if � σ∈Σ σ = Rd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We call Σ nonsingular (or smooth) if each maximal cone in Σ is generated by a Z-basis for Zd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We prepare some notions which will be used in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let Σ be a nonsingular fan in Rd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We call Σ pairwise positive if the following condition is satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' 6 TOSHITAKA AOKI, AKIHIRO HIGASHITANI, OSAMU IYAMA, RYOICHI KASE, AND YUYA MIZUNO For each two adjacent maximal cones σ, τ ∈ Σd, take Z-basis {v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , vd−1, vd} and {v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , vd−1, v′ d} of Zd such that σ = cone{v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , vd−1, vd} and τ = cone{v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , vd−1, v′ d}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Then vd + v′ d belongs to cone{v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , vd−1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let Σ and Σ′ be fans in Rd and Rd′ respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (1) An isomorphism Σ ≃ Σ′ of fans is an isomorphism Zd ≃ Zd′ of abelian groups such that the induced linear isomorphism Rd → Rd′ gives a bijection Σ ≃ Σ′ between cones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (2) Let (Σ, σ+) and (Σ′, σ′ +) be sign-coherent fans in Rd and Rd′ respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' An isomorphism of sign-coherent fans is an isomorphism f : Σ ≃ Σ′ of fans such that {f(σ+), f(−σ+)} = {σ′ +, −σ′ +}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Sign-coherent fans of rank 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' In this subsection, we introduce some terminologies of sign- coherent fans of rank 2, and discuss some fundamental properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let Σ be a complete nonsingular fan of rank 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We denote the rays of Σ by v1, v2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , vn−1, vn = v0 (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='1) which are indexed in a clockwise orientation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' For each 1 ≤ i ≤ n, since Σ is nonsingular, there exists an integer ai satisfying aivi = vi−1 + vi+1 for each 1 ≤ i ≤ n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We call the sequence of integers s(Σ) = (a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , an) (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='2) the defining sequence of Σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' In fact, Σ is uniquely determined by its defining sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' A fan with defining sequence (a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , an) is denoted by Σ(a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , an).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' [F, Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='5] An integer sequence (a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , an) is a defining sequence of nonsingular complete fan of rank 2 if and only if it satisfies n � i=1 ai = 3n − 12 and �0 −1 1 a1 � �0 −1 1 a2 � · · �0 −1 1 an � = �1 0 0 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We denote by Fansc(2) the set of all (possibly infinite) fans Σ satisfying that Σ is a sign-coherent fans (Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='1) of rank 2 with positive and negative cones σ+ := cone{(1, 0), (0, 1)} and σ− := cone{(−1, 0), (0, −1)} respectively, each ray is a face of precisely two facets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We denote the subset of complete fans by Fansc(2) ⊂ Fansc(2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' For Σ ∈ Fansc(2), we denote the rays of Σ in a clockwise orientation by Σ1 = {v1 := (1, 0), v2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , vn−1, vn = v0 := (0, 1)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Then there exists 2 ≤ i ≤ n − 2 such that vi = (0, −1) and vi+1 = (−1, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' vn=v0=(0,1) v1=(1,0) vi=(0,−1) vi+1=(−1,0) + − ❄❄❄❄❄❄ ❄ ❄ ❄ ❄ ❄ ❄ In this case, it is more convenient to rewrite (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='2) as s(Σ) = (a1, a2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , ai;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' an, an−1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , ai+1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Thus we mainly use the notation Σ(a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , ai;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' an, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , ai+1) = Σa1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=',ai;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='an,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=',ai+1 FANS AND POLYTOPES IN TILTING THEORY II: g-FANS OF RANK 2 7 instead of Σ(a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , an).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We consider subsets Fan +− sc (2) ⊂ Fansc(2) ∪ ∪ Fan+− sc (2) ⊂ Fansc(2) which consist of fans Σ containing σ−+ := cone{(−1, 0), (0, 1)}, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Σ has the following form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' σ−+ + − ❄❄❄❄❄❄ ⑧ ⑧ ⑧ ⑧ ⑧ ⑧ ❄ ❄ ❄ ❄ ❄ ❄ Thus the rays and the facets of Σ ∈ Fan+− sc (2) are written as Σ1 = {v1 = (1, 0), v2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , vn−2 = (0, −1), vn−1 = (−1, 0), vn = v0 = (0, 1)}, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='3) Σ2 = {σ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , σn−3, σn−2 = σ−, σn−1 = σ−+, σn = σ+}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='4) Similarly, we define Fan −+ sc (2) and Fan−+ sc (2) as the subsets of Fansc(2) and Fansc(2) respectively which consist of fans containing σ+− := cone{(1, 0), (0, −1)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' The following observations are clear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' The following assertions hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (1) The correspondence Σ �→ {−σ | σ ∈ Σ} gives bijections Fan +− sc (2) → Fan −+ sc (2) and Fan+− sc (2) → Fan−+ sc (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (2) Let Σ ∈ Fansc(2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Then Σ ∈ Fan+− sc (2) (respectively, Σ ∈ Fan−+ sc (2)) holds if and only if s(Σ) has the form (b1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , bm;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' 0, 0) (respectively, (0, 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' b1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , bm)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' In this case, bi ≥ 0 holds for any 1 ≤ i ≤ m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' For Σ ∈ Fan +− sc (2) and Σ′ ∈ Fan −+ sc (2), we define Σ ∗ Σ′ ∈ Fansc(2) by (Σ ∪ Σ′)1 := Σ1 ∪ Σ′ 1 (Σ ∪ Σ′)2 := (Σ2 \\ {σ−+}) ∪ (Σ′ 2 \\ {σ+−}) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Σ = + − ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' σ−+ ❄❄❄❄❄❄ ⑧ ⑧ ⑧ ⑧ ⑧ ⑧ ❄ ❄ ❄ ❄ ❄ ❄ Σ′ = + − !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' σ+− ❄❄❄❄❄❄ ⑧ ⑧ ⑧ ⑧ ⑧ ⑧ ❄ ❄ ❄ ❄ ❄ ❄ Σ ∗ Σ′ = + − ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' ❄❄❄❄❄❄ ❄ ❄ ❄ ❄ ❄ ❄ Then, we clearly have Fansc(2) = Fan +− sc (2) ∗ Fan −+ sc (2) := {Σ ∗ Σ′ | Σ ∈ Fan +− sc (2), Σ′ ∈ Fan −+ sc (2)}, Fansc(2) = Fan+− sc (2) ∗ Fan−+ sc (2) := {Σ ∗ Σ′ | Σ ∈ Fan+− sc (2), Σ′ ∈ Fan−+ sc (2)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='5) Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let Σ be a (possibly infinite) nonsingular fan of rank 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' For a cone σ := cone{u, v} of Σ, we define a new nonsingular fan Dσ(Σ) by Dσ(Σ)1 = Σ1 ∪ {cone{u + v}}, Dσ(Σ)2 = (Σ2 \\ {σ}) ⊔ {cone{u, u + v}, cone{v, u + v}}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We call Dσ(Σ) the subdivision of Σ at σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Σ = .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='. σ ❨ ❨ ❨ ❨ ❨ ❨ ❨ ❡ ❡ ❡ ❡ ❡ ❡ ❡ Dσ(Σ) = .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='. ❨ ❨ ❨ ❨ ❨ ❨ ❨ ❡ ❡ ❡ ❡ ❡ ❡ ❡ ❡❡❡❡❡❡❡ ❨❨❨❨❨❨❨ 8 TOSHITAKA AOKI, AKIHIRO HIGASHITANI, OSAMU IYAMA, RYOICHI KASE, AND YUYA MIZUNO For a sequence a = (a1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , an) and 1 ≤ i ≤ n, we define a new sequence by Di(a) = (a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , ai−1, ai + 1, 1, ai+1 + 1, ai+2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , an).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='6) For a complete nonsingular fan Σ with rays (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='1) and σi := cone{vi, vi+1} for 1 ≤ i ≤ n, we have s ◦ Dσi(Σ) = Di ◦ s(Σ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='7) Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Figure 1 gives fans in Fan+− sc (2) with at most 8 facets, where Σa1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=',an := Σ(a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , an;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' 0, 0) and each edge shows a subdivision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Figure 2 gives examples of algebras whose g-fans are given in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' For example, Σ111 is the g-vector fan of a cluster algebra of type A2 [FZ1, FZ2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Similarly, Σ1212 and Σ2121 are the g-vector fans of cluster algebras of type B2, and Σ131313 and Σ313131 are the g-vector fans of cluster algebras of type G2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Later we need the following observation (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' [F, Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='3]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Each fan in Fan+− sc (2) can be obtained from Σ(0, 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' 0, 0) by a sequence of subdivisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Σ(0, 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' 0, 0) = + − ❄❄❄❄❄ ⑧⑧⑧⑧⑧ ❄❄❄❄❄ ⑧⑧⑧⑧⑧ To prove this, we need the following preparation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='11 (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' [F, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='43]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let Σ ∈ Fan+− sc (2) and s(Σ) = (a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , an−2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' 0, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' If n ≥ 5, then there exists 2 ≤ i ≤ n − 3 satisfying ai = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let vi = (xi, yi) ∈ Z2 for 1 ≤ i ≤ n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Assume that n ≥ 5 and ai ≥ 2 for any 2 ≤ i ≤ n − 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We claim that xi+1 ≥ xi holds for each 1 ≤ i ≤ n − 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' In fact, n ≥ 5 implies x2 ≥ 1 = x1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Then we have xi+1 = aixi − xi−1 ≥ 2xi − xi−1 ≥ xi for each 2 ≤ i ≤ n − 3, and the claim follows inductively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Consequently 1 = x1 ≤ x2 ≤ · · · ≤ xn−2 = 0 holds, a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' □ We are ready to prove Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Proof of Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let F ⊂ Fan+− sc (2) be the set of fans obtained from Σ(0, 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' 0, 0) by a sequence of subdivisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' It suffices to show Fan+− sc (2) = F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We will show that each Σ ∈ Fan+− sc (2) belongs to F by using induction on n = #Σ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Clearly n ≥ 4 holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' If n = 4, then Σ = Σ(0, 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' 0, 0) ∈ F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Suppose that Σ with #Σ2 = n ≥ 5 belongs to Fan+− sc (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' In terms of (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='3) and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='4), there exists 2 ≤ i ≤ n − 3 satisfying vi = vi−1 + vi+1 by Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Since vi−1, vi+1 forms a Z-basis of Z2, we obtain a new fan Σ′ ∈ Fan+− sc (2) by Σ′ 1 := Σ1 \\ {vi}, Σ′ 2 := (Σ2 \\ {σi−1, σi}) ∪ {σ} for σ := cone{vi−1, vi+1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Since #Σ′ 2 = n − 1, the induction hypothesis implies Σ′ ∈ F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Thus Σ = Dσ(Σ′) ∈ F holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' □ Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' For each n ≥ 1, we have a bijection {Σ ∈ Fan+− sc (2) | #Σ2 = n + 3} ≃ {the ways to parenthesize n factors completely}, where parentheses show how cones in the fourth quadrant are obtained by iterated subdivisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' For example, Σ141222 in Figure 1 has 5 cones σ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , σ5 in the fourth quadrant in terms of (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='4), and they are parenthesized as σ1(((σ2σ3)σ4)σ5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' In particular, we have #{Σ ∈ Fan+− sc (2) | #Σ2 = n + 3} = 1 n �2n − 2 n − 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' FANS AND POLYTOPES IN TILTING THEORY II: g-FANS OF RANK 2 9 We also have a bijection {Σ ∈ Fan+− sc (2) | #Σ2 = n + 3} ≃ {Triangulations of a regular (n + 1)-gon}, where Σa1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=',an+1 corresponds to a triangulation satisfying the following condition: Let 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=', n+ 1 be the vertices of the regular (n + 1)-gon in a clockwise direction, and ai (1 ≤ i ≤ n + 1) the number of triangles containing the vertex i in the triangulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' For example, Σ141222 corresponds to the following triangulation, where 1 is the top vertex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We introduce piecewise linear transformation of sign coherent fan of rank 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' This is a general- ization of mutation of g-vectors of cluster algebras of rank 2 [FZ2, NZ], and also a special case of so called combinatorial mutation [ACGK, FH].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' For Σ ∈ Fan +− sc (2) with σ+ = cone{(0, 1), (1, 0)}, take σ = cone{(1, 0), (ℓ, −1)} ∈ Σ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Define a new sign-coherent fan Σ′ by Σ′ 1 := (Σ1 \\ {(0, 1)}) ∪ {(−ℓ, 1)} Σ′ 2 := (Σ2 \\ {σ+, σ−+}) ∪ {−σ, cone{(−ℓ, 1), (1, 0)}}, where the positive and negative cones of Σ′ are σ and −σ respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Σ = (0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='1) (1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='0) (ℓ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='−1) (0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='−1) (−1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='0) + − σ σ−+ ❄❄❄❄❄❄ ⑧ ⑧ ⑧ ⑧ ⑧ ⑧ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❄❄❄❄❄❄ ❚ ❚ ❚ ❚ ❚ ❚ ❚ ❚ ❚ ❚ ❚ ❚ ❚ ρ(Σ) ≃ Σ′ = (−ℓ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='1) (1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='0) (ℓ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='−1) (0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='−1) (−1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='0) + − σ −σ ❄❄❄❄❄❄ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❚ ❚ ❚ ❚ ❚ ❚ ❚ ❚ ❚ ❚ ❚ ❚ ❚ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❚ ❚ ❚ ❚ ❚ ❚ ❚ ❚ ❚ ❚ ❚ ❚ ❚ ❲ ❲ ❲ ❲ ❲ ❲ ❲ ❲ ❲ ❲ ❲ ❲ ❲ ❲ ❲ ❲ ❲ We define the rotation ρ(Σ) ∈ Fan +− sc (2) of Σ as the image of Σ′ by a linear transformation of R2 mapping (1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' 0) �→ (0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' 1) and (ℓ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' −1) �→ (1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We give basic properties of rotation, where the name “rotation” is explained by (a) below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let Σ ∈ Fan+− sc (2) with facets (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='4) and s(Σ) = (a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , an−2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' 0, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (a) We have s(ρ(Σ)) = (a2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , an−2, a1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' 0, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' In particular, ρn−2(Σ) = Σ holds, and therefore ρ is an invertible operation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (b) For each 1 ≤ i ≤ n − 3, we have Dσi(Σ) = ρn−3−i ◦ Dσn−3 ◦ ρi+1(Σ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (a) Recall Σ1 = {v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , vn} and aivi = vi−1 + vi+1 for 1 ≤ i ≤ n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Moreover ρ(Σ)1 = {w1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , wn} where wi := vi+1 (i ̸= n − 1), wn−1 := −v2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Hence we have wi−1 + wi+1 = vi + vi+2 = ai+1vi+1 = ai+1wi for i ̸= n − 2, n, wn−1 + w1 = −v2 + v2 = 0 · wn, wn−3 + wn−1 = vn−2 − v2 = −(vn + v2) = −a1v1 = a1vn−1 = a1wn−2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Thus s(ρ(Σ)) = (a2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , an−2, a1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' 0, 0) as desired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (b) By (a), we have s ◦ ρi+1(Σ) = (ai+2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , an−2, a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , ai+1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' 0, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Thus s ◦ Dσn−3 ◦ ρi+1(Σ) (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='7) = Dn−3 ◦ s ◦ ρi+1(Σ) = (ai+2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , an−2, a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , ai−1, ai + 1, 1, ai+1 + 1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' 0, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' 10 TOSHITAKA AOKI, AKIHIRO HIGASHITANI, OSAMU IYAMA, RYOICHI KASE, AND YUYA MIZUNO By (a) again, we have s ◦ ρn−3−i ◦ Dσn−3 ◦ ρi+1(Σ) = (a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , ai−1, ai + 1, 1, ai+1 + 1, ai+2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , an−2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' 0, 0) = Di ◦ s(Σ) (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='7) = s ◦ Dσi(Σ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Since a fan is uniquely determined by its defining sequence, the assertion follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' □ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Basic results in silting theory 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Preliminaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let A be a finite dimensional algebra over a field k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let K0(proj A) be the Grothendieck group of the additive category proj A, which is identified with the Grothendieck group of the triangulated category Kb(proj A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We recall basic results on silting theory from [AI, AIR, AHIKM1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' First we recall the definition of 2-term silting complexes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let T = (T i, di) ∈ Kb(proj A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (a) T is called presilting if HomKb(proj A)(T, T [ℓ]) = 0 for all positive integers ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (b) T is called silting if it is presilting and Kb(proj A) = thick T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (c) T is called 2-term if T i = 0 for all i ̸= 0, −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' In this case, the class [T ] = [T 0] − [T −1] ∈ K0(proj A) of T is called the g-vector of T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (d) An element of K0(proj A) is rigid if it is a g-vector of some 2-term presilting complex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We denote by siltA (respectively, psiltA, 2-siltA, 2-psiltA) the set of isomorphism classes of basic silting (respectively, presilting, 2-term silting, 2-term presilting) complexes of Kb(proj A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Note that a 2-term presilting complex T is silting if and only if |T | = |A| holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' For T, U ∈ siltA, we write T ≥ U if HomKb(proj A)(T, U[ℓ]) = 0 holds for all positive integers ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Then (siltA, ≥) is a partially ordered set [AI].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' In this paper, the subposet (2-siltA, ≥) of (siltA, ≥) plays a central role.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' It is known that Hasse(2-siltA) is n-regular for n := |A|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' More precisely, let T = T1 ⊕ · · · ⊕ Tn ∈ 2-siltA with indecomposable Ti.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' For each 1 ≤ i ≤ n, there exists precisely one T ′ ∈ 2-siltA such that T ′ = T ′ i ⊕ (� j̸=i Tj) for some T ′ i ̸= Ti.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' In this case, we call T ′ mutation of T at Ti and write T ′ = µTi(T ) = µi(T ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' In this case, either T > T ′ or T ′ < T holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We denote T ′ by µ− i (T ) (respectively, µ+ i (T )) if T > T ′ and call it left mutation (respectively, right mutation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' The following result is fundamental in silting theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let T, T ′ ∈ 2-siltA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Take a decomposition T = T1⊕· · ·⊕Tn with indecomposable Ti.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Then the following conditions are equivalent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (a) T > T ′, and T and T ′ are mutation of each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (b) There is an arrow T → T ′ in Hasse(2-siltA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (c) T ′ = T ′ i ⊕ (� j̸=i Tj) and there is a triangle Ti f−→ Ui → T ′ i → Ti[1] such that f is a minimal left (add � j̸=i Tj)-approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (d) T ′ = T ′ i ⊕ (� j̸=i Tj) and there is a triangle Ti → Ui g−→ T ′ i → Ti[1] such that g is a minimal right (add � j̸=i Tj)-approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' The triangles in (c) and (d) are isomorphic, and called an exchange triangle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' To introduce the g-fan of a finite dimensional k-algebra A, we consider the real Grothendieck group of A: K0(proj A)R := K0(proj A) ⊗Z R ≃ R|A|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' FANS AND POLYTOPES IN TILTING THEORY II: g-FANS OF RANK 2 11 Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' For T = T1 ⊕ · · · ⊕ Tℓ ∈ 2-psiltA with indecomposable Ti, let C(T ) := { ℓ � i=1 ai[Ti] | a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , aℓ ≥ 0} ⊂ K0(proj A)R, C≤1(T ) := { ℓ � i=1 ai[Ti] | a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , aℓ ≥ 0, ℓ � i=1 ai ≤ 1} ⊂ K0(proj A)R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We call the set Σ(A) := {C(T ) | T ∈ 2-psiltA} of cones the g-fan of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We also define the g-polytope P(A) of A by P(A) := � T ∈2-siltA C≤1(T ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We say that A is g-convex if the g-polytope P(A) is convex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Notice that Σ(A) can be an infinite set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We give the following basic properties of g-fans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let A be a finite dimensional algebra over a field k and n := |A|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (a) Σ is a pairwise positive sign-coherent fan whose positive (respectively, negative) cone is given by σ+ := C(A) (respectively, σ− := C(A[1])).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (b) Any cone in Σ(A) is a face of a cone of dimension n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (c) Any cone in Σ(A) of dimension n − 1 is a face of precisely two cones of dimension n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' The following basic observation will be used frequently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let Λ be a finite dimensional algebra with orthogonal primitive idempotents 1 = e1 + e2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Under the identification P1 = (1, 0) and P2 = (0, 1), the following assertions hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (a) cone{(−1, 0), (0, 1)} ∈ Σ(Λ) if and only if e2Λe1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (b) cone{(1, 0), (0, −1)} ∈ Σ(Λ) if and only if e1Λe2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='5 is explained by the following picture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' e2Λe1 = 0 ⇔ + − P1 P2 ❄❄❄❄❄❄ ⑧ ⑧ ⑧ ⑧ ⑧ ⑧ ❄ ❄ ❄ ❄ ❄ ❄ e2Λe1 = 0 ⇔ + − P1 P2 ❄❄❄❄❄❄ ⑧ ⑧ ⑧ ⑧ ⑧ ⑧ ❄ ❄ ❄ ❄ ❄ ❄ Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We only prove (a): Σ(A) ∈ Fan+− sc (2) if and only if P1[1] ⊕ P2 ∈ 2-siltA if and only if HomKb(proj A)(P1, P2) = 0 if and only if e2Λe1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' □ We end this subsection with recalling the sign decomposition technique studied in [Ao, AHIKM1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We have to introduce the following notations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let A be a basic finite dimensional algebra over a field k with |A| = n, and 1 = e1 + · · · + en the orthogonal primitive idempotents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' For ǫ ∈ {±1}n, we define K0(proj A)ǫ,R := cone(ǫi[eiA] | i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=', n}) and a subfan of Σ(A) by Σǫ(A) := {σ ∈ Σ(A) | σ ⊂ K0(proj A)ǫ,R}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Define idempotents of A by e+ ǫ := � ǫi=1 ei and e− ǫ := � ǫi=−1 ei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We denote by Aǫ the subalgebra of A given by Aǫ := � e+ ǫ Ae+ ǫ e+ ǫ Ae− ǫ 0 e− ǫ Ae− ǫ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' 12 TOSHITAKA AOKI, AKIHIRO HIGASHITANI, OSAMU IYAMA, RYOICHI KASE, AND YUYA MIZUNO Define an ideal Iǫ of Aǫ by Iǫ := � rad(e+ ǫ Ae+ ǫ ) ∩ Anne+ ǫ Ae+ ǫ (e+ ǫ Ae− ǫ ) 0 0 rad(e− ǫ Ae− ǫ ) ∩ Ann(e+ ǫ Ae− ǫ )e− ǫ Ae− ǫ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' The following result is often very useful to calculate Σǫ(A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' [AHIKM1, Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='26] For each ideal I of Aǫ contained in Iǫ, the isomor- phisms − ⊗Aǫ A : K0(proj Aǫ)R ≃ K0(proj A)R and − ⊗Aǫ (Aǫ/I) : K0(proj Aǫ)R ≃ K0(proj Aǫ/I)R gives an isomorphism of fans Σǫ(A) ≃ Σǫ(Aǫ/I).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' The following finiteness condition plays a central role in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let A be a finite dimensional algebra over a field k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We say that A is g-finite if #2-siltA < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (This is called τ-tilting finite in [DIJ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=') Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' A is g-finite (or equivalently, Σ(A) is finite) if and only if Σ(A) is complete.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Silting complexes in terms of matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' In this subsection, we give basic properties of 2-term presilting complexes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Throughout this subsection, we assume the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Assumption 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' For rings A and B and an Aop ⊗k B-module X which is finitely generated on both sides, let Λ := � A X 0 B � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Equivalently, Λ is a ring with orthogonal idempotents 1 = e1 + e2 satisfying e2Λe1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' In fact, we can recover Λ from A := e1Λe1, B := e2Λe2 and X := e1Λe2 by the equality above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Consider projective Λ-modules P1 := [A X], P2 := [0 B] ∈ proj Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' For s, t ≥ 0, we denote by Ms,t(X) the set of s × t matrices with entries in X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Then we have an isomorphism Ms,t(X) ≃ HomΛ(P ⊕t 2 , P ⊕s 1 ) sending x ∈ Ms,t(X) to the left multiplication x(·) : P ⊕t 2 → P ⊕s 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Thus we have a 2-term complex Px := (P ⊕t 2 x(·) −−→ P ⊕s 1 ) ∈ per Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' The following observation is basic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let s, t, u, v ≥ 0, x ∈ Ms,t(X) and y ∈ Mu,v(X).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (a) Then we have an exact sequence Mu,s(A) ⊕ Mv,t(B) [(·)x y(·)] −−−−−−→ Mu,t(X) → Homper Λ(Px, Py[1]) → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (b) In particular, Px is presilting if and only if Ms,t(X) = Ms(A)x + xMt(B) holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' The assertion (a) follows from an exact sequence HomΛ(P ⊕s 1 , P ⊕u 1 ) ⊕ HomΛ(P ⊕t 2 , P ⊕v 2 ) [(·)x y(·)] −−−−−−→ HomΛ(P ⊕t 2 , P ⊕u 1 ) → Homper Λ(Px, Py[1]) → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' The assertion (b) is immediate from (a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' □ The following construction of silting complexes of Λ will be used frequently, where t(XB) (re- spectively, t(AX)) is the minimal number of generators of X as a right B-module (respectively, left A-module).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' In Assumption 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='10, assume that A and B are local k-algebras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (a) Σ(Λ) contains cone{(0, −1), (1, −r)} for r := t(XB) = dim(X/XJB)B/JB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (b) Σ(Λ) contains cone{(1, 0), (ℓ, −1)} for ℓ := t(AX) = dimA/JA(X/JAX).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' FANS AND POLYTOPES IN TILTING THEORY II: g-FANS OF RANK 2 13 (c) Let g1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , gr be a minimal set of generators of the B-module X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Then µ+ 1 (Λ[1]) = Pg ⊕P2[1] ∈ 2-siltΛ holds for g := [g1 · · · gr] ∈ M1,r(X).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (d) Let h1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , hℓ a minimal set of generators of the Aop-module X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Then µ− 2 (Λ) = P1 ⊕ Ph ∈ 2-siltΛ holds for h := � h1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' hℓ � ∈ Mℓ,1(X).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' By Propositions 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='5 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='12, a part of Σ(Λ) has the following form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Σ(Λ) = P2 P1 Ph=ℓP1−P2 Pg=P1−rP2 P2[1] P1[1] + − µ− 2 (Λ) µ+ 1 (Λ[1]) ❄❄❄❄❄❄ ⑧ ⑧ ⑧ ⑧ ⑧ ⑧ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❄❄❄❄❄❄ ❚ ❚ ❚ ❚ ❚ ❚ ❚ ❚ ❚ ❚ ❚ ❚ ❚ ✯✯✯✯✯✯✯✯✯✯✯✯✯ ✴✴✴✴✴✴✴✴✴ Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We only prove (a)(c) since (b)(d) are the duals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' A minimal right (add P2[1])-approximation of P1[1] is given by g(·) : P2[1]⊕r → P1[1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Thus the mutation of Λ[1] at P1[1] is Pg ⊕ P2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' □ Now we assume that B is a local algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We fix a minimal set of generators g1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , gr of the right B-module X and set g := [g1 · · · gr] ∈ M1,r(X) and g := [g1 · · · gr] ∈ M1,r(X/XJB), where (·) is a canonical surjection X ։ X/XJB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Then we have an isomorphism g(·) : Mr,1(B/JB) ≃ X/XJB, and we define a map π : X → Mr,1(B/JB) by π := (X (·) −→ X/XJB (g(·))−1 −−−−−→ Mr,1(B/JB)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' For each s, t ≥ 0, an entry-wise application of π gives a map π : Ms,t(X) → Ms,t(Mr,1(B/JB)) = Mrs,t(B/JB).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' In other words, for the identity matrix Is ∈ Ms(k) and gIs := � g O .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' O g � ∈ Ms(M1,r(k)) = Ms,rs(k), we have x = (gIs)π(x) for each x ∈ Ms,t(X).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='1) Define a morphism of k-algebras φ : Ms(A) → Mrs(B/JB) by a(gIs) = (gIs)φ(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Later we will use the following observation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' In Assumption 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='10, assume that B is a local algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let s, t ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (a) π : Ms,t(X) → Mrs,t(B/JB) is a morphism of Ms(A)op ⊗k Mt(B)-modules, where we regard Mrs,t(B/JB) as an Ms(A)op-module via φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (b) Let x ∈ Ms,t(X).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' If Px is presilting, then π(x) ∈ Mrs,t(B/JB) has full rank.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (a) For any a ∈ Ms(A), x ∈ Ms,t(X) and b ∈ Mt(B), we need to show π(axb) = φ(a)π(x)b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' In fact, (gIs)φ(a)π(x)b = a(gIs)π(x)b (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='1) = axb = axb (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='1) = (gIs)π(axb) gives the desired equality since gIs(·) is injective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' 14 TOSHITAKA AOKI, AKIHIRO HIGASHITANI, OSAMU IYAMA, RYOICHI KASE, AND YUYA MIZUNO (b) By Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='11(b), we have Ms,t(X) = Ms(A)x + xMt(B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Applying π, we have Mrs,t(B/JB) = π(Ms(A)x + xMt(B)) (a) = φ(Ms(A))π(x) + π(x)Mt(B) ⊂ Mrs(B/JB)π(x) + π(x)Mt(B/JB).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Thus the right-hand side is Mrs,t(B/JB).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' This clearly implies that π(x) has full rank.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' □ For completeness, we also give the dual statement of Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Now we assume that A is a local algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We fix a minimal set of generators h1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , hℓ of the left A-module X and set h := � h1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' hℓ � ∈ Mℓ,1(X) and h := � h1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' hℓ � ∈ Mℓ,1(X/JAX), where by abuse of notations, (·) is a canonical surjection X ։ X/JAX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Then we have an isomor- phism (·)h : M1,ℓ(A/JA) ≃ X/JAX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' By abuse of notations, let π := (X (·) −→ X/JAX ((·)h)−1 −−−−−→ M1,ℓ(A/JA)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' For each s, t ≥ 0, an entry-wise application of π gives a map π : Ms,t(X) → Ms,t(M1,ℓ(A/JA)) = Ms,ℓt(A/JA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Define a morphism of k-algebras φ : Mt(B) → Mℓt(A/JA) by (hIt)b = φ(b)(hIs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We have the following dual of Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' In Assumption 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='10, assume that A is a local algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let s, t ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (a) π : Ms,t(X) → Ms,ℓt(A/JA) is a morphism of Ms(A)op ⊗k Mt(B)-modules, where we regard Ms,ℓt(A/JA) as an Mt(B)-module via φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (b) Let x ∈ Ms,t(X).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' If Px is presilting, then π(x) ∈ Ms,ℓt(A/JA) has full rank.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Uniserial property of g-finite algebras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' As an application of results in the previous sub- section, we prove the following result, which is not used in the rest of this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let Λ be a finite dimensional elementary k-algebra, and 1 = e1 + · · · + en the orthogonal primitive idempotents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' If Λ is g-finite, then for each 1 ≤ i ̸= j ≤ n, eiΛej/eiΛejJΛej is a uniserial (eiΛei)op-module and eiΛej/eiJΛeiJΛej is a uniserial ejΛej-module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Thanks to sign decomposition, we can deduce Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='15 from the following result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let A and B be local k-algebras with k ≃ A/JA ≃ B/JB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' If X is a Aop ⊗k B- module such that � A X 0 B � is g-finite, then X/XJB is a uniserial Aop-module and X/JAX is a uniserial B-module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Proof of Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='16⇒Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Since Λ is g-finite, so is Γ := (ei + ej)Λ(ei + ej).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' By Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='7, Γ+− = � eiΛei eiΛej 0 ejΛej � is also g-finite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Thus the assertion follows from Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' □ In the rest of this subsection, we prove Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' The following observation plays a key role in the proof, where we identify K0(proj Λ) with Z2 via [A X] �→ (1, 0), [0 B] �→ (0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let Λ := � A X 0 k � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Assume that (1, −1) ∈ K0(proj Λ) is rigid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (a) There exists h ∈ X such that X = Ah.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' FANS AND POLYTOPES IN TILTING THEORY II: g-FANS OF RANK 2 15 (b) Let Λ′ := � A JAX 0 k � and t ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' If (1, −t) ∈ K0(proj Λ) is rigid, then (1, 1 − t) ∈ K0(proj Λ′) is rigid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (a) By Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='11(b), there exists h ∈ X satisfying X = Ah + hk = Ah.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (b) By Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='11(b), there exists [x1 x2 · · · xt] ∈ M1,t(X) such that M1,t(X) = A[x1 · · · xt] + [x1 · · · xt]Mt(k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='2) As in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='2, the element h gives surjections π := (X (·) −→ X/JAX ((·)h)−1 −−−−−→ A/JA = k) and π : M1,t(X) → M1,t(k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' By Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='14, π(x) ∈ M1,t(k) has full rank.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' By changing indices if necessary, we can assume x1 ∈ A×h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Multiplying an element in A× from left, we can assume x1 = h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Multiplying an element in GLt(k) from right, we can assume xi ∈ JAh for each 2 ≤ i ≤ t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We claim M1,t−1(JAX) = A[x2 · · · xt] + [x2 · · · xt]Mt−1(k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' In fact, fix any [y2 · · · yt] ∈ M1,t−1(JAX).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' By (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='2) there exist a ∈ A and b = [bij]1≤i,j≤t ∈ Mt(k) such that [0 y2 · · · yt] = a[h x2 · · · xt] + [h x2 · · · xt]b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='3) Applying π, we obtain [0 0 · · · 0] = a[1 0 · · · 0] + [1 0 · · · 0]b in M1,t(k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Thus we obtain b12 = · · · = b1t = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Looking at the i-th entries for 2 ≤ i ≤ t of (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='3), we have [y2 · · · yt] = a[x2 · · · xt] + [x2 · · · xt][bij]2≤i,j≤n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Thus the claim follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' □ We are ready to prove Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Proof of Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We prove that X/XJB is a uniserial Aop-module under a weaker assump- tion that (1, −t) ∈ K0(proj Λ) is rigid for each t ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Since Λ := � A X/XJB 0 k � is a factor algebra of Λ, the element (1, −t) ∈ K0(proj Λ) is rigid for each t ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Replacing Λ by Λ, we can assume that B = k and Λ = � A X 0 k � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We use induction on dimk X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' By Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='17(a), the Aop-module X has a unique maximal submodule JAX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let Λ′ = � A JAX 0 k � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' By Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='17(b), (1, −t) ∈ K0(proj Λ′) is rigid for each t ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' By induction hypothesis, JAX is a uniserial Aop-module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Therefore X is also a uniserial Aop-module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' □ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Gluing, Rotation and Subdivision of g-fans 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Gluing fans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let Λ and Λ′ be elementary k-algebras of rank 2 with orthogonal primitive idempotents 1 = e1 + e2 ∈ Λ and 1 = e′ 1 + e′ 2 ∈ Λ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' In this subsection, we prove the following Gluing Theorem, where we identify K0(proj Λ) and K0(proj Λ′) with Z2 by e1Λ = (1, 0) = e′ 1Λ′ and e2Λ = (0, 1) = e′ 2Λ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='1 (Gluing Theorem).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let Λ and Λ′ be elementary k-algebras of rank 2 with orthogonal primitive idempotents 1 = e1 + e2 ∈ Λ and 1 = e′ 1 + e′ 2 ∈ Λ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Assume e1Λe2 = 0 and e′ 2Λ′e′ 1 = 0, or equivalently, Σ(Λ) ∈ Fan +− sc (2) and Σ(Λ′) ∈ Fan −+ sc (2) (Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Then, there exists an elementary k-algebra Γ such that Σ(Γ) = Σ(Λ) ∗ Σ(Λ′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='1) 16 TOSHITAKA AOKI, AKIHIRO HIGASHITANI, OSAMU IYAMA, RYOICHI KASE, AND YUYA MIZUNO Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='1 is explained by the following picture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Σ(Λ) = + − ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' ❄❄❄❄❄❄ ⑧ ⑧ ⑧ ⑧ ⑧ ⑧ ❄ ❄ ❄ ❄ ❄ ❄ Σ(Λ′) = + − !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' ❄❄❄❄❄❄ ⑧ ⑧ ⑧ ⑧ ⑧ ⑧ ❄ ❄ ❄ ❄ ❄ ❄ Σ(Γ) = + − ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' ❄❄❄❄❄❄ ❄ ❄ ❄ ❄ ❄ ❄ The construction of Γ is as follows: We can write Λ = � A X 0 B � and Λ′ = � C 0 Y D � , where A, B, C, D are local k-algebras, X is an Aop ⊗k B-module, and Y is an Dop ⊗k C-module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Since Λ and Λ′ are elementary, we have k ≃ A/JA ≃ B/JB ≃ C/JC ≃ D/JD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let A ×k C be a fiber product of canonical surjections (·) : A → k and (·) : C → k, that is, A ×k C := {(a, c) ∈ A × C | a = c}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let B ×k D be a fibre product of (·) : B → k and (·) : D → k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Using the projections A ×k C → A and B ×k D → B, we regard X as an (A ×k C)op ⊗k (B ×k D)-module, and using the projections A ×k C → C and B ×k D → D, we regard Y as an (B ×k D)op ⊗k (A ×k C)-module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We prove that the algebra Γ := � A ×k C X Y B ×k D � satisfies Σ(Γ) = Σ(Λ) ∗ Σ(Λ′), where the multiplication of the elements of X and those of Y are defined to be zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Proof of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' It suffices to prove Σ+−(Γ) = Σ+−(Λ) and Σ−+(Γ) = Σ−+(Λ′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' For ǫ = (+, −), we have Γǫ = � A ×k C X 0 B ×k D � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' The ideal I := � rad C 0 0 rad D � of Γǫ is contained in Iǫ, and we have an isomorphism Γǫ/I ≃ Λ of k-algebras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Applying Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='7 to Γ, we get Σ+−(Γ) = Σ+−(Λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' By the same argument, Σ−+(Γ) = Σ−+(Λ′) holds, as desired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' □ Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let Λ and Λ′ be the following algebras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Λ := k \uf8ee \uf8ef\uf8ef\uf8f0 1 2 a3 � a4 � a2 � a1 � \uf8f9 \uf8fa\uf8fa\uf8fb ⟨a2 1, a2 2, a2 4, a2a1, a2a3 − a3a4⟩, Λ′ := k � 1 2 b1 � b2 � � ⟨b2 2⟩ By Examples 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='6 and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='11 below, we have Σ(Λ) = Σ13122;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='00 = Σ(Λ′) = Σ00;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='1212 = Let A = e1Λe1, X = e1Λe2, B = e2Λe2, C = e1Λ′e1, Y = e2Λ′e1, D = e2Λ′e2 and Γ = � A ×k C X Y B ×k D � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Then Γ = k \uf8ee \uf8ef\uf8ef\uf8f0 1 2 a3 � a4 � a2 � a1 � b1 � b2 � \uf8f9 \uf8fa\uf8fa\uf8fb ⟨a2 1, a2 2, a2 4, a2a1, a2a3 − a3a4, b2 2⟩ + ⟨aibj, bjai | i ∈ {1, 2, 3, 4}, j ∈ {1, 2}⟩ FANS AND POLYTOPES IN TILTING THEORY II: g-FANS OF RANK 2 17 By Gluing Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='1, we have Σ(Γ) = Σ(Λ) ∗ Σ(Λ′) = Σ13122;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='1212 = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Rotation and Mutation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' In this subsection, we explain a connection between the rotation of a fan given in Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='13 and mutation of a 2-term silting complex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' The following main result in this section shows that mutation of an algebra induce the rotation of the g-fan, where we identify K0(proj Λ) with Z2 by e1Λ = (1, 0) and e2Λ = (0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='3 (Rotation Theorem).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let Λ be a finite dimensional k-algebra of rank 2 with or- thogonal primitive idempotents 1 = e1 + e2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Assume e1Λe2 = 0, or equivalently, Σ(Λ) ∈ Fan +− sc (2) (Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Then, there exists a finite dimensional k-algebra Γ such that Σ(Γ) = ρ(Σ(Λ)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Furthermore, if Λ is elementary, then Γ can be taken to be elementary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='3 is explained by the following picture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Σ(Λ) = + − ❄❄❄❄❄❄ ⑧ ⑧ ⑧ ⑧ ⑧ ⑧ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❄❄❄❄❄❄ ❚ ❚ ❚ ❚ ❚ ❚ ❚ ❚ ❚ ❚ ❚ ❚ ❚ Σ(Γ) ≃ + −❄❄❄❄❄❄ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❚ ❚ ❚ ❚ ❚ ❚ ❚ ❚ ❚ ❚ ❚ ❚ ❚ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❚ ❚ ❚ ❚ ❚ ❚ ❚ ❚ ❚ ❚ ❚ ❚ ❚ ❲ ❲ ❲ ❲ ❲ ❲ ❲ ❲ ❲ ❲ ❲ ❲ ❲ ❲ ❲ ❲ ❲ To prove Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='3, we need the following preparation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let A be a basic finite dimensional algebra over a field k with |A| = n, and 1 = e1 + · · · + en the orthogonal primitive idempotents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' For 1 ≤ i ≤ n and δ ∈ {±1}, consider a half space Rn i,δ := {x1e1 + · · · + xden ∈ Rn | δxi ≥ 0} and define a subfan of Σ by Σi,δ := {σ ∈ Σ | σ ⊂ Rn i,δ}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' On the other hand, for elements T ≥ T ′ in siltA, we consider the interval [T ′, T ] := {U ∈ siltA | T ≥ U ≥ T ′}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' The following result provides a correspondence of a part of two g-fans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' For 1 ≤ i ≤ n, let B := EndA(µ− i (A)), where µ− i (A) = Ti ⊕ (� j̸=i P A j ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (a) [AHIKM1, Threom 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='26] There exists a triangle functor F : Kb(proj A) → Kb(proj B) which satisfies F(Ti) ≃ P B i and F(P A j ) ≃ P B j for each j ̸= i and gives an isomorphism K0(proj A) ≃ K0(proj B) and an isomorphism of fans Σi,−(A) ≃ Σi,+(B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (b) There are isomorphisms (1 − ei)A(1 − ei) ≃ (1 − ei)B(1 − ei) and A/(1 − ei) ≃ B/(1 − ei) of k-algebras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (b) Although this is known to experts, we give a proof for convenience of the reader.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' The first isomorphism is clear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' To prove the second one, notice that A/(1 − ei) = EndKb(proj A)(P A i )/[A/P A i ] and B/(1−ei) = EndKb(proj A)(Ti)/[T/Ti] hold, where [X] denotes the ideal consisting of morphisms factoring through add X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let Pi f−→ Q g−→ Ti h−→ Pi[1] be an exchange triangle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let a ∈ eiAei = EndKb(proj A)(Pi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Since f is a minimal left (add A/Pi)-approximation of Pi, we obtain the following commutative diagram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Pi f � a� Q g � � Ti h � b� Pi[1] a[1] � Pi f � Q g � Ti h � Pi[1] 18 TOSHITAKA AOKI, AKIHIRO HIGASHITANI, OSAMU IYAMA, RYOICHI KASE, AND YUYA MIZUNO It is routine to check that the desired isomorphism A/(1 − ei)A = EndKb(proj A)(P A i )/[A/P A i ] ≃ B/(1 − ei) = EndKb(proj A)(Ti)/[T/Ti] is given by a �→ b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' □ We are ready to prove Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Proof of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let T = P Λ 1 ⊕ T2 := µ− 2 (Λ) and E := EndKb(proj Λ)(T ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' By Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='4(a), we have a triangle functor F : Kb(proj Λ) → Kb(proj E) which satisfies F(P Λ 1 ) = P E 1 and F(T2) = P E 2 and induces an isomorphism F : K0(proj Λ) ≃ K0(proj E) and an isomorphism of fans F : Σ2,−(Λ) ≃ Σ2,+(E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Σ(Λ) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='P Λ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='P Λ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='T2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='T ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='− ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❄❄❄❄❄❄ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='⑧ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='⑧ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='⑧ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='⑧ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='⑧ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='⑧ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❄❄❄❄❄❄ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ Σ(E) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='P E ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='2 [1] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='P E ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='P E ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='P E ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='1 [1] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='− ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='E ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='E[1] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❄❄❄❄❄❄ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ Σ(Γ) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='P Γ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='2 [1] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='P Γ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='P Γ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='P Γ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='1 [1] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='− ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='Γ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='Γ[1] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❄❄❄❄❄❄ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❲ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❲ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❲ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❲ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❲ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❲ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❲ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❲ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❲ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❲ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❲ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❲ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❲ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❲ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❲ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❲ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❲ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='Applying Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='7 to E, we obtain a k-algebra Γ := E−+ such that e1Γe2 = 0 and Σ−+(Γ) = Σ−+(E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Therefore under the isomorphism K0(proj Γ) ≃ Z2 given by P Γ 1 �→ (0, 1) and P Γ 2 �→ (1, 0), we have Σ(Γ) = ρ(Σ(Λ)), as desired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' It remains to prove the last assertion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' By Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='4(a), we have isomorphisms e1Ee1 ≃ e1Λe1 and Λ/(e1) ≃ E/(e1) of k-algebras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Thus, if Λ is elementary, then so are E and Γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' □ We give two examples of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' The first one satisfies E = Γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let Λ be the following algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Then Σ(Λ) is the following fan by Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='11 below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Λ = k � 1 2 a � b � � ⟨b2⟩ Σ(Λ) = Σ1212 = We set µ2(Λ) = T = T1 ⊕ T2 := [e2Λ a· −→ e1Λ] ⊕ e1Λ and E := EndKb(proj Λ)(T ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Then we have Γ = E = k � 1 2 a � b � � ⟨b2⟩ and Σ(Γ) = ρ(Σ(Λ)) = Σ2121 = The second example satisfies E ̸= Γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let Λ be the following algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Then Σ(Λ) is the following fan by Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='12 below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Λ = k � 1 2 a � b � c � � ⟨b2, c2, bac⟩ Σ(Λ) = Σ21312 = We set µ2(Λ) = T = T1 ⊕ T2 := [e2Λ ( a· ac·) −−−−→ e1Λ⊕2] ⊕ e1Λ and E := EndKb(proj Λ)(T ), where we switch the indices 1 and 2 unlike the proof of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Then E = k � 1 2 a � a′ � b � � ⟨b2, a′b, a′aa′⟩ and Σ(E) = Σ13122;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='111 = FANS AND POLYTOPES IN TILTING THEORY II: g-FANS OF RANK 2 19 where new arrows a, a′ and b are morphisms in Kb(proj Λ) given by commutative diagrams 0 e1Λ e2Λ e1Λ⊕2 � � ( a· ac·) � ( 0 1) � e2Λ e1Λ⊕2 0 e1Λ ( a· ac·) � � � ( 0 b· ) � e2Λ e1Λ⊕2 e2Λ e1Λ⊕2 ( a· ac·) � c· � ( a· ac·) � ( 0 1 0 0) � respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let Γ := E+− = � e1Ee1 e1Ee2 0 e2Ee2 � = � ⟨e1, b, aa′, baa′⟩k ⟨a, ba, aa′a, baa′a⟩k 0 ⟨e2, a′a⟩k � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Then Γ = k \uf8ee \uf8ef\uf8ef\uf8f0 1 2 a � c � b � b′ � \uf8f9 \uf8fa\uf8fa\uf8fb ⟨b2, b′2, c2, b′b, b′a − ac⟩ and Σ(Γ) = ρ(Σ(Λ)) = Σ13122 = where b′ := aa′ and c := a′a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Subdivision and Extension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' In this section, we realize subdivisions of g-fans of rank 2 by extensions of algebras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' The following theorem is a main result of this section, where we identify K0(proj Λ) with Z2 by e1Λ = (1, 0) and e2Λ = (0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='7 (Subdivision Theorem).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let Λ be a finite dimensional elementary k-algebra with orthogonal primitive idempotents 1 = e1+e2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Assume e1Λe2 = 0, or equivalently, Σ(Λ) ∈ Fan +− sc (2) (Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Then, for cones σ = C(µ+ 1 (Λ[1])) and σ′ := C(µ− 2 (Λ)) of Σ(Λ), there exist finite dimensional elementary k-algebras Γ and Γ′ such that Σ(Γ) = Dσ(Σ(Λ)) and Σ(Γ′) = Dσ′(Σ(Λ)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='7 is explained by the following picture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='Σ(Λ) = P2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='P1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='P2[1] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='P1[1] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='− ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='µ− ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='2 (Λ) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='µ+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='1 (Λ[1]) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❄❄❄❄❄❄ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='⑧ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='⑧ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='⑧ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='⑧ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='⑧ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='⑧ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❄❄❄❄❄❄ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='✯✯✯✯✯✯✯✯✯✯✯✯✯ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='✴✴✴✴✴✴✴✴✴ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='Σ(Γ) = + ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='− ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❄❄❄❄❄❄ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='⑧ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='⑧ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='⑧ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='⑧ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='⑧ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='⑧ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❖ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❄❄❄❄❄❄ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='✯✯✯✯✯✯✯✯✯✯✯✯✯ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='✯✯✯✯✯✯✯✯✯✯✯✯✯ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='Σ(Γ′) = + ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='− ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❄❄❄❄❄❄ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='⑧ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='⑧ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='⑧ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='⑧ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='⑧ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='⑧ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❄❄❄❄❄❄ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='✯✯✯✯✯✯✯✯✯✯✯✯✯ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❲ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❲ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❲ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❲ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❲ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❲ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❲ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❲ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❲ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❲ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❲ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❲ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❲ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❲ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❲ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❲ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❲ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='❚ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='✴✴✴✴✴✴✴✴✴ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='In the rest,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' we only prove the existence of Γ since the existence of Γ′ is the dual.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' The construction of Γ is as follows: Construction 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' By Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='5, we can write Λ = � A X 0 B � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' where A, B are local k-algebras and X is an Aop ⊗k B-module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Since Λ is elementary, we have k ≃ A/JA ≃ B/JB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let X := X/XJB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Then the k-dual DX is an A-module, and we regard it as an Aop-module by using the action of k through the natural surjection A → k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let C := A ⊕ DX be a trivial extension algebra of A by DX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let (·) : A → k, (·) : B → k and (·) : X → X 20 TOSHITAKA AOKI, AKIHIRO HIGASHITANI, OSAMU IYAMA, RYOICHI KASE, AND YUYA MIZUNO be canonical surjections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We regard Y := � k X � as a Cop ⊗k B-module by (a, f) · [ α x ] · b := � aαb+f(x)b axb � for (a, f) ∈ C = A ⊕ DX, [ α x ] ∈ Y = � k X � and b ∈ B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Then we set Γ := � C Y 0 B � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' In the rest of this subsection, we prove Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We set Q1 := [C Y ], Q2 := [0 B] ∈ proj Γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' For y ∈ Ms,t(Y ) ≃ HomΓ(Q⊕t 2 , Q⊕s 1 ), we define Qy := [Q⊕t 2 y(·) −−→ Q⊕s 1 ] ∈ Kb(proj Γ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We fix a minimal set of generators g1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , gr of the B-module X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Then (g1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , gr) forms a k-basis of X = X/XJB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Set g := [g1 · · · gr] ∈ M1,r(X) and g := [g1 · · · gr] ∈ M1,r(X/XJB).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We need the following easy observation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Σ(Γ) contains cone{(0, 1), (1, −r−1)} and cone{(1, −r−1), (1, −r)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' More explicitly, let � 0 g � ∈ M1,r(Y ) and � 0 1 g 0 � ∈ M1,r+1(Y ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Then Q� 0 1 g 0 � ⊕ Q2[1] and Q� 0 g � ⊕ Q� 0 1 g 0 � belong to 2-siltΓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' A minimal set of generators of the B-module Y is given by the r+1 columns of � 0 1 g 0 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Thus Q� 0 1 g 0 � ⊕ Q2[1] ∈ 2-siltΓ holds by Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' In the rest, we prove that T := Q� 0 g � ⊕ Q� 0 1 g 0 � is basic silting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' By the first statement, Q� 0 1 g 0 � is indecomposable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' If Q� 0 g � is not indecomposable, then |T | is bigger than two, a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Thus T is basic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We will show that T is presilting by using Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='11(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' By our choice of g, we have gMr,1(B) = X and (DX)g = M1,r(k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Thus we have � 0 g � Mr(B) = M1,r([ 0 X ]) and (DX) � 0 g � = M1,r([ k 0 ]), and hence C � 0 g � + � 0 g � Mr(B) ⊃ (DX) � 0 g � + � 0 g � Mr(B) = M1,r([ 0 X ]) + M1,r([ k 0 ]) = M1,r(Y ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' This clearly implies C � 0 g � + � 0 1 g 0 � Mr+1,r(B) = M1,r(Y ), and a similar argument implies C � 0 1 g 0 � + � 0 g � Mr,r+1(B) = M1,r+1(Y ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Thus Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='11(b) implies that T is presilting, as desired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' □ As in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='2, the element g gives a surjection π := (X (·) −→ X (g(·))−1 −−−−−→ Mr,1(B) = Mr,1(k)), which extends to the map π : Ms,t(X) → Mrs,t(k) for each s, t ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' The following observation is crucial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let s, t ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' For x ∈ Ms,t(X), consider [ 0 x ] ∈ Ms,t(Y ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' FANS AND POLYTOPES IN TILTING THEORY II: g-FANS OF RANK 2 21 (a) Px is indecomposable in Kb(proj Λ) if and only if Q[ 0 x] is indecomposable in Kb(proj Γ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (b) If Q[ 0 x] is a presilting complex of Γ, then Px is a presilting complex of Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (c) The converse of (b) holds if t ≤ rs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (d) The restriction of Σ(Γ) to {(x, y) ∈ R2 | 0 ≤ −y ≤ rx} coincides with that of Σ(Λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Notice that Γ is the trivial extension Λ ⊕ I of Λ by the following ideal I of Γ: I := � DX k 0 0 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (a) Since Px ≃ Q[ 0 x] ⊗Γ Λ and Q[ 0 x] ≃ Px ⊗Λ Γ, the assertion follows immediately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (b) Since Λ = Γ/I and Q[ 0 x] ⊗Γ Λ ≃ Px, the assertion follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (c) Assume that Px is a presilting complex of Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Then by Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='11(b), we have Ms,t(X) = Ms(A)x + xMt(B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='2) Again by Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='11(b), it suffices to show the equality V := Ms(C) [ 0 x ] + [ 0 x ] Mt(B) = Ms,t( � k X � ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Since V ⊃ Ms(A) [ 0 x ] + [ 0 x ] Mt(B) (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='2) = Ms,t([ 0 X ]) holds, it suffices to show V ⊃ Ms,t([ k 0 ]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='3) By our assumption t ≤ rs and Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='13(b), π(x) has rank t and the map (·)π(x) : Ms,rs(k) → Ms,t(k) (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='4) is surjective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We denote by g∗ 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , g∗ r the basis of DX which is dual to g1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , gr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Then the map (·) � g∗ 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' g∗ r � : M1,r(k) ≃ DX is a bijection, and we denote its inverse by π′ : DX ≃ M1,r(k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' It gives a bijection π′ : Ms(DX) ≃ Ms,rs(k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We have a commutative diagram Ms(DX) × Ms,t(X) π′×π � eval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' �❱ ❱ ❱ ❱ ❱ ❱ ❱ ❱ ❱ ❱ ❱ ❱ ❱ ❱ ❱ ❱ ❱ ❱ ❱ ❱ ❱ Ms,rs(k) × Mrs,t(k) mult.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' � Ms,t(k) where eval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' is given by the evaluation map DX × X → DX × X → k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Thus the commutativity of the diagram above and the surjectivity of (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='4) shows that the map (·)x : Ms(DX) → Ms,t(k) is also surjective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Therefore the desired claim (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='3) follows from V ⊃ Ms(C) [ 0 x ] ⊃ Ms(DX) [ 0 x ] = Ms,t([ k 0 ]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' □ (d) Immediate from (c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We are ready to prove Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Proof of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' The assertion follows from Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='9 and Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='10(d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' □ We give two examples of Subdivision Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' 22 TOSHITAKA AOKI, AKIHIRO HIGASHITANI, OSAMU IYAMA, RYOICHI KASE, AND YUYA MIZUNO Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let Λ be the following algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Then Σ(Λ) is the following fan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Λ = k[1 → 2] Σ(Λ) = Σ111 = Applying Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='7 to Λ, we get Γ := � k ⊕ Dk � k k � 0 k � = k � 1 2 � b � � ⟨b2⟩ and Σ(Γ) = D3(Σ(Λ)) = Σ1212 = Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let Λ be the following algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Then Σ(Λ) is the following fan by Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Λ = k � 1 2 a � b � � ⟨b2⟩ Σ(Λ) = Σ2121 = Applying Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='7 to Λ, we get Γ := � k ⊕ D(ka) � k ⟨a,ab⟩k � 0 ⟨e2, b⟩k � = k � 1 2 a � c � b � � ⟨b2, c2, cab⟩ and Σ(Γ) = D4(Σ(Λ)) = Σ21312 = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let k be a field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' For a finite dimensional k-algebras Λ of rank 2, we regard the g-fan Σ(Λ) as a fan in R2 by isomorphism K0(proj Λ) ≃ R2 given by P1 �→ (1, 0) and P2 �→ (0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We denote by k-Fan(2) the subset of Fansc(2) consisting of g-fans of finite dimensional k-algebras of rank 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let k-Fanel(2) be the subset of k-Fan(2) consisting of g-fans of finite dimensional elementary k-algebras of rank 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' The following is a main result of this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' For any field k, we have k-Fanel(2) = k-Fan(2) = Fansc(2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='5) That is, any sign-coherent fan in R2 can be realized as a g-fan Σ(Λ) of some finite dimensional elementary k-algebra Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' It suffices to show Fansc(2) = k-Fanel(2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let k-Fan+− el (2) := k-Fanel(2) ∩ Fan+− sc (2) and k-Fan−+ el (2) := k-Fanel(2) ∩ Fan−+ sc (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' By Gluing Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='1, we have k-Fanel(2) = k-Fan+− el (2) ∗ k-Fan−+ el (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' By Rotation Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='3, k-Fan+− el (2) is closed under rotations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' By Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='7 and Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='14(b), k-Fan+− el (2) is closed under subdivisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Since Σ(0, 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' 0, 0) = Σ(k × k) ∈ k-Fan+− el (2), Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='10 implies k-Fan+− el (2) = Fan+− sc (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Similarly, we have k-Fan−+ el (2) = Fan−+ sc (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Consequently, we have Fansc(2) (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='5) = Fan+− sc (2) ∗ Fan−+ sc (2) = k-Fan+− el (2) ∗ k-Fan−+ el (2) = k-Fanel(2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' □ For given Σ ∈ Fansc(2), our proof of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='13 gives a concrete algorithm to construct a finite dimensional k-algebra Λ satisfying Σ(Λ) = Σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We demonstrate it in the following example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We construct a finite dimensional k-algebra Γ satisfying Σ(Γ) = Σ13122;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='1212 by the following three steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' FANS AND POLYTOPES IN TILTING THEORY II: g-FANS OF RANK 2 23 (I) We obtain a finite dimensional k-algebra Λ = k \uf8ee \uf8ef\uf8ef\uf8f0 1 2 a3 � a4 � a2 � a1 � \uf8f9 \uf8fa\uf8fa\uf8fb ⟨a2 1, a2 2, a2 4, a2a1, a2a3 − a3a4⟩ satisfying Σ(Λ) = Σ13122;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='00 by using Rotation Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='3 and Subdivision Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='7 as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Σ00 D2 � Σ111 D3 Ex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='11 � Σ1212 ρ Ex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='5 � Σ2121 D4 Ex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='12 � Σ21312 ρ Ex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='6 � Σ13122 (II) Similarly, we obtain a finite dimensional k-algebra Λ′ := k � 1 2 b1 � b2 � � ⟨b2 2⟩ satisfying Σ(Λ′) = Σ(0, 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' 1, 2, 1, 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (III) We obtain a finite dimensional k-algebra Γ = k \uf8ee \uf8ef\uf8ef\uf8f0 1 2 a3 � a4 � a2 � a1 � b1 � b2 � \uf8f9 \uf8fa\uf8fa\uf8fb ⟨a2 1, a2 2, a2 4, a2a1, a2a3 − a3a4, b2 2⟩ + ⟨aibj, bjai | i ∈ {1, 2, 3, 4}, j ∈ {1, 2}⟩ satisfying Σ(Γ) = Σ(1, 3, 1, 2, 2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' 1, 2, 1, 2) by applying Gluing Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='1 to Λ and Λ′, see Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Σ(Λ) = Σ(Λ′) = Σ(Γ) = Σ(Λ) ∗ Σ(Λ′) = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Gluing fans II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' In this subsection, we study another type of gluing g-fans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Results in this subsection will not be used in the rest of this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let Λ and Λ′ be elementary k-algebras of rank 2 with orthogonal primitive idem- potents 1 = e1 + e2 ∈ Λ and 1 = e′ 1 + e′ 2 ∈ Λ′ satisfying e1Λe2 = 0, e′ 1Λ′e′ 2 = 0, σ = cone{(0, −1), (1, −1)} ∈ Σ(Λ) and σ′ = cone{(1, −1), (1, 0)} ∈ Σ(Λ′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='6) Then, there exists an elementary k-algebra Γ such that Σ2(Γ) = (Σ2(Λ) \\ {σ}) ∪ (Σ2(Λ′) \\ {σ′}).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='15 is explained by the following picture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Σ(Λ) = + − ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' P1 P2 σ ❄❄❄❄❄❄ ⑧ ⑧ ⑧ ⑧ ⑧ ⑧ ❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄ Σ(Λ′) = + − !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' P ′ 1 P ′ 2 σ′ ❄❄❄❄❄❄ ⑧ ⑧ ⑧ ⑧ ⑧ ⑧ ❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄ Σ(Γ) = + − !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Q1 Q2 ❄❄❄❄❄❄ ⑧ ⑧ ⑧ ⑧ ⑧ ⑧ ❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄ 24 TOSHITAKA AOKI, AKIHIRO HIGASHITANI, OSAMU IYAMA, RYOICHI KASE, AND YUYA MIZUNO The assumption (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='6) is equivalent to that the defining sequences can be written as Σ(Λ) = Σ(a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , an−1, 1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' 0, 0) and Σ(Λ′) = Σ(1, b2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , bm;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' 0, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' In this case, the defining sequence of Σ(Γ) is given by Σ(Γ) = Σ(a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , an−2, an−1 + b2 − 1, b3, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , bm;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' 0, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' The rest of this section is devoted to proving Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' By our assumption, we can write Λ = � A X 0 B � and P1 := [A X], P2 := [0 B] ∈ proj Λ, Λ′ = � C Y 0 D � and P ′ 1 := [C Y ], P ′ 2 := [0 D] ∈ proj Λ′, where A, B, C, D are local k-algebras such that k ≃ A/JA ≃ B/JB ≃ C/JC ≃ D/JD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' X is an Aop ⊗k B-module and Y is an Cop ⊗k D-module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' There exist g ∈ X and h ∈ Y such that X = gB ̸= 0 and Y = Ch ̸= 0 by Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' The construction of Γ is as follows: Let A ×k C (respectively, B ×k D) be a fibre product of canonical surjections A → k and C → k (respectively, B → k and D → k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' As in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='2, we consider maps π : X → X/XJB (g(·))−1 −−−−−→ B/JB = k and π′ : Y → Y/JCY ((·)h)−1 −−−−−→ C/JC = k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='7) Let X×kY be a fibre product of π : X → k and π′ : Y → k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Then X×kY is a (A×kC)op⊗k(B×kD)- module, and let Γ := � A ×k C X ×k Y 0 B ×k D � and Q1 := [A ×k C X ×k Y ], Q2 := [0 B ×k D] ∈ proj Γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Consider ideals of Γ by I = � JC JCY 0 JD � and I′ = � JA XJB 0 JB � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Then there exist isomorphisms of k-algebras Γ/I ≃ Λ and Γ/I′ ≃ Λ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='8) As in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='2, for s, t ≥ 0, x ∈ Ms,t(X), y ∈ Ms,t(Y ) and (x′, y′) ∈ Ms,t(X ×k Y ), we define Px := (P ⊕t 2 x(·) −−→ P ⊕s 1 ) ∈ per Λ, P ′ y := (P ′ 2 ⊕t y(·) −−→ P ′ 1 ⊕s) ∈ per Λ′ Q(x,y) := (Q⊕t 2 (x′,y′)(·) −−−−−−→ Q⊕s 1 ) ∈ per Γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let s, t ≥ 0 and (x, y) ∈ Ms,t(X ×k Y ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' If Q(x,y) is a presilting complex of Γ, then Px is a presilting complex of Λ and P ′ y is a presilting complex of Λ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' By (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='8) and Q(x,y) ⊗Γ Λ = Px, the complex Px is presilting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' The complex P ′ y is presilting similarly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' □ Define maps (·) : A → C and (·) : B → D as the compositions of canonical maps (·) : A (·) −→ k ⊂ C and (·) : B (·) −→ k ⊂ D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Using π and π′ in (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='7), define maps (·) : X → Y and (·) : Y → X by (·) : X π−→ k (·)h −−→ kh ⊂ Y and (·) : Y π′ −→ k (·)g −−→ kg ⊂ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='9) Then the first projection X ×k Y → X, (x, y) �→ x has a section given by X → X ×k Y, x �→ (x, x), FANS AND POLYTOPES IN TILTING THEORY II: g-FANS OF RANK 2 25 and the second projection X ×k Y → Y , (x, y) �→ y has a section given by Y → X ×k Y, y �→ (y, y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' The following is a crucial result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' The following assertions hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (a) Let s ≥ t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' For x ∈ Ms,t(X), consider (x, x) ∈ Ms,t(X ⊗k Y ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Then Px is a presilting complex of Λ if and only if Q(x,x) is a presilting complex of Γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (b) Let s ≤ t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' For y ∈ Ms,t(Y ), consider (y, y) ∈ Mc,d(X ⊗k Y ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Then P ′ y is a presilting complex of Λ′ if and only if Q(y,y) is a presilting complex of Γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' It suffices to prove (a) since (b) is dual to (a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' The “if” part is clear from Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We prove the “only if” part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' By Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='11, it suffices to show Ms,t(X ×k Y ) = Ms(A ×k C)(x, x) + (x, x)Mt(B ×k D).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Since X ×k Y = {(0, y) | y ∈ JCY } + {(z, z) | z ∈ X}, it suffices to show the following assertions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (i) For each y ∈ Ms,t(JCY ), we have (0, y) ∈ Ms(A ×k C)(x, x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (ii) For each z ∈ Ms,t(X), we have (z, z) ∈ Ms(A ×k C)(x, x) + (x, x)Mt(B ×k D).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We prove (i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Since Px is presilting, π(x) ∈ Ms,t(k) has full rank by Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Since s ≥ t, the map (·)π(x) : Ms(k) → Ms,t(k) is surjective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Applying JC ⊗k −, the map (·)π(x) : Ms(JC) → Ms,t(JC) is also surjective, and so is the composition (·)x (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='9) = (·)π(x)h : Ms(JC) (·)π(x) −−−−→ Ms,t(JC) (·)h −−→ Ms,t(JCY ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Therefore there exists c ∈ Ms(JC) such that y = cx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Then (0, c) ∈ Ms(A ×k C) satisfies (0, c)(x, x) = (0, y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We prove (ii).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Since Px is presilting, we have Ms,t(X) = Ms(A)x + xMt(B) by Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Thus there exist a ∈ Ms(A) and b ∈ Mt(B) such that z = ax + xb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Then (a, a)(x, x) + (x, x)(b, b) = (ax + xb, ax + xb) = (z, z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Thus the assertion follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' □ Now we are ready to prove Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Proof of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' By Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='5, each of Σ(Λ), Σ(Λ′) and Σ(Γ) contains cone{(−1, 0), (0, 1)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' By Propositions 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='16 and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='17, the following assertions hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (i) Let s ≥ t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Then there exists x ∈ Ms,t(X) such that Px is presilting if and only if there exists (x, y) ∈ Ms,t(X ×k Y ) such that Q(s,t) is presilting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (ii) Let s ≤ t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Then there exists y ∈ Ms,t(Y ) such that P ′ y is presilting if and only if there exists (x, y) ∈ Ms,t(X ×k Y ) such that Q(s,t) is presilting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Therefore the claim follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' □ Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let Λ and Λ′ be the following algebras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Λ := k � 1 2 a � b � � ⟨b2⟩ Λ′ := k \uf8ee \uf8ef\uf8ef\uf8f0 1 2 a � d � c1 � c2 � \uf8f9 \uf8fa\uf8fa\uf8fb ⟨c2 1, c2 2, d2, c1c2, c1a − ad⟩ 26 TOSHITAKA AOKI, AKIHIRO HIGASHITANI, OSAMU IYAMA, RYOICHI KASE, AND YUYA MIZUNO By Examples 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='5 and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='6, we have Σ(Λ) = Σ2121 = Σ(Λ′) = Σ13122 = Let Γ := � e1Λe1 ×k e1Λ′e1 e1Λe2 ×k e1Λ′e2 0 e2Λe2 ×k e2Λ′e2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Then we have Γ = k \uf8ee \uf8ef\uf8ef\uf8f0 1 2 a � b � d � c1 � c2 � \uf8f9 \uf8fa\uf8fa\uf8fb ⟨b2, c2 1, c2 2, d2, c1c2, c1a − ad, c2ab, bd, db⟩ and Σ(Γ) = Σ214122 = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' g-Convex algebras of rank 2 In this section, we will characterize algebras of rank 2 which have convex g-polygons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Characterizations of g-convex algebras of rank 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let e, e′ be pairwise orthogonal prim- itive idempotents in A and x ∈ eAe′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Then we use the following notations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' x ∈ eAe′ is a left generator (respectively, right generator) of eAe′ if eAx = eAe′ (respectively, xAe′ = eAe′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Define subalgebras Lx ⊂ e′Ae′ and Rx ⊂ eAe as follows (see Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Rx := {a ∈ eAe | ax ∈ xAe′} and Lx := {a ∈ e′Ae′ | xa ∈ eAx}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Recall that, for an algebra Λ and a right (respectively, left) Λ-module M, we denote by t(MΛ) (respectively, t(ΛM)) the minimal number of generators of M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let A be a basic finite dimensional algebra, {e1, e2} a complete set of primitive orthogonal idempotents in A and Pi = eiA (i = 1, 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (a) A is g-convex if and only if Σ(A) = Σa;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='b for some a, b ∈ {(0, 0), (1, 1, 1), (1, 2, 1, 2), (2, 1, 2, 1)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (b) Let (l, r) := (t(e1Ae1e1Ae2), t(e1Ae2e2Ae2)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Then we have the following statements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Σ(A) = Σ00;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='b for some b if and only if (l, r) = (0, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Σ(A) = Σ111;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='b for some b if and only if (l, r) = (1, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Σ(A) = Σ1212;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='b for some b if and only if (l, r) = (1, 2) and t(Rxe1Ae1) = 2 hold for some left generator x of e1Ae2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Σ(A) = Σ2121;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='b for some b if and only if (l, r) = (2, 1) and t(e2Ae2Lx) = 2 hold for some right generator x of e1Ae2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Σ00;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='b P2 P1 ❄❄❄❄❄❄ ❄ ❄ ❄ ❄ ❄ ❄ ⑧⑧⑧⑧⑧⑧ Σ111;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='b P2 P1 ❄ ❄ ❄ ❄ ❄ ❄ ❄❄❄❄❄❄ ❄ ❄ ❄ ❄ ❄ ❄ Σ1212;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='b P2 P1 ❄ ❄ ❄ ❄ ❄ ❄ ✴✴✴✴✴✴✴✴✴ ❄❄❄❄❄❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄❄❄❄❄❄ Σ2121;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='b P2 P1 ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❄ ❄ ❄ ❄ ❄ ❄ ❄❄❄❄❄❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄❄❄❄❄❄ Remark 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' For a left (respectively, right) generator x of e1Ae2, Rx (respectively, Lx) is unique up to conjugacy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' In particular, t(Rxe1Ae1) (respectively, t(e2Ae2Lx)) does not depend on the choice of a left (respectively, right) generator x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' FANS AND POLYTOPES IN TILTING THEORY II: g-FANS OF RANK 2 27 Example 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (a) Here, we give algebras which realize 7 convex g-fans up to isomorphism of g-fans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We define Ai = kQ/I (i ∈ {1, 2, 3, 4, 5, 6, 7}) as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' A1 = k � 1 2 a � b� c � d � � ⟨ab, ad, ba, bc, c2, d2⟩ A2 = k � 1 2 a � b� d � � ⟨ab, ba, d2⟩ A3 = � 1 2 a � b� d � � ⟨ab, ba, ad, d2⟩ A4 = k � 1 2 b� d � � ⟨d2⟩ A5 = k � 1 2 a � b� � ⟨ab, ba⟩ A6 = k � 1 2 b� � A7 = k � 1 2 � Then the g-fans Σ(Ai) (i ∈ {1, 2, 3, 4, 5, 6, 7}) are given by the following table.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' i 1 2 3 4 5 6 7 Σ(Ai) + − ❄❄❄❄❄ ❄❄❄❄❄ ❄❄❄❄❄ ❄❄❄❄❄ ❄❄❄❄❄ ✴✴✴✴✴✴✴ ❄❄❄❄❄ ❖❖❖❖❖❖❖ + − ❄❄❄❄❄ ❄❄❄❄❄ ❄❄❄❄❄ ❄❄❄❄❄ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❄❄❄❄❄ ❄❄❄❄❄ ❖❖❖❖❖❖❖ + − ❄❄❄❄❄ ❄❄❄❄❄ ❄❄❄❄❄ ❄❄❄❄❄ ❄❄❄❄❄ ❖❖❖❖❖❖❖ + − ❄❄❄❄❄ ⑧⑧⑧⑧⑧ ❄❄❄❄❄ ❄❄❄❄❄ ❄❄❄❄❄ ❖❖❖❖❖❖❖ + − ❄❄❄❄❄ ❄❄❄❄❄ ❄❄❄❄❄ ❄❄❄❄❄ + − ❄❄❄❄❄ ⑧⑧⑧⑧⑧ ❄❄❄❄❄ ❄❄❄❄❄ + − ❄❄❄❄❄ ⑧⑧⑧⑧⑧ ⑧⑧⑧⑧⑧ ❄❄❄❄❄ (b) Let K/k be a field extension with degree two,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' and A be a k-algebra �k K 0 K � with e1 = �1 0 0 0 � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' e2 = �0 0 0 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' We write K = k(t) and set x := �0 1 0 0 � ∈ e1Ae2, u = �0 0 0 t � ∈ e2Ae2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Then we have Lx = �0 0 0 k � , u ̸∈ Lx, and the following equations hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' e1Ae2 = � 0 K 0 0 � = xAe2 = e1Ax + e1Axu e2Ae2 = �0 0 0 K � = Lx + uLx Further, we have e2Ae1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Therefore, Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='1 implies that Σ(A) has the following form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' P2 P1 ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❄ ❄ ❄ ❄ ❄ ❄ ❄❄❄❄❄❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄❄❄❄❄❄ ⑧⑧⑧⑧⑧⑧ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Proof of Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' In this subsection, we prove Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' The following observation shows Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='1(a) and gives another proof of [AHIKM1, Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let A be as in Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Then A is g-convex if and only if Σ(A) = Σa;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='b for some a, b ∈ {(0, 0), (1, 1, 1), (1, 2, 1, 2), (2, 1, 2, 1)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' The “if” part is clear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Conversely, assume that A is g-convex and Σ(A) = Σa;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='b with a = (a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , an) and b = (b1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' , bm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Then ai ≤ 2 and bj ≤ 2 hold for each i, j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Using Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='10, it is easy to check that a, b ∈ {(0, 0), (1, 1, 1), (1, 2, 1, 2), (2, 1, 2, 1)} holds (see Figure 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' □ Next we show the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Let x ∈ e1Ae2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Then Lx is a subalgebra of e2Ae2, and Rx is a subalgebra of e1Ae1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' This is a special case of the following easy fact: Let A, B be rings, M an (A, B)-module, and x ∈ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Then {b ∈ B | xb ∈ Ax} is a subring of B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' □ Now we give a key observation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' As in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='2, for s, t ≥ 0, x ∈ Ms,t(e1Ae2), we define Px := (e2A⊕t x(·) −−→ e1A⊕s) ∈ Kb(proj A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Assume t(e1Ae1e1Ae2) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' For a left generator x ∈ e1Ae2, the following conditions are equivalent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' 28 TOSHITAKA AOKI, AKIHIRO HIGASHITANI, OSAMU IYAMA, RYOICHI KASE, AND YUYA MIZUNO (1) Σ(A) contains cone{(1, −1), (1, −2)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (2) t(Rxe1Ae2) = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (3) e1Ay + xM1,2(e2Ae2) = M1,2(e1Ae2) holds for some u ∈ e1Ae1 \\ Rx and y := [x ux].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Notice that Px is indecomposable presilting by Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (1)⇒(2) If t(Rxe1Ae1) = 1, then e1Ae1 = Rx holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Thus e1Ae2 = e1Ax ⊂ xAe2 holds, and thus x is a right generator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' By Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='12, Px ⊕ P2[1] ∈ 2-siltA holds, a contradiction to cone{(1, −1), (1, −2)} ∈ Σ(A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Thus it suffices to prove t(Rxe1Ae1) ≤ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Since cone{(1, −1), (1, −2)} ∈ Σ(A), there exists y = [x1 x2] ∈ M1,2(e1Ae2) such that Px ⊕ Py is silting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' By Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='11, we have M1,2(e1Ae2) = e1Ay + yM2,2(e2Ae2), (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='1) M1,2(e1Ae2) = e1Ay + xM1,2(e2Ae2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='2) Looking at the first entry of (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='1), at least one of x1 and x2 does not belong to rade1Ae1 e1Ae2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Without loss of generality, assume x1 /∈ rade1Ae1 e1Ae2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Then there exists a ∈ (e1Ae1)× such that x = ax1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Since Py ≃ Pay, we can assume x1 = x by replacing y by ay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Since x is a left generator, there exists u ∈ e1Ae1 such that x2 = ux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Consequently, we can assume y = [x ux].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' For each a ∈ e1Ae1, (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='2) implies that there exist a′ ∈ e1Ae1 and b, b′ ∈ e2Ae2 such that [0 ax] = a′[x ux] + x[b b′].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Then a′ and a−a′u are in Rx, and hence a = a′u+(a−a′u) ∈ Rxu+Rx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Thus e1Ae1 = Rx +Rxu and t(Rxe1Ae1) ≤ 2 hold, as desired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (2)⇒(3) Since t(Rxe1Ae2) = 2 and Rx ̸⊂ radRx e1Ae1, there exists u ∈ e1Ae1 \\ Rx such that Rxu + Rx = e1Ae1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Multiplying x from the right, we have Rxux + Rxx = e1Ax = e1Ae2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Since Rxx ⊂ xAe2, we have Rxux + xAe2 = e1Ae2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='3) To prove (3), take any [z w] ∈ M1,2(e1Ae2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Since x is a left generator, there exists a ∈ e1Ae1 such that z = ax.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' By (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='3), there exist r ∈ Rx and b ∈ e2Ae2 such that w − aux = rux + xb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' By definition of Rx, there exists c ∈ e2Ae2 such that rx = xc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Then we have [z w] = (a + r)[x ux] + x[−c b] ∈ e1Ay + xM1,2(e2Ae2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (3)⇒(1) By Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='11, the following assertions hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Px is presilting if and only if (i) e1Ax + xAe2 = e1Ae2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Py is presilting if and only if (ii) e1Ay + yM2,2(e2Ae2) = M1,2(e1Ae2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' HomKb(proj A)(Px, Py[1]) = 0 if and only if (iii) e1Ax + yM2,1(e2Ae2) = e1Ae2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' HomKb(proj A)(Py, Px[1]) = 0 if and only if (iv) e1Ay + xM1,2(e2Ae2) = M1,2(e1Ae2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' It is clear that (iv) implies (ii), and (i) implies (iii).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' By looking at the first entry of the row vector, (iv) implies (i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Our assumption (3) implies that (iv) holds, and hence (i)-(iii) also hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Thus Px ⊕ Py is presilting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' It remains to show that Py is indecomposable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Suppose that Py is decomposable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' By considering g-vector, we have that Py ≃ e2A[1] ⊕ Pz for some z ∈ e1Ae2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Since [Pz] = [Px], we have Pz ≃ Px by [DIJ, Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='5(a)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' This shows that e2A[1] ⊕ Px is silting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' By Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='12, we have xAe2 = e1Ae2 and Rx = eAe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' This contradicts u ̸∈ Rx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' □ We are ready to prove Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='1(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Proof of Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='1(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' The first and second statements follow from Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='5 and Propo- sition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' FANS AND POLYTOPES IN TILTING THEORY II: g-FANS OF RANK 2 29 We prove the third statement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' By Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='12, cone{(1, 0), (1, −1)} ∈ Σ(A) if and only if t(e1Ae1e1Ae2) = 1, and cone{(0, −1), (1, −2)} ∈ Σ(A) if and only if t(e1Ae2e2Ae2) = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Thus the assertion follows from Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' The fourth statement is the dual of the third statement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' □ Acknowledgments T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='A is supported by JSPS Grants-in-Aid for Scientific Research JP19J11408.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='H is supported by JSPS Grant-in-Aid for Scientists Research (C) 20K03513.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='I is supported by JSPS Grant- in-Aid for Scientific Research (B) 16H03923, (C) 18K3209 and (S) 15H05738.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='K is supported by JSPS Grant-in-Aid for Young Scientists (B) 17K14169.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='M is supported by Grant-in-Aid for Scientific Research (C) 20K03539.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' References [ACGK] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Akhtar, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Coates, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Galkin, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Kasprzyk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Minkowski polynomials and mutations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' SIGMA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Symmetry, Integrability and Geometry: Methods and Applications, 8:094, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' [AIR] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Adachi, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Iyama, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Reiten, τ-tilting theory, Compos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' 150 (2014), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' 3, 415–452.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' [AI] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Aihara, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Iyama, Silting mutation in triangulated categories, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Lond.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' (2) 85 (2012), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' 3, 633–668.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' [AMN] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Asashiba, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Mizuno, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Nakashima, Simplicial complexes and tilting theory for Brauer tree algebras, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Algebra 551 (2020), 119–153.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' [Ao] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Aoki, Classifying torsion classes for algebras with radical square zero via sign decomposition, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Algebra 610 (2022), 167–198.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' [AHIKM1] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Aoki, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Higashitani, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Iyama, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Kase, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Mizuno, Fans and polytopes in tilting theory I: Founda- tions, arXiv:2203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='15213 [AHIKM2] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Aoki, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Higashitani, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Iyama, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Kase, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Mizuno, Fans and polytopes in tilting theory III: Classification of convex g-fans of rank 3, in preparation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' [As] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Asai, The wall-chamber structures of the real Grothendieck groups, Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' 381 (2021), 107615.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' [BP] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Buchstaber, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Panov, Toric topology, Mathematical Surveys and Monographs, 204.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' American Mathemat- ical Society, Providence, RI, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' [BR] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Beck, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Robins, Computing the continuous discretely.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Integer-point enumeration in polyhedra, Second edition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' With illustrations by David Austin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Undergraduate Texts in Mathematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Springer, New York, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' [B] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Bridgeland, Scattering diagrams, Hall algebras and stability conditions, Algebr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' 4 (2017), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' 5, 523–561.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' [BST] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Br¨ustle, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Smith, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Treffinger, Wall and chamber structure for finite-dimensional algebras, Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' 354 (2019), 106746.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' [DIJ] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Demonet, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Iyama, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Jasso, τ-tilting finite algebras, bricks, and g-vectors, Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' IMRN 2019, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' 3, 852–892.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' [DF] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Derksen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Fei, General presentations of algebras, Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' 278 (2015), 210–237.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' [FZ1] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Fomin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Zelevinsky, Cluster algebras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Finite type classification, Invent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' 154 (2003), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' 1, 63–121.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' [FZ2] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Fomin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Zelevinsky, Cluster algebras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Coefficients, Compos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' 143 (2007), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' 1, 112–164.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' [FH] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Fujita, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Higashitani, Newton–Okounkov bodies of flag varieties and combinatorial mutations, Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' IMRN 2021, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' 12, 9567–9607.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' [F] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Fulton, Introduction to Toric Varieties, Ann of Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Studies 131, Princeton Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Press, 1993.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' [H1] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Hille, On the volume of a tilting module, Abh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Sem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Hamburg 76 (2006), 261–277.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' [H2] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Hille, Tilting Modules over the Path Algebra of Type A, Polytopes, and Catalan Numbers, Lie algebras and related topics, 91–101, Contemp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=', 652, Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=', Providence, RI, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' [KV] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Keller, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Vossieck, Aisles in derived categories, Deuxi`eme Contact Franco-Belge en Alg`ebre (Faulx-les- Tombes, 1987).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Bull.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Belg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' S´er.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' A 40 (1988), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' 2, 239–253.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' [NZ] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Nakanishi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Zelevinsky, On tropical dualities in cluster algebras, Algebraic groups and quantum groups, 217–226, Contemp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=', 565, Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=', Providence, RI, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' [Pl] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Plamondon, Generic bases for cluster algebras from the cluster category, Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' Not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' IMRN 2013, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' 10, 2368–2420.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content=' 30 TOSHITAKA AOKI, AKIHIRO HIGASHITANI, OSAMU IYAMA, RYOICHI KASE, AND YUYA MIZUNO Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan Email address: aoki-t@ist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='osaka-u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='jp Department of Pure and Applied Mathematics, Graduate School of Information Science and Tech- nology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan Email address: higashitani@ist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='osaka-u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='jp Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba Meguro-ku Tokyo 153-8914, Japan Email address: iyama@ms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='u-tokyo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='jp Department of Information Science and Engineering, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama 700-0005, Japan Email address: r-kase@ous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='jp Faculty of Liberal Arts, Sciences and Global Education / Graduate School of Science, Osaka Met- ropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan Email address: yuya.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='mizuno@omu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'} +page_content='jp' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DNAzT4oBgHgl3EQfiP3j/content/2301.01498v1.pdf'}