jackkuo commited on
Commit
8dbfc1b
·
verified ·
1 Parent(s): 5e6bdf7

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. -tAzT4oBgHgl3EQfvf0n/content/2301.01706v1.pdf +3 -0
  2. -tAzT4oBgHgl3EQfvf0n/vector_store/index.pkl +3 -0
  3. .gitattributes +54 -0
  4. 0tE4T4oBgHgl3EQfZwwm/content/2301.05058v1.pdf +3 -0
  5. 0tE4T4oBgHgl3EQfZwwm/vector_store/index.faiss +3 -0
  6. 0tE4T4oBgHgl3EQfZwwm/vector_store/index.pkl +3 -0
  7. 29E4T4oBgHgl3EQf0A2b/content/tmp_files/2301.05279v1.pdf.txt +659 -0
  8. 29E4T4oBgHgl3EQf0A2b/content/tmp_files/load_file.txt +0 -0
  9. 2dE2T4oBgHgl3EQfjAeF/content/tmp_files/2301.03964v1.pdf.txt +0 -0
  10. 2dE2T4oBgHgl3EQfjAeF/content/tmp_files/load_file.txt +0 -0
  11. 3NAzT4oBgHgl3EQf9P6r/vector_store/index.pkl +3 -0
  12. 3dE1T4oBgHgl3EQf5wXA/content/tmp_files/2301.03516v1.pdf.txt +671 -0
  13. 3dE1T4oBgHgl3EQf5wXA/content/tmp_files/load_file.txt +0 -0
  14. 4NE2T4oBgHgl3EQfOQYe/content/tmp_files/2301.03745v1.pdf.txt +1344 -0
  15. 4NE2T4oBgHgl3EQfOQYe/content/tmp_files/load_file.txt +0 -0
  16. 4dE2T4oBgHgl3EQfjwe5/content/2301.03972v1.pdf +3 -0
  17. 4dE2T4oBgHgl3EQfjwe5/vector_store/index.faiss +3 -0
  18. 4dE2T4oBgHgl3EQfjwe5/vector_store/index.pkl +3 -0
  19. 59AzT4oBgHgl3EQff_xu/content/tmp_files/2301.01461v1.pdf.txt +2241 -0
  20. 59AzT4oBgHgl3EQff_xu/content/tmp_files/load_file.txt +0 -0
  21. 59E2T4oBgHgl3EQfOwac/content/tmp_files/2301.03752v1.pdf.txt +2396 -0
  22. 59E2T4oBgHgl3EQfOwac/content/tmp_files/load_file.txt +0 -0
  23. 59FKT4oBgHgl3EQfTC3B/vector_store/index.faiss +3 -0
  24. 5NFKT4oBgHgl3EQfSS3g/content/tmp_files/2301.11775v1.pdf.txt +2988 -0
  25. 5NFKT4oBgHgl3EQfSS3g/content/tmp_files/load_file.txt +0 -0
  26. 69FKT4oBgHgl3EQf_y40/content/tmp_files/load_file.txt +508 -0
  27. 6tAyT4oBgHgl3EQfQfaP/content/tmp_files/2301.00047v1.pdf.txt +375 -0
  28. 6tAyT4oBgHgl3EQfQfaP/content/tmp_files/load_file.txt +215 -0
  29. 6tE0T4oBgHgl3EQfwAE6/content/tmp_files/2301.02625v1.pdf.txt +0 -0
  30. 6tE0T4oBgHgl3EQfwAE6/content/tmp_files/load_file.txt +0 -0
  31. 7NE4T4oBgHgl3EQfcgzB/content/2301.05084v1.pdf +3 -0
  32. 7NE4T4oBgHgl3EQfcgzB/vector_store/index.pkl +3 -0
  33. 9dAzT4oBgHgl3EQfFPqV/content/2301.01008v1.pdf +3 -0
  34. 9dAzT4oBgHgl3EQfFPqV/vector_store/index.faiss +3 -0
  35. 9dAzT4oBgHgl3EQfFPqV/vector_store/index.pkl +3 -0
  36. A9E0T4oBgHgl3EQfxwJo/content/2301.02650v1.pdf +3 -0
  37. AdE4T4oBgHgl3EQf4w7g/content/tmp_files/2301.05317v1.pdf.txt +1506 -0
  38. AdE4T4oBgHgl3EQf4w7g/content/tmp_files/load_file.txt +0 -0
  39. CNE1T4oBgHgl3EQfDwNk/content/2301.02881v1.pdf +3 -0
  40. DNE2T4oBgHgl3EQfoQhP/content/2301.04016v1.pdf +3 -0
  41. DNE2T4oBgHgl3EQfoQhP/vector_store/index.pkl +3 -0
  42. EtE1T4oBgHgl3EQfEgOL/content/2301.02891v1.pdf +3 -0
  43. EtE1T4oBgHgl3EQfEgOL/vector_store/index.pkl +3 -0
  44. F9E0T4oBgHgl3EQfhQEq/content/tmp_files/2301.02428v1.pdf.txt +965 -0
  45. F9E0T4oBgHgl3EQfhQEq/content/tmp_files/load_file.txt +0 -0
  46. F9E1T4oBgHgl3EQfqwX2/content/2301.03348v1.pdf +3 -0
  47. F9E1T4oBgHgl3EQfqwX2/vector_store/index.faiss +3 -0
  48. FNE1T4oBgHgl3EQfEwMv/content/tmp_files/2301.02893v1.pdf.txt +1278 -0
  49. FNE1T4oBgHgl3EQfEwMv/content/tmp_files/load_file.txt +435 -0
  50. FNFRT4oBgHgl3EQfyzjn/vector_store/index.faiss +3 -0
-tAzT4oBgHgl3EQfvf0n/content/2301.01706v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e90ea8f3dda621f75520b27bc1d69b08510e6796592ce1192593b7c24dfdb07b
3
+ size 3134596
-tAzT4oBgHgl3EQfvf0n/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d23f77aac179c197e996bc906fc32a98347361d23626ff09a9700c6de2e7a8f8
3
+ size 194483
.gitattributes CHANGED
@@ -4127,3 +4127,57 @@ wdFRT4oBgHgl3EQfgjd8/content/2301.13580v1.pdf filter=lfs diff=lfs merge=lfs -tex
4127
  jtFST4oBgHgl3EQfHTjm/content/2301.13725v1.pdf filter=lfs diff=lfs merge=lfs -text
4128
  UNAzT4oBgHgl3EQfJvtM/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4129
  yNFST4oBgHgl3EQfTDh5/content/2301.13768v1.pdf filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4127
  jtFST4oBgHgl3EQfHTjm/content/2301.13725v1.pdf filter=lfs diff=lfs merge=lfs -text
4128
  UNAzT4oBgHgl3EQfJvtM/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4129
  yNFST4oBgHgl3EQfTDh5/content/2301.13768v1.pdf filter=lfs diff=lfs merge=lfs -text
4130
+ CNE1T4oBgHgl3EQfDwNk/content/2301.02881v1.pdf filter=lfs diff=lfs merge=lfs -text
4131
+ A9E0T4oBgHgl3EQfxwJo/content/2301.02650v1.pdf filter=lfs diff=lfs merge=lfs -text
4132
+ F9E1T4oBgHgl3EQfqwX2/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4133
+ INA0T4oBgHgl3EQfB__n/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4134
+ f9E0T4oBgHgl3EQfpAES/content/2301.02532v1.pdf filter=lfs diff=lfs merge=lfs -text
4135
+ utFAT4oBgHgl3EQfhx3p/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4136
+ 7NE4T4oBgHgl3EQfcgzB/content/2301.05084v1.pdf filter=lfs diff=lfs merge=lfs -text
4137
+ 9dAzT4oBgHgl3EQfFPqV/content/2301.01008v1.pdf filter=lfs diff=lfs merge=lfs -text
4138
+ bdAzT4oBgHgl3EQfLfsG/content/2301.01113v1.pdf filter=lfs diff=lfs merge=lfs -text
4139
+ mNE4T4oBgHgl3EQftw2O/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4140
+ wdFRT4oBgHgl3EQfgjd8/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4141
+ PdFRT4oBgHgl3EQf5zjP/content/2301.13674v1.pdf filter=lfs diff=lfs merge=lfs -text
4142
+ ytFRT4oBgHgl3EQfjDex/content/2301.13589v1.pdf filter=lfs diff=lfs merge=lfs -text
4143
+ JtE4T4oBgHgl3EQf7Q7_/content/2301.05339v1.pdf filter=lfs diff=lfs merge=lfs -text
4144
+ ddE1T4oBgHgl3EQfeARB/content/2301.03201v1.pdf filter=lfs diff=lfs merge=lfs -text
4145
+ EtE1T4oBgHgl3EQfEgOL/content/2301.02891v1.pdf filter=lfs diff=lfs merge=lfs -text
4146
+ FNFRT4oBgHgl3EQfyzjn/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4147
+ U9AzT4oBgHgl3EQfJvv5/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4148
+ 9dAzT4oBgHgl3EQfFPqV/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4149
+ mtFAT4oBgHgl3EQfch1G/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4150
+ jtFST4oBgHgl3EQfHTjm/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4151
+ U9E1T4oBgHgl3EQfbAQs/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4152
+ ddE1T4oBgHgl3EQfeARB/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4153
+ z9E0T4oBgHgl3EQf_QJq/content/2301.02824v1.pdf filter=lfs diff=lfs merge=lfs -text
4154
+ hdE1T4oBgHgl3EQfzQWw/content/2301.03443v1.pdf filter=lfs diff=lfs merge=lfs -text
4155
+ ttE_T4oBgHgl3EQf9hxa/content/2301.08381v1.pdf filter=lfs diff=lfs merge=lfs -text
4156
+ ytFAT4oBgHgl3EQfBBwz/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4157
+ MdE2T4oBgHgl3EQfBQZc/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4158
+ mtFAT4oBgHgl3EQfch1G/content/2301.08564v1.pdf filter=lfs diff=lfs merge=lfs -text
4159
+ iNE2T4oBgHgl3EQfHwaf/content/2301.03672v1.pdf filter=lfs diff=lfs merge=lfs -text
4160
+ 4dE2T4oBgHgl3EQfjwe5/content/2301.03972v1.pdf filter=lfs diff=lfs merge=lfs -text
4161
+ U9E1T4oBgHgl3EQfbAQs/content/2301.03167v1.pdf filter=lfs diff=lfs merge=lfs -text
4162
+ 59FKT4oBgHgl3EQfTC3B/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4163
+ 0tE4T4oBgHgl3EQfZwwm/content/2301.05058v1.pdf filter=lfs diff=lfs merge=lfs -text
4164
+ xtFAT4oBgHgl3EQfARxu/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4165
+ ytFRT4oBgHgl3EQfjDex/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4166
+ ltFJT4oBgHgl3EQfZSy-/content/2301.11531v1.pdf filter=lfs diff=lfs merge=lfs -text
4167
+ 0tE4T4oBgHgl3EQfZwwm/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4168
+ oNE1T4oBgHgl3EQfOwM_/content/2301.03018v1.pdf filter=lfs diff=lfs merge=lfs -text
4169
+ xtFAT4oBgHgl3EQfARxu/content/2301.08397v1.pdf filter=lfs diff=lfs merge=lfs -text
4170
+ F9E1T4oBgHgl3EQfqwX2/content/2301.03348v1.pdf filter=lfs diff=lfs merge=lfs -text
4171
+ 4dE2T4oBgHgl3EQfjwe5/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4172
+ ltFLT4oBgHgl3EQfeC95/content/2301.12089v1.pdf filter=lfs diff=lfs merge=lfs -text
4173
+ XtFRT4oBgHgl3EQf-zgt/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4174
+ odE1T4oBgHgl3EQf1wVk/content/2301.03471v1.pdf filter=lfs diff=lfs merge=lfs -text
4175
+ -tAzT4oBgHgl3EQfvf0n/content/2301.01706v1.pdf filter=lfs diff=lfs merge=lfs -text
4176
+ vdE4T4oBgHgl3EQfXAw5/content/2301.05037v1.pdf filter=lfs diff=lfs merge=lfs -text
4177
+ z9E0T4oBgHgl3EQf_QJq/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4178
+ lNE1T4oBgHgl3EQfNwNu/content/2301.03006v1.pdf filter=lfs diff=lfs merge=lfs -text
4179
+ hdE1T4oBgHgl3EQfzQWw/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4180
+ DNE2T4oBgHgl3EQfoQhP/content/2301.04016v1.pdf filter=lfs diff=lfs merge=lfs -text
4181
+ btAzT4oBgHgl3EQfLfs5/content/2301.01114v1.pdf filter=lfs diff=lfs merge=lfs -text
4182
+ gNE0T4oBgHgl3EQfpAFc/content/2301.02533v1.pdf filter=lfs diff=lfs merge=lfs -text
4183
+ odE1T4oBgHgl3EQf1wVk/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
0tE4T4oBgHgl3EQfZwwm/content/2301.05058v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b86d9c7bf4f776ef130d4cf643591f03f5696b9b6a9974ff26136aa0ee6f977f
3
+ size 1080329
0tE4T4oBgHgl3EQfZwwm/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7464fc9fcef18bd8dda16c6b6052bf9b93a32fe91ca63034c96bebea9cdba920
3
+ size 5177389
0tE4T4oBgHgl3EQfZwwm/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf2d47be2b22c04eb85f90b4db970cdbc15723f80326c804c91c5dfe654182a2
3
+ size 172830
29E4T4oBgHgl3EQf0A2b/content/tmp_files/2301.05279v1.pdf.txt ADDED
@@ -0,0 +1,659 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Characterization of Fast Ion Transport via Position-Dependent Optical Deshelving
2
+ Craig R. Clark,∗ Creston D. Herold, James T. Merrill, Holly N. Tinkey, Wade
3
+ Rellergert, Robert Clark, Roger Brown, Wesley D. Robertson, Curtis Volin, Kara
4
+ Maller, Chris Shappert, Brian J. McMahon, Brian C. Sawyer,† and Kenton R. Brown‡
5
+ Georgia Tech Research Institute, Atlanta, Georgia 30332, USA
6
+ Ion transport is an essential operation in some models of quantum information processing, where
7
+ fast ion shuttling with minimal motional excitation is necessary for efficient, high-fidelity quan-
8
+ tum logic. While fast and cold ion shuttling has been demonstrated, the dynamics and specific
9
+ trajectory of an ion during diabatic transport have not been studied in detail. Here we describe
10
+ a position-dependent optical deshelving technique useful for sampling an ion’s position through-
11
+ out its trajectory, and we demonstrate the technique on fast linear transport of a 40Ca+ ion in a
12
+ surface-electrode ion trap. At high speed, the trap’s electrode filters strongly distort the transport
13
+ potential waveform. With this technique, we observe deviations from the intended constant-velocity
14
+ (100 m/s) transport: we measure an average speed of 83(2) m/s and a peak speed of 251(6) m/s
15
+ over a distance of 120 µm.
16
+ Systems of trapped atomic ions represent some of the
17
+ most promising platforms for quantum information pro-
18
+ cessing, benefiting from long qubit coherence times and
19
+ from the highest operational fidelities demonstrated to
20
+ date [1–3]. In the QCCD ion-trap architecture [4], ions
21
+ are transported between various regions within the pro-
22
+ cessor to reconfigure which ions can interact at any given
23
+ step of an algorithm.
24
+ Such an architecture demands
25
+ finely tuned control of ion shuttling in order to imple-
26
+ ment reconfigurations as quickly as possible without also
27
+ degrading the fidelities of subsequent logic gates [1, 5, 6].
28
+ Performing logic operations on the ions at the same time
29
+ as they are transported within the trap also requires well
30
+ characterized and reproducible trajectories for success
31
+ [7, 8].
32
+ Recent work has shown that ion transport contributes
33
+ substantially to the latency of current QCCD systems [9].
34
+ Rapid linear ion transport has been demonstrated previ-
35
+ ously [10–12] but has not been widely adopted likely due
36
+ to the demands it places on waveform control hardware
37
+ and on motional characterization and calibration. Trans-
38
+ port at slower speeds has also been achieved through
39
+ more complicated structures such as junctions of linear
40
+ sections [13–17]. While prior results have demonstrated
41
+ transport between two locations with sub-quanta mo-
42
+ tional excitation, the ion trajectory during transport has
43
+ not been measured. In fact, all prior reported transport
44
+ speeds assumed an average speed calculated from the dis-
45
+ tance between static well positions and the designed play-
46
+ back speed of the trapping voltage waveforms. Some ex-
47
+ periments have proved that an ion was transported to an
48
+ intended location, e.g. by applying a focused laser pulse
49
+ at that location [10, 12]; however, those experiments did
50
+ not verify the exact time of arrival.
51
+ In this work, we present a method to measure the loca-
52
+ tion of an ion throughout the entire arc of its transport,
53
+ ∗ craig.clark@gtri.gatech.edu
54
+ † brian.sawyer@gtri.gatech.edu
55
+ ‡ kenton.brown@gtri.gatech.edu
56
+ which enables us to reliably extract both instantaneous
57
+ and average velocity during transport. This is achieved
58
+ by measuring the probability for the ion to undergo a
59
+ spontaneous irreversible transition from a metastable ex-
60
+ cited state to a ground state when illuminated by a laser
61
+ beam having a spatial intensity gradient. Similar ideas
62
+ have been explored in the context of neutral atoms in
63
+ optical cavities [18, 19], as well as in the field of ultrafast
64
+ physics [20]. The method presented here contrasts with
65
+ previous schemes employing Fourier-limited coherent op-
66
+ tical interactions to extract in-flight Doppler shifts [7, 8].
67
+ Here, we leverage the technique to show that an ion’s
68
+ trajectory deviates significantly from a simple constant-
69
+ velocity path as the trap’s electrode filters distort the ap-
70
+ plied potentials. Although the intended trajectory has a
71
+ constant speed of 100 m/s, corresponding to a displace-
72
+ ment of 120 µm (two electrodes) in 1.2 µs, the ion ac-
73
+ tually achieves a maximum speed of 251(6) m/s in the
74
+ middle of its path due to this distortion. These trajec-
75
+ tory deviations lead also to a large coherent displacement
76
+ of the ion’s motional state.
77
+ We superimpose an addi-
78
+ tional compensating sinusoidal potential onto the wave-
79
+ form to remove this displacement [12, 21] and achieve a
80
+ final transport-induced excitation of 0.7(2) quanta.
81
+ Our experimental system employs a GTRI/Honeywell
82
+ Ball Grid Array (BGA) trap [22], shown schematically in
83
+ Fig. 1a, mounted in a room-temperature ultrahigh vac-
84
+ uum chamber and confining a single 40Ca+ ion.
85
+ The
86
+ trap radiofrequency (rf) electrode is driven at 55 MHz
87
+ and realizes radial frequencies of 3.7 and 4.2 MHz. We
88
+ determine the control electrode voltages necessary to
89
+ produce axial confinement at different positions along
90
+ the trap symmetry axis using an in-house boundary ele-
91
+ ment method electrostatic solver [23]. We employ NIST-
92
+ designed PDQ digital-to-analog converters (DACs) [21]
93
+ to vary the potentials on the axial control electrodes.
94
+ Each control electrode’s potential is filtered with a two-
95
+ pole low-pass filter having a bandwidth of 608 kHz [24].
96
+ The axial trap frequency (parallel to the axis of symme-
97
+ try) is approximately 1.7 MHz. The axial heating rate
98
+ arXiv:2301.05279v1 [quant-ph] 12 Jan 2023
99
+
100
+ 2
101
+ 854 nm
102
+ Intensity
103
+ a)
104
+ 𝑧
105
+ 𝑧�
106
+ time
107
+ Cool &
108
+ Prep
109
+ Detect
110
+ Adiabatic Transport
111
+ b)
112
+ 𝒛𝒊 → 𝒛
113
+ π
114
+ 𝒛 → 𝒛𝒊
115
+ 0
116
+ 0.2
117
+ 0.4
118
+ 0.6
119
+ 0.8
120
+ 1
121
+ 0
122
+ 50
123
+ 100
124
+ 150
125
+ 200
126
+ Deshelve Probability
127
+ Position (µm)
128
+ c)
129
+ 𝒛𝒊
130
+ 𝒛𝒇
131
+ 𝑧�
132
+ Optical operations
133
+ 𝑺𝟏/𝟐
134
+ 𝑫𝟓/𝟐
135
+ 𝑷𝟑/𝟐
136
+ 729 nm
137
+ 854 nm
138
+ 393 nm
139
+ FIG. 1.
140
+ (a) (Left) Schematic of the BGA trap with a graph of
141
+ the nominal 854 nm repumper intensity profile superimposed.
142
+ The initial and final positions of the ion for the characterized
143
+ transport are zi and zf.
144
+ (Right) Energy level diagram of
145
+ 40Ca+ ion showing the shelving transition driven by 729 nm
146
+ light in red, the deshelving transition driven by 854 nm light
147
+ in orange, and spontaneous decay through emission of 393 nm
148
+ light in purple. (b) Ion trajectory calibration sequence. An
149
+ ion in a stationary potential at zi is cooled and prepared in
150
+ the S1/2 level and then shelved into the D5/2 level with a
151
+ resonant 729 nm π-pulse (shown in red in the timeline). The
152
+ ion is adiabatically transported to another position along the
153
+ trap axis, and the 854 nm beam is pulsed for 200 ns, thereby
154
+ deshelving a portion of the D5/2 population. This deshelving
155
+ fraction is in one-to-one correspondence with the local beam
156
+ intensity. The ion is shuttled adiabatically back to its initial
157
+ location zi. (c) Deshelving probability as a function of ion
158
+ position (black points) with error bars representing the 68%
159
+ confidence interval assuming binomial statistics. The red line
160
+ represents a polynomial fit to the data.
161
+ for a stationary potential is 210 quanta/s.
162
+ For Doppler cooling we use a 397 nm laser beam, nearly
163
+ resonant with the S1/2 − P1/2 transition, in combina-
164
+ tion with another beam at 866 nm which is used to re-
165
+ turn population from the D3/2 level into the cooling cy-
166
+ cle. Pulses from a beam at 729 nm, resonant with the
167
+ S1/2−D5/2 transition, coherently populate the D5/2 level
168
+ and are employed for sideband cooling and motional-
169
+ state characterization. Another beam at 854 nm is re-
170
+ sponsible for deshelving population from the D5/2 to the
171
+ S1/2 level via the intermediate P3/2 level (see Fig.1a) [25].
172
+ We distinguish between an ion in the S1/2 level (bright)
173
+ and one in the D5/2 level (dark) via observation of state-
174
+ dependent 397 nm fluorescence as recorded on a photo-
175
+ multiplier tube.
176
+ After many experimental repetitions,
177
+ the bright and dark state populations are estimated via
178
+ maximum likelihood (see Supplemental Material of Ref.
179
+ [1]).
180
+ To characterize the ion’s position throughout the full
181
+ arc of its roughly linear trajectory, we implement a
182
+ position-sensitive optical deshelving technique [26]. For
183
+ this, we prepare the ion in the D5/2 state before transport
184
+ and then apply a pulse (200 ns, shorter than the trans-
185
+ port duration) of 854 nm light at a later time, thereby
186
+ deshelving the D5/2 level with a probability dependent on
187
+ the laser beam’s local intensity. By choosing the Gaus-
188
+ sian waist w0 of the 854 nm beam such that its intensity
189
+ varies significantly and monotonically along the ion’s tra-
190
+ jectory (w0 ∼ 100 µm), we achieve a position-dependent
191
+ deshelving probability (Pd). We can therefore invert spa-
192
+ tially monotonic measurements of this probability, ac-
193
+ quired at various times after the start of the transport,
194
+ to determine the ion’s position at these instants. The
195
+ beam is directed perpendicular to the linear transport
196
+ axis to remove velocity dependence (first-order Doppler
197
+ shifts, e.g.) from the deshelving probability.
198
+ The
199
+ above
200
+ technique
201
+ requires
202
+ calibration
203
+ of
204
+ the
205
+ deshelving probability for a given ion location using a
206
+ procedure diagrammed in Fig. 1b. For this, we Doppler
207
+ and sideband cool the ion nearly to its axial motional
208
+ ground state (¯n < 1) and prepare it in S1/2. We then
209
+ shelve it into the D5/2 level with a resonant 729 nm π-
210
+ pulse and subsequently move it adiabatically to a given
211
+ position along the trap axis (as determined from an elec-
212
+ trostatic model of the trapping potential). We illuminate
213
+ the ion with a 200 ns, 854 nm deshelving pulse. After
214
+ adiabatically returning the ion to its initial location, we
215
+ determine its state by collecting fluorescence. Repeating
216
+ this experiment 400 times each at 2 µm intervals yields
217
+ a measurement of deshelving probability Pd(z) for each
218
+ location as shown in Fig. 1c. We fit Pd(z) with a polyno-
219
+ mial (red curve of Fig. 1c) rather than with a Gaussian
220
+ to allow for possible distortion of the 854 nm laser beam
221
+ mode shape, and we ensure that Pd(z) is single-valued by
222
+ having previously displaced the beam such that its inten-
223
+ sity varies monotonically through the calibration region.
224
+ It is important that any movement of ions from one
225
+ place to another in the trap be accomplished with only a
226
+ small degree of motional excitation. For the experiments
227
+ outlined below, we design the waveform as a simple lin-
228
+ ear time interpolation of the potential minimum through
229
+ a 120 µm displacement. We choose a transport duration
230
+ (1.2 µs) that is an integer multiple of the ion’s harmonic
231
+ motional period (0.6 µs, nominally held constant during
232
+ the transport). In the absence of filter distortion, such a
233
+ waveform is expected to coherently excite ion motion at
234
+ the beginning of transport but subsequently to suppress
235
+ this excitation at the end [10, 27]. Our filter bandwidths
236
+ lie below the ion motional frequencies by design. At slow
237
+ enough speeds, the action of the filters is to smooth out
238
+
239
+ 3
240
+ the beginning and ending accelerations, so that the ion’s
241
+ motion is not excited as much during transport as would
242
+ otherwise be the case. At faster speeds such as are used
243
+ here, filter distortion is great enough that simple scal-
244
+ ing of the waveform confinement strength can no longer
245
+ fully suppress the final excitation [27]. However, provided
246
+ that the waveform is performed identically for each ex-
247
+ perimental repetition and that the confinement remains
248
+ harmonic, the final excitation corresponds to a coherent
249
+ displacement.
250
+ We remove it by superimposing on the
251
+ transport waveform a sinusoidal rf pulse applied to four
252
+ of the trap electrodes, and we optimize the phase, fre-
253
+ quency, and amplitude of this pulse to achieve minimum
254
+ mode occupation.
255
+ With the Pd(z) calibration complete, we then trans-
256
+ port the ion through the full trajectory of 120 µm. Fig. 2a
257
+ gives a diagram of the sequence. We pulse the 854 nm
258
+ deshelving laser for 200 ns while the ion is in motion,
259
+ with a configurable delay between the start of the trans-
260
+ port waveform and the start of the pulse. The ion is then
261
+ returned adiabatically to its initial location for state de-
262
+ tection [28]. With 100 repetitions of this experiment at
263
+ each delay, we obtain a map Pd(t) of deshelving probabil-
264
+ ity in time following the start of the waveform (Fig. 2b).
265
+ To obtain the corresponding position map z(t), we in-
266
+ vert the polynomial fit of Fig. 1c to obtain z(Pd) and
267
+ then compute z(Pd(t)), producing the points in Fig. 2c.
268
+ Finally, we fit the z(t) data of Fig. 2c with the follow-
269
+ ing phenomenological expression to extract the mean and
270
+ maximum linear velocities:
271
+ z(t) = zi +
272
+ √π
273
+ 2 vmaxtσ
274
+
275
+ erf
276
+ �t − tc
277
+
278
+
279
+ − erf
280
+ �t0 − tc
281
+
282
+ ��
283
+ .
284
+ (1)
285
+ Equation 1 is derived assuming that the speed follows
286
+ a Gaussian profile in time, an empirical assumption justi-
287
+ fied by its agreement with the z(t) data in Fig. 2c. Here,
288
+ zi represents the initial ion position, t0 is the initial time
289
+ (time when z(t) = zi), tσ is the 1/e temporal half-width
290
+ of the ion speed, and tc is the time of maximum speed.
291
+ We use the following standard definition for the error
292
+ function:
293
+ erf(x) =
294
+ 2
295
+ √π
296
+ � x
297
+ 0
298
+ e−y2dy.
299
+ (2)
300
+ We note that a naive estimate of the mean speed, ob-
301
+ tained from the 120 µm and 1.2 µs waveform displace-
302
+ ment and duration, would be 100 m/s. In contrast, the
303
+ fit of Fig. 2c (red curve) yields a much higher maximum
304
+ slope of 251(6) m/s.
305
+ To determine an effective mean
306
+ speed, we estimate the beginning and ending times of
307
+ the transport by determining when the ion is within a
308
+ given distance of its asymptotic positions. Such a choice
309
+ must always be made if we are to take into account the
310
+ influence of the electrode filters on the results, just as
311
+ similar cutoffs must be chosen when studying the time
312
+ response of such analog filters more generally. In partic-
313
+ ular, here we choose a distance from the fitted asymptotes
314
+ that equals the ground-state extent of the 1.7 MHz trap
315
+ potential, approximately 8 nm. This rather arbitrary de-
316
+ cision, as well as our selection of Eq. 1 as a model for ion
317
+ position, both play an outsized role in our determination
318
+ of the mean ion speed and highlight the need to define
319
+ these terms with sufficient detail in studies of ion trans-
320
+ port. With these choices we determine a mean speed of
321
+ 83(2) m/s, slightly lower than the naive estimate.
322
+ To avoid additional gate errors within a quantum al-
323
+ gorithm, fast transport must not excite excessive ion mo-
324
+ tion. For trapped ions in thermal states of motion probed
325
+ in the Lamb-Dicke regime, one can measure the ratio of
326
+ the first red and first blue sideband excitations to de-
327
+ termine the mean thermal mode occupation (⟨nth⟩) [29].
328
+ However, characterization of non-thermal (e.g. coherent)
329
+ distributions is more complicated since the ratio of first
330
+ sidebands can vary with the probe duration. Given that
331
+ fast transport can leave the ion with a large coherent exci-
332
+ tation (⟨ncoh⟩) [10, 11], we directly fit the time-dependent
333
+ excitation of the first blue sideband assuming a convolu-
334
+ tion of coherent and thermal distributions [11].
335
+ To measure the ion’s axial motional excitation after the
336
+ full transport (diagram in Fig. 1b), we apply the same
337
+ waveform as before but do not shelve the ion with an ini-
338
+ tial π-pulse. Instead, following the ion’s adiabatic return
339
+ to its initial position, we drive the blue axial motional
340
+ sideband of the S1/2−D5/2 transition and we analyze the
341
+ dependence of S1/2 state populations PS on pulse dura-
342
+ tion (sideband flopping curves). This probability is sen-
343
+ sitive to the motional state and yields information about
344
+ both the average mode occupation and its statistical dis-
345
+ tribution [30]. Neglecting the radial modes, it is given
346
+ by
347
+ PS(t) = 1
348
+ 2
349
+
350
+ 1 + e−γt
351
+
352
+
353
+ n=0
354
+ pn cos(2Ωn,n+1t)
355
+
356
+ (3)
357
+ where pn is the mode population fraction in the Fock
358
+ state |n⟩, γ is a phenomenological decoherence rate, and
359
+ Ωn,n+1 is the Rabi frequency for the first blue sideband
360
+ transition for an ion starting in |n⟩.
361
+ We use the full
362
+ expression for the first blue sideband Rabi frequency [31],
363
+ Ωn,n+1 = ηΩ0e−η2/2
364
+
365
+ 1
366
+ n + 1L1
367
+ n(η2),
368
+ (4)
369
+ where Ω0 is the optical carrier Rabi frequency, η is the
370
+ Lamb-Dicke parameter, and L1
371
+ n is the nth associated La-
372
+ guerre polynomial of order 1.
373
+ As a simple model, we
374
+ assume that any excitation can be represented as a con-
375
+ volution of thermal and coherent contributions [11, 30],
376
+ and we fit the measured probabilities to Eq. 3 under this
377
+ assumption.
378
+ Figure 3a shows a fit to the time-dependent blue side-
379
+ band excitation, revealing a purely thermal (⟨ncoh⟩ = 0)
380
+
381
+ 4
382
+ a)
383
+ b)
384
+ c)
385
+ 0.00
386
+ 0.25
387
+ 0.50
388
+ 0.75
389
+ 1.00
390
+ 1.25
391
+ 1.50
392
+ 0.0
393
+ 0.2
394
+ 0.4
395
+ 0.6
396
+ 0.8
397
+ 1.0
398
+ Deshelve Probability
399
+ Time (µs)
400
+ Time (µs)
401
+ Position (µm)
402
+ 0.00
403
+ 0.25
404
+ 0.50
405
+ 0.75
406
+ 1.00
407
+ 1.25
408
+ 1.50
409
+ 0
410
+ 50
411
+ 100
412
+ 150
413
+ 200
414
+ time
415
+ Cool &
416
+ Prep
417
+ Detect
418
+ Transport
419
+ Optical operations
420
+
421
+ π
422
+ τ
423
+
424
+ FIG. 2.
425
+ (a) Ion trajectory measurement sequence. An ion
426
+ in a stationary potential at zi is cooled and prepared in the
427
+ S1/2 level and then shelved into the D5/2 level with a reso-
428
+ nant 729 nm π-pulse. The transport waveform to zf begins
429
+ to play, and following a delay τ the 854 nm beam is pulsed for
430
+ 200 ns, thereby deshelving a portion of the D5/2 population.
431
+ The ion is shuttled adiabatically back to its initial location
432
+ zi for final detection. (b) Experimental time-dependence of
433
+ deshelving probability sampled at 10 ns intervals after the
434
+ start of the fast transport waveform; error bars represent the
435
+ 68% confidence interval in state populations assuming bino-
436
+ mial statistics.
437
+ (c) Time-dependence of ion position, with
438
+ experimental data (black points) and empirical fit (red line,
439
+ see main text). Here, the experimental points are obtained by
440
+ inverting the polynomial curve in Fig. 1c with the measured
441
+ points in (b). The fit yields a maximum speed of 251(6) m/s,
442
+ while the waveform was designed with 30 samples at 40 ns
443
+ intervals to shuttle the ion across a 120 µm displacement in
444
+ 1.2 µs (100 m/s).
445
+ −20
446
+ 0
447
+ 20
448
+ Frequency (kHz)
449
+ 0.4
450
+ 0.6
451
+ 0.8
452
+ 1.0
453
+ Probability
454
+ ¯nth = 1.0 ± 0.2
455
+ 0
456
+ 100
457
+ 200
458
+ 300
459
+ 400
460
+ Time (µs)
461
+ 0.0
462
+ 0.2
463
+ 0.4
464
+ 0.6
465
+ 0.8
466
+ 1.0
467
+ Probability
468
+ ¯nth = 1.0 ± 0.1
469
+ ¯nth = 1.0 ± 0.1
470
+ a)
471
+ b)
472
+ FIG. 3.
473
+ Characterization of ion temperature after fast trans-
474
+ port. (a) We perform a pulse on the axial blue motional side-
475
+ band for a variable duration after the fast transport operation
476
+ described in Fig. 2. The red trace represents a fit of the data
477
+ (black points) to Eq. 3, which yields a purely thermal axial
478
+ mode excitation of 1.0(1) quanta. Here we have added to the
479
+ transport waveform a sinusoidal oscillation near the ion ax-
480
+ ial frequency with appropriate amplitude and phase to remove
481
+ transport-induced coherent excitation. (b) Red and blue side-
482
+ band lineshapes, also measured after optimized fast transport,
483
+ confirm that the ion is nearly in the ground state. Fits (solid
484
+ curves) to the data (individual points) confirm the low ion
485
+ temperature: the ratio of sideband amplitudes corresponds
486
+ to 1.0(2) quanta.
487
+ Error bars represent the 68% confidence
488
+ interval in state populations assuming binomial statistics
489
+ excitation of ⟨nth⟩ = 1.0(1).
490
+ Having determined that
491
+ the excitation is thermal, we verify the mode temper-
492
+ ature through a comparison of red- and blue-sideband
493
+ transition amplitudes [29] (Fig. 3b). This yields a post-
494
+ transport temperature of ⟨nth⟩ = 1.0(2) compared to
495
+ ⟨nth⟩ = 0.3(1) measured before transport, and we con-
496
+ clude that the optimized transport induces an additional
497
+ 0.7(2) quanta of motional excitation.
498
+ We note that,
499
+ without the resonant de-excitation of motion during the
500
+ transport operation, we measure an additional coherent
501
+ excitation of ⟨ncoh⟩ = 61.7(6).
502
+ In conclusion, we have developed a general method
503
+ for experimentally characterizing ion transport trajecto-
504
+
505
+ 5
506
+ ries using position-dependent optical deshelving, and we
507
+ verified the technique in a surface-electrode ion trap by
508
+ shuttling an ion along a linear trajectory of 120 µm (two
509
+ electrode widths) with a 1.2 µs waveform. Owing to the
510
+ impact of filter distortion on the transport potentials,
511
+ the ion reaches instantaneous speeds significantly higher
512
+ than might be naively assumed from the waveform de-
513
+ sign. We characterized the final motional state using two
514
+ complementary methods to fit blue sideband flop curves
515
+ as well as red and blue sideband lineshapes.
516
+ Even at
517
+ this high speed the transport incurs only 0.7(2) quanta
518
+ of axial excitation, small enough to have minimal impact
519
+ within a quantum algorithm.
520
+ Beyond single-ion transport through linear sections,
521
+ this technique could also be applied to optimize fast
522
+ merging and separation of ions into chains [10, 32]. With
523
+ the incorporation of multiple deshelving wavelengths, the
524
+ positions of disparate ion species could be tracked simul-
525
+ taneously [9]. The method might prove particularly use-
526
+ ful when optimizing the paths of ions through junctions
527
+ of linear sections, where trajectories deviate significantly
528
+ from straight lines both horizontally and vertically. With
529
+ multiple deshelving beams at complementary angles one
530
+ could isolate an ion’s position in all three dimensions.
531
+ This work was done in collaboration with Los Alamos
532
+ National Laboratory.
533
+ [1] C. R. Clark, H. N. Tinkey, B. C. Sawyer, A. M. Meier,
534
+ K. A. Burkhardt, C. M. Seck, C. M. Shappert, N. D.
535
+ Guise, C. E. Volin, S. D. Fallek, H. T. Hayden, W. G. Rel-
536
+ lergert, and K. R. Brown, Phys. Rev. Lett. 127, 130505
537
+ (2021).
538
+ [2] R. Srinivas, S. C. Burd, H. M. Knaack, R. T. Sutherland,
539
+ A. Kwiatkowski, S. Glancy, E. Knill, D. J. Wineland,
540
+ D. Leibfried, A. C. Wilson, D. T. C. Allcock, and D. H.
541
+ Slichter, Nature 597, 209 (2021).
542
+ [3] C. Ryan-Anderson, N. C. Brown, M. S. Allman, B. Arkin,
543
+ G. Asa-Attuah, C. Baldwin, J. Berg, J. G. Bohnet,
544
+ S. Braxton, N. Burdick, J. P. Campora, A. Chernoguzov,
545
+ J. Esposito, B. Evans, D. Francois, J. P. Gaebler, T. M.
546
+ Gatterman, J. Gerber, K. Gilmore, D. Gresh, A. Hall,
547
+ A. Hankin, J. Hostetter, D. Lucchetti, K. Mayer, J. My-
548
+ ers, B. Neyenhuis, J. Santiago, J. Sedlacek, T. Skripka,
549
+ A. Slattery, R. P. Stutz, J. Tait, R. Tobey, G. Vittorini,
550
+ J. Walker, and D. Hayes, Implementing Fault-tolerant
551
+ Entangling Gates on the Five-qubit Code and the Color
552
+ Code (2022), arXiv:2208.01863 [quant-ph].
553
+ [4] D. Kielpinski, C. Monroe, and D. J. Wineland, Nature
554
+ 417, 709 (2002).
555
+ [5] C. J. Ballance, T. P. Harty, N. M. Linke, M. A. Sepiol,
556
+ and D. M. Lucas, Phys. Rev. Lett. 117, 060504 (2016).
557
+ [6] A. Sørensen and K. Mølmer, Phys. Rev. A 62, 022311
558
+ (2000).
559
+ [7] L. E. de Clercq, H.-Y. Lo, M. Marinelli, D. Nadlinger,
560
+ R. Oswald, V. Negnevitsky, D. Kienzler, B. Keitch, and
561
+ J. P. Home, Phys. Rev. Lett. 116, 080502 (2016).
562
+ [8] H. N. Tinkey, C. R. Clark, B. C. Sawyer, and K. R.
563
+ Brown, Phys. Rev. Lett. 128, 050502 (2022).
564
+ [9] J. M. Pino, J. M. Dreiling, C. Figgatt, J. P. Gaebler,
565
+ S. A. Moses, M. S. Allman, C. H. Baldwin, M. Foss-Feig,
566
+ D. Hayes, K. Mayer, C. Ryan-Anderson, and B. Neyen-
567
+ huis, Nature 592, 209 (2021).
568
+ [10] R. Bowler, J. Gaebler, Y. Lin, T. R. Tan, D. Hanneke,
569
+ J. D. Jost, J. P. Home, D. Leibfried, and D. J. Wineland,
570
+ Phys. Rev. Lett. 109, 080502 (2012).
571
+ [11] A. Walther,
572
+ F. Ziesel,
573
+ T. Ruster,
574
+ S. T. Dawkins,
575
+ K. Ott, M. Hettrich, K. Singer, F. Schmidt-Kaler, and
576
+ U. Poschinger, Phys. Rev. Lett. 109, 080501 (2012).
577
+ [12] J. D. Sterk, H. Coakley, J. Goldberg, V. Hietala, J. Lecht-
578
+ enberg, H. McGuinness, D. McMurtrey, L. P. Parazzoli,
579
+ J. Van Der Wall, and D. Stick, npj Quantum Inf. 8, 68
580
+ (2022).
581
+ [13] W. K. Hensinger, S. Olmschenk, D. Stick, D. Hucul,
582
+ M. Yeo, M. Acton, L. Deslauriers, C. Monroe, and
583
+ J. Rabchuk, Appl. Phys. Lett. 88, 034101 (2006).
584
+ [14] R. B. Blakestad, C. Ospelkaus, A. P. VanDevender,
585
+ J. H. Wesenberg, M. J. Biercuk, D. Leibfried, and D. J.
586
+ Wineland, Phys. Rev. A 84, 032314 (2011).
587
+ [15] K. Wright, J. M. Amini, D. L. Faircloth, C. Volin, S. C.
588
+ Doret, H. Hayden, C.-S. Pai, D. W. Landgren, D. Deni-
589
+ son, T. Killian, R. E. Slusher, and A. W. Harter, New J.
590
+ Phys. 15, 033004 (2013).
591
+ [16] C. Decaroli, R. Matt, R. Oswald, C. Axline, M. Ernzer,
592
+ J. Flannery, S. Ragg, and J. P. Home, Quantum Sci.
593
+ Technol. 6, 044001 (2021).
594
+ [17] W. C. Burton, B. Estey, I. M. Hoffman, A. R. Perry,
595
+ C. Volin, and G. Price, Transport of multispecies ion
596
+ crystals through a junction in an RF Paul trap (2022),
597
+ arXiv:2206.11888 [physics.atom-ph].
598
+ [18] T. Puppe, P. Maunz, T. Fischer, P. W. H. Pinkse, and
599
+ G. Rempe, Phys. Scr. 2004, 7 (2004).
600
+ [19] J. Du, W. Li, R. Wen, G. Li, P. Zhang, and T. Zhang,
601
+ Appl. Phys. Lett. 103, 083117 (2013).
602
+ [20] M. Maiuri, M. Garavelli, and G. Cerullo, J. Am. Chem.
603
+ Soc. 142, 3 (2020).
604
+ [21] R. Bowler, U. Warring, J. W. Britton, B. C. Sawyer, and
605
+ J. Amini, Rev. Sci. Instrum. 84, 033108 (2013).
606
+ [22] N. D. Guise, S. D. Fallek, K. E. Stevens, K. R. Brown,
607
+ C. Volin, A. W. Harter, J. M. Amini, R. E. Higashi, S. T.
608
+ Lu, H. M. Chanhvongsak, T. A. Nguyen, M. S. Marcus,
609
+ T. R. Ohnstein, and D. W. Youngner, J. Appl. Phys. 117,
610
+ 174901 (2015).
611
+ [23] S. Charles Doret, J. M. Amini, K. Wright, C. Volin,
612
+ T. Killian, A. Ozakin, D. Denison, H. Hayden, C.-S. Pai,
613
+ R. E. Slusher, and A. W. Harter, New J. Phys. 14, 073012
614
+ (2012).
615
+ [24] The trap filters consist of two low-pass stages: the first is
616
+ a series inductor with shunt capacitor to ground, and the
617
+ second is a series resistor with a shunt capacitor tuned
618
+ to damp voltage ‘ringing’ from the first stage.
619
+ [25] C. Roos, T. Zeiger, H. Rohde, H. C. N¨agerl, J. Eschner,
620
+ D. Leibfried, F. Schmidt-Kaler, and R. Blatt, Phys. Rev.
621
+ Lett. 83, 4713 (1999).
622
+ [26] The use of a single optical deshelving laser beam does
623
+ not allow us to directly distinguish between different tra-
624
+ jectories perpendicular to the laser beam propagation di-
625
+ rection. Additional orthogonal beam orientations would
626
+
627
+ 6
628
+ permit a full characterization of the three-dimensional
629
+ ion trajectory.
630
+ [27] S. L. Todaro, Scalable State Detection and Fast Transport
631
+ of Trapped-Ion Qubits for Quantum Computing, Ph.D.,
632
+ University of Colorado at Boulder, United States – Col-
633
+ orado (2020).
634
+ [28] Final state detection is independent of the return speed
635
+ after deshelving provided that the ion is not sufficiently
636
+ excited during the return to modify the its fluorescence.
637
+ [29] Q. A. Turchette, Kielpinski, B. E. King, D. Leibfried,
638
+ D. M. Meekhof, C. J. Myatt, M. A. Rowe, C. A. Sack-
639
+ ett, C. S. Wood, W. M. Itano, C. Monroe, and D. J.
640
+ Wineland, Phys. Rev. A 61, 063418 (2000).
641
+ [30] D. M. Meekhof, C. Monroe, B. E. King, W. M. Itano,
642
+ and D. J. Wineland, Phys. Rev. Lett. 76, 1796 (1996).
643
+ [31] D. Wineland,
644
+ C. Monroe,
645
+ W. Itano,
646
+ D. Leibfried,
647
+ B. King, and D. Meekhof, J. Res. Natl. Inst. Stand. Tech-
648
+ nol. 103, 259 (1998).
649
+ [32] T. Ruster,
650
+ C. Warschburger,
651
+ H. Kaufmann,
652
+ C. T.
653
+ Schmiegelow,
654
+ A. Walther,
655
+ M. Hettrich,
656
+ A. Pfister,
657
+ V. Kaushal, F. Schmidt-Kaler, and U. G. Poschinger,
658
+ Phys. Rev. A 90, 033410 (2014).
659
+
29E4T4oBgHgl3EQf0A2b/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
2dE2T4oBgHgl3EQfjAeF/content/tmp_files/2301.03964v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
2dE2T4oBgHgl3EQfjAeF/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
3NAzT4oBgHgl3EQf9P6r/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02b10055ca8e0c10b5510da5b3c1c64fdd235766cf4f4715612beb1e29a0206a
3
+ size 145904
3dE1T4oBgHgl3EQf5wXA/content/tmp_files/2301.03516v1.pdf.txt ADDED
@@ -0,0 +1,671 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Coherent Stokes Raman scattering microscopy
2
+ (CSRS)
3
+ SANDRO HEUKE1,* AND HERVÉ RIGNEAULT1,*
4
+ 1Aix Marseille Univ, CNRS, Centrale Marseille, Turing Center for Living Systems, Institut Fresnel,
5
+ Marseille, France.
6
+ *Corresponding authors: Sandro.Heuke@fresnel.fr & herve.rigneault@fresnel.fr
7
+ Abstract:
8
+ We report the first implementation of laser scanning Coherent Stokes Raman
9
+ scattering (CSRS - pronounced "sCiSsoRS") microscopy. To overcome the major challenge in
10
+ CSRS imaging, we show how to suppress the fluorescence background by narrow bandpass
11
+ filter and a lock-in based demodulation. Near background free CSRS imaging of polymer beads,
12
+ human skin, onion cells, avocado flesh and the wing disc of a drosphila larva are presented.
13
+ Finally, we explain and demonstrate numerically that CSRS solves a major obstacle of other
14
+ coherent Raman techniques by sending a significant part (up to 100%) of the CSRS photons into
15
+ the backward direction under tight focusing conditions. We believe that this discovery will pave
16
+ the way for numerous technological advances, e.g. in epi-detected coherent Raman multi-focus
17
+ imaging, real-time laser scanning based spectroscopy or efficient endoscopy.
18
+ © 2023 Optica Publishing Group under the terms of the Optica Publishing Group Publishing Agreement
19
+ 1.
20
+ Introduction
21
+ Conventional bright-field microscopy provides information about the refractive index and
22
+ absorption properties, but cannot elucidate the sample’s chemical composition.
23
+ Infra-red
24
+ absorption and linear Raman scattering retrieve the chemical fingerprint [1,2], but are incompatible
25
+ with high spatial resolution or real-time imaging. Coherent Raman imaging (CRI) fills this
26
+ technological gab joining a chemical bond specific contrast with signal levels that permit
27
+ video-rate image acquisition. Well established CRI microscopy techniques are the coherent
28
+ anti-Stokes Raman scattering (CARS) [3, 4] and stimulated Raman scattering (SRS) [5–7].
29
+ CARS owes its wide-range application to the blue-shifted anti-Stokes radiation which greatly
30
+ facilitates its separation from linear fluorescence. When working with near infra-red excitation
31
+ wavelength, the blue-shifted CARS radiation is readily detected using photo-election multiplier
32
+ tubes (PMT) of standard laser scanning microscopes. SRS’s popularity arises from the homodyne
33
+ signal amplification that frees SRS images from an omnipresent non-resonant four-wave-mixing
34
+ background and allows for measurements under daylight conditions.
35
+ Overshadowed by CARS and SRS until now, there exists a 3rd four-wave-mixing process termed
36
+ coherent Stokes Raman scattering (CSRS, "Scissors") [8–10] which is always appearing within
37
+ any CARS or SRS experiment and provides near identical mapping of molecular oscillators [11] -
38
+ see Fig.1. In analogy to the Stokes emission in linear Raman microscopy, the CSRS radiation
39
+ (2𝜔𝑆 − 𝜔𝑝) is red-shifted with respect to the excitation frequencies of the pump (𝜔𝑝) and
40
+ Stokes beams (𝜔𝑆). Surprisingly, CSRS was not yet implemented for laser scanning microscopy.
41
+ Presumably, this neglect must be attributed to the high degree of resemblance of CARS and
42
+ CSRS spectra [11] rendering CSRS - prima facie - to be either CARS with an added fluorescence
43
+ background when working with visible light sources or, using near infra-red (NIR) excitation,
44
+ CARS with a radiation wavelength offside high quantum yields of common detectors. CSRS
45
+ provides, however, some unique properties that are of high interest for imaging. (1) The CSRS
46
+ spectrum differs from CARS in the presence of accessible electronic resonances. For example,
47
+ pre-resonant CSRS will offer complementary information in application to alkyne-labeled
48
+ dyes [12] and standard dyes used in microbiology [13]. (2) The red-shifted radiation of CSRS
49
+ arXiv:2301.03516v1 [physics.optics] 9 Jan 2023
50
+
51
+ Fig. 1. Coherent Raman imaging techniques in energy diagrams, relative radiation
52
+ wavelength and energy conservation under plane-wave illumination.
53
+ imaging becomes an advantage for UV or near-UV excitation where CARS photons [14] would
54
+ be too far blue-shifted to be detected efficiently while any SRS image [15] is likely to be
55
+ compromised by various artifacts such as multi-photon absorption [16,17]. Thus, UV excited
56
+ CSRS holds the potential to achieve the highest possible spatial resolution (𝜆Stokes/[
57
+
58
+ 8𝑁 𝐴])
59
+ in coherent Raman imaging. (3) NIR-excitation wavelength combined with CSRS may allow
60
+ for deeper tissue imaging due to the reduced scattering and absorption of its radiation [18]. (4)
61
+ Last but most important: Due to a modified phase-matching geometry, CSRS microscopy can
62
+ be configured to radiate more light into the backward direction which will add game-changing
63
+ benefits for the investigation of thick samples, real-time spectroscopy, multi-focus imaging and
64
+ endoscopy [19]. Within this contribution, we want to open up the field of laser scanning CSRS
65
+ imaging by demonstrating CSRS microscopy within the visible excitation spectrum. To remove
66
+ the major obstacle, we will show how linear fluorescence can be suppressed by a set of bandpass
67
+ filter and nearly nullified in combination with a lock-in based detection scheme as a premise
68
+ for near-UV excited CSRS imaging with a lateral resolution < 100 nm. Furthermore, we shall
69
+ investigate numerically CSRS’ spatial radiation behavior under NIR excitation paving the way
70
+ towards CSRS experiments with an efficient epi-detection.
71
+ 2.
72
+ Experimental result and discussion
73
+ The CSRS signal of biomedical samples is readily overwhelmed by linear fluorescence. Time-
74
+ gating [20], a time-resolved detection using streak cameras [21] or polarization filtration can be
75
+ used to reduce or suppress any fluorescence signal. These methods require, however, either a
76
+ substantial alteration of standard coherent Raman microscopes or do not work in the presence of
77
+ large quantities of fluorescence light. Here, we exploit the fact that the CSRS is spectrally narrow
78
+ under ps-excitation. Thus, the majority of fluorescence is readily suppressed by the choice of a
79
+ the narrow-band filter. Filters with a spectral width below < 1nm are commercially available but
80
+ the selection of a specific center wavelength requires expensive costume solutions. This is the
81
+ reason why we use a combination of two inexpensive bandpass filter with a width of about 15 nm,
82
+ but different center wavelength. In a addition, we fine-tune the filter transmission by a tilt (<20◦)
83
+ with respect to the incident beam. Thus, two tilt-adjusted bandfilter create a sharp transmission
84
+ line (FWHM<3nm) for the CSRS signal while rejecting significant parts of the autofluorescence.
85
+
86
+ CARS
87
+ SRS
88
+ CSRS
89
+ kas+ks=kp1+kp2
90
+ 111
91
+ CARS
92
+ ks1+kp1=ks2+kp2
93
+ SRS
94
+ dwnd
95
+ Stokes
96
+ SRS
97
+ kcs+k,=ks1+ks2
98
+ Intensity
99
+ CARS
100
+ CSRS
101
+ CSRS
102
+ 2Fig. 2. CSRS experimental implementation and characterization. Bottom left: The
103
+ CSRS signal is separated from fluorescence by means of 2 angle-tuned narrow bandpass
104
+ filter. Bottom right: Additional suppression of fluorescence is achieved by intensity
105
+ modulating the Stokes and pump beam at the radio frequencies f1 and f2, respectively.
106
+ Fluorescence free CSRS signal is obtained at f1-f2. Right center: Time separation of
107
+ the pump and Stokes pulses as well as blocking the excitation highlights the superior
108
+ suppression of fluoresence background at the demodulation frequency f1-f2 compared
109
+ to CSRS signal obtained at f1, f2 or the DC frequency. Top right: The intensity
110
+ profile at the interface of a PMMA bead and olive oil indicates a lateral resolution
111
+ of <400nm. Top left: scheme of the CSRS experiment. 1 Yb-fiber laser, 2 optical
112
+ parametric oscillator (OPO), 3 Second harmonic generation (SHG), 4 acousto-optic
113
+ modulator (AOM), Laser scanning microscope (LSM), 6 photo-electron multiplier
114
+ (PMT), 7 Lock-in amplifier.
115
+
116
+ IcSRS
117
+ PSF.
118
+ CSRS demodulated at
119
+ 20μm
120
+ DC, f1, f2, f1-f2
121
+ PMMA bead
122
+ <400nm
123
+ G
124
+ 5 μm
125
+ 88
126
+ 0
127
+ 2
128
+ (
129
+ 1
130
+ 3
131
+ x / μm
132
+ ④ f2
133
+ Lock-in
134
+ DC
135
+ f1
136
+ 3
137
+ f2
138
+ f1-f2
139
+ lp=0
140
+ ④f1
141
+ Is=0
142
+ △t>>3ps
143
+ T
144
+ CSRS
145
+ Intensity
146
+ ump2
147
+ f1-f2
148
+ Fluorescence
149
+ SRS
150
+ concefiFig. 3. LSM-CSRS at 2850 cm−1. The left and right column show the CSRS image
151
+ demodulated at the frequencies f1-f2 = 1.47 MHz and 0 Hz (DC). To estimate the
152
+ remaining fluorescence level, images without temporal overlap of the pump and Stokes
153
+ pulses are displayed to the right. a) Mixture of polystyrene (PS, 30µm) and Poly-methyl-
154
+ methacrylate (PMMA, 20µm) beads in olive oil. b) and c) Epithelium and dermis of a
155
+ 20µm thick human skin section d) Cells of an onion. e) Lipid droplets within the flesh
156
+ of an avocado. d) Wing disc of a Drosophila larva. The white and blue scale bar equals
157
+ 20µm and 5µm, respectively.
158
+
159
+ CSRS at f1-f2
160
+ △t >> 3ps
161
+ CSRS at DC
162
+ △t >> 3ps
163
+ PS
164
+ PMMA
165
+ olive.oil
166
+ Human skin
167
+ Epithelium
168
+ Dermis
169
+ Onion
170
+ avocado
171
+ Drosophila larva
172
+ wing disc
173
+ notum
174
+ hinge
175
+ pouchAs a second method for fluorescence discrimination, we take advantage of CSRS intensity
176
+ dependence on both excitation colors while linear fluorescence follows either the intensity of
177
+ the pump or the Stokes laser. Consequently, modulating the pump and Stokes beams at f1 and
178
+ f2 while demodulation the signal at f1-f2 (or f1+f2) yields exclusively nonlinear signals that
179
+ depend on both excitation colors. The f1-f2 demodulation, therefore, also discriminates the CSRS
180
+ signal against 2-photon excited fluorescence (2PEF) under single-color excitation. It shall be
181
+ noted that the double modulation is also sensitive to two-color 2-photon fluorescence (2C-2PEF).
182
+ Nevertheless, we will find experimentally, that the emission strength of native 2C-2PEF is
183
+ negligible within our CSRS approach.
184
+ For the experimental implementation of CSRS into laser scanning microscopy, we chose visible
185
+ excitation wavelengths at 445nm (pump) and 515nm (Stokes) for the following reasons: (1)
186
+ CSRS under near UV excitation is a potentially important application area since the CARS signal
187
+ falls into the UV range while SRS artifacts are increased due the high concentration of matching
188
+ chromophores. (2) The red-shifted CSRS radiation is readily detected by ordinary PMTs. (3)
189
+ Fluorescence artifacts are enhance compared to a near infra-red (NIR) excitation. Thus, our
190
+ approach will be viable as well for CSRS under NIR excitation, if pure CSRS signals can be
191
+ obtained under VIS excitation. The experimental implementation, the spectral filtration and
192
+ the double modulation are schematically shown in Fig.2a. Our implementation resembles a
193
+ standard SRS setup with the difference that we use visible excitation wavelengths, we modulate
194
+ not one but both beams and the photo-diode is replaced by a PMT which is connected to a
195
+ lock-in amplifier. More information about the setup can be found within the part Methods:
196
+ Experimental setup. To quantify the level of fluorescence rejection, we investigated the signal
197
+ of native olive oil at 2850 cm−1 when blocking the Stokes or pump beams and when the
198
+ temporal pulse overlap is removed. The output signal of the lock-in is plotted as functions
199
+ of the demodulation frequencies at 0 Hz (DC), f1, f2 and f1-f2 in Fig.2. It can be observed
200
+ that the DC channel contains significant amounts of fluorescence while this artifact is already
201
+ reduced within the channels f1 and f2. Nevertheless, only the difference frequency channel at
202
+ f1-f2 becomes dark, when the excitation pulses do not overlap in time. In a second experiment,
203
+ we imaged the interface of olive oil and a 20µm sized Plexiglas (PMMA) bead to obtain an
204
+ estimation of the lateral resolution for an excitation objective featuring an NA of 1.45 - see
205
+ Fig.2. From this "knife-edge" CSRS intensity profile, we can infer a lateral resolution below
206
+ 400nm. The difference to the expected 𝜆𝑆𝑡𝑜𝑘𝑒𝑠/[
207
+
208
+ 8𝑁 𝐴]= 515nm/[
209
+
210
+ 81.49]=120nm can be
211
+ attributed to underfilling of the excitation objective lens and the bent oil/bead interface. Having
212
+ confirmed a high-resolved, fluorescence-free CSRS image contrast, we investigated the suitability
213
+ of LSM-CSRS for vibrational imaging of various objects featuring non-negligible fluorescence
214
+ levels. Within Fig. 3, we show the CSRS images of test and biomedical samples demodulated at
215
+ the DC and f1-f2 frequencies for (non-)overlapping pump and Stokes pulses. The images were
216
+ organized along the ratio of the CSRS to fluorescence signal starting from the highest at the
217
+ top. Comparing the DC and f1-f2 images in Fig. 3a, it obvious that a narrow spectral filtering is
218
+ already sufficient for CSRS imaging of polymer beads in oil. The first artifacts become visible for
219
+ the DC CSRS images of the epithelium and dermis of a 20µm thick section of human skin - see
220
+ Figs. 3b and c. For the epithelium, a pronounced fluorescence artifact arises from melanin within
221
+ the Stratum basale. Artifacts within the Dermis can be attributed to the auto-fluorescence of
222
+ collagen and elastin [22]. The quantity of fluorescence observed within the DC channel increases
223
+ stepwise further for CSRS imaging of onion cells, lipid droplets within the flesh of an avocado
224
+ and the wing disc of a Drosophilia larva. From the second row of Fig. 3, it is reconfirmed that
225
+ almost no fluorescence is leaking into the f1-f2 CSRS channel as an important condition for the
226
+ estimation of the true concentration of the targeted molecular group. The origin of fluorescence
227
+ for these 3 samples, however, cannot be attributed with certainty, but might arise from NADH,
228
+ flavins and chlorophyll.
229
+
230
+ In a broader context, we would like to point out that other nonlinear microscopy techniques would
231
+ also greatly benefit from the narrow-band filter plus demodulation combination for rejection of
232
+ spurious background signals. For example, the 2PEF signal of chlorophyll in plant leaves readily
233
+ overwhelms any CARS or second harmonic generation (SHG) image contrast even under NIR
234
+ excitation. A double modulation of the excitation combined with a lock-in based demodulation
235
+ will purify the signal, reduce the sensitivity against other light sources such as room light
236
+ and reestablish the reliability of the following image analysis. Having removed the why-not
237
+ argument for the CSRS image contrast, we shall introduce in the next section a non-intuitive
238
+ but game-changing argument for CSRS microscopy : the increased backwards radiation as the
239
+ prerequisite of an effective epi-CSRS detection.
240
+ 3.
241
+ Numerical results
242
+ In this section, we shall show and explain CSRS’ superior backward radiation properties. Before
243
+ entering into the calculations, we want to consider CSRS from a heuristic viewpoint investigating
244
+ the momentum conservation laws for CSRS and compare it to CARS. Under plane illumination,
245
+ the momentum conservation laws can be written as K = k𝑝 − k𝑆 + k𝑝 − k𝑎𝑆 for CARS [23] and
246
+ K = k𝑆 − k𝑝 + k𝑆 − k𝑐𝑆 for CSRS with K, k𝑝, k𝑆, k𝑎𝑆 and k𝑐𝑆 representing the wavevectors
247
+ of the object, the pump(probe) and Stokes beam as well as the anti-Stokes and coherent Stokes
248
+ radiation, respectively. Note that for homogeneous samples these laws are also referred to as
249
+ phase-matching condition and simplify to k𝑝 + k𝑝 = k𝑆 + k𝑎𝑆 (CARS) and k𝑆 + k𝑆 = k𝑝 + k𝑐𝑆
250
+ (CSRS). Under focusing conditions, the single wavevectors are replaced by the distribution of
251
+ incident wavevectors which are distributed over a cap of a sphere. To identify those object
252
+ frequencies (K) that are effectively probed, every combination of excitation and emission
253
+ wavevector must be identified. This operation is equivalent to the convolution of the caps of
254
+ the illumination and detection Ewald spheres. Neglecting polarization effects, the result of this
255
+ convolution (simplified to 3 points per arc) is shown in 2D within Fig. 4a.
256
+ Evidently, there exist no vector combination for epi-scattered CARS photons which would
257
+ cover the origin K(0,0,0) of the object space. Thus, a homogeneous sample, such as olive oil,
258
+ does not provide any backward radiation. On the contrary, structures that feature high object
259
+ frequencies, such as small polymer beads or layered materials, generate Epi-CARS radiation.
260
+ In the past, Epi-CARS was occasionally considered to be a size selective contrast that would
261
+ highlight exclusively small objects [24]. While this statement holds for the majority of biomedical
262
+ samples, there do exist large structures, e.g. multi-layered lipids in vesicles that also emit a strong
263
+ CARS radiation into the backward direction. Hence, it is more appropriate to refer to Epi-CARS
264
+ as a technique that probes high object frequencies instead of been considered as size selective.
265
+ Switching the detection wavelength to the red-shifted coherent Stokes radiation changes the
266
+ covered object support significantly and includes now the origin at K(0,0,0). Due to the reduced
267
+ size of the detection wavevector (|k𝑐𝑆| ≪ |k𝑎𝑆|) and the pump vector entering as complex
268
+ conjugated, see Eq. 3, it is now possible to find vector combinations that cover the origin
269
+ at K(0,0,0). Consequently, even a homogeneous object will radiate considerable amounts of
270
+ Epi-CSRS. Nevertheless, since the the centroid of the Epi-CSRS object support, i.e. the gray
271
+ cloud within Fig. 4a, does not coincidence with the K-space origin, Epi-CSRS images will also
272
+ highlight objects containing higher frequencies.
273
+ To address the question of how to increase the ratio of Epi versus forward Epi-CSRS, and which
274
+ object frequencies are most efficiently probed using Epi-CSRS, we performed finite element
275
+ simulations whose results are summarized in Fig. 4b-e. The equations implemented numerically
276
+ as well as important parameters are found in the annex - numerical calculation. From the
277
+ momentum conservation law and the vector diagrams in Fig. 4a, it is readily comprehensible
278
+ that a larger wavelength difference in between the pump and coherent Stokes wavelength relaxes
279
+ greatly the necessity for extreme incident illumination angles of the Stokes beam. Furthermore,
280
+
281
+ Fig. 4. Object frequency support and radiation behavior of CSRS versus CARS. a)
282
+ The object K-support for Epi-CSRS(CARS) is found by convolving the illumination
283
+ Ewald spheres of the Stokes (pump), pump (Stokes), and Stokes (probe) with the cap
284
+ of detection Ewald sphere at (anti-)Stokes frequency. Note that vector combinations
285
+ covering the frequency of a homogeneous sample K(0,0,0) are only found for CSRS
286
+ but not for CARS. A single wavevector combination that phase-matches K(0,0,0) is
287
+ highlighted to the left while a similar approach for CARS leads to a large phase-mismatch
288
+ (ΔK). b) CSRS and CARS radiation behavior of a homogeneous sample under standard
289
+ illumination condition, i.e. the pump and Stokes beam fill the objective aperture
290
+ homogeneously (𝜃𝑚𝑎𝑥=80◦). c) same as in b) but with an annular pupil filter applied
291
+ to the Stokes beam for CSRS covering 50% of area of the objective back-aperture. For
292
+ an equitable comparison with CARS, the same pupil filter was applied to the pump
293
+ beam. d) same as for b) but the homogeneous sample was replaced by a frequency
294
+ object whose scatter density is described as 1 + cos(2𝜋𝑧/𝜆𝑜) and 𝜆𝑜=1µm. e) Plot of
295
+ the ratio of backward/forward radiation (Rb/f) as a function of the object frequency 𝜆𝑜.
296
+
297
+ Ks1
298
+ Ks2
299
+ kcs
300
+ Kp
301
+ (a)
302
+ 个 Kz
303
+ 个Kz
304
+ 个Kz
305
+ Epi
306
+ Ks1
307
+ Epi-CSRS
308
+ Ks2
309
+ Kcs
310
+ 0
311
+ 0
312
+ 0
313
+ 0
314
+ 0
315
+ Kx
316
+ 0
317
+ Kx
318
+ Kp1
319
+ ks
320
+ Kp2
321
+ kas
322
+ Epi
323
+ 个Kz
324
+ 个 Kz
325
+ 个 Kz
326
+ Epi-CARS
327
+ 0
328
+ Kp2
329
+ AK
330
+ kas
331
+ 0
332
+ 0
333
+ o
334
+ Kx
335
+ 0
336
+ Kx
337
+ 0
338
+ (b)
339
+ (c)
340
+ (d)
341
+ (e)
342
+ Rb/f = 0.79*10-2
343
+ Rb/f = 1.54
344
+ Rp/f = 0.25
345
+ %
346
+ 30
347
+ ratio forward/backward in
348
+ 5N
349
+ IN
350
+ z
351
+ 1.5
352
+ 20
353
+ CSRS
354
+ 0.5
355
+ 10
356
+ 5
357
+ 5
358
+ 0.5
359
+ 20
360
+ 0.66
361
+ 0.5
362
+ x
363
+ y
364
+ y
365
+ y
366
+ Rb/f = 0.18*10-3
367
+ Rb/f = 0.33*10-2
368
+ z
369
+ z
370
+ z
371
+ 1.5
372
+ 1.5
373
+ 4
374
+ CARS
375
+ 0.5 -
376
+ 2
377
+ 0.5
378
+ 1
379
+ 20
380
+ 0.66
381
+ 0.5
382
+ y
383
+ y
384
+ 2。 / μm
385
+ Stokes
386
+ pump
387
+ Stokes
388
+ pump
389
+ z
390
+ z
391
+ 50%
392
+ "standard CRS"
393
+ pupil filtering
394
+ frequency objectsince most of the coherent Raman experiments apply NIR instead of VIS excitation wavelength,
395
+ we used for within our simulations the wavelength 𝜆𝑝 = 797𝑛𝑚 and 𝜆𝑆 = 1030𝑛𝑚 which matches
396
+ the most commonly targeted Raman shift in CRI imaging at 2850cm−1. For these conditions, the
397
+ coherent Stokes radiation will be observed at 𝜆𝑐𝑆 = 1450𝑛𝑚. It shall be noted that our results
398
+ equally apply for the visible excitation wavelength with gently higher excitation angle or thinner
399
+ annular masks.
400
+ To start with, we computed the radiation pattern of CSRS and CARS of a homogeneous object
401
+ using an NA of 1.49 (oil immersion) corresponding to a maximum illumination angle of 80◦.
402
+ From Fig. 4b, it is evident that both CARS and CSRS are predominately forward directed
403
+ though the CSRS’ radiation distribution features a larger radiation cone. Considering the ratio of
404
+ backward versus forward directed photons Rb/ 𝑓 , we find numerically that less than 1 photon in
405
+ 105 is backward directed for CARS. Note that the momentum conservation actually law predicts
406
+ Rb/ 𝑓 =0 for CARS. Thus, the resulting deviation must be attributed to the finite number of voxels
407
+ of the numerical model. For CSRS, Rb/ 𝑓 increase dramatically to about 1 in 100 photons.
408
+ Since common surfaces within biomedical samples scatter more than 1%, we have to assume,
409
+ however, that also epi detected CSRS will be just forward generated CSRS that was redirected
410
+ by linear scattering at an interface. Still, using a confocal detection, i.e. a pinhole in front of
411
+ the detector placed at the conjugated plane of the excitation focus, might already yield true
412
+ Epi-CSRS images of homogeneous samples where Epi-CARS images would remain dark. To
413
+ find an approach that increases the proportion of CSRS’ epi radiation, we shall consider the
414
+ CSRS vector diagram matching K(0,0,0) on the left of Fig. 4a. The ratio of backward versus
415
+ forward radiation is readily increased by reducing the impact of vectors combinations probing
416
+ higher frequencies and favoring those covering the origin. This boost of epi-CSRS radiation
417
+ can be achieved using an annular illumination of the Stokes beam. Experimentally, such an
418
+ annular illumination is generated, without power-loss, using 2 axicons within the Stokes beam
419
+ path [25,26]. Numerically, we restricted the incident angles for the Stokes between 𝜃𝑚𝑖𝑛=56.5◦
420
+ and 𝜃𝑚𝑎𝑥=80◦, which corresponds to covering 50% of the area of the objective lens’ back-focal
421
+ plane. With this pupil filtering, the radio of backward to forward radiation increased for CARS to
422
+ 2 in 104 photons while the majority of all CSRS radiation is backward directed (Rb/ 𝑓 =1.5) when
423
+ focusing the pump and Stokes beam into a homogeneous object - see Fig. 4c.
424
+ As a second important result from the heuristic derivation of CSRS’ object support, we found that
425
+ the presence of high object frequencies increases the amount of backward radiation. To confirm
426
+ this prediction, we investigated in Fig. 4d and e an object whose nonlinear scatterer density,
427
+ i.e. concentration of molecular groups, is modulated along the optical axis as 1+cos(𝐾𝑧𝑧) with
428
+ 𝐾𝑧 = 2𝜋/𝜆𝑜 being the object frequency. As an example, Fig. 4d outlines the radiation behavior
429
+ of a wave-like structured object with K𝑧=2𝜋/1µm. It is found that R𝑏/ 𝑓 increases to one forth
430
+ for Epi-CSRS while Epi-CARS remains negligible weak. To identify those object frequencies
431
+ which are most efficiently probed by Epi-CSRS, we computed R𝑏/ 𝑓 as a function of K𝑧. From
432
+ Fig. 4e, we find that Epi-CSRS peaks at K𝑧=2𝜋/1µm whereas Epi-CARS R𝑏/ 𝑓 still increases at
433
+ 𝐾𝑧 = 2𝜋/0.25µm. It shall be note that the Rb/ 𝑓 never reaches 1 which arise from the 1+ within
434
+ the definition of the frequency object (1+cos(𝐾𝑧𝑧)). The 1+ implies that the wave-object always
435
+ features twice the amplitude at K(0,0,0), which corresponds to a homogeneous predominantly
436
+ forward scattering object, compared to the scatterer density modulation K(0,0,±K𝑧). Our
437
+ simulation results in a nutshell: we have found that CSRS features a non-negligible backward
438
+ radiation from a homogenous sample under tight-focusing conditions while this is not the case for
439
+ CARS. The amount of backward radiated CSRS can be enhanced by increasing the illumination
440
+ power of the Stokes beam with high incident angles. Furthermore, the natural structure of
441
+ biomedical samples, which are usually not homogeneous, will also elevate the CSRS backward
442
+ radiation.
443
+
444
+ Conclusion
445
+ We have demonstrated the first laser scanning microscopy CSRS experiment. As the major
446
+ challenge, we were able to reduce the fluorescence background significantly using a pair of tilted
447
+ bandpass filter. The remaining fluorescence contribution is removed by intensity modulating the
448
+ Stokes and pump beams at the radio frequencies f1 and f2 and a lock-in based demodulation of
449
+ the CSRS signal. Taking advantage of CSRS’ characteristic dependence on both excitation colors,
450
+ the best fluoresence background suppression is obtained when demodulating the CSRS signal at
451
+ f1-f2. Background-free LSM-CSRS imaging was demonstrated for samples of decreasing ratio
452
+ of CSRS to fluoresence signal, namely: polymer beads, the epithelium and dermis of human
453
+ skin, onion cells, avocado flesh and the wing disc of a Drosophila larva. Having removed the
454
+ major obstacle for CSRS imaging, we introduced and quantified numerically the major interest of
455
+ CSRS which is its unique backward radiation property in combination with high NA objective
456
+ lenses. CSRS’ backward radiation and its distinction from CARS is readily understood from the
457
+ momentum conservation laws when considering all incident k-vectors forming the excitation focal
458
+ spots. Using dynadic Green functions, we show numerically that the CSRS is predominantly
459
+ forward directed for a homogeneous object, but the backward CSRS contribution rises to 1/4 for
460
+ objects that are structured axially. Moreover, backward CSRS signal can even dominate forward
461
+ CSRS (up to 100%) if an annular Stokes illumination is applied. With an efficient Epi-CARS
462
+ radiation at hand, various coherent Raman experiments become feasible which were impossible
463
+ before. Just to name a few: Epi-detected confocal multi-focus CSRS; Epi-detected LSM-CSRS
464
+ with a spectrometer at the descanned position; Epi-detected CSRS image scanning microscopy.
465
+ Thus, we believe that this contribution is just the first milestone in CSRS microscopy with many
466
+ others to follow.
467
+ Methods: Experimental setup
468
+ A Yb-based fiber laser (APE Emerald engine, 80 MHz, 2–3 ps) is frequency doubled yielding 7 W
469
+ of 515 nm output power. Parts of the emissions is used directly as Stokes beam to drive the CSRS
470
+ process. The major part (4 W) of the 515 nm is employed to pump an optical parametric oscillator
471
+ (OPO, APE Emerald). The OPO’s signal beam is tunable to 660-950 nm and coupled into an
472
+ external SHG unit. The latter generates up to 50 mW within the spectral range of 330-475 nm
473
+ serving as pump beam for the CSRS four wave mixing. Thus, the 330-475 nm pump combined
474
+ with the 515 nm Stokes beam allows addressing a Raman shift range from 1630-11000cm−1. The
475
+ pump and Stokes beams are superimposed in space and time via a dichroic beam splitter (Semrock,
476
+ FF470-Di01-25x36) and a delay stage. Both beams are coupled into a home-built laser scanning
477
+ microscope and focused by a 40x water objective lens (Nikon, Plan, NA = 1.15, immersion:
478
+ water) into the sample. The excitation objective lens was replaced for a 60x objective (Nikon, Plan
479
+ Apo TIRF, NA 1.45, immersion:oil) to generate the bead-oil interface image within Fig. 2. The
480
+ CSRS radiation is collected by a condenser lens (Nikon, Achr-Apl, NA 1.4) in forward direction,
481
+ spectrally separated from the broadband fluorescence background by means of 2 tilted bandpass
482
+ filter (Semrock FF01-620/14-25 + FF01-605/15-25) and detected by a photo-electron multiplier
483
+ (PMT, Thorlabs, PMT1001). For an enhanced suppression of the linear fluorescence background,
484
+ 2 acousto-optic modulators (AOM, AA, MT200-A0.5-VIS) were applied to modulate the intensity
485
+ of the Stokes and pump beams and at the frequencies f1 = 2.28 MHz and f2 = 3.75 MHz,
486
+ respectively. The PMT output was demodulated simultaneously at the DC frequency, f1, f2 and
487
+ at f1-f2 = 1.47 MHz using a lock-in amplifier (Zürich instruments, HF2LI). The lock-in time
488
+ constant was set to 30 µs. All CSRS-images shown were recorded with a pixel dwell time of
489
+ 40 µs.
490
+
491
+ Annex - numerical calculation
492
+ In the following, we shall summarize the equations used to generate Fig. 4b-e. The meaning of
493
+ the variables is summarized in Fig. 5.
494
+ The focused field at the sample is given by the angular spectrum representation [27]:
495
+ ���������
496
+ 𝐸𝑥(𝜌, 𝜙, 𝑧)
497
+ 𝐸𝑦(𝜌, 𝜙, 𝑧)
498
+ 𝐸𝑧(𝜌, 𝜙, 𝑧)
499
+ ���������
500
+ = 𝑖𝑘 𝑓
501
+ 2 exp(−𝑖𝑘 𝑓 )
502
+ ���������
503
+ 𝐼00 + 𝐼02 cos(2𝜙)
504
+ 𝐼02 sin(2𝜙)
505
+ −𝑖2𝐼01 cos(𝜙)
506
+ ���������
507
+ (1)
508
+ Here 𝑓 denotes the focal length of the objective lens and the integrals 𝐼0𝑚 are provided by
509
+ 𝐼0𝑚 =
510
+
511
+ 𝜃𝑚𝑎𝑥
512
+ 𝜃𝑚𝑖𝑛
513
+ 𝐸𝑖𝑛𝑐(𝜃) sin(𝜃)[cos(𝜃)]1/2𝑔𝑚(𝜃)Jm[𝑘𝜌 sin(𝜃)]d𝜃
514
+ (2)
515
+ where 𝑔𝑚 equals 1 + cos(𝜃), sin(𝜃) and 1 − cos(𝜃) for 𝑚 = 0, 1, 2, respectively. 𝐽𝑚 is the
516
+ 𝑚𝑡ℎ order Bessel function while 𝐸𝑖𝑛𝑐 is the incoming electric field which we assumed to be
517
+ x-polarized and constant within the (annular) aperture angles 𝜃𝑚𝑖𝑛 ≤ 𝜃 ≤ 𝜃𝑚𝑎𝑥. The nonlinear
518
+ polarization at anti-Stokes and coherent Stokes wavelength is given by:
519
+ 𝑃(3)
520
+ 𝑎𝑆,𝑎(𝑟) = 3𝜒(3)
521
+ 𝑎𝑏𝑐𝑑(𝑟)𝐸 𝑝,𝑏𝐸∗
522
+ 𝑆,𝑐𝐸 𝑝,𝑑
523
+ 𝑃(3)
524
+ 𝑐𝑆,𝑎(𝑟) = 3𝜒(3)
525
+ 𝑎𝑏𝑐𝑑(𝑟)𝐸𝑆,𝑏𝐸∗
526
+ 𝑝,𝑐𝐸𝑆,𝑑
527
+ (3)
528
+ Fig. 5. Declaration of variables
529
+ Where a,b,c,d represent the polarization
530
+ coordinates x, y or z. Using an x-polarized ex-
531
+ citation, it was noticed that 𝜒(3)
532
+ 𝑥𝑥𝑥𝑥 dominates
533
+ all other tensor components even under tight
534
+ focusing conditions while filling the objective
535
+ lens homogeneously [27]. Nevertheless, for
536
+ the generation of Fig. 4c an annular mask with
537
+ 𝜃𝑚𝑖𝑛 = 56.5◦ and 𝜃𝑚𝑎𝑥 = 80◦ was applied
538
+ which does necessitate the inclusion of other
539
+ tensor elements. For simplicity, we consider
540
+ here only isotropic samples reducing the 81
541
+ susceptibility tensor elements to 21 which
542
+ are nonzero [28].
543
+ Within isotropic media,
544
+ these nonzero elements follow certain sym-
545
+ metry rules which are, 𝜒1111 = 𝜒2222 = 𝜒3333,
546
+ 𝜒1122 = 𝜒1133 = 𝜒2211 = 𝜒2233 = 𝜒3311 =
547
+ 𝜒3322, 𝜒1212 = 𝜒1313 = 𝜒2323 = 𝜒2121 = 𝜒3131 = 𝜒3232, 𝜒1221 = 𝜒1331 = 𝜒2112 = 𝜒2332 = 𝜒3113 =
548
+ 𝜒3223. Further, it applies 𝜒1111 = 𝜒1122 + 𝜒1212 + 𝜒1221 [28]. Within our simulations we were
549
+ setting 𝜒1122 = 𝜒1212 = 𝜒1221 = 1 and, hence, 𝜒1111 = 3. The nonlinear far-field radiation
550
+ distributions is obtained using a dyadic Green function approach:
551
+
552
+ ���������
553
+ 𝐸𝑞,𝑅(𝑅, Θ, Φ)
554
+ 𝐸𝑞,Θ(𝑅, Θ, Φ)
555
+ 𝐸𝑞,Φ(𝑅, Θ, Φ)
556
+ ���������
557
+ = −
558
+ 𝜔2
559
+ 𝑞
560
+ 𝑐2
561
+ exp(𝑖𝑘𝑞|𝑅|)
562
+ |𝑅|
563
+ ∭ ∞
564
+ −∞
565
+ 𝜌d𝜌d𝜙d𝑧 exp(𝑖𝑘𝑞rR)
566
+ |𝑅|
567
+ ×
568
+ ���������
569
+ 0
570
+ 0
571
+ 0
572
+ cos(Θ) cos(Φ)
573
+ cos(Θ) sin(Φ)
574
+ − sin(Θ)
575
+ − sin(Φ)
576
+ cos(Φ)
577
+ 0
578
+ ���������
579
+ ���������
580
+ 𝑃(3)
581
+ 𝑞,𝑥(r)
582
+ 𝑃(3)
583
+ 𝑞,𝑦(r)
584
+ 𝑃(3)
585
+ 𝑞,𝑧(r)
586
+ ���������
587
+ (4)
588
+ where q is replaced by aS or cS to calculate either the anti-Stokes or coherent Stokes radiation.
589
+ Within the simulations, we segmented the focal area into (121×121×121≈) 1.77 mio elements
590
+ of a width of 50 nm equally spaced into the x, y and z direction. The far-field radiation sphere
591
+ was discretized into (ΔΘ=1◦, ΔΦ=2◦) 32400 elements. The coherent (anti-)Stokes radiation
592
+ was qualified as either forward or backward directed if falling into the range Θ.. 0-80◦ or Θ..
593
+ 100-180◦, respectively.
594
+ Funding Information
595
+ We acknowledge financial support from the Centre National de la Recherche Scientifique (CNRS),
596
+ Aix-Marseille University (A-M-AAP-ID-17-13-170228-15.22-RIGNEAULT), A*Midex (ANR-
597
+ 11-IDEX-0001-02), Cancéropôle Provence-Alpes Côte d’Azur, French National Cancer institute
598
+ (INCa), Région Sud, ANR grants (ANR-10-INSB-04-01, ANR-11-INSB-0006, ANR-16-CONV-
599
+ 0001), INSERM PC201508 and 18CP128-00.
600
+ Data availability
601
+ The data that support the findings of this study are available from the corresponding author upon
602
+ reasonable request.
603
+ Disclosure
604
+ The authors declare no conflict of interest.
605
+ References
606
+ 1.
607
+ A. Bunaciu, S. Fleschin, and H. Aboul-Enein, “Infrared microspectroscopy applications - review,” Curr. Anal. Chem.
608
+ 10, 132–139 (2013).
609
+ 2.
610
+ K. A. Antonio and Z. D. Schultz, “Advances in biomedical raman microscopy,” Anal. Chem. 86, 30–46 (2013).
611
+ 3.
612
+ M. D. Duncan, J. Reintjes, and T. J. Manuccia, “Scanning coherent anti-stokes raman microscope,” Opt. Lett. 7, 350
613
+ (1982).
614
+ 4.
615
+ A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-stokes raman
616
+ scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
617
+ 5.
618
+ P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated raman scattering microscopy,”
619
+ New J. Phys. 11, 033026 (2009).
620
+ 6.
621
+ C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free
622
+ biomedical imaging with high sensitivity by stimulated raman scattering microscopy,” Science 322, 1857–1861
623
+ (2008).
624
+ 7.
625
+ Y. Ozeki, F. Dake, S. Kajiyama, K. Fukui, and K. Itoh, “Analysis and experimental assessment of the sensitivity of
626
+ stimulated raman scattering microscopy,” Opt. Express 17, 3651 (2009).
627
+ 8.
628
+ P. D. Maker and R. W. Terhune, “Study of optical effects due to an induced polarization third order in the electric
629
+ field strength,” Phys. Rev. 137, A801–A818 (1965).
630
+ 9.
631
+ J. B. Zheng, A. Leipertz, J. B. Snow, and R. K. Chang, “Simultaneous observation of rotational coherent stokes
632
+ raman scattering and coherent anti-stokes raman scattering in air and nitrogen,” Opt. Lett. 8, 350 (1983).
633
+ 10. M. Cui, B. R. Bachler, and J. P. Ogilvie, “Comparing coherent and spontaneous raman scattering under biological
634
+ imaging conditions,” Opt. Lett. 34, 773 (2009).
635
+
636
+ 11. S. A. Druet and J.-P. E. Taran, “Cars spectroscopy,” Prog. Quantum Electron. 7, 1–72 (1981).
637
+ 12. L. Wei, Z. Chen, L. Shi, R. Long, A. V. Anzalone, L. Zhang, F. Hu, R. Yuste, V. W. Cornish, and W. Min,
638
+ “Super-multiplex vibrational imaging,” Nature 544, 465–470 (2017).
639
+ 13. L. Wei and W. Min, “Electronic preresonance stimulated raman scattering microscopy,” The J. Phys. Chem. Lett. 9,
640
+ 4294–4301 (2018).
641
+ 14. R. C. Prince and E. O. Potma, “Going visible: high-resolution coherent raman imaging of cells and tissues,” Light.
642
+ Sci. & Appl. 8 (2019).
643
+ 15. Y. Bi, C. Yang, Y. Chen, S. Yan, G. Yang, Y. Wu, G. Zhang, and P. Wang, “Near-resonance enhanced label-free
644
+ stimulated raman scattering microscopy with spatial resolution near 130 nm,” Light. Sci. & Appl. 7 (2018).
645
+ 16. P. Berto, E. R. Andresen, and H. Rigneault, “Background-free stimulated raman spectroscopy and microscopy,” Phys.
646
+ Rev. Lett. 112 (2014).
647
+ 17. S. Heuke, A. Lombardini, E. Büttner, and H. Rigneault, “Simultaneous stimulated raman gain and loss detection
648
+ (srgal),” Opt. Express 28, 29619–29630 (2020).
649
+ 18. D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy
650
+ using longer wavelength excitation,” Opt. Express 17, 13354 (2009).
651
+ 19. A. Lombardini, V. Mytskaniuk, S. Sivankutty, E. R. Andresen, X. Chen, J. Wenger, M. Fabert, N. Joly, F. Louradour,
652
+ A. Kudlinski, and H. Rigneault, “High-resolution multimodal flexible coherent raman endoscope,” Light. Sci. &
653
+ Appl. 7 (2018).
654
+ 20. M. Kögler and B. Heilala, “Time-gated raman spectroscopy – a review,” Meas. Sci. Technol. 32, 012002 (2020).
655
+ 21. T. Tahara and H.-O. Hamaguchi, “Picosecond raman spectroscopy using a streak camera,” Appl. Spectrosc. 47,
656
+ 391–398 (1993).
657
+ 22. S. Heuke, N. Vogler, T. Meyer, D. Akimov, F. Kluschke, H.-J. Röwert-Huber, J. Lademann, B. Dietzek, and J. Popp,
658
+ “Multimodal mapping of human skin,” Br. J. Dermatol. 169, 794–803 (2013).
659
+ 23. S. Heuke, K. Unger, S. Khadir, K. Belkebir, P. C. Chaumet, H. Rigneault, and A. Sentenac, “Coherent anti-stokes
660
+ raman fourier ptychography,” Opt. Express (2019).
661
+ 24. A. Volkmer, J.-X. Cheng, and X. S. Xie, “Vibrational imaging with high sensitivity via epidetected coherent
662
+ anti-stokes raman scattering microscopy,” Phys. Rev. Lett. 87, 023901 (2001).
663
+ 25. S. Heuke, J. Zheng, D. Akimov, R. Heintzmann, M. Schmitt, and J. Popp, “Bessel beam CARS of axially structured
664
+ samples,” Sci. Reports 5 (2015).
665
+ 26. S. Heuke, F. B. Legesse, D. Akimov, U. Hübner, J. Dellith, M. Schmitt, and J. Popp, “Bessel beam coherent anti-stokes
666
+ raman scattering microscopy,” J. Opt. Soc. Am. B 32, 1773 (2015).
667
+ 27. J.-X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of coherent anti-stokes
668
+ raman scattering microscopy,” J. Opt. Soc. Am. B 19, 1363 (2002).
669
+ 28. J.-X. Cheng and X. S. Xie, eds., Coherent Raman Scattering Microscopy (Series in Cellular and Clinical Imaging)
670
+ (CRC Press, 2016).
671
+
3dE1T4oBgHgl3EQf5wXA/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
4NE2T4oBgHgl3EQfOQYe/content/tmp_files/2301.03745v1.pdf.txt ADDED
@@ -0,0 +1,1344 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.03745v1 [math.AG] 10 Jan 2023
2
+ FOURIER–MUKAI TRANSFORMS FOR NON-COMMUTATIVE COMPLEX
3
+ TORI
4
+ NOBUKI OKUDA
5
+ Abstract. Let X be a complex torus of dimension g and ˆX be the dual torus. For any g(g − 1)/2-
6
+ tuple λ of complex numbers of absolute value 1, we define a non-commutative complex torus Xλ as
7
+ a sheaf of algebras on a real torus of dimension g. We prove that if all components of λ are roots of
8
+ unity, then the category of coherent sheaves on Xλ is abelian and derived-equivalent to the category
9
+ of coherent sheaves on ˆX twisted by an element of the Brauer group of ˆX determined by λ.
10
+ 1. Introduction
11
+ Let X and ˆX be smooth projective varieties. An integral functor
12
+ Φ: Db(X) → Db( ˆX)
13
+ (1.1)
14
+ between derived categories of coherent sheaves is said to be a Fourier–Mukai functor if it is an
15
+ equivalence. A Fourier–Mukai functor Φ induces an isomorphism
16
+ HH(Φ): HH•(X) → HH•( ˆX)
17
+ (1.2)
18
+ of Hochschild cohomologies. For any u ∈ HH2(X), Toda [Tod09] gave a C[ε]/(ε2)-linear category
19
+ Db(X, u) of first order deformations of X along u and an equivalence
20
+ Φ† : Db(X, u) → Db( ˆX, HH(Φ)(u))
21
+ (1.3)
22
+ extending Φ.
23
+ The integral functor FM with the Poincar´e line bundle as the integral kernel is the first example
24
+ of a Fourier–Mukai functor given by Mukai [Muk81] for an abelian variety X and the dual abelian
25
+ variety ˆX. Under the Hochschild–Kostant–Rosenberg isomorphism
26
+ HH2(X) ∼= H0(∧2TX) ⊕ H1(TX) ⊕ H2(OX),
27
+ (1.4)
28
+ the induced map HH(FM) sends H0(∧2TX) to H2(O ˆ
29
+ X). This suggests that non-commutative de-
30
+ formations of abelian varieties are Fourier–Mukai partners of gerby deformations of dual abelian
31
+ varieties.
32
+ While the notion of gerby deformations is well-established in terms of twisted sheaves, non-
33
+ commutative deformations are much harder to define in general. At the formal level, the Moyal
34
+ deformation quantizations give formal non-commutative deformations of complex tori, and derived
35
+ equivalences to formal gerby deformations are proved in [BBBP07]. The next problem is to construct
36
+ non-commutative tori and derived equivalences for non-formal parameters (or even as a family over
37
+ a complex manifold).
38
+ The first attempt to define non-commutative complex tori is given by Schwarz [Sch01], who intro-
39
+ duced the notion of complex structures on non-commutative tori, which are irrational rotation alge-
40
+ bras (see [Rie81], for example) regarded as non-commutative spaces in the sense of Connes[Con94].
41
+ Categories of holomorphic vector bundles on them are studied in [PS03].
42
+ In the paper [Blo10] and the preprint [Blo], Block discussed Fourier–Mukai functors between non-
43
+ commutative complex tori and gerby deformations of dual complex tori, using DG categories which
44
+ include objects corresponding to quasi-coherent sheaves.
45
+ In [Blo], he also announced to discuss
46
+ coherent sheaves in a paper in preparation.
47
+ We now explain the results of this paper. Let X = T/Γ be a complex torus, where T := (C∗)g
48
+ and Γ is a discrete subgroup of T isomorphic to Zg. The dual complex torus ˆX := Pic0 X can
49
+ naturally be identified with ˆΓ/ ˆT where ˆΓ := Hom(Γ, C∗) ∼= (C∗)g and ˆT := Hom(T, C∗) ∼= Zg. Let
50
+ λ ∈ H2( ˆT, U(1)) ∼= U(1)g(g−1)/2 be an element of the second group cohomology of ˆT with values in
51
+ 1
52
+
53
+ U(1). We construct a non-commutative deformation of X with parameter λ. When λ takes values
54
+ in roots of unity, we give an equivalence of the derived category of coherent sheaves on the non-
55
+ commutative deformation of X with parameter λ and the derived category of coherent sheaves on
56
+ the gerby deformation of ˆX with the same parameter λ.
57
+ Our construction of non-commutative complex tori is different from those in [Sch01], [PS03] and
58
+ [Blo].
59
+ Ours can be regarded as a patching of Archimedean analog of quantum analytic tori in
60
+ [Soi09]. To prove the equivalence of derived categories, we use the idea of equivariant Fourier–Mukai
61
+ transforms developed in [Sos12].
62
+ This paper is organized as follows: In Section 2, we discuss q-Weyl algebras as toy models to
63
+ motivate constructions in later sections. In Section 3, we recall Fourier–Mukai transforms for complex
64
+ tori.
65
+ In Section 4, we define non-commutative complex tori by deforming sheaves of convergent
66
+ Laurent series rings on real tori. It can be regarded as an Archimedean analog of the construction
67
+ of quantum analytic tori in [Soi09]. In Section 5, we discuss a dual pair X → Y and ˆY → ˆX of
68
+ finite coverings of tori associated with a deformation parameter λ with values in roots of unity. In
69
+ Section 6, we describe non-commutative complex tori whose deformation parameters take values in
70
+ roots of unity in terms of a finite sheaf of algebras. In Section 7, we collect basic definitions on
71
+ twisted sheaves on complex manifolds. In Section 8, we introduce Fourier–Mukai transforms from
72
+ gerby complex tori to non-commutative complex tori at roots of unity and state Theorem 8.1, which
73
+ is the main result in this paper. In Section 9, we recall basic definitions and results on finite group
74
+ actions on abelian and derived categories, and discuss twistings by group cocycles. In Section 10, we
75
+ discuss group actions on categories appearing in our construction. In Section 11, we prove Theorem
76
+ 8.1.
77
+ Notations and conventions. We fix the complex number field C as the ground field. All modules
78
+ (resp. actions) are right modules (resp. actions) unless otherwise specified. In contrast, all group ac-
79
+ tions on categories are left actions. The word ‘non-commutative’ is synonymous with ‘not necessarily
80
+ commutative’.
81
+ For a ringed space X = (Z, OX), we write the ringed space (Z, OX op := (OX)op) as X op. The
82
+ category of OX-modules will be denoted by Mod X . For an element a of a complex abelian Lie group
83
+ A, we write the right translation map A → A, x �→ xa as Ra. For two or three complex manifolds
84
+ Z1, Z2 or Z1, Z2, Z3, the projection to the first (resp. second) component Z1 (resp. Z2) will be denoted
85
+ by pZ1,Z2 or pZ1,Z2,Z3 (resp. qZ1,Z2 or qZ1,Z2,Z3).
86
+ Acknowledgment. The author is deeply grateful to his advisor, Kazushi Ueda, for a lot of guidance,
87
+ useful comments, and encouragement.
88
+ The author also thanks Masahiro Futaki for many useful
89
+ questions, one of which lead to the formula (6.9). Finally, the author has deep gratitude to his
90
+ parents for their various supports throughout his life.
91
+ 2. q-Weyl algebras
92
+ The category of OX-modules is equivalent to the category of Γ-equivariant OT -modules, and the
93
+ category of Γ-equivariant C[T]-modules can be regarded as a toy model for it. The latter can be
94
+ identified with the category of modules over the crossed product algebra C[T] ⋊ Γ.
95
+ For a parameter λ = (λi,j)1≤i<j≤g ∈ (C∗)g(g−1)/2, the q-Weyl algebra is the non-commutative
96
+ deformation of C[T] defined by
97
+ Wλ := C⟨t±
98
+ 1 , t±
99
+ 2 , . . . , t±
100
+ g ⟩/ (titj − λi,jtjti)1≤i<j≤g ,
101
+ (2.1)
102
+ which gives C[T] if λ = 1 := (1, . . . , 1).
103
+ Let Q = (qi,j)g
104
+ i,j=1 be a multiplicative period matrix, i.e. a matrix so that {γj := (qi,j)g
105
+ i=1}g
106
+ j=1 is a
107
+ free generator of Γ. The group Γ acts on the q-Weyl algebra by
108
+ ti · γj := q−1
109
+ i,j ti,
110
+ (2.2)
111
+ 2
112
+
113
+ which reduces to the natural action on C[T] when λ = 1. The crossed product algebra Wλ ⋊ Γ is
114
+ isomorphic to another q-Weyl algebra
115
+ (2.3)
116
+ Wλ,Q,1 := C⟨t±
117
+ 1 , t±
118
+ 2 , . . . , t±
119
+ g , γ±
120
+ 1 , γ±
121
+ 2 , . . . , γ±
122
+ g ⟩
123
+ /({titj − λi,jtjti}1≤i<j≤g, {tiγj − q−1
124
+ i,j γjti}g
125
+ i,j=1, {[γi, γj]}g
126
+ i,j=1)
127
+ generated by 2g elements.
128
+ The parameter λ describing a non-commutative deformation of X can be used to describe a gerby
129
+ deformation of the dual torus ˆX:
130
+ Definition 2.1. A λ-twisted O ˆ
131
+ X-module is a pair (M, (ρˆγ)ˆγ∈ ˆT) consisting of an OˆΓ-module M and a
132
+ family (ρˆγ)ˆγ∈ ˆT of morphisms ρˆγ : M → R∗
133
+ ˆγM satisfying ρˆγj ◦ ρˆγi = λi,jρˆγi ◦ ρˆγj for all i, j ∈ {1, . . . , g}
134
+ such that i < j.
135
+ As a toy model of λ-twisted O ˆ
136
+ X-modules, we consider modules over the q-Weyl algebra
137
+ (2.4)
138
+ W1,Q,λ := C⟨ˆt±
139
+ 1 , ˆt±
140
+ 2 , . . . , ˆt±
141
+ g , ˆγ±
142
+ 1 , ˆγ±
143
+ 2 , . . . , ˆγ±
144
+ g ⟩
145
+ /({[ˆti, ˆtj]}g
146
+ i,j=1, {ˆtiˆγj − q−1
147
+ j,i ˆγjˆti}i,j, {ˆγiˆγj − λi,jˆγjˆγi}1≤i<j≤g),
148
+ which contains the ring of regular functions C[ˆΓ] := C[ˆt±
149
+ 1 , ˆt±
150
+ 2 , . . . , ˆt±
151
+ g ]. Note that the roles of ti and
152
+ γi are interchanged between (2.3) and (2.4).
153
+ A toy model for the deformed Poincar´e line bundle, which should give the integral kernel of the
154
+ deformed Fourier–Mukai transform, is the (W1,Q,λ)op ⊗ Wλ,Q,1-module Pλ such that
155
+ (1) Pλ = C[ˆΓ] ⊗C Wλ as a
156
+
157
+ C[ˆΓ]
158
+ �op
159
+ ⊗ Wλ-module,
160
+ (2) actions of γi are given by
161
+
162
+ ψ(ˆt1, ˆt2, . . . , ˆtg) ⊗ φ(t1, t2, . . . , tg)
163
+
164
+ · γi = ψ(ˆt1, ˆt2, . . . , ˆtg)ˆt−1
165
+ i
166
+ ⊗ φ(t1q−1
167
+ 1,i , t2q−1
168
+ 2,i , . . . , tgq−1
169
+ g,i ),
170
+ (3) actions of ˆγi are given by
171
+ ˆγi ·
172
+
173
+ ψ(ˆt1, ˆt2, . . . , ˆtg) ⊗ φ(t1, t2, . . . , tg)
174
+
175
+ = ψ(ˆt1qi,1, ˆt2qi,2, . . . , ˆtgqi,g) ⊗ tiφ(t1, t2, . . . , tg).
176
+ Note that the action of ˆγi satisfies ˆγiˆγj = λi,jˆγjˆγi since titj = λi,jtjti in Wλ.
177
+ While q-Weyl algebras are only toy models and one has to work with analytic functions (such as
178
+ theta functions) rather than regular functions, they provide intuition behind constructions in later
179
+ sections.
180
+ The duality between non-commutative deformations and gerby deformations is clearly
181
+ visible in this toy model. Note also that if all components of λ are roots of unity, then Wλ is finite
182
+ over its center, which is the ring of functions on a finite quotient of T.
183
+ 3. Fourier–Mukai transforms
184
+ We identify OX-modules with Γ-equivariant OT-modules.
185
+ An element ˆx ∈ ˆΓ determines a Γ-
186
+ equivariant OT-module Lˆx as the trivial OT-module equipped with the Γ-action
187
+ φ(x) · γ = φ(xγ−1)ˆx(γ)−1
188
+ (3.1)
189
+ for γ ∈ Γ. Since any t ∈ ˆT gives an isomorphism
190
+ Lˆx
191
+ ∼−→ Lˆxt−1,
192
+ φ(x) �→ t(x)φ(x)
193
+ (3.2)
194
+ of Γ-equivariant OT-modules, the map ˆx �→ L��x descends to a map ˆΓ/ ˆT
195
+ ∼−→ ˆX := Pic0 X, which is an
196
+ isomorphism of groups because of the isomorphisms
197
+ Lˆx ⊗ Lˆx′
198
+ ∼−→ Lˆxˆx′,
199
+ φ(x) ⊗ ψ(x) �→ φ(x)ψ(x).
200
+ (3.3)
201
+ The Poincar´e line bundle P is the Γ × ˆT op-equivariant OT׈Γ-module, defined as the trivial OT׈Γ-
202
+ module equipped with the left ˆT-action
203
+ t · φ(x, ˆx) = t(x)φ(x, ˆxt)
204
+ (3.4)
205
+ 3
206
+
207
+ and the right Γ-action
208
+ φ(x, ˆx) · γ = φ(xγ−1, ˆx)ˆx(γ)−1.
209
+ (3.5)
210
+ Let s be the map given by
211
+ s: ˆΓ × ˆΓ × T → ˆΓ × T,
212
+ (ˆx1, ˆx2, x) �→ (ˆx1ˆx2, x).
213
+ (3.6)
214
+ The map s: ˆX × ˆX × X → ˆX × X is defined similarly. Since the isomorphism
215
+ m: (p
216
+ ˆΓ,ˆΓ,T)∗P ⊗ (q
217
+ ˆΓ,ˆΓ,T)∗P → s∗P,
218
+ φ ⊗ φ′ �→ φφ′
219
+ (3.7)
220
+ of OˆΓ׈Γ×T-modules is ˆT op × ˆT op × Γ-equivariant, it defines an isomorphism
221
+ m: (p
222
+ ˆ
223
+ X, ˆ
224
+ X,X)∗P ⊗ (q
225
+ ˆ
226
+ X, ˆ
227
+ X,X)∗P
228
+ ∼−→ s∗P
229
+ (3.8)
230
+ os O ˆ
231
+ X× ˆ
232
+ X×X-modules, which restricts to an isomorphism
233
+ mˆx1,ˆx2 : Lˆx1 ⊗ Lˆx2
234
+ ∼−→ Lˆx1ˆx2
235
+ (3.9)
236
+ of OX-modules on {ˆx1} × {ˆx2} × X where Lˆx ≃ P|X×{ˆx} by definition.
237
+ The Fourier–Mukai transform is the integral functor with the Poincar´e line bundle as the integral
238
+ kernel;
239
+ FMP : Db( ˆX) → Db(X),
240
+ M �→ R(pX, ˆ
241
+ X)∗((qX, ˆ
242
+ X)∗M ⊗OX× ˆ
243
+ X P).
244
+ (3.10)
245
+ It sends the skyscraper sheaf Oˆx of a point ˆx ∈ ˆX to the line bundle Lˆx.
246
+ Theorem 3.1 ([Muk81]). The Fourier–Mukai transform FMP is an equivalence, whose quasi-inverse
247
+ is given by the integral functor FMP−1[g] with P−1[g] as the integral kernel.
248
+ To be more precise, Mukai proved this theorem for abelian varieties. A proof for complex tori can
249
+ be found in [BBBP07].
250
+ 4. Non-commutative deformations of complex tori
251
+ Set
252
+ ̟: T → |T| := (R>0)g,
253
+ (x1, x2, . . . , xg) �→ (|x1|, |x2|, . . . , |xg|).
254
+ (4.1)
255
+ For a product D = �g
256
+ i=1(ri, Ri) of open intervals, the ring ̟∗OT (D) consists of Laurent series in g
257
+ variables with radii of convergence (ri, Ri) for 1 ≤ i ≤ g.
258
+ Definition 4.1. A unitary deformation parameter is an element of Z2( ˆT, U(1)), i.e., a map λ: ˆT ×
259
+ ˆT → U(1) satisfying
260
+ λ(t2, t3)λ(t1t2, t3)−1λ(t1, t2t3)λ(t1, t2)−1 = 1
261
+ (4.2)
262
+ for all t1, t2, t3 ∈ ˆT.
263
+ Given a unitary deformation parameter λ, the star product ∗λ on ̟∗OT (D) is defined by
264
+
265
+ �
266
+ t∈ ˆT
267
+ att
268
+
269
+  ∗λ
270
+
271
+ �
272
+ t∈ ˆT
273
+ btt
274
+
275
+  =
276
+
277
+ t∈ ˆT
278
+
279
+
280
+
281
+ t1,t2∈ ˆT, t1t2=t
282
+ λ(t1, t2)at1bt2
283
+
284
+  t,
285
+ (4.3)
286
+ which is easily seen to be associative by using (4.2). The convergence of the right hand side follows
287
+ from
288
+ ������
289
+
290
+ t1,t2∈ ˆT, t1t2=t
291
+ λ(t1, t2)at1bt2
292
+ ������
293
+
294
+
295
+ t1,t2∈ ˆT, t1t2=t
296
+ |at1||bt2|
297
+ (4.4)
298
+ and
299
+
300
+ t∈ ˆT
301
+
302
+
303
+
304
+ t1,t2∈ ˆT,t1t2=t
305
+ |at1||bt2|
306
+
307
+  t =
308
+
309
+ �
310
+ t∈ ˆT
311
+ |at|t
312
+
313
+
314
+
315
+ �
316
+ t∈ ˆT
317
+ |bt|t
318
+
319
+  ,
320
+ (4.5)
321
+ 4
322
+
323
+ which depends on the unitarity of λ. The resulting sheaf of associative algebras on |T| will be denoted
324
+ by OTλ which turns |T| into a non-commutative ringed space Tλ := (|T|, OTλ).
325
+ A cochain α ∈ Z1( ˆT, U(1)) bounding λ, λ′ ∈ Z2( ˆT, U(1)) is a map α: ˆT → U(1) satisfying
326
+ λ′(t1, t2) = λ(t1, t2)α(t1)α(t2)α(t1t2)−1.
327
+ (4.6)
328
+ It gives an isomorphism
329
+
330
+ t∈ ˆT
331
+ att �→
332
+
333
+ t∈ ˆT
334
+ α(t)att
335
+ (4.7)
336
+ of the ring of sections, which ensures that the isomorphism class of the sheaf OTλ of associative
337
+ algebras depends only on the cohomology class [λ] ∈ H2( ˆT, U(1)).
338
+ The natural T-action on T induces a T-action on |T|, which lifts to a T-action on the ringed space
339
+ Tλ in such a way that the morphism ρa : OTλ → (R̟(a)−1)∗OTλ of sheaves of associative algebras for
340
+ a ∈ T is given by
341
+
342
+ t∈ ˆT
343
+ att �→
344
+
345
+ t∈ ˆT
346
+ att(a)−1t.
347
+ (4.8)
348
+ The action of Γ on |T| is free since ̟(γ) = 1 for 1 ̸= γ ∈ Γ contradicts the freeness or the properness
349
+ of Γ-action on T.
350
+ Definition 4.2. The non-commutative complex torus associated with a complex torus X = T/Γ and
351
+ a unitary deformation parameter λ ∈ Z2( ˆT, U(1)) is the non-commutative ringed space Xλ := Tλ/Γ.
352
+ Recall that a sheaf M of OX-modules on a ringed space X = (X, OX) is said to be coherent if
353
+ (1) M is finitely generated, i.e., for any point x ∈ X, there exists an open neighborhood U of x
354
+ and an epimorphism O⊕m
355
+ X |U → M|U → 0 for some m ∈ N, and
356
+ (2) for any open set U and any m ∈ N, the kernel of any morphism O⊕m
357
+ X |U → M|U is finitely
358
+ generated.
359
+ The full subcategory of Mod X consisting of coherent modules will be denoted by coh X .
360
+ Lemma 4.3. The sheaf OT1 is coherent.
361
+ Proof. It is clear that OT1 is finitely generated. For any open subset U of |T|, a morphism α: O⊕m
362
+ T1 |U →
363
+ OT1|U is the same as a morphism ˜α: O⊕m
364
+ T
365
+ |̟−1(U) → OT|̟−1(U). For any x ∈ U, let V ⊂ U be an
366
+ open neighborhood of x obtained as the product of intervals. Then ̟−1(V ) is Stein and hence there
367
+ is an epimorphism ˜β from O⊕m′
368
+ ̟−1(V ) to the kernel of ˜α|̟−1(V ) for some integer m′. We ensure that ̟∗
369
+ is exact (and hence the morphism β := ̟∗ ˜β is also an epimorphism) by applying [Tay02, Corollary
370
+ 11.5.4] for every fiber of ̟. This shows that ker α is finitely generated, and Lemma 4.3 is proved.
371
+
372
+ Non-commutative complex tori at λ = 1 are usual complex tori:
373
+ Propositon 4.4. The adjunction ̟∗ ⊣ ̟∗ induces an equivalence coh T ≃ coh T1.
374
+ Proof. Oka coherence theorem implies that an object of Mod T is coherent if and only if it is finitely
375
+ presented. Similarly, Lemma 4.3 implies that an object of Mod T1 is coherent if and only if it is
376
+ finitely presented.
377
+ The functors ̟∗ and ̟∗ induce mutually inverse functors on categories of finitely presented mod-
378
+ ules since
379
+ (1) the functor ̟∗ is exact (and hence preserves cokernels in particular),
380
+ (2) the functor ̟∗ preserves cokernels since it is a left adjoint, and
381
+ (3) ̟∗ and ̟∗ interchanges OT and OT1.
382
+
383
+ Corollary 4.5. The adjunction (̟X)∗ ⊣ (̟X)∗ induces an equivalence coh X ≃ coh X1, where
384
+ ̟X : X → |X| is the map induced by ̟.
385
+ The category coh OXλ is abelian if Problem 4.6 below has an affirmative answer:
386
+ 5
387
+
388
+ Problem 4.6 (Oka coherence for non-commutative tori). Is OTλ coherent?
389
+ Yet another problem is a generalization to non-unitary deformation parameters, which would be
390
+ needed for the duality with general gerby deformations.
391
+ 5. Deformation parameters at roots of unity
392
+ As one can see (e.g. by noting that ˆT-modules are equivalent to Z[T] ∼= Z[t±1
393
+ 1 , t±
394
+ 2 , . . . , t±
395
+ g ]-modules,
396
+ and the trivial ˆT-modules Z has the Koszul resolution associated to t1 −1, t2 −1, . . . , tg −1) that the
397
+ cohomology Hi( ˆT, A) with coefficients in an abelian group A with the trivial ˆT-action is isomorphic to
398
+ Hom(∧i ˆT/(∧i ˆT)tors, A) ∼= A(g
399
+ i) (note that (∧i ˆT)tors is generated by torsion elements a∧a∧t1∧· · ·∧ti−2
400
+ (a, t1, . . . , ti−2 ∈ ˆT) of order 2). Let Λ ∈ Hom(∧2 ˆT, U(1)) be the element corresponding to the class
401
+ [λ] ∈ H2( ˆT, U(1)) of a unitary deformation parameter λ ∈ Z2( ˆT, U(1)), and set
402
+ ˆH :=
403
+
404
+ t ∈ ˆT
405
+ ��� Λ(t ∧ t′) = 1 for all t′ ∈ ˆT
406
+
407
+ ,
408
+ (5.1)
409
+ so that one has an exact sequence
410
+ 1 → ˆH → ˆT → ˆK → 1,
411
+ (5.2)
412
+ and [λ] ∈ H2( ˆT, U(1)) descends to an element of H2( ˆK, U(1)), which can be represented by a bilinear
413
+ cochain in Z2( ˆK, U(1)).
414
+ For the rest of this paper and unless otherwise specified, we will assume that a unitary deformation
415
+ parameter λ ∈ Z2( ˆT, U(1)) is contained in Z2( ˆT, µN) for some positive integer N where µN :=
416
+
417
+ ζ ∈ U(1)
418
+ �� ζN = 1
419
+
420
+ . This implies that ˆK is a finite abelian group, and we will also fix a bilinear
421
+ map
422
+ λ: ˆK ⊗Z ˆK → µN
423
+ (5.3)
424
+ representing [λ].
425
+ The dual group K := Hom( ˆK, C∗) can be identified with the kernel of the map T → H dual to
426
+ the inclusion ˆH → ˆT, so that one has an exact sequence
427
+ 1 → K → T
428
+ πT
429
+ −→ H → 1.
430
+ (5.4)
431
+ Since Γ∩K is the trivial group, the free action of K on T descends to a free action of K on X := T/Γ,
432
+ so that one has an exact sequence
433
+ 1 → K → X
434
+ π−→ Y → 1
435
+ (5.5)
436
+ where Y is a complex torus. We also have an exact sequence
437
+ 1 → ˆK → ˆY
438
+ ˆπ−→ ˆX → 1
439
+ (5.6)
440
+ Since K goes to the identity under the homomorphism ̟: T → |T|, there exists ̟Y : Y → |X|
441
+ making the diagram
442
+ X
443
+ Y
444
+ |X|
445
+
446
+ π
447
+ �❄
448
+
449
+
450
+
451
+
452
+
453
+
454
+
455
+
456
+ ̟X
457
+ �✤✤✤✤✤✤✤
458
+ ̟Y
459
+ (5.7)
460
+ commute.
461
+ 6
462
+
463
+ 6. Non-commutative deformations at roots of unity
464
+ We have an isomorphism
465
+ π∗OX ∼=
466
+
467
+ ˆk∈ ˆ
468
+ K
469
+ Lˆk
470
+ (6.1)
471
+ of sheaves of OY -algebras on ˆY := Pic0 Y . The summand Lˆk is locally generated by a monomial
472
+ function t ∈ ˆT representing ˆk. We define a star product ⋆λ on π∗OX by
473
+ ⋆λ:
474
+
475
+ ˆk∈ ˆ
476
+ K
477
+ Lˆk ×
478
+
479
+ ˆk∈ ˆ
480
+ K
481
+ Lˆk →
482
+
483
+ ˆk∈ ˆ
484
+ K
485
+ Lˆk
486
+ (6.2)
487
+ ((φˆk)ˆk, (ψˆk)ˆk) �→
488
+
489
+  �
490
+ ˆk1ˆk2=ˆk
491
+ λ(ˆk1, ˆk2)mˆk1,ˆk2(φˆk1 ⊗ ψˆk2)
492
+
493
+
494
+ ˆk
495
+ .
496
+ (6.3)
497
+ We write the resulting sheaf (π∗OX, ⋆λ) of OY -algebras as OXλ, and the ringed space (Y, OXλ) as
498
+ Xλ.
499
+ Propositon 6.1. One has an isomorphism (̟Y )∗OXλ ∼= OXλ of sheaves of algebras.
500
+ Proof. A direct calculation shows that
501
+
502
+ �
503
+ t1∈ ˆT
504
+ at1t1
505
+
506
+  ∗λ
507
+
508
+ �
509
+ t2∈ ˆT
510
+ bt2t2
511
+
512
+
513
+ (6.4)
514
+ =
515
+
516
+  �
517
+ t∈ ˆT/ ˆ
518
+ H
519
+
520
+
521
+
522
+ t1 mod ˆ
523
+ H=t
524
+ at1t1
525
+
526
+
527
+
528
+  ∗λ
529
+
530
+  �
531
+ t′∈ ˆT/ ˆ
532
+ H
533
+
534
+
535
+
536
+ t2 mod ˆ
537
+ H=t′
538
+ bt2t2
539
+
540
+
541
+
542
+
543
+ (6.5)
544
+ =
545
+
546
+ t∈ ˆT/ ˆ
547
+ H
548
+
549
+  �
550
+ t′∈ ˆT/ ˆ
551
+ H
552
+
553
+
554
+
555
+ t1 mod ˆH=t
556
+
557
+
558
+
559
+ t2 mod ˆ
560
+ H=t′
561
+ λ(t1, t2)at1bt2t1t2
562
+
563
+
564
+
565
+
566
+
567
+
568
+ (6.6)
569
+ =
570
+
571
+ t∈ ˆT/ ˆ
572
+ H
573
+
574
+  �
575
+ t′∈ ˆT/ ˆ
576
+ H
577
+
578
+
579
+
580
+ t1 mod ˆH=t
581
+
582
+
583
+
584
+ t2 mod ˆ
585
+ H=t′
586
+ λ(t, t′)at1bt2t1t2
587
+
588
+
589
+
590
+
591
+
592
+
593
+ (6.7)
594
+ =
595
+
596
+ t∈ ˆT/ ˆ
597
+ H
598
+
599
+  �
600
+ t′∈ ˆT/ ˆ
601
+ H
602
+ λ(t, t′)mt,t′
603
+
604
+
605
+
606
+ t1 mod ˆ
607
+ H=t
608
+ at1t1,
609
+
610
+ t2 mod ˆ
611
+ H=t′
612
+ bt2t2
613
+
614
+
615
+
616
+
617
+ (6.8)
618
+ coincide with ⋆λ.
619
+
620
+ Propositon 6.2. The adjunction (̟Y )∗ ⊣ (̟Y )∗ induces an equivalence coh Xλ ≃ coh Xλ.
621
+ Proof. We write the full subcategory of Mod Xλ (resp. Mod Xλ) consisting of coherent OY -modules
622
+ (resp. OY1-modules) as (coh Y ) ˆ
623
+ K,λ (resp. (coh Y1) ˆ
624
+ K,λ). Since OXλ is a finite OY -algebra by defi-
625
+ nition and OXλ is a finite OY1-algebra by Proposition 6.1, the category coh Xλ (resp. coh Xλ) is
626
+ equivalent to (coh Y ) ˆ
627
+ K,λ (resp. (coh Y1) ˆ
628
+ K,λ). It follows from Corollary 4.5 and Proposition 6.1 that
629
+ OXλ ∈ ob(coh Y1) and the adjunction (̟Y )∗ ⊣ (̟Y )∗ induces an equivalence (coh Y ) ˆ
630
+ K,λ ≃ (coh Y1) ˆ
631
+ K,λ.
632
+
633
+ In particular, OXλ is a coherent sheaf on Xλ and hence coh OXλ is an abelian category.
634
+ Remark 6.3. It follows from the definition of ˆK that there exists an isomorphism λ♯ : ˆK → K such
635
+ that λ(ˆk1, ˆk2) = ˆk2(λ♯(ˆk1)). If we write the inverse of λ♯ as λ♭ and define ω : K ⊗Z K → U(1) by
636
+ ω(k1, k2) = λ(λ♭(k1), λ♭(k2)), then the star product on OXλ can alternatively be described as
637
+ φ(x) ⋆λ ψ(x) = 1
638
+ ♯K
639
+
640
+ k1,k2∈K
641
+ ω(k1, k2)φ(xk1)ψ(xk2).
642
+ (6.9)
643
+ 7
644
+
645
+ A coherent sheaf on Xλ consists of an OY -module M and a collection of morphisms {mˆk : M⊗Lˆk →
646
+ M}ˆk∈ ˆ
647
+ K such that the diagram
648
+ M ⊗ Lˆk1 ⊗ Lˆk2
649
+ M ⊗ Lˆk2
650
+ M ⊗ Lˆk1ˆk2
651
+ M
652
+
653
+ mˆk1⊗id
654
+
655
+ λ(ˆk1,ˆk2) id ⊗mˆk1ˆk2
656
+
657
+ mˆk2
658
+
659
+ mˆk1ˆk2
660
+ (6.10)
661
+ commutes. The dual OY -module M−1 := HomOY (M, OY ) equipped with the transposes of mt gives
662
+ a coherent sheaf on Xop
663
+ λ .
664
+ 7. Twisted sheaves
665
+ Let M be a complex manifold and α ∈ H2(M, O∗
666
+ M) be a second ´etale cohomology class of O∗
667
+ M.
668
+ Take an ´etale covering U = (Ui)i and a representative (αi,j,k) of α on U. We write the projections
669
+ from Ui ×M Uj to the first (resp. second) component as Ii,j (resp. Ji,j).
670
+ Definition 7.1. An α-twisted sheaf on M is a collection ((Fi)i, (ρi,j)i,j) of OUi-modules Fi and
671
+ isomorphisms ρi,j : I∗
672
+ i,jFi → J∗
673
+ i,jFj satisfying ρ−1
674
+ i,k ◦ ρj,k ◦ ρi,j = αi,j,k id . An α-twisted sheaf is coherent
675
+ if all Fi are coherent.
676
+ The category of α-twisted sheaves on M and the full subcategory consisting of α-twisted coherent
677
+ sheaves will be denoted by Mod Mα and coh Mα respectively. Note that for an OM-algebra A and the
678
+ resulting ringed space X := (M, A), we similarly can define the notion of α-twisted sheaves on X and
679
+ categories Mod X α, coh X α. They do not depend on the choice of U and (αi,j,k) up to equivalence.
680
+ One has the tensor product functor
681
+ ⊗: Mod Mα × Mod Mα′ → Mod Mαα′,
682
+ (7.1)
683
+
684
+ ((Fi)i, (ρi,j)i,j), ((F ′
685
+ i)i, (ρ′
686
+ i,j)i,j)
687
+
688
+ �→ ((Fi ⊗ F ′
689
+ i)i, (ρi,j ⊗ ρ′
690
+ i,j)i,j)
691
+ (7.2)
692
+ and the duality functor
693
+ (−)−1 : Mod Mα → Mod Mα−1,
694
+ (7.3)
695
+ ((Fi)i, (ρi,j)i,j) �→ ((HomOUi(Fi, OUi))i, ((ρ−1
696
+ i,j )∗)i,j).
697
+ (7.4)
698
+ If U consists of a principal G-bundle P on M for some discrete group G, then the isomorphism
699
+ P × Gp → P ×M P ×M · · · ×M P,
700
+ (y, g1, . . . , gp) �→ (y, yg1, yg1g2, . . . , yg1 · · · gp)
701
+ (7.5)
702
+ induces an isomorphism from the ˇCech complex C•(U, O∗
703
+ M) to the standard complex C•(G, O∗
704
+ P(P))
705
+ for group cohomology.
706
+ The composite of the resulting map H2(G, O∗
707
+ P(P)) → H2(M, O∗
708
+ M) with
709
+ the map H2(G, C∗) → H2(G, O∗
710
+ P(P)) will be denoted by ιP : H2(G, C∗) → H2(M, O∗
711
+ M). For any
712
+ λ ∈ H2(G, C∗), an ιP(λ)-twisted sheaf will simply be called a λ-twisted sheaf. If G is a finite abelian
713
+ group, then ιP(λ) is a torsion element since any group cohomology of finite abelian group is torsion.
714
+ In other words, ιP(λ) is an element of the cohomological Brauer group Br(M) := H2(M, O∗
715
+ M)tors. A
716
+ λ-twisted sheaf consists of an OP-module F and a λ-twisted G-linearization of F, i.e., a collection
717
+ (ρg)g∈G of morphisms ρg : F → R∗
718
+ gF satisfying R∗
719
+ g1ρg2 ◦ ρg1 = λ(g1, g2)ρg1g2.
720
+ A λ-twisted sheaf (F, (ρg)g∈G) will also be called a λ-twisted G-equivariant OP-module; it reduces
721
+ to a G-equivariant OP-module if λ = 1 (which in turn is equivalent to an OM-module).
722
+ 8. Deformed Fourier–Mukai transforms
723
+ Let Q be the Poincar´e line bundle on Y × ˆY . For a complex manifold Z, a sheaf of associative
724
+ algebras (pY,Z)∗OXλ (resp. (pY,Z)∗Oop
725
+ Xλ) will denoted by OXλ×Z (resp. OXop
726
+ λ ×Z), and the resulting
727
+ ringed space will be denoted by Xλ ×Z (resp. Xop
728
+ λ ×Z). Symbols Y × ˆXλ (resp. Xλ × ˆXλ, Xop
729
+ λ × ˆXλ)
730
+ denote (Y × ˆX)1×λ (resp. (Xλ × ˆX)1×λ, (Xop
731
+ λ × ˆX)1×λ).
732
+ 8
733
+
734
+ The deformed Poincar´e line bundle Pλ is an object of coh Xλ × ˆXλ−1 defined as the OY × ˆY -module
735
+
736
+ ˆk∈ ˆ
737
+ K
738
+ Q ⊗ (pY, ˆY )∗Lˆk ∼=
739
+
740
+ ˆk∈ ˆ
741
+ K
742
+ R∗
743
+ ˆkQ
744
+ (8.1)
745
+ equipped with the OXλ× ˆY ∼= �
746
+ ˆk∈ ˆ
747
+ K(pY, ˆY )∗Lˆk-action
748
+
749
+ ˆk∈ ˆ
750
+ K
751
+ Q ⊗ (pY, ˆY )∗Lˆk ×
752
+
753
+ ˆk∈ ˆ
754
+ K
755
+ (pY, ˆY )∗Lˆk →
756
+
757
+ ˆk∈ ˆ
758
+ K
759
+ Q ⊗ (pY, ˆY )∗Lˆk
760
+ (8.2)
761
+ ((ψˆk ⊗ φˆk)ˆk, (φ′
762
+ ˆk)ˆk) �→
763
+
764
+
765
+
766
+ ˆk1,ˆk2∈ ˆ
767
+ K, ˆk1ˆk2=ˆk
768
+ ψˆk1 ⊗ (φˆk1 ⋆λ φ′
769
+ ˆk2)
770
+
771
+
772
+ ˆk
773
+ ,
774
+ (8.3)
775
+ and the λ−1-twisted ˆK-action (i.e. the λ-twisted left ˆK-action)
776
+ ρˆk :
777
+
778
+ ˆk′∈ ˆ
779
+ K
780
+ R∗
781
+ ˆk′Q →R∗
782
+ ˆk−1
783
+
784
+ ˆk′∈ ˆ
785
+ K
786
+ R∗
787
+ ˆk′Q
788
+ (8.4)
789
+ (φˆk′)ˆk′ �→(λ(ˆk, ˆk′ˆk−1)φˆk′ˆk−1)ˆk′.
790
+ (8.5)
791
+ The deformed Fourier–Mukai transform
792
+ FMλ: Db( ˆXλ) → Db(Xλ)
793
+ (8.6)
794
+ is the integral functor with the deformed Poincar´e line bundle as the integral kernel, i.e., the composite
795
+ of the pull-back
796
+ (qY, ˆY )∗: Db( ˆXλ) → Db(Y × ˆXλ),
797
+ (8.7)
798
+ the tensor product
799
+ (−) ⊗ Pλ : Db(Y × ˆXλ) → Db(Xλ × ˆX),
800
+ (8.8)
801
+ and the push-forward
802
+ R(pY, ˆ
803
+ X)∗: Db(Xλ × ˆX) → Db(Xλ).
804
+ (8.9)
805
+ Its right adjoint is the integral functor FM−1
806
+ λ
807
+ with the g-shift of
808
+ P−1
809
+ λ
810
+ := HomOY × ˆ
811
+ Y (Pλ, OY × ˆY ) ∈ ob(coh Xop
812
+ λ × ˆXλ)
813
+ (8.10)
814
+ as the kernel, since
815
+ • the push-forward R(qY, ˆY )∗ is right adjoint to the pull-back (qY, ˆY )∗,
816
+ • the tensor product P−1
817
+ λ
818
+ ⊗ (−) is right adjoint to the tensor product (−) ⊗ Pλ, and
819
+ • the pull-back (pY, ˆ
820
+ X)∗[g] shifted by g is right adjoint to the push-forward R(pY, ˆ
821
+ X)∗ because
822
+ Db(Xλ) is Calabi–Yau of dimension g and Db(Xλ × ˆX) is Calabi–Yau of dimension 2g (it will
823
+ be proved in Section 10).
824
+ Theorem 8.1 below is the main result in this paper:
825
+ Theorem 8.1. The deformed Fourier–Mukai transform FMλ is an equivalence of derived categories.
826
+ Remark 8.2. Let OTλ×ˆΓ be the sheaf associative algebras (̟ × id)∗OT׈Γ, with a non-commutative
827
+ associative product defined by the formula similar to (4.3), but at and bt are functions on ˆΓ. For
828
+ any λ ∈ H2( ˆT, U(1)) not necessarily at roots of unity, it is natural to expect that coh ˆXλ is derived-
829
+ equivalent to coh Xλ. Although the latter is not known to be abelian, we can define the deformed
830
+ Poincar´e line bundle Pλ as an object of Mod
831
+
832
+ Xλ × ˆXλ−1�
833
+ , i.e. a OTλ׈Γ-module equipped with a
834
+ λ-twisted left ˆT-action and a right Γ-action.
835
+ Pλ is defined by a free OTλ׈Γ-module of rank 1 equipped with a λ-twisted left ˆT-action
836
+ ˆγ · φ(x, ˆx) = ˆγ(x) ∗λ φ(x, ˆxˆγ)
837
+ (8.11)
838
+ 9
839
+
840
+ and the right Γ-action
841
+ φ(x, ˆx) · γ = φ(xγ−1, ˆx) ∗λ ˆx(γ)−1.
842
+ (8.12)
843
+ 9. Finite group actions on abelian and derived categories
844
+ It is natural to examine group actions on DG-categories in relation to group actions on derived
845
+ categories and equivariant Fourier-Mukai transforms. However, coherent data for group actions on
846
+ DG-categories are more intricate than those for group actions on abelian categories. As such, we will
847
+ concentrate on group actions on abelian categories and the actions they induce on derived categories.
848
+ A weak action of a finite group G on a category C is a family (g∗)g∈G of autoequivalences g∗: C → C
849
+ such that the functor (g1)∗◦(g2)∗ is isomorphic to (g1g2)∗ for any g1, g2 ∈ G. An action is a weak action
850
+ equipped with a coherence data, i.e., a family (cg1,g2)g1,g2∈G of isomorphisms cg1,g2 : (g1)∗ ◦ (g2)∗
851
+ ∼−→
852
+ (g1g2)∗ of functors such that the diagram
853
+ (g1)∗ ◦ (g2)∗ ◦ (g3)∗
854
+ cg1,g2
855
+ −−−→ (g1g2)∗ ◦ (g3)∗
856
+ cg2,g3
857
+ �
858
+ cg1g2,g3
859
+ �
860
+ (g1)∗ ◦ (g2g3)∗
861
+ cg1,g2g3
862
+ −−−−→
863
+ (g1g2g3)∗
864
+ (9.1)
865
+ commutes for any g1, g2, g3 ∈ G (cf. e.g. [Del97]). An action is strict if the coherence data consists
866
+ of identities.
867
+ Let C be a category equipped with an action of a finite group G. The following definition is taken
868
+ from [Sos12]:
869
+ Definition 9.1 ([Sos12, Definition 3.1]). A linearization of A ∈ ob(C) is a family (ρg)g∈G of isomor-
870
+ phisms ρg : A
871
+ ∼−→ g∗A such that the diagram
872
+ A
873
+ (g1)∗A
874
+ (g1g2)∗A
875
+
876
+ ρg1
877
+ �❄
878
+
879
+
880
+
881
+
882
+
883
+
884
+
885
+
886
+
887
+
888
+
889
+ ρg1g2
890
+ �✤✤✤✤✤✤✤✤
891
+ cg1,g2◦(g1)∗(ρg2)
892
+ (9.2)
893
+ commutes for any g1, g2 ∈ G. An equivariant object is an object equipped with a linearization. A
894
+ morphism of equivariant objects from (A, (ρg)g∈G) to (A′, (ρ′
895
+ g)g∈G) is a morphism φ: A → A′ such
896
+ that the diagram commute
897
+ A
898
+ φ
899
+ −−−→
900
+ A′
901
+ ρg
902
+ �
903
+ ρ′
904
+ g
905
+ �
906
+ g∗A
907
+ g∗φ
908
+ −−−→ g∗A′
909
+ (9.3)
910
+ commutes.
911
+ The category of G-equivariant objects in C will be denoted by CG. For the rest of this paper and
912
+ unless otherwise specified, we will assume that C is a C-linear category and weak actions consists of
913
+ C-linear functors.
914
+ Propositon 9.2 ([Sos12, Proposition 3.2]). If C is abelian, then so is CG.
915
+ We extend the above constructions to twisted group actions. Let φ be a second cocycle of G with
916
+ values in C∗.
917
+ 10
918
+
919
+ Definition 9.3. A φ-twisted linearization of A ∈ ob(C) is a family (ρg)g∈G of isomorphisms ρg : A
920
+ ∼−→
921
+ g∗A such that the diagram
922
+ A
923
+ (g1)∗A
924
+ (g1g2)∗A
925
+
926
+ ρg1
927
+ �❄
928
+
929
+
930
+
931
+
932
+
933
+
934
+
935
+
936
+
937
+ ���
938
+
939
+ φ(g1,g2)ρg1g2
940
+ �✤✤✤✤✤✤✤✤
941
+ cg1,g2◦(g1)∗(ρg2)
942
+ (9.4)
943
+ commutes for any g1, g2 ∈ G. Morphisms of φ-twisted equivariant objects are defined in the same
944
+ way as in CG.
945
+ A φ-twisted linearization of A ∈ ob(C) is equivalent to a linearization of A for G-action {ρg}g∈G
946
+ equipped with a coherence data (φ(g1, g2)−1cg1,g2)g1,g2∈G. The category of φ-twisted equivariant ob-
947
+ jects will be denoted by CG,φ. The cocycle condition on φ ensures the equality of
948
+ ρg3 ◦ ρg2 ◦ ρg1 = ρg3 ◦ (φ(g1, g2)ρg1g2) = φ(g1, g2)φ(g1g2, g3)ρg1g2g3
949
+ (9.5)
950
+ and
951
+ ρg3 ◦ ρg2 ◦ ρg1 = (φ(g2, g3)ρg2g3) ◦ ρg1 = φ(g2, g3)φ(g1, g2g3)ρg1g2g3,
952
+ (9.6)
953
+ where we have omitted (g1)∗ and so on. If a pair of cocycles φ and φ′ differ by the coboundary of
954
+ α ∈ C1(G, C∗), then there exists an equivalence CG,φ → CG,φ′ sending (A, (ρg)g∈G) to (A, (α(g)ρg)g∈G).
955
+ Explanations of relations between group cohomology of G in low degrees and (weak) G-actions are
956
+ found in [BO20].
957
+ Corollary 9.4 below is obtained by applying Proposition 9.2 to the G-action equipped with a
958
+ coherence data (φ(g1, g2)−1cg1,g2)g1,g2∈G:
959
+ Corollary 9.4. If C is abelian, then so is CG,φ.
960
+ By applying the free-forgetful adjunction
961
+ Free ⊣ Forget
962
+ (9.7)
963
+ between
964
+ Free: C → CG,φ,
965
+ A �→
966
+
967
+ �
968
+ g′∈G
969
+ (g′)∗A,
970
+
971
+ ρg :=
972
+
973
+ g′∈G
974
+ φ(g, g′) (id: (gg′)∗A → g∗(g′)∗A)
975
+
976
+ g∈G
977
+
978
+
979
+ (9.8)
980
+ and
981
+ Forget: CG,φ → C,
982
+ (A, (ρg)g∈G) �→ A
983
+ (9.9)
984
+ to the opposite categories and using the equivalence (CG,φ)op ≃ (Cop)G,φ−1, one obtains an adjunction
985
+ Forget ⊣ Free .
986
+ (9.10)
987
+ For any (A, (ρg)g∈G), (A′, (ρ′
988
+ g)g∈G) ∈ CG,φ, the space HomC(A, A′) comes with a natural linear action
989
+ of G in such a way that the diagram
990
+ A
991
+ χ
992
+ −−−→
993
+ A′
994
+ ρg
995
+ �
996
+ ρ′
997
+ g
998
+ �
999
+ g∗A
1000
+ g∗(χ·g)
1001
+ −−−−→ g∗A′
1002
+ (9.11)
1003
+ 11
1004
+
1005
+ commutes since
1006
+ χ · g1 · g2 = ((g1∗)−1(ρ′
1007
+ g1 ◦ χ ◦ ρ−1
1008
+ g1 )) · g2
1009
+ (9.12)
1010
+ = (g2∗)−1(ρ′
1011
+ g2 ◦ ((g1∗)−1(ρ′
1012
+ g1 ◦ χ ◦ ρ−1
1013
+ g1 )) ◦ ρ−1
1014
+ g2 ))
1015
+ (9.13)
1016
+ = (g2∗)−1(g1∗)−1(g1∗ρ′
1017
+ g2 ◦ (ρ′
1018
+ g1 ◦ χ ◦ ρ−1
1019
+ g1 ) ◦ g1∗ρ−1
1020
+ g2 )
1021
+ (9.14)
1022
+ = ((g1g2)∗)−1((φ(g1, g2)ρ′
1023
+ g1g2) ◦ χ ◦ (φ(g1, g2)ρg1g2)−1)
1024
+ (9.15)
1025
+ = χ · g1g2.
1026
+ (9.16)
1027
+ It follows from the definition that
1028
+ HomCG((A, (ρg)g∈G), (A′, (ρ′
1029
+ g)g∈G)) = HomC(A, A′)G.
1030
+ (9.17)
1031
+ A functor Φ: C → C′ between categories with G-actions is said to be G-equivariant if it is equipped
1032
+ with a family (ag)g∈G of natural isomorphisms ag : Φ ◦ g∗
1033
+ ∼−→ g∗ ◦ Φ of functors such that the diagram
1034
+ Φ ◦ (g1)∗ ◦ (g2)∗
1035
+ (g1)∗ ◦ Φ ◦ (g2)∗
1036
+ (g1)∗ ◦ (g2)∗ ◦ Φ
1037
+ Φ ◦ (g1g2)∗
1038
+ (g1g2)∗ ◦ Φ
1039
+
1040
+ ag1
1041
+ �✤✤✤✤✤✤✤✤
1042
+ cg1,g2
1043
+
1044
+ ag2
1045
+ �♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
1046
+ cg1,g2
1047
+
1048
+ ag1g2
1049
+ (9.18)
1050
+ commutes. A G-equivariant functor Φ: C → C′ induces a functor ΦG,φ : CG,Φ → C′G,φ sending an
1051
+ object (A, (ρg)g∈G) to (Φ(A), (ag ◦ Φ(ρg))g∈G) and a morphism f : (A, (ρg)g∈G) → (A′, (ρ′
1052
+ g)g∈G) to
1053
+ Φ(f): Φ(A) → Φ(A′). It is straightforward to show that ΦG,φ send G-equivariant objects to G-
1054
+ equivariant objects.
1055
+ Propositon 9.5. If Φ is right (resp. left) exact, then so is ΦG,φ.
1056
+ Proof. Since Free and Forget are mutually both left and right adjoint to each other, they are exact,
1057
+ so that a sequence A → B → C in CG,φ is exact if and only if Forget(A) → Forget(B) → Forget(C)
1058
+ is exact in C.
1059
+
1060
+ Now we discuss the derived category of CG,φ.
1061
+ Propositon 9.6. An object (I, (ρg)g∈G) ∈ ob(CG,φ) is injective if and only if so is I ∈ ob(C). The
1062
+ category CG,φ has enough injectives if and only if so is C.
1063
+ Proof. If I is injective, then the functor
1064
+ A �→ HomCG,φ(A, (I, (ρg))) = HomC(Forget(A), I)G
1065
+ (9.19)
1066
+ is exact, since Forget is exact, I is injective, and taking the G-invariant part is exact.
1067
+ Conversely, if (I, (ρg)) is injective, then the functor
1068
+ A �→ HomC(A, I) ∼= HomCG,φ(Free(A), (I, (ρg)))
1069
+ (9.20)
1070
+ is exact.
1071
+ Let (A, (ρg)g) be an object in CG,φ. If C has enough injectives, then a monomorphism A → I into
1072
+ an injective object I ∈ ob(C) gives a monomorphism A → Free I into Free I, which is injective in
1073
+ CG,φ.
1074
+ Conversely, if CG,φ has enough injectives, then for any A ∈ ob(C), a monomorphism Free A → I
1075
+ into an injective I ∈ ob(CG,φ) gives a monomorphism A → Forget I into an injective Forget I.
1076
+
1077
+ Assume that C has enough injectives. For any pair A, B ∈ ob(D+(CG,φ)) of objects, the space
1078
+ Hom(Forget(A), Forget(B)) has a natural G-action in such a way that
1079
+ Hom(A, B) ∼= Hom(Forget(A), Forget(B))G.
1080
+ (9.21)
1081
+ Propositon 9.7. If Db(C) is Calabi–Yau of dimension n, then so is Db(CG,φ).
1082
+ 12
1083
+
1084
+ Proof. There exists a natural isomorphism
1085
+ HomDb(C)(A, B) ∼= HomDb(C)(B, A[n])∗
1086
+ (9.22)
1087
+ for A, B ∈ ob(Db(CG,φ)), since Db(C) is Calabi–Yau of dimension n.
1088
+ It is G-equivariant by the
1089
+ naturality, so it induces an isomorphism on G-invariant part.
1090
+ This means that Db(CG,φ) is also
1091
+ Calabi–Yau of dimension n by (9.21).
1092
+
1093
+ A G-equivariant left exact functor Φ: C → C′ induces functors RΦ: D+(C) → D+(C′) and
1094
+ RΦG,φ : D+(CG,φ) → D+(C′G,φ). If RΦ is fully faithful, then so is RΦG,φ by (9.21).
1095
+ 10. Group actions on coherent sheaves
1096
+ An action of a finite group G on a complex manifold Z induces a strict G-action (R∗
1097
+ g)g∈G on coh Z.
1098
+ In the case of the ˆK-action on ˆY , one obtains (coh ˆY ) ˆ
1099
+ K,λ ≃ coh ˆXλ.
1100
+ Another example of a finite group action on the category of coherent sheaves comes from a coherent
1101
+ injection from a finite abelian group G to the Picard group Pic0 Z of a complex manifold Z, i.e., a
1102
+ family {Lg}g∈G of line bundles and a family (mg1,g2)g1,g2∈G of isomorphisms mg1,g2 : Lg1 ⊗Lg2
1103
+ ∼−→ Lg1g2
1104
+ such that the diagrams
1105
+ Lg1 ⊗ Lg2 ⊗ Lg3
1106
+ mg1,g2⊗id
1107
+ −−−−−−→ Lg1g2 ⊗ Lg3
1108
+ id ⊗mg2,g3
1109
+ �
1110
+ mg1g2,g3
1111
+ �
1112
+ Lg1 ⊗ Lg2g3
1113
+ mg1,g2g3
1114
+ −−−−−→
1115
+ Lg1g2g3
1116
+ (10.1)
1117
+ Lg1 ⊗ Lg2
1118
+ Lg1g2
1119
+ Lg2 ⊗ Lg1
1120
+
1121
+ mg1,g2
1122
+
1123
+ �t
1124
+ t
1125
+ t
1126
+ t
1127
+ t
1128
+ t
1129
+ t
1130
+ t
1131
+ t
1132
+ t
1133
+ t
1134
+ mg2,g1
1135
+ (10.2)
1136
+ commutes, inducing a G-action
1137
+
1138
+ (−) ⊗ L−1
1139
+ g )
1140
+
1141
+ g∈G on coh Z. Here, the vertical arrow in (10.2) comes
1142
+ from the canonical symmetric monoidal structure in coh Z. If Z is compact and connected, then one
1143
+ has Aut L = C∗ for any line bundle L, and an example of a coherence data (mg1,g2)g1,g2∈G comes from
1144
+ a choice of a collection (ϕg)g∈G of linear isomorphisms ϕ: (Lg)z
1145
+ ∼−→ C from the fibers (Lg)z of Lg at
1146
+ an arbitrarily chosen and fixed base point z ∈ Z to the complex line.
1147
+ A φ-twisted G-linearization (ρg)g∈G of M is equivalent to a family (mg)g∈G of morphisms
1148
+ mg = (g∗)−1ρg : M ⊗ Lg → M
1149
+ (10.3)
1150
+ such that diagram
1151
+ M ⊗ Lg1 ⊗ Lg2
1152
+ M ⊗ Lg2
1153
+ M
1154
+
1155
+ mg1
1156
+ �❖
1157
+
1158
+
1159
+
1160
+
1161
+
1162
+
1163
+
1164
+
1165
+
1166
+
1167
+
1168
+
1169
+
1170
+
1171
+
1172
+ φ(g1,g2)mg1g2
1173
+ �✤✤✤✤✤✤✤
1174
+ mg2
1175
+ (10.4)
1176
+ commutes. The category (coh Z)G,φ is equivalent to coh Aφ, where Aφ is the sheaf of OZ-algebras ob-
1177
+ tained as the OZ-module �
1178
+ g∈G Lg equipped with the multiplication given by �
1179
+ g1,g2∈G φ(g1, g2)mg1,g2.
1180
+ If φ = 1, Aφ is commutative by the commutativity of (10.2). In particular, coh Xλ is equivalent to
1181
+ (coh Y ) ˆ
1182
+ K,λ. By Proposition 9.7, Db(Xλ) is Calabi–Yau of dimension g and Db(Xλ× ˆX) is Calabi–Yau
1183
+ of dimension 2g, which were needed to prove that FM−1
1184
+ λ
1185
+ is right adjoint to FMλ.
1186
+ 13
1187
+
1188
+ 11. Proof of Theorem 8.1
1189
+ Functors FMλ and FMQ are the right derived functors of functors
1190
+ FMab
1191
+ λ : coh ˆXλ → coh Xλ
1192
+ (11.1)
1193
+ M �→ (pY, ˆ
1194
+ X)∗((qY, ˆY )∗M ⊗OY × ˆY Pλ)
1195
+ (11.2)
1196
+ and
1197
+ FMab
1198
+ Q : coh ˆY → coh Y
1199
+ (11.3)
1200
+ M �→ (pY, ˆY )∗((qY, ˆY )∗M ⊗OY × ˆ
1201
+ Y Q)
1202
+ (11.4)
1203
+ of abelian categories.
1204
+ Since
1205
+ FMab
1206
+ Q (R∗
1207
+ ˆyM) = (pY, ˆY )∗((qY, ˆY )∗R∗
1208
+ ˆyM ⊗ Q)
1209
+ (11.5)
1210
+ ∼= (pY, ˆY )∗R∗
1211
+ (1,ˆy−1)((qY, ˆY )∗R∗
1212
+ ˆyM ⊗ Q)
1213
+ (11.6)
1214
+ ∼= (pY, ˆY )∗((qY, ˆY )∗M ⊗ R∗
1215
+ (1,ˆy−1)Q)
1216
+ (11.7)
1217
+ ∼= (pY, ˆY )∗((qY, ˆY )∗M ⊗ Q ⊗ (pY, ˆY )∗L−1
1218
+ ˆy )
1219
+ (11.8)
1220
+ ∼= (pY, ˆY )∗((qY, ˆY )∗M ⊗ Q) ⊗ L−1
1221
+ ˆy
1222
+ (11.9)
1223
+ = FMab
1224
+ Q (M) ⊗ L−1
1225
+ ˆy ,
1226
+ (11.10)
1227
+ for any ˆy ∈ ˆK and M ∈ ob(coh ˆY ), FMab
1228
+ Q commutes with the weak ˆK-action. The commutativity
1229
+ of the diagram (9.18) in this case is a straightforward diagram chasing. This turns FMab
1230
+ Q into a
1231
+ ˆK-equivariant functor, inducing a functor
1232
+ (FMab
1233
+ Q )
1234
+ ˆ
1235
+ K,λ: coh ˆXλ → coh Xλ.
1236
+ (11.11)
1237
+ Lemma 11.1. The functor (FMab
1238
+ Q ) ˆ
1239
+ K,λ is isomorphic to FMab
1240
+ λ .
1241
+ Proof. The squares on the left and the right of the diagram
1242
+ (coh ˆY ) ˆ
1243
+ K,λ
1244
+ ((qY, ˆ
1245
+ Y )∗) ˆ
1246
+ K,λ
1247
+
1248
+
1249
+ (coh(Y × ˆY )) ˆ
1250
+ K,λ (π∗(−⊗Q)) ˆ
1251
+ K,λ
1252
+
1253
+
1254
+ (coh(Y × ˆX)) ˆ
1255
+ K,λ ((pY, ˆ
1256
+ X)∗) ˆ
1257
+ K,λ
1258
+
1259
+
1260
+ (coh Y ) ˆ
1261
+ K,λ
1262
+
1263
+ coh ˆXλ
1264
+ (qY, ˆ
1265
+ Y )∗
1266
+ � coh(Y × ˆXλ)
1267
+ −⊗Pλ
1268
+ � coh(Xλ × ˆX)
1269
+ (pY, ˆ
1270
+ X)∗
1271
+ � coh ˆXλ
1272
+ commute by definition, and the natural isomorphism
1273
+ ⊕ˆy′∈ ˆ
1274
+ Kρ−1
1275
+ ˆy′ ⊗ id:
1276
+
1277
+ ˆy′∈ ˆ
1278
+ K
1279
+ R∗
1280
+ (1,ˆy′)(M ⊗OY × ˆY Q) →
1281
+
1282
+ ˆy′∈ ˆ
1283
+ K
1284
+ M ⊗OY × ˆY R∗
1285
+ (1,ˆy′)Q,
1286
+ (11.12)
1287
+ whose ˆK-equivariance can be checked by a straightforward computation, gives the commutativity of
1288
+ the square in the middle.
1289
+
1290
+ Therefore R(FMab
1291
+ Q ) ˆ
1292
+ K,λ and FMλ are isomorphic. Hence FMλ is fully faithful as explained at the
1293
+ end of Section 9. Similarly, the right adjoint FM−1
1294
+ λ
1295
+ of FMλ, whose kernel is given by the g-shift of
1296
+ (8.10), is also fully faithful, and Theorem 8.1 is proved.
1297
+ 14
1298
+
1299
+ References
1300
+ [BBBP07] O. Ben-Bassat, J. Block, and T. Pantev, Non-commutative tori and Fourier-Mukai duality, Compos. Math.
1301
+ 143 (2007), no. 2, 423–475. MR 2309993 1, 4
1302
+ [Blo]
1303
+ Jonathan Block, Duality and equivalence of module categories in noncommutative geometry II: Mukai du-
1304
+ ality for holomorphic noncommutative tori, arXiv:math/0604296. 1, 2
1305
+ [Blo10]
1306
+ , Duality and equivalence of module categories in noncommutative geometry, A celebration of the
1307
+ mathematical legacy of Raoul Bott, CRM Proc. Lecture Notes, vol. 50, Amer. Math. Soc., Providence, RI,
1308
+ 2010, pp. 311–339. MR 2648899 1
1309
+ [BO20]
1310
+ Thorsten Beckmann and Georg Oberdieck, On equivariant derived categories, arxiv:2006.13626v2, 2020. 11
1311
+ [Con94]
1312
+ Alain Connes, Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994. MR 1303779 1
1313
+ [Del97]
1314
+ P. Deligne, Action du groupe des tresses sur une cat´egorie, Invent. Math. 128 (1997), no. 1, 159–175.
1315
+ MR 1437497 10
1316
+ [Muk81]
1317
+ Shigeru Mukai, Duality between D(X) and D( ˆX) with its application to Picard sheaves, Nagoya Math. J.
1318
+ 81 (1981), 153–175. MR 607081 1, 4
1319
+ [PS03]
1320
+ A. Polishchuk and A. Schwarz, Categories of holomorphic vector bundles on noncommutative two-tori,
1321
+ Comm. Math. Phys. 236 (2003), no. 1, 135–159. MR 1977884 1, 2
1322
+ [Rie81]
1323
+ Marc A. Rieffel, C∗-algebras associated with irrational rotations, Pacific J. Math. 93 (1981), no. 2, 415–429.
1324
+ MR 623572 1
1325
+ [Sch01]
1326
+ Albert Schwarz, Theta functions on noncommutative tori, Lett. Math. Phys. 58 (2001), no. 1, 81–90.
1327
+ MR 1865115 1, 2
1328
+ [Soi09]
1329
+ Y. Soibelman, On non-commutative analytic spaces over non-Archimedean fields, Homological mirror sym-
1330
+ metry, Lecture Notes in Phys., vol. 757, Springer, Berlin, 2009, pp. 221–247. MR 2596639 2
1331
+ [Sos12]
1332
+ Pawel Sosna, Linearisations of triangulated categories with respect to finite group actions, Math. Res. Lett.
1333
+ 19 (2012), no. 5, 1007–1020. MR 3039826 2, 10
1334
+ [Tay02]
1335
+ Joseph L. Taylor, Several complex variables with connections to algebraic geometry and Lie groups, Graduate
1336
+ Studies in Mathematics, vol. 46, American Mathematical Society, Providence, RI, 2002. MR 1900941 5
1337
+ [Tod09]
1338
+ Yukinobu Toda, Deformations and Fourier-Mukai transforms, J. Differential Geom. 81 (2009), no. 1, 197–
1339
+ 224. MR 2477894 1
1340
+ Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku,
1341
+ Tokyo, 153-8914, Japan.
1342
+ Email address: hiokuc8h18@gmail.com
1343
+ 15
1344
+
4NE2T4oBgHgl3EQfOQYe/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
4dE2T4oBgHgl3EQfjwe5/content/2301.03972v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:782760ab5b7a7b4e244539c5814686366eb5e6bd4befe4128f96e8b334b68290
3
+ size 941775
4dE2T4oBgHgl3EQfjwe5/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05932f185a9994aeb5a733eef2887eb3adb178f7941be27e118a54ad81e795f7
3
+ size 4390957
4dE2T4oBgHgl3EQfjwe5/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4a0e58e406b25482248f30621d20c479a4e75ede141ffdd4729a1bca3e18af7
3
+ size 178035
59AzT4oBgHgl3EQff_xu/content/tmp_files/2301.01461v1.pdf.txt ADDED
@@ -0,0 +1,2241 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ A Novel Koopman-Inspired Method for the Secondary
2
+ Control of Microgrids with Grid-Forming and
3
+ Grid-Following Sources
4
+ Xun Gong, Xiaozhe Wang∗
5
+ Department of Electrical and Computer Engineering, McGill University, 3480 Rue
6
+ University, Montreal,H3A 0E9, Quebec, Canada
7
+ Abstract
8
+ This paper proposes an online data-driven Koopman-inspired identification and
9
+ control method for microgrid secondary voltage and frequency control. Unlike
10
+ typical data-driven methods, the proposed method requires no warm-up train-
11
+ ing yet with guaranteed bounded-input-bounded-output (BIBO) stability and
12
+ even asymptotic stability under some mild conditions. The proposed method
13
+ estimates the Koopman state space model adaptively so as to perform effective
14
+ secondary voltage and frequency control that can handle microgrid nonlinearity
15
+ and uncertainty. Case studies in the 4-bus and 13-bus microgrid test systems
16
+ (with grid-forming and grid-following sources) demonstrate the effectiveness and
17
+ robustness of the proposed identification and control method subject to the
18
+ change of operating conditions and large disturbances (e.g., microgrid mode
19
+ transitions, generation/load variations) even with measurement noises and time
20
+ delays.
21
+ Keywords:
22
+ data-driven control, adaptive Koopman-inspired identification,
23
+ microgrid secondary control, grid-forming, grid-following, Koopman operator
24
+ control, observer Kalman filter identification
25
+ 1. Introduction
26
+ The microgrids (MGs) are small local grids that can disconnect from the
27
+ bulk grid to operate independently. The MGs facilitate the integration of sus-
28
+ tainable distributed energy resources (DERs) like wind, solar as well as energy
29
+ storage. Nonetheless, the DERs are interfaced with microgrids by power con-
30
+ verters, making MGs low-inertia or even inertia-less [1, 2]. In addition, MGs
31
+ are characterized by frequency-voltage dependence due to low X/R ratios as
32
+ ∗Corresponding author
33
+ 1This work was supported by the Fonds de Recherche du Quebec-Nature et technologies
34
+ under Grant FRQ-NT PR-298827 and NSERC ALLRP 571554 - 21.
35
+ Preprint submitted to Applied Energy
36
+ January 5, 2023
37
+ arXiv:2301.01461v1 [cs.SY] 4 Jan 2023
38
+
39
+ opposed to conventional power systems [2, 3]. Therefore, the frequency and
40
+ voltage of MGs tend to experience coupled large deviations subject to volatile
41
+ operation conditions of generation and load, transitions between islanded and
42
+ grid-connected modes, etc.
43
+ The hierarchical control is commonly adopted to maintain the MG’s voltage
44
+ and frequency stability. The hierarchical control includes primary control at
45
+ the individual DER level, and secondary/tertiary control at the systemwide
46
+ level. Even though the droop-based primary control at individual DERs can
47
+ coordinate the power of DERs in a decentralized manner and improve the local
48
+ stability, the frequency and voltage deviation at the system level may not be
49
+ eliminated by merely using primary control [4]. The system stability may even
50
+ be compromised when the droop gains are improperly designed to high values
51
+ [5].
52
+ Hence, the secondary control is essential to achieve stable voltage and
53
+ frequency restoration.
54
+ The scope of the paper lies in the secondary control, aiming to restore fre-
55
+ quency and voltage for islanded MGs under larger disturbances or MGs in mode
56
+ transitions(e.g., from grid-connected to islanded).
57
+ The secondary control of
58
+ MGs can be classified as model-based and model-free. There have been many
59
+ research papers on model-based control. For example, the small-signal models
60
+ have been used in [3, 6] to regulate droop gains and improve the systemwide
61
+ small-signal stability. To handle large disturbance, multi-agent distributed co-
62
+ operative control with feedback linearization was proposed in [7, 8] to deal with
63
+ the nonlinearity.
64
+ Despite advancement, all the aforementioned methods rely
65
+ heavily on accurate physical models that may not always be available to MG
66
+ operators due to time-varying topologies and operating conditions, as well as
67
+ high uncertainty introduced by volatile renewables.
68
+ To relax the pre-knowledge of accurate models, researchers have designed
69
+ various model-free control methods. A common model-free method is Propor-
70
+ tional and Integral (PI) control [4, 9, 10], which nevertheless may lack online
71
+ adaptiveness to compensate for uncertainty. Besides, the MG may suffer from
72
+ high starting overshoot, high sensitivity to controller gains, and sluggish re-
73
+ sponse to disturbances if the PI control is not properly tuned [9].
74
+ Another
75
+ category of MG secondary control method is the averaging/consensus-based
76
+ secondary droop control [11–13] that targets on accurate power sharing in quasi
77
+ steady-state rather than voltage and frequency stability under large distur-
78
+ bances.
79
+ To improve systemwide voltage and frequency stability under both
80
+ small and big disturbances, machine learning based methods were proposed
81
+ [9, 14–18] for secondary voltage and frequency control. However, the universal
82
+ learning machines such as artificial neural network (ANN) and reinforcement
83
+ learning (RL) may lack physical interpretability and thus reliability of repre-
84
+ senting the system’s dynamics in diverse topologies and operating conditions.
85
+ Obtaining adequate offline training data that can sufficiently represent the sys-
86
+ tem dynamics is challenging too.
87
+ Moreover, individual DERs can be either controllable (e.g., energy storage
88
+ systems (ESSs), renewable energy with ESSs), or non-controllable (e.g., renew-
89
+ able generation operating under maximum power point tracking (MPPT)) at the
90
+ 2
91
+
92
+ secondary level. They possess diverse modes of primary control (e.g., conven-
93
+ tional isochronous grid-forming, power-based grid-forming and grid-following).
94
+ The resulting model complexity may affect the performance of the secondary
95
+ control. Yet all the aforementioned works (both model-based and model-free)
96
+ on secondary voltage and frequency control assume that all DERs in islanded
97
+ MGs work under the grid-forming or voltage control mode [5, 7–10, 15–17, 19].
98
+ However, in existing MGs, the mix of grid-forming and grid-following control
99
+ with diverse control structures and parameters introduces uncertainty that chal-
100
+ lenges MG secondary control. Particularly, when large disturbances occur, the
101
+ interaction among diverse grid-forming and grid-following converters and the
102
+ dynamics of the affiliated phasor-locked loops (PLLs) may deteriorate the sys-
103
+ tem stability and control performance.
104
+ In this paper, we propose a new data-driven secondary voltage and frequency
105
+ control method for MGs with both grid-forming and grid-following DERs. The
106
+ method is able to handle MG nonlinearity and uncertainty (e.g., MG mode
107
+ transitions from grid-connected to islanded, generation and load variations)
108
+ in an adaptive data-driven fashion. The proposed method requires no offline
109
+ training and uses only a small window of phasor angle and voltage data from
110
+ synchrophasors (e.g., micoPMUs) at the DER output ends. In the proposed
111
+ method, Koopman operator theory [20] is leveraged to convert the nonlinear
112
+ dynamical system into a linear one under Koopman embedding mapping. As
113
+ such, the system can be identified and controlled with mature and powerful
114
+ linear system techniques. Particularly, we tailor the OKID (Observer Kalman-
115
+ filter IDentification)-based algorithm so that the Koopman-based linear dynam-
116
+ ical system can be identified optimally. Then, the discrete-time linear quadratic
117
+ regulator (LQR) is applied to the identified Koopman-based linear dynamical
118
+ system with well-characterized stability properties. It is noteworthy that M.
119
+ Korda et al [21] utilized Koopman operator control for power system transient
120
+ stability and control, while the method required offline training data. Besides,
121
+ the identification based on the brute-force least-squares estimation, could lead
122
+ to unsatisfactory identification results. Gong et al [22] presented a combined ap-
123
+ plication of the Koopman operator and identification method for MG secondary
124
+ control. However, the method assumes that the droop parameters of DERs are
125
+ known by the secondary controller, whereby the control matrix in the Koopman
126
+ state space can be directly obtained. In this paper, we lift the assumption that
127
+ the local control mechanism and parameters are fully unknown. In short, the
128
+ advantages of the proposed method are summarized as below:
129
+ (i) The proposed Koopman-inspired enhanced OKID method can help identify
130
+ the system dynamics accurately and adaptively due to the capacity of dealing
131
+ with nonlinearity and uncertainty under large disturbances.
132
+ (ii) The proposed Koopman-inspired identification and control method is purely
133
+ data-driven using only a small window of synchrophasor data. It requires no
134
+ knowledge of network information and primary controllers, and no offline train-
135
+ ing.
136
+ (iii) The MG system with the proposed Koopman-inspired identification and
137
+ control is guaranteed to be bounded-input-bounded-output (BIBO) stable. On
138
+ 3
139
+
140
+ Figure 1: Microgrid control architecture
141
+ top of the BIBO stability, the sufficient condition under which the MG system
142
+ is asymptotically stable is also developed.
143
+ (iv) The proposed control method is robust to measurement noises and time
144
+ delays as tested in numerical studies.
145
+ The remainder of the paper is organized as follows: Section II describes
146
+ the MG hierarchical control and the interfaces between secondary and primary
147
+ control. Section III details the proposed Koopman-inspired identification and
148
+ control method.
149
+ Section IV presents case studies for validation.
150
+ Section V
151
+ concludes the paper.
152
+ 2. Microgrid System Description
153
+ A MG can be controlled hierarchically with the secondary and primary con-
154
+ trol as shown in Fig. 1. The primary controllers enable fast response of the
155
+ individual DERs to guarantee local stability, while the secondary controller
156
+ globally dictates the primary controllers of controllable DERs according to the
157
+ data collected from microPMUs, whereby the systemwide interaction dynamics
158
+ of MGs can be handled and the voltage and frequency can be restored.
159
+ The local primary control modes can be different, such as grid-forming or
160
+ grid-following [23]. In an islanded MG or future power system without syn-
161
+ chronous generators, at least one DER is required to work under the grid-forming
162
+ mode to actively form the grid voltage and frequency; then the rest of DERs can
163
+ remain operating under the grid-following modes [23]. As discussed in [24, 25],
164
+ grid-forming DERs define the voltage magnitude and frequency. In contrast,
165
+ grid-following DERs follow the measured frequency and voltage magnitude in
166
+ the grid via PLL, which represents the prevalent type of control strategy for
167
+ grid-connected PV and wind converters in existing power grids. As droop is
168
+ commonly used in MGs, we consider the droop-based grid-forming [26, 27] and
169
+ 4
170
+
171
+ Control Command
172
+ Microgrid Node/Bus
173
+ Measurement Data Sensing
174
+ Microgrid Distribution Line
175
+ Microgrid Network
176
+ Secondary Control
177
+ Primary
178
+ Control
179
+ Control Center
180
+ DER 1
181
+ Adaptive Online
182
+ MicroPMUData
183
+ Identification
184
+ Real-Time
185
+ MicroPMU
186
+ Control
187
+ Cvber
188
+ Data
189
+ Algorithms
190
+ Network
191
+ DER 2
192
+ Primary
193
+ Control
194
+ Primary
195
+ Control
196
+ MicroPMUDatainverse-droop-based grid-following control [28]. Specifically, consider a DER at
197
+ the bus i. As shown in Fig. 2(a), the droop for grid-forming converter control
198
+ is defined as:
199
+ Droop :
200
+ � ωi − ω∗
201
+ i
202
+ Vi − V ∗
203
+ i
204
+
205
+ =
206
+ � −σω(Pi − P ∗
207
+ i )
208
+ −σV (Qi − Q∗
209
+ i )
210
+
211
+ (1)
212
+ where ωi and Vi denote the frequency and voltage magnitude for the grid-
213
+ forming control. ω∗
214
+ i and V ∗
215
+ i are the rated frequency and voltage. The parameters
216
+ σω and σV are frequency and voltage droop gains, respectively. P ∗
217
+ i and Q∗
218
+ i are
219
+ the reference power in the droop, which can be the steady-state power without
220
+ the secondary control or an augmented reference power after the secondary
221
+ control. Pi and Qi are the active and reactive power, which are measured with
222
+ a low-pass filter embedded in the power measurement block in Fig. 2. The filter
223
+ is in the form of [29, 30]:
224
+ Pi =
225
+ 1
226
+ Tfs + 1P (IN)
227
+ i
228
+ ,
229
+ Qi =
230
+ 1
231
+ Tfs + 1Q(IN)
232
+ i
233
+ (2)
234
+ where Tf is the time constant of the first-order low-pass filter; P (IN)
235
+ i
236
+ and Q(IN)
237
+ i
238
+ represent the active and reactive power before filtering. Generally, the filter is
239
+ required to attenuate high-frequency dynamics (e.g., harmonics) and preserve
240
+ low-frequency dynamics (e.g., sub-synchronous components which can be fur-
241
+ ther managed by secondary control). With the secondary control, the reference
242
+ power P ∗
243
+ i and Q∗
244
+ i of the droop in Fig. 2 was updated in discrete time as:
245
+ P ∗(+)
246
+ i
247
+ = P ∗
248
+ i + ∆P ∗
249
+ i ,
250
+ Q∗(+)
251
+ i
252
+ = Q∗
253
+ i + ∆Q∗
254
+ i
255
+ (3)
256
+ To distinguish P ∗
257
+ i and Q∗
258
+ i before and after secondary control, the superscription
259
+ (+) is added in Eq.(3) to denote the values of P ∗
260
+ i and Q∗
261
+ i after considering the
262
+ secondary control.
263
+ Similarly, if the DER at the bus i is grid-following as shown in Fig. 2(b),
264
+ the inverse droop control is defined as:
265
+ Inverse
266
+ Droop :
267
+ � ¯Pi
268
+ ¯Qi
269
+
270
+ =
271
+ � − 1
272
+ σω (ωi − ω∗
273
+ i )
274
+ − 1
275
+ σV (Vi − V ∗
276
+ i )
277
+
278
+ (4)
279
+ where ¯Pi and ¯Qi are the power generated by the inverse droop. The eventual real
280
+ power Pi and reactive power Qi sent to the grid-following control as references
281
+ are:
282
+ Pi = ¯Pi + P ∗
283
+ i ,
284
+ Qi = ¯Qi + Q∗
285
+ i
286
+ (5)
287
+ where P ∗
288
+ i and Q∗
289
+ i are reference power guided by the secondary control. In a
290
+ similar form to Eq. (3), P ∗
291
+ i and Q∗
292
+ i was updated in discrete time as: P ∗(+)
293
+ i
294
+ =
295
+ P ∗
296
+ i + ∆P ∗
297
+ i and Q∗(+)
298
+ i
299
+ = Q∗
300
+ i + ∆Q∗
301
+ i .
302
+ Consequently, the droop for grid-forming control and the inverse droop for
303
+ the grid-following control can be represented as:
304
+ Droop:
305
+ �ωi − ω∗
306
+ i
307
+ Vi − V ∗
308
+ i
309
+
310
+ =
311
+
312
+ −σω(Pi − P ∗(+)
313
+ i
314
+ )
315
+ −σV (Qi − Q∗(+)
316
+ i
317
+ )
318
+
319
+ =
320
+ �−σω(Pi − P ∗
321
+ i )
322
+ −σV (Qi − Q∗
323
+ i )
324
+
325
+ +
326
+ �σω
327
+ σV
328
+
329
+ ui, with ui =
330
+ �∆P ∗
331
+ i
332
+ ∆Q∗
333
+ i
334
+
335
+ (6a)
336
+ 5
337
+
338
+ (a)
339
+ (b)
340
+ Figure 2: Different primary control modes: (a) droop-based grid-forming control; (b) inverse-
341
+ droop-based grid-following control.
342
+ Inverse Droop:
343
+
344
+ Pi − P ∗(+)
345
+ i
346
+ Qi − Q∗(+)
347
+ i
348
+
349
+ =
350
+ �− 1
351
+ σω (ωi − ω∗
352
+ i )
353
+ − 1
354
+ σV (Vi − V ∗
355
+ i )
356
+
357
+
358
+ �ωi − ω∗
359
+ i
360
+ Vi − V ∗
361
+ i
362
+
363
+ =
364
+ �−σω(Pi − P ∗
365
+ i )
366
+ −σV (Qi − Q∗
367
+ i )
368
+
369
+ +
370
+ �σω
371
+ σV
372
+
373
+ ui
374
+ (6b)
375
+ According to (6a)-(6b), both the droop and the inverse droop take the same
376
+ form:
377
+ � ˙θi
378
+ ˙Vi
379
+
380
+ =
381
+ � −σω(Pi − P ∗
382
+ i )
383
+ − σV
384
+ τV (Qi − Q∗
385
+ i )
386
+
387
+ +
388
+ �σω
389
+ σV
390
+ τV
391
+
392
+ ui
393
+ (7)
394
+ where
395
+ ˙θi
396
+ =
397
+ ωi − ω∗
398
+ i
399
+ (8)
400
+ Pi
401
+ =
402
+ n
403
+
404
+ j=1
405
+ ViVj(Gij cos(θi − θj) + Bij sin(θi − θj))
406
+ (9)
407
+ Qi
408
+ =
409
+ n
410
+
411
+ j=1
412
+ ViVj(Gij cos(θi − θj) − Bij sin(θi − θj))
413
+ (10)
414
+ τV is the equivalent time constant of voltage magnitude dynamics due to the
415
+ grid-forming or the grid-following control loops, which can be treated as a first-
416
+ order inertia system when properly tuned; u denotes the external control inputs
417
+ due to secondary control; θ is the voltage phasor angle; j denotes the bus
418
+ number; Gij and Bij represent the equivalent conductance and susceptance
419
+ between bus i and j.
420
+ As shown in Fig. 2, the droop generates the voltage reference for the grid-
421
+ forming control system, and the inverse droop generates the power references
422
+ for the grid-following control system. Note that the grid-forming control based
423
+ on a PLL is adopted in this paper to mitigate negative impacts on systemwide
424
+ stability [26]. The dynamics of the grid-forming and grid-following loops are not
425
+ presented in detail but will be considered in all simulations presented in Section
426
+ 4. Interested readers are referred to [24, 27] for the detailed modeling.
427
+ Uncertainty from Grid-Forming Control: As the local converter control is
428
+ much faster than the secondary control, the voltage reference fed to grid-forming
429
+ control in Fig. 2(a) is approximately equal to ω and V assuming that the grid-
430
+ forming control loop is well tuned. Nonetheless, when large disturbances (e.g.,
431
+ 6
432
+
433
+ Primary
434
+ Power
435
+ io
436
+ Control I
437
+ Measurement
438
+ Droop
439
+ Local
440
+ 3
441
+ Vo
442
+ Grid-Forming
443
+ Bus
444
+ w = *-O(P- P*)
445
+ DER
446
+ V
447
+ V = V* - v(Q - Q*)
448
+ Control
449
+ p*Q* I Updated by Secondary ControlPrimary Control
450
+ Voltage Magnitude
451
+ Inverse droop
452
+ w*
453
+ Measurement
454
+ 30
455
+ w (estimated by PLL)
456
+ V*
457
+ 0
458
+ *A-
459
+ 7
460
+ 40
461
+ io
462
+ Local
463
+ P
464
+ Grid-Following
465
+ Bus
466
+ P=P+P*
467
+ Control
468
+ DER
469
+ Q
470
+ Q=Q +Q*
471
+ (with PLL)
472
+ p* 0*
473
+ Updated by Secondary ControlMG transitions from the grid-connected mode to the islanded mode, volatile
474
+ generation and load) occur that cause large power perturbations, the nonlin-
475
+ earity driven by the system power flows (8)-(10) and by the control interaction
476
+ between the droop module and the grid-forming control loops can emerge, thus
477
+ leading to modeling uncertainty in Eq. (7).
478
+ Uncertainty from Grid-Following Control: Likewise, the control interaction
479
+ between the inverse-droop module and the grid-following control loops may
480
+ emerge when there are system disturbances causing big perturbations to the
481
+ angle and voltage. In addition, when there are large disturbances or measure-
482
+ ment noises that make the grid voltage measurement distorted, the uncertainty
483
+ due to the PLL can also directly introduce the modeling error to Eq. (7) [31].
484
+ To describe the uncertainty from either the grid-forming or the grid-following
485
+ control, Eq. (7) can be modified as
486
+ � ˙θi
487
+ ˙Vi
488
+
489
+ =
490
+ � −σω(Pi − P ∗
491
+ i )
492
+ − σV
493
+ τV (Qi − Q∗)
494
+
495
+ +
496
+ �σω
497
+ σV
498
+ τV
499
+
500
+ ui +
501
+ �fω(P, Q, θ, V )
502
+ fV (P, Q, θ, V )
503
+
504
+ (11)
505
+ where fω(.) and fV (.) are unknown nonlinear functions to describe the residual
506
+ dynamics for the voltage phasor angle and magnitude.
507
+ The aforementioned nonlinearity and uncertainty pose challenges to the con-
508
+ ventional secondary control of MGs (e.g., model-based ones and PI) especially
509
+ under large disturbances. To address these challenges, we propose a Koopman-
510
+ inspired method that can help identify the system accurately and adaptively
511
+ using data despite nonlinearity and uncertainty such that effective control can
512
+ be designed.
513
+ 3. Koopman-Inspired Identification and Control
514
+ 3.1. Koopman Operator Theory
515
+ Koopman operator theory [20] shows that a nonlinear dynamical system can
516
+ be transformed into an infinite-dimensional linear system under a Koopman em-
517
+ bedding mapping. The Koopman-enabled linear model is valid for global non-
518
+ linearity with the infinite-dimensional representation as opposed to traditional
519
+ locally linearized small-signal models. However, in practice, one can consider
520
+ finite-dimensional Koopman invariant subspaces where dominant dynamics can
521
+ be described. Particularly, given a nonlinear dynamical system with external
522
+ control xk+1 = F(xk, uk), where x ∈ M and u ∈ U with M and U being the
523
+ manifolds of state and control input, we consider the Koopman embedding map-
524
+ ping Φ from the two manifolds to a new Hilbert space Φ : M×U → H, which lies
525
+ within the span of the eigenfunctions ϕj. That is, Φ(x, u) = �Nϕ
526
+ j=1 ϕj(x, u)vj,
527
+ where Φ(x, u) = [Φ1(x, u), Φ2(x, u), . . . , Φi(x, u), . . . , Φp(x, u)]T is a set of
528
+ Koopman observables, vj are the vector-valued coefficients called Koopman
529
+ modes.
530
+ The Koopman operator K, acting on the span of ϕj, advances the
531
+ embeddings Φ(x, u) linearly in the Hilbert space H as [20]:
532
+ Φ(xk+1, uk+1) = KΦ(xk, uk)
533
+ = K
534
+
535
+
536
+ j=1
537
+ ϕj(x, u)vj =
538
+
539
+
540
+ j=1
541
+ (ρjϕj(xk, uk)vj)
542
+ (12)
543
+ 7
544
+
545
+ where ρj are the eigenvalues satisfying Kϕj(x, u) = ρjϕj(x, u). To be con-
546
+ sistent with the linear form of control inputs in Eq.
547
+ (11), we assume that
548
+ Φi(x, u) = gi(x)+li(u) where gi(x) is a nonlinear observable function and li(u)
549
+ is linear with li(0) = 0 [32]. In addition, we assume Φi(xk+1, 0) = KΦi(xk, uk)
550
+ for all k. Then, gi(xk+1) + li(0) = Kgi(xk) + Kli(uk) ⇒ gi(xk+1) = Kgi(xk) +
551
+ Kli(uk). This assumption means that the Koopman operator is only attempt-
552
+ ing to propagate the observable functions at the current state xk and inputs
553
+ uk to the future observable functions on the state xk+1 but not on future in-
554
+ puts uk+1 (i.e., [∆P ∗, ∆Q∗]T are not state-dependent) [20].
555
+ Let us define
556
+ z := g(x) = [g1(x), g2(x), . . . , gi(x), . . . gp(x)]T . Then we have an approxima-
557
+ tion of Eq. (11) in a form of extended dynamic mode decomposition with control
558
+ (EDMDc) [32] as below
559
+ (Process
560
+ model)
561
+ zk+1 = Azk + Buk + δk
562
+ (13a)
563
+ (Observation
564
+ model)
565
+ yk = Czk + ek
566
+ (13b)
567
+ where yk are the outputs of the Koopman state space model.
568
+ We define
569
+ yk = [dθk, dVk]T = [θk − θ∗
570
+ L, Vk − V ∗
571
+ L]T in Eq. (13b) as the PMU-measured
572
+ phasor angle and voltage magnitude deviations from the local operation points
573
+ [θ∗
574
+ L, V ∗
575
+ L]T that are the first data sample from a window of collected PMU data.
576
+ A and B are the state transition matrix and control matrix, satisfying that
577
+ Azk = Kg(xk) and Buk = Kl(uk). δk is the Koopman modeling error associ-
578
+ ated with the EDMDc approximation. ek is the observation model error. Given
579
+ proper Koopman observables z, the Koopman state space model (13a)-(13b)
580
+ can describe large signal-driven nonlinear dynamics. That being said, under
581
+ the Koopman embedding z = g(x), the nonlinear dynamical system (11) can
582
+ be represented by the linear dynamical system (13a)-(13b) that is valid under
583
+ both small and large perturbations. There are three consecutive tasks to use
584
+ this model for control: determination of Koopman observables, online identifi-
585
+ cation of the Koopman state space model, and implementation of linear control
586
+ (illustrated in Sections 3.2, 3.3 and 3.4, respectively).
587
+ 3.2. Koopman Observables for MG Secondary Control
588
+ The selection of Koopman observables is important for realizing accurate
589
+ modeling.
590
+ The observables can be selected either empirically [21, 22, 33] or
591
+ with the help of machine learning techniques [34–36], while it remains an open
592
+ question to obtain the best possible observables.
593
+ In this paper, we selected
594
+ the Koopman observables based on our experience and domain knowledge of
595
+ power systems and microgrids. According to Eq. (7)-Eq. (10), sinusoidal-driven
596
+ interaction dynamics may emerge when subject to large perturbations and low
597
+ inertia (i.e., the general solution for the droop-control differential equations
598
+ contains trigonometric patterns). Inspired by this, we include the functions sin θ
599
+ and cos θ into the Koopman embedding to describe such underlying dynamics,
600
+ which were shown effective to describe interaction transients of power grids [21].
601
+ Thus, let us define the MG original states xk = [θk, Vk]T and the Koopman real-
602
+ valued observables zk = g(xk) as:
603
+ zk = g(xk) = [∆Vk, sin θk − sin(θ∗
604
+ L,k), cos θk − cos(θ∗
605
+ L,k), ∆ωk]T
606
+ (14)
607
+ 8
608
+
609
+ where ∆V and ∆ω are voltage and angular frequency deviations from the
610
+ nominal values. θ∗
611
+ L,k represents the approximate underlying operation point of
612
+ voltage phasor angle at time step k. The Koopman observables z constitute the
613
+ Koopman state space in the form of Eq. (13a)-Eq. (13b), where the parameter
614
+ matrices A, B and C are to be determined by an advanced system identification
615
+ method online as described in the next section.
616
+ 3.3. Online Identification: A Koopman-Inspired Enhanced OKID Algorithm
617
+ Considering the Koopman-based linear dynamical system model (13a)-(13b),
618
+ we propose an observer Kalman filter identification (OKID)–based optimization
619
+ algorithm to optimally identify the MG Koopman state space model (i.e., the
620
+ matrix parameters A,B and C).
621
+ The OKID Algorithm. Belonging to the category of closed-loop subspace
622
+ methods, the conventional OKID algorithm is commonly used to identify linear
623
+ systems [37]. It is free of the bias problem that most typical closed-loop subspace
624
+ methods have [37], and has been applied in many areas such as aircraft control
625
+ and autonomous underwater vehicles [38]. In OKID, the impulse response of the
626
+ system is estimated in a least-squares fashion with data. Then, a state space
627
+ model of the system is obtained with the eigensystem realization algorithm
628
+ (ERA). Specifically, let Y and U represent the matrix stacking the time series
629
+ data of the outputs y and the control inputs u in a matrix form. Let Yi and
630
+ Ui represent the observation outputs and the control inputs at the ith time step
631
+ in the data matrix, and consider the length of the sliding window is N. By
632
+ observing Eq. (13a)-Eq. (13b) and assuming zero initial conditions, yk can
633
+ be expressed with iterations in a form of yk = Czk = C(Azk−1 + Buk−1) =
634
+ C(A(Azk−2+Buk−2)+Buk−1) = CAk−1Bu0+CAk−2Bu1+...CBuk−1 =
635
+ �k−1
636
+ i=0 CAk−i−1Bui, whereby we obtain
637
+ Y =
638
+
639
+ CB
640
+ · · ·
641
+ CAN−1B
642
+
643
+
644
+ ����
645
+ U0
646
+ U1
647
+ ...
648
+ UN−1
649
+ 0
650
+ U0
651
+ ...
652
+ UN−2
653
+ ...
654
+ ...
655
+ ...
656
+ ...
657
+ . . .
658
+ . . .
659
+ . . .
660
+ U0
661
+
662
+ ����
663
+ (15)
664
+ Let h denote the impulse response of the Koopman state space model (13a)-
665
+ (13b) in the sliding window of size N (from k = 1 to k = N) with zero initial
666
+ conditions (x0 = 0) and impulse inputs (u0 = 1 and uk = 0 when k > 0), we
667
+ have
668
+ h =
669
+
670
+ h1
671
+ h2
672
+ ...
673
+ hN
674
+
675
+ =
676
+
677
+ CB
678
+ CAB
679
+ ...
680
+ CAN−1B
681
+
682
+ (16)
683
+ Then according to Eq. (15)- (16) and with the knowledge of the observation
684
+ matrix Y and the control input matrix U, one can estimate the impulse response
685
+ in a least-squares fashion
686
+
687
+ h1
688
+ h2
689
+ ...
690
+ hN
691
+
692
+ = Y
693
+
694
+ ����
695
+ U0
696
+ U1
697
+ ...
698
+ UN−1
699
+ 0
700
+ U0
701
+ ...
702
+ UN−2
703
+ ...
704
+ ...
705
+ ...
706
+ ...
707
+ 0
708
+ 0
709
+ . . .
710
+ U0
711
+
712
+ ����
713
+
714
+ (17)
715
+ 9
716
+
717
+ where the operator † represents the Moore-Penrose pseudo-inverse. Note that
718
+ the noise is not optimally filtered by the least-squares inverse as presented in Eq.
719
+ (17). To address the issue, the conventional OKID can be designed based on an
720
+ optimal observer system whereby optimal system parameters can be identified.
721
+ For simplicity, we refer readers to [39] (Pages 340-343) for detailed explanation
722
+ and implementation.
723
+ Next, with the obtained impulse response, the Hankel matrix H and the
724
+ next-step Hankel matrix H
725
+ ′ can be written as follows:
726
+ H =
727
+
728
+ ����
729
+ h1
730
+ h2
731
+ ...
732
+ hN
733
+ 0
734
+ h1
735
+ ...
736
+ hN−1
737
+ ...
738
+ ...
739
+ ...
740
+ ...
741
+ 0
742
+ 0
743
+ . . .
744
+ h1
745
+
746
+ ���� , H
747
+ ′ =
748
+
749
+ ����
750
+ h2
751
+ h3
752
+ ...
753
+ hN+1
754
+ 0
755
+ h2
756
+ ...
757
+ hN
758
+ ...
759
+ ...
760
+ ...
761
+ ...
762
+ 0
763
+ 0
764
+ . . .
765
+ h2
766
+
767
+ ����
768
+ (18)
769
+ The Hankel matrix H could be truncated with Singular Value Decomposition
770
+ (SVD):
771
+ H = UΣVT = [�U, U tr]
772
+ ��Σ
773
+ 0
774
+ 0
775
+ Σtr
776
+ � �
777
+ �V
778
+ T
779
+ VT
780
+ tr
781
+
782
+ ≈ �
783
+ U �Σ �V
784
+ T
785
+ (19)
786
+ Let
787
+ O = [C, CA, CA2, ..., CAN−1]T
788
+ (20)
789
+ be the observability matrix, and
790
+ C = [B, AB, A2B, ..., AN−1B]
791
+ (21)
792
+ be the controllability matrix. Then, by observing Eq. (16) and Eq. (18), we
793
+ have
794
+ H = OC,
795
+ H
796
+ ′ = OAC
797
+ (22)
798
+ Furthermore, considering Eq. (19), we can assume that O = �U �Σγ and C =
799
+ �Σ1−γ �V
800
+ T , where γ is an arbitrary real value.
801
+ Conventional OKID algorithm. For the conventional OKID algorithm, ERA
802
+ is thereafter used to identify the matrix A and B, with γ set to a constant
803
+ 1
804
+ 2 for a special balanced realization. That is, one can assume O = �U �Σ
805
+ 1
806
+ 2 and
807
+ C = �Σ
808
+ 1
809
+ 2 �V
810
+ T , whereby a state space model with balanced Grammians is realized
811
+ (i.e., the same degree of controllability and observability) that agrees with the
812
+ control input and the observation data. As such, with γ = 1
813
+ 2 and by Eq. (20) -
814
+ Eq. (22), the matrices A and B can be identified by the conventional OKID
815
+ as follows [39]:
816
+
817
+ A = �Σ− 1
818
+ 2 �U
819
+ T H
820
+ ′ �V �Σ− 1
821
+ 2
822
+ (23a)
823
+
824
+ B = CNS×NU =
825
+
826
+ �Σ
827
+ 1
828
+ 2 �V
829
+ T �
830
+ NS×NU
831
+ (23b)
832
+ where the operator
833
+ �.�
834
+ NS×NU represents the first NS rows and the first NU
835
+ columns of the matrix in the bracket; NS is the dimension of Koopman embed-
836
+ ding space and NU is the dimension of control inputs.
837
+ 10
838
+
839
+ In this paper, to better identify the Koopman-based process dynamics, we
840
+ propose a Koopman-inspired algorithm to find an optimal γ rather than assum-
841
+ ing γ = 1
842
+ 2 as in the conventional OKID. Consider a general form with γ unfixed
843
+ �U �Σγ = O = [C, CA, CA2, ..., CAN−1]T
844
+ = IN×N ⊗ C · [I, A, A2, ..., AN−1]T
845
+ (24a)
846
+ �Σ1−γ �V
847
+ T = C = [B, AB, A2B, ..., AN−1B]
848
+ = [I, A, A2, ..., AN−1](IN×N ⊗ B)
849
+ (24b)
850
+ where IN×N is the identity matrix with the dimension N × N, and ⊗ denotes
851
+ the Kronecker product which is
852
+ IN×N ⊗ C =
853
+
854
+ ��
855
+ C
856
+ ...
857
+ C
858
+
859
+ �� ,
860
+ IN×N ⊗ B =
861
+
862
+ ��
863
+ B
864
+ ...
865
+ B
866
+
867
+ ��
868
+ (25)
869
+ Then
870
+ (IN×N ⊗ C)† �U �Σγ = [I, A, A2, ..., AN−1]T
871
+ (26a)
872
+ �Σ1−γ �V
873
+ T (IN×N ⊗ B)† = [I, A, A2, ..., AN−1]
874
+ (26b)
875
+ By observing Eq. (26a) and Eq. (26b), we have
876
+ �Σγ �U
877
+ T ((IN×N ⊗ C)†)T = �Σ1−γ �V
878
+ T (IN×N ⊗ B)†
879
+ ⇒ �Σ2γ−1 �U
880
+ T �
881
+ (IN×N ⊗ C)†�T = �V
882
+ T (IN×N ⊗ B)†
883
+ (27)
884
+ Treating Eq. (27) as a soft constraint for the parameter γ, one can formulate a
885
+ quadratic optimization problem to solve the optimal parameter γopt:
886
+ γopt = arg min
887
+ γ
888
+ ∥�Σ2γ−1 �U
889
+ T �
890
+ (IN×N ⊗ C)†�T − �V
891
+ T (IN×N ⊗ B)∥F
892
+ subject to:
893
+ 0 ≤ γ ≤ 1
894
+ (28)
895
+ where ∥.∥F represents the Frobenius norm of a matrix. The inequality 0 ≤ γ ≤ 1
896
+ is added to constrain problem complexity. The novel OKID-based algorithm for
897
+ parameter estimation is summarized below. The flowchart of the algorithm is
898
+ also presented in Fig. 3.
899
+ The Proposed Online Koompan-Inspired Enhanced OKID Algorithm
900
+ Algorithm Initialization. Initialize γopt = γopt,0, the smoothing factor η,
901
+ and the time step TOP T between two updates of γopt. The selection of these
902
+ parameters will be discussed in Remarks after the presentation of the algorithm.
903
+ At each time step of identification and the secondary control, i.e., for k =
904
+ 1, 2, ..., conduct Step 1 -Step 5.
905
+ Step 1: Data preparation. Collect the last N data samples from microPMUs
906
+ to obtain the data matrices of phasor angle Θ, voltage deviation ∆V and
907
+ angular frequency deviation ∆Ω from the nominal values. Collect control input
908
+ 11
909
+
910
+ data U from the secondary controller.
911
+ For example, the phasor angle Θ is
912
+ stacked in a form of
913
+ Θ =
914
+
915
+
916
+ |
917
+ |
918
+ |
919
+ Θ1
920
+ ...
921
+ ΘN
922
+ |
923
+ |
924
+ |
925
+
926
+
927
+ (29)
928
+ ∆V , ∆Ω and U are formed in the same way. The approximated operation
929
+ points of voltage phasor angles and magnitudes Θ∗
930
+ L and V ∗
931
+ L are defined as the
932
+ first data sample from a window of collected PMU data, prepared in a matrix
933
+ form as follows:
934
+ Θ∗
935
+ L =
936
+
937
+
938
+ |
939
+ |
940
+ |
941
+ Θ1
942
+ ...
943
+ Θ1
944
+ |
945
+ |
946
+ |
947
+
948
+ � ,
949
+ V ∗
950
+ L =
951
+
952
+
953
+ |
954
+ |
955
+ |
956
+ V1
957
+ ...
958
+ V1
959
+ |
960
+ |
961
+ |
962
+
963
+
964
+ (30)
965
+ Prepare the data matrices for y and z as follows: Y = [Θ − Θ∗
966
+ L, V − V ∗
967
+ L ]T ,
968
+ and Z = [∆V, sin (Θ) − sin (Θ∗
969
+ L), cos (Θ) − cos (Θ∗
970
+ L), ∆Ω]T .
971
+ Step 2: Hankel matrix preparation and SVD. Estimate the impulse re-
972
+ sponse and prepare the Hankel matrices according to Eq. (17)-Eq. (18). Con-
973
+ duct the SVD on the obtained Hankel matrix H ≈ �U �Σ �V
974
+ T .
975
+ Step 3: Estimation of C. Ignoring the error term in Eq. (13b), we have
976
+ Y = CZ. Thus, one can estimate the observation matrix C at each time step
977
+ k in a least-squares fashion by multiplying the pseudo-inverse on both sides of
978
+ the equation, which is
979
+
980
+ Ck = Y Z†
981
+ (31)
982
+ Step 4: Optimization for γopt. Check if the run time of optimization between
983
+ the last update of γopt is larger than TOP T . If no, γopt,k = γopt,k−1, go to Step
984
+ 5; otherwise, solve the optimization problem in Eq. (28) for γ−
985
+ opt. To do so, by
986
+ Eq. (23b), replace B with
987
+
988
+ �Σ1−γ �V
989
+ T �
990
+ NS×NU
991
+ and replace C with �
992
+ Ck from Step
993
+ 3 in Eq. (28). Then, adaptively update γopt by
994
+ γopt,k =ηγ−
995
+ opt + (1 − η)γopt,k−1,
996
+ for
997
+ k = TOP T , 2TOP T , 3TOP T , ...
998
+ (32)
999
+ where γ−
1000
+ opt is the optimal value of the realization parameter γ according to Eq.
1001
+ (28). That is, once γ−
1002
+ opt is updated, we update γopt with the weighted sum of the
1003
+ old γopt at last time step and the updated value γ−
1004
+ opt. η is the weight to smooth
1005
+ online learning. The role of η is to smooth the online learning of γ. As the small
1006
+ piece of online data used for identification is characterized by stochasticity,
1007
+ the smoothing factor η can mitigate aggressive change to make the learning
1008
+ process more reliable. This is so because the estimation is equivalent to the
1009
+ Robbins–Monro form [40], which is γopt,k = ηγ−
1010
+ opt + (1 − η)γopt,k−1 = γopt,k−1 +
1011
+ η(γ−
1012
+ opt−γopt,k−1). The larger the value of γ is, the smoother the learning process
1013
+ tends to be, whereas the adaptiveness of learning is compromised.
1014
+ Step 5: Estimation of A and B. By Eq. (23a)-(23b)
1015
+
1016
+ Ak =
1017
+
1018
+ η �Σ−γopt,k �U
1019
+ T H
1020
+ ′ �V �Σγopt,k−1 + (1 − η) �
1021
+ Ak−1
1022
+ if k ≥ 1
1023
+ �Σ−γopt,k �U
1024
+ T H
1025
+ ′ �V �Σγopt,k−1
1026
+ if k = 0
1027
+ (33)
1028
+ 12
1029
+
1030
+
1031
+ Bk =
1032
+
1033
+
1034
+
1035
+
1036
+
1037
+ η
1038
+
1039
+ �Σ1−γopt,k �V
1040
+ T �
1041
+ NS×NU
1042
+ + (1 − η) �
1043
+ Bk−1
1044
+ if k ≥ 1
1045
+
1046
+ �Σ1−γopt,k �V
1047
+ T �
1048
+ NS×NU
1049
+ if k = 0
1050
+ (34)
1051
+ After implementing the identification algorithm, the identified Koopman state
1052
+ space model at the time step k is obtained as:
1053
+ zk+1 = �
1054
+ Akzk + �
1055
+ Bkuk
1056
+ (35a)
1057
+ yk = �
1058
+ Ckzk
1059
+ (35b)
1060
+ Compared to the traditional EDMDc used in power systems [21], the pro-
1061
+ posed Koopman-inspired OKID can use the observation data y as in Eq. (13b)
1062
+ to help learn the Koopman state space model in Eq. (13a), while the traditional
1063
+ EDMDc only estimates the Koopman state space in Eq. (13a) in a least-squares
1064
+ fashion without the incorporation of observation data. The fusion of the infor-
1065
+ mation from the observation data provides extra opportunities to enhance the
1066
+ modeling efficacy.
1067
+ Remarks
1068
+ • γopt: in this paper, γopt,0 = 1
1069
+ 2. Thus the enhanced OKID is initially equiv-
1070
+ alent to the conventional one while it gradually learns the optimized value
1071
+ for γopt with the online OKID and the periodically enabled optimization
1072
+ in Eq. (28).
1073
+ • The smoothing factor η: it is used to weigh the past estimations and
1074
+ the latest one, and set to
1075
+ 1
1076
+ N in this paper with the assumption that all
1077
+ estimations have the same weight independent on the time of occurrence.
1078
+ A larger η means the estimation put more weight on the newest data, and
1079
+ vice versa.
1080
+ • The time step TOP T for updating γopt: it is set to 0.6s, which is longer
1081
+ than the run time of the proposed Koopman-inspired enhanced OKID
1082
+ and the time step of secondary control (30ms) as detailed in Section 4.
1083
+ A small TOP T is favorable as a fast update of γ to compensate for the
1084
+ uncertainty of the Koopman process model (13a), while it should be longer
1085
+ than the run time of the optimization (28) to ensure the feasibility of online
1086
+ implementation.
1087
+ 3.4. The Linear Control Based on the Koopman-Inspired Enhanced OKID
1088
+ After obtaining the identified model (35a) - (35b), a discrete-time linear
1089
+ quadratic regulator (LQR) is applied at each time step of secondary control,
1090
+ aiming to reduce the voltage and frequency deviations by minimizing the cost
1091
+ J(u) =
1092
+
1093
+
1094
+ k=0
1095
+ zT
1096
+ k Qzk + uT
1097
+ k Ruk,
1098
+ subject to
1099
+ zk+1 = �
1100
+ Azk + �
1101
+ Buk
1102
+ (36)
1103
+ 13
1104
+
1105
+ Figure 3: Algorithm flowchart of the proposed Koopman-inspired enhanced OKID
1106
+ where Q and R are cost matrices defined as:
1107
+ Q =
1108
+
1109
+ ���
1110
+ qV
1111
+ qsin θ
1112
+ qcos θ
1113
+
1114
+
1115
+ ��� ,
1116
+ R =
1117
+ �rP
1118
+ rQ
1119
+
1120
+ (37)
1121
+ where qV , qsin θ, qcos θ and qω are cost submatrices for the Koopman observ-
1122
+ ables presented in (14). rP and rQ are cost submatrices for the control signals
1123
+ ∆P ∗ and ∆Q���. They are basically selected empirically in this paper based on
1124
+ which factor is treated to be more important. The optimal control input can be
1125
+ obtained by:
1126
+ uk =
1127
+
1128
+
1129
+
1130
+ ULB
1131
+ uk < ULB
1132
+ −Kzk
1133
+ ULB ⩽ uk ⩽ UUB
1134
+ UUB
1135
+ uk > UUB
1136
+ with
1137
+ K = ( �
1138
+ BT S �
1139
+ B + R)−1 �
1140
+ BT S �
1141
+ A
1142
+ (38)
1143
+ where K is the control gain matrix. S is the solution of Riccati equation [41].
1144
+ UUB and ULB are the upper and lower saturation limits that can bound the
1145
+ uncertainty introduced by control inputs. The bounds are user-defined values,
1146
+ which are determined empirically in the paper. Usually, large bounds can lead
1147
+ to faster response whereas the uncertainty introduced through control input
1148
+ channels could be increased to an unmanageable level that degrades the dynamic
1149
+ control performance or even stability. On the other hand, the bounds cannot be
1150
+ set to too small values, otherwise, the response could be slow and the capability
1151
+ of the controller cannot be fully taken use of.
1152
+ The Koopman-inspired enhanced OKID illustrated in Section 3.3 and the
1153
+ LQR illustrated in Section 3.4 can be respectively applied to the identification
1154
+ block and the control algorithm block of secondary control in Fig. 1. Specifi-
1155
+ cally, Fig. 4 presents the proposed online identification and control structure.
1156
+ The stability of such Koopman-inspired identification and control is guaranteed,
1157
+ which is proved in what follows.
1158
+ 3.5.
1159
+ Stability Analysis
1160
+ MG dynamics can be expressed in a Koopman-based structure and can be
1161
+ approximated with the online Koopman-inspired identification in Section 3.3.
1162
+ The approximation error is bounded but often not quantifiable as it depends on
1163
+ 14
1164
+
1165
+ At each time
1166
+ Steps 1-2
1167
+ Step 3
1168
+ Step 4
1169
+ Step 5
1170
+ step k:
1171
+ No
1172
+ Keep Old opt
1173
+ Data Matrix
1174
+ Initialization
1175
+ Estimate Ck
1176
+ If k = ToPT, 2ToPT, :
1177
+ Preparation & SVD
1178
+ OKID (update Ak and Bk)
1179
+ Yes.
1180
+ Update Yopt
1181
+ EndFigure 4: Online structure of the proposed Koopman-inspired enhanced OKID and control
1182
+ the appropriateness of Koopman observables and the online parameter identi-
1183
+ fication algorithm. In what follows, we aim to prove stability properties in a
1184
+ general sense.
1185
+ 3.5.1. Proof of BIBO Stability
1186
+ We prove that the proposed Koopman-inspired OKID-based control is BIBO
1187
+ (bounded-input-bounded-output) stable. Denoted by ˆxk+1 the one-step-ahead
1188
+ prediction of the state vector x at the time step k with the OKID-based es-
1189
+ timation.
1190
+ Denoted by ˆKk the estimated Koopman operator at time step k.
1191
+ According to Eq. (12), we have
1192
+ g(ˆxk+1) = Φ(ˆxk+1, 0) = ˆKkΦ(xk, uk) = ˆKk
1193
+
1194
+
1195
+ j=1
1196
+ ϕj(xk, uk)vj =
1197
+
1198
+
1199
+ j=1
1200
+ (ρj,kϕj(xk, uk)vj)
1201
+ (39)
1202
+ where ρj,k is the eigenvalue corresponding to the jth eigenfunction ϕj for the
1203
+ estimated Koopman operator ˆKk. Recall that Φ(x, u) = g(x) + l(u) discussed
1204
+ in Section III.A, where l(u) = [l1(u), l2(u), . . . lp(u)]T and l(0) = 0. Then
1205
+ g(xk+1) = g(ˆxk+1) + δk = ˆKkΦ(xk, uk) + δk
1206
+ = ˆKk(g(xk) + l(uk)) + δk
1207
+ = ˆKk( ˆKk−1Φ(xk−1, uk−1) + δk−1 + l(uk)) + δk
1208
+ = ˆKk( ˆKk−1(g(xk−1) + l(uk−1)) + δk−1 + l(uk)) + δk
1209
+ = ˆKk( ˆKk−1( ˆKk−2Φ(xk−2, uk−2) + δk−2 + l(uk−2)) + l(uk−1)) + δk−1 + l(uk)) + δk
1210
+ = · · · =
1211
+ k
1212
+
1213
+ h=0
1214
+ ˆKk−hΦ(x0, u0) +
1215
+ k
1216
+
1217
+ h=1
1218
+ k
1219
+
1220
+ i=h
1221
+ ˆKk−i+h(δh−1 + l(uh)) + δk
1222
+ =
1223
+
1224
+
1225
+ j=1
1226
+ (
1227
+ k
1228
+
1229
+ h=0
1230
+ ρj,h)ϕj(x0, u0)vj +
1231
+ k
1232
+
1233
+ h=1
1234
+ k
1235
+
1236
+ i=h
1237
+ ˆKk−i+h(δh−1 + l(uh)) + δk
1238
+ 15
1239
+
1240
+ Microgrid Network
1241
+ Control Command
1242
+ Microgrid Node/Bus
1243
+ (e.g., four-bus, thirteen-bus microgrids)
1244
+ Measurement Data Sensing
1245
+ Microgrid Distribution Line
1246
+ Action:(control inputs)u=[△P",Q*jr
1247
+ Primary
1248
+ Control
1249
+ Secondary Controller:
1250
+ DER 1
1251
+ Proposed Koopman-Inspired Enhanced OKID and LQR Control
1252
+ Control
1253
+ MicroPMU Data
1254
+ Action Generator (LQR)
1255
+ Online
1256
+ Minimize the Cost Function
1257
+ Identification
1258
+ J(u) =z Qz +utRui
1259
+ MicroPMUl
1260
+ Control
1261
+ Measurement:
1262
+ ak = jox, VaJT
1263
+ Cyber
1264
+ Koopman Embedding Mapping g :
1265
+ Data
1266
+ [Section 3.4]
1267
+ Inputs
1268
+ Network
1269
+ DER 2
1270
+ (Action)
1271
+ Zk =g(ak[Section 3.2]
1272
+ Data
1273
+ Primary
1274
+ Koopman-inspired Enhanced OKID
1275
+ Control
1276
+ [Section 3.3]
1277
+ 3
1278
+ Primary
1279
+ States
1280
+ DER
1281
+ Control
1282
+ MicroPMU Data
1283
+ zk
1284
+ Estimated System Model:
1285
+ Estimated Parameters
1286
+ Zk+1 = Akzk + Buk
1287
+ Ak
1288
+ Bk
1289
+ Yk = Ckzk
1290
+ 4where δk is the Koopman modeling error which has been defined in Eq. (13a),
1291
+ and vj is the jth Koopman mode associated with the Koopman eigenfunction
1292
+ ϕj. Apparently,
1293
+ 0 ⩽ ∥
1294
+
1295
+
1296
+ j=0
1297
+ (
1298
+ k
1299
+
1300
+ j=0
1301
+ ρj,h)ϕj(x0, u0)vj∥2 ⩽ lim
1302
+ k→∞(maxj,h|ρj,h|)k+1
1303
+
1304
+
1305
+ j=1
1306
+ ∥ϕj(x0, u0)vj∥2
1307
+ (40)
1308
+ With LQR in the Koopman invariant subspace, assume the MG secondary
1309
+ controller can optimally make the magnitudes of all system eigenvalues smaller
1310
+ than 1 (if the system is stabilizable). That is ˆKkϕj = ρj,kϕj with |ρj,k| < 1.
1311
+ Due to the online rolling-based estimation in the proposed method, we can
1312
+ assume the global error ∥ �k
1313
+ h=1 Πk
1314
+ i=h ˆKk(δh−1 + l(uh))∥2 is bounded by ζg, and
1315
+ the modeling error is ∥δk∥2 bounded by ϵm. According to (40), we have
1316
+ lim
1317
+ k→∞ ∥g(xk+1)∥2 ⩽ lim
1318
+ k→∞(maxj,h|ρj,h|)k+1
1319
+
1320
+
1321
+ j=1
1322
+ ∥ϕj(x0, u0)vj∥2 + ζg + lim
1323
+ k→∞ ∥δk∥2 ⩽ ζg + ϵm
1324
+ (41)
1325
+ Based on (41), g(x) converges till reaching the area Ξ =
1326
+
1327
+ g(x)|∥g(x)∥2 ⩽
1328
+ ζg + ϵm
1329
+
1330
+ . Thus, the system is BIBO stable. Besides, the Koopman-based LQR
1331
+ can guarantee asymptotic stability subject to the disturbance in control input
1332
+ channels under mild conditions. See Section 3.5.2.
1333
+ 3.5.2. Stability Margins of Koopman-Enabled LQR
1334
+ The discrete-time LQR used in this paper has analytical disc stability mar-
1335
+ gins [42], within which asymptotic stability subject to the disturbance in control
1336
+ input channels is guaranteed. Specifically, consider the identified Koopman state
1337
+ space model described as below:
1338
+ g(xk+1) = Ag(xk) + Buk + BMuk = Ag(xk) + BKg(xk) + BMKg(xk)
1339
+ = Ag(xk) + B(I + M)Kg(xk)
1340
+ (42)
1341
+ where M = diag([m1, m2, . . . m2NDER]) is an introduced diagonal matrix to
1342
+ represent model uncertainty in control input channels.
1343
+ In other words, the
1344
+ introduced matrix parameter M can be used to quantify the uncertainty from
1345
+ control input channels, whereby one can provide the stability analysis based
1346
+ on the disc margin for each channel (which will be provided below). K is the
1347
+ control gain matrix such that uk = Kg(xk) in line with the LQR.
1348
+ Consider M and g(xk) to be complex-valued to reflect both gain and phase
1349
+ disturbances. Define a Lyapunov function V (x) = g(x)∗Sg(x) (where S is the
1350
+ solution of Riccati equation). Based on the Lyapunov function and following
1351
+ the steps in [42], we provide the disk stability margin for the ith control input
1352
+ channel in (43) without further explanation (also see Fig. 5). Interested readers
1353
+ can refer to [42] for the derivation of the disc margin.
1354
+ 1 + mi =
1355
+
1356
+ αi + jβi :
1357
+
1358
+ αi − (1 + ri
1359
+ µ )
1360
+ �2
1361
+ + β2
1362
+ i
1363
+ < (1 + ri
1364
+ µ )2 + ρ − ri
1365
+ µ
1366
+ − 1
1367
+
1368
+ ,
1369
+ where
1370
+ i = 1, 2, ..., 2NDER
1371
+ (43)
1372
+ where ρ = σmin[Q]/(σmax[K])2 and µ = σmax[BT SB]. σmax[.] and σmin[.]
1373
+ represent the matrix operation to obtain the maximum and minimum singular
1374
+ 16
1375
+
1376
+ Figure 5: Disk stability margin for the discrete-time LQR
1377
+ values, respectively. ri is the ith diagonal element of the cost matrix R. Fig.
1378
+ 5 shows the disc margin, within which the system is asymptotically stable.
1379
+ Specifically, according to Eq.
1380
+ (43) and Fig.
1381
+ 5 , the sufficient conditions of
1382
+ asymptotic convergence against the model uncertainty is: 1 + GL,i < αi <
1383
+ 1 + GU,i for the gain margin and PML,i < arctan βi
1384
+ αi < PMU,i for the phase
1385
+ margin, with
1386
+ GL,i = ri
1387
+ µ −
1388
+
1389
+ (1 + ri
1390
+ µ )2 + ρ − ri
1391
+ µ
1392
+ − 1,
1393
+ GU,i = ri
1394
+ µ +
1395
+
1396
+ (1 + ri
1397
+ µ )2 + ρ − ri
1398
+ µ
1399
+ − 1 (44)
1400
+ and
1401
+ PML,i = − arccos(1/(1 + ri
1402
+ µ )) = − arccos
1403
+ µ
1404
+ µ + ri
1405
+ PMU,i = arccos(1/(1 + ri
1406
+ µ )) = arccos
1407
+ µ
1408
+ µ + ri ,
1409
+ for
1410
+ i = 1, 2, ..., 2NDER.
1411
+ (45)
1412
+ 4. Case Studies
1413
+ This section presents case studies based on two MG test systems, namely
1414
+ a four-bus MG as shown in Fig. 6 and a thirteen-bus MG as shown in Fig.
1415
+ 7, to verify the effectiveness of the proposed Koopman-inspired identification
1416
+ and control.
1417
+ The two test systems were established in MATLAB Simulink
1418
+ 2021b. The DERs in the test systems are primary-controlled in different control
1419
+ modes (grid-forming converters, grid-following converters, and an isochronous-
1420
+ controlled diesel generator as given in Fig. 6 and Fig. 7) with the inner control
1421
+ loops modeled in detail. Therefore, the interaction of primary and secondary
1422
+ control is preserved in simulation to test the effectiveness of secondary control
1423
+ in realistic setups. The implementation of the converter voltage and current
1424
+ control inner-loops can be found [9, 24].
1425
+ Besides, randomized measurement noises, control time delays, and ambient
1426
+ perturbations were incorporated into the test systems to mimic practical oper-
1427
+ ation. The simulation parameters of the two test systems are summarized in
1428
+ 17
1429
+
1430
+ βi
1431
+ Disc Stability Margin (1+m;=α;+jβ):
1432
+ When the model uncertainty is within the
1433
+ disc (grey area), the system is Lyapunov
1434
+ asymptotically stable.
1435
+ Gain Margin
1436
+ 1
1437
+ αi
1438
+ 11+
1439
+ Phase
1440
+ 1
1441
+ Disc Radius :
1442
+ Margin
1443
+ μTable 1 and Table 2, respectively. The readers can find more information about
1444
+ the test systems at https://github.com/nash13123/MG-Test-System.git.
1445
+ 4.1. Identification and Control in the 4-Bus MG Test System
1446
+ The small 4-bus MG test system was used to test the proposed Koopman-
1447
+ inspired enhanced OKID with control under load variations and the MG transi-
1448
+ tion from the grid-connected mode to islanded mode. The DERs at Bus 1 and 3
1449
+ are droop-based grid-forming, and the DERs at Bus 2 and 4 are inverse-droop-
1450
+ based grid-following. At 0.7s, the MG was disconnected from the main grid by
1451
+ turning off the switch SW, which causes sudden voltage drops and consequent
1452
+ dynamics. After detecting the sudden change, the secondary control was en-
1453
+ abled and kept online from 0.8s, i.e., approximately 0.1s lag to mimic a time
1454
+ delay of islanding event detection in practical applications.
1455
+ Modeling accuracy of the Koopman-inspired OKID. First, we eval-
1456
+ uate the modeling accuracy with the one-step-ahead prediction error of the
1457
+ Figure 6: The MG 4-bus test system
1458
+ Figure 7: The MG 13-bus test system
1459
+ 18
1460
+
1461
+ @Utility Grid
1462
+ R14
1463
+ Local
1464
+ L14
1465
+ Local
1466
+ Busl
1467
+ DER4
1468
+ DER1
1469
+ Bus1
1470
+ Bus4
1471
+ sw
1472
+ Battery
1473
+ Rf1
1474
+ Vo1
1475
+ Bus4
1476
+ Re1
1477
+ Vo4
1478
+ DC/
1479
+ R
1480
+ 4
1481
+ AC/
1482
+ Rfel
1483
+ n
1484
+ AC
1485
+ DC
1486
+ dc
1487
+ R
1488
+ Droop Control
1489
+ Inverse Droop-Based
1490
+ (Grid Forming)
1491
+ Cf1
1492
+ Grid-Following Control
1493
+ P13
1494
+ DER2
1495
+ Local
1496
+ Local
1497
+ DER3
1498
+ Battery
1499
+ Bus2
1500
+ Bus3
1501
+ Bus2
1502
+ Bus3
1503
+ Vo2
1504
+ R
1505
+ V。
1506
+ Rf3
1507
+ R
1508
+ c3
1509
+ AC/
1510
+ DC/
1511
+ AC
1512
+ DC
1513
+ dc
1514
+ R
1515
+ Droop Control
1516
+ Inverse Droop-Based
1517
+ (Grid Forming)
1518
+ Grid-Following ControlSecondary Uncontrollable Distributed Resources
1519
+ PCC: Point of Common Coupling
1520
+ Utility Grid
1521
+ MPPT: Maximum Power Point Tracking
1522
+ Secondary Controllable Distributed Resources
1523
+ PV: Photovoltaic
1524
+ Transformer
1525
+ BESS: Battery Energy Storage System
1526
+ Load 1
1527
+ T1
1528
+ DER: Distributed Energy Resource
1529
+ 3
1530
+ Grid-Feeding PV
1531
+ Switch SW1
1532
+ Diesel
1533
+ Farm 1 (MPPT)
1534
+ PCC
1535
+ 2
1536
+ 23
1537
+ 9
1538
+ Grid-Following BESS 1
1539
+ Load 6
1540
+ Grid-Forming DER 2
1541
+ SW2
1542
+ 13
1543
+ 4
1544
+ Load 2
1545
+ Load 4
1546
+ 5
1547
+ 10
1548
+ 2
1549
+ Grid-Forming DER 1
1550
+ Grid-Feeding PV
1551
+ 119
1552
+ Grid-Following BESS 2
1553
+ 6
1554
+ Farm 2 (MPPT)
1555
+ 120
1556
+ Load 5
1557
+ Load 3
1558
+ 7Table 1: Parameters of the 4-Bus MG Test System
1559
+ Parameters
1560
+ Value
1561
+ Power base Sbase
1562
+ 30kVA
1563
+ Voltage Base Vbase
1564
+ 480V
1565
+ Primary control time step Tsp
1566
+ 0.1ms
1567
+ Secondary control time step Ts
1568
+ 30ms
1569
+ Sliding window length for estimation N
1570
+ 9 (270ms)
1571
+ Local Voltage proportional gain KP
1572
+ 0.5
1573
+ Local Voltage integral gain KS
1574
+ 523
1575
+ Local current proportional gain KP
1576
+ 0.3
1577
+ Local current integral gain KS
1578
+ 635
1579
+ Frequency droop parameters for DERs 1,2: σω
1580
+ 2.14 × 10−3rad/(W · s)
1581
+ Voltage droop parameters for DERs 1: σV
1582
+ 1.0 × 10−3V/V ar
1583
+ Voltage droop parameters for DERs 2: σV
1584
+ 6.3 × 10−3V/V ar
1585
+ Frequency droop parameters for DERs 3,4: σω
1586
+ 2.83 × 10−3rad/(W · s)
1587
+ Voltage droop parameters for DERs 3: σV
1588
+ 1.5 × 10−3V/V ar
1589
+ Voltage droop parameters for DERs 4: σV
1590
+ 9.4 × 10−3V/V ar
1591
+ PMU measurement noise
1592
+ N(0, 0.00562)
1593
+ Control Time delay
1594
+ N(0.05, 0.0022)s
1595
+ Ambient perturbation level added to the reference
1596
+ of DER output voltage and angle:
1597
+ N(0, 0.012)
1598
+ Filter resistance Rf1,2,3,4(Ω)
1599
+ 0.1
1600
+ Filter inductance Lf1,2,3,4, Lc1,2(mH)
1601
+ 1.35
1602
+ Filter capacitance Cf1,2,3,4(µF)
1603
+ 50
1604
+ Filter capacitor resistance Rfc1,2,3,4(Ω)
1605
+ 1
1606
+ Line resistance Rc1,2(Ω)
1607
+ 0.08
1608
+ Line resistance Rc3,4(Ω)
1609
+ 0.09
1610
+ Line inductance Lc1,2(mH)
1611
+ 0.35
1612
+ Line inductance Lc3,4(mH)
1613
+ 0.45
1614
+ Line Resistance Rl1,2,3,4(Ω)
1615
+ 0.15, 0.35, 0.23, 0.17
1616
+ Line inductance Ll1,2,3,4(mH)
1617
+ 0.42, 0.33, 0.55, 2.40
1618
+ Load PL1,2,3 (active power in kW)
1619
+ 20, 16, 12
1620
+ Load QL1,2,3 (reactive powe in kVar)
1621
+ 9, 9, 6
1622
+ LQR control parameter qV
1623
+ 1 × 103I
1624
+ LQR control parameter qsin , qcos
1625
+ 0
1626
+ LQR control parameter qω
1627
+ 1 × 10−6I
1628
+ LQR control parameter rP , rQ
1629
+ 1 × 10−6I
1630
+ Control input lower bounds ULB
1631
+ -1.0 kVA
1632
+ Control input upper bounds UUB
1633
+ 1.0 kVA
1634
+ Time period for the optimization (28)
1635
+ TOP T
1636
+ 0.6 s
1637
+ Time constant of the power low-pass filter
1638
+ 0.02857s
1639
+ * N(a, b) is the normal distribution with mean of a and variance of b. Control
1640
+ parameters are designed based on Per Unit.
1641
+ 19
1642
+
1643
+ Table 2: Parameters of the 13-Bus MG Test System
1644
+ Parameters
1645
+ Value
1646
+ Power base Sbase
1647
+ 150kVA
1648
+ Voltage Base Vbase
1649
+ 4.16kV
1650
+ Sliding window length for estimation N
1651
+ 14(420ms)
1652
+ Droop parameters for all DERs: σω
1653
+ 3.14 × 10−4rad/(W · s)
1654
+ Droop parameters for all DERs: σV
1655
+ 1.5 × 10−3V/V ar
1656
+ Ambient perturbation level
1657
+ N(0, 0.022)
1658
+ LQR control parameter qV
1659
+ 1 × 103I
1660
+ LQR control parameter qsin , qcos
1661
+ 0
1662
+ LQR control parameter qω
1663
+ 0.01I
1664
+ LQR control parameter rP , rQ
1665
+ 1 × 10−6I
1666
+ * Other control parameters are the same to the values in Table 1.
1667
+ Figure 8: Comparison of the prediction error
1668
+ voltage magnitude, which is defined as
1669
+ e(pred)
1670
+ k+1
1671
+ =
1672
+ 1
1673
+ dim(∆V )∥∆Vk+1 − ∆ ˆVk+1∥
1674
+ (46)
1675
+ where dim[.] represents the dimension of the vector in the bracket, and ∆ ˆVk+1
1676
+ represents the predicted voltage magnitude at time step k + 1 by the identified
1677
+ model of interest. In Fig. 8, we compared the prediction error of two different
1678
+ ways of modeling: (i) the proposed Koopman-inspired enhanced OKID with
1679
+ the basis z = [∆V , sin θ − sin(θ∗
1680
+ L), cos θ − cos(θ∗
1681
+ L), ∆ω]T ; (ii) the conventional
1682
+ OKID (i.e., linearize the system model in Eq. (11) and apply OKID with γopt
1683
+ fixed at 1
1684
+ 2). It was found that the proposed Koopman-inspired enhanced OKID
1685
+ leads to smaller prediction error than the conventional OKID. These results
1686
+ show that the salient features of the proposed Koopman-inspired OKID, i.e., the
1687
+ Koopman nonlinear basis and the adaptive γopt, can ensure a good modeling
1688
+ accuracy regardless of nonlinearity and uncertainty during large disturbances.
1689
+ Control results comparison. Fig. 9 compares the voltage and frequency
1690
+ trajectories with different secondary control methods. As Fig. 9(a)-(c) show,
1691
+ the bus voltage suddenly drops with incurred transients after the disturbance at
1692
+ 0.7s, which triggers the secondary control to restore the voltage and frequency
1693
+ to their nominal values (1p.u and 60Hz). Fig. 9(a) shows the control results
1694
+ 20
1695
+
1696
+ 0.5
1697
+ (n'
1698
+ Koopman-InspiredEnhancedOKID(proposed)
1699
+ 0.4
1700
+ Conventional OKID
1701
+ Error
1702
+ ?
1703
+ 0.3
1704
+ UO
1705
+ 0.2
1706
+ 0.
1707
+ 0
1708
+ 1
1709
+ 1.5
1710
+ 2
1711
+ 2.5
1712
+ 3
1713
+ 3.5
1714
+ 4
1715
+ 4.5
1716
+ 5
1717
+ Time (seconds)(a) The proposed Koopman-inspired enhanced OKID with LQR control
1718
+ (b) The secondary PI control
1719
+ (c) The conventional OKID with LQR control (γ = 0.5)
1720
+ (d) The classical EDMDc (least-squares-based Koopman operator control with
1721
+ the Koopman observables z)
1722
+ Figure 9: Voltage and frequency trajectories of the 4-bus MG test system with different
1723
+ secondary control methods
1724
+ 21
1725
+
1726
+ (p.u.)
1727
+ 1.05
1728
+ 0.95
1729
+ DER 1
1730
+ DER 2
1731
+ Voltage
1732
+ 0.9
1733
+ DER 3
1734
+ DER 4
1735
+ 0.85
1736
+ 1
1737
+ 2
1738
+ 3
1739
+ 4
1740
+ Time (seconds)61
1741
+ 59
1742
+ DER 1
1743
+ DER 2
1744
+ 58
1745
+ DER 3
1746
+ DER 4
1747
+ 57
1748
+ 1
1749
+ 2
1750
+ 3
1751
+ 4
1752
+ Time(seconds)(p.u.)
1753
+ 1.05
1754
+ 0.95
1755
+ DER 1
1756
+ DER 2
1757
+ Voltage
1758
+ 0.9
1759
+ DER 3
1760
+ DER 4
1761
+ 0.85
1762
+ 1
1763
+ 3
1764
+ 4
1765
+ Time (seconds)61
1766
+ DER 1
1767
+ DER 2
1768
+ 60
1769
+ DER 3
1770
+ DER 4
1771
+ 59
1772
+ 58
1773
+ 57
1774
+ 1
1775
+ 2
1776
+ 3
1777
+ 4
1778
+ Time(seconds) (p.u.)
1779
+ 1.05
1780
+ 0.95
1781
+ DER 1
1782
+ DER 2
1783
+ Voltage
1784
+ 0.9
1785
+ DER 3
1786
+ DER 4
1787
+ 0.85
1788
+ 1
1789
+ 2
1790
+ 3
1791
+ 4
1792
+ Time (seconds)61
1793
+ 59
1794
+ DER 1
1795
+ DER 2
1796
+ 58
1797
+ DER 3
1798
+ DER 4
1799
+ 57
1800
+ 1
1801
+ 2
1802
+ 3
1803
+ 4
1804
+ Time(seconds)Voltage Magnitude (p.u.)
1805
+ 1.05
1806
+ 0.95
1807
+ DER
1808
+ DER 2
1809
+ 0.9
1810
+ DER 3
1811
+ DER 4
1812
+ 0
1813
+ 1
1814
+ 2
1815
+ 3
1816
+ 4
1817
+ 5
1818
+ Time (seconds)61
1819
+ 60
1820
+ Frequency
1821
+ 59
1822
+ DER
1823
+ DER
1824
+ 2
1825
+ 58
1826
+ DER
1827
+ 3
1828
+ DER
1829
+ 4
1830
+ 57
1831
+ 2
1832
+ 3
1833
+ 4
1834
+ Time (seconds)with the proposed Koopman-inspired enhanced OKID with LQR control; both
1835
+ voltage and frequency are corrected approximately to the nominal values. For
1836
+ comparison, Fig. 9(b) presents the voltage and frequency trajectories using sec-
1837
+ ondary PI control that is tuned with the best effort. The PI control with respect
1838
+ to the voltage magnitude and the frequency shows a slower response for voltage
1839
+ restoration compared to the proposed control, and has non-zero steady-state
1840
+ errors.
1841
+ It also suffers from a larger frequency deviation as it cannot handle
1842
+ the voltage-frequency dependence properly. Fig. 9(c) shows the results of con-
1843
+ ventional OKID with LQR control. In contrast to the proposed method, the
1844
+ conventional OKID with LQR cannot realize the same fast voltage restoration.
1845
+ Fig. 9(d) shows the voltage and frequency trajectories of the classical ED-
1846
+ MDc (i.e., LQR with pseudo-inverse least-squares identification based on the
1847
+ Koopman observables z). By comparing Fig. 9(d) with Fig. 9(a), we found
1848
+ that the LQR with the least-squares-based identification cannot perform as well
1849
+ as the LQR with the proposed Koopman-inspired Koopman-inspired identifica-
1850
+ tion. These results indicate the effectiveness of the proposed Koopman-inspired
1851
+ enhanced OKID that possibly results from the two ingredients: (i) the nonlin-
1852
+ ear basis functions of the Koopman observables proposed in Eq. (14); (ii) the
1853
+ OKID with adaptive γopt. Both ingredients help better describe the MG sys-
1854
+ temwide dynamics under big disturbances, realizing more effective control for
1855
+ both voltage and frequency.
1856
+ Fig. 10 presents the optimized parameters γopt during control, and Fig. 11
1857
+ shows the run time of the proposed Koopman-inspired enhanced OKID at each
1858
+ Figure 10: Estimated γopt of the proposed Koopman-inspired enhanced OKID
1859
+ Figure 11: Run time of the proposed Koopman-inspired enhanced OKID
1860
+ 22
1861
+
1862
+ 0.56
1863
+ 0.54
1864
+ opt
1865
+ 0.52
1866
+ 0.5
1867
+ 0.48
1868
+ 0.46
1869
+ 0.5
1870
+ 1
1871
+ 1.5
1872
+ 2
1873
+ 2.5
1874
+ 3
1875
+ 3.5
1876
+ 4
1877
+ Time (seconds)600
1878
+ (su)
1879
+ 400
1880
+ Time
1881
+ Run
1882
+ 200
1883
+ 20ms
1884
+ 0
1885
+ 0.5
1886
+ 1
1887
+ 1.5
1888
+ 2
1889
+ 2.5
1890
+ 3
1891
+ 3.5
1892
+ 4
1893
+ Time (seconds)time step of secondary control. The run time of the proposed method is about
1894
+ 20ms in case that γopt is not updated, less than the time step of secondary
1895
+ control (30ms). The run time of the proposed method is around 250-500ms in
1896
+ case that γopt is updated, which is still less than the time period TOP T = 0.6s
1897
+ between two updates of γopt. These indicate the feasibility to implement the
1898
+ proposed Koopman-inspired identification and control online.
1899
+ 4.2. Identification and Control in the 13-Bus MG Test System
1900
+ To show the performance of the Koopman-inspired enhanced OKID with
1901
+ LQR control in larger systems for generality, we consider the 13-bus MG test
1902
+ system presented in Fig. 7, which is adapted from the IEEE 13-node test feeder
1903
+ [43].
1904
+ The DERs at Bus 6 and 9 are droop-based grid-forming.
1905
+ The BESSs
1906
+ at Bus 1 and 11 are inverse-droop-based grid-following.
1907
+ The solar farms at
1908
+ Bus 3 and 5 are grid-following under MPPT, which are not controllable for
1909
+ secondary control. The MG system is under transition from the grid-connected
1910
+ to the islanded modes, and under generation/load variations. At 0.4s, the MG
1911
+ is disconnected from the main grid by turning off the switch SW1, causing the
1912
+ sudden drop of voltage with incurred transient. After detecting the islanding
1913
+ transient, the secondary control is triggered and kept online from 0.5s, i.e., 0.1s
1914
+ lag to mimic a time delay of islanding detection in practical application. Next,
1915
+ an active power perturbation of the two solar farms (around 80kW for each)
1916
+ occurs at 1.0s due to a drop of the solar irradiation from 1000 to 200 W/m2.
1917
+ Then, a load perturbation happens at the Bus 4 at 1.05s: the consumed active
1918
+ power increases by 150kW and the consumed reactive power increased by 50kVar
1919
+ by turning on the switch SW2.
1920
+ Fig. 12 compares the voltage and frequency trajectories with different sec-
1921
+ ondary control methods. Fig. 12(a) shows that the proposed Koopman-inspired
1922
+ OKID with LQR control can correct the voltage and frequency approximately to
1923
+ the nominal values. For comparison, the voltage and frequency trajectories with
1924
+ the secondary PI control are shown in Fig. 12(b), which illustrates that the PI
1925
+ control with the best effort of tuning still fails to realize the stable and accurate
1926
+ voltage and frequency restoration. Fig. 12(c) shows the results of the conven-
1927
+ tional OKID with LQR control, which suffers from larger voltage and frequency
1928
+ oscillations after 1.0s. Fig. 12(d) shows the voltage and frequency trajectories
1929
+ of classical EDMDc (i.e., LQR with pseudo-inverse least-squares identification
1930
+ based on the Koopman observables z).
1931
+ By comparing Fig.
1932
+ 12(d) with Fig.
1933
+ 12(a), we found that the classical EDMDc cannot perform as well as the LQR
1934
+ with the proposed Koopman-inspired Koopman-inspired identification. These
1935
+ results further demonstrate the advantages of the proposed Koopman-inspired
1936
+ OKID with LQR control. Because of the nonlinear Koopman embeddings and
1937
+ the adaptive γopt, the proposed method can effectively restore the voltage and
1938
+ frequency to their nominal values despite nonlinearity and uncertainty due to
1939
+ large disturbances.
1940
+ 23
1941
+
1942
+ (a) The proposed Koopman-inspired enhanced OKID with LQR control
1943
+ (b) The secondary PI control
1944
+ (c) The conventional OKID with LQR control (γ = 0.5)
1945
+ (d) The classical EDMDc (least-squares-based Koopman operator control with
1946
+ the Koopman observables z)
1947
+ Figure 12: Voltage and frequency trajectories of the 13-bus MG test system with different
1948
+ secondary control methods
1949
+ 24
1950
+
1951
+ (p.u.)
1952
+ 1.1
1953
+ Magnitude
1954
+ 0.9
1955
+ DER 1
1956
+ Voltagel
1957
+ 0.8
1958
+ DER 2
1959
+ 0.7
1960
+ DER 3
1961
+ DER 4
1962
+ 0.6
1963
+ 0.5
1964
+ 1
1965
+ 1.5
1966
+ Time (seconds)60.5
1967
+ (zH)
1968
+ 60
1969
+ DER 1
1970
+ 59.5
1971
+ DER 2
1972
+ DER 3
1973
+ DER 4
1974
+ 59
1975
+ 0.5
1976
+ 1.5
1977
+ Time (seconds)(p.u.)
1978
+ 1.2
1979
+ Magnitude
1980
+ 0.8
1981
+ 0.6
1982
+ DER 1
1983
+ DER 2
1984
+ DER 3
1985
+ 0.2
1986
+ DER 4
1987
+ 0.5
1988
+ 1.5
1989
+ Time (seconds)60.5
1990
+ (zH)
1991
+ 60E
1992
+ 59.5
1993
+ 59
1994
+ DER 1
1995
+ DER 2
1996
+ 58.5
1997
+ DER 3
1998
+ DER 4
1999
+ 58
2000
+ 0.5
2001
+ 1.5
2002
+ Time (seconds)(p.u.)
2003
+ 1.1
2004
+ Magnitude
2005
+ 0.9
2006
+ DER 1
2007
+ Voltagel
2008
+ 0.8
2009
+ DER 2
2010
+ 0.7
2011
+ DER 3
2012
+ DER 4
2013
+ 0.6
2014
+ 0.5
2015
+ 1.5
2016
+ Time (seconds)60.5
2017
+ (ZH)
2018
+ 59.5
2019
+ DER 1
2020
+ DER 2
2021
+ DER 3
2022
+ DER 4
2023
+ 59
2024
+ 0.5
2025
+ 1.5
2026
+ Time(seconds)MA
2027
+ 0.9
2028
+ 0.8
2029
+ DER
2030
+ DER 2
2031
+ 0.7
2032
+ DER 3
2033
+ DER 4
2034
+ 0.6
2035
+ 0
2036
+ 0.5
2037
+ 1
2038
+ 1.5
2039
+ Time (seconds)60.5
2040
+ (ZH)
2041
+ 60
2042
+ Frequency (
2043
+ 59.5
2044
+ DER
2045
+ DER
2046
+ 2
2047
+ DER 3
2048
+ DER
2049
+ 4
2050
+ 59
2051
+ 0
2052
+ 0.5
2053
+ 1
2054
+ 1.5
2055
+ Time (seconds)5. Conclusions
2056
+ This paper proposed a data-driven Koopman-inspired identification and con-
2057
+ trol method for MG secondary voltage and frequency control. The proposed
2058
+ method requires no knowledge of network information and primary controllers.
2059
+ It requires no warm-up training yet with guaranteed BIBO stability and even
2060
+ asymptotic stability under some mild conditions. In this method, a Koopman
2061
+ operator-inspired enhanced OKID (observer Kalman filter identification) algo-
2062
+ rithm is proposed, whereby the Koopman state space model is estimated online
2063
+ and used for control to handle microgrid nonlinearity and uncertainty adap-
2064
+ tively. Case studies in the 4-bus and 13-bus MG test systems (with different
2065
+ converter control modes) demonstrate the effectiveness and robustness of the
2066
+ proposed Koopman-inspired identification and control method subject to mode
2067
+ transitions, varying operating conditions, measurement noises and time delays.
2068
+ References
2069
+ [1] K. P. Schneider, N. Radhakrishnan, Y. Tang, F. K. Tuffner, C.-C. Liu,
2070
+ J. Xie, D. Ton, Improving primary frequency response to support networked
2071
+ microgrid operations, IEEE Transactions on Power Systems 34 (1) (2019)
2072
+ 659–667. doi:10.1109/TPWRS.2018.2859742.
2073
+ [2] M. Farrokhabadi, C. A. Ca˜nizares, J. W. Simpson-Porco, E. Nasr, L. Fan,
2074
+ P. A. Mendoza-Araya, R. Tonkoski, U. Tamrakar, N. Hatziargyriou, D. La-
2075
+ gos, R. W. Wies, M. Paolone, M. Liserre, L. Meegahapola, M. Ka-
2076
+ balan, A. H. Hajimiragha, D. Peralta, M. A. Elizondo, K. P. Schnei-
2077
+ der, F. K. Tuffner, J. Reilly, Microgrid stability definitions, analysis, and
2078
+ examples, IEEE Transactions on Power Systems 35 (1) (2020) 13–29.
2079
+ doi:10.1109/TPWRS.2019.2925703.
2080
+ [3] Y. Zhang, L. Xie, Q. Ding, Interactive control of coupled microgrids for
2081
+ guaranteed system-wide small signal stability, IEEE Transactions on Smart
2082
+ Grid 7 (2) (2016) 1088–1096. doi:10.1109/TSG.2015.2495233.
2083
+ [4] J. W. Simpson-Porco, Q. Shafiee, F. D¨orfler, J. C. Vasquez, J. M. Guerrero,
2084
+ F. Bullo, Secondary frequency and voltage control of islanded microgrids via
2085
+ distributed averaging, IEEE Transactions on Industrial Electronics 62 (11)
2086
+ (2015) 7025–7038. doi:10.1109/TIE.2015.2436879.
2087
+ [5] R. Majumder, B. Chaudhuri, A. Ghosh, R. Majumder, G. Ledwich, F. Zare,
2088
+ Improvement of stability and load sharing in an autonomous microgrid us-
2089
+ ing supplementary droop control loop, IEEE Transactions on Power Sys-
2090
+ tems 25 (2) (2010) 796–808. doi:10.1109/TPWRS.2009.2032049.
2091
+ [6] M. Honarvar Nazari, M. Ilic, J. Pe¸cas Lopes, Small-signal stability and de-
2092
+ centralized control design for electric energy systems with a large penetra-
2093
+ tion of distributed generators, Control Engineering Practice 20 (9) (2012)
2094
+ 823–831. doi:https://doi.org/10.1016/j.conengprac.2012.04.006.
2095
+ 25
2096
+
2097
+ [7] A. Bidram, F. L. Lewis, A. Davoudi, Distributed control systems for small-
2098
+ scale power networks: Using multiagent cooperative control theory, IEEE
2099
+ Control Systems Magazine 34 (6) (2014) 56–77. doi:10.1109/MCS.2014.
2100
+ 2350571.
2101
+ [8] A. Bidram, A. Davoudi, F. L. Lewis, J. M. Guerrero, Distributed co-
2102
+ operative secondary control of microgrids using feedback linearization,
2103
+ IEEE Transactions on Power Systems 28 (3) (2013) 3462–3470.
2104
+ doi:
2105
+ 10.1109/TPWRS.2013.2247071.
2106
+ [9] Z. Ma, Z. Wang, Y. Guo, Y. Yuan, H. Chen, Nonlinear multiple models
2107
+ adaptive secondary voltage control of microgrids, IEEE Transactions on
2108
+ Smart Grid 12 (1) (2021) 227–238. doi:10.1109/TSG.2020.3023307.
2109
+ [10] C. Ahumada, R. C´ardenas, D. S´aez, J. M. Guerrero, Secondary control
2110
+ strategies for frequency restoration in islanded microgrids with consider-
2111
+ ation of communication delays, IEEE Transactions on Smart Grid 7 (3)
2112
+ (2016) 1430–1441. doi:10.1109/TSG.2015.2461190.
2113
+ [11] I. U. Nutkani, W. Peng, L. P. Chiang, F. Blaabjerg, Secondary droop
2114
+ for frequency and voltage restoration in microgrids, in: 2015 17th Euro-
2115
+ pean Conference on Power Electronics and Applications (EPE’15 ECCE-
2116
+ Europe), 2015, pp. 1–7. doi:10.1109/EPE.2015.7309457.
2117
+ [12] L.-Y. Lu, C.-C. Chu, Consensus-based secondary frequency and voltage
2118
+ droop control of virtual synchronous generators for isolated ac micro-grids,
2119
+ IEEE Journal on Emerging and Selected Topics in Circuits and Systems
2120
+ 5 (3) (2015) 443–455. doi:10.1109/JETCAS.2015.2462093.
2121
+ [13] L.-Y. Lu, C.-C. Chu, Consensus-based droop control of isolated micro-grids
2122
+ by admm implementations, IEEE Transactions on Smart Grid 9 (5) (2018)
2123
+ 5101–5112. doi:10.1109/TSG.2017.2680445.
2124
+ [14] M. Jafari, V. Sarfi, A. Ghasemkhani, H. Livani, L. Yang, H. Xu, R. Koosha,
2125
+ Adaptive neural network based intelligent secondary control for microgrids,
2126
+ in: 2018 IEEE Texas Power and Energy Conference (TPEC), 2018, pp. 1–6.
2127
+ doi:10.1109/TPEC.2018.8312064.
2128
+ [15] X. Shen, H. Wang, J. Li, Q. Su, L. Gao, Distributed secondary voltage con-
2129
+ trol of islanded microgrids based on rbf-neural-network sliding-mode tech-
2130
+ nique, IEEE Access 7 (2019) 65616–65623. doi:10.1109/ACCESS.2019.
2131
+ 2915509.
2132
+ [16] D. O. Amoateng, M. Al Hosani, M. S. Elmoursi, K. Turitsyn, J. L. Kirtley,
2133
+ Adaptive voltage and frequency control of islanded multi-microgrids, IEEE
2134
+ Transactions on Power Systems 33 (4) (2018) 4454–4465. doi:10.1109/
2135
+ TPWRS.2017.2780986.
2136
+ 26
2137
+
2138
+ [17] F.-J. Lin, C.-I. Chen, G.-D. Xiao, P.-R. Chen, Voltage stabilization control
2139
+ for microgrid with asymmetric membership function-based wavelet petri
2140
+ fuzzy neural network, IEEE Transactions on Smart Grid 12 (5) (2021)
2141
+ 3731–3741. doi:10.1109/TSG.2021.3071357.
2142
+ [18] A. Younesi, H. Shayeghi, Q-learning based supervisory pid controller for
2143
+ damping frequency oscillations in a hybrid mini/micro-grid, Iranian Journal
2144
+ of Electrical and Electronic Engineering 15 (1) (2019) 126–141.
2145
+ [19] R. Zhang, B. Hredzak, Distributed control system with aperiodic sampled
2146
+ time-delayed data for batteries and renewable energy sources in microgrid,
2147
+ IEEE Transactions on Sustainable Energy 11 (2) (2020) 1013–1022. doi:
2148
+ 10.1109/TSTE.2019.2916206.
2149
+ [20] J. L. Proctor, S. L. Brunton, J. N. Kutz, Generalizing koopman theory to
2150
+ allow for inputs and control, SIAM Journal on Applied Dynamical Systems
2151
+ 17 (1) (2018) 909–930. doi:10.1137/16M1062296.
2152
+ [21] M. Korda, Y. Susuki, I. Mezi´c, Power grid transient stabilization using
2153
+ koopman model predictive control, IFAC-PapersOnLine 51 (28) (2018) 297–
2154
+ 302. doi:https://doi.org/10.1016/j.ifacol.2018.11.718.
2155
+ [22] X. Gong, X. Wang, G. Joos, An online data-driven method for microgrid
2156
+ secondary voltage and frequency control with ensemble koopman model-
2157
+ ing, IEEE Transactions on Smart Grid (2022) 1–1doi:10.1109/TSG.2022.
2158
+ 3190237.
2159
+ [23] Y. e. a. Lin, Research Roadmap on Grid-Forming Inverters, Tech. rep.,
2160
+ National Renewable Energy Lab, Golden, CO, United States, report #
2161
+ NREL/TP-5D00-73476 (2020).
2162
+ [24] J. Rocabert, A. Luna, F. Blaabjerg, P. Rodr´ıguez, Control of power con-
2163
+ verters in ac microgrids, IEEE Transactions on Power Electronics 27 (11)
2164
+ (2012) 4734–4749. doi:10.1109/TPEL.2012.2199334.
2165
+ [25] B. Kroposki, B. Johnson, Y. Zhang, V. Gevorgian, P. Denholm, B.-M.
2166
+ Hodge, B. Hannegan, Achieving a 100% renewable grid: Operating electric
2167
+ power systems with extremely high levels of variable renewable energy,
2168
+ IEEE Power and Energy Magazine 15 (2) (2017) 61–73. doi:10.1109/
2169
+ MPE.2016.2637122.
2170
+ [26] E. Rokrok, T. Qoria, A. Bruyere, B. Francois, X. Guillaud, Effect of using
2171
+ pll-based grid-forming control on active power dynamics under various scr,
2172
+ in: IECON 2019 - 45th Annual Conference of the IEEE Industrial Elec-
2173
+ tronics Society, Vol. 1, 2019, pp. 4799–4804. doi:10.1109/IECON.2019.
2174
+ 8927648.
2175
+ [27] W. Du, Z. Chen, K. P. Schneider, R. H. Lasseter, S. Pushpak Nandanoori,
2176
+ F. K. Tuffner, S. Kundu, A comparative study of two widely used grid-
2177
+ forming droop controls on microgrid small-signal stability, IEEE Journal of
2178
+ 27
2179
+
2180
+ Emerging and Selected Topics in Power Electronics 8 (2) (2020) 963–975.
2181
+ doi:10.1109/JESTPE.2019.2942491.
2182
+ [28] D. J. Ryan, R. Razzaghi, H. D. Torresan, A. Karimi, B. Bahrani, Grid-
2183
+ supporting battery energy storage systems in islanded microgrids: A data-
2184
+ driven control approach, IEEE Transactions on Sustainable Energy 12 (2)
2185
+ (2021) 834–846. doi:10.1109/TSTE.2020.3022362.
2186
+ [29] N. Pogaku, M. Prodanovic, T. C. Green, Modeling, analysis and testing of
2187
+ autonomous operation of an inverter-based microgrid, IEEE Transactions
2188
+ on Power Electronics 22 (2) (2007) 613–625.
2189
+ doi:10.1109/TPEL.2006.
2190
+ 890003.
2191
+ [30] H. Bevrani, S. Shokoohi, An intelligent droop control for simultaneous volt-
2192
+ age and frequency regulation in islanded microgrids, IEEE Transactions on
2193
+ Smart Grid 4 (3) (2013) 1505–1513. doi:10.1109/TSG.2013.2258947.
2194
+ [31] S. Golestan, M. Monfared, F. D. Freijedo, J. M. Guerrero, Performance
2195
+ improvement of a prefiltered synchronous-reference-frame pll by using a
2196
+ pid-type loop filter, IEEE Transactions on Industrial Electronics 61 (7)
2197
+ (2014) 3469–3479. doi:10.1109/TIE.2013.2282607.
2198
+ [32] M. Korda, I. Mezi´c, Linear predictors for nonlinear dynamical systems:
2199
+ Koopman operator meets model predictive control, Automatica 93 (2018)
2200
+ 149–160. doi:https://doi.org/10.1016/j.automatica.2018.03.046.
2201
+ [33] M. Netto, Y. Susuki, V. Krishnan, Y. Zhang, On analytical construction of
2202
+ observable functions in extended dynamic mode decomposition for nonlin-
2203
+ ear estimation and prediction, IEEE Control Systems Letters 5 (6) (2021)
2204
+ 1868–1873. doi:10.1109/LCSYS.2020.3047586.
2205
+ [34] E. Yeung, S. Kundu, N. Hodas, Learning deep neural network repre-
2206
+ sentations for koopman operators of nonlinear dynamical systems, in:
2207
+ 2019 American Control Conference (ACC), 2019, pp. 4832–4839.
2208
+ doi:
2209
+ 10.23919/ACC.2019.8815339.
2210
+ [35] H. Shi, M. Q.-H. Meng, Deep koopman operator with control for nonlinear
2211
+ systems, IEEE Robotics and Automation Letters 7 (3) (2022) 7700–7707.
2212
+ doi:10.1109/LRA.2022.3184036.
2213
+ [36] Y. Han, W. Hao, U. Vaidya, Deep learning of koopman representation for
2214
+ control, in: 2020 59th IEEE Conference on Decision and Control (CDC),
2215
+ 2020, pp. 1890–1895. doi:10.1109/CDC42340.2020.9304238.
2216
+ [37] S. J. Qin, An overview of subspace identification, Computers & chemical
2217
+ engineering 30 (10-12) (2006) 1502–1513.
2218
+ [38] A. Alenany, D. Westwick, H. Shang, A modified observer/kalman filter
2219
+ identification (okid) algorithm employing output residuals, International
2220
+ Journal of Dynamics and Control 7 (2) (2019) 636–643.
2221
+ 28
2222
+
2223
+ [39] S. L. Brunton, J. N. Kutz, Data-driven science and engineering: Machine
2224
+ learning, dynamical systems, and control, Cambridge University Press,
2225
+ 2022.
2226
+ [40] S. Haykin, Neural networks and learning machines, 3/E, Pearson Education
2227
+ India, 2009.
2228
+ [41] A. Shaiju, I. R. Petersen, Formulas for discrete time lqr, lqg, leqg and
2229
+ minimax lqg optimal control problems, IFAC Proceedings Volumes 41 (2)
2230
+ (2008) 8773–8778.
2231
+ [42] J. Lee, J.-S. Kim, H. Shim, Disc margins of the discrete-time lqr and its
2232
+ application to consensus problem, International Journal of Systems Science
2233
+ 43 (10) (2012) 1891–1900. doi:10.1080/00207721.2011.555012.
2234
+ [43] K. P. Schneider, B. A. Mather, B. C. Pal, C.-W. Ten, G. J. Shirek,
2235
+ H. Zhu, J. C. Fuller, J. L. R. Pereira, L. F. Ochoa, L. R. de Araujo,
2236
+ R. C. Dugan, S. Matthias, S. Paudyal, T. E. McDermott, W. Kerst-
2237
+ ing, Analytic considerations and design basis for the ieee distribution test
2238
+ feeders, IEEE Transactions on Power Systems 33 (3) (2018) 3181–3188.
2239
+ doi:10.1109/TPWRS.2017.2760011.
2240
+ 29
2241
+
59AzT4oBgHgl3EQff_xu/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
59E2T4oBgHgl3EQfOwac/content/tmp_files/2301.03752v1.pdf.txt ADDED
@@ -0,0 +1,2396 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Draft version January 11, 2023
2
+ Typeset using LATEX default style in AASTeX631
3
+ Magnetic Fields, Star Formation Rates and Gas Densities at Sub-kpc Scales in a Pilot Sample of
4
+ Nearby Galaxies
5
+ Souvik Manna1 and Subhashis Roy1
6
+ 1National Center for Radio Astrophysics, TIFR,
7
+ Pune University Campus, Ganeshkhind, Pune 411007, India
8
+ ABSTRACT
9
+ We have estimated the magnetic field strengths of a sample of seven galaxies using their non-thermal
10
+ synchrotron radio emission at metre wavelengths, and assuming energy equipartition between magnetic
11
+ fields and cosmic ray particles. We tested for deviation of magnetic fields from energy equipartition with
12
+ cosmic ray particles, and found that deviations of ∼25% are typical for the sample galaxies. Spatially
13
+ resolved star formation rates (SFR) were estimated for the seven galaxies along with five galaxies
14
+ studied previously. For the combined sample of twelve galaxies, the equipartition magnetic fields (Beq)
15
+ are correlated with the SFR surface densities (ΣSFR) at sub-kpc scales with Beq ∝ Σ0.31±0.06
16
+ SFR
17
+ , consistent
18
+ with model predictions. We estimated gas densities (ρgas) for a sub-sample of seven galaxies using
19
+ archival observations of the carbon monoxide (CO) rotational transitions and the atomic hydrogen
20
+ (Hi) 21 cm line and studied the spatially-resolved correlation between the magnetic fields and ρgas.
21
+ Magnetic fields and gas densities are found to be correlated at sub-kpc scale as Beq ∝ ρ0.40±0.09
22
+ gas
23
+ . This
24
+ is broadly consistent with models, which typically predict B ∝ ρ0.5
25
+ gas.
26
+ Keywords: Radio continuum emission — Interstellar medium — Star formation — Magnetic fields
27
+ 1. INTRODUCTION
28
+ Magnetic fields are believed to influence several physical processes in a galaxy at almost every scale (e.g. Elmegreen
29
+ 1981; Niklas & Beck 1997; Groves et al. 2003; Price & Bate 2008; Adebahr et al. 2013). Magnetic fields have been
30
+ found to consist of two main components: a small-scale turbulent magnetic field up to a few hundred parsecs (e.g.
31
+ Batchelor 1950; Groves et al. 2003) and a large-scale “ordered” or “regular” magnetic field component at scales of a few
32
+ kpcs (e.g. Moss & Shukurov 1996; Shukurov et al. 2006; Kulsrud & Zweibel 2008). Magnetic fields in galaxies can be
33
+ measured using their effects on different radiation processes like Zeeman splitting of emission lines, polarized emission
34
+ from dust, the polarization of starlight, Faraday rotation of polarized radio emission, and intensity of synchrotron
35
+ emission which we use in this work. Measurement of the line-of-sight component of the magnetic field via the Zeeman
36
+ effect in galaxies other than the Milky Way has been possible for only a few systems (Kazes et al. 1991; Sarma et al.
37
+ 2005; Robishaw et al. 2008); a significant expansion of such studies is very difficult with current-generation telescopes.
38
+ Magnetic fields in galaxies can be measured and studied using synchrotron emission at radio frequencies, at scales
39
+ larger than the resolution of the radio observation. For example, a Very Large Array (VLA) polarization study of
40
+ NGC 4736 at 8.46 and 4.86 GHz found that the magnetic field in the galaxy was ordered in a spiral shape (Chy˙zy
41
+ & Buta 2008). An X-shaped structure of the magnetic field in the galactic halo region was observed by stacking the
42
+ Karl G. Jansky VLA polarized emission maps of 16 nearly edge-on spiral galaxies, obtained as part of the CHANG-ES
43
+ survey (Krause et al. 2020); such structures had also been observed in individual spiral galaxies (e.g. Krause et al.
44
+ 2006; Krause 2009; Heesen et al. 2009). However, polarized radio emission from external individual galaxies is difficult
45
+ to study at low radio frequencies due to Faraday depolarization (e.g. Sokoloff et al. 1998).
46
+ Corresponding author: Souvik Manna
47
+ souvik@ncra.tifr.res.in
48
+ arXiv:2301.03752v1 [astro-ph.GA] 10 Jan 2023
49
+
50
+ 2
51
+ Manna and Roy
52
+ The average magnetic field strength can also be estimated from the total intensity of synchrotron radio emission,
53
+ assuming energy equipartition between magnetic fields and cosmic ray particles (e.g. Miley 1980; Beck & Krause 2005).
54
+ Equipartition magnetic fields have been studied in several nearby galaxies, but primarily at frequencies >1 GHz (e.g.
55
+ Chy˙zy et al. 2000; Soida et al. 2001; Heesen et al. 2009; Fletcher et al. 2011; Adebahr et al. 2013). Vargas et al. (2018)
56
+ studied a sample of three nearly edge-on galaxies from the CHANG-ES survey to separate the thermal Bremsstrahlung
57
+ from the non-thermal synchrotron emission at 1.5 and 6 GHz. At these frequencies, the thermal component is large and
58
+ hence the correction for the thermal emission can be as large as ∼ 20%, making the derived magnetic field strengths
59
+ prone to errors. Conversely, the steep spectral index of synchrotron emission implies that it will dominate the total
60
+ emission at frequencies < 1 GHz, with ∼ 95% contribution (Basu et al. 2012b; Roy & Manna 2021). Thus, magnetic
61
+ field strengths derived using observations at <1 GHz are very robust to any correction for thermal emission.
62
+ Magnetic fields are believed to play an important role at various stages of the star-formation process - from the
63
+ fragmentation of clouds at the few kpc scales to the final collapse of gas into stars (e.g. Elmegreen 1981; Crutcher
64
+ 1999; Price & Bate 2008; Van Loo et al. 2015). To understand the influence of magnetic fields and star-formation
65
+ activities on different physical processes in the ISM at different physical scales, several studies on radio-infrared
66
+ correlations have been carried out in the past (e.g. Murphy et al. 2006a,b, 2008; Tabatabaei et al. 2013). Magnetic
67
+ fields (B) and star formation rate surface densities (SFRSD) are expected to be correlated (Niklas & Beck 1997). Semi-
68
+ analytical model also predicts a strong correlation between B and SFRSDs (ΣSFR) as B ∝ Σ1/3
69
+ SFR at sub-kpc scales
70
+ to explain the local radio-FIR correlation (Schleicher & Beck 2013, 2016). Observational studies of the correlation
71
+ between B and star formation rates (SFR) have been done primarily in samples of nearby dwarf galaxies. For example,
72
+ Chy˙zy et al. (2011) studied 12 local group dwarf galaxies to find that the galaxy-averaged magnetic field and the SFR
73
+ follow B ∼ SFR0.30±0.04, consistent with the prediction of B ∝ Σ1/3
74
+ SFR. However, Jurusik et al. (2014) found the same
75
+ power-law index in a sample of Magellanic type dwarf galaxies to be 0.25±0.02, somewhat lower than the expectation.
76
+ Recently, a study of the dwarf galaxy IC 10 by Basu et al. (2017) provides the only study of the correlation between
77
+ spatially-resolved magnetic fields and SFRSDs; these authors found that the SFRSD is related to the magnetic field
78
+ as B ∝ Σ0.35±0.03
79
+ SFR
80
+ . Therefore, it is important to test such predictions by carrying out systematic spatially-resolved
81
+ studies of magnetic fields in galaxies and their connection to the star formation rate in nearby large galaxies.
82
+ The energy density of magnetic fields and gas in galaxies are expected to be in equipartition, which implies B
83
+ ∝ √ρgas (e.g. Chandrasekhar & Fermi 1953; Groves et al. 2003). The observed Radio-FIR correlation can be explained
84
+ based on such equipartition between the energy density of magnetic fields and gas (Niklas & Beck 1997). Several other
85
+ numerical magnetohydrodynamic (MHD) simulations of the ISM have predicted the coupling constant (k) between
86
+ magnetic fields and gas (B ∝ ρk
87
+ gas) to be in the range of ≈0.4−0.6 (Fiedler & Mouschovias 1993; Kim et al. 2001;
88
+ Thompson et al. 2006). Niklas & Beck (1997) studied the correlation between galaxy-integrated equipartition magnetic
89
+ fields and gas densities for a sample of 43 galaxies to find a power-law index of 0.48 ± 0.05; the observed correlation is
90
+ consistent with B ∝ √ρgas. Although the correlation between gas surface densities and SRFSDs has been extensively
91
+ studied in the nearby Universe (Kennicutt-Schmidt law; e.g. Kennicutt 1998a; Onodera et al. 2010; Roychowdhury
92
+ et al. 2015), systematic studies of spatially-resolved correlations between magnetic fields, SFRs and gas densities in
93
+ nearby galaxies are yet to be carried out. It is thus important to carry out a systematic investigation of both the
94
+ B-ρ and the B-SFR correlations, at high-spatial resolutions (≈ sub-kpc scales), using direct estimates of the magnetic
95
+ fields, gas densities, and star-formation rates, in a sample of nearby galaxies. In this paper, we present a pilot study
96
+ of the connection between spatially resolved magnetic fields, SFRSDs and gas densities in a sample of nearby galaxies.
97
+ We have selected a sample of 46 galaxies (Sample 0; Table 2) from the Spitzer Local Volume Legacy (LVL) sample
98
+ of 258 galaxies within 11 Mpc (Dale et al. 2009). As a pilot project, seven (Sample 1; Table 2) of these 46 galaxies
99
+ have been observed with the Giant Metrewave Radio Telescope (GMRT) at 0.33 GHz (Roy & Manna 2021). Six of
100
+ our seven sample galaxies are spirals and the other one is a dwarf irregular Magellanic-type galaxy.
101
+ In this paper, we present spatially resolved equipartition magnetic field (Beq) maps of the seven galaxies in Sample
102
+ 1 (Table 2). We also incorporate the magnetic field maps of five galaxies studied by Basu et al. (2012a) from previous
103
+ GMRT observations in our study. We derived SFRSD maps of all 12 galaxies (Sample 2; Table 2) using extinction-
104
+ free diagnostics and used these maps to study the relation between SFRSDs and Beq at sub-kpc scales in our pilot
105
+ study. We used available archival CO and Hi 21 cm data to measure the gas densities (ρgas) of seven (Sample 3;
106
+ Table 2) of the combined sample of 12 galaxies and studied the correlation between ρgas and Beq in these galaxies.
107
+ We also studied the magnetic field-gas connection through an indirect measurement of their coupling coefficient using
108
+ radio−FIR correlations of the galaxies in Sample 1.
109
+
110
+ A Pilot Study of Magnetic Fields, Star Formation Rates and Gas densities
111
+ 3
112
+ Table 1. Details of the seven sample galaxies. Note that the images at 0.33 GHz were obtained from observations with the
113
+ GMRT reported in Roy & Manna (2021) while those at 1.4 GHz were obtained from archival VLA data. The distances to
114
+ the galaxies were taken from Dale et al. (2009). Galaxies with an asterisk are those for which spatially-resolved CO data are
115
+ available.
116
+ Name
117
+ Class
118
+ Distance
119
+ Inclination
120
+ Position
121
+ uv
122
+ Angular
123
+ Spatial
124
+ RMS
125
+ RMS
126
+ VLA
127
+ (Mpc)
128
+ angle
129
+ angle
130
+ range
131
+ resolution
132
+ resolution
133
+ (0.33 GHz)
134
+ (1.4 GHz)
135
+ Project ID
136
+ (deg)
137
+ (deg)
138
+ (kλ)
139
+ (arcsec2)
140
+ (pc)
141
+ (µJy/beam)
142
+ (µJy/beam)
143
+ (1.4 GHz)
144
+ NGC 2683
145
+ Sb
146
+ 7.7
147
+ 83
148
+ 43
149
+ 0.19 - 15
150
+ 19 × 13
151
+ 670
152
+ 200
153
+ 40
154
+ AI23
155
+ NGC 3627∗
156
+ SAB
157
+ 10.
158
+ 65
159
+ 170
160
+ 0.26 - 25
161
+ 16 × 11
162
+ 760
163
+ 800
164
+ 370
165
+ AS541, AP462
166
+ NGC 4096
167
+ SABc
168
+ 8.3
169
+ 76
170
+ 20
171
+ 0.14 - 17
172
+ 14 × 12
173
+ 730
174
+ 100
175
+ 25
176
+ 16A-013
177
+ NGC 4449
178
+ Irregular
179
+ 4.2
180
+ 0
181
+ 0
182
+ 0.15 - 15
183
+ 26 × 15
184
+ 360
185
+ 300
186
+ 180
187
+ AB167
188
+ NGC 4490
189
+ SBm
190
+ 8.0
191
+ 60
192
+ 126
193
+ 0.13 - 14
194
+ 19 × 18
195
+ 560
196
+ 230
197
+ 100
198
+ AA181
199
+ NGC 4826∗
200
+ SAab
201
+ 7.5
202
+ 60
203
+ 120
204
+ 0.22 - 20
205
+ 15 × 14
206
+ 650
207
+ 280
208
+ 70
209
+ AS541
210
+ NGC 5194∗
211
+ Sbc
212
+ 8.0
213
+ 20
214
+ 10
215
+ 0.15 - 10
216
+ 23 × 18
217
+ 740
218
+ 310
219
+ 30
220
+ AB505, AN57
221
+ Table 2.
222
+ List of different samples studied in this paper.
223
+ Sample Name
224
+ Galaxies
225
+ Sample 0
226
+ Full sample containing 46 galaxies from Spitzer LVL survey
227
+ Sample 1
228
+ Pilot sample containing 7 galaxies from Sample 0; galaxies listed in Table 1
229
+ Sample 2
230
+ Sample 1 + 5 galaxies (NGC 1097, NGC 4736, NGC 5055, NGC 5236 and NGC 6946)
231
+ from Basu et al. (2012b) = 12 galaxies; used to probe the Beq-SFRSD correlations
232
+ Sample 3
233
+ A subset of 7 galaxies (NGC 3627, NGC 4826, NGC 5194, NGC 4736, NGC 5055, NGC 5236 and
234
+ NGC 6946) from Sample 2 which have archival CO data; used to study the Beq-gas density correlations
235
+ The paper is organized as follows. The analysis of the data is discussed in Section 2. In Section 3, we present
236
+ the results of our analysis, including the correlation between magnetic fields, SFRSDs and gas densities of the seven
237
+ galaxies in Sample 1. In Section 4, we have extended our study to include a sample of five galaxies of Basu et al.
238
+ (2012a) . We discuss the results in Section 5. A summary of this paper is presented in Section 6.
239
+ 2. DATA ANALYSIS
240
+ As can be seen in Table 1, six of the seven galaxies in Sample 1 are spirals of varying inclination angles. The seventh
241
+ galaxy NGC 4449 is a dwarf irregular galaxy. Basic information about the seven sample galaxies, including their
242
+ types, distances, inclination angles, position angles, angular resolutions, spatial resolutions, and RMS noise obtained
243
+ on the GMRT and VLA images are also listed in Table 1. The distances, inclination angles, and position angles of
244
+ the galaxies were taken from Dale et al. (2009). Radio observations and the data reduction procedures are discussed
245
+ in detail in Roy & Manna (2021). Briefly, we used GMRT 0.33 GHz observations (covering 0.309−0.342 GHz) and
246
+ archival VLA observations at 1.4 and ∼6 GHz to derive non-thermal emission maps for each galaxy. We used Hα and
247
+ 24µm observations of the seven galaxies to model free-free emission from them and subsequently, we subtracted the
248
+ modelled free-free emission from the observed radio emission to get the non-thermal radio maps at 0.33, 1.4 and ∼6
249
+ GHz (Roy & Manna 2021). To generate the non-thermal spectral index maps, we used the non-thermal radio maps
250
+ at 0.33 and ∼6 GHz for NGC 2683, NGC 3627, NGC 4096, and NGC 4449. For the rest of the galaxies (NGC 4490,
251
+ NGC 4826, and NGC 5194), we used non-thermal images at 0.33 and 1.4 GHz to generate the non-thermal spectral
252
+ index maps (Roy & Manna 2021). In the following subsections, we present the analysis of other ancillary data and
253
+ relevant measurements.
254
+ 2.1. Magnetic Field Strengths
255
+ The average magnetic field strengths can be estimated from the observed synchrotron flux densities, assuming energy
256
+ equipartition between cosmic ray particles and magnetic fields (“Classical Equipartition Formula”, e.g. Pacholczyk
257
+ 1970; Miley 1980; Longair 2011). The equipartition condition is achieved when the total energy in magnetic fields and
258
+ cosmic ray particles is minimum.
259
+
260
+ 4
261
+ Manna and Roy
262
+ The classical equipartition formalism has shortcomings that lead to an overestimation of the magnetic field strength
263
+ (B) at regions of steep spectral indices and underestimation of B at flat spectral index regions. To overcome these
264
+ shortcomings of the classical equipartition formula, Beck & Krause (2005) proposed a revised formula to estimate the
265
+ average magnetic field strength. The formula is expressed as
266
+ Beq = [4π(K0 + 1)E1−2αnt
267
+ p
268
+ f(αnt)
269
+ C4(i)
270
+ Iνναnt
271
+ l
272
+ ]
273
+ 1
274
+ αnt+3
275
+ (1)
276
+ K0, Ep, Iν, and αnt are the number density ratio of cosmic ray protons to electrons, the proton rest mass energy,
277
+ the intensity of the synchrotron emission at frequency ν, and the spectral index of synchrotron emission, respectively.
278
+ f(αnt) is a function of αnt given as f(αnt) = (2αnt + 1)[2(αnt − 1)c2(αnt)cαnt
279
+ 1
280
+ ] (Beck & Krause 2005). C4(i) is a
281
+ constant that depends on the inclination angle (i) of the galaxy and is expressed as C4(i) = [cos(i)](γ+1)/2, where
282
+ γ = (2αnt +1). l is the path length of the synchrotron emission. The path length was assumed to be 1 kpc for a galaxy
283
+ with an inclination angle of 0 degree (face-on). For galaxies with low- and moderate- inclination angles (< 75◦),
284
+ the assumed path length was corrected for the inclinations of the galaxies as l/cos(i). For the two nearly edge-on
285
+ galaxies in Sample 1, NGC 2683 and NGC 4096, we have assumed an oblate spheroidal shape of the synchrotron
286
+ emission, such that the diameter on the plane of the galaxy is equal to its major axis. The path lengths (l) were then
287
+ appropriately calculated, with the path length being maximum (equal to the galaxy’s major axis) at the optical centre
288
+ of the galaxy and gradually declining to the edge of the galaxy. We note that Beq has only a weak dependence on l as
289
+ Beq(r) = l(r)
290
+ −1
291
+ αnt+3 and hence is less sensitive to the exact choice of l. Values of K0 and Ep were assumed to be 100
292
+ and 938.28 MeV, respectively, the same as used by Beck & Krause (2005). Finally, we used non-thermal radio maps at
293
+ 0.33 GHz (Iν) and spectral index maps (αnt) made using 0.33 and 1.4 or ∼6 GHz radio observations (Roy & Manna
294
+ 2021) to produce magnetic field maps of the sample galaxies using Equation 1.
295
+ The revised equipartition formula diverges for spectral index values ≤ 0.5 because such flat spectra indicate energy
296
+ loss of electrons through ionizations or Coulomb interactions (Sarazin 1999). The central bulge and arm regions have a
297
+ mostly flatter spectrum due to the association of star-forming regions and the estimates of equipartition magnetic fields
298
+ in such regions might be affected by systematic uncertainties. This issue affects the derived magnetic field strengths
299
+ for 8%, 12%, 3%, 70%, 17%, 7%, and 6% of the projected total surface area of NGC 2683, NGC 3627, NGC 4096,
300
+ NGC 4449, NGC 4490, NGC 4826, and NGC 5194, respectively. We note that a large fraction of the derived magnetic
301
+ field values are affected for NGC 4449 due to its non-thermal spectral indices being predominantly flat. This could
302
+ bias the Beq for NGC 4449.
303
+ 2.1.1. Uncertainties on Magnetic Field Maps
304
+ The procedure we used to estimate the uncertainties on our magnetic field maps is similar to that of Basu & Roy
305
+ (2013). We used a Monte Carlo method that generated 104 random flux density values for each pixel in a galaxy map
306
+ at 0.33 GHz and either 1.4 GHz or 6 GHz. These flux density values have Gaussian probability distributions with rms
307
+ values equal to the measured rms of each of the 0.33 and 1.4/6 GHz maps. For each of the 104 intensity maps, we
308
+ computed a magnetic field map using the procedure described in the beginning of Section 2.1. The rms of these 104
309
+ magnetic field maps provided us with the magnetic field uncertainty maps for each of the seven galaxies in sample 1.
310
+ 2.2. Star Formation Rates
311
+ Rest frame Hα and ultraviolet (UV) observations are the best tracers of recent SFRs as the radiation from these
312
+ predominantly originate in newly formed massive stars. However, the observations are affected by extinction caused by
313
+ interstellar dust in both the host galaxy as well as the Milky Way. SFRs estimated from Hα and UV observations are
314
+ therefore corrected for the extinction. Dust-corrected SFRs can be estimated by combining far-ultraviolet (FUV) and
315
+ Hα data with infrared (IR) data to exploit the complementary strengths at different wavelengths (e.g. Kennicutt &
316
+ Evans 2012a; Buat 1992; Meurer et al. 1995, 1999; Cortese et al. 2008; Leroy et al. 2012). In addition to the FUV+IR
317
+ and Hα+IR tracers, the low-frequency radio emission from galaxies, which is predominantly optically thin synchrotron
318
+ emission, can be used to estimate their dust-unobscured SFRs via the radio-FIR correlation (e.g. Yun et al. 2001).
319
+ We estimated the spatially-resolved star formation rates of our Sample 1 galaxies using FUV+24µm, Hα+24µm,
320
+ and 1.4 GHz data, which are discussed, respectively, in the following Sections, 2.2.1, 2.2.2, and 2.2.3. We used data
321
+ of these different frequencies as tracers in order to (1) get a fair comparison between different SFR diagnostics and
322
+ (2) for studying star-formation history at different timescales. All SFRs in this paper assume a Kroupa IMF (Kroupa
323
+ 2001).
324
+
325
+ A Pilot Study of Magnetic Fields, Star Formation Rates and Gas densities
326
+ 5
327
+ 2.2.1. SFRs using FUV and 24µm Observations
328
+ To estimate SFRSD maps of the seven galaxies in Sample 1 (Table 2) using FUV+24µm emission, we used SPITZER
329
+ 24 µm IR data (Dale et al. 2009) and GALEX FUV data (11HUGS survey; Kennicutt et al. 2008). We first convolved
330
+ both the 24 µm and the FUV maps of all galaxies to the same resolutions as our magnetic field maps. The FUV data
331
+ were corrected for extinction due to dust in the Milky Way (see Section 2.2.4). The FUV images were in units of
332
+ counts/sec/pixel and were converted to flux-density units of MJy Sr−1. We also converted the 24µm images to units of
333
+ MJy Sr−1 and used the following calibration from Leroy et al. (2012) to derive SFRSD maps for the sample galaxies:
334
+ ΣSFR[M⊙yr−1kpc−2] = 0.081 IFUV[MJy sr−1] + 0.032 I24µm[MJy sr��1]
335
+ (2)
336
+ The uncertainties of the coefficients are ∼10-30%. Note that the uncertainty in SFR estimates arises from issues
337
+ such as the error in sampling the stellar IMF of different star-forming regions, determining the contribution of different
338
+ emission which are not associated with recent star formation, etc. (e.g Kennicutt & Evans 2012b; Leroy et al. 2012).
339
+ 2.2.2. SFRs using Hα and 24µm Observations
340
+ To estimate SFRSD maps using Hα+24µm as a tracer, we used 24 µm emission along with Hα emission from
341
+ 11HUGS (Kennicutt et al. 2008), for all but NGC 5194, for which we used data from the SINGS survey (Kennicutt
342
+ et al. 2003). All the maps were convolved and regridded to the resolution and pixel size of the magnetic field maps. For
343
+ the Hα maps from 11HUGS and SINGS, the flux density units were converted to erg/s/cm−2. We used the following
344
+ calibration from Leroy et al. (2012) to estimate SFRSDs of the galaxies in Sample 1.
345
+ ΣSFR[M⊙yr−1kpc−2] = 634.0 IHα[erg s−1 sr−1] + 0.0025 I24µm[MJy sr−1]
346
+ (3)
347
+ 2.2.3. SFRs using 1.4 GHz Observations
348
+ Our 1.4 GHz non-thermal maps of the galaxies (Sample 1) (Roy & Manna 2021) and an SFR calibration from
349
+ Murphy et al. (2011) were used to derive SFRSD maps (Equation 4). The calibration is based on the observed radio-
350
+ FIR correlation in a sample of nearby star-forming galaxies (Bell 2003) and has a scatter of 0.26 dex. We used this
351
+ galaxy-integrated calibration (Equation 4) to derive the formula for spatially-resolved radio-ΣSFR calibration.
352
+ SFR1.4GHz
353
+ M⊙yr−1
354
+ = 6.35 × 10−29
355
+ L1.4GHz
356
+ erg Hz−1s−1
357
+ (4)
358
+ The spatially-resolved calibration is consistent with the calibration of Heesen et al. (2014). We used the above
359
+ relation to estimate the SFRSD maps of the sample galaxies from the measured 1.4 GHz surface brightness.
360
+ 2.2.4. Galactic Extinction Correction for FUV Emission
361
+ We corrected for the extinction of FUV emission due to dust in the Milky Way using the E(B-V) values along the
362
+ line of sight to the sample galaxies from Bianchi et al. (2017). The extinction coefficients (AFUV) of the GALEX FUV
363
+ bands were measured using Table 1 from Bianchi et al. (2017) and intrinsic fluxes (Fintrinsic) were estimated from the
364
+ following formula:
365
+ AFUV = −2.5 × log[Fobserved
366
+ Fintrinsic
367
+ ]
368
+ (5)
369
+ The extinction percentage of the FUV emission is listed in Table 3.
370
+ 2.3. Gas Densities
371
+ Atomic hydrogen (Hi) and molecular hydrogen (H2) predominantly contribute to the total gas mass of galaxies.
372
+ H2 is best traced using rotational transitions in CO (e.g. Bolatto et al. 2013). Spatially-resolved observations of CO
373
+ transitions exist for only three of our seven galaxies in Sample 1 (Table 2). We have used CO J=2-1 line data of NGC
374
+ 3627 and NGC 5194 from the HERA CO-Line Extragalactic Survey (HERACLES; Leroy et al. 2009) and CO J=1-0
375
+ data of NGC 4826 from the BIMA Survey of Nearby Galaxies (BIMA SONG; Regan et al. 2001). The HERACLES
376
+ and BIMA survey have a spatial resolution of 13′′ and 6′′, respectively. The velocity resolution of the HERACLES and
377
+ BIMA spectral cubes are ∼5 and 6 km/s, respectively. We restrict our study of the connection between gas densities
378
+ and magnetic fields to only these three galaxies for which spatially-resolved CO data are available.
379
+
380
+ 6
381
+ Manna and Roy
382
+ Table 3. FUV extinction values of the Sample 1 galaxies due to the Milky Way foreground dust. The extinctions were computed
383
+ using E(B-V) values along the line of sight to the sample galaxies from Bianchi et al. (2017).
384
+ Name
385
+ Percentage extinction
386
+ NGC 2683
387
+ 22
388
+ NGC 3627
389
+ 23
390
+ NGC 4096
391
+ 21
392
+ NGC 4449
393
+ 15
394
+ NGC 4490
395
+ 15
396
+ NGC 4826
397
+ 13
398
+ NGC 5194
399
+ 27
400
+ The HI Nearby Galaxy Survey (THINGS; Walter et al. 2008) used VLA observations to obtain very high spectral
401
+ (≤ 5.2 km/s) and spatial (∼ 6
402
+ ′′) resolution maps of nearby galaxies at 21cm. We used the publicly available 21cm
403
+ moment maps from this THINGS survey to estimate the distribution of Hi in the three galaxies for which CO data
404
+ are available. All CO and Hi 21 cm maps were convolved and regridded to a common resolution and pixel size of the
405
+ non-thermal radio maps. Gas densities were estimated (for NGC 3627, NGC 4826 and NGC 5194) following Basu &
406
+ Roy (2013) assuming CO to H2 conversion factor of 2 ×1020 (K km s−1)−1 (e.g. Bolatto et al. 2013). A line ratio of 0.8
407
+ was assumed to convert COJ=2-1 to COJ=1-0 (e.g. Leroy et al. 2009). We accounted for the contribution of helium to
408
+ the gas density using ρgas=1.36 × (ρHi + ρH2). Line of sight depths were assumed to be 300 and 400 pc for molecular
409
+ and atomic gas, respectively (Basu & Roy 2013).
410
+ 3. RESULTS
411
+ 3.1. Magnetic Fields in the Galaxies
412
+ We have estimated spatially resolved revised equipartition magnetic field maps for seven galaxies in Sample 1, using
413
+ the procedures of Section 2.1; these maps are shown in Figures 1 & 2. Flux density contours of 1.4 GHz observations
414
+ are overlaid on magnetic field maps. The resolution of these maps corresponds to spatial scales of ∼ 0.4−0.8 kpc
415
+ (see Table 1). The bottom right panel of Figure 2 shows the radial variation of the magnetic field with galactocentric
416
+ radius of all the seven galaxies where both the axes are normalized by their maximum values. Here, we have averaged
417
+ the magnetic field strengths over an annular elliptical region of width equal to the beam size of the corresponding
418
+ map. Position and inclination angle (Table 1) of each galaxy were used while selecting the elliptical regions. We find
419
+ magnetic fields to be stronger at the central region and at the star formation sites (arm regions) with field strengths
420
+ up to 50 µG. Field strengths fall by ∼50% at the edges of the magnetic field maps. The Milky Way also shows such a
421
+ trend in the variation of magnetic field strengths (Beck et al. 1996). We note that our analysis was limited to distances
422
+ where the signal-to-noise ratio in spectral index maps is > 5; the magnetic field strengths at these distances are thus
423
+ likely to be reliable.
424
+ We note that, compared to the magnetic field strengths obtained using the classical equipartition expression, these
425
+ values are higher by ∼ 1.3−1.5 for a non-thermal spectral index of -0.6, and they match for a spectral index of -0.75
426
+ (Beck & Krause 2005).
427
+ Figure 7 shows the uncertainties in the magnetic field values for Sample 1 derived using the Monte Carlo method
428
+ described in Section 2.1.1. Statistical uncertainties on mean magnetic fields for these seven galaxies are provided in
429
+ Table 4.
430
+ 3.2. Star Formation Rates in the Galaxies
431
+ We have estimated the global, galaxy-averaged SFRs of Sample 1 galaxies using 1.4 GHz, FUV+24µm, and Hα+24µm
432
+ emission using calibrations discussed in Section 2.2. Globally integrated star formation rates of the sample galaxies
433
+ are given in Table 5. No systematic offset was found in the SFR values estimated using these tracers. The differences
434
+ in the SFR values for our galaxies are much less than the calibration uncertainty except for NGC 4490. For NGC
435
+ 4490, SFR calculated from 1.4 GHz emission is higher than the same from FUV+24µm emission by a factor of 2.2.
436
+ As discussed in Section 2.2, we have estimated SFRSD maps of the seven galaxies (Sample 1) using FUV+24µm,
437
+ Hα+24µm and 1.4GHz emission. We show SFRSD maps of the seven galaxies in the Appendix (Figures 8-9), where
438
+ SFRSDs estimated using 1.4 GHz and FUV+24µm emission are shown in contours and colors, respectively. In the
439
+
440
+ A Pilot Study of Magnetic Fields, Star Formation Rates and Gas densities
441
+ 7
442
+ Figure 1. The equipartition magnetic field maps of NGC 2683, NGC 3627, NGC 4449 and NGC 4096 (clockwise from top
443
+ left) (Sample 1). Non-thermal radio contours at 1.4 GHz are overlaid on magnetic field maps. The magnetic field strengths are
444
+ shown in color with non-thermal emission at 1.4 GHz shown as overlaid contours. Contour levels are presented below each panel
445
+ in the figure. The circle in the bottom-left corner of the panels indicates the angular resolution of the maps. The uncertainties
446
+ on mean magnetic fields are 0.06µG, 0.17µG, 0.04µG and 0.18µG for the above galaxies, respectively.
447
+
448
+ COLOR:NGC26832683.B.final.TH.SUB.1
449
+ CONT:NGC2683IPOL1490.572MHz2683.L.Ths.TH.SUB.1
450
+ 10
451
+ 20
452
+ 30
453
+ 40
454
+ 33 29
455
+ 28
456
+ 27
457
+ Declination (J2000)
458
+ 26
459
+ 25
460
+ 24
461
+ 23
462
+ 22
463
+ 21
464
+ 085305
465
+ 00
466
+ 52 55
467
+ 50
468
+ 45
469
+ 40
470
+ 35
471
+ 30
472
+ 25
473
+ 20
474
+ RightAscension(J2000)
475
+ Colorscalerange=5.0040.00uG
476
+ Contpeakflux=4.8560E-03JY/BEAM
477
+ Levs = 1.600E-04 * (-2, -1, 1, 2, 4, 8, 16, 32,
478
+ 64, 128, 256, 512)COLOR:NGC36273627.B.final.TH.SUB.1
479
+ CONT:N3627LIPOL1430.389MHz3627.L.Ths.TH.SUB.1
480
+ 10
481
+ 20
482
+ 30
483
+ 40
484
+ 1302
485
+ 01
486
+ Declination (J2000)
487
+ 00
488
+ 1259
489
+ 58
490
+ 57
491
+ 1120 25
492
+ 20
493
+ 15
494
+ 10
495
+ 05
496
+ RightAscension(J2000)
497
+ Colorscale ranqe=5.0040.00uG
498
+ Contpeakflux=1.4880E-02JY/BEAM
499
+ Levs = 1.480E-03 * (-2, -1, 1, 2, 4, 8, 16, 32
500
+ 64,128,256,512COLOR:NGC40964096.B.final.TH.SUB.1
501
+ CONT:NGC4096IPOL1432.873MHz4096.L.Ths.TH.SUB.1
502
+ 5
503
+ 10
504
+ 15
505
+ 20
506
+ 25
507
+ 4734
508
+ 32
509
+ Declination (J2000)
510
+ 30
511
+ 28
512
+ 26
513
+ 24
514
+
515
+ 120630
516
+ 15
517
+ 00
518
+ 05 45
519
+ 30
520
+ RightAscension(J2000)
521
+ Colorscalerange=5.0025.00uG
522
+ Contpeakflux=1.9020E-03JY/BEAM
523
+ Levs = 1.000E-04 * (-2, -1, 1, 2, 4, 8, 16, 32
524
+ 64,128,256,512)COLOR:NGC44494449.B.final.TH.SUB.1
525
+ CONT:N49IPOL1489.900MHz4449.L.Ths.TH.SUB.1
526
+ 10
527
+ 20
528
+ 30
529
+ 4412
530
+ 10
531
+ 08
532
+ Declination (J2000)
533
+ 06
534
+ 04
535
+ 02
536
+ 00
537
+ 4358
538
+ 12 28 45
539
+ 30
540
+ 15
541
+ 00
542
+ 27 45
543
+ 30
544
+ RightAscension(J2000)
545
+ Colorscalerange=5.0035.00uG
546
+ Contpeakflux=2.6366E-01JY/BEAM
547
+ Levs = 7.200E-04 *(-2, -1, 1,2, 4, 8, 16, 32.
548
+ 64, 128, 256,512)8
549
+ Manna and Roy
550
+ 0.2
551
+ 0.4
552
+ 0.6
553
+ 0.8
554
+ 1.0
555
+ Radial distance (Normalised)
556
+ 0.2
557
+ 0.4
558
+ 0.6
559
+ 0.8
560
+ 1.0
561
+ 1.2
562
+ 1.4
563
+ Magnetic field (Normalised)
564
+ NGC 2683
565
+ NGC 3627
566
+ NGC 4096
567
+ NGC 4449
568
+ NGC 4490
569
+ NGC 4826
570
+ NGC 5194
571
+ Figure 2. The equipartition magnetic field maps of NGC 4490 (top left), NGC 4826 (top right) and NGC 5194 (bottom left).
572
+ The magnetic field strengths are shown in color with non-thermal emission at 1.4 GHz shown as overlaid contours. Contour
573
+ levels are presented below each panel in the figure. The circle in the bottom-left corner of the panels indicates the angular
574
+ resolution of the maps. The uncertainties on mean magnetic fields are 0.06µG, 0.11µG and 0.02µG, respectively. The bottom
575
+ right panel presents the radial variation of magnetic field strengths with galactocentric distance for all seven galaxies in Sample
576
+ 1.
577
+
578
+ COLOR:NGC44904490.B.final.TH.SUB.1
579
+ CONT:N4490IPOL1435.114MHz4490.L.ThS.TH.SUB.1
580
+ 10
581
+ 20
582
+ 30
583
+ 40
584
+ 4144
585
+ 42
586
+ 1
587
+ Declination (J2000)
588
+ 40
589
+ 38
590
+ 36
591
+ 34
592
+ 123100
593
+ 30 45
594
+ 30
595
+ 15
596
+ RightAscension(J2000)
597
+ Colorscalerange=5.0045.00uG
598
+ Contpeakflux=3.3720E-02JY/BEAM
599
+ Levs = 4.000E-04 * (-2, -1, 1, 2, 4, 8, 16, 32,
600
+ 64,128, 256, 512)COLOR:NGC48264826.B.final.TH.SUB.1
601
+ CONT:N4826LIPOL1425.677MHz4826.L.Ths.TH.SUB.1
602
+ 10
603
+ 20
604
+ 30
605
+ 21 45
606
+ 44
607
+ 43
608
+ Declination (J2000)
609
+ 42
610
+ 41
611
+ 40
612
+ 39
613
+ 38
614
+ 37
615
+ Q
616
+ 12 57 00
617
+ 56 55
618
+ 50
619
+ 45
620
+ 40
621
+ 35
622
+ 30
623
+ 25
624
+ RightAscension(J2000)
625
+ Colorscalerange=5.0035.00uG
626
+ Contpeakflux=2.5190E-02JY/BEAM
627
+ Levs = 2.800E-04 * (-2, -1, 1, 2, 4, 8, 16, 32,
628
+ 64, 128,256,512)COLOR:NGC51945194.B.final.OHGSPX.1
629
+ CONT:M51IPOL1664.900MHz5194.L.Ths.TH.SUB.1
630
+ 10
631
+ 20
632
+ 30
633
+ 40
634
+ 4718
635
+ 16
636
+ 14
637
+ Declination (J2000)
638
+ 12
639
+ 10
640
+ 08
641
+ 06
642
+ 13 30 30
643
+ 15
644
+ 00
645
+ 29 45
646
+ 30
647
+ 15
648
+ RightAscension(J2000)
649
+ Colorscale range=5.0040.00 uG
650
+ Contpeakflux=4.6656E-02JY/BEAM
651
+ Levs = 1.200E-04 *(-2, -1, 1,2, 4, 8, 16, 32
652
+ 64,128,256,512)A Pilot Study of Magnetic Fields, Star Formation Rates and Gas densities
653
+ 9
654
+ Table 4. Statistical uncertainties on mean magnetic fields for galaxies in Sample 1.
655
+ Name
656
+ Statistical uncertainty
657
+ on mean magnetic fields
658
+ (µG)
659
+ NGC 2683
660
+ 0.06
661
+ NGC 3627
662
+ 0.17
663
+ NGC 4096
664
+ 0.04
665
+ NGC 4449
666
+ 0.18
667
+ NGC 4490
668
+ 0.06
669
+ NGC 4826
670
+ 0.11
671
+ NGC 5194
672
+ 0.02
673
+ Table 5. Galaxy-averaged star formation rates of the galaxies in Sample 1, using 1.4 GHz, FUV+24µm, and Hα+24µm data.
674
+ The uncertainties on the SFR values are ≈ 30%.
675
+ Name
676
+ SFR from 1.4 GHz (M⊙yr−1)
677
+ SFR from FUV+24µm (M⊙yr−1)
678
+ SFR from Hα+24µm (M⊙yr−1)
679
+ NGC 2683
680
+ 0.28
681
+ 0.25
682
+ 0.33
683
+ NGC 3627
684
+ 1.56
685
+ 2.00
686
+ 1.84
687
+ NGC 4096
688
+ 0.42
689
+ 0.35
690
+ 0.38
691
+ NGC 4449
692
+ 0.37
693
+ 0.38
694
+ 0.32
695
+ NGC 4490
696
+ 4.63
697
+ 2.13
698
+ 2.30
699
+ NGC 4826
700
+ 0.63
701
+ 0.73
702
+ 0.78
703
+ NGC 5194
704
+ 4.16
705
+ 3.88
706
+ 3.65
707
+ Appendix (Figures 10-11), we also present the SFRSD maps estimated using Hα+24µm and 1.4 GHz emission in colors
708
+ and contours, respectively. The SFRSD maps of each galaxy in Figures 8−11 are shown in the same color scale and
709
+ contours. To determine the radial variation of SFRSDs, we have averaged the SFRSD maps of our sample galaxies
710
+ over tilted rings centred on the optical centre of each galaxy using their inclinations and position angles. The width of
711
+ the tilted rings was taken to be equal to the beam size of the corresponding image. Figure 3 shows the radial variation
712
+ of the average SFRSD, derived using FUV+24µm and Hα+24µm emission, with galactocentric distance where both
713
+ the axes are normalized to their maximum values. We also derived the radial variation of SFRSDs for the galaxies
714
+ using 1.4 GHz emission and it is consistent within 1σ statistical uncertainties, with those derived using FUV+24µm
715
+ and Hα+24µm data. Azimuthally averaged SFRSDs of all the seven galaxies decrease gradually towards the outer
716
+ region and drop by a factor of 6 to 8 at the edge.
717
+ 3.3. Details of the Individual Galaxies of Sample 1
718
+ (i) NGC 2683: In this galaxy, Krause et al. (2020) found very weak linear polarisation using C-band and L-band
719
+ VLA observations. Based on the optical image, we could separate the central region from the disk. The average
720
+ magnetic field in the central region is found to be ≈31 µG and the outer region of the disk has an average value of
721
+ ≈19 µG (see Figure 1 and Table 6).
722
+ Wiegert et al. (2015) used WISE 22 µm data to estimate a galaxy-averaged SFR of ≈0.09 M⊙yr−1 for NGC 2683.
723
+ From our analysis, integrated SFR was measured to be ∼0.24 M⊙yr−1 and ∼0.28 M⊙yr−1 using FUV+24µm and 1.4
724
+ GHz radio emission, respectively. However, we note that Wiegert et al. (2015) used a distance of 6.27 Mpc for this
725
+ galaxy, but we have used a distance of 7.7 Mpc. The SFR is estimated to be 0.16 M⊙yr−1 using FUV+24µm emission,
726
+ assuming the same distance as used by Wiegert et al. (2015). Taking the calibration uncertainties and the assumed
727
+ distance into account, our estimated SFR is hence consistent with that of Wiegert et al. (2015). We note that the
728
+ contours on the background sources (Figure 8) are not real SFRSDs, as these are likely to be background AGNs.
729
+ (ii) NGC 3627: NGC 3627 was observed at 8.46 GHz and 4.85 GHz using the VLA in its D-configuration (Soida
730
+ et al. 2001). These authors estimated the magnetic field strengths using the classical equipartition formula (Longair
731
+ 2011) and found an average equipartition magnetic field strength of 11±2 µG, assuming a constant non-thermal spectral
732
+
733
+ 10
734
+ Manna and Roy
735
+ 0.2
736
+ 0.4
737
+ 0.6
738
+ 0.8
739
+ 1.0
740
+ Radial distance (Normalised)
741
+ 0.0
742
+ 0.2
743
+ 0.4
744
+ 0.6
745
+ 0.8
746
+ 1.0
747
+ 1.2
748
+ 1.4
749
+ SFRSD from FUV+24μm (Normalised)
750
+ NGC 2683
751
+ NGC 3627
752
+ NGC 4096
753
+ NGC 4449
754
+ NGC 4490
755
+ NGC 4826
756
+ NGC 5194
757
+ 0.0
758
+ 0.2
759
+ 0.4
760
+ 0.6
761
+ 0.8
762
+ 1.0
763
+ Radial distance (Normalised)
764
+ 0.0
765
+ 0.2
766
+ 0.4
767
+ 0.6
768
+ 0.8
769
+ 1.0
770
+ 1.2
771
+ SFRSD using Hα+24μm (Normalised)
772
+ NGC 2683
773
+ NGC 3627
774
+ NGC 4096
775
+ NGC 4449
776
+ NGC 4490
777
+ NGC 4826
778
+ NGC 5194
779
+ Figure 3.
780
+ The variation of SFRSDs (normalized), estimated using FUV+24µm (left panel) and Hα+24µm (right panel)
781
+ emission as a function of galactocentric distance (normalized) for all seven galaxies in Sample 1.
782
+ index of 0.9 and a disk thickness of 2 kpc. Soida et al. (2001) also studied the polarized emission at these frequencies
783
+ to find a regular magnetic field of 4±1 µG. They suggested two distinct magnetic field components of NGC 3627: one
784
+ for the spiral arms and another for the inter-arm regions. We have separately studied equipartition magnetic fields
785
+ in the arm and interarm regions of the galaxy. We find that the central region and the edges of the extended bar
786
+ have magnetic field strengths of ≈ 34 µG (see Figure 1). The arm region has a field strength of ≈28 µG (see Table
787
+ 6). However, the magnetic field strength in the interarm regions has values ≈21 µG. We note that our estimates
788
+ of the equipartition magnetic field strengths in the galaxy are higher than those found by Soida et al. (2001); this
789
+ difference likely arises from the fact that Soida et al. (2001) estimated the magnetic field strengths using the classical
790
+ equipartition formula, which is known to significantly underestimate the magnetic field in the star-forming regions.
791
+ We measured a galaxy-averaged SFR of ≈2.0 M⊙yr−1 and ≈1.56 M⊙yr−1 from FUV+24µm and 1.4 GHz emission,
792
+ respectively.
793
+ Our measurements of spatially resolved SFRs in different regions are consistent, within calibration
794
+ uncertainties, with the SFR estimates of Watanabe et al. (2011).
795
+ (iii) NGC 4096: Our estimate of the equipartition magnetic field in NGC 4096 varies from ≈21 µG at the centre
796
+ to ≈12 µG at the edge (table 6). The magnetic field strength in both the central region and northern periphery is
797
+ quite similar, with typical field strengths of ≈ 20 µG; this is presumably due to its high inclination. The outer part of
798
+ the galaxy has an average field strength of ≈14 µG. NGC 4096 was observed (Irwin et al. 2012; Wiegert et al. 2015)
799
+ with its B-field and further studied by Krause et al. (2020) who found very little polarized emission from the galaxy.
800
+ Wiegert et al. (2015) used the 22 µm−SFR calibration to measure a galaxy-averaged SFR of 0.27±0.02 M⊙yr−1.
801
+ Our measurement of the galaxy-averaged SFR is ≈0.35 M⊙yr−1 and ≈0.43 M⊙yr−1 using FUV+24µm and 1.4 GHz
802
+ emission, respectively. Considering the calibration uncertainties, our estimates are consistent with that of Wiegert
803
+ et al. (2015).
804
+ (iv) NGC 4449: This is an optically bright irregular starburst galaxy. Chy˙zy et al. (2000) used VLA 4.86 and
805
+ 8.46 GHz observations to find a galaxy-averaged equipartition magnetic field of ≈14 µG. These authors also used
806
+ polarization emission to estimate a regular field of ≈8 µG. The equipartition magnetic field map of NGC 4449 from
807
+ our study is shown in Figure 1. As noted in Section 2.1, about 70 % of the total projected area of this galaxy has
808
+ spectral index values of less than 0.55. We have replaced the pixel values with αnt < 0.55 with αnt = 0.55 while
809
+ computing the magnetic field for NGC 4449 (see Section 2.1). The average magnetic field strength is ≈17 µG in this
810
+ galaxy, which is comparable to the findings of Chy˙zy et al. (2000).
811
+ Our measurements of the galaxy-averaged SFR are ≈0.38 M⊙yr−1 and ≈0.37 M⊙yr−1 using FUV+24µm and 1.4
812
+ GHz emission, respectively, which are consistent with the SFR of 0.47 M⊙yr−1 estimated by Chy˙zy et al. (2011).
813
+ (v) NGC 4490: Nikiel-Wroczy´nski et al. (2016) observed NGC 4490 at 0.61 GHz using the GMRT, and at 4.86 &
814
+ 8.44 GHz using VLA + Effelsberg. The authors used these observations to find a mean equipartition magnetic field
815
+
816
+ A Pilot Study of Magnetic Fields, Star Formation Rates and Gas densities
817
+ 11
818
+ Table 6. Magnetic field strengths in different regions of the galaxies in Sample 1. For the irregular galaxy NGC 4449, we could
819
+ only measure the galaxy-integrated magnetic field. We have separated the two nearly face-on galaxies (NGC 3627 and NGC
820
+ 5194) into arm and inter-arm regions. For the rest of the galaxies, we could not separate the arm and inter-arm region due to
821
+ their higher inclinations.
822
+ Galaxy
823
+ Galaxy-average
824
+ Beq in
825
+ Beq in
826
+ Beq in
827
+ Beq in
828
+ name
829
+ Beq
830
+ central region
831
+ disk region
832
+ arm region
833
+ inter-arm region
834
+ (µG)
835
+ (µG)
836
+ (µG)
837
+ (µG)
838
+ (µG)
839
+ NGC 2683
840
+ 24±6
841
+ 31±3
842
+ 19±5
843
+
844
+
845
+ NGC 3627
846
+ 25±4
847
+ 34±8
848
+
849
+ 28±5
850
+ 21±4
851
+ NGC 4096
852
+ 16±4
853
+ 21±5
854
+ 14±3
855
+
856
+
857
+ NGC 4449
858
+ 17±6
859
+
860
+
861
+
862
+
863
+ NGC 4490
864
+ 23±10
865
+ 40±6
866
+ 17±7
867
+
868
+
869
+ NGC 4826
870
+ 23±9
871
+ 38±8
872
+ 20±5
873
+
874
+
875
+ NGC 5194
876
+ 16±6
877
+ 34±6
878
+
879
+ 25±5
880
+ 18±4
881
+ of 21.9±2.9 µG, with typical field strengths in the range of 18 µG to 40 µG. We have found a typical equipartition
882
+ magnetic field strength of ≈40 µG in the central region, which decreases to ≈17 µG in the outer region (see Figure 2);
883
+ these values are consistent with the estimates of Nikiel-Wroczy´nski et al. (2016). We find a relatively lower magnetic
884
+ field strength of ≈15 µG in both the interacting region and the companion galaxy NGC 4485. Therefore, a gradual
885
+ decrease in the average magnetic field strength occurs from the center to the outer region.
886
+ Clemens et al. (1999) used radio observations to find a galaxy-averaged SFR of 4.7 M⊙yr−1. We found a similar SFR
887
+ (≈4.63 M⊙yr−1) using 1.4 GHz radio emission but a factor of ∼2 lower SFR (2.13 M⊙yr−1) using the FUV+24µm
888
+ emission (Table 5). Extinction corrections for NGC 4490 are believed to be higher than those typically assumed and
889
+ this may lead to an underestimation of the SFR while using the FUV+24µm diagnostics (Clemens et al. 1999).
890
+ (vi) NGC 4826: No spatially resolved maps of magnetic fields and SFRSDs are available in the literature. We
891
+ measure the central and outer regions of the galaxy to have an average equipartition magnetic field strength of ≈38
892
+ µG and ≈20 µG, respectively (see Figure 2 and Table 6). We find galaxy-averaged SFR of ≈0.73 M⊙yr−1 and ≈0.63
893
+ M⊙yr−1 using FUV+24µm and 1.4 GHz data, respectively.
894
+ (vii) NGC 5194: Fletcher et al. (2011) used VLA C-band observations of the galaxy and assumed a constant
895
+ thermal and non-thermal spectral index of 0.1 and 1.1 to find an average equipartition magnetic field strength of 20
896
+ µG using the revised formula by Beck & Krause (2005). They found a magnetic field of 20−25 µG in the spiral arms,
897
+ higher than the 15−20 µG typical in the interarm regions. Using VLA observations at S-band (2−4 GHz) frequencies,
898
+ Kierdorf et al. (2020) found the field strength of turbulent and regular components of the magnetic field in the arm
899
+ regions of 18−24 µG and 8−16 µG, respectively. We find an equipartition magnetic field strength of ≈25 µG in the
900
+ arm region and ≈18 µG in the interarm region (see Table 6). The peripheral region has a magnetic field of ≈12 µG,
901
+ while the overlapping region between NGC 5194 and NGC 5195 has an average Beq of ≈16 µG. Considering our use
902
+ of Equation 1 (Beck & Krause 2005), measurements are roughly consistent with the earlier study of Fletcher et al.
903
+ (2011) and Kierdorf et al. (2020).
904
+ Spatially resolved SFRs were measured in several star-forming regions of NGC 5194 using Hα+24µm and Hα+Paα
905
+ emission (Kennicutt et al. 2007).
906
+ SFRSDs in different regions were found to be in the range of 0.10 to 0.46
907
+ M⊙yr−1kpc−2. Our estimates using the two tracers are consistent with the estimates of Kennicutt et al. (2007) (See
908
+ Figures 9 & 11). Furthermore, we find that the galaxy-integrated SFR derived using FUV+24µm (≈3.88 M⊙yr−1)
909
+ and 1.4 GHz data (≈4.16 M⊙yr−1) are consistent with each other, within 1-sigma statistical uncertainty.
910
+ 3.4. Is the Minimum Energy Condition Valid for the Sample Galaxies?
911
+ We have estimated magnetic fields for the galaxies in Sample 1 assuming the “minimum energy condition” or
912
+ “equipartition condition”, i.e. by assuming that the energy density in the magnetic field is approximately equal to
913
+ the energy density in cosmic ray particles. Therefore, it is important to verify the validity of this assumption in our
914
+ sample galaxies. The tightness of the spatially-resolved radio−FIR correlation can be used to estimate the deviation
915
+ of the energy densities from the minimum energy condition (Hummel 1986; Basu & Roy 2013). According to the
916
+ simplified model of Hummel (1986), when the minimum energy condition is satisfied, the distribution of Int/IFIR will
917
+ be similar to the distribution of B1+αnt. The model assumes the following to be constant across galaxies: (a) the ratio
918
+ of the number densities of relativistic electrons and dust-heating stars, (b) the volume ratio of radio and FIR emitting
919
+
920
+ 12
921
+ Manna and Roy
922
+ regions, and (c) the ratio of efficiency factors for both the radio and FIR emission. In this model, the cumulative
923
+ distribution function (CDF) of the quantity Int/IFIR and B1+αnt
924
+ eq
925
+ is expected to follow each other if Beq is close to B.
926
+ To verify the validity of the minimum energy condition in our sample galaxies, we have followed the procedure as
927
+ in Hummel (1986) and Basu & Roy (2013). The CDF of Int/IFIR and B1+αnt
928
+ eq
929
+ were estimated using our radio maps
930
+ of the sample galaxies at both 0.33 and 1.4 GHz. We used an ensemble of spatially-resolved values of αnt, Int (both
931
+ at 0.33 and 1.4 GHz), IFIR (70 µm) and magnetic fields (Beq), which are averaged over the beam size from all the
932
+ galaxies in Sample 1 (Table 2) to generate these distributions. The CDFs of all quantities were normalized by their
933
+ median values. The top panels in Figure 4 show the median-normalized CDFs of Int/IFIR and B1+αnt
934
+ eq
935
+ at both 0.33
936
+ and 1.4 GHz.
937
+ We find that the CDFs of Int/IFIR and B1+αnt
938
+ eq
939
+ at both 0.33 and 1.4 GHz broadly follow each other but with slight
940
+ deviations at high and low ends (see top panels in Figure 4). This implies that the minimum energy condition is
941
+ broadly valid and is consistent with earlier findings. For example, Hummel (1986) found the distribution of the two
942
+ quantities is similar in a sample of Sbc galaxies while Basu & Roy (2013) reached similar conclusions in a study of 5
943
+ nearby large spiral galaxies, but with slight deviations observed in the CDFs of Int/IFIR and B1+αnt
944
+ eq
945
+ in the interarm
946
+ regions of the galaxies.
947
+ The observed deviation in the CDFs of Int/IFIR and B1+αnt
948
+ eq
949
+ for our sample galaxies imply a corresponding deviation
950
+ from the minimum-energy condition. In order to quantify this deviation, we performed a Monte Carlo simulation orig-
951
+ inally proposed by Hummel (1986). In this simulation, random numbers (X) were drawn from a Gaussian distribution
952
+ with standard deviation σ. Thereafter, we multiplied 10X with the observed equipartition magnetic fields to introduce
953
+ deviations from the minimum-energy condition. We thus constructed the CDF of B1+αnt
954
+ eq
955
+ using the deviated magnetic
956
+ field values. The CDF of B1+αnt
957
+ eq
958
+ were then compared to the observed CDF of Int/IFIR via a Kolmogorov-Smirnov
959
+ (KS) test. This procedure was repeated for a range of σ from 0 to 0.2. We find that the p-values for the KS test
960
+ comparing the distributions are maximized when σ = 0.1. Indeed, B1+αnt
961
+ eq
962
+ derived after deviating the magnetic field
963
+ using σ = 0.1 and Int/IFIR are consistent with being derived from the same distribution, with a KS test p-value of
964
+ 0.41 and 0.55, when using Int at 0.33 and 1.4 GHz, respectively. The bottom panels in Figure 4 show the CDFs of the
965
+ two quantities for σ = 0.1 at 0.33 and 1.4 GHz; it is clear that the CDFs follow each other. This implies the actual
966
+ magnetic field values may deviate from the equipartition values by ∼ 25% in our galaxies in Sample 1. We note that
967
+ any violation of the assumptions made by Hummel (1986) may also lead to the observed deviation in the CDFs.
968
+ 3.5. Correlation Between Magnetic Fields and SFRSDs
969
+ We have studied the correlation between the spatially-resolved equipartition magnetic field and SFRSDs for the
970
+ galaxies in Sample 1 (Table 2) at scales of ≈360−760 pc (Table 1). For the seven sample galaxies, we used the SFRSD
971
+ maps estimated using the FUV+24µm emission. The correlations between magnetic fields and SFRSDs for the seven
972
+ galaxies are shown in Figure 5. Each point represents the logarithms of equipartition magnetic fields and SFRSD values
973
+ that are averaged over the beam size of the corresponding maps. da Silva et al. (2014) found that SFR calibrations
974
+ could be biased and strongly affected by stochasticity at small spatial scales where the star formation rate is low (≤
975
+ 10−2.5 M⊙yr−1); we have therefore excluded regions of low star formation rates from the correlation study.
976
+ We find that the equipartition magnetic field and the SFSRD are correlated in all seven sample galaxies. We use
977
+ orthogonal distance regression in Scipy (Virtanen et al. 2020) to fit a power law of the form B = B0 (ΣSFR)η to the
978
+ magnetic field − SFRSD data points; the spatially-resolved uncertainty maps of equipartition magnetic fields and rms
979
+ noise on the SFRSD maps were used to estimate the uncertainties on each data point during the fitting procedure. The
980
+ best-fit parameters of the power-law are given in Table 7. We have also estimated the scatter (rms of the data points
981
+ along the y-axis) of the correlations which are presented in Table 7 and are shown in dashed lines in the corresponding
982
+ plots (Figure 5). We find that six of the seven galaxies have slopes (η) in the range of ≈ 0.27 − 0.40 but that the slope
983
+ is relatively lower for NGC 4449 with η ≈ 0.18. Averaging over the slope of all galaxies in Sample 1, we find a mean
984
+ slope of 0.32 ± 0.06.
985
+ 3.6. Correlation Between Magnetic Fields and Gas Densities
986
+ We have studied the correlation between spatially-resolved equipartition magnetic fields and gas densities for three
987
+ of the galaxies in Sample 1, NGC 3627, NGC 4826, and NGC 5194, for which spatially resolved CO observations
988
+ were available (see Section 2.3). Similar to the study of correlations between Beq and SFRSDs, we have studied the
989
+ correlations between Beq and gas density values, both averaged over the beam size of the corresponding maps. The
990
+
991
+ A Pilot Study of Magnetic Fields, Star Formation Rates and Gas densities
992
+ 13
993
+ Figure 4. The top panels show the cumulative distribution function (CDF) of Int,radio/I70µm (in red) and B1+αnt
994
+ eq
995
+ (in blue),
996
+ where Int is the non-thermal emission at 0.33 GHz (top left) and 1.4 GHz (top right) (Sample 1). The variables are normalized
997
+ by their median values. The bottom panels show the same but now with the magnetic field perturbed from its measured value
998
+ using σ=0.1 (see Section 3.4); the CDFs of the Int,radio/I70µm and B1+αnt
999
+ eq
1000
+ are now consistent with being derived from the same
1001
+ distribution.
1002
+ Table 7. Best-fit parameters and the scatter of the correlation between magnetic fields and SFRSDs for the seven galaxies in
1003
+ Sample 1. The data were fitted with a power law of the form B=B0(ΣSFR)η.
1004
+ Name
1005
+ Slope (η)
1006
+ Intercept (B0) (log(µG))
1007
+ Intercept (B0) (µG)
1008
+ Scatter
1009
+ NGC 2683
1010
+ 0.34 ± 0.04
1011
+ 2.10 ± 0.07
1012
+ 125 ± 1.2
1013
+ 0.05
1014
+ NGC 3627
1015
+ 0.31 ± 0.03
1016
+ 1.71 ± 0.03
1017
+ 51 ± 1.1
1018
+ 0.04
1019
+ NGC 4096
1020
+ 0.33 ± 0.04
1021
+ 1.80 ± 0.08
1022
+ 63 ± 1.2
1023
+ 0.05
1024
+ NGC 4449
1025
+ 0.18 ± 0.03
1026
+ 1.64 ± 0.04
1027
+ 43 ± 1.1
1028
+ 0.03
1029
+ NGC 4490
1030
+ 0.27 ± 0.02
1031
+ 1.90 ± 0.03
1032
+ 79 ± 1.1
1033
+ 0.06
1034
+ NGC 4826
1035
+ 0.38 ± 0.02
1036
+ 1.80 ± 0.02
1037
+ 63 ± 1.0
1038
+ 0.05
1039
+ NGC 5194
1040
+ 0.40 ± 0.01
1041
+ 2.00 ± 0.02
1042
+ 100 ± 1.0
1043
+ 0.07
1044
+
1045
+ 1.0
1046
+ 0.8
1047
+ X
1048
+ 0.6
1049
+ =)
1050
+ P
1051
+ 0.4
1052
+ 0.2
1053
+ lo.33GHz/170μm
1054
+ 0.0
1055
+ 0
1056
+ 2
1057
+ 4
1058
+ 6
1059
+ X1.0
1060
+ 0.8
1061
+ X
1062
+ 0.6
1063
+ =)
1064
+ v
1065
+ P
1066
+ 0.4
1067
+ 0.2
1068
+ eq
1069
+ l1.4GHz/l70μm
1070
+ 0.0
1071
+ 0
1072
+ 1
1073
+ 2
1074
+ 3
1075
+ 4
1076
+ 5
1077
+ X1.0
1078
+ 0.8
1079
+ X
1080
+ 0.6
1081
+ =)
1082
+ V
1083
+ P
1084
+ 0.4
1085
+ 0.2
1086
+ lo.33GHz/170μm
1087
+ 0.0
1088
+ 0
1089
+ 2
1090
+ 4
1091
+ 6
1092
+ X1.0
1093
+ 0.8
1094
+ X
1095
+ 0.6
1096
+ =)
1097
+ v
1098
+ P
1099
+ 0.4
1100
+ 0.2
1101
+ eq
1102
+ l1.4GHz/l70μm
1103
+ 0.0
1104
+ 0
1105
+ 1
1106
+ 2
1107
+ 3
1108
+ 4
1109
+ 5
1110
+ X14
1111
+ Manna and Roy
1112
+ 2.25
1113
+ 2.00
1114
+ 1.75
1115
+ 1.50
1116
+ 1.2
1117
+ 1.3
1118
+ 1.4
1119
+ 1.5
1120
+ 1.6
1121
+ log(Magnetic Field in G)
1122
+ NGC 2683
1123
+ 1.0
1124
+ 0.8
1125
+ 0.6
1126
+ 0.4
1127
+ 1.3
1128
+ 1.4
1129
+ 1.5
1130
+ 1.6
1131
+ 1.7
1132
+ NGC 3627
1133
+ 2.0
1134
+ 1.8
1135
+ 1.6
1136
+ 1.1
1137
+ 1.2
1138
+ 1.3
1139
+ 1.4
1140
+ NGC 4096
1141
+ 1.6
1142
+ 1.4
1143
+ 1.2
1144
+ 1.0
1145
+ 1.25
1146
+ 1.30
1147
+ 1.35
1148
+ 1.40
1149
+ 1.45
1150
+ 1.50
1151
+ log(Magnetic Field in G)
1152
+ NGC 4449
1153
+ 2.0
1154
+ 1.5
1155
+ 1.2
1156
+ 1.4
1157
+ 1.6
1158
+ NGC 4490
1159
+ 2.0
1160
+ 1.5
1161
+ 1.0
1162
+ 1.2
1163
+ 1.4
1164
+ 1.6
1165
+ NGC 4826
1166
+ 2.0
1167
+ 1.5
1168
+ 1.0
1169
+ 1.0
1170
+ 1.2
1171
+ 1.4
1172
+ 1.6
1173
+ log(Magnetic Field in G)
1174
+ NGC 5194
1175
+ 2.0
1176
+ 1.5
1177
+ 1.0
1178
+ 1.0
1179
+ 1.1
1180
+ 1.2
1181
+ 1.3
1182
+ NGC 1097
1183
+ 2.5
1184
+ 2.0
1185
+ 1.5
1186
+ 1.0
1187
+ 1.0
1188
+ 1.1
1189
+ 1.2
1190
+ 1.3
1191
+ 1.4
1192
+ 1.5
1193
+ NGC 4736
1194
+ 1.00
1195
+ 0.75
1196
+ 0.50
1197
+ 0.25
1198
+ log(SFRSD in M
1199
+ yr
1200
+ 1 kpc
1201
+ 2)
1202
+ 1.05
1203
+ 1.10
1204
+ 1.15
1205
+ 1.20
1206
+ log(Magnetic Field in G)
1207
+ NGC 5055
1208
+ 2.0
1209
+ 1.5
1210
+ 1.0
1211
+ log(SFRSD in M
1212
+ yr
1213
+ 1 kpc
1214
+ 2)
1215
+ 1.0
1216
+ 1.2
1217
+ 1.4
1218
+ 1.6
1219
+ NGC 5236
1220
+ 2.0
1221
+ 1.5
1222
+ 1.0
1223
+ log(SFRSD in M
1224
+ yr
1225
+ 1 kpc
1226
+ 2)
1227
+ 1.1
1228
+ 1.2
1229
+ 1.3
1230
+ 1.4
1231
+ NGC 6946
1232
+ Figure 5. The correlation between magnetic fields and SFRSD for the combined sample of 12 galaxies (Sample 2, Table 2).
1233
+ For the seven galaxies in Sanple 1, the SFRSD estimates shown in the plots were derived using FUV + 24µm (Section 3.5). The
1234
+ SFRSD estimates for the five galaxies from Basu et al. (2012a) (Sample 2) were derived using Hα + 24µm (Section 4) The red
1235
+ line shows a linear fit to the data points. The black dashed lines show the ±1σ vertical scatter.
1236
+
1237
+ A Pilot Study of Magnetic Fields, Star Formation Rates and Gas densities
1238
+ 15
1239
+ 23.2
1240
+ 23.0
1241
+ 1.3
1242
+ 1.4
1243
+ 1.5
1244
+ 1.6
1245
+ log(Magnetic Field in G)
1246
+ NGC 3627
1247
+ 23.0
1248
+ 22.5
1249
+ 1.2
1250
+ 1.4
1251
+ 1.6
1252
+ NGC 4826
1253
+ 23.0
1254
+ 22.5
1255
+ 1.0
1256
+ 1.2
1257
+ 1.4
1258
+ 1.6
1259
+ NGC 5194
1260
+ 23.5
1261
+ 23.0
1262
+ 1.0
1263
+ 1.1
1264
+ 1.2
1265
+ 1.3
1266
+ 1.4
1267
+ 1.5
1268
+ log(Magnetic Field in G)
1269
+ NGC 4736
1270
+ 23.6
1271
+ 23.4
1272
+ 23.2
1273
+ log(Gas density in gm/cm3)
1274
+ 1.05
1275
+ 1.10
1276
+ 1.15
1277
+ 1.20
1278
+ NGC 5055
1279
+ 23.5
1280
+ 23.0
1281
+ 22.5
1282
+ log(Gas density in gm/cm3)
1283
+ 1.1
1284
+ 1.2
1285
+ 1.3
1286
+ 1.4
1287
+ 1.5
1288
+ NGC 5236
1289
+ 23.0
1290
+ 22.5
1291
+ log(Gas density in gm/cm3)
1292
+ 1.1
1293
+ 1.2
1294
+ 1.3
1295
+ log(Magnetic Field in G)
1296
+ NGC 6946
1297
+ Figure 6.
1298
+ The correlations between magnetic fields (µG) and gas densities (gm/cm−3) for seven galaxies of Sample 3 (Table 2).
1299
+ The red line shows a linear fit to the data points. The black dashed lines show the ±1σ vertical scatter.
1300
+ correlations between magnetic fields and gas densities of NGC 3627, NGC 4826, and NGC 5194 are shown in Figure
1301
+ 6. We have again used orthogonal distance regression in Scipy (Virtanen et al. 2020) to fit a power-law to the Beq and
1302
+ gas density data points. The scatters of the three correlations are shown in dashed lines in all the figures.
1303
+ The measured best-fit power-law indices are 0.40±0.02, 0.49±0.03 and 0.53±0.02 (Table 9) for NGC 3627, NGC
1304
+ 4826 and NGC 5194, respectively. The mean of the power-law indices is 0.47±0.05.
1305
+ 4. EXTENDING THE SAMPLE WITH 5 GALAXIES FROM EXISTING GMRT OBSERVATIONS
1306
+ As mentioned earlier, a study of Beq and radio-FIR correlations for a sample of five large nearly face-on galaxies was
1307
+ carried out by Basu et al. (2012a,b); Basu & Roy (2013), using low-radio frequency observations at 0.33 and 1.4 GHz
1308
+
1309
+ 16
1310
+ Manna and Roy
1311
+ Table 8. Best-fit parameters and the scatter of the correlation between magnetic fields and SFRSDs for the five galaxies in
1312
+ Basu et al. (2012a) (Sample 2). The data were fitted with a power law of the form B=B0(ΣSFR)η.
1313
+ Name
1314
+ Slope (η)
1315
+ Intercept (B0) (log(µG))
1316
+ Intercept (B0) (µG)
1317
+ Scatter
1318
+ NGC 1097
1319
+ 0.27 ± 0.01
1320
+ 1.61 ± 0.01
1321
+ 41 ± 1.0
1322
+ 0.02
1323
+ NGC 4736
1324
+ 0.32 ± 0.02
1325
+ 1.78 ± 0.05
1326
+ 60 ± 1.1
1327
+ 0.04
1328
+ NGC 5055
1329
+ 0.27 ± 0.04
1330
+ 1.26 ± 0.02
1331
+ 18 ± 1.0
1332
+ 0.02
1333
+ NGC 5236
1334
+ 0.38 ± 0.07
1335
+ 1.91 ± 0.02
1336
+ 81 ± 1.0
1337
+ 0.08
1338
+ NGC 6946
1339
+ 0.25 ± 0.03
1340
+ 1.62 ± 0.05
1341
+ 42 ± 1.1
1342
+ 0.05
1343
+ Table 9. Best-fit parameters and the scatter of the correlation between spatially-resolved magnetic fields and gas densities for
1344
+ the seven galaxies in Sample 3. Galaxies with an asterisk are from the sample of Basu et al. (2012a).
1345
+ Name
1346
+ Exponent
1347
+ Scatter
1348
+ NGC 3627
1349
+ 0.40 ± 0.02
1350
+ 0.03
1351
+ NGC 4826
1352
+ 0.49 ± 0.03
1353
+ 0.05
1354
+ NGC 5194
1355
+ 0.53 ± 0.02
1356
+ 0.06
1357
+ NGC 4736∗
1358
+ 0.44 ± 0.03
1359
+ 0.03
1360
+ NGC 5055∗
1361
+ 0.25 ± 0.02
1362
+ 0.02
1363
+ NGC 5236∗
1364
+ 0.40 ± 0.03
1365
+ 0.04
1366
+ NGC 6946∗
1367
+ 0.31 ± 0.03
1368
+ 0.04
1369
+ at sub-kpc linear resolutions. In this paper, we expand our study of spatially-resolved correlations between magnetic
1370
+ fields, gas densities, and SFRSDs by including these five galaxies.
1371
+ We refer readers to Basu et al. (2012a) for a detailed discussion of their sample, GMRT observations, data reduction
1372
+ procedures, and estimation of non-thermal spectral indices. It is to be noted that the modelling of the thermal free-free
1373
+ emission from these galaxies is performed in the same way as was done for our seven galaxies in Sample 1.
1374
+ We have estimated the SFRSD maps of these five galaxies using Hα data along with 24 µm IR data. We obtained
1375
+ Hα maps of four of the galaxies, NGC 1097, NGC 4736, NGC 5055, and NGC 6946 from the ancillary data at the
1376
+ SINGS website1 and obtained the Hα map of NGC 5236 from 11HUGS (Kennicutt et al. 2008). We used Hα and MIPS
1377
+ 24 µm data in combination to derive the SFRSD maps of these galaxies using the calibration from Leroy et al. (2012)
1378
+ (Equation 3, Section 2.2). To estimate the equipartition magnetic field strengths of these five galaxies, we have used
1379
+ the non-thermal radio maps at 0.33 and 1.4 GHz from Basu et al. (2012a). The correlations between equipartition
1380
+ magnetic fields and SFRSDs are shown in Figure 5 where, similar to the previous correlation studies, each point
1381
+ represents the logarithms of magnetic fields and SFRSD values that are averaged over the beam size. Similar to the
1382
+ previous correlations (Section 3.5), we used orthogonal distance regression in Scipy to fit a power law to the data. We
1383
+ have provided the best-fit parameters of the power-law fit in Table 8. The scatters of all five correlations (presented
1384
+ in Table 8) are shown in dashed lines in all the figures. We find a mean exponent of 0.30±0.05 for the five galaxies
1385
+ where the exponent of individual galaxies varies from ≈0.25 to ≈0.38.
1386
+ We have computed maps of cold gas densities of four out of the five galaxies; NGC 4736, NGC 5055, NGC 5236
1387
+ and NGC 6946, using the atomic and molecular gas surface density maps from Basu & Roy (2013). The assumed
1388
+ parameters are taken to be the same as described in Section 2.3. For the remaining galaxy, NGC 1097, we could not
1389
+ measure gas densities as there are no archival CO data available for the galaxy. Following the procedures of Section 3.5,
1390
+ we have also studied the spatially-resolved correlation between equipartition magnetic fields and gas densities for the
1391
+ four sample galaxies, which are shown in Figure 6. The best-fit parameters are presented in Table 9. The exponents
1392
+ of the individual galaxies vary between ≈0.25 to ≈0.44 where the mean exponent is found to be 0.35±0.07.
1393
+ 5. DISCUSSION
1394
+ Understanding the relationship between the physical condition of the interstellar medium (ISM) and the star
1395
+ formation process is crucial to understand galaxy evolution.
1396
+ Gas and magnetic fields are key constituents of the
1397
+ 1 https://irsa.ipac.caltech.edu/data/SPITZER/SINGS/
1398
+
1399
+ A Pilot Study of Magnetic Fields, Star Formation Rates and Gas densities
1400
+ 17
1401
+ ISM and therefore it is important to study the interrelations between gas, magnetic fields, and SFRs. Though the
1402
+ Kennicutt−Schmidt relation, i.e. the relation between gas densities and SFRs, has been extensively studied at high
1403
+ spatial resolutions in various types of nearby galaxies (e.g. Onodera et al. 2010; Roychowdhury et al. 2015; Filho et al.
1404
+ 2016; Miettinen et al. 2017), similar high-resolution observations of how the magnetic fields are related to SFRs and
1405
+ gas densities are yet to be systematically investigated. Such observations are critical to understand the validity of
1406
+ several models that predict strong correlations between the magnetic fields and gas densities (e.g. Chandrasekhar &
1407
+ Fermi 1953; Fiedler & Mouschovias 1993; Cho & Vishniac 2000; Groves et al. 2003) as well as magnetic fields and
1408
+ SFRSDs (e.g. Niklas & Beck 1997; Schleicher & Beck 2013, 2016). Here, we have studied these correlations in a sample
1409
+ of twelve galaxies (Sample 3) at sub-kpc scales (see Sections 3.5, 3.6 & 4). To our knowledge, this is the first spatially
1410
+ resolved study of the above correlations in nearby large galaxies. In this section, we place these findings in the light
1411
+ of predictions made by various models and in the process attempt to provide physical insights into the interrelation
1412
+ between magnetic fields, gas densities, and star formation rates at sub-kpc scales.
1413
+ 5.1. Magnetic Fields and SFRSDs
1414
+ Several Magneto-Hydrodynamical simulations find that galactic magnetic fields are amplified by gas turbulence in
1415
+ very short timescales (i.e. ∼100 Myr) (e.g. Brandenburg & Subramanian 2005; Beresnyak 2012; Schober et al. 2012;
1416
+ Schleicher & Beck 2013; Bovino et al. 2013). The primary driver of gas-turbulence in the ISM of galaxies is supernova
1417
+ explosion (Bacchini et al. 2020), the rate of which is in turn directly coupled to the SFR in the galaxy. Therefore,
1418
+ it is expected that the star formation rates and the magnetic fields in a galaxy will be correlated. Indeed, using
1419
+ semi-analytical models, Schleicher & Beck (2013, 2016) found that in order to explain the radio-FIR correlation at
1420
+ sub-kpc scales, magnetic fields and SFRSDs, again at sub-kpc scales, must be related as B ∝ Σ1/3
1421
+ SFR.
1422
+ Studies in the literature on the correlation between magnetic fields and SFRSDs have focused on dwarf galaxies and
1423
+ those studies were carried out using galaxy-integrated magnetic fields and SFRSDs. As mentioned in Section 1, to our
1424
+ knowledge, there is only one published work of the spatially-resolved study of the correlation between magnetic fields
1425
+ and SFRSDs (Basu et al. 2017).
1426
+ For the 12 galaxies in Sample 2 (Table 2), we find that the mean value of the power-law index of the correlation
1427
+ between Beq and SFRSDs is 0.31±0.06, i.e Beq ∝ Σ0.31±0.06
1428
+ SFR
1429
+ (2), consistent (at < 1σ error) with the model of Schleicher
1430
+ & Beck (2013, 2016). Thus, it appears that the semi-analytical models that are based on the amplification of magnetic
1431
+ fields due to supernova-driven gas turbulence work remarkably well for the pilot sample, in predicting the correlation
1432
+ between magnetic fields and SFRSDs down to sub-kpc scales.
1433
+ We note that the power-law index for the correlation between Beq and SFRSDs for NGC 4449 was found to be
1434
+ 0.18 ± 0.03, significantly lower than for the remaining galaxies (Table 7) as well as lower than the model prediction
1435
+ of B ∝ Σ1/3
1436
+ SFR Schleicher & Beck (2013) (at > 5σ significance). For the case of NGC 4449, the relatively flat spectral
1437
+ index values (αnt ≤ 0.55) in ≈ 70% of the galaxy meant that the magnetic field values could not be estimated reliably
1438
+ for a large part of the galaxy (see Section 2.1 and 3.5). This could lead to biases in the correlation and therefore, the
1439
+ low value of the power-law index for NGC 4449 should be taken with caution.
1440
+ 5.1.1. Intercept of the Correlation
1441
+ According to the model proposed by Schleicher & Beck (2013), the intercept of the B-ΣSFR correlation depends on
1442
+ several ISM parameters such as gas density (ρ0), the fraction of turbulent kinetic energy converted into magnetic energy
1443
+ (fsat), the injection rate of turbulent supernova energy (C) and the intercept of Kennicutt-Schmidt (KS) relation (C1)
1444
+ (Equation 5).
1445
+ B ∼
1446
+
1447
+ fsat8π ρ1/6
1448
+ 0
1449
+ ( C
1450
+ C1
1451
+ )1/3 Σ1/3
1452
+ SFR.
1453
+ (6)
1454
+ Schleicher & Beck (2013) predicted the intercept of the B-ΣSFR correlation to be ∼ 26 µG assuming ρ0 = 10−24
1455
+ g cm−3 and fsat ∼ 5 percent.
1456
+ We have found an average intercept at 65±25 µG of the Beq-ΣSFR correlation of
1457
+ the 12 galaxies in sample 2 (see Table 7 & 8). Although the mean value is a factor of ≈2.5 higher than the value
1458
+ predicted by Schleicher & Beck (2013), this value is consistent with the predicted value, within the scatter (at ≈1.6σ).
1459
+ Future follow-up studies, such as using our full survey (Sample 0 which consists of 46 galaxies), are required to draw
1460
+ statistically robust conclusions about the value of the intercept.
1461
+ 2 The uncertainty quoted is the scatter of the measured value of η across the galaxies in Sample 2.
1462
+
1463
+ 18
1464
+ Manna and Roy
1465
+ If the value of fsat is indeed higher, this would imply a higher than assumed value of one or more of ρ0, C, and fsat.
1466
+ The intercept is broadly insensitive to the assumed value of ρ0 (Equation 6) and therefore, in order to explain a factor
1467
+ of ≈ 2.5 higher value of the intercept, the actual value ρ0 has to be higher than the assumed value of 10−24 g cm−3
1468
+ by a factor of ≈ 240; such high gas densities are unphysical and are not observed in typical regions of a galaxy. The
1469
+ other possibility that the assumed value of the injection rate of turbulent supernova energy (C) is higher by a factor
1470
+ of ≈ 16 is also contrary to expectation; Basu et al. (2017) found that under reasonable conditions the value of C can
1471
+ be higher by at most a factor of 1.4. Therefore, fsat must be higher than 0.05 to explain a significantly higher value
1472
+ of the intercept. An understanding of how galaxies can achieve such efficient amplification of magnetic fields with fsat
1473
+ much greater than 5% requires detailed MHD simulations. We note that Basu et al. (2017) found that the value of
1474
+ the intercept for B-ΣSFR for the dwarf galaxy IC 10 is 51 µG, similar to our findings of a higher than predicted value
1475
+ of the intercept.
1476
+ 5.2. Magnetic Fields and Gas
1477
+ Magnetic fields and gas are expected to be correlated as B ∝ √ρgas (e.g. Chandrasekhar & Fermi 1953; Groves et al.
1478
+ 2003). We find that equipartition magnetic fields are correlated with gas densities for the seven galaxies (Sample 3)
1479
+ with an average power-law index, k=0.40±0.09 (see Section 3.6 & 4)3. This value of k is consistent with the numerical
1480
+ simulations that predict k ≈ 0.4−0.6 and also consistent with the theories that predict B ∝ ρ0.5
1481
+ gas. The power-law index
1482
+ of the correlation between Beq and gas densities is found to be 0.25±0.02 and 0.31±0.03 for NGC 5055 and NGC
1483
+ 6946 respectively, significantly lower than the model predictions and as compared to the other galaxies in Sample 3.
1484
+ A lower value of k could mean that either the efficiency of the amplification of the magnetic field is less or that the
1485
+ magnetic field strengths derived assuming the “minimum energy condition” are underestimated (Dumas et al. 2011).
1486
+ Strong synchrotron or inverse Compton losses of cosmic-ray electrons could suppress the radio synchrotron emission
1487
+ which would then cause the equipartition magnetic fields to be underestimated.
1488
+ 5.2.1. Magnetic Fields, Gas Densities and the Radio-FIR Correlations
1489
+ Energy equipartition between the magnetic field (B) and the gas density (ρgas), and between magnetic fields and
1490
+ cosmic ray particles implies that the non-thermal emission is related to the gas density as Int ∝ ρk(3+αnt)
1491
+ gas
1492
+ where k
1493
+ is the power-law index relating magnetic fields and gas densities (Beq ∝ ρk
1494
+ gas) (Niklas & Beck 1997). Further, the
1495
+ Kennicutt-Schmidt law and the radio-FIR correlation imply that Int is related to gas densities as (1) Int ∝ ρm(n+1)
1496
+ gas
1497
+ for
1498
+ optically thin dust to UV photons and (2) Int ∝ ρmn
1499
+ gas for optically thick dust to UV photons, where m is the power-law
1500
+ index of the radio-FIR correlation and n is the power-law index of the Kennicutt-Schmidt law. Therefore, we can
1501
+ obtain the following relation between the power-law index of all four correlations (Dumas et al. 2011):
1502
+ k = (n + 1)m
1503
+ 3 + αnt
1504
+ ; Optically thin dust
1505
+ (7)
1506
+ k =
1507
+ nm
1508
+ 3 + αnt
1509
+ ; Optically thick dust
1510
+ (8)
1511
+ We can use the above equations to indirectly estimate the power-law index, k, of the correlation between magnetic
1512
+ fields and gas densities. For the three galaxies, NGC 3627, NGC 4826, and NGC 5194 (Roy & Manna 2021), we have
1513
+ estimated gas densities using CO and Hi observations. Now we can compare the direct measurement of k with an
1514
+ indirect estimate of k using Equations 7 and 8; this will provide additional information on the validity of both the
1515
+ minimum energy conditions that were assumed between magnetic fields and the gas densities as well as the magnetic
1516
+ fields and cosmic ray particles.
1517
+ For the galaxies from Basu et al. (2012a), this study was already presented and
1518
+ discussed in Basu et al. (2012b).
1519
+ We have estimated k for all the seven sample galaxies from Roy & Manna (2021) (Sample 1), using the assumption of
1520
+ optically thin dust to UV photons, using (i) the slope of radio-FIR correlation (m) as derived in Roy & Manna (2021),
1521
+ (ii) the measured galaxy-averaged spectral index (αnt) from Roy & Manna (2021), and (iii) a Kennicutt-Schmidt
1522
+ power-law index of 1.4±0.15 (Kennicutt 1998b).
1523
+ Table 10 provides the relevant values as well as estimated values of k derived using the measured value of m using
1524
+ radio emission at both 0.33 and 1.4 GHz. For two of the galaxies, NGC 3627 & NGC 5194, the value of k estimated
1525
+ 3 The uncertainty quoted is the scatter of the measured value of k across the galaxies in Sample 3.
1526
+
1527
+ A Pilot Study of Magnetic Fields, Star Formation Rates and Gas densities
1528
+ 19
1529
+ Table 10. Power law index (k) of the relation between magnetic fields and gas densities (B ∝ ρk) of galaxies in Sample 1,
1530
+ indirectly estimated using the slope of radio-FIR correlation (m) and the slope of the Kennicutt−Schmidt law. See Section 5.2.1
1531
+ for a discussion on these.
1532
+ Name
1533
+ m
1534
+ m
1535
+ αnt
1536
+ k (Optically thin)
1537
+ k (Optically thin)
1538
+ 0.33 GHz
1539
+ 1.4 GHz
1540
+ 0.33 GHz
1541
+ 1.4 GHz
1542
+ NGC 2683
1543
+ 0.54±0.06
1544
+ 0.91±0.07
1545
+ -0.84±0.08
1546
+ 0.33 ± 0.04
1547
+ 0.57 ± 0.06
1548
+ NGC 3627
1549
+ 0.55±0.03
1550
+ 0.85±0.13
1551
+ -1.10±0.07
1552
+ 0.32 ± 0.03
1553
+ 0.50 ± 0.08
1554
+ NGC 4096
1555
+ 0.74±0.05
1556
+ 0.90±0.04
1557
+ -0.78±0.06
1558
+ 0.47 ± 0.04
1559
+ 0.57 ± 0.05
1560
+ NGC 4449
1561
+ 0.77±0.05
1562
+ 0.65±0.04
1563
+ -0.48±0.06
1564
+ 0.53 ± 0.05
1565
+ 0.45 ± 0.04
1566
+ NGC 4490
1567
+ 0.68±0.02
1568
+ 0.75±0.02
1569
+ -0.59±0.07
1570
+ 0.45 ± 0.03
1571
+ 0.50 ± 0.04
1572
+ NGC 4826
1573
+ 1.39±0.1
1574
+ 1.47±0.08
1575
+ -0.49±0.06
1576
+ 0.95 ± 0.09
1577
+ 1.00 ± 0.09
1578
+ NGC 5194(arm)
1579
+ 0.50±0.05
1580
+ 0.65±0.04
1581
+ -0.63±0.05
1582
+ 0.33± 0.04
1583
+ 0.43 ± 0.04
1584
+ NGC 5194(interarm)
1585
+ 0.73±0.11
1586
+ 1.03±0.05
1587
+ -0.85±0.10
1588
+ 0.46± 0.08
1589
+ 0.64 ± 0.05
1590
+ using Equation 7 is comparable to the direct measurement of k. This broadly validates the assumption of energy
1591
+ equipartition between magnetic fields and cosmic ray particles in these two galaxies.
1592
+ For the optically thin case, the mean of indirectly-estimated k values of the sample of seven galaxies are 0.59 ± 0.16
1593
+ and 0.53 ± 0.19 at 1.4 and 0.33 GHz, respectively. However, this includes the galaxy NGC 4826, which shows an
1594
+ anomalously high value of k=1.0 and 0.95 derived at 1.4 and 0.33 GHz, respectively. Excluding this galaxy from the
1595
+ mean calculation, we find that k=0.52±0.04 and 0.47±0.09 at 1.4 and 0.33 GHz, respectively. Remarkably, for all the
1596
+ galaxies except NGC 4826, the k value at 1.4 GHz, for the optically thin case, is consistent with 0.5 within error bars.
1597
+ Thus, the indirectly estimated values of k are consistent with equipartition between magnetic fields and gas energy
1598
+ densities (Chandrasekhar & Fermi 1953; Fiedler & Mouschovias 1993; Cho & Vishniac 2000; Groves et al. 2003). This
1599
+ is similar to the findings of Niklas & Beck (1997) for their sample of 43 galaxies and Basu et al. (2012b) for their
1600
+ sample of four galaxies.
1601
+ The value of k derived for NGC 4826, for the optically thin case, is a consequence of the anomalously high value
1602
+ of the power-law index of the radio-FIR correlation (≈1.39 and ≈1.47 for 0.33 and 1.4 GHz respectively, Table 10)
1603
+ which is different from the other six galaxies in the sample. NGC 4826 has been classified as a Seyfert 2 galaxy in
1604
+ the past (Malkan et al. 2017) and therefore the emission from the core contributes to the observed power-law index of
1605
+ the radio-FIR correlation (Roy & Manna 2021). It is likely that the significant contribution of the AGN to the radio
1606
+ emission makes the estimate of k for NGC 4826 unreliable.
1607
+ 6. SUMMARY
1608
+ 1. We made spatially resolved maps of equipartition magnetic fields in seven galaxies (Sample 1): NGC 2683,
1609
+ NGC 3627, NGC 4096, NGC 4449, NGC 4490, NGC 4826, and NGC 5194 and find that the magnetic fields are
1610
+ strongest near the central region and go down by a factor of ∼2 at the edge of the magnetic field maps.
1611
+ 2. We have used the tightness of the spatially-resolved radio-FIR correlations to verify the validity of the equipar-
1612
+ tition condition between magnetic fields and cosmic ray particles for the sample galaxies. We find that the
1613
+ magnetic field values may deviate from the equipartition values by ∼25%.
1614
+ 3. We have estimated spatially resolved maps of SFRSDs of the galaxies in Sample 1 using FUV+24µm, Hα+24µm,
1615
+ and 1.4 GHz data. Azimuthally averaged SFRSDs drop by a factor of 6 to 8 at the edge of the galaxies, where
1616
+ SFRSD values are 5 times the rms of the maps.
1617
+ 4. We also included five additional galaxies: NGC 1097, NGC 4736, NGC 5055, NGC 5236, and NGC 6946 from
1618
+ previous GMRT observations of Basu et al. (2012a) and estimated their equipartition magnetic field, SFRSD
1619
+ and gas density maps.
1620
+ 5. We studied the spatial correlation between magnetic fields and star formation rates at < 1 kpc resolution for
1621
+ the 12 galaxies (Sample 2) and find that magnetic field strengths and SFRSDs are correlated with an average
1622
+ power-law index of 0.31±0.06. This result is in remarkable agreement (at < 1σ error) with semi-analytical model
1623
+ predictions of B ∝ Σ1/3
1624
+ SFR (Schleicher & Beck 2013, 2016).
1625
+
1626
+ 20
1627
+ Manna and Roy
1628
+ 6. We measure an average intercept of ≈ 65 µG from the B-ΣSFR correlations of our galaxies in Sample 2. This is
1629
+ higher than the predictions of Schleicher & Beck (2013) by a factor of ≈ 2.5, and, if confirmed with a larger sample,
1630
+ would imply a significantly higher efficiency of magnetic field amplification than what is typically assumed.
1631
+ 7. We used spatially resolved gas density maps for seven (Sample 3) of the 12 galaxies, for which archival CO
1632
+ data was available, to find that magnetic fields are correlated with gas densities as B ∝ ρ0.40±0.09
1633
+ gas
1634
+ . This result
1635
+ is consistent with numerical simulations that predict k ≈ 0.4−0.6 and broadly consistent (within ≈1 sigma
1636
+ uncertainty) with theories that predict B ∝ ρ0.5
1637
+ gas.
1638
+ 8. We have indirectly estimated the power-law index (k) of the correlation between the magnetic fields and the
1639
+ gas densities using the slope of the radio-FIR correlation, the slope of the Kennicutt-Schmidt law, and the non-
1640
+ thermal spectral index. The mean value of k, for optically thin dust, was found to be 0.52±0.04 and 0.47±0.09
1641
+ at 1.4 and 0.33 GHz respectively for the six galaxies in Sample 1, with NGC 4826 excluded due to its high value
1642
+ of k. This is consistent with the equipartition between magnetic fields and gas. The anomalously high values
1643
+ of k (1.0 and 0.95 at 1.4 and 0.33 GHz respectively) for NGC 4826 are possibly due to the contribution of the
1644
+ central AGN to the radio emission.
1645
+ We have started to follow up these pilot study results with a survey of a much larger sample of galaxies (Sample
1646
+ 0, Table 2). For this, we have already observed another 24 galaxies using the upgraded GMRT (uGMRT), a Square
1647
+ Kilometer Array (SKA) pathfinder facility. Sensitivities of the images from these uGMRT observations are significantly
1648
+ better (≈ 3 times) than those of the observations presented here and the result will be part of a future publication.
1649
+ In addition, SKA precursors such as the MeerKAT will also provide very deep images of the diffuse radio-continuum
1650
+ emission around nearby galaxies. Eventually, the dramatic increase in sensitivity and ∼arc-sec resolution of the SKA
1651
+ has the potential to significantly advance our understanding of magnetic fields in nearby galaxies. For example, the
1652
+ SKA is expected to provide sensitive images of polarised synchrotron emission from nearby galaxies at a few GHz
1653
+ frequencies which would provide information on the large-scale ordered fields on the plane of the sky (e.g. Johnston-
1654
+ Hollitt et al. 2015). Further, polarised emission from nearby galaxies at <∼1 GHz, where significant depolarisations
1655
+ take place, could be modelled through Faraday tomography (e.g. Heald et al. 2015).
1656
+ A combination of the two
1657
+ approaches could eventually allow us to infer the three-dimensional structure of the magnetic fields in nearby galaxies.
1658
+ SKA observations will also provide detailed images of star formation with resolutions of tens of parsecs. These will
1659
+ help to identify any dependence of SFR and IMF on galaxy type, evolution and environment within the local volume
1660
+ (Beswick et al. 2015).
1661
+ We would like to thank Aditya Chowdhury for his help at various stages of this research. We thank Yogesh Wadadekar,
1662
+ Preeti Kharb, and Dipanjan Mitra for reading the manuscript and providing useful comments. Aritra Basu provided
1663
+ their earlier published images and also suggested checking the B vs SFRSD relation for our sample galaxies. We
1664
+ thank him for the above. We also thank the anonymous referee whose comments helped significantly improve the
1665
+ presentation of the paper. We thank the staff of GMRT that allowed these observations to be made. GMRT is run by
1666
+ National Centre for Radio Astrophysics of the Tata Institute of fundamental research. We acknowledge the support
1667
+ of the Department of Atomic Energy, Government of India, under project no. 12-R&D-TFR-5.02-0700.
1668
+ 1
1669
+ 2
1670
+ 3
1671
+ 4
1672
+ 5
1673
+ 6
1674
+ 7
1675
+ REFERENCES
1676
+ Adebahr, B., Krause, M., Klein, U., et al. 2013, A&A, 555,
1677
+ A23, doi: 10.1051/0004-6361/201220226
1678
+ Bacchini, C., Fraternali, F., Iorio, G., et al. 2020, A&A,
1679
+ 641, A70, doi: 10.1051/0004-6361/202038223
1680
+ Basu, A., Mitra, D., Wadadekar, Y., & Ishwara-Chandra,
1681
+ C. H. 2012a, MNRAS, 419, 1136,
1682
+ doi: 10.1111/j.1365-2966.2011.19764.x
1683
+ Basu, A., & Roy, S. 2013, MNRAS, 433, 1675,
1684
+ doi: 10.1093/mnras/stt845
1685
+ Basu, A., Roy, S., & Mitra, D. 2012b, ApJ, 756, 141,
1686
+ doi: 10.1088/0004-637X/756/2/141
1687
+ Basu, A., Roychowdhury, S., Heesen, V., et al. 2017,
1688
+ MNRAS, 471, 337, doi: 10.1093/mnras/stx1567
1689
+ Batchelor, G. K. 1950, Proceedings of the Royal Society of
1690
+ London Series A, 201, 405, doi: 10.1098/rspa.1950.0069
1691
+ Beck, R., Brandenburg, A., Moss, D., Shukurov, A., &
1692
+ Sokoloff, D. 1996, ARA&A, 34, 155,
1693
+ doi: 10.1146/annurev.astro.34.1.155
1694
+
1695
+ A Pilot Study of Magnetic Fields, Star Formation Rates and Gas densities
1696
+ 21
1697
+ Beck, R., & Krause, M. 2005, Astronomische Nachrichten,
1698
+ 326, 414, doi: 10.1002/asna.200510366
1699
+ Bell, E. F. 2003, ApJ, 586, 794, doi: 10.1086/367829
1700
+ Beresnyak, A. 2012, PhRvL, 108, 035002,
1701
+ doi: 10.1103/PhysRevLett.108.035002
1702
+ Beswick, R., Brinks, E., Perez-Torres, M., et al. 2015, in
1703
+ Advancing Astrophysics with the Square Kilometre
1704
+ Array (AASKA14), 70. https://arxiv.org/abs/1412.5810
1705
+ Bianchi, L., Shiao, B., & Thilker, D. 2017, ApJS, 230, 24,
1706
+ doi: 10.3847/1538-4365/aa7053
1707
+ Bolatto, A. D., Wolfire, M., & Leroy, A. K. 2013, ARA&A,
1708
+ 51, 207, doi: 10.1146/annurev-astro-082812-140944
1709
+ Bovino, S., Schleicher, D. R. G., & Schober, J. 2013, New
1710
+ Journal of Physics, 15, 013055,
1711
+ doi: 10.1088/1367-2630/15/1/013055
1712
+ Brandenburg, A., & Subramanian, K. 2005, PhR, 417, 1,
1713
+ doi: 10.1016/j.physrep.2005.06.005
1714
+ Buat, V. 1992, A&A, 264, 444
1715
+ Chandrasekhar, S., & Fermi, E. 1953, ApJ, 118, 113,
1716
+ doi: 10.1086/145731
1717
+ Cho, J., & Vishniac, E. T. 2000, ApJ, 539, 273,
1718
+ doi: 10.1086/309213
1719
+ Chy˙zy, K. T., Beck, R., Kohle, S., Klein, U., & Urbanik, M.
1720
+ 2000, A&A, 355, 128.
1721
+ https://arxiv.org/abs/astro-ph/0001205
1722
+ Chy˙zy, K. T., & Buta, R. J. 2008, ApJL, 677, L17,
1723
+ doi: 10.1086/587958
1724
+ Chy˙zy, K. T., We˙zgowiec, M., Beck, R., & Bomans, D. J.
1725
+ 2011, A&A, 529, A94, doi: 10.1051/0004-6361/201015393
1726
+ Clemens, M. S., Alexander, P., & Green, D. A. 1999,
1727
+ MNRAS, 307, 481, doi: 10.1046/j.1365-8711.1999.02594.x
1728
+ Cortese, L., Boselli, A., Franzetti, P., et al. 2008, MNRAS,
1729
+ 386, 1157, doi: 10.1111/j.1365-2966.2008.13118.x
1730
+ Crutcher, R. M. 1999, in Science with the Atacama Large
1731
+ Millimeter Array (ALMA), 12
1732
+ da Silva, R. L., Fumagalli, M., & Krumholz, M. R. 2014,
1733
+ MNRAS, 444, 3275, doi: 10.1093/mnras/stu1688
1734
+ Dale, D. A., Cohen, S. A., Johnson, L. C., et al. 2009, ApJ,
1735
+ 703, 517, doi: 10.1088/0004-637X/703/1/517
1736
+ Dumas, G., Schinnerer, E., Tabatabaei, F. S., et al. 2011,
1737
+ AJ, 141, 41, doi: 10.1088/0004-6256/141/2/41
1738
+ Elmegreen, B. G. 1981, ApJ, 243, 512, doi: 10.1086/158616
1739
+ Fiedler, R. A., & Mouschovias, T. C. 1993, ApJ, 415, 680,
1740
+ doi: 10.1086/173193
1741
+ Filho, M. E., S´anchez Almeida, J., Amor´ın, R., et al. 2016,
1742
+ ApJ, 820, 109, doi: 10.3847/0004-637X/820/2/109
1743
+ Fletcher, A., Beck, R., Shukurov, A., Berkhuijsen, E. M., &
1744
+ Horellou, C. 2011, MNRAS, 412, 2396,
1745
+ doi: 10.1111/j.1365-2966.2010.18065.x
1746
+ Groves, B. A., Cho, J., Dopita, M., & Lazarian, A. 2003,
1747
+ PASA, 20, 252, doi: 10.1071/AS03016
1748
+ Heald, G., Beck, R., de Blok, W. J. G., et al. 2015, in
1749
+ Advancing Astrophysics with the Square Kilometre Array
1750
+ (AASKA14), 106. https://arxiv.org/abs/1501.00408
1751
+ Heesen, V., Beck, R., Krause, M., & Dettmar, R. J. 2009,
1752
+ A&A, 494, 563, doi: 10.1051/0004-6361:200810543
1753
+ Heesen, V., Brinks, E., Leroy, A. K., et al. 2014, AJ, 147,
1754
+ 103, doi: 10.1088/0004-6256/147/5/103
1755
+ Hummel, E. 1986, A&A, 160, L4
1756
+ Irwin, J., Beck, R., Benjamin, R. A., et al. 2012, AJ, 144,
1757
+ 44, doi: 10.1088/0004-6256/144/2/44
1758
+ Johnston-Hollitt, M., Govoni, F., Beck, R., et al. 2015, in
1759
+ Advancing Astrophysics with the Square Kilometre Array
1760
+ (AASKA14), 92. https://arxiv.org/abs/1506.00808
1761
+ Jurusik, W., Drzazga, R. T., Jableka, M., et al. 2014, A&A,
1762
+ 567, A134, doi: 10.1051/0004-6361/201323060
1763
+ Kazes, I., Troland, T. H., & Crutcher, R. M. 1991, A&A,
1764
+ 245, L17
1765
+ Kennicutt, Robert C., J. 1998a, ApJ, 498, 541,
1766
+ doi: 10.1086/305588
1767
+ —. 1998b, ARA&A, 36, 189,
1768
+ doi: 10.1146/annurev.astro.36.1.189
1769
+ Kennicutt, Robert C., J., Lee, J. C., Funes, J. G., et al.
1770
+ 2008, ApJS, 178, 247, doi: 10.1086/590058
1771
+ Kennicutt, Robert C., J., Armus, L., Bendo, G., et al. 2003,
1772
+ PASP, 115, 928, doi: 10.1086/376941
1773
+ Kennicutt, Robert C., J., Calzetti, D., Walter, F., et al.
1774
+ 2007, ApJ, 671, 333, doi: 10.1086/522300
1775
+ Kennicutt, R. C., & Evans, N. J. 2012a, ARA&A, 50, 531,
1776
+ doi: 10.1146/annurev-astro-081811-125610
1777
+ —. 2012b, ARA&A, 50, 531,
1778
+ doi: 10.1146/annurev-astro-081811-125610
1779
+ Kierdorf, M., Mao, S. A., Beck, R., et al. 2020, A&A, 642,
1780
+ A118, doi: 10.1051/0004-6361/202037847
1781
+ Kim, J., Balsara, D., & Mac Low, M.-M. 2001, Journal of
1782
+ Korean Astronomical Society, 34, 333,
1783
+ doi: 10.5303/JKAS.2001.34.4.333
1784
+ Krause, M. 2009, in Revista Mexicana de Astronomia y
1785
+ Astrofisica Conference Series, Vol. 36, Revista Mexicana
1786
+ de Astronomia y Astrofisica Conference Series, 25–29.
1787
+ https://arxiv.org/abs/0806.2060
1788
+ Krause, M., Wielebinski, R., & Dumke, M. 2006, A&A,
1789
+ 448, 133, doi: 10.1051/0004-6361:20053789
1790
+ Krause, M., Irwin, J., Schmidt, P., et al. 2020, A&A, 639,
1791
+ A112, doi: 10.1051/0004-6361/202037780
1792
+ Kroupa, P. 2001, MNRAS, 322, 231,
1793
+ doi: 10.1046/j.1365-8711.2001.04022.x
1794
+
1795
+ 22
1796
+ Manna and Roy
1797
+ Kulsrud, R. M., & Zweibel, E. G. 2008, Reports on
1798
+ Progress in Physics, 71, 046901,
1799
+ doi: 10.1088/0034-4885/71/4/046901
1800
+ Leroy, A. K., Walter, F., Bigiel, F., et al. 2009, AJ, 137,
1801
+ 4670, doi: 10.1088/0004-6256/137/6/4670
1802
+ Leroy, A. K., Bigiel, F., de Blok, W. J. G., et al. 2012, AJ,
1803
+ 144, 3, doi: 10.1088/0004-6256/144/1/3
1804
+ Longair, M. S. 2011, High Energy Astrophysics
1805
+ Malkan, M. A., Jensen, L. D., Rodriguez, D. R., Spinoglio,
1806
+ L., & Rush, B. 2017, ApJ, 846, 102,
1807
+ doi: 10.3847/1538-4357/aa8302
1808
+ Meurer, G. R., Heckman, T. M., & Calzetti, D. 1999, ApJ,
1809
+ 521, 64, doi: 10.1086/307523
1810
+ Meurer, G. R., Heckman, T. M., Leitherer, C., et al. 1995,
1811
+ AJ, 110, 2665, doi: 10.1086/117721
1812
+ Miettinen, O., Delvecchio, I., Smolˇci´c, V., et al. 2017, A&A,
1813
+ 602, L9, doi: 10.1051/0004-6361/201731157
1814
+ Miley, G. 1980, ARA&A, 18, 165,
1815
+ doi: 10.1146/annurev.aa.18.090180.001121
1816
+ Moss, D., & Shukurov, A. 1996, MNRAS, 279, 229,
1817
+ doi: 10.1093/mnras/279.1.229
1818
+ Murphy, E. J., Helou, G., Kenney, J. D. P., Armus, L., &
1819
+ Braun, R. 2008, ApJ, 678, 828, doi: 10.1086/587123
1820
+ Murphy, E. J., Braun, R., Helou, G., et al. 2006a, ApJ,
1821
+ 638, 157, doi: 10.1086/498636
1822
+ Murphy, E. J., Helou, G., Braun, R., et al. 2006b, ApJL,
1823
+ 651, L111, doi: 10.1086/509722
1824
+ Murphy, E. J., Condon, J. J., Schinnerer, E., et al. 2011,
1825
+ ApJ, 737, 67, doi: 10.1088/0004-637X/737/2/67
1826
+ Nikiel-Wroczy´nski, B., Jamrozy, M., Soida, M., Urbanik,
1827
+ M., & Knapik, J. 2016, MNRAS, 459, 683,
1828
+ doi: 10.1093/mnras/stw414
1829
+ Niklas, S., & Beck, R. 1997, A&A, 320, 54
1830
+ Onodera, S., Kuno, N., Tosaki, T., et al. 2010, ApJL, 722,
1831
+ L127, doi: 10.1088/2041-8205/722/2/L127
1832
+ Pacholczyk, A. G. 1970, Radio astrophysics. Nonthermal
1833
+ processes in galactic and extragalactic sources
1834
+ Price, D. J., & Bate, M. R. 2008, MNRAS, 385, 1820,
1835
+ doi: 10.1111/j.1365-2966.2008.12976.x
1836
+ Regan, M. W., Thornley, M. D., Helfer, T. T., et al. 2001,
1837
+ ApJ, 561, 218, doi: 10.1086/323221
1838
+ Robishaw, T., Quataert, E., & Heiles, C. 2008, ApJ, 680,
1839
+ 981, doi: 10.1086/588031
1840
+ Roy, S., & Manna, S. 2021, MNRAS, 507, 4734,
1841
+ doi: 10.1093/mnras/stab2441
1842
+ Roychowdhury, S., Huang, M.-L., Kauffmann, G., Wang,
1843
+ J., & Chengalur, J. N. 2015, MNRAS, 449, 3700,
1844
+ doi: 10.1093/mnras/stv515
1845
+ Sarazin, C. L. 1999, ApJ, 520, 529, doi: 10.1086/307501
1846
+ Sarma, A. P., Momjian, E., Troland, T. H., & Crutcher,
1847
+ R. M. 2005, AJ, 130, 2566, doi: 10.1086/497637
1848
+ Schleicher, D. R. G., & Beck, R. 2013, A&A, 556, A142,
1849
+ doi: 10.1051/0004-6361/201321707
1850
+ —. 2016, A&A, 593, A77,
1851
+ doi: 10.1051/0004-6361/201628843
1852
+ Schober, J., Schleicher, D., Federrath, C., et al. 2012, ApJ,
1853
+ 754, 99, doi: 10.1088/0004-637X/754/2/99
1854
+ Shukurov, A., Sokoloff, D., Subramanian, K., & Brand
1855
+ enburg, A. 2006, A&A, 448, L33,
1856
+ doi: 10.1051/0004-6361:200600011
1857
+ Soida, M., Urbanik, M., Beck, R., Wielebinski, R., &
1858
+ Balkowski, C. 2001, A&A, 378, 40,
1859
+ doi: 10.1051/0004-6361:20011185
1860
+ Sokoloff, D. D., Bykov, A. A., Shukurov, A., et al. 1998,
1861
+ MNRAS, 299, 189, doi: 10.1046/j.1365-8711.1998.01782.x
1862
+ Tabatabaei, F. S., Berkhuijsen, E. M., Frick, P., Beck, R.,
1863
+ & Schinnerer, E. 2013, A&A, 557, A129,
1864
+ doi: 10.1051/0004-6361/201218909
1865
+ Thompson, T. A., Quataert, E., Waxman, E., Murray, N.,
1866
+ & Martin, C. L. 2006, ApJ, 645, 186, doi: 10.1086/504035
1867
+ Van Loo, S., Tan, J. C., & Falle, S. A. E. G. 2015, ApJL,
1868
+ 800, L11, doi: 10.1088/2041-8205/800/1/L11
1869
+ Vargas, C. J., Mora-Partiarroyo, S. C., Schmidt, P., et al.
1870
+ 2018, ApJ, 853, 128, doi: 10.3847/1538-4357/aaa47f
1871
+ Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020,
1872
+ Nature Methods, 17, 261, doi: 10.1038/s41592-019-0686-2
1873
+ Walter, F., Brinks, E., de Blok, W. J. G., et al. 2008, AJ,
1874
+ 136, 2563, doi: 10.1088/0004-6256/136/6/2563
1875
+ Watanabe, Y., Sorai, K., Kuno, N., & Habe, A. 2011,
1876
+ MNRAS, 411, 1409,
1877
+ doi: 10.1111/j.1365-2966.2010.17746.x
1878
+ Wiegert, T., Irwin, J., Miskolczi, A., et al. 2015, AJ, 150,
1879
+ 81, doi: 10.1088/0004-6256/150/3/81
1880
+ Yun, M. S., Reddy, N. A., & Condon, J. J. 2001, ApJ, 554,
1881
+ 803, doi: 10.1086/323145
1882
+
1883
+ A Pilot Study of Magnetic Fields, Star Formation Rates and Gas densities
1884
+ 23
1885
+ 200
1886
+ 0
1887
+ 200
1888
+ Relative RA (arcseconds)
1889
+ 300
1890
+ 200
1891
+ 100
1892
+ 0
1893
+ 100
1894
+ 200
1895
+ 300
1896
+ Relative DEC (arcseconds)
1897
+ 0.0
1898
+ 0.2
1899
+ 0.4
1900
+ 0.6
1901
+ 0.8
1902
+ 1.0
1903
+ Error on B ( G)
1904
+ 200
1905
+ 100
1906
+ 0
1907
+ 100
1908
+ 200
1909
+ Relative RA (arcseconds)
1910
+ 200
1911
+ 100
1912
+ 0
1913
+ 100
1914
+ 200
1915
+ Relative DEC (arcseconds)
1916
+ 0.5
1917
+ 1.0
1918
+ 1.5
1919
+ 2.0
1920
+ 2.5
1921
+ 3.0
1922
+ 3.5
1923
+ Error on B ( G)
1924
+ 400
1925
+ 200
1926
+ 0
1927
+ 200
1928
+ 400
1929
+ Relative RA (arcseconds)
1930
+ 400
1931
+ 200
1932
+ 0
1933
+ 200
1934
+ 400
1935
+ Relative DEC (arcseconds)
1936
+ 0.2
1937
+ 0.4
1938
+ 0.6
1939
+ 0.8
1940
+ Error on B ( G)
1941
+ 400
1942
+ 200
1943
+ 0
1944
+ 200
1945
+ 400
1946
+ Relative RA (arcseconds)
1947
+ 400
1948
+ 200
1949
+ 0
1950
+ 200
1951
+ 400
1952
+ Relative DEC (arcseconds)
1953
+ 0.0
1954
+ 0.5
1955
+ 1.0
1956
+ 1.5
1957
+ 2.0
1958
+ 2.5
1959
+ 3.0
1960
+ Error on B ( G)
1961
+ 200
1962
+ 0
1963
+ 200
1964
+ Relative RA (arcseconds)
1965
+ 200
1966
+ 0
1967
+ 200
1968
+ Relative DEC (arcseconds)
1969
+ 0.0
1970
+ 0.2
1971
+ 0.4
1972
+ 0.6
1973
+ 0.8
1974
+ 1.0
1975
+ Error on B ( G)
1976
+ 200
1977
+ 0
1978
+ 200
1979
+ Relative RA (arcseconds)
1980
+ 300
1981
+ 200
1982
+ 100
1983
+ 0
1984
+ 100
1985
+ 200
1986
+ 300
1987
+ Relative DEC (arcseconds)
1988
+ 0.00
1989
+ 0.25
1990
+ 0.50
1991
+ 0.75
1992
+ 1.00
1993
+ 1.25
1994
+ 1.50
1995
+ Error on B ( G)
1996
+ 250
1997
+ 0
1998
+ 250
1999
+ Relative RA (arcseconds)
2000
+ 400
2001
+ 200
2002
+ 0
2003
+ 200
2004
+ 400
2005
+ Relative DEC (arcseconds)
2006
+ 0.00
2007
+ 0.25
2008
+ 0.50
2009
+ 0.75
2010
+ 1.00
2011
+ 1.25
2012
+ 1.50
2013
+ Error on B ( G)
2014
+ Figure 7. The magnetic field uncertainty maps (in µG) of NGC 2683 (top left), NGC 3627 (top centre), NGC 4096 (top right),
2015
+ NGC 4449 (middle left), NGC 4490 (middle centre), NGC 4826 (middle right) and NGC 5194 (bottom) (Sample 1), shown in
2016
+ colour scale. Blanked regions (in white colour) in the centre of each galaxy correspond to regions with spectral index values ≤
2017
+ 0.55.
2018
+ APPENDIX
2019
+ A. MAGNETIC FIELD UNCERTAINTY MAPS
2020
+ We present here (Figure 7) magnetic field uncertainty maps of the galaxies in Sample 1, generated using the procedure
2021
+ described in Section 2.1.1.
2022
+ B. STAR FORMATION RATE SURFACE DENSITY MAPS
2023
+ We show SFRSD maps of the seven galaxies (Sample 1) in Figures 8 and 9, where SFRSDs estimated using 1.4 GHz
2024
+ and FUV+24µm emission are shown in contours and colors, respectively. In Figures 10 and 11, we have also shown
2025
+ the SFRSD maps estimated using Hα+24µm and 1.4GHz data in colors and contours, respectively. The SFRSD maps
2026
+ of each galaxy in Figures 8, 9, 10, and 11 have been shown in the same color scale and contours.
2027
+
2028
+ 24
2029
+ Manna and Roy
2030
+ Figure 8. SFRSD (M⊙yr−1kpc−2) maps of NGC 2683, NGC 3627, NGC 4449 and NGC 4096(clockwise from top left) (Sample
2031
+ 1). SFRSDs estimated using 1.4 GHz radio and FUV+24µm emission are shown in contours and colors, respectively. Contour
2032
+ levels are listed below each panel of the figure. The circle in the bottom-left corner of the images indicates the angular resolution
2033
+ of the maps.
2034
+
2035
+ COLOR:NGC26832683sfrhyb.OHGSPX.1
2036
+ CONT:NGC2683IPOL1490.572MHz2683.sfr.L.TH.SUB.1
2037
+ 0
2038
+ 10
2039
+ 20
2040
+ 30
2041
+ 33 29
2042
+ 28
2043
+ 27
2044
+ Declination (J2000)
2045
+ 26
2046
+ 25
2047
+ 24
2048
+ 23
2049
+ 22
2050
+ 21
2051
+ 085300
2052
+ 5255
2053
+ 50
2054
+ 45
2055
+ 40
2056
+ 35
2057
+ 30
2058
+ 25
2059
+ 20
2060
+ Right Ascension (J2000)
2061
+ Colorscale ranqe=-0.1039.85MilliSolarmass/yr/kpc^2
2062
+ Contpeakflux=5.4958E-02Solarmass/yr/kpc^2
2063
+ Levs = 2.327E-03 * (-1,1,2, 4,8, 16,25, 50,
2064
+ 80,100,130,160)COLOR:NGC36273627sfrhyb.OHGSPX.1
2065
+ CONT:N3627LIPOL1430.389MHz3627.sfr.L.TH.SUB.1
2066
+ 200
2067
+ 400
2068
+ 600
2069
+ 13 02
2070
+ 01
2071
+ 00
2072
+ Declination (J2000)
2073
+ 1259
2074
+ 58
2075
+ 57
2076
+ 56
2077
+ 11 20 25
2078
+ 20
2079
+ 15
2080
+ 10
2081
+ 05
2082
+ RightAscension(J2000)
2083
+ Colorscalerange=-0.0604.9MilliSolarmass/yr/kpc^2
2084
+ Contpeakflux=2.4733E-01Solarmass/yr/kpc^2
2085
+ Levs = 2.000E-02 * (-1, 1,2, 4, 8, 16, 25, 50,
2086
+ 80,100,150,200,400,800)COLOR:NGC40964096sfrhyb.OHGSPX.1
2087
+ CONT:NGC4096IPOL1432.873MHz4096.sfr.L.TH.SUB.1
2088
+ 0
2089
+ 10
2090
+ 20
2091
+ 30
2092
+ 40
2093
+ 4731
2094
+ 30
2095
+ Declination (J2000)
2096
+ 29
2097
+ 28
2098
+ 0
2099
+ 27
2100
+ 26
2101
+ 25
2102
+ 120620
2103
+ 15
2104
+ 10
2105
+ 05
2106
+ 00
2107
+ 0555
2108
+ 50
2109
+ 45
2110
+ 40
2111
+ Right Ascension (J2000)
2112
+ Colorscale range=-0.1546.02MilliSolarmass/yr/kpc^2
2113
+ Contpeakflux=3.1588E-02Solarmass/yr/kpc^2
2114
+ Levs = 1.511E-03 * (-1, 1, 2, 4, 8, 16, 25, 50,
2115
+ 80,100,150,200,400,800)COLOR:NGC44494449sfrFUV.OHGSPX.1
2116
+ CONT:N49IPOL1489.984MHz4449sfrL.TH.SUB.2
2117
+ 100
2118
+ 200
2119
+ 4412
2120
+ 10
2121
+ 08
2122
+ Declination (J2000)
2123
+ 06
2124
+ 04
2125
+ 02
2126
+ 00
2127
+ 12 28 45
2128
+ 30
2129
+ 15
2130
+ 00
2131
+ 27 45
2132
+ RightAscension(J2000)
2133
+ Colorscalerange=-0.1251.0MilliSolarmass/yr/kpc^2
2134
+ Contpeakflux=7.4433E+00Solarmass/yr/kpc^2
2135
+ Levs = 5.421E-03 * (-1, 1,2, 4, 8, 16, 25, 50,
2136
+ 80,100,150,200,400,800)A Pilot Study of Magnetic Fields, Star Formation Rates and Gas densities
2137
+ 25
2138
+ Figure 9. SFRSD (M⊙yr−1kpc−2) maps of NGC 4490, NGC 4826 and NGC 5194 (clockwise from top left) (Sample 1). SFRSDs
2139
+ estimated using 1.4 GHz radio and FUV+24µm emission are shown in contours and colors, respectively. Contour levels are
2140
+ listed below each panel of the figure. The circle in the bottom-left corner of the images indicates the angular resolution of the
2141
+ maps.
2142
+
2143
+ COLOR:NGC44904490sfrFUV.OHGSPX.1
2144
+ CONT:N4490IPOL1435.114MHz4490sfrL.TH.SUB.2
2145
+ 0
2146
+ 50
2147
+ 100
2148
+ 150
2149
+ 200
2150
+ 41 44
2151
+ 42
2152
+ Declination (J2000)
2153
+ 40
2154
+ 38
2155
+ 36
2156
+ 34
2157
+ 0
2158
+ 12 31 00
2159
+ 30 45
2160
+ 30
2161
+ 15
2162
+ RightAscension(J2000)
2163
+ Colorscale range=-0.1204.4MilliSolarmass/yr/kpc^2
2164
+ Contpeakflux=2.9951E-01Solarmass/yr/kpc^2
2165
+ Levs = 7.000E-03 * (-1, 1, 2, 4, 8, 16, 25, 50,
2166
+ 80,100,150,200,400,800)COLOR:NGC48264826sfrhyb.OHGSPX.1
2167
+ CONT:N4826LIPOL1425.677MHz4826.sfr.L.TH.SUB.1
2168
+ 0
2169
+ 100
2170
+ 200
2171
+ 300
2172
+ 214300
2173
+ 42 30
2174
+ 00
2175
+ Declination (J2000)
2176
+ 41 30
2177
+ 00
2178
+ 40 30
2179
+ 00
2180
+ 39 30
2181
+ 00
2182
+ 12 56 50
2183
+ 45
2184
+ 40
2185
+ 35
2186
+ RightAscension (J2000)
2187
+ Color scalerange=-0.1354.2Milli Solarmass/yr/kpc^2
2188
+ Contpeakflux=3.4554E-01Solarmass/yr/kpc^2
2189
+ Levs=3.758E-03 *(-1, 1,2, 4,8, 16,25, 50,
2190
+ 80,100,150,200,400,800)COLOR:NGC51945194sfrhyb.OHGSPX.1
2191
+ CONT: M51 iPOL 1664.900 MHz 5194.sfr.L.TH.SUB.1
2192
+ 100
2193
+ 200
2194
+ 4718
2195
+ 16
2196
+ 14
2197
+ Declination (J2000)
2198
+ 12
2199
+ 10
2200
+ 08
2201
+ 06
2202
+ 13 30 15
2203
+ 00
2204
+ 29 45
2205
+ 30
2206
+ RightAscension (J2000)
2207
+ Color scale range= -0.0293.2'Milli Solar mass/yr/kpc2
2208
+ Contpeakflux=3.1707E-01Solarmass/yr/kpc^2
2209
+ Levs = 1.215E-03 * (-1, 1, 2, 4, 8, 16, 25, 50,
2210
+ 80,100,150,200,400,800)26
2211
+ Manna and Roy
2212
+ Figure 10.
2213
+ SFRSD (M⊙yr−1kpc−2) maps of NGC 2683, NGC 3627, NGC 4449 and NGC 4096 (clockwise from top left)
2214
+ (Sample 1). SFRSDs estimated using 1.4 GHz radio and Hα+24µm emission are shown in contours and colors, respectively.
2215
+ Contour levels are listed below each panel of the figure. The circle in the bottom-left corner of the images indicates the angular
2216
+ resolution of the maps.
2217
+
2218
+ COLOR:N2683652683sfrha.OHGEO.1
2219
+ CONT:NGC2683 IPOL 1490.572MHz 2683 sfr L.TH.SUB.1
2220
+ 0
2221
+ 10
2222
+ 20
2223
+ 30
2224
+ 3329
2225
+ 28
2226
+ 27
2227
+ Declination (J2000)
2228
+ 26
2229
+ 25
2230
+ 24
2231
+ 23
2232
+ 22
2233
+ 085300
2234
+ 52 55
2235
+ 50
2236
+ 45
2237
+ 40
2238
+ 35
2239
+ 30
2240
+ 25
2241
+ RightAscension(J2000)
2242
+ Colorscalerange=-0.1039.85MilliSolarmass/yr/kpc^2
2243
+ Contpeakflux=5.4958E-02Solarmass/yr/kpc^2
2244
+ Levs=2.327E-03 *(-1,1,2, 4,8,16,25,50,
2245
+ 80,100,130,160)COLOR:nqc36273627sfrha.OHGEO.1
2246
+ CONT:N3627LIPOL1430.389MHz3627sfrL.TH.SUB.1
2247
+ 200
2248
+ 400
2249
+ 600
2250
+ 13 02
2251
+ 01
2252
+ Declination (J2000)
2253
+ 00
2254
+ 1259
2255
+ 58
2256
+ 57
2257
+ 56
2258
+ 11 20 25
2259
+ 20
2260
+ 15
2261
+ 10
2262
+ 05
2263
+ RightAscension(J2000)
2264
+ Colorscalerange=0.0604.9MilliSolarmass/yr/kpc^2
2265
+ Contpeak flux= 2.4733E-01Solarmass/yr/kpc^2
2266
+ Levs = 2.000E-02 *(-1, 1,2,4, 16,25, 50, 80,
2267
+ 100,150,200,400,800)COLOR:N4096654096sfrha.OHGEO.1
2268
+ CONT:NGC4096IPOL1432.873MHz4096sfrL.TH.SUB.1
2269
+ 0
2270
+ 10
2271
+ 20
2272
+ 30
2273
+ 40
2274
+ 47 32
2275
+ 31
2276
+ 30
2277
+ Declination (J2000)
2278
+ 29
2279
+ 28
2280
+ 27
2281
+ 26
2282
+ 25
2283
+ 12.0620
2284
+ 15
2285
+ 10
2286
+ 05
2287
+ 0555
2288
+ 50
2289
+ 45
2290
+ 40
2291
+ RightAscension(J2000)
2292
+ Colorscalerange=-0.1546.02MilliSolarmass/yr/kpc^2
2293
+ Contpeak flux=3.1588E-02Solarmass/yr/kpc^2
2294
+ Levs = 1.511E-03 *(-1, 1,2, 4,8, 16, 25, 50,
2295
+ 80,100,150,200,400,800)COLOR:N4449654449sfrha.OHGEO.1
2296
+ CONT:N49IPOL1489.984MHz4449sfrL.TH.SUB.2
2297
+ 100
2298
+ 200
2299
+ 4412
2300
+ 10
2301
+ 08
2302
+ ?
2303
+ Declination (J2000)
2304
+ 06
2305
+ 04
2306
+ 02
2307
+ 00
2308
+ 12 28 30
2309
+ 15
2310
+ 00
2311
+ 27 45
2312
+ RightAscension(J2000)
2313
+ Colorscalerange=-0.1251.0MilliSolarmass/yr/kpc^2
2314
+ Contpeakflux=7.4433E+00Solarmass/yr/kpc^2
2315
+ Levs = 5.421E-03 * (-1, 1, 2, 4, 8, 16, 25, 50,
2316
+ 80,100,150,200,400,800)A Pilot Study of Magnetic Fields, Star Formation Rates and Gas densities
2317
+ 27
2318
+ Figure 11. SFRSD (M⊙yr−1kpc−2) maps of NGC 4490, NGC 4826 and NGC 5194 (clockwise from top left) (Sample 1).
2319
+ SFRSDs estimated using 1.4 GHz radio and Hα+24µm emission are shown in contours and colors, respectively. Contour levels
2320
+ are listed below each panel of the figure. The circle in the bottom-left corner of the images indicates the angular resolution of
2321
+ the maps.
2322
+
2323
+ COLOR:N4485/904490sfrha.OHGEO.1
2324
+ CONT:N4490IPOL1435.114MHz4490sfrL.TH.SUB.2
2325
+ 50
2326
+ 100
2327
+ 150
2328
+ 200
2329
+ 41 44
2330
+ 42
2331
+ Declination (J2000)
2332
+ 40
2333
+ 38
2334
+ 36
2335
+ 34
2336
+ 0
2337
+ 12 31 00
2338
+ 30 45
2339
+ 30
2340
+ 15
2341
+ RightAscension(J2000)
2342
+ Colorscale range=-0.1204.4MilliSolarmass/yr/kpc^2
2343
+ Contpeakflux=2.9951E-01Solarmass/yr/kpc^2
2344
+ Levs=7.000E-03 *(-1,1,2,4,8,16,25,50,
2345
+ 80,100,150,200,400,800)COLOR:N4826654826sfrha.OHGEO.1
2346
+ CONT:N4826LIPOL1425.677MHz4826sfrL.TH.SUB.1
2347
+ 100
2348
+ 200
2349
+ 300
2350
+ 21 43 30
2351
+ 00
2352
+ 42 30
2353
+ Declination (J2000)
2354
+ 00
2355
+ 41 30
2356
+ 00
2357
+ 40 30
2358
+ 00
2359
+ 39 30
2360
+ 00
2361
+ 38 30
2362
+ 125655
2363
+ 50
2364
+ 45
2365
+ 40
2366
+ 35
2367
+ 30
2368
+ RightAscension(J2000)
2369
+ Colorscalerange=-0.1354.2MilliSolarmass/yr/kpc^2
2370
+ Contpeakflux=3.4554E-01Solarmass/yr/kpc^2
2371
+ Levs = 3.758E-03 * (-1, 1, 2, 4, 8, 16, 25, 50,
2372
+ 80,100,150,200,400,800)COLOR:NGC5194+5194sfrha.OHGEO.1
2373
+ CONT:M51IPOL1664.900MHz5194sfrL.TH.SUB.1
2374
+ 100
2375
+ 200
2376
+ 4718
2377
+ 16
2378
+ D
2379
+ 14
2380
+ Declination (J2000)
2381
+ 12
2382
+ 10
2383
+ 08
2384
+ 06
2385
+ Q
2386
+ 13 30 30
2387
+ 15
2388
+ 00
2389
+ 29 45
2390
+ 30
2391
+ 15
2392
+ Right Ascension (J2000)
2393
+ Color scale range=0.0293.2Mili Solar mass/yr/kpc^2
2394
+ Contpeakflux=3.1707E-01Solarmass/yr/kpc^2
2395
+ Levs=1.215E-03 *(-1,1,2, 4,8, 16,25,50,
2396
+ 80,100,150,200,400,800)
59E2T4oBgHgl3EQfOwac/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
59FKT4oBgHgl3EQfTC3B/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f106d8145848555566972b2dc548a78eb30d6c9a90996e1a95cc410f0a9eb4b2
3
+ size 3866669
5NFKT4oBgHgl3EQfSS3g/content/tmp_files/2301.11775v1.pdf.txt ADDED
@@ -0,0 +1,2988 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.11775v1 [math.AP] 11 Jan 2023
2
+ REGULARITY IN THE TWO-PHASE BERNOULLI PROBLEM FOR THE
3
+ p-LAPLACE OPERATOR
4
+ MASOUD BAYRAMI AND MORTEZA FOTOUHI
5
+ Abstract. We show that any minimizer of the well-known ACF functional (for the
6
+ p-Laplacian) is a viscosity solution. This allows us to establish a uniform flatness
7
+ decay at the two-phase free boundary points to improve the flatness, that boils
8
+ down to C1,η regularity of the flat part of the free boundary. This result, in turn, is
9
+ used to prove the Lipschitz regularity of minimizers by a dichotomy argument.
10
+ 1. Introduction and main result
11
+ We study the problem of minimizing the following two-phase functional
12
+ JTP(v, D) :=
13
+
14
+ D
15
+ |∇v|p + (p − 1)λp
16
+ +χ{v>0} + (p − 1)λp
17
+ −χ{v<0} dx,
18
+ v ∈ K,
19
+ where D is a bounded and smooth domain in Rn, χA is the characteristic function
20
+ of the set A, 1 < p < ∞, and λ± > 0 are given constants. The class of admissible
21
+ functions K, consists of all functions v ∈ g + W1,p
22
+ 0 (D), where g ∈ W1,p(D).
23
+ Any minimizer u satisfies, in a certain weak sense, the following system of
24
+ equations
25
+ (1)
26
+ 
27
+ ∆pu := div(|∇u|p−2∇u) = 0,
28
+ in
29
+ Ω+
30
+ u ∪ Ω−
31
+ u,
32
+ |∇u+|p − |∇u−|p = λp
33
+ + − λp
34
+ −,
35
+ on
36
+ �∂Ω+
37
+ u ∩ ∂Ω−
38
+ u
39
+ � ∩ D,
40
+ |∇u+| ≥ λ+, |∇u−| ≥ λ−,
41
+ on
42
+ �∂Ω+
43
+ u ∩ ∂Ω−
44
+ u
45
+ � ∩ D,
46
+ |∇u+| = λ+,
47
+ on
48
+ �∂Ω+
49
+ u \ ∂Ω−
50
+ u
51
+ � ∩ D,
52
+ |∇u−| = λ−,
53
+ on
54
+ �∂Ω−
55
+ u \ ∂Ω+
56
+ u
57
+ � ∩ D,
58
+ where Ω±
59
+ u = {x ∈ D : ±u(x) > 0}, u± := max{±u, 0}, and ∆pu = div(|∇u|p−2∇u) is the
60
+ p-Laplace operator; see Lemma 3.1.
61
+ These types of problems are known as Bernoulli-type free boundary problems
62
+ which appear in various models of fluid mechanics or heat conduction (see e.g.
63
+ [2, 4, 5, 7, 21, 18]). For the admissible functions in K+ := {v ∈ K : v ≥ 0}, the
64
+ analogous one-phase functional and the corresponding overdetermined problem
65
+ called the one-phase Bernoulli problem, was first studied in [1] for the case p = 2,
66
+ and then in [6] for the two-phase problem. Also, the case of uniformly elliptic
67
+ quasilinear equations in the one-phase case has been treated in [3]. The difficulty
68
+ of the problem (1) is that the governing operator, ∆pu = div(|∇u|p−2∇u), is not
69
+ Date: January 30, 2023.
70
+ 1991 Mathematics Subject Classification. 35R35, 35J92.
71
+ Key words and phrases. Free boundary regularity, Two-phase Bernoulli problem, p-Laplacian.
72
+ M. Bayrami and M. Fotouhi was supported by Iran National Science Foundation (INSF) under
73
+ project No. 4001885.
74
+ 1
75
+
76
+ 2
77
+ M. BAYRAMI AND M. FOTOUHI
78
+ uniformly elliptic. Obviously, close to regular free boundary points one expects
79
+ that |∇u| > 0 implying uniform ellipticity of the p-Laplacian. However, without
80
+ such a regularity assumption, it is difficult to prove non-degeneracy up to the free
81
+ boundary. In [10], the authors circumvent this issue by simultaneously showing
82
+ the non-degeneracy of the gradient and the regularity of the free boundary.
83
+ Here below we list terminologies and definitions that are frequently used in this
84
+ paper:
85
+ • A function u : D → R is said to be a minimizer of JTP in D if and only if
86
+ JTP(u, D) ≤ JTP(v, D),
87
+ for all v ∈ K.
88
+ • F(u) := �∂Ω+
89
+ u ∪ ∂Ω−
90
+ u
91
+ � ∩ D, denotes the free boundary of the minimizer u.
92
+ • The set ΓTP := ∂Ω+
93
+ u ∩ ∂Ω−
94
+ u ∩ D is the two-phase points of the free boundary
95
+ F(u).
96
+ • The boundary of positive and negative phases, i.e. ∂Ω±
97
+ u ∩ D can be decom-
98
+ posed as
99
+ ∂Ω±
100
+ u ∩ D = Γ±
101
+ OP ∪ ΓTP,
102
+ where Γ+
103
+ OP := �∂Ω+
104
+ u \ ∂Ω−
105
+ u
106
+ �∩D and Γ−
107
+ OP := �∂Ω−
108
+ u \ ∂Ω+
109
+ u
110
+ �∩D are the one-phase
111
+ parts of F(u).
112
+ • We will say that x0 ∈ ΓTP is an interior two-phase point and will denote it
113
+ by x0 ∈ Γint
114
+ TP, if
115
+ |Br(x0) ∩ {u = 0}| = 0,
116
+ for some
117
+ r > 0.
118
+ • We will say that x0 ∈ ΓTP is a branching point and will denote it by x0 ∈ Γbr
119
+ TP,
120
+ if
121
+ |Br(x0) ∩ {u = 0}| > 0,
122
+ for every
123
+ r > 0.
124
+ • We denote by Hα,e the following one-dimensional function
125
+ Hα,e(x) = α (x · e)+ − β (x · e)− ,
126
+ with a unit vector e ∈ Sn−1 and the constants α and β satisfying the condi-
127
+ tions
128
+ (2)
129
+ α ≥ λ+,
130
+ β ≥ λ−,
131
+ αp − βp = λp
132
+ + − λp
133
+ −.
134
+ Hα,e is the so-called two-plane solution to (1).
135
+ Our goal is to study the regularity of the free boundary F(u) = �∂Ω+
136
+ u ∪ ∂Ω−
137
+ u
138
+ �∩D,
139
+ for minimizers of JTP in D, around the two-phase points. More precisely, we prove
140
+ that in a suitable neighborhood of the two-phase points, the sets Ω+
141
+ u and Ω−
142
+ u are
143
+ two C1,η-regular domains touching along the closed set of two-phase points ΓTP.
144
+ For the special case p = 2, this result has been recently obtained in [12], by invoking
145
+ the linearization technique and we will closely follow this technique in order to
146
+ generalize this result to any 1 < p < ∞.
147
+ As is usual for problems of this type, prior to applying any method to determine
148
+ the regularity of the free boundary, the Lipschitz continuity of the minimizers
149
+ across the free boundary is required. Our partial result for the regularity of the
150
+ free boundary, however, gives us the Lipschitz regularity of the solution as well.
151
+ We first show C1,η-regularity of the free boundary with a flatness assumption in
152
+ the following theorem.
153
+
154
+ 3
155
+ Theorem 1.1 (Flatness implies C1,η). Let u : D → R be a minimizer of JTP in D. For
156
+ any positive constants Λ0 and Λ1, there exists a constant ¯ǫ = ¯ǫ(n, p, Λ0, Λ1) such that if
157
+ (3)
158
+ ∥u − Hα,e∥L∞(B1) ≤ ¯ǫ,
159
+ for some e ∈ Sn−1 and max(Λ0, λ+) ≤ α ≤ Λ1, then ∂Ω±
160
+ u ∩ Br0 are C1,η graphs for some
161
+ r0 > 0 and for any η ∈ (0, 1
162
+ 3).
163
+ We need to remark that the critical flatness to obtain the regularity does not
164
+ depend on λ±. Indeed, as long as we are close enough to a two-plane solution with
165
+ coefficient α ∈ [Λ0, Λ1], we obtain the regularity of the free boundary. This result
166
+ in turn is crucial to obtain the Lipschitz regularity of minimizers in the following
167
+ theorem.
168
+ Theorem 1.2 (Lipschitz regularity). Let u : D → R be a minimizer of JTP in D. Then
169
+ u is locally Lipschitz continuous; u ∈ C0,1
170
+ loc(D).
171
+ 2. Basic properties of minimizers
172
+ In this section, we gather some basic properties of minimizers of JTP.
173
+ Theorem 2.1 (Existence). If the admissible set K is nonempty, then there exists a mini-
174
+ mizer u of JTP over K. Moreover, every minimizer satisfies
175
+ 
176
+ ∆pu = 0,
177
+ in
178
+ Ω+
179
+ u ∪ Ω−
180
+ u,
181
+ ∆pu± ≥ 0,
182
+ in
183
+ D,
184
+ ∥u∥L∞(D) ≤ ∥g∥L∞(D).
185
+ Proof. The existence of a bounded minimizer u of the functional JTP can be easily
186
+ established using the semi-continuity of the p-Dirichlet energy and the weak con-
187
+ vergence in W1,p, and can be obtained in the standard way. See e.g. [6, 23] for
188
+ the details. Also, notice that by comparison of u and u + tϕ, where ϕ is a suitable
189
+ smooth that supp ϕ ⊂ Ω+
190
+ u ∪ Ω−
191
+ u, it is easy to find that ∆pu = 0 in Ω+
192
+ u ∪ Ω−
193
+ u in the
194
+ sense of distributions.
195
+ To prove that u+ are p-subharmonic, we first note that since ∆pu = 0 in Ω+
196
+ u, we
197
+ may choose ǫk → 0 such that {u = ǫk} to be a C1 manifold by the Sard’s Theorem,
198
+ resulting in −∇u
199
+ |∇u| to be the outer normal vector on ∂{u > ǫk}. Now take 0 ≤ ϕ ∈ C∞
200
+ c (D),
201
+ the integration by parts implies that
202
+
203
+ D
204
+ |∇u+|p−2∇u+ · ∇ϕ dx =
205
+
206
+ {u>0}
207
+ |∇u+|p−2∇u+ · ∇ϕ dx
208
+ = lim
209
+ ǫk→0
210
+
211
+ {u>ǫk}
212
+ |∇u+|p−2∇u+ · ∇ϕ dx
213
+ = lim
214
+ ǫk→0
215
+
216
+ {u=ǫk}
217
+ |∇u+|p−2
218
+
219
+ ∇u+ · −∇u
220
+ |∇u|
221
+
222
+ ϕ dx
223
+
224
+
225
+ {u>ǫk}
226
+ ∆pu ϕ dx
227
+ = − lim
228
+ ǫk→0
229
+
230
+ {u=ǫk}
231
+ |∇u+|p−1ϕ dx ≤ 0.
232
+ The proof of ∆pu− ≥ 0 is the same. Finally, the last estimate
233
+ ∥u∥L∞(D) ≤ ∥g∥L∞(D)
234
+
235
+ 4
236
+ M. BAYRAMI AND M. FOTOUHI
237
+ is the consequence of the p-subharmonicity of u± in D.
238
+
239
+ In the following proposition we show the non-degeneracy property for the
240
+ minimizers. It reveals the fact that each of the two phases Ω+
241
+ u and Ω−
242
+ u are optimal
243
+ with respect to one-sided inwards perturbations. The proof is the same as the proof
244
+ of non-degeneracy for one-phase problems; see [10, Lemma 4.2]. We postpone the
245
+ proof to Appendix C.
246
+ Proposition 2.2 (Non-degeneracy). Let D ⊂ Rn be an open set, and u be a minimizer
247
+ of JTP. Then, u is non-degenerate; i.e. there is a constant C = C(n, λ±, p) > 0 such that
248
+
249
+
250
+ Br(x0)
251
+ �u±�p dx ≥ Crp,
252
+ for every x0 ∈ Ω±
253
+ u ∩ D and every 0 < r < dist (x0, ∂D).
254
+ The next proposition concerns the Lipschitz regularity of the minimizers around
255
+ the one-phase points.
256
+ Proposition 2.3 (Lipschitz regularity at one-phase points). Let u : D → R be a
257
+ minimizer of JTP in D. There there is constant C = C(n, p, ±λ) such that if x0 ∈ Γ+
258
+ OP (or
259
+ x0 ∈ Γ−
260
+ OP) is one-phase point and Br(x0) ∩ Ω−
261
+ u = ∅ (Br(x0) ∩ Ω+
262
+ u = ∅), then
263
+ ∥∇u∥L∞(B r
264
+ 2 (x0)) ≤ C.
265
+ We remark that the condition Br(x0) ∩ Ω−
266
+ u = ∅ always holds for some r > 0 by
267
+ the definition of one-phase points.
268
+ Proof. We know that ux0,r(x) = u(x0+rx)
269
+ r
270
+ is a minimizer of the following one phase
271
+ functional in B1, i.e. minimizer of
272
+ JOP(v, B1) :=
273
+
274
+ B1
275
+ |∇v|p dx + (p − 1)λp
276
+ +|{v > 0} ∩ B1|,
277
+ over the class of nonnegative functions. Then the boundedness of the gradient
278
+ ∥∇u∥L∞(B r
279
+ 2 (x0)) = ∥∇ux0,r∥L∞(B 1
280
+ 2 ) ≤ C(n, p, λ+),
281
+ follows from [10, Theorem 3.3]. We shall remark that the Lipschitz constant for
282
+ one-phase problems does not depend on the boundary values of the minimizer as
283
+ long as we stay uniformly far from the boundary.
284
+
285
+ Next, we mention the following continuity result for minimizers.
286
+ Proposition 2.4 (BMO estimates for the gradient). Let u be a minimizer of JTP and
287
+ D′ ⋐ D. Then,
288
+ (i) for 1 < p < 2, we have that |∇u|
289
+ p−2
290
+ 2 ∇u ∈ BMO(D′), and consequently u ∈ Cσ(D′)
291
+ for any σ ∈ (0, 1);
292
+ (ii) for 2 < p < ∞, we have that ∇u ∈ BMO(D′) and thus u is locally log-Lipschitz
293
+ continuous.
294
+ In particular, ∇u ∈ Lq(D′) for any 1 < q < ∞ and for any 1 < p < ∞.
295
+ Proof. The proof is the same as the proof of Lemma 3.1 in [16].
296
+
297
+
298
+ 5
299
+ The BMO estimate for the gradient of minimizers is sufficient to obtain the fol-
300
+ lowing compactness result. Since we have not yet proved the Lipschitz continuity,
301
+ this result will be extremely valuable for our argument in the next section. We
302
+ postpone the proof to Appendix A.
303
+ Proposition 2.5. Let uj be a bounded minimizer of JTP in B2 with the points xj ∈ B1 such
304
+ that uj(xj) = 0. Also, set vj(x) =
305
+ uj(xj+rjx)
306
+ Sj
307
+ , for any x ∈ BR, with 0 < R < 1
308
+ rj , where rj → 0,
309
+ as j → +∞ and Sj > 0. Then, vj is the minimizer (according to its own boundary values)
310
+ of the following scaled functional
311
+ (4)
312
+ ˆJTP(v) :=
313
+
314
+ BR
315
+ |∇v|p + (p − 1)σp
316
+ jλp
317
+ +χ{v>0} + (p − 1)σp
318
+ jλp
319
+ −χ{v<0} dx,
320
+ where σj :=
321
+ rj
322
+ Sj . Moreover, if |vj| ≤ M in BR, for any fixed 0 < R <
323
+ 1
324
+ rj and for some
325
+ M = M(R) > 0, then up to a subsequence, the followings hold:
326
+ (i) For any q > 1, and some α ∈ (0, 1) (if q > n, one can take α = 1 − n
327
+ q), vj converges
328
+ to some function v0 as j → +∞ in Cα(BR) and weakly in W1,q(BR);
329
+ (ii) vj → v0 strongly in W1,p(BR);
330
+ (iii) If moreover, σj :=
331
+ rj
332
+ Sj → σ, as j → +∞, then v0 is a minimizer of
333
+ ˆJTP(v) :=
334
+
335
+ BR
336
+ |∇v|p + (p − 1)σpλp
337
+ +χ{v>0} + (p − 1)σpλp
338
+ −χ{v<0} dx.
339
+ In particular, if σ = 0, then v0 is p-harmonic in BR.
340
+ The following lemma states that u+ and u− have coherent growth at two-phase
341
+ points. This is essential to show that the minimizers are the viscosity solution of
342
+ (1).
343
+ Lemma 2.6. Let u be a bounded minimizer of JTP. Let x0 ∈ ΓTP and r0 > 0 be small
344
+ such that Br0(x0) ⊂ D. Assume that supBr(x0) u− ≤ C0r (resp. supBr(x0) u+ ≤ C0r) for
345
+ all r ∈ (0, r0]. Then there exist constant C1 > 0 such that supBr(x0) u+ ≤ C1r (resp.
346
+ supBr(x0)u− ≤ C1r) for all r ∈ (0, r0].
347
+ Proof. We will just demonstrate one of the claims; the other can be demonstrated
348
+ similarly. By the assumption of the lemma
349
+ (5)
350
+ sup
351
+ Br(x0)
352
+ u− ≤ C0r,
353
+ ∀r ∈ (0, r0].
354
+ We claim that there is ˜C1 > 0 such that
355
+ (6)
356
+ S(k + 1) ≤ max
357
+ � ˜C1
358
+ 2k+1 , 1
359
+ 2S(k)
360
+
361
+ ,
362
+ where S(k) := ∥u∥L∞(B2−k(x0)), for any k ∈ N that 2−k ≤ r0. To prove this, we argue
363
+ by contradiction and suppose that (6) fails. Then there is a sequence of integers kj,
364
+ with j = 1, 2, · · · such that
365
+ (7)
366
+ S(kj + 1) > max
367
+
368
+ j
369
+ 2kj+1 , 1
370
+ 2S(kj)
371
+
372
+ .
373
+
374
+ 6
375
+ M. BAYRAMI AND M. FOTOUHI
376
+ Observe that since u is a bounded minimizer, then (7) implies that kj → +∞ as
377
+ j → +∞. Also, notice that (7) implies that
378
+ (8)
379
+ σj :=
380
+ 2−kj
381
+ S(kj + 1) ≤ 2
382
+ j → 0
383
+ as
384
+ j → +∞.
385
+ Now, we introduce the scaled functions vj(x) := u(x0+2−kjx)
386
+ S(kj+1) , for any x ∈ B1. Then,
387
+ from (5) and (8), it follows that vj(0) = 0 and
388
+ (9)
389
+ v−
390
+ j (x) = u−(x0 + 2−kjx)
391
+ S(kj + 1)
392
+
393
+ 2−kjC0
394
+ S(kj + 1) ≤ 2C0
395
+ j
396
+ → 0,
397
+ as
398
+ j → +∞.
399
+ Furthermore, it is simple to show that (7) implies that
400
+ (10)
401
+ sup
402
+ B1
403
+ |vj| ≤ 2,
404
+ and
405
+ sup
406
+ B 1
407
+ 2
408
+ |vj| = 1.
409
+ Also, Proposition 2.5 entails that vj is a minimizer of the scaled functional (4) for
410
+ R = 3
411
+ 4 and we can extract a converging subsequence such that vj → v0 uniformly
412
+ in B 3
413
+ 4 that v0 is p-harmonic. The uniform convergence of vj to v0 along with (9),
414
+ (10), give that
415
+ ∆pv0(x) = 0,
416
+ v0(x) ≥ 0 if x ∈ B 3
417
+ 4 ,
418
+ v(0) = 0,
419
+ sup
420
+ B 1
421
+ 2
422
+ v0 = 1,
423
+ which is in contradiction with the strong minimum principle. Thus (6) obtains.
424
+ Now we show how (6) implies the lemma. Assume that k0 is the smallest integer
425
+ k that 2−k ≤ r0. Let ¯C1 = max( ˜C1, 2k0S(k0)). It is not difficult to observe from (6) that
426
+ S(k) ≤ ¯C12−k. For an arbitrary r ∈ (0, r0] choose k ≥ k0 such that 2−(k+1) < r ≤ 2−k,
427
+ then
428
+ ∥u∥L∞(Br(x0)) ≤ ∥u∥L∞(B2−k(x0)) = S(k) ≤ ¯C12−k ≤ 2 ¯C1r.
429
+ Thus the statement in the lemma holds for C1 = 2 ¯C1.
430
+
431
+ The following theorem roughly says that, in a very weak sense,the free boundary
432
+ conditions (1) hold.
433
+ Proposition 2.7. Suppose that u is a minimizer of JTP in D and D′ ⊂ D be such that
434
+ |D′ ∩ {u = 0}| = 0. Then, we have the following free boundary condition in the very weak
435
+ sense
436
+ lim
437
+ ǫ→0+
438
+
439
+ ∂{u>ǫ}∩D′
440
+
441
+ |∇u+|p − λp
442
+ +
443
+
444
+ η · ν + lim
445
+ δ→0+
446
+
447
+ ∂{u<−δ}∩D′
448
+
449
+ |∇u−|p − λp
450
+
451
+
452
+ η · ν = 0,
453
+ for any η ∈ W1,p
454
+ 0 (D′, Rn), and where ν is the outward normal.
455
+ Proof. The proof can be established precisely as in [6, Theorem 2.4].
456
+
457
+ Corollary 2.8. Suppose u(x) = α (x · e)+ − β (x · e)− is a global minimizer of JTP for some
458
+ unite vector e ∈ Sn−1 and the positive constants α and β. Then α and β satisfy conditions
459
+ (2).
460
+ Proof. The equality αp − βp = λp
461
+ + − λp
462
+ − is obvious by invoking Proposition 2.7.
463
+ Besides, conditions
464
+ α ≥ λ+,
465
+ and
466
+ β ≥ λ−,
467
+
468
+ 7
469
+ can be obtained by a smooth variation of the free boundary {u = 0} = {x · e = 0}.
470
+ Indeed, by considering competitors of the form ut(x) = u+(x) − u−(x + tξ(x)) for
471
+ vector fields ξ ∈ C∞
472
+ c (Rn; Rn) with ξ · e ≤ 0 so that it moves negative phase only
473
+ inwards, that is, {ut < 0} ⊂ {u < 0}, and taking the derivative of JTP(ut, BR) at t > 0
474
+ and letting t → 0 (where R is sufficiently large such that supp ξ ⊂ BR), we get
475
+
476
+ {u=0}∩BR
477
+ (ξ · e)
478
+
479
+ |∇u−|p − λp
480
+
481
+
482
+ ≤ 0,
483
+ which gives β ≥ λ−. The estimate on α is analogous.
484
+
485
+ 3. Free boundary conditions in the viscosity sense
486
+ Let u : D → R be a local minimizer of JTP. In this section, we will show that u
487
+ satisfies the free boundary conditions (1) in a weak (viscosity) sense.
488
+ Definition 3.1. Let D be an open set. We say that a function Q : D → R touches a
489
+ function w : D → R from below (resp. from above) at a point x0 ∈ D if Q(x0) = w(x0) and
490
+ Q(x) − w(x) ≤ 0
491
+ (resp. Q(x) − w(x) ≥ 0),
492
+ for every x in a neighborhood of x0. We will say that Q touches w strictly from below (resp.
493
+ above) if the above inequalities are strict for x � x0.
494
+ A function Q is an (admissible) comparison function in D if
495
+ (a) Q ∈ C1({Q > 0} ∩ D) ∩ C1({Q < 0} ∩ D);
496
+ (b) Q ∈ C2({Q > 0} ∩ D) ∩ C2({Q < 0} ∩ D);
497
+ (c) ∂{Q > 0} and ∂{Q < 0} are smooth manifolds in D.
498
+ We should remark that if ∇Q � 0 on ∂{Q > 0} ∪ ∂{Q < 0}, the condition (c) above holds.
499
+ Lemma 3.1. Let u be a local minimizer of JTP in the open set D ⊂ Rn. Then the following
500
+ optimality conditions on the free boundary F(u) hold.
501
+ (A) Suppose that Q is a comparison function that touches u from below at x0.
502
+ (A.1) If x0 ∈ Γ+
503
+ OP, then |∇Q+(x0)| ≤ λ+;
504
+ (A.2) if x0 ∈ Γ−
505
+ OP, then Q+ ≡ 0 in a neighborhood of x0 and |∇Q−(x0)| ≥ λ−;
506
+ (A.3) if x0 ∈ ΓTP, then |∇Q−(x0)| ≥ λ− and
507
+ |∇Q+(x0)|p − |∇Q−(x0)|p ≤ λp
508
+ + − λp
509
+ −.
510
+ (B) Suppose that Q is a comparison function that touches u from above at x0.
511
+ (B.1) If x0 ∈ Γ+
512
+ OP, then Q− ≡ 0 in a neighborhood of x0 and |∇Q+(x0)| ≥ λ+;
513
+ (B.2) if x0 ∈ Γ−
514
+ OP, then |∇Q−(x0)| ≤ λ−;
515
+ (B.3) if x0 ∈ ΓTP, then |∇Q+(x0)| ≥ λ+ and
516
+ |∇Q+(x0)|p − |∇Q−(x0)|p ≥ λp
517
+ + − λp
518
+ −.
519
+ Proof. First, we will prove the gradient bounds in (A.1) and (B.1). The case x0 ∈ Γ−
520
+ OP,
521
+ and the proofs of (A.2) and (B.2) can be obtained similarly.
522
+ Let x0 ∈ Γ+
523
+ OP be a one-phase point and let Q touches u from below at x0. Then, Q+
524
+ touches u from below at x0, too. Consider ux0,rk(x) = u(x0+rkx)
525
+ rk
526
+ and Q+
527
+ x0,rk(x) = Q+(x0+rkx)
528
+ rk
529
+ as the blow-up sequences of u and Q+ at x0. By virtue of Proposition 2.3, the
530
+ functions ux0,rk are uniformly Lipschitz for sufficiently rk small and up to extracting
531
+ a subsequence, we can assume that ux0,rk converges uniformly to a blow-up limit
532
+ v. The limit v is a minimizer of one-phase functional JOP and so ∆pv = 0 in {v > 0}.
533
+
534
+ 8
535
+ M. BAYRAMI AND M. FOTOUHI
536
+ On the other hand, since Q+ is differentiable at x0 in Ω+
537
+ Q, we get that Q+
538
+ x0,rk
539
+ converges to the function
540
+ (11)
541
+ HQ+(x) = (x · e′)+
542
+ with
543
+ e′ = ∇Q+(x0).
544
+ If ∇Q+(x0) = 0, (A.1) is trivially valid. We assume that e′ � 0, and since HQ+ touches
545
+ v from below at x = 0, we get
546
+ v(x) = α(x · e′)+ + o(|x|),
547
+ α ≥ 1,
548
+ for some α; see [19, Lemma B.1]. We get that any blow-ups of v will be v0(x) =
549
+ α(x ·e′)+ which is also a minimizer of JOP. Thus α|e′| = λ+ due to the free boundary
550
+ condition for one-phase minimizers (Proposition 2.7 or see [10, Theorem 2.1]) and
551
+ so
552
+ |∇Q+(x0)| ≤ λ+.
553
+ Similarly, when Q touches u from above at x0, then also Q+ touches u from above
554
+ at x0, and the claim Q− ≡ 0 in (B.1) is trivially true. Again, consider ux0,rk, which up
555
+ to extracting a subsequence, converges uniformly to a blow-up limit v and Q+
556
+ x0,rk,
557
+ as the blow-up sequences of Q+ at x0, which converges to the function (11). Now,
558
+ we argue similar to the proof of (A.1) to get
559
+ |∇Q+(x0)| ≥ λ+.
560
+ Now, we prove (A.3). Suppose x0 ∈ ΓTP and assume that Q touches u from
561
+ below at x0. Then u− ≤ Q− and u−(x) ≤ C0|x − x0| for C0 = 2|∇Q−(x0)| if |x − x0| is
562
+ sufficiently small. Now we employ Lemma 2.6 to deduce that |u(x)| ≤ C1|x − x0| in
563
+ a neighborhood of x0.
564
+ Let ux0,rk and Qx0,rk be the blow-up sequences of u and Q at x0. Then, by using
565
+ Proposition 2.5, up to extracting a subsequence, we can assume that ux0,rk converges
566
+ uniformly to some function v which is also a minimizer of JTP. Moreover, it satisfies
567
+ (12)
568
+ |v(x)| ≤ C1|x|.
569
+ On the other hand, since Q+ and Q− are differentiable at x0 (respectively in Ω+
570
+ Q
571
+ and Ω−
572
+ Q), we get that Qx0,rk converges to the function
573
+ HQ(x) = (x · ˜e+)+ − �x · ˜e−�− ,
574
+ where ˜e± = ∇Q±(x0). Since HQ touches v from below at x = 0, we have ([19, Lemma
575
+ B.1])
576
+ v+(x) = α(x · ˜e−)+ + o(|x|),
577
+ |˜e+| ≤ α|˜e−|,
578
+ v−(x) = β(x · ˜e−)− + o(|x|),
579
+ β ≤ 1,
580
+ for some α, β ≥ 0. Note that by virtue of the non-degeneracy, Proposition 2.2,
581
+ v− � 0 and so ˜e− � 0. If v0 is a blowup of v (recall (12) and Proposition 2.5), it
582
+ will be v0(x) = α(x · ˜e−)+ − β(x · ˜e−)− which is also a minimizer of JTP. Now apply
583
+ Corollary 2.8, we get
584
+ (αp − βp)|˜e−|p = λp
585
+ + − λp
586
+ −,
587
+ β|˜e−| ≥ λ−.
588
+ Hence,
589
+ |∇Q+(x0)|p − |∇Q−(x0)|p ≤ αp − βp = λp
590
+ + − λp
591
+ −,
592
+ as well as |∇Q−(x0)| ≥ λ−. The proof of (B.3) is analogous.
593
+
594
+
595
+ 9
596
+ If u : D → R is a continuous function such that the claims (A) and (B) hold for
597
+ every comparison function Q, then we say that u satisfies the boundary condition
598
+ (1) on the free boundary in viscosity sense.
599
+ We need the following straightforward consequence of the definition of viscosity
600
+ solution. It emphasizes what happens when a function is touching only one of the
601
+ two phases.
602
+ Lemma 3.2. Let u : D → R be a continuous function that satisfies (1).
603
+ (i) Assume that Q is a comparison function touching u+ from above at x0 ∈ ∂Ω+
604
+ u
605
+ (resp. −u− from below at x0 ∈ ∂Ω−
606
+ u), then
607
+ |∇Q+(x0)| ≥ λ+
608
+ �resp. |∇Q−(x0)| ≥ λ−
609
+ � .
610
+ (ii) Assume that Q is a comparison function touching u+ from below at x0 ∈ Γ+
611
+ OP
612
+ (resp. −u− from above at x0 ∈ Γ−
613
+ OP), then
614
+ |∇Q+(x0)| ≤ λ+
615
+ �resp. |∇Q−(x0)| ≤ λ−
616
+ � .
617
+ Proof. Statement (i) will be obtained directly from (B). The proof of (ii) follows the
618
+ same lines of arguments as the proof of Lemma 3.1.
619
+
620
+ 4. Flatness decay at two-phase points
621
+ In this section, we will follow the method of improvement of flatness. In fact,
622
+ we will prove that at two-phase points x0 ∈ ΓTP, there is a constant ǫ0 > 0 such that
623
+ if u is ǫ0-flat in Br(x0) with respect to H = Hα,e, then it has excess flatness in smaller
624
+ scales with respect to another ˜H = H ˜α,˜e.
625
+ Theorem 4.1. For every 1 < p < ∞, 0 < L0, L1 and γ ∈ (0, 1
626
+ 2), there exist ǫ0 > 0, C > 0
627
+ and ρ > 0 such that if the function u : B1 → R satisfies:
628
+ (a) the origin is on the two-phase free boundary, 0 ∈ ΓTP;
629
+ (b) u is p-harmonic in Ω+
630
+ u ∪ Ω−
631
+ u;
632
+ (c) u satisfies the free boundary condition (1) in viscosity sense;
633
+ (d) u is ǫ0-flat in B1, that is,
634
+ (13)
635
+ ∥u − Hα,en∥L∞(B1) ≤ ǫ0,
636
+ for some
637
+ max(λ+, L0) ≤ α ≤ L1,
638
+ then, there are e ∈ Sn−1 and ˜α ≥ max(λ+, L0), such that
639
+ (14)
640
+ |e − en| + | ˜α − α| ≤ C∥u − Hα,en∥L∞(B1),
641
+ and
642
+ (15)
643
+ ∥uρ − H ˜α,e∥L∞(B1) ≤ ργ∥u − Hα,en∥L∞(B1),
644
+ where uρ(x) denotes u0,ρ(x) = u(ρx)
645
+ ρ .
646
+ Theorem 4.1 is an easy consequence of the two upcoming lemmas. In the first
647
+ one, we deal with the situation where the two-plane is, roughly, Hλ+,e for some
648
+ e ∈ Sn−1. Note that this is the case where one might expect the presence of branching
649
+ points and it is indeed in this setting that we will obtain the two membrane
650
+ problems as ”linearization” (see e.g. [12, Subsection 1.3] for a presentation of the
651
+ linearization method in studying the regularity of free boundaries). In the second
652
+ lemma, we deal with the case when the closest half-plane solution has a gradient
653
+ much larger than λ+. In this case, the origin will be an interior two-phase point.
654
+ In fact, in one-phase problems, it is possible to obtain universal interior bounds, in
655
+
656
+ 10
657
+ M. BAYRAMI AND M. FOTOUHI
658
+ the sense that, if u is a solution in a ball B1 and 0 ∈ F(u), then |∇u| is bounded in B 1
659
+ 2
660
+ by a universal constant, no matter what the boundary data are. However, in two-
661
+ phase problems, this is generally not possible. For instance, in the one-dimensional
662
+ minimization scenario, increasing the boundary data leads to the appearance of a
663
+ solution with a large gradient near the origin, see [9, Section 1.1].
664
+ Lemma 4.2 (Improvement of flatness: branching points). For every 1 < p < ∞,
665
+ 0 < L0, L1, γ ∈ (0, 1
666
+ 2), and M > 0, there exist ǫ1 = ǫ1(p, γ, n, L0, L1, M), C1 =
667
+ C1(p, γ, n, L0, L1, M) and ρ = ρ(p, γ, n, L0, L1, M) such that if function u : B1 → R
668
+ satisfies (a) − (b) − (c) of Theorem 4.1 and furthermore
669
+ ∥u − Hα,en∥L∞(B1) ≤ ǫ1,
670
+ with
671
+ L0 ≤ λ+ ≤ α ≤ λ+ + M∥u − Hα,en∥L∞(B1),
672
+ then there exist e ∈ Sn−1 and ˜α ≥ λ+, for which (14) and (15) hold.
673
+ Lemma 4.3 (Improvement of flatness: non-branching points). For every 1 < p < ∞,
674
+ 0 < L0, L1 and γ ∈ (0, 1), there exist ǫ2 = ǫ2(p, γ, n, L0, L1), M = M(p, γ, n, L0, L1),
675
+ ρ = ρ(p, γ, n, L0, L1) and C2 = C2(p, γ, n, L0, L1) such that if function u : B1 → R satisfies
676
+ (a) − (b) − (c) of Theorem 4.1 and furthermore
677
+ ∥u − Hα,en∥L∞(B1) ≤ ǫ2,
678
+ with
679
+ α ≥ max(λ+, L0) + M∥u − Hα,en∥L∞(B1),
680
+ then there exist e ∈ Sn−1 and ˜α ≥ max(λ+, L0), for which (14) and (15) hold.
681
+ Proof of Theorem 4.1. The proof follows easily by combining the Lemmas 4.2 and
682
+ 4.3.
683
+
684
+ In order to prove Lemma 4.2 and Lemma 4.3, we will argue by contradiction.
685
+ Hence in the following, we consider a sequence uk of minimizers such that
686
+ (16)
687
+ ǫk := ∥uk − Hαk,en∥L∞(B1) → 0
688
+ and
689
+ λ+ ≤ αk ≤ L.
690
+ We also set
691
+ (17)
692
+ ℓ := λp
693
+ + lim
694
+ k→∞
695
+ αp
696
+ k − λp
697
+ +
698
+ pαp
699
+ kǫk
700
+ = λp
701
+ − lim
702
+ k→∞
703
+ βp
704
+ k − λp
705
+
706
+ pβp
707
+ kǫk
708
+ ,
709
+ which we can assume to exist up to a subsequence. It might be useful to keep in
710
+ mind that ��� = ∞ will correspond to Lemma 4.3 while 0 ≤ ℓ < ∞ (so αk → λ+ and
711
+ λ+ ≥ L0) to Lemma 4.2.
712
+ We first show that the sequence
713
+ (18)
714
+ vk(x) =
715
+ 
716
+ v+,k(x) := uk(x) − αkx+
717
+ n
718
+ ǫkαk
719
+ x ∈ Ω+
720
+ uk ∩ B1
721
+ v−,k(x) := uk(x) + βkx−
722
+ n
723
+ ǫkβk
724
+ x ∈ Ω−
725
+ uk ∩ B1
726
+ is compact in some suitable sense. This will be mentioned in Lemma 4.4 below and
727
+ the proof will come in Subsection 4.1. Then, in Lemma 4.5, we obtain the limiting
728
+ problem which is solved by v, the limit of vk. Finally, in Subsection 4.3 we show
729
+ how to deduce Lemma 4.3 and Lemma 4.2 from Lemma 4.4 and Lemma 4.5.
730
+ In the following, we will denote with
731
+
732
+ r := Br ∩ {x±
733
+ n > 0},
734
+ for every r > 0.
735
+
736
+ 11
737
+ Lemma 4.4 (Compactness of the linearizing sequence vk). Let uk be a sequence of
738
+ functions satisfying (a) − (b) − (c) of Theorem 4.1 uniformly in k and let ǫk and αk be as in
739
+ (16) and let vk be defined by (18). Then there are H¨older continuous functions
740
+ v+ : B+
741
+ 1
742
+ 2 → R
743
+ and
744
+ v− : B−
745
+ 1
746
+ 2 → R,
747
+ with
748
+ v+ ≤ v−
749
+ on
750
+ B 1
751
+ 2 ∩ {xn = 0},
752
+ v+(0) = v−(0) = 0,
753
+ and such that the sequence of closed graphs
754
+ Γ±
755
+ k :=
756
+
757
+ (x, v±,k(x)) : x ∈ Ω±
758
+ uk ∩ B 1
759
+ 2
760
+
761
+ ,
762
+ converge, up to a subsequence, in the Hausdorff distance to the closed graphs
763
+ Γ± =
764
+
765
+ (x, v±(x)) : x ∈ B±
766
+ 1
767
+ 2
768
+
769
+ .
770
+ In particular, the following claims hold.
771
+ (i) For every δ > 0, v±,k converges uniformly to v± on B 1
772
+ 2 ∩ {±xn > δ}.
773
+ (ii) For every sequence xk ∈ Ω±
774
+ uk ∩ B1 converging to x ∈ B±
775
+ 1
776
+ 2 , we have
777
+ v±(x) = lim
778
+ k→∞ v±,k(xk).
779
+ (iii) For every x ∈ {xn = 0} ∩ B 1
780
+ 2 , we have
781
+ v±(x) = − lim
782
+ k→∞
783
+ xk · en
784
+ ǫk
785
+ for any sequence
786
+ ∂Ω±
787
+ uk ∋ xk → x.
788
+ In particular, {xn = 0} ∩ B 1
789
+ 2 decomposes into an open jump set
790
+ J = {v+ < v−} ∩ {xn = 0} ∩ B 1
791
+ 2 ,
792
+ and its complementary contact set
793
+ C = {v+ = v−} ∩ {xn = 0} ∩ B 1
794
+ 2 .
795
+ Furthermore, if x ∈ J, then
796
+ (19)
797
+ lim inf
798
+ k→∞ dist
799
+
800
+ x, ∂Ω+
801
+ uk ∩ ∂Ω−
802
+ uk
803
+
804
+ > 0.
805
+ In particular for all x ∈ J, there exists two sequences x±
806
+ k ∈ Γ±
807
+ k,OP such that x±
808
+ k → x.
809
+ Now, in the next lemma, we determine the limiting problem for the function v
810
+ which is defined as
811
+ (20)
812
+ v(x) =
813
+ 
814
+ v+(x)
815
+ for x ∈ B+
816
+ 1
817
+ 2 ,
818
+ v−(x)
819
+ for x ∈ B−
820
+ 1
821
+ 2 ,
822
+ where v+ and v− are the functions defined in Lemma 4.4.
823
+ In what follows, we will denote with
824
+ Lp(u) := ∆u + (p − 2)∂nnu,
825
+ the frequently used operator which appears in the linearized problem.
826
+
827
+ 12
828
+ M. BAYRAMI AND M. FOTOUHI
829
+ Lemma 4.5 (The ”linearized” problem). Let uk, ǫk and αk be as in (16), vk be defined
830
+ by (18) and ℓ as in (17). Let also v± be as in Lemma 4.4:
831
+ If ℓ = ∞, then J = ∅ and v± are viscosity solutions of the following transmission
832
+ problem:
833
+ (21)
834
+ 
835
+ Lp(v±) = ∆v± + (p − 2)∂nnv± = 0,
836
+ in
837
+
838
+ 1
839
+ 2 ,
840
+ αp
841
+ ∞∂nv+ = βp
842
+ ∞∂nv−,
843
+ on
844
+
845
+ 1
846
+ 2 ∩ {xn = 0},
847
+ where α∞ = limk→∞ αk and β∞ = limk→∞ βk, which we can assume to exist up to extracting
848
+ a further subsequence.
849
+ If 0 ≤ ℓ < ∞, then v± are viscosity solutions of the following two membranes problem:
850
+ (22)
851
+ 
852
+ Lp(v±) = ∆v± + (p − 2)∂nnv± = 0,
853
+ in
854
+
855
+ 1
856
+ 2 ,
857
+ λp
858
+ ±∂nv± + ℓ ≥ 0,
859
+ in
860
+ B 1
861
+ 2 ∩ {xn = 0},
862
+ λp
863
+ ±∂nv± + ℓ = 0,
864
+ in
865
+ J,
866
+ λp
867
+ +∂nv+ = λp
868
+ −∂nv−,
869
+ in
870
+ C,
871
+ v+ ≤ v−,
872
+ in
873
+ B 1
874
+ 2 ∩ {xn = 0}.
875
+ Remark 4.6. Here by viscosity solution of (21) and (22), we mean a function v as in
876
+ (20) such that v± are continuous in B±
877
+ 1
878
+ 2 , Lp(v±) = 0 in B±
879
+ 1
880
+ 2 (in viscosity or equivalently the
881
+ classical sense) and such that the following holds.
882
+ • If we are in case (21), let s, t ∈ R and let ˜P be a quadratic polynomial such that
883
+ ∂n ˜P = 0. Suppose that Lp( ˜P) ≥ 0 (Lp( ˜P) ≤ 0) and that the function
884
+ P := sx+
885
+ n − tx−
886
+ n + ˜P,
887
+ touches v strictly from below (above) at a point x0 ∈ B 1
888
+ 2 ∩ {xn = 0}, then
889
+ αp
890
+ ∞s ≤ βp
891
+ ∞t,
892
+
893
+ αp
894
+ ∞s ≥ βp
895
+ ∞t
896
+
897
+ .
898
+ • If we are in case (22) then
899
+ (1) if P± is a quadratic polynomial with Lp(P±) ≤ 0 in B±
900
+ 1
901
+ 2 touching v± strictly
902
+ from above at x0 ∈ B 1
903
+ 2 ∩ {xn = 0}, then λp
904
+ ±∂nP± ≥ 0;
905
+ (2) if P± is a quadratic polynomial with Lp(P±) ≥ 0 in B±
906
+ 1
907
+ 2 touching v± strictly
908
+ from below at x0 ∈ J, then λp
909
+ ±∂nP± ≤ 0;
910
+ (3) if s, t ∈ R and ˜P is a quadratic polynomial with Lp(P±) ≥ 0 (Lp(P±) ≤ 0)
911
+ such that ∂n ˜P = 0 and the function
912
+ P := sx+
913
+ n − tx−
914
+ n + ˜P,
915
+ touches v strictly from below (above) at a point x0 ∈ B 1
916
+ 2 ∩ {xn = 0}, then
917
+ λp
918
+ +s ≤ λp
919
+ −t,
920
+
921
+ λp
922
+ +s ≥ λp
923
+ −t
924
+
925
+ .
926
+ 4.1. Compactness of the linearizing sequence. As explained in [12, Subsection
927
+ 3.1] for the case of classical two-phase Bernoulli problem, the authors declare that
928
+ the key point in establishing suitable compactness for vk is a ”partial Harnack”
929
+ inequality. We will follow the same approach and start with the following useful
930
+ lemma.
931
+
932
+ 13
933
+ Lemma 4.7. There is a constant τ = τ(n, p) > 0 such that the following holds. Assume
934
+ that v : B1 → R is a continuous function with ∆pv = 0 in {v > 0} and
935
+ λ (xn + b)+ ≤ v(x) ≤ λ (xn + a)+ ,
936
+ x ∈ B1,
937
+ for some λ > 0 and a, b ∈ (− 1
938
+ 100,
939
+ 1
940
+ 100). Let P = (0, · · · , 0, 1
941
+ 2), then for all ǫ ∈ (0, 1
942
+ 2)
943
+ v(P) ≤ λ(1 − ǫ)
944
+ �1
945
+ 2 + a
946
+ �+
947
+ =⇒
948
+ v(x) ≤ λ(1 − τǫ) (xn + a)+
949
+ in
950
+ B 1
951
+ 4 (0),
952
+ and
953
+ v(P) ≥ λ(1 + ǫ)
954
+ �1
955
+ 2 + b
956
+ �+
957
+ =⇒
958
+ v(x) ≥ λ(1 + τǫ) (xn + b)+
959
+ in
960
+ B 1
961
+ 4 (0).
962
+ Proof. We prove only the first implication since the second statement can be ob-
963
+ tained by the same arguments. First, we notice that, since |b| <
964
+ 1
965
+ 100, both v and
966
+ λ(xn + a)+ are positive and p-harmonic in B 1
967
+ 4 (P). Thus,
968
+ λ(xn + a)+ − v(x) ≥ 0,
969
+ x ∈ B 1
970
+ 4 (P),
971
+ and
972
+ λ
973
+ �1
974
+ 2 + a
975
+ �+
976
+ − v(P) ≥ λǫ
977
+ �1
978
+ 2 + a
979
+ �+
980
+ ≥ 49
981
+ 100λǫ.
982
+ Now, we distinguish two cases:
983
+ Case (i). Suppose |∇v(P)| < λ
984
+ 4 . Therefore, there exists r1 = r1(n, p) > 0 such that
985
+ |∇v(x)| ≤ λ
986
+ 2 in B4r1(P) (note that v
987
+ λ is universally bounded and p-harmonic in B 1
988
+ 4 (P)).
989
+ It is easy to find that for ˜v := (xn + a)+ − 1
990
+ λv, we have
991
+ div
992
+
993
+ |∇˜v − en|p−2(∇˜v − en)
994
+
995
+ = 0,
996
+ in
997
+ B 1
998
+ 20 (P).
999
+ We now apply Harnack’s inequality for the above operator (see e.g. [17, Lemma
1000
+ 4.1]) in B4r1(P), to deduce that
1001
+ (xn + a)+ − 1
1002
+ λv(x) ≥ C−1
1003
+ ��1
1004
+ 2 + a
1005
+ �+
1006
+ − 1
1007
+ λv(P)
1008
+
1009
+ − r1,
1010
+ in
1011
+ Br1(P),
1012
+ for an appropriate universal constant C = C(n, p) > 0. On the other hand, for all
1013
+ x ∈ Br1(P), we obtain
1014
+ C−1 49
1015
+ 100ǫ − r1 ≤ (xn + a)+ − 1
1016
+ λv(x)
1017
+ ≤ (xn + 2r1 + a)+ − 2r1 − 1
1018
+ λv(x + 2r1en) + 2r1
1019
+ λ ∥∇v∥L∞(B4r1(P))
1020
+ ≤ (xn + 2r1 + a)+ − 2r1 − 1
1021
+ λv(x + 2r1en) + r1
1022
+ ≤ (xn + 2r1 + a)+ − 1
1023
+ λv(x + 2r1en) − r1.
1024
+ Thus, with ˜P = P + 2r1en, we get
1025
+ (23)
1026
+ C−1 49
1027
+ 100ǫ ≤ (xn + a)+ − 1
1028
+ λv (x) ,
1029
+ for all
1030
+ x ∈ Br1( ˜P).
1031
+ Hence, by considering the inequality (23) and also using the bound |a| ≤
1032
+ 1
1033
+ 100, there
1034
+ is a constant c = c(n, p) such that
1035
+ v(x) ≤ λ(1 − cǫ)(xn + a)+,
1036
+ for all
1037
+ x ∈ Br1( ˜P).
1038
+
1039
+ 14
1040
+ M. BAYRAMI AND M. FOTOUHI
1041
+ We now let w be the solution to the following problem
1042
+ 
1043
+ ∆pw = 0
1044
+ in
1045
+
1046
+ B1(0) \ Br1( ˜P)
1047
+
1048
+ ∩ {xn > −a}
1049
+ w = 0
1050
+ on
1051
+ B1 ∩ {xn = −a}
1052
+ w = (xn + a)+
1053
+ on
1054
+ ∂B1(0) ∩ {xn > −a}
1055
+ w = (1 − cǫ)(xn + a)+
1056
+ on
1057
+ ∂Br1( ˜P) ∩ {xn > −a}.
1058
+ By the Hopf boundary lemma ([24, Proposition 3.2.1]),
1059
+ w(x) ≤ (1 − τǫ)(xn + a)+,
1060
+ for every x ∈ B 1
1061
+ 4 ∩ {xn > −a},
1062
+ for a suitable constant τ = τ(n, p). On the other hand, by the comparison principle,
1063
+ we have v ≤ λw in {v > 0} ∩ B1 \ Br1( ˜P), which concludes the proof in Case (i).
1064
+ Case (ii). Suppose |∇v(P)| ≥ λ
1065
+ 4 . By the interior gradient estimate, we know that
1066
+ ∇v is bounded in B 1
1067
+ 40 (P), and there exist a constant 0 < r0 = r0(n, p), with 8r0 ≤
1068
+ 1
1069
+ 40
1070
+ such that
1071
+ λ
1072
+ 8 ≤ |∇v(x)| ≤ Cλ,
1073
+ for all
1074
+ x ∈ B8r0(P),
1075
+ for an appropriate universal constant C = C(n, p) > 0. Now, v will be the weak
1076
+ solution to the following uniformly elliptic equation
1077
+ n
1078
+
1079
+ i,j=1
1080
+ θij∂xixjv = 0
1081
+ in
1082
+ B4r0(P),
1083
+ with θij = δij + (p − 2)|∇v|−2∂xiv∂xjv. Then, applying Harnack’s inequality (see e.g.
1084
+ [20, Chapter 9]), we get
1085
+ (24)
1086
+ C−1 49
1087
+ 100ǫ ≤ (xn + a)+ − 1
1088
+ λv (x) ,
1089
+ for all
1090
+ x ∈ Br0(P).
1091
+ Now, we can repeat the same argument of Case (i), by considering the inequality
1092
+ (24) in the ball Br0(P) instead of inequality (23). This completes the proof of the
1093
+ lemma.
1094
+
1095
+ We next prove the two partial Harnack inequalities. The proof of these inequal-
1096
+ ities is based on a comparison with suitable test functions. In order to build these
1097
+ ”barriers”, we will often use the following function ϕ. Let Q = (0, · · · , 0, 1
1098
+ 5) and
1099
+ define ϕ : B1 → R by
1100
+ (25)
1101
+ ϕ(x) =
1102
+ 
1103
+ 1,
1104
+ if x ∈ B 1
1105
+ 100 (Q),
1106
+ κn
1107
+
1108
+ |x − Q|−n − ( 3
1109
+ 4)−n�
1110
+ ,
1111
+ if x ∈ B 3
1112
+ 4 (Q) \ B 1
1113
+ 100 (Q),
1114
+ 0,
1115
+ otherwise,
1116
+ where the dimensional constant κn is chosen in such a way that ϕ is continuous.
1117
+ One can check that ϕ has the following properties:
1118
+ (ϕ.1) 0 ≤ ϕ ≤ 1 in Rn, and ϕ = 0 on ∂B1;
1119
+ (ϕ.2) For s > 0 small,
1120
+ −div
1121
+ ����en − s∇ϕ
1122
+ ���
1123
+ p−2 �en − s∇ϕ��
1124
+ ≥ c(n, p, s) > 0,
1125
+ in
1126
+ {ϕ > 0} \ B 1
1127
+ 100 (Q),
1128
+ (with fairly simple computations same as the ones which have been done
1129
+ in [17, Lemma 4.2]);
1130
+ (ϕ.3) ∂nϕ > 0 in {ϕ > 0} ∩ {|xn| ≤
1131
+ 1
1132
+ 100};
1133
+
1134
+ 15
1135
+ (ϕ.4) ϕ ≥ cn > 0 in B 1
1136
+ 6 ;
1137
+ where c(n, p) and cn are constants.
1138
+ Lemma 4.8 (Partial Boundary Harnack I). Given 1 < p < ∞ and λ+ ≥ λ− > 0, there
1139
+ exist constants ǫ = ǫ(n, λ±, p) > 0 and c = c(n, λ±, p) ∈ (0, 1) such that, for every function
1140
+ u : B4 → R satisfying (b) − (c) in Theorem 4.1, the following properties hold true.
1141
+ Let a±, b± ∈ (− 1
1142
+ 100,
1143
+ 1
1144
+ 100) be such that
1145
+ b+ ≤ b− ≤ a− ≤ a+,
1146
+ and
1147
+ (a− − b−) + (a+ − b+) ≤ ǫ.
1148
+ Assume that for x ∈ B4
1149
+ λ+(xn + b+)+ �� u+(x) ≤ λ+(xn + a+)+,
1150
+ and
1151
+ −λ−(xn + b−)− ≤ −u−(x) ≤ −λ−(xn + a−)−.
1152
+ Then, one can find new constants a±, b± ∈ (− 1
1153
+ 100,
1154
+ 1
1155
+ 100), with
1156
+ b+ ≤ b− ≤ a− ≤ a+,
1157
+ and
1158
+ a− − b− ≤ c(a− − b−),
1159
+ a+ − b+ ≤ c(a+ − b+)
1160
+ such that for x ∈ B 1
1161
+ 6
1162
+ λ+(xn + b+)+ ≤ u+(x) ≤ λ+(xn + a+)+,
1163
+ and
1164
+ −λ−(xn + b−)− ≤ −u−(x) ≤ −λ−(xn + a−)−.
1165
+ Remark 4.9. We need to remark that the assumption λ+ ≥ λ− is not restrictive as one can
1166
+ always replace u by −u in JTP. Also, when λ+ ≤ λ− the similar result holds if we replace
1167
+ the order of a±, b± with a+ ≤ a− ≤ b− ≤ b+.
1168
+ Proof of Lemma 4.8. Let us show how to improve the positive part. More precisely,
1169
+ given a+, a−, b+, b− we will show how we can find a+ and b+. The proof for b− and
1170
+ a− follows in the same way. We let
1171
+ P = (0, · · · , 0, 2),
1172
+ and distinguish two cases:
1173
+ Case 1. Improvement from above. Assume that, at the point P, u+ is closer to
1174
+ λ+(2 + b+)+ than to the upper barrier λ+(2 + a+)+. Precisely that
1175
+ u+(P) ≤ λ+(2 + a+)+ − λ+(a+ − b+)
1176
+ 2
1177
+ .
1178
+ In this case, we will show that u(x) is less than λ+(xn+a+)+ in a smaller ball centered
1179
+ at the origin for a+ strictly smaller than a+.
1180
+ We start by setting
1181
+ ǫ := a+ − b+ ≤ ǫ.
1182
+ Then
1183
+ u+(P) ≤ λ+(2 + a+)+ − λ+ǫ
1184
+ 2
1185
+ ≤ λ+(1 − cǫ)(2 + a+)+,
1186
+
1187
+ 16
1188
+ M. BAYRAMI AND M. FOTOUHI
1189
+ for a suitable (universal) constant c. We can thus apply (the scaled version of)
1190
+ Lemma 4.7 to u+, to infer the existence of a constant τ = τ(n, p) such that
1191
+ (26)
1192
+ u+(x) ≤ λ+(1 − τǫ)(xn + a+)+,
1193
+ in
1194
+ B1.
1195
+ For ϕ as in (25) and t ∈ [0, 1], we set
1196
+ ft = λ+
1197
+
1198
+ 1 − τǫ
1199
+ 2
1200
+
1201
+ (xn + a+ − tcǫϕ)+,
1202
+ where c = c(n, p) is a small constant chosen such that for all x ∈ B 1
1203
+ 100 (Q) and t ∈ [0, 1),
1204
+ (27)
1205
+ u(x) ≤ λ+(1 − τǫ)(xn + a+)+
1206
+ ≤ λ+
1207
+
1208
+ 1 − τǫ
1209
+ 2
1210
+
1211
+ (xn + a+ − cǫ)+ < ft(x),
1212
+ where we have used that (xn + a+) is within two universal constant for x ∈ B 1
1213
+ 100 (Q).
1214
+ We now let t ∈ (0, 1] the largest t such that ft ≥ u in B1 and we claim that t = 1.
1215
+ Indeed assume that t < 1, then there exists x ∈ B1 such that
1216
+ (28)
1217
+ u(x) − ft(x) ≤ u(x) − ft(x) = 0,
1218
+ for all
1219
+ x ∈ B1.
1220
+ Note that by (27), x � B 1
1221
+ 100 (Q), while, by (26), x ∈ {ϕ > 0}. Moreover, if u(x) = ft(x) >
1222
+ 0, by (ϕ.2) we will have
1223
+ ∆p ft(x) =
1224
+
1225
+ λ+
1226
+
1227
+ 1 − τǫ
1228
+ 2
1229
+ ��p−1
1230
+ div
1231
+ ����en − tcǫ∇ϕ(x)
1232
+ ���
1233
+ p−2 �
1234
+ en − tcǫ∇ϕ(x)
1235
+ ��
1236
+ < 0,
1237
+ but, since ∆pu(x) = 0, we reach a contradiction with (28) and the definition of
1238
+ viscosity solution for the p-harmonic function u. Hence, u(x) = ft(x) = 0. Now
1239
+ recall the free boundary condition (1) and apply (ϕ.3) to get
1240
+ λp
1241
+ + ≤ |∇ft(x)|p = λp
1242
+ +
1243
+
1244
+ 1 − τǫ
1245
+ 2
1246
+ �p �
1247
+ 1 − pctǫ∂nϕ(x) + O(ǫ2)
1248
+
1249
+ < λp
1250
+ +,
1251
+ provided ǫ ≤ ǫ(n, λ+, p) ≪ 1 (note that necessarily u(x) = 0 and thus x ∈ {|xn| ≤
1252
+ 1
1253
+ 100}).
1254
+ This contradiction implies that t = 1. Hence, by (ϕ.4), we get for all x ∈ B 1
1255
+ 6
1256
+ u(x) ≤ λ+
1257
+
1258
+ 1 − τǫ
1259
+ 2
1260
+
1261
+ (xn + a+ − cǫϕ)+ ≤ λ+(xn + a+ − cǫ)+,
1262
+ for a suitable constant c = c(n, p). Setting
1263
+ a+ = a+ − cǫ,
1264
+ b+ = b+,
1265
+ and recalling that ǫ = a+ − b+ we finish the proof in this case.
1266
+ Case 2. Improvement from below. We now assume that, at point P, u+ is closer to
1267
+ λ+(2 + a+)+ than to λ+(2 + b+)+. Hence, we have
1268
+ u+(P) ≥ λ+(2 + b+)+ + λ+(a+ − b+)
1269
+ 2
1270
+ ,
1271
+ and we set again
1272
+ ǫ := a+ − b+ ≤ ǫ.
1273
+ Arguing as in Case 1, by Lemma 4.7, there exists a constant τ = τ(n, p) such that
1274
+ (29)
1275
+ u+(x) ≥ λ+(1 + τǫ)(xn + b+)+,
1276
+ in
1277
+ B1.
1278
+
1279
+ 17
1280
+ We need now to distinguish two further sub-cases:
1281
+ Case 2.1: Suppose that
1282
+ ηǫ ≤ b− − b+,
1283
+ where η ≪ τ is a small universal constant which we will choose at the end of the
1284
+ proof. In this case, for x ∈ B1,
1285
+ (30)
1286
+ u(x) ≥ λ+(1 + τǫ)(xn + b+)+ − λ−(xn + b−)−
1287
+ ≥ λ+(1 + τǫ)(xn + b+)+ − λ−(1 − c1ηǫ)(xn + b+)−,
1288
+ for a suitable universal constant c1. We now take ϕ as in (25) and set, for t ∈ [0, 1],
1289
+ ft(x) = λ+
1290
+
1291
+ 1 + τǫ
1292
+ 2
1293
+
1294
+ (xn + b+ + c2tǫϕ)+ − λ−(1 − c1ηǫ)(xn + b+ + c2tǫϕ)−,
1295
+ for a suitably small universal constant 0 < c2 ≪ τ, chosen so that for all x ∈ B 1
1296
+ 100 (Q)
1297
+ (1 + τǫ)(xn + b+)+ ≥
1298
+
1299
+ 1 + τǫ
1300
+ 2
1301
+
1302
+ (xn + b+ + c2ǫ)+.
1303
+ This together with (29) implies that
1304
+ (31)
1305
+ u(x) ≥ λ+(1 + τǫ)(xn + b+)+ ≥ λ+
1306
+
1307
+ 1 + τǫ
1308
+ 2
1309
+
1310
+ (xn + b+ + c2ǫ)+
1311
+ ≥ f1(x) ≥ ft(x),
1312
+ for all
1313
+ x ∈ B 1
1314
+ 100 (Q), t ∈ [0, 1].
1315
+ Furthermore u ≥ f0 in B1 thanks to (30). Similar to Case 1, let t be the biggest t such
1316
+ that ft ≤ u in B1 and x be the first contact point, so that
1317
+ u(x) − ft(x) ≥ u(x) − ft(x) = 0,
1318
+ for all x ∈ B1.
1319
+ Since, by using (ϕ.2), it can be checked that
1320
+ ∆p ft > 0,
1321
+ on
1322
+ {ft � 0} \ B 1
1323
+ 100 (Q),
1324
+ therefore, as in Case 1, x is a free boundary point. Moreover, since ft changes sign
1325
+ in a neighborhood of x:
1326
+ either
1327
+ x ∈ Γ+
1328
+ OP = ∂Ω+
1329
+ u \ ∂Ω−
1330
+ u,
1331
+ or
1332
+ x ∈ ΓTP = ∂Ω+
1333
+ u ∩ ∂Ω−
1334
+ u.
1335
+ In the first case, by definition of viscosity solution and (ϕ.3),
1336
+ λp
1337
+ + ≥ |∇f +
1338
+ t (x)|p = λp
1339
+ +
1340
+
1341
+ 1 + τǫ
1342
+ 2
1343
+ �p �
1344
+ 1 + pc2tǫ∂nϕ(x) + O(ǫ2)
1345
+
1346
+ > λp
1347
+ +,
1348
+ a contradiction for ǫ ≪ 1. In the second case, we have a contradiction as well, since
1349
+ (recall also the assumption λ+ − λ− ≥ 0)
1350
+ λp
1351
+ + − λp
1352
+ − ≥ |∇f +
1353
+ t |p − |∇f −
1354
+ t |p
1355
+ =
1356
+
1357
+ λp
1358
+ +
1359
+
1360
+ 1 + τǫ
1361
+ 2
1362
+ �p
1363
+ − λp
1364
+ −(1 − c1ηǫ)p
1365
+ � �
1366
+ 1 + pc2tǫ∂nϕ(x) + O(ǫ2)
1367
+
1368
+ > λp
1369
+ + − λp
1370
+ −,
1371
+ provided ǫ ≪ 1 (only depending on n, λ+ and p). Hence, t = 1, u ≥ f1 (so u+ ≥ f +
1372
+ 1 )
1373
+ which implies the desired conclusion by setting
1374
+ a+ = a+,
1375
+ b+ = b+ + c2ǫ,
1376
+ for a suitable constant c2 = c2(n, p) and by recalling that ǫ = a+ − b+.
1377
+
1378
+ 18
1379
+ M. BAYRAMI AND M. FOTOUHI
1380
+ Case 2.2: Assume instead that:
1381
+ 0 ≤ b− − b+ ≤ ηǫ,
1382
+ where η = η(n, p) will be determined later. In this case we consider the family of
1383
+ functions
1384
+ ft(x) = λ+
1385
+
1386
+ 1 + τǫ
1387
+ 2
1388
+
1389
+ (xn + b+ + ηtǫϕ)+ − λ−(xn + b−)−.
1390
+ Since ϕ ≤ 1, this function is well defined due to b− ≤ b+ + ηǫ. Moreover, u ≥ f0 and,
1391
+ thanks to (29) and by assuming η is sufficiently small (this can also be determined
1392
+ universally depending only on the dimension and p) we will have,
1393
+ u(x) ≥ f1(x) ≥ ft(x),
1394
+ for all
1395
+ x ∈ B 1
1396
+ 100 (Q), t ∈ [0, 1].
1397
+ We consider again the first touching time t and the first touching point x.
1398
+ By
1399
+ arguing as in the previous cases, we get x ∈ {u = 0} ∩ {|xn| ≤
1400
+ 1
1401
+ 100}.
1402
+ Also, the
1403
+ definition of ft yields that x ∈ ∂{ft > 0}. This infer that x ∈ ∂Ω+
1404
+ u \ ∂Ω−
1405
+ u (note that
1406
+ ϕ(x) < 1). However, again by arguing as in Case 2.1, this is in contradiction with u
1407
+ being a viscosity solution. We now conclude as in the previous cases.
1408
+
1409
+ The following lemma addresses the situation in which the origin is not a branch-
1410
+ ing point.
1411
+ Lemma 4.10 (Partial Boundary Harnack II). Given 1 < p < ∞ and 0 < L0, L1
1412
+ and assume that 0 < λ− ≤ λ+ ≤ L1, then there exist constants ǫ = ǫ(n, L0, L1, p) > 0,
1413
+ M = M(n, L0, L1, p) and c = c(n, L0, L1, p) ∈ (0, 1) such that for every function u : B4 → R
1414
+ satisfying (b) − (c) in Theorem 4.1 the following property holds true. If there are constants
1415
+ a, b ∈ (− 1
1416
+ 100,
1417
+ 1
1418
+ 100) with
1419
+ 0 ≤ a − b ≤ ǫ,
1420
+ such that for x ∈ B4
1421
+ Hα,en(x + ben) ≤ u(x) ≤ Hα,en(x + aen),
1422
+ and
1423
+ max(λ+, L0) + Mǫ ≤ α ≤ L1,
1424
+ then there are constants a, b ∈ (− 1
1425
+ 100,
1426
+ 1
1427
+ 100) with
1428
+ 0 ≤ a − b ≤ c(a − b),
1429
+ such that for x ∈ B 1
1430
+ 6
1431
+ Hα,en(x + ben) ≤ u(x) ≤ Hα,en(x + aen).
1432
+ Proof. We consider the point P = (0, · · · , 0, 2) and distinguish two cases (note that
1433
+ one of these inequalities is always satisfied):
1434
+ either
1435
+ Hα,en (P + ben) + α(a − b)
1436
+ 2
1437
+ ≤ u(P),
1438
+ or
1439
+ Hα,en (P + aen) − α(a − b)
1440
+ 2
1441
+ ≥ u(P).
1442
+ Since the argument in both cases is completely symmetric we only consider the
1443
+ second case. If we set
1444
+ ǫ = a − b,
1445
+
1446
+ 19
1447
+ by Lemma 4.7 and by arguing as in Lemma 4.8 we deduce the existence of a
1448
+ constant τ = τ(n, p) such that
1449
+ u(x) ≤ α(1 − τǫ)(xn + a)+ − β(xn + a)−,
1450
+ in B1. We let ϕ as in (25) and set
1451
+ ft(x) = α
1452
+
1453
+ 1 − τǫ
1454
+ 2
1455
+
1456
+ (xn + a − ctǫϕ)+ − β(xn + a − ctǫϕ)−,
1457
+ where c = c(n, p) is a constant chosen such that
1458
+ u(x) ≤ f1(x) ≤ ft(x),
1459
+ for all
1460
+ x ∈ B 1
1461
+ 100 (Q), t ∈ [0, 1],
1462
+ where, Q = (0, · · · , 0, 1
1463
+ 5). As in Lemma 4.8, we let t and x be the first contact time
1464
+ and the first contact point and we aim to show that t = 1. For this purpose, we note
1465
+ that, by the same arguments as in Lemma 4.8, necessarily x ∈ {u = 0}. We claim
1466
+ that
1467
+ x ∈ ΓTP = ∂Ω+
1468
+ u ∩ ∂Ω−
1469
+ u.
1470
+ Indeed, otherwise x ∈ ∂Ω−
1471
+ u \ ∂Ω+
1472
+ u (the case x ∈ ∂Ω+
1473
+ u \ ∂Ω−
1474
+ u will be impossible since
1475
+ ft is negative in a neighborhood of x). And by definition of viscosity solution, this
1476
+ along with (2) would imply
1477
+ λp
1478
+ − ≥ |∇f −
1479
+ t (x)|p = βp(1 − pctǫ∂nϕ(x) + O(ǫ2))
1480
+ ≥ (λp
1481
+ − − λp
1482
+ + + αp)(1 − pctǫ∂nϕ(x) + O(ǫ2))
1483
+ ≥ (λp
1484
+ − − λp
1485
+ + + (max(λ+, L0) + Mǫ)p)(1 − pctǫ∂nϕ(x) + O(ǫ2))
1486
+ = λp
1487
+ − + p(Lp−1
1488
+ 0
1489
+ M − ct∂nϕ(x))ǫ + O(ǫ2),
1490
+ where the implicit constants in O(ǫ2) can control by L1, p and n. This inequality is
1491
+ impossible if M is chosen sufficiently large.
1492
+ Hence x ∈ ∂Ω+
1493
+ u ∩ ∂Ω−
1494
+ u. This however implies:
1495
+ λp
1496
+ + − λp
1497
+ − ≤ |∇f +
1498
+ t (x)|p − |∇f −
1499
+ t (x)|p
1500
+ =
1501
+
1502
+ αp
1503
+
1504
+ 1 − τǫ
1505
+ 2
1506
+ �p
1507
+ − βp
1508
+ � �
1509
+ 1 − pctǫ∂nϕ(x) + O(ǫ2)
1510
+
1511
+ < αp − βp = λp
1512
+ + − λp
1513
+ −,
1514
+ provided ǫ and as a consequence of ǫ = a − b ≤ ǫ, ǫ is chosen small enough, where
1515
+ we have used (ϕ.3) and the equality
1516
+ 0 ≤ λp
1517
+ + − λp
1518
+ − = αp − βp.
1519
+ This contradiction shows that t = 1 and as in Lemma 4.8, this completes the
1520
+ proof.
1521
+
1522
+ With Lemmas 4.7 and 4.8 at hand the proof of Lemma 4.4 is as follows.
1523
+ Proof of Lemma 4.4. We distinguish two cases:
1524
+ Case 0 ≤ ℓ < +∞: By triangular inequality we have
1525
+ ∥uk − Hλ+,en∥L∞(B1) ≤ ǫk
1526
+
1527
+ 1 + 2ℓ max(λ1−p
1528
+ + , λ1−p
1529
+ − )
1530
+
1531
+ ,
1532
+
1533
+ 20
1534
+ M. BAYRAMI AND M. FOTOUHI
1535
+ for k sufficiently large. Define the bounded sequence wk by
1536
+ wk(x) =
1537
+ 
1538
+ w+,k(x) := uk(x) − λ+x+
1539
+ n
1540
+ αkǫk
1541
+ x ∈ Ω+
1542
+ uk ∩ B1,
1543
+ w−,k(x) := uk(x) + λ−x−
1544
+ n
1545
+ βkǫk
1546
+ x ∈ Ω−
1547
+ uk ∩ B1.
1548
+ Now we can repeatedly apply Lemma 4.8 to deduce that wk satisfies
1549
+ (32)
1550
+ |wk(x) − wk(y)| ≤ C|x − y|γ,
1551
+ when x, y ∈ B 1
1552
+ 2 , and |x − y| ≥ ǫk
1553
+ ǫ ,
1554
+ for some universal exponent 0 < γ < 1 and constant C; see [13, Corollary 4.2]. This
1555
+ gives that the graphs of
1556
+ ˜Γ±
1557
+ k := {(x, w±,k(x)) : x ∈ Ω±
1558
+ uk ∩ B 1
1559
+ 2 },
1560
+ converge, up to a subsequence, in the Hausdorff distance to the closed graphs
1561
+ ˜Γ± := {(x, w±(x)) : x ∈ B±
1562
+ 1
1563
+ 2 },
1564
+ where w ∈ C0,α for some α > 0. Since
1565
+ hk(x) := Hαk,en − Hλ+,en
1566
+ ǫk
1567
+
1568
+ 
1569
+ λ1−p
1570
+ + ℓxn
1571
+ xn > 0,
1572
+ λ1−p
1573
+ − ℓxn
1574
+ xn < 0,
1575
+ the original sequence vk satisfies that their graphs, converges to the graph of a
1576
+ limiting function v as we wanted, this in particular proves (i), (ii), and (iii).
1577
+ Since 0 ∈ ∂Ω+
1578
+ uk ∩ ∂Ω−
1579
+ uk then 0 is in the domain of v±,k and
1580
+ v±,k(0) = 0,
1581
+ which implies that v±(0) = 0. To show that v+(x) ≤ v−(x) for x = (x′, 0) ∈ B 1
1582
+ 2 , we
1583
+ simply exploit (iii) at the points x±
1584
+ k = (x′, t±
1585
+ k ) where
1586
+ t+
1587
+ k = sup{t : (x′, t) ∈ ∂Ω+
1588
+ uk}
1589
+ and
1590
+ t−
1591
+ k = inf{t : (x′, t) ∈ ∂Ω−
1592
+ uk},
1593
+ and by noticing that t−
1594
+ k ≤ t+
1595
+ k .
1596
+ Finally, to see the last claim, (19), it is enough to note that if xk ∈ ∂Ω+
1597
+ uk ∩ ∂Ω−
1598
+ uk is
1599
+ converging to x then v+,k(xk) = v−,k(xk) and thus v+(x) = v−(x), yielding x ∈ C.
1600
+ Case ℓ = ∞: In this case, the conclusion follows exactly with a similar argument
1601
+ by using repeatedly Lemma 4.10 for function vk to obtain a relation similar to (32)
1602
+ for functions vk.
1603
+
1604
+ 4.2. The linearized problem: proof of Lemma 4.5. Lemma 4.5 proves through the
1605
+ following technical lemma, whose proof is easily obtained by adapting the one in
1606
+ [12, Lemma 3.10] exactly. Then we present the statement without proof.
1607
+ Lemma 4.11. Let uk, ǫk and αk be as in the statement of Lemma 4.4, vk be defined by (18)
1608
+ and v± be as in Lemma 4.4. Then:
1609
+ (1) Let P+ be a quadratic polynomial with Lp(P+) > 0 (or Lp(P+) < 0) on B+
1610
+ 1
1611
+ 2 touching
1612
+ v+ strictly from below (above) at a point x0 ∈ {xn = 0} ∩ B 1
1613
+ 2 . Then, there exists
1614
+
1615
+ 21
1616
+ a sequence of points ∂Ω+
1617
+ uk ∋ xk → x0 and a sequence of comparison functions Qk
1618
+ such that Qk touches from below (above) u+
1619
+ k at xk, and such that
1620
+ (33)
1621
+ ∇Q+
1622
+ k (xk) = αken + ǫkαk∇P+(x0) + o(ǫk).
1623
+ (2) Let P− be a quadratic polynomial with Lp(P−) > 0 (Lp(P−) < 0) on B−
1624
+ 1
1625
+ 2 touching
1626
+ v− strictly from below (above) at a point x0 ∈ {xn = 0} ∩ B 1
1627
+ 2 . Then, there exists
1628
+ a sequence of points ∂Ω−
1629
+ uk ∋ xk → x0 and a sequence of comparison functions Qk
1630
+ such that Qk touches from below (above) −u−
1631
+ k at xk, and such that
1632
+ (34)
1633
+ ∇Q−
1634
+ k (xk) = −βken + ǫkβk∇P−(x0) + o(ǫk).
1635
+ (3) Let s, t ∈ R and ˜P be a quadratic polynomial on B 1
1636
+ 2 such that ∂n ˜P = 0. Suppose
1637
+ that Lp( ˜P) ≥ 0 (Lp( ˜P) ≤ 0) and that the function
1638
+ P := sx+
1639
+ n − tx−
1640
+ n + ˜P,
1641
+ touches v strictly from below (above) at a point x0 ∈ C. Then, there exists a
1642
+ sequence of points xk → x0 and a sequence of comparison functions Qk such that
1643
+ Qk touches from below (above) the function uk at xk ∈ ∂Ωuk, and such that
1644
+ (35)
1645
+ ∇Q+
1646
+ k (xk) = αk(1 + ǫks)en + o(ǫk),
1647
+ ∇Q−
1648
+ k (xk) = −βk(1 + ǫkt)en + o(ǫk).
1649
+ In particular, if s > 0 and Qk touches uk from below then xk � ∂Ω−
1650
+ uk \ ∂Ω+
1651
+ uk, while
1652
+ if t < 0 and Qk touches uk from above then xk � ∂Ω+
1653
+ uk \ ∂Ω−
1654
+ uk.
1655
+ Proof of Lemma 4.5. Step 1: In this step, we prove Lp(v±) = 0 in B±
1656
+ 1
1657
+ 2 .
1658
+ Let P(x) be a quadratic polynomial touching v = v+ at x ∈ B+
1659
+ 1
1660
+ 2 strictly from below.
1661
+ We need to show that at this point
1662
+ Lp(P) = ∆P + (p − 2)∂nnP ≤ 0.
1663
+ Since v+,k → v+, there exist points xk ∈ Ω+
1664
+ uk ∩ B 1
1665
+ 2 , xk → x and constants ck → 0 such
1666
+ that
1667
+ (36)
1668
+ v+,k(xk) = P(xk) + ck,
1669
+ and
1670
+ (37)
1671
+ v+,k ≥ P + ck,
1672
+ in a neighborhood of xk.
1673
+ From the definition of v+,k, (36) and (37) read
1674
+ uk(xk) = Qk(xk),
1675
+ and
1676
+ uk(x) ≥ Qk(x),
1677
+ in a neighborhood of xk,
1678
+ where
1679
+ Qk(x) = ǫkαk(P(x) + ck) + αkx+
1680
+ n.
1681
+ Note that
1682
+ (38)
1683
+ ∇Qk = ǫkαk∇P + αken,
1684
+ thus,
1685
+ (39)
1686
+ ∇Qk(xk) � 0,
1687
+ for k large.
1688
+
1689
+ 22
1690
+ M. BAYRAMI AND M. FOTOUHI
1691
+ Since uk is p-harmonic and Qk touches uk from below at xk, and ∇Qk(xk) � 0, by
1692
+ the equivalence of weak and viscosity solutions of p-harmonic functions, we get
1693
+ 0 ≥ ∆pQk(xk)
1694
+ = div
1695
+
1696
+ |∇Qk(xk)|p−2∇Qk(xk)
1697
+
1698
+ = |∇Qk(xk)|p−2 ∆Qk(xk) + (p − 2) |∇Qk(xk)|p−4
1699
+ n
1700
+
1701
+ i,j=1
1702
+ Qkxi(xk)Qkxj(xk)Qkxixj(xk)
1703
+ = ǫk |∇Qk(xk)|p−2 ∆P(xk) + ǫk(p − 2) |∇Qk(xk)|p−4
1704
+ n
1705
+
1706
+ i,j=1
1707
+ Qkxi(xk)Qkxj(xk)Pxixj(xk).
1708
+ Now, dividing both sides by ǫk, and passing to the limit k → ∞, and recalling that
1709
+ ∇Qk(xk) → αken,
1710
+ we conclude that
1711
+ ∆P(x) + (p − 2)∂nnP(x) ≤ 0.
1712
+ Touching from above and reaching the opposite inequality is similar. Also, the
1713
+ reasoning of the case v = v− in the negative half ball B−
1714
+ 1
1715
+ 2 can be done similarly.
1716
+ Step 2: In this step, we show that J = ∅, when ℓ = ∞.
1717
+ Assume the contrary, since the set {v− > v+} is open in {xn = 0}, it contains a
1718
+ (n − 1)-dimensional ball
1719
+ B′
1720
+ ǫ(y′) := Bǫ((y′, 0)) ∩ {xn = 0} ⊂ J.
1721
+ Next, let P be the polynomial
1722
+ P(x) = A
1723
+
1724
+ n − 1
1725
+ 2
1726
+
1727
+ x2
1728
+ n − |x′ − y′|2 − Bxn,
1729
+ where
1730
+ x = (x′, xn),
1731
+ for some constants A, B. We first choose suitable A = A(p) so that Lp(P) > 0. Notice
1732
+ that
1733
+ P < v+
1734
+ on
1735
+ {|x′ − y′| = ǫ} ∩ {xn = 0}.
1736
+ Moreover, we choose B ≫ A so that
1737
+ P < v+
1738
+ on
1739
+ Bǫ((y′, 0)).
1740
+ Now we can translate P first down and then up to find that there exists C such
1741
+ that P + C is touching v+ from below at a point x0 ∈ Bǫ((y′, 0)) ∩ {xn ≥ 0}. Since
1742
+ Lp(P) > 0, the touching point can not be in the interior of the (half) ball, and thus
1743
+ x0 ∈ B′
1744
+ ǫ(y′) ⊂ J.
1745
+ By using Lemma 4.11, there exists a sequence of points ∂Ω+
1746
+ uk ∋ xk → x0 and of
1747
+ functions Qk touching u+
1748
+ k from below at xk such that
1749
+ ∇Q+
1750
+ k (xk) = αken + ǫkαk∇P(x0) + o(ǫk).
1751
+ Since x0 ∈ J, by (19) in Lemma 4.4, xk ∈ ∂Ω+
1752
+ uk \ ∂Ω−
1753
+ uk. Hence, by (ii) in Lemma 3.2
1754
+ λp
1755
+ + ≥ |∇Q+
1756
+ k (xk)|p ≥ αp
1757
+ k + pαp
1758
+ kǫk∂nP(x0) + o(ǫk).
1759
+ Now recalling (17), the definition of ℓ,
1760
+ −B = ∂nP(x0) ≤
1761
+ λp
1762
+ + − αp
1763
+ k
1764
+ pαp
1765
+ kǫk
1766
+ + o(1) → −∞.
1767
+ This contradiction proves that J = ∅.
1768
+
1769
+ 23
1770
+ Step 3: In this step, we check the transmission condition in (21) when ℓ = ∞.
1771
+ Let us show that
1772
+ αp
1773
+ ∞∂nv+ − βp
1774
+ ∞∂nv− ≤ 0,
1775
+ the opposite inequality can then be proved in a similar way. Suppose that there
1776
+ exist s and t with αp
1777
+ ∞s > βp
1778
+ ∞t and a polynomial ˜P with Lp( ˜P) > 0 and ∂n ˜P = 0 such
1779
+ that
1780
+ P = sx+
1781
+ n − tx−
1782
+ n + ˜P,
1783
+ touches v strictly from below at a point x0 ∈ {xn = 0}∩B 1
1784
+ 2 (note that {xn = 0}∩B 1
1785
+ 2 = C
1786
+ due to the previous step and Lemma 4.4). By Lemma 4.11 there exists a sequence of
1787
+ points ∂Ω+
1788
+ uk ∪ ∂Ω−
1789
+ uk ∋ xk → x0 and a sequence of comparison functions Qk touching
1790
+ uk from below at xk and satisfying (35). In particular, xk � ∂Ω−
1791
+ uk \ ∂Ω+
1792
+ uk. We claim
1793
+ that xk ∈ ∂Ω+
1794
+ uk ∩ ∂Ω−
1795
+ uk. Indeed, otherwise by (A.1) in Lemma 3.1,
1796
+ λp
1797
+ + ≥ |∇Q+
1798
+ k (xk)|p,
1799
+ and, by arguing as Step 2, this contradicts ℓ = +∞. Hence, by (A.3) in Lemma 3.1
1800
+ λp
1801
+ + − λp
1802
+ − ≥ |∇Q+
1803
+ k (xk)|p − |∇Q−
1804
+ k (xk)|p
1805
+ = αp
1806
+ k − βp
1807
+ k + pǫk(αp
1808
+ ks − βp
1809
+ kt) + o(ǫk)
1810
+ = λp
1811
+ + − λp
1812
+ − + pǫk(αp
1813
+ ks − βp
1814
+ kt) + o(ǫk).
1815
+ Dividing by ǫk and letting k → ∞, we obtain the desired contradiction.
1816
+ Step 4: Here, we show that λp
1817
+ ±∂nv± ≥ −ℓ on B 1
1818
+ 2 ∩ {xn = 0}, when 0 ≤ ℓ < ∞.
1819
+ We focus on v− since the argument is symmetric. Let us assume that there exists
1820
+ t ∈ R with λp
1821
+ −t < −ℓ and a polynomial ˜P with Lp( ˜P) > 0 and ∂n ˜P = 0 such that
1822
+ function
1823
+ P = txn + ˜P = tx+
1824
+ n − tx−
1825
+ n + ˜P,
1826
+ touches v− strictly from below at a point x0 ∈ {xn = 0} ∩ B 1
1827
+ 2 . Let now xk and Qk be
1828
+ as in Lemma 4.11-(2). By optimality conditions
1829
+ λp
1830
+ − ≤ |∇Q−
1831
+ k (xk)|p = βp
1832
+ k + pǫkβp
1833
+ kt + o(ǫk).
1834
+ Since ℓ < ∞, we have βk = λ− + O(ǫk) and so the above inequality leads to
1835
+ − ℓ
1836
+ λp
1837
+
1838
+ = lim
1839
+ k→∞
1840
+ λp
1841
+ − − βp
1842
+ k
1843
+ pǫkβp
1844
+ k
1845
+ ≤ t < − ℓ
1846
+ λp
1847
+
1848
+ ,
1849
+ which is a contradiction.
1850
+ Step 5: We now show that λp
1851
+ ±∂nv± = −ℓ on J, when 0 ≤ ℓ < ∞.
1852
+ By the previous step, it is enough to show that if there exists a polynomial ˜P with
1853
+ Lp( ˜P) < 0 and ∂n ˜P = 0 such that
1854
+ P = txn + ˜P = tx+
1855
+ n − tx−
1856
+ n + ˜P,
1857
+ touches v− strictly from above at a point x0 ∈ J, then λp
1858
+ −t ≤ −ℓ. Again, by Lemma
1859
+ 4.11, we find points xk → x0 and functions Qk satisfying (34) and touching −u−
1860
+ k
1861
+ from below at xk. Since x0 ∈ J, by (19) in Lemma 4.4, xk ∈ ∂Ω−
1862
+ uk \ ∂Ω+
1863
+ uk. Hence, by
1864
+ Lemma 3.1,
1865
+ λp
1866
+ − ≥ |∇Q−
1867
+ k (xk)|p = βp
1868
+ k + pβp
1869
+ kǫkt + o(ǫk),
1870
+ which by arguing as above implies that λp
1871
+ −t ≤ −ℓ.
1872
+
1873
+ 24
1874
+ M. BAYRAMI AND M. FOTOUHI
1875
+ Step 6: In the last step, we show the transmission condition in (22) at points in
1876
+ C.
1877
+ Again by the symmetry of the arguments, we will only show that
1878
+ λp
1879
+ +∂nv+ − λp
1880
+ −∂nv− ≤ 0
1881
+ on
1882
+ C.
1883
+ Let us hence assume that there exist s and t with λp
1884
+ +s > λp
1885
+ −t and a polynomial ˜P
1886
+ with Lp( ˜P) > 0 and ∂n ˜P = 0 such that
1887
+ P = sx+
1888
+ n − tx−
1889
+ n + ˜P,
1890
+ touches v+ and v− strictly from below at x0 ∈ C. By Lemma 4.11, we find points
1891
+ xk → x0 and functions Qk satisfying (35). In particular xk � ∂Ω−
1892
+ uk \ ∂Ω+
1893
+ uk. By the
1894
+ previous step we know that λp
1895
+ −t ≥ −ℓ and thus λp
1896
+ +s > −ℓ, since we are assuming
1897
+ λp
1898
+ +s > λp
1899
+ −t ≥ 0. We now distinguish two cases:
1900
+ 1) xk is one-phase point, namely xk ∈ ∂Ω+
1901
+ uk \ ∂Ω−
1902
+ uk. In this case
1903
+ λp
1904
+ + ≥ |∇Q+
1905
+ k (xk)|p = αp
1906
+ k + pαp
1907
+ kǫks + o(ǫk),
1908
+ which implies that
1909
+ λp
1910
+ +s + ℓ = λp
1911
+ + lim
1912
+ k→��
1913
+
1914
+ s +
1915
+ αp
1916
+ k − λp
1917
+ +
1918
+ pαp
1919
+ kǫk
1920
+
1921
+  ≤ 0,
1922
+ in contradiction with λp
1923
+ +s > −ℓ.
1924
+ 2) xk is two-phase point, namely xk ∈ ∂Ω+
1925
+ uk ∩ ∂Ω−
1926
+ uk. Arguing as in Case 1), we
1927
+ have that, by Lemma 3.1,
1928
+ λp
1929
+ + − λp
1930
+ − ≥ |∇Q+
1931
+ k (xk)|p − |∇Q−
1932
+ k (xk)|p
1933
+ = αp
1934
+ k − βp
1935
+ k + pǫk(αp
1936
+ ks − βp
1937
+ kt) + o(ǫk)
1938
+ = λp
1939
+ + − λp
1940
+ − + pǫk(λp
1941
+ +s − λp
1942
+ −t) + o(ǫk),
1943
+ which gives a contradiction with λp
1944
+ +s > λp
1945
+ −t, as ǫk → 0.
1946
+
1947
+ 4.3. Proof of Lemmas 4.2 and 4.3. We recall the following regularity results for
1948
+ the limiting problems.
1949
+ Lemma 4.12 (Regularity for the transmission problem). There exists a universal
1950
+ constant C = C(α∞, β∞, n, p) > 0 such that if v ∈ C0(B 1
1951
+ 2 ) is a viscosity solution of (21)
1952
+ with ∥v∥L∞(B 1
1953
+ 2 ) ≤ 1 then there exist v ∈ Rn−1, s, t ∈ R with αp
1954
+ ∞s = βp
1955
+ ∞t such that
1956
+ sup
1957
+ x∈Br
1958
+ ���v(x) − v(0) − (v · x′ + sx+
1959
+ n − tx−
1960
+ n)
1961
+ ��� ≤ Cr2,
1962
+ for every r ≤ 1
1963
+ 4.
1964
+ Proof. For the proof when p = 2, we refer to [13, Theorem 3.2]. This result can be
1965
+ extended easily to the general case (for any p) by changing the coordinate such that
1966
+ the operator Lp = ∆ + (p − 2)∂nn transfer to the Laplacian.
1967
+
1968
+ Lemma 4.13 (Regularity for the two-membrane problem). There exists a universal
1969
+ constant C = C(λ±, n, p) > 0 such that if v is a viscosity solution of (22) with ∥v∥L∞(B 1
1970
+ 2 ) ≤ 1
1971
+ then there exist v ∈ Rn−1, s, t ∈ R with λp
1972
+ +s = λp
1973
+ −t ≥ −ℓ such that
1974
+ sup
1975
+ x∈B±
1976
+ r
1977
+ ���v(x) − v(0) − (v · x′ + sx+
1978
+ n − tx−
1979
+ n)
1980
+ ��� ≤ C(1 + ℓ)r
1981
+ 3
1982
+ 2 ,
1983
+ for every r ≤ rp,
1984
+
1985
+ 25
1986
+ where rp = 1
1987
+ 4 for 1 < p ≤ 2 and rp =
1988
+ 1
1989
+ 4√
1990
+ p−1 for 2 < p.
1991
+ The proof of this lemma can be found in [12, Lemma 3.12] with a minor changes.
1992
+ To keep the paper self-contained we will provide a complete proof for our case in
1993
+ Appendix A.
1994
+ Now, the proof of Lemmas 4.2 and 4.3 by the regularity theory for the limiting
1995
+ problems and a classical compactness argument is available:
1996
+ Proof of Lemma 4.2. Toward a contradiction assume that for fixed γ ∈ (0, 1
1997
+ 2) and M,
1998
+ we have a sequences of functions uk and numbers αk such that
1999
+ ǫk = ∥uk − Hαk,en∥L∞(B1) → 0,
2000
+ and
2001
+ λ+ ≤ αk ≤ λ+ + Mǫk,
2002
+ and fail (14) and (15) for some ρ and C which will be determined later. Note that
2003
+ by the second assumption above
2004
+ ℓ < Mλp−1
2005
+ +
2006
+ < ∞.
2007
+ We let (vk)k be the sequence of functions defined in (18) and assume that they
2008
+ converge to a function v as in Lemma 4.4, note that ∥v∥L∞(B 1
2009
+ 2 ) ≤ max( 1
2010
+ λ+ , 1
2011
+ λ− ). By
2012
+ Lemma 4.5, v solves (22) and thus by Lemma 4.13 there exist v ∈ Rn−1, s, t ∈ R
2013
+ satisfying λp
2014
+ +s = λp
2015
+ −t ≥ −ℓ such that for all r ∈ (0, rp)
2016
+ sup
2017
+ x∈Br
2018
+ ���v(x) − (v · x′ + sx+
2019
+ n − tx−
2020
+ n)
2021
+ ��� ≤ C(1 + M)r
2022
+ 3
2023
+ 2 .
2024
+ Hence, we can fix ρ = ρ(λ±, γ, L, M, p, n) < rp such that C(1 + M)ρ
2025
+ 1
2026
+ 2 −γ ≤ 1
2027
+ 2, so
2028
+ (40)
2029
+ sup
2030
+ x∈Bρ
2031
+ ���v(x) − (v · x′ + sx+
2032
+ n − tx−
2033
+ n)
2034
+ ��� ≤ ρ1+γ
2035
+ 2L .
2036
+ We now set
2037
+ ˜αk := αk(1 + ǫks) + δkǫk
2038
+ and
2039
+ ek :=
2040
+ en + ǫkv
2041
+
2042
+ 1 + ǫ2
2043
+ k|v|2
2044
+ ,
2045
+ where δk → 0 is chosen so that ˜αk ≥ λ+; note that the existence of such sequence is
2046
+ due to the condition λp
2047
+ +s ≥ −ℓ since
2048
+ αk(1 + ǫks) =
2049
+
2050
+ λ+ +
2051
+
2052
+ λp−1
2053
+ +
2054
+ ǫk + o(ǫk)
2055
+
2056
+  (1 + ǫks) ≥ λ+ + o(ǫk).
2057
+ We let Hk := H ˜αk,ek and note that
2058
+ | ˜αk − αk| + |ek − en| ≤ Cǫk,
2059
+ for a universal constant C > 0; we also have used (40) to find out that s is universally
2060
+ bounded. By the contradiction assumption we have
2061
+ ρ1+γ < 1
2062
+ ǫk
2063
+ sup
2064
+
2065
+ |uk(x) − Hk(x)|
2066
+ ≤ max
2067
+
2068
+ αk∥v+
2069
+ k − Hk − Hαk,en
2070
+ ǫkαk
2071
+ ∥L∞(Ω+uk ∩Bρ), βk∥v−
2072
+ k − Hk − Hαk,en
2073
+ ǫkβk
2074
+ ∥L∞(Ω−
2075
+ uk ∩Bρ)
2076
+
2077
+ .
2078
+
2079
+ 26
2080
+ M. BAYRAMI AND M. FOTOUHI
2081
+ To close the argument, we need to recall (40), the convergence of vk to v in the sense
2082
+ of Lemma 4.4 and the convergence of (again in the sense of Lemma 4.4)
2083
+ 
2084
+ Hk(x) − Hαk,en(x)
2085
+ αkǫk
2086
+ xn > 0,
2087
+ Hk(x) − Hαk,en(x)
2088
+ βkǫk
2089
+ xn < 0,
2090
+ to the function
2091
+ (v · x′) + sx+
2092
+ n − tx−
2093
+ n.
2094
+
2095
+ Proof of Lemma 4.3. Arguing by contradiction one assume for fixed γ ∈ (0, 1) the
2096
+ existence of a sequence of functions uk and numbers αk, Mk → ∞ such that
2097
+ ǫk = ∥uk − Hαk,en∥L∞(B1) → 0,
2098
+ and
2099
+ αk − λ+
2100
+ ǫk
2101
+ ≥ Mk → ∞,
2102
+ and fail (14) and (15) for some ρ and C which will be determined later. This implies
2103
+ that ℓ = ∞ and that the limiting function v obtained in Lemma 4.4 is a solution
2104
+ of (21). One then concludes the proof similar to the proof of Lemma 4.2 by using
2105
+ Lemma 4.12.
2106
+
2107
+ 5. Regularity of the free boundary
2108
+ The last step in achieving the desired regularity result is to demonstrate that
2109
+ |∇u±| are C0,η for a suitable η > 0 up to the boundary, in the viscosity sense.
2110
+ Indeed, this shows that u± are solutions to the classical one-phase free boundary
2111
+ problem in its viscosity formulation and that the regularity will follow form [17].
2112
+ The arguments are similar to the ones in [25, Section 8] (see also [12, Section 4]).
2113
+ Therefore we only sketch the main steps and refer the reader to that paper for more
2114
+ details.
2115
+ Before stating the main results, we introduce some notation. For every x0 ∈ F(u)
2116
+ and every 0 < r < dist(x0, ∂D), we consider the function
2117
+ ux0,r(x) := u(x0 + rx)
2118
+ r
2119
+ ,
2120
+ which is well-defined for |x| <
2121
+ 1
2122
+ r dist(x0, ∂D) and vanishes at the origin. When
2123
+ x0 = 0, we denote u0,r by ur. Given a sequence rk > 0 such that rk → 0, we say that
2124
+ the sequence of functions ux0,rk is a blow-up sequence of u at x0. If a subsequence of
2125
+ ux0,rk convergs to v on every ball BR ⊂ Rn, we say that v is a blow-up limit of u at x0.
2126
+ Lemma 5.1. There exists ¯ǫ > 0 such that if the minimizer u satisfies (3), then at every
2127
+ point x0 ∈ ΓTP ∩ Br0 for a universal radius r0 > 0, there is a unique blow-up. Moreover, u
2128
+ is Lipschitz in Br0/2 and there exists η > 0 and a constant C0(n, p, Λ0, Λ1) > 0 such that
2129
+ for every x0, y0 ∈ ΓTP ∩ Br0/2, we have
2130
+ (41)
2131
+ |α(x0) − α(y0)| ≤ C0|x0 − y0|η
2132
+ and
2133
+ |e(x0) − e(y0)| ≤ C0|x0 − y0|η,
2134
+ for any η ∈ (0, 1
2135
+ 3), where Hα(x0),e(x0) and Hα(y0),e(y0) are the blow-ups at x0 and y0, respec-
2136
+ tively.
2137
+
2138
+ 27
2139
+ Proof. Let L0 = Λ0 and L1 = 2Λ1 in Theorem 4.1 and find the universal constants
2140
+ ǫ0 > 0, ρ0 > 0 and C > 0. Choose ¯ǫ < min{(1 − ργ) Λ1
2141
+ 2C, ǫ
2142
+ 2} and r0 <
2143
+ ¯ǫ
2144
+ Λ1 , then if the
2145
+ minimizer u satisfies (3) for some e ∈ Sn−1 and λ+ ≤ α ≤ Λ1, then
2146
+ ∥ux0, 1
2147
+ 2 − Hα,e∥L∞(B1) ≤ ¯ǫ + |Hα,e(x0)| ≤ 2¯ǫ,
2148
+ for any x0 ∈ ΓTP ∩ Br0. Now we can thus repeatedly apply Theorem 4.1 to obtain
2149
+ the sequences ux0, ρk
2150
+ 2 (x) = 2
2151
+ ρk u(x0 + ρk
2152
+ 2 x), max(L0, λ+) ≤ αk ≤ L1 and ek ∈ Sn−1 that
2153
+ ∥ux0, ρk
2154
+ 2 − Hαk,ek∥L∞(B1) ≤ 2¯ǫρkγ,
2155
+ |ek+1 − ek| + |αk+1 − αk| ≤ 2C¯ǫρkγ.
2156
+ This implies that αk and ek converge to some α = α(x0) and e = e(x0), respectively.
2157
+ Now let r ≤ 1
2158
+ 2 be arbitrary and choose k ∈ N such that ρk+1 ≤ 2r ≤ ρk, then
2159
+ ∥ux0,r − Hα(x0),e(x0)∥L∞(B1) ≤ 1
2160
+ ρ∥ux0, ρk
2161
+ 2 − Hα(x0),e(x0)∥L∞(B1)
2162
+ ≤ 1
2163
+ ρ
2164
+
2165
+ ∥ux0, ρk
2166
+ 2 − Hαk,ek∥L∞(B1) + ∥Hαk,ek − Hα(x0),e(x0)∥L∞(B1)
2167
+
2168
+ ≤ C¯ǫρkγ.
2169
+ Therefore, there is ˜C = ˜C(n, p, Λ0, Λ1) such that for every r ≤ 1
2170
+ 2 and x0 ∈ Br0,
2171
+ (42)
2172
+ ∥ux0,r − Hα(x0),e(x0)∥L∞(B1) ≤ ˜Crγ,
2173
+ where γ ∈ (0, 1
2174
+ 2).
2175
+ According to (42),
2176
+ ∥u∥L∞(Br(x0)) ≤ (L1 + ˜C)r,
2177
+ r ≤ 1
2178
+ 2,
2179
+ for every x0 ∈ ΓTP ∩ Br0. From this and the Lipschitz regularity around the one-
2180
+ phase points, Proposition 2.3, we conclude that u is Lipschitz in B r0
2181
+ 2 ; see [3, Theorem
2182
+ 2.3] or [11, Theorem 2.1].
2183
+ Next, for x0, y0 ∈ ΓTP ∩ B r0
2184
+ 2 set r := |x0 − y0|1−η and η :=
2185
+ γ
2186
+ 1+γ, and recall that u is
2187
+ Lipschitz (with a constant ˜L) to get
2188
+ ∥Hα(x0),e(x0) − Hα(y0),e(y0)∥L∞(B1)
2189
+ ≤ ∥ux0,r − Hα(x0),e(x0)∥L∞(B1) + ∥ux0,r − uy0,r∥L∞(B1) + ∥uy0,r − Hα(y0),e(y0)∥L∞(B1)
2190
+
2191
+
2192
+ C0rγ +
2193
+ ˜L
2194
+ r |x0 − y0| + C0rγ
2195
+
2196
+ = (˜L + 2C0)|x0 − y0|η.
2197
+ The conclusion now follows easily from this inequality; see e.g. [25, Lemma 8.8]
2198
+ for the details.
2199
+
2200
+ Lemma 5.2. Under the same assumptions of Lemma 5.1, there are C0,η continuous func-
2201
+ tions α : ∂Ω+
2202
+ u → R and β : ∂Ω−
2203
+ u → R such that α ≥ λ+, β ≥ λ− and u± are viscosity
2204
+ solutions of the one-phase problems
2205
+ ∆pu+ = 0
2206
+ in
2207
+ Ω+
2208
+ u,
2209
+ |∇u+| = α
2210
+ on
2211
+ ∂Ω+
2212
+ u,
2213
+ and
2214
+ ∆pu− = 0
2215
+ in
2216
+ Ω−
2217
+ u,
2218
+ |∇u−| = β
2219
+ on
2220
+ ∂Ω−
2221
+ u.
2222
+
2223
+ 28
2224
+ M. BAYRAMI AND M. FOTOUHI
2225
+ Proof. We will sketch the argument for u+. The proof of the case u− is similar.
2226
+ Clearly ∆pu+ = 0 in Ω+
2227
+ u. By (42) we have that, if x0 ∈ ΓTP ∩ D′, then
2228
+ (43)
2229
+ ���u+(x) − α(x0) ((x − x0) · e(x0))+��� ≤ C0|x − x0|1+γ,
2230
+ for every x ∈ Br0(x0) ∩ Ω+
2231
+ u where r0 and C0 depends only on D′. In particular, u+ is
2232
+ differentiable on Ω+
2233
+ u up to x0 (in the classical sense) and |∇u+(x0)| = α(x0). On the
2234
+ other hand if x0 ∈ Γ+
2235
+ OP, then |∇u+(x0)| = λ+ is constant, in the viscosity sense.
2236
+ To close the argument, we only need to prove that α ∈ C0,η(∂Ω+
2237
+ u). Since α is
2238
+ η-H¨older continuous on ΓTP by Lemma 5.1, and constant on Γ+
2239
+ OP (in the viscosity
2240
+ sense), we just need to show that if x0 ∈ ΓTP is such that there is a sequence xk ∈ Γ+
2241
+ OP
2242
+ converging to x0, then α(x0) = λ+. To this end, let yk ∈ ΓTP be such that
2243
+ dist(xk, ΓTP) = |xk − yk|,
2244
+ and denote
2245
+ rk = |xk − yk|
2246
+ and
2247
+ uk(x) = 1
2248
+ rk
2249
+ u+(xk + rkx),
2250
+ and note that uk is a viscosity solution of the free boundary problem
2251
+ ∆puk = 0
2252
+ in
2253
+ Ω+
2254
+ uk ∩ B1,
2255
+ |∇uk| = λ+
2256
+ on
2257
+ ∂{uk > 0} ∩ B1.
2258
+ Since uk are uniformly Lipschitz in B 1
2259
+ 2 (Proposition 2.3) they converge to a function
2260
+ u∞ which is also a viscosity solution of the same problem (see e.g. [17]). On the
2261
+ other hand, by (43) for two-phase point yk ∈ ΓTP and letting zk := xk−yk
2262
+ rk , we have
2263
+ that
2264
+ ���uk(x) − α(yk) �(x − zk) · e(yk)�+��� ≤ C0rγ
2265
+ k|x − zk|1+γ.
2266
+ Suppose zk → z0 and passing to the limit
2267
+ u∞(x) = α(x0) ((x − z0) · e(x0))+ ,
2268
+ in B 1
2269
+ 2 ,
2270
+ which gives that α(x0) = |∇u∞(0)| = λ+.
2271
+
2272
+ Proof of Theorem 1.1. Let x0 ∈ ΓTP = ∂Ω+
2273
+ u ∩ ∂Ω−
2274
+ u and let ǫ be the constant satisfies
2275
+ in [17, Theorem 1.1] and Lemma 5.1. By virtue of Lemma 5.2, we can apply [17,
2276
+ Theorem 1.1] to conclude that locally at x0 ∈ ΓTP the free boundaries ∂Ω±
2277
+ u are C1,η
2278
+ graphs. Since x0 is arbitrary, we conclude the proof.
2279
+
2280
+ 6. Lipschitz regularity of solutions
2281
+ In this section, we are going to prove Theorem 1.2. We will follow the idea in
2282
+ [14].
2283
+ Proposition 6.1. Let u : D → R be a minimizer of JTP that 0 ∈ F(u) ∩ B1 ⊂ D. Then
2284
+ there exists constants L and δ such that one of the following alternative holds:
2285
+ (1) u is Lipschitz in Bδ and
2286
+ |∇u| ≤ C max(∥u∥L∞(B1), L),
2287
+ in Bδ,
2288
+ for some universal constant C.
2289
+ (2)
2290
+ 1
2291
+ δ∥u∥L∞(Bδ) ≤ 1
2292
+ 2 max(∥u∥L∞(B1), L).
2293
+
2294
+ 29
2295
+ Proof. Let δ be fixed, to be specified later. Assume by contradiction that there exist
2296
+ a sequence of Lj → ∞ and a sequence of solutions uj such that does not satisfy
2297
+ either (1) nor (2). Let Cj := max(∥uj∥L∞(B1), Lj) and define
2298
+ ˜uj :=
2299
+ uj
2300
+ Cj
2301
+ ,
2302
+ which satisfy
2303
+ ∥ ˜uj∥L∞(B1) ≤ 1,
2304
+ and
2305
+ ∥ ˜uj∥L∞(Bδ) ≥ δ
2306
+ 2.
2307
+ By using Proposition 2.5, we get that ˜uj is a minimizer of the scaled functional (4)
2308
+ for σj =
2309
+ 1
2310
+ Cj → 0. Thus up to a subsequence, ˜uj converges uniformly to a p-harmonic
2311
+ function u0. Hence by C1,α regularity for p-harmonic functions we get that
2312
+ (44)
2313
+ sup
2314
+ Br
2315
+ |u0(x) − ∇u0(0) · x| ≤ ˜Cr1+α,
2316
+ for all r ≤ 1,
2317
+ where the constant C is universal and also |∇u0(0)| ≤ ˜C. Now we distinguish two
2318
+ cases:
2319
+ Case I: |∇u0(0)| ≤ 1
2320
+ 4.
2321
+ In this case, from (44) we deduce that
2322
+ 1
2323
+ δ∥u0∥L∞(Bδ) ≤ 1
2324
+ 4 + ˜Cδα ≤ 1
2325
+ 3,
2326
+ if we choose δ small enough. Thus all uj for sufficiently large j will satisfy (2),
2327
+ which is a contradiction.
2328
+ Case II: |∇u0(0)| ≥ 1
2329
+ 4.
2330
+ In this case we will use our flatness result in Theorem 1.1. Put ˜r = 2δ
2331
+ r0 in (44) where
2332
+ r0 is the radius obtained in Theorem 1.1 (we have also assumed 2δ ≤ r0)
2333
+ sup
2334
+ B1
2335
+ ��� ˜uj,˜r(x) − ∇u0(0) · x
2336
+ ��� ≤
2337
+ ˜C
2338
+
2339
+ 0
2340
+ δα.
2341
+ Now let e = ∇u0(0)
2342
+ |∇u0(0)|, α = |∇u(0)| and βj =
2343
+ 1
2344
+ Cj (λp
2345
+ − − λp
2346
+ + + αpCp
2347
+ j)
2348
+ 1
2349
+ p , then
2350
+ ∥uj,˜r − Hα,e∥L∞(B1) ≤ ∥uj,˜r − ∇u0(0) · x∥L∞(B1) + |α − βj| ≤ 2 ˜C
2351
+
2352
+ 0
2353
+ δα,
2354
+ for sufficiently large j.
2355
+ Applying Theorem 1.1 for some Λ0 ≤
2356
+ 1
2357
+ 4 and Λ1 ≥ ˜C
2358
+ and notice that uj,˜r is a minimizer of JTP for coefficients 1
2359
+ Cj λ±. Note that the critical
2360
+ flatness in Theorem 1.1 or Lemma 5.1 depends on Λ0 and Λ1 rather than coefficients
2361
+ λ±. Then we can find δ universally small such that uj,˜r satisfy in Lemma 5.1. In
2362
+ particular, uj,˜r is Lipschitz in B r0
2363
+ 2 with a universal constant. It proves that uj is
2364
+ Lipschitz in Bδ.
2365
+
2366
+ Proof of Theorem 1.2. Let δ, C and L be the universal constants in Proposition 6.1.
2367
+ Assume 0 ∈ F(u) and let ˜L := max(∥u∥L∞(B1), L). We first show
2368
+ (45)
2369
+ ∥u∥L∞(Bδk) ≤ C˜Lδk,
2370
+ ∀k ≥ 0.
2371
+ By Proposition 6.1 either (1) or (2) holds. In the first case, u is Lipschitz in Bδ and
2372
+ |∇u| ≤ C˜L
2373
+ in Bδ.
2374
+ Thus (45) holds for all k ≥ 1.
2375
+
2376
+ 30
2377
+ M. BAYRAMI AND M. FOTOUHI
2378
+ If (2) holds, then
2379
+ ∥u∥L∞(Bδ) ≤
2380
+ ˜L
2381
+ 2 δ.
2382
+ We now rescale and iterate. Define
2383
+ uk(x) := u(δkx)
2384
+ δk
2385
+ ,
2386
+ which is also a minimizer of JTP and we can apply Proposition 6.1. If k0 is the
2387
+ smallest k for which uk satisfies (1), then for 0 ≤ k < k0 the item (2) holds and so
2388
+ ∥u∥L∞(Bδk) ≤ ˜Lδk,
2389
+ for 0 ≤ k ≤ k0.
2390
+ Moreover, uk0 is Lipschitz in Bδ, with
2391
+ |∇uk0| ≤ C max(∥uk0∥L∞(B1), L) ≤ C max(˜L, L) = C˜L,
2392
+ in Bδ.
2393
+ Hence, (45) holds for all k ≥ k0. If uk satisfy the alternative (2) for all k, the estimate
2394
+ (45) will be obtained easily.
2395
+ Now for an arbitrary r choose k such that δk+1 ≤ r ≤ δk, then by (45) we get
2396
+ ∥u∥L∞(Br) ≤ ∥u∥L∞(Bδk) ≤ C˜Lδk ≤ C˜L
2397
+ δ r.
2398
+ This is enough to obtain the Lipschitz continuity locally in D.
2399
+
2400
+ Appendix A. Proof of Proposition 2.5
2401
+ Proof of Proposition 2.5. By definition of vj and an easy computation, we get
2402
+ ∇vj(x) =
2403
+ rj
2404
+ Sj
2405
+ ∇uj(xj + rjx) = σj∇uj(xj + rjx).
2406
+ In order to show that vj is a minimizer of ˆJTP in BR, consider w that
2407
+ ˆJTP(w; BR) < ˆJTP(vj; BR),
2408
+ and
2409
+ w = v
2410
+ on ∂BR.
2411
+ Then ˆw(x) = w(
2412
+ x−xj
2413
+ rj ) will satisfy ˆw = uj on ∂Brj(xj) and by a simple calculation, we
2414
+ get that
2415
+ JTP( ˆw; Brj) =
2416
+ rn
2417
+ j
2418
+ σp
2419
+ j
2420
+ ˆJTP(w; BR) <
2421
+ rn
2422
+ j
2423
+ σp
2424
+ j
2425
+ ˆJTP(vj; BR) = ˆJTP(uj; Brj).
2426
+ This is a contradiction with the minimality of uj.
2427
+ Moreover, using |vj| ≤ M in B 4R
2428
+ 3 and Caccioppoli’s inequality, we conclude that
2429
+
2430
+ BR
2431
+ |∇v±
2432
+ j |p dx ≤ 4pC(n)
2433
+
2434
+ B 4R
2435
+ 3
2436
+ (v±
2437
+ j )p dx ≤ (4M)pC(n),
2438
+ for some C(n) > 0, indicating that ∥vj∥W1,p(BR) are uniformly bounded. Hence, from
2439
+ Proposition 2.4, i.e. the BMO estimate for the gradient, we obtain that for any q > 1
2440
+ and 0 < R < 1
2441
+ rj there exists a constant C = C(R, q) > 0 independent of j such that
2442
+ max
2443
+
2444
+ ∥vj∥Cα(BR), ∥∇vj∥Lq(BR)
2445
+
2446
+ ≤ C,
2447
+ for some α ∈ (0, 1) (if q > n, one can take α = 1 − n
2448
+ q by the Morrey’s inequality).
2449
+ Therefore, by a standard compactness argument, we have that, up to a subse-
2450
+ quence, vj converges to some function v0 as j → +∞ in Cα(BR) and weakly in
2451
+ W1,q(BR) for any q > 1, and for any fixed R. This completes the proof of (i).
2452
+
2453
+ 31
2454
+ For obtaining (ii), firstly, we prove that ∆pv0 = 0 in the positivity set of v0. Let
2455
+ E ⋐ {v0 > 0}. Then, there exists c > 0 such that v0 ≥ 2c in E. By the uniform
2456
+ convergence of vj to v0, we will have vj > c in E for large j. This implies that v0 is
2457
+ p-harmonic in E. Since E was arbitrary, we are done. Now, take 0 ≤ ϕ ∈ C1
2458
+ c(Rn)
2459
+ and s > 0. By using (v0 −s)+ϕ as a test function in the weak formulation of ∆pv0 = 0
2460
+ in the set {v0 > 0}, we have
2461
+
2462
+ {v0>s}
2463
+ |∇v0|pϕ dx = −
2464
+
2465
+ {v0>s}
2466
+ |∇v0|p−2 �∇v0 · ∇ϕ� v0 dx + s
2467
+
2468
+ {v0>s}
2469
+ |∇v0|p−2∇v0 · ∇ϕ dx.
2470
+ Letting s → 0 gives that
2471
+
2472
+ {v0>0}
2473
+ |∇v0|pϕ dx = −
2474
+
2475
+ {v0>0}
2476
+ |∇v0|p−2 �∇v0 · ∇ϕ� v0 dx.
2477
+ Similar argument holds for using test function (v0 + s)−ϕ and finally we get
2478
+ (46)
2479
+
2480
+ Rn |∇v0|pϕ dx = −
2481
+
2482
+ Rn |∇v0|p−2 �∇v0 · ∇ϕ� v0 dx.
2483
+ On the other hand since vjϕ∆pvj ≥ 0 (Theorem 2.1), we have
2484
+ (47)
2485
+
2486
+ Rn |∇vj|pϕ dx ≤ −
2487
+
2488
+ Rn |∇vj|p−2 �
2489
+ ∇vj · ∇ϕ
2490
+
2491
+ vj dx.
2492
+ Usingtheuniformconvergenceofvj tov0 andtheweakconvergenceof|∇vj|p−2∇vj ⇀
2493
+ |∇v0|p−2∇v0 in L
2494
+ p
2495
+ p−1
2496
+ loc (Rn) (see [15]), we infer from (46) and (47) that
2497
+ (48)
2498
+ lim sup
2499
+ j→+∞
2500
+
2501
+ Rn |∇vj|pϕ dx ≤
2502
+
2503
+ Rn |∇v0|pϕ dx.
2504
+ Since also ∇vj ⇀ ∇v0 weakly in Lp
2505
+ loc(Rn), we have
2506
+ (49)
2507
+
2508
+ Rn |∇v0|pϕ dx ≤ lim inf
2509
+ j→+∞
2510
+
2511
+ Rn |∇vj|pϕ dx.
2512
+ It follows from (48), (49), and a simple compactness argument that
2513
+ (50)
2514
+ |∇vj|p → |∇v0|p,
2515
+ strongly in
2516
+ L1
2517
+ loc(Rn),
2518
+ and we get (ii).
2519
+ Finally, we prove the claim (iii). For this, notice that for any ψ ∈ C∞
2520
+ c (BR)
2521
+ (51)
2522
+
2523
+ BR
2524
+ |∇vj|p + σp
2525
+ j(p − 1)λp
2526
+ +χ{vj>0} + σp
2527
+ j(p − 1)λp
2528
+ −χ{vj<0} dx
2529
+
2530
+
2531
+ BR
2532
+ |∇(vj + ψ)|p + σp
2533
+ j(p − 1)λp
2534
+ +χ{vj+ψ>0} + σp
2535
+ j(p − 1)λp
2536
+ −χ{vj+ψ<0} dx,
2537
+ because vj is a minimizer for ˆJTP defined in (4). Recall the strong convergence (50)
2538
+ along with the following standard inequality
2539
+ |∇(vj + ψ)|p ≤ 2p−1 �
2540
+ |∇vj|p + |∇ψ|p�
2541
+ ,
2542
+ we get
2543
+
2544
+ BR
2545
+ |∇(vj + ψ)|p dx →
2546
+
2547
+ BR
2548
+ |∇(v0 + ψ)|p dx,
2549
+
2550
+ 32
2551
+ M. BAYRAMI AND M. FOTOUHI
2552
+ as j → +∞. Thus passing (51) to limit, we have
2553
+
2554
+ BR
2555
+ |∇v0|p + σp(p − 1)λp
2556
+ +χ{v0>0} + σp(p − 1)λp
2557
+ −χ{v0<0} dx
2558
+
2559
+
2560
+ BR
2561
+ |∇(v0 + ψ)|p + σp(p − 1)λp
2562
+ +χ{v0+ψ>0} + σp(p − 1)λp
2563
+ −χ{v0+ψ<0} dx,
2564
+ for any ψ ∈ C∞
2565
+ c (BR). This implies (iii) and the proof of proposition finishes.
2566
+
2567
+ Appendix B. Proof of the regularity for two-membrane problem
2568
+ Proof of Lemma 4.13. For the given solution v, define w
2569
+ w±(x) = v±(x′, (p − 1)
2570
+ 1
2571
+ 2 xn) + ℓ(p − 1)
2572
+ 1
2573
+ 2
2574
+ λp
2575
+ ±
2576
+ xn,
2577
+ x ∈ B±
2578
+ 2rp.
2579
+ It is straightforward to check that w± is a viscosity solution of
2580
+ 
2581
+ Lp(w±) = 0,
2582
+ in
2583
+
2584
+ 2rp,
2585
+ ∂nw± ≥ 0,
2586
+ in
2587
+ B2rp ∩ {xn = 0},
2588
+ ∂nw± = 0,
2589
+ in
2590
+ J = {w+ < w−} ∩ {xn = 0},
2591
+ λp
2592
+ +∂nw+ = λp
2593
+ −∂nw−,
2594
+ in
2595
+ C = {w+ = w−} ∩ {xn = 0},
2596
+ w+ ≤ w−,
2597
+ in
2598
+ B2rp ∩ {xn = 0}.
2599
+ Furthermore one can easily check that
2600
+ (52)
2601
+ w±(x′, xn) = ˜w(x′, ∓xn) ∓ 1
2602
+ λp
2603
+ ±
2604
+ wS(x′, ∓xn),
2605
+ where ˜w solves the following Neumann problem
2606
+ 
2607
+ ∆ ˜w = 0,
2608
+ on
2609
+ B−
2610
+ 2rp,
2611
+ ∂n ˜w = 0,
2612
+ on
2613
+ B−
2614
+ 2rp ∩ {xn = 0},
2615
+ and wS is a solution to the thin obstacle (the Signorini) problem
2616
+ 
2617
+ ∆wS = 0,
2618
+ on
2619
+ B−
2620
+ 2rp,
2621
+ wS ≥ 0,
2622
+ on
2623
+ B−
2624
+ 2rp ∩ {xn = 0},
2625
+ ∂nwS ≥ 0,
2626
+ on
2627
+ B−
2628
+ 2rp ∩ {xn = 0},
2629
+ wS∂nwS = 0,
2630
+ on
2631
+ B−
2632
+ 2rp ∩ {xn = 0}.
2633
+ The boundary data of ˜w and wS on ∂B2rp ∩ {xn < 0} will be obtained uniquely from
2634
+ (52). Clearly ˜w ∈ C∞(B−
2635
+ rp) with
2636
+ ∥ ˜w∥Ck(B−
2637
+ rp) ≤ Ck∥ ˜w∥L∞(B−
2638
+ 2rp).
2639
+ On the other hand, by [8], wS ∈ C1, 1
2640
+ 2 (B−
2641
+ rp) with
2642
+ ∥wS∥C1, 1
2643
+ 2 (B−
2644
+ rp) ≤ C∥wS∥L∞(B−
2645
+ 2rp).
2646
+
2647
+ 33
2648
+ From the last two estimates and the definition of w, it is easy to deduce the con-
2649
+ clusion of the lemma for (note that the positivity of wS along with its regularity
2650
+ necessitates that ∇′wS(0) = 0)
2651
+ v := ∇′ ˜w(0)
2652
+ and
2653
+ s± := (p − 1)− 1
2654
+ 2
2655
+ λp
2656
+ ±
2657
+ ∂nwS(0) − ℓ
2658
+ λp
2659
+ ±
2660
+ .
2661
+
2662
+ Appendix C. Proof of non-degeneracy
2663
+ Proof of Proposition 2.2. We will prove that for any k ∈ (0, 1), there exists a constant
2664
+ ck > 0 such that for any local minimizer of JTP and for any small ball Br(x0) ⊂ D
2665
+ if
2666
+ 1
2667
+ r
2668
+
2669
+
2670
+
2671
+ Br(x0)
2672
+ (u±)p dx
2673
+ � 1
2674
+ p
2675
+ < ck
2676
+ then u± ≡ 0 in Bkr(x0).
2677
+ By symmetry of the problem, we prove only the case u+.
2678
+ Also, by the scale
2679
+ invariance, we can take r = 1 and x0 = 0 for simplicity. Now, let define
2680
+ ε :=
2681
+ 1√
2682
+ k
2683
+ sup
2684
+ B √
2685
+ k
2686
+ u+.
2687
+ Since u+ is p-subharmonic, then by [22, Theorem 3.9]
2688
+ ε ≤
2689
+ 1√
2690
+ k
2691
+ C(n, p)
2692
+ (1 −
2693
+
2694
+ k)
2695
+ n
2696
+ p
2697
+
2698
+
2699
+
2700
+ B1
2701
+ (u+)p dx
2702
+ � 1
2703
+ p
2704
+ .
2705
+ Also, let
2706
+ v(x) :=
2707
+ 
2708
+ C1ε
2709
+
2710
+ e−µ|x|2 − e−µk2�
2711
+ in
2712
+ B √
2713
+ k \ Bk,
2714
+ 0
2715
+ in
2716
+ Bk,
2717
+ where µ > 0 and C1 are such that
2718
+ (53)
2719
+ v���
2720
+ ∂B √
2721
+ k
2722
+ :=
2723
+
2724
+ kε = sup
2725
+ B √
2726
+ k
2727
+ u+ ≥ u���
2728
+ ∂B √
2729
+ k
2730
+ .
2731
+ By direct computation, it is straightforward to check that
2732
+ ∇v(x) = −2C1εµxe−µ|x|2
2733
+ in
2734
+ B √
2735
+ k \ Bk,
2736
+ and
2737
+ ∆pv(x) = C1ε(p − 1)(2µ)2|∇v|p−2e−µ|x|2
2738
+
2739
+ |x|2 − n + p − 2
2740
+ 2µ(p − 1)
2741
+
2742
+ .
2743
+ Thus v is nonnegative p-superharmonic in B √
2744
+ k \ Bk, if µ is sufficiently small, say,
2745
+ (54)
2746
+ µ < n + p − 2
2747
+ 2k(p − 1).
2748
+ On the other hand, since
2749
+ w := min(u, v) = u on ∂B √
2750
+ k,
2751
+ thanks to (53), by invoking the minimality of u we get
2752
+ (55)
2753
+ JTP(u, B √
2754
+ k) ≤ JTP(w, B √
2755
+ k).
2756
+
2757
+ 34
2758
+ M. BAYRAMI AND M. FOTOUHI
2759
+ Now, since we have
2760
+ JTP(w, B √
2761
+ k) =
2762
+
2763
+ Bk
2764
+ |∇w|p + (p − 1)λp
2765
+ +χ{w>0} + (p − 1)λp
2766
+ −χ{w<0} dx
2767
+ +
2768
+
2769
+ B √
2770
+ k\Bk
2771
+ |∇w|p + (p − 1)λp
2772
+ +χ{w>0} + (p − 1)λp
2773
+ −χ{w<0} dx
2774
+ =
2775
+
2776
+ Bk∩{u≤0}
2777
+ |∇u|p + (p − 1)λp
2778
+ +χ{u>0} + (p − 1)λp
2779
+ −χ{u<0} dx
2780
+ +
2781
+
2782
+ B √
2783
+ k\Bk
2784
+ |∇w|p + (p − 1)λp
2785
+ +χ{w>0} + (p − 1)λp
2786
+ −χ{w<0} dx.
2787
+ Therefore, from (55), {w > 0} ⊆ {u > 0} and {w < 0} = {u < 0}, we have that
2788
+
2789
+ Bk∩{u>0}
2790
+ |∇u|p + (p − 1)λp
2791
+ +χ{u>0} + (p − 1)λp
2792
+ −χ{u<0} dx
2793
+
2794
+
2795
+ B √
2796
+ k\Bk
2797
+ |∇w|p + (p − 1)λp
2798
+ +χ{w>0} + (p − 1)λp
2799
+ −χ{w<0} dx
2800
+
2801
+
2802
+ B √
2803
+ k\Bk
2804
+ |∇u|p + (p − 1)λp
2805
+ +χ{u>0} + (p − 1)λp
2806
+ −χ{u<0} dx
2807
+
2808
+
2809
+ B √
2810
+ k\Bk
2811
+ |∇w|p − |∇u|p dx =
2812
+
2813
+ (B √
2814
+ k\Bk)∩{u>v}
2815
+ |∇v|p − |∇u|p dx
2816
+ ≤ − p
2817
+
2818
+ B √
2819
+ k\Bk
2820
+ |∇v|p−2∇v · ∇ max(u − v, 0) dx
2821
+ = − p
2822
+
2823
+ B √
2824
+ k\Bk
2825
+ −∆pv max(u − v, 0) + div
2826
+
2827
+ |∇v|p−2∇v max(u − v, 0)
2828
+
2829
+ dx
2830
+ ≤ − p
2831
+
2832
+ B √
2833
+ k\Bk
2834
+ div
2835
+
2836
+ |∇v|p−2∇v max(u − v, 0)
2837
+
2838
+ dx
2839
+ =p
2840
+
2841
+ ∂Bk
2842
+ |∇v|p−2(∇v · ν)u+,
2843
+ where to get the last inequality we have used the fact that v is a p-superharmonic
2844
+ in B √
2845
+ k \ Bk. Moreover, by (54), we have that |∇v| = 2C1εµke−µk2 ≤ Cε on ∂Bk, for
2846
+ some C > 0. Thus
2847
+ (56)
2848
+
2849
+ Bk∩{u>0}
2850
+ |∇u|p + (p − 1)λp
2851
+ +χ{u>0} dx ≤ p(Cε)p−1
2852
+
2853
+ ∂Bk
2854
+ u+.
2855
+
2856
+ 35
2857
+ On the other hand, from trace estimate, Young’s inequality, we get
2858
+ (57)
2859
+
2860
+ ∂Bk
2861
+ u+ ≤ C(n, k)
2862
+ ��
2863
+ Bk
2864
+ u+ dx +
2865
+
2866
+ Bk
2867
+ |∇u+| dx
2868
+
2869
+ ≤ C(n, k)
2870
+
2871
+ sup
2872
+ Bk
2873
+ u+
2874
+
2875
+ Bk
2876
+ χ{u>0} dx +
2877
+
2878
+ Bk
2879
+ 1
2880
+ p|∇u+|p + 1
2881
+ p′ χ{u>0} dx
2882
+
2883
+ 
2884
+ ≤ C(n, k)
2885
+
2886
+
2887
+
2888
+ k + 1
2889
+ p′ )
2890
+
2891
+ Bk
2892
+ χ{u>0} dx + 1
2893
+ p
2894
+
2895
+ Bk
2896
+ |∇u+|p dx
2897
+
2898
+ ≤ C0
2899
+
2900
+ Bk∩{u>0}
2901
+ |∇u|p + (p − 1)λp
2902
+ +χ{u>0} dx,
2903
+ where p′ is the conjugate of p and
2904
+ C0 := C(n, k)
2905
+
2906
+ ε
2907
+
2908
+ k + 1
2909
+
2910
+ .
2911
+ Finally, putting together (56) and (57), we reach to
2912
+
2913
+ Bk(x0)∩{u>0}
2914
+ |∇u|p + (p − 1)λp
2915
+ +χ{u>0} dx
2916
+ ≤ p(Cε)p−1C0
2917
+
2918
+ Bk(x0)∩{u>0}
2919
+ |∇u|p + (p − 1)λp
2920
+ +χ{u>0} dx,
2921
+ which implies that u ≡ 0 in Bk(x0) if ε is small enough. This completes the proof of
2922
+ the non-degeneracy property.
2923
+
2924
+ Declarations
2925
+ Data availability statement: All data needed are contained in the manuscript.
2926
+ Funding and/or Conflicts of interests/Competing interests: The authors declare
2927
+ that there are no financial, competing or conflict of interests.
2928
+ References
2929
+ [1] Alt, H. W., and Caffarelli, L. A. Existence and regularity for a minimum problem with free
2930
+ boundary. J. Reine Angew. Math. 325 (1981), 105–144.
2931
+ [2] Alt, H. W., Caffarelli, L. A., and Friedman, A. Axially symmetric jet flows. Arch. Rational Mech.
2932
+ Anal. 81, 2 (1983), 97–149.
2933
+ [3] Alt, H. W., Caffarelli, L. A., and Friedman, A. A free boundary problem for quasilinear elliptic
2934
+ equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 11, 1 (1984), 1–44.
2935
+ [4] Alt, H. W., Caffarelli, L. A., and Friedman, A. Jets with two fluids. I. One free boundary. Indiana
2936
+ Univ. Math. J. 33, 2 (1984), 213–247.
2937
+ [5] Alt, H. W., Caffarelli, L. A., and Friedman, A. Jets with two fluids. II. Two free boundaries.
2938
+ Indiana Univ. Math. J. 33, 3 (1984), 367–391.
2939
+ [6] Alt, H. W., Caffarelli, L. A., and Friedman, A. Variational problems with two phases and their
2940
+ free boundaries. Trans. Amer. Math. Soc. 282, 2 (1984), 431–461.
2941
+ [7] Alt, H. W., Caffarelli, L. A., and Friedman, A. Compressible flows of jets and cavities. J.
2942
+ Differential Equations 56, 1 (1985), 82–141.
2943
+ [8] Athanasopoulos, I., and Caffarelli, L. A. Optimal regularity of lower dimensional obstacle
2944
+ problems. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 310, Kraev. Zadachi
2945
+ Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 35 [34] (2004), 49–66, 226.
2946
+ [9] Caffarelli, L., and Salsa, S. A geometric approach tofree boundary problems,vol. 68 of Graduate
2947
+ Studies in Mathematics. American Mathematical Society, Providence, RI, 2005.
2948
+ [10] Danielli, D., and Petrosyan, A. A minimum problem with free boundary for a degenerate
2949
+ quasilinear operator. Calc. Var. Partial Differential Equations 23, 1 (2005), 97–124.
2950
+
2951
+ 36
2952
+ M. BAYRAMI AND M. FOTOUHI
2953
+ [11] Danielli, D., Petrosyan, A., and Shahgholian, H. A singular perturbation problem for the p-
2954
+ Laplace operator. Indiana Univ. Math. J. 52, 2 (2003), 457–476.
2955
+ [12] De Philippis, G., Spolaor, L., and Velichkov, B. Regularity of the free boundary for the two-phase
2956
+ Bernoulli problem. Invent. Math. 225, 2 (2021), 347–394.
2957
+ [13] De Silva, D., Ferrari, F., and Salsa, S. Two-phase problems with distributed sources: regularity
2958
+ of the free boundary. Anal. PDE 7, 2 (2014), 267–310.
2959
+ [14] De Silva, D., and Savin, O. Lipschitz regularity of solutions to two-phase free boundary problems.
2960
+ Int. Math. Res. Not. IMRN, 7 (2019), 2204–2222.
2961
+ [15] DiBenedetto, E., and Manfredi, J. On the higher integrability of the gradient of weak solutions
2962
+ of certain degenerate elliptic systems. Amer. J. Math. 115, 5 (1993), 1107–1134.
2963
+ [16] Dipierro, S., and Karakhanyan, A. L. Stratification of free boundary points for a two-phase
2964
+ variational problem. Adv. Math. 328 (2018), 40–81.
2965
+ [17] Ferrari, F., and Lederman, C. Regularity of flat free boundaries for a p(x)-Laplacian problem with
2966
+ right hand side. Nonlinear Anal. 212 (2021), Paper No. 112444, 25.
2967
+ [18] Ferrari, F., and Lederman, C. Regularity of lipschitz free boundaries for a p(x)-laplacian problem
2968
+ with right hand side. Journal de Math´ematiques Pures et Appliqu´ees (2022).
2969
+ [19] Fotouhi, M., and Shahgholian, H. A minimization problem with free boundary for p-laplacian
2970
+ weakly coupled system. (2023) arxiv:2301.02236 (preprint).
2971
+ [20] Gilbarg, D., and Trudinger, N. S. Elliptic partial differential equations of second order. Classics
2972
+ in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition.
2973
+ [21] Karakhanyan, A. Regularity for the two-phase singular perturbation problems. Proceedings of
2974
+ the London Mathematical Society 123, 5 (2021), 433–459.
2975
+ [22] Mal´y, J., and Ziemer, W. P. Fine regularity of solutions of elliptic partial differential equations,
2976
+ vol. 51 of Mathematical Surveys and Monographs. American Mathematical Society, Providence,
2977
+ RI, 1997.
2978
+ [23] Petrosyan, A., and Valdinoci, E. Geometric properties of Bernoulli-type minimizers. Interfaces
2979
+ Free Bound. 7, 1 (2005), 55–77.
2980
+ [24] Tolksdorf, P. On the Dirichlet problem for quasilinear equations in domains with conical boundary
2981
+ points. Comm. Partial Differential Equations 8, 7 (1983), 773–817.
2982
+ [25] Velichkov, B. Regularity of the one-phase free boundaries. Lecture notes available at http://cvgmt.
2983
+ sns. it/paper/4367 (2019).
2984
+ Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran
2985
+ Email address: masoud.bayrami1990@sharif.edu
2986
+ Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran
2987
+ Email address: fotouhi@sharif.edu
2988
+
5NFKT4oBgHgl3EQfSS3g/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
69FKT4oBgHgl3EQf_y40/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,508 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf,len=507
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
3
+ page_content='11963v1 [hep-th] 27 Jan 2023 On 10 dimensional Exceptional Drinfel’d Algebras Sameer Kumar1, Edvard T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
4
+ page_content=' Musaev2 Moscow Institute of Physics and Technology, Institutskii pereulok 9, Dolgoprudny, 141700, Russia Abstract Based on the Mubarakzyanov’s classification of four-dimensional real Lie Algebras, we classify ten-dimensional Exceptional Drinfel’d Algebras (EDA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
5
+ page_content=' The classifica- tion is restricted to EDAs whose maximal isotropic (geometric) subalgebras cannot be represented as a product of a 3D Lie algebra and a 1D abelian factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
6
+ page_content=' We show that all obtained EDAs are inequivalent and conclude that there are no Nambu-Lie U-dualities between 11D supergravity backgrounds within 10D EDAs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
7
+ page_content=' 1kumar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
8
+ page_content='samip@phystech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
9
+ page_content='edu 2musaev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
10
+ page_content='et@phystech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
11
+ page_content='edu 1 Introduction String theory is a background-dependent theory meaning that dynamics of the string is defined on a fixed background of space-time fields including the metric, the dilaton, Kalb- Ramond 2-form field, and Ramond-Ramond p-form fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
12
+ page_content=' The moduli space of these vacua appears to be highly degenerate due to duality symmetries of string theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
13
+ page_content=' Some of them, such as (abelian) T-dualities are exact perturbative symmetries of the superstring partition function at all orders in α′ and gs [1–3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
14
+ page_content=' This implies that physics of the string does does not change if the underlying space-time background is transformed by T-duality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
15
+ page_content=' Given a non-abelian algebra of isometries of a string background, abelian T-duality transformation rules can be generalized to what is called non-abelian T-duality (NATD) [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
16
+ page_content=' In contrast to the abelian case NATD is not an exact quantum symmetry of the conformal theory due to problems with definition of winding modes [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
17
+ page_content=' However, the NATD transformation map can be corrected to be a valid symmetry at the leading order in α′ [6,7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
18
+ page_content=' Using the notion of non-commutative currents, the non-abelian T-duality transformations can be extended to Poisson-Lie T-dualities that are symmetries of string theory in the same sense [8,9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
19
+ page_content=' While abelian T-duality starts from a background with certain abelian isometries and preserves them, non-abelian T-duality breaks the non-abelian algebra of initial isometries naively preventing from performing the inverse transformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
20
+ page_content=' The algebraic structure behind non-abelian T-duality symmetries, that is classical Drinfeld algebras, reveals that the initial isometry becomes hidden inside the algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
21
+ page_content=' More specifically classical Drinfeld algebra D is defined in terms of Manin triple (D, g, ˜g), where D is a Lie algebra with non-degenerate quadratic form η, and g and ˜g are subalgebras maximally isotropic with respect to the form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
22
+ page_content=' The algebra g is commonly referred to as the geometric subalgebra, and is responsible for the background space, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
23
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
24
+ page_content=' a group manifold or a coset space, while ˜g is commonly referred to as the dual algebra and it is responsible for conservation laws of the sigma model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
25
+ page_content=' To illustrate that, denote fabc and ˜fabc as structure constants of the algebras - g and ˜g, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
26
+ page_content=' Then the following holds, [va, vb] = fab cvc, dJa = ˜fa bcJb ∧ Jc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
27
+ page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
28
+ page_content='1) Here, vectors va define action of G = exp g on itself or on a coset space as δxi = vaiǫa, where xi denote coordinates on the group (coset) manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
29
+ page_content=' Noether currents Ja = Ja idxi satisfy the non-commutative conservation law.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
30
+ page_content=' When ˜fabc = 0, the currents are conserved in the usual sense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
31
+ page_content=' Non-abelian T-duality simply maps g ↔ ˜g, hence vanishing ˜fabc get replaced by 2 non-vanishing fabc and the conservation law becomes non-commutative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
32
+ page_content=' The initial isometry becomes hidden in g′ = ˜g and is no longer manifest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
33
+ page_content=' In this language the condition for classical equations of motion for the string to satisfy is simply the Leibniz identity [X, [Y, Z]] = [[X, Y ], Z] + [Y, [X, Z]], X, Y ∈ D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
34
+ page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
35
+ page_content='2) Here, the brackets are given by the following relations in terms of the generators (Ta, ˜T a) = bas D: [Ta, Tb] = fab cTc, [ ˜T a, ˜T a] = fc ab ˜T c, [ ˜T a, Tb] = ˜fc ab ˜T c + fab cTc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
36
+ page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
37
+ page_content='3) In terms of structure constants, Leibniz identity is equivalent to Jacobi identities for fabc and ˜fabc along with the following mixed identity ˜fl jkfmi l + ˜fm klfli j + ˜fi jlflm k + ˜fm jlfil k + ˜fi klflm j = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
38
+ page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
39
+ page_content='4) For a review of the algebraic construction behind Poisson-Lie T-dualities see [10], for a review of applications of NATD see [11,12], for formulation of Poisson-Lie T-dualities in the supergravity language see [13,14], for geometric aspects see [15,16] In the most general case when both sets of structure constants are non-zero, one is able to define the so-called Poisson-Lie duality transformations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
40
+ page_content=' When dim g = d, these are such O(d, d) maps CAB that preserve the structure of classical Drinfel’d double: TA → CA BTB, TA = (Ta, ˜T a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
41
+ page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
42
+ page_content='5) There is a distinguished set of such transformations called Poisson-Lie (PL) T-dualities (plu- ralities) when the map CAB relates different realization of the same Drinfeld algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
43
+ page_content=' The simplest example is the swapping g ↔ ˜g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
44
+ page_content=' For lower dimensional Lie algebras full classification of all possible Poisson-Lie T-dualities or likewise of all equivalent Manin triples is available [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
45
+ page_content=' This is based on classification of all possible dual algebras ˜g for each g belonging to the Bianchi classification of three-dimensional real Lie algebras (for more on classification of Lie Algebras, see for example [18]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
46
+ page_content=' More generally, one may have maps CAB that relate different Drinfeld algebras, for example, Yang-Baxter deformations that draw the interest since they preserve integrability of the underlying sigma-model [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
47
+ page_content=' When extending abelian T-duality symmetries by S-dualities that are non-perturbative 3 transformations exchanging gs with g−1 s , one arrives at U-duality transformations that are symmetries of M-theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
48
+ page_content=' Speaking more concretely, U-duality is a symmetry of classical field equations of 11D supergravity compactified on a d-torus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
49
+ page_content=' These are known as Cremmer-Julia symmetries and are given by the exceptional groups Ed(d) [20,21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
50
+ page_content=' In M-theory, whose low-energy approximation is given by 11D supergravity, U-duality can be thought of as symmetries of BPS states [22] or in terms of a Buscher-like procedure for M2-brane wrapping a 4-torus [23,24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
51
+ page_content=' The algebraic structure behind Poisson-Lie T-dualities can be extended to the so-called Exceptional Drinfeld Algebras (EDA), that include the usual abelian U-dualities (Cremmer-Julia symme- tries) [25–27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
52
+ page_content=' Keeping the more detailed description of EDAs to the next section, we mention that these are Leibniz algebras with generators TA on which exceptional group Ed(d) acts in the same sense as the orthogonal group O(d, d) acts on generators of the classical Drinfeld double.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
53
+ page_content=' Nambu-Lie U-dualities are then transformations that preserve the structure of the EDA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
54
+ page_content=' What differs these from the PL T-duality case is that there is no naturally defined analogue of the swapping g ↔ ˜g, simply due to the following two facts: i) dimension of the geometric subalgebra g of an EDA is never half of dimension of the EDA itself, ii) orthogonal completion of g inside the EDA is not an algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
55
+ page_content=' For this reason, searching for pairs of 11D geometries related by a Nambu-Lie U-duality is an extremely complicated task for a general EDA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
56
+ page_content=' At the moment few examples of such dualities between 11D backgrounds and solutions to Type IIB supergravity equations are known [28, 29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
57
+ page_content=' In [30] a general procedure has been suggested similar to the natural swapping g ↔ ˜g based on external automorphisms of Ed(d) group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
58
+ page_content=' Further it has been used to generate few examples of mutually dual backgrounds in [31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
59
+ page_content=' In this work, we elaborate further on the results of [30,31] that in particular state that there are no non-abelian U-dualities in the defined sense between 11D background.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
60
+ page_content=' The narrative we follow is along the same lines as [32] where a full classification of 6D Exceptional Drinfeld Doubles based on 3D geometric algebras has been presented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
61
+ page_content=' Starting from the classification of four-dimensional real Lie algebras [33], we construct all possible EDAs for a representative of each class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
62
+ page_content=' For each pair of such obtained EDAs we search for an SL(5) transformation relating them, that would mean existence of a Nambu-Lie U-duality between backgrounds that geometrically realize the corresponding geometric algebras g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
63
+ page_content=' Restricting ourselves to only such 4D real Lie algebras that do not contain a 1d (abelian) factor we find no such transformations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
64
+ page_content=' The restriction is motivated by the interest only in dualities between 11D background as maps from 11D→IIB are known.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
65
+ page_content=' The paper is structured as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
66
+ page_content=' In the beginning of Section 2 we briefly review the con- struction of Exceptional Drinfel’s Algebras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
67
+ page_content=' In Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
68
+ page_content='1 we discuss the geometric realization of EDAs and Nambu-Lie U-dualities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
69
+ page_content=' In Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
70
+ page_content='2, we present classification of 10D EDAs, 4 given the conditions stated in the preceding section and state the main results of the paper 2 Exceptional Drinfel’d Algebras Before proceeding with the classification of 10d EDAs, let us briefly review the algebraic construction following [25, 26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
71
+ page_content=' We will be focusing on the 10d case where generators of the exceptional Drinfeld algebra ED4 are collected into the 10-dimensional representation of the SL(5) group basED4 = {TAB}, where A, B = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
72
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
73
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
74
+ page_content=' , 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
75
+ page_content=' Multiplication table is then given by TAB ◦ TCD = i 2FAB,CD GHTGH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
76
+ page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
77
+ page_content='1) The structures constants FAB,CDGH are defined by the following relations FAB,CD GH = 4FAB,[C [GδH] D] (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
78
+ page_content='2) FAB,C D = 1 2ǫABCGHZGHD + 1 2δD [ASB]C + 1 3δD [AτB]C + 1 6δD C τAB, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
79
+ page_content='3) where τ is antisymmetric and S is a symmetric tensor, while Z[ABC] = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
80
+ page_content=' For the algebra to be an EDA, components of the constants ZABC, SAB and τAB under decomposition SL(5) ←֓ GL(4) must be defined as Zabc = 1 6ǫabcdfde e + 1 4ǫabeffef c, S5a = fab b − 3Za, τ5a = 9 2Za − 1 2fab b Z5[a,b] = 1 6 ˜fc abc, Sab = 1 3 ˜f(a cdeǫb)cde, τab = −1 6 ˜f[a cdeǫb]cde Zab,5 = −Z5a,b + Z5b,a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
81
+ page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
82
+ page_content='4) The constants FAB,CD have the same structure as the embedding tensor of [34], and in this language the above construction implies that only the geometric flux (anholonomy coefficients) and Q-flux are turned on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
83
+ page_content=' The former is given by the structure constants fabc of the geometric subalgebra g and the latter is given by ˜fabcd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
84
+ page_content=' The algebra is Leibniz with the fundamental identity given by the quadratic relations analogous to those of 7d maximal gauged SUGRA [34]: 2F G AB[CF I GD],H − F I ABGF G CDH + F G ABHF I CDG = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
85
+ page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
86
+ page_content='5) 5 In terms of structure constants fabc and dual constants fabcd, the conditions become 6ff[a [c ˜fb] de]f + fab f ˜ff cde − 1 3 ˜f[a cdefb]f f = 0 ˜fc abcfbd d = 0, fde a ˜f bde c − 1 3 ˜fc abdfde e = 0 ˜fc abg ˜fg def − 3 ˜fc g[de ˜fg f]ab = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
87
+ page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
88
+ page_content='6) The last of the above equations is also referred to as the dual Jacobi condition, just as the dual conditions in the Manin triples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
89
+ page_content=' It describes the internal (isolated) relations between the structure constants of the dual algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
90
+ page_content=' As in the case of Classical Drinfeld Algebra, in general, there might exist multiple equivalent choices of the geometric subalgebra g inside an EDA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
91
+ page_content=' Proper generalization of the isometry condition to the case of exceptional structures has been given in [25,26] and can be written as follows ǫABCDETAB ⊗ TCD ���� g⊗g = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
92
+ page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
93
+ page_content='7) In other words, for a given EDA, its geometric subalgebra g is spanned by such a subset of the whole set of generators {TAB} that satisfy the above condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
94
+ page_content=' For Classical Drinfel’d Double the condition is ηABTA ⊗ TB = 0, implying that one may, for example, take bas g = {Ta}, or bas g = { ˜T a}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
95
+ page_content=' For EDAs, one choice is self-evident - bas g = {T5a}, while presenting an alternative choice is usually a hard task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
96
+ page_content=' This implies that there is no natural generalization of the Non-Abelian T-duality transformation swapping g ↔ ˜g in the case of EDAs, although certain progress in defining an analogue of these swappings has been done in [30,31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
97
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
98
+ page_content='1 Geometric realization and dualities The algebraic structure of EDAs stands behind Nambu-Lie U-dualities of supergravity so- lutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
99
+ page_content=' These can map solutions to 11D supergravity equations into each other or into Type IIB supergravity equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
100
+ page_content=' Such duality transformations map the group manifolds correspond- ing to different choices of the geometric subalgebra g into each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
101
+ page_content=' For more detailed and concrete algorithm of constructing mutually dual backgrounds see [31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
102
+ page_content=' Below, we will briefly recall the overall construction and highlight relations to Exceptional Field Theory (ExFT) that provide convenient variables for writing such duality maps [35, 36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
103
+ page_content=' These are Ed(d)-covariant field theories defined in 11-dimensional space-time with an explicit split - 11 = D + d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
104
+ page_content=' The D-dimensional space-time is usually referred to as the external, the d-dimensional space is 6 usually referred to as internal, although no compactification is assumed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
105
+ page_content=' In the d = 4 case relevant to the present discussion, field content of the theory includes the external metric gµν, ten vector fields AµMN, five 2-form fields BµνM, and 14 scalar fields parametrized by a coset element MMN ∈ SL(5)/SO(5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
106
+ page_content=' The indices µ = 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
107
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
108
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
109
+ page_content=' , 6 parameterize directions of the external space-time whereas the indices M, N = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
110
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
111
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
112
+ page_content=' , 5 belong to the 5 of SL(5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
113
+ page_content=' For more details of the construction see [37].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
114
+ page_content=' Here we are interested in the special case where all fields transform- ing in irreps of SL(5) can be decomposed in terms of matrices EABMN (generalized vielbeins) geometrically realizing an EDA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
115
+ page_content=' In compact notation one writes [EAB, ECD] = FAB,CD EFEEF, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
116
+ page_content='8) where the constants FAB,CDEF are precisely the structure constants of the EDA and the brackets denote the so-called generalized Lie derivative of ExFT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
117
+ page_content=' Generalized vielbeins are parametrized by fields of 11D supergravity in the 11 = 7 + 4 split transforming as scalars under 7-dimensional diffeomorphisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
118
+ page_content=' Introducing a unity matrix MAB compose MMN,KL = 2EMN ABEKL CDMACMBD = MMKMNL − MMLMNK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
119
+ page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
120
+ page_content='9) The symmetric matrix mMN = e− φ 2 � |g|− 1 2gij Vi Vj |g| 1 2(1 + V 2) � (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
121
+ page_content='10) is then defined in terms of the 4d metric gmn on the group manifold, the vector V m = 1 3!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
122
+ page_content='ǫmnklCnkl and a scalar field eφ = |g7|1/7 which is the determinant |g7| of external 7 dimensional space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
123
+ page_content=' The metric gmn on the group manifold is defined as usual in terms of Maurer-Cartan forms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
124
+ page_content=' Let g ∈ G = exp g be an element of the group G whose Lie algebra is g, then 1-forms on the group manifold g−1dg ∈ g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
125
+ page_content=' In components we have g−1dg = rm aTadxm, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
126
+ page_content='11) where xm are some coordinates on the group manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
127
+ page_content=' Given an EDA and a choice of the isotropic subalgebra g one can explicitly construct the corresponding generalized vielbein.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
128
+ page_content=' A step-by-step algorithm of this procedure based on constructing adjoint action of eh ∈ G for some h ∈ g on an element of EDA can be found in [38].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
129
+ page_content=' An alternative choice of the isotropic subalgebra, if exists, is related to the given one by an SL(5) transformation T ′ AB = CA CCB DTCD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
130
+ page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
131
+ page_content='12) 7 If this transformation respects the structure of EDA, then the alternative isotropic subalgebra is spanned by T ′ 5a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
132
+ page_content=' Structure constants of the EDA then transform as F ′ A′B′,C′D′ = CA′ACB′BCC′CCD D′FAB,C D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
133
+ page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
134
+ page_content='13) Note that not any such matrix corresponds to a Nambu-Lie U-duality transformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
135
+ page_content=' Indeed, one can always perform a GL(4) transformation on generators of a given algebra g thus changing explicit realization of the corresponding EDA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
136
+ page_content=' Two EDA’s related by such transformation then correspond to 11D backgrounds related by a coordinate transformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
137
+ page_content=' Another trivial choice is CA B = � 14×4 λm 0 1 � , (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
138
+ page_content='14) that corresponds to simply a gauge transformation of the 3-form Cmnk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
139
+ page_content=' To avoid counting of EDA’s related by a rotation of the basis of their isotropic subalgebras we first classify Exceptional Drinfeld Algebras using classification of 4D real Lie Algebras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
140
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
141
+ page_content='2 Classification of 10 dimensional EDA’s The main goal of this work is to investigate relations between 10d EDAs that correspond to Nambu-Lie U-duality transformations of 11-dimensional supergravity backgrounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
142
+ page_content=' For this purpose, we start with a classification of 10D EDAs of certain class based on the classification of 4-dimensional real Lie Algebras by Mubarakzyanov [33] (for a review in English see [18]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
143
+ page_content=' Since explicit examples of Nambu-Lie U-dualities between 11D and Type IIB backgrounds are known in the literature, we are interested here only in EDAs constructed on 4d real Lie Algebras g4 that cannot be decomposed into a sum g4 = g4 ⊕ g1, where g3 is a 3d Lie algebra and g1 is 1-dimensional Abelan factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
144
+ page_content=' We list all relevant 4d real Lie Algebras in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
145
+ page_content=' g4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
146
+ page_content='1 [T2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
147
+ page_content=' T4] = T1 [T3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
148
+ page_content=' T4] = T2 g4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
149
+ page_content='5 [T1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
150
+ page_content=' T4] = AT1 [T2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
151
+ page_content=' T4] = BT2 [T3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
152
+ page_content=' T4] = CT3 ABC̸= 0 g4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
153
+ page_content='9 [T2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
154
+ page_content=' T3] = T1 [T1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
155
+ page_content=' T4] = 2AT1 [T2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
156
+ page_content=' T4] = AT2 − T3 [T3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
157
+ page_content=' T4] = T2 + AT3 A > 0 g4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
158
+ page_content='2 [T2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
159
+ page_content=' T4] = βT1 [T2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
160
+ page_content=' T4] = T2 [T3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
161
+ page_content=' T4] = T2 + T3 g4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
162
+ page_content='6 [T1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
163
+ page_content=' T4] = AT1 [T2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
164
+ page_content=' T4] = BT2 − T3 [T3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
165
+ page_content=' T4] = T2 + BT3 A > 0 g4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
166
+ page_content='10 [T1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
167
+ page_content=' T3] = T1 [T2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
168
+ page_content=' T3] = T2 [T1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
169
+ page_content=' T4] = −T2 [T2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
170
+ page_content=' T4] = T1 8 g4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
171
+ page_content='3 [T1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
172
+ page_content=' T4] = T1 [T3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
173
+ page_content=' T4] = T2 g4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
174
+ page_content='7 [T2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
175
+ page_content=' T3] = T1 [T1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
176
+ page_content=' T4] = 2T1 [T2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
177
+ page_content=' T4] = T2 [T3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
178
+ page_content=' T4] = T2 + T3 2g2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
179
+ page_content='1 [T1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
180
+ page_content=' T2] = T1 [T3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
181
+ page_content=' T4] = T3 g4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
182
+ page_content='4 [T1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
183
+ page_content=' T4] = T1 [T2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
184
+ page_content=' T4] = T1 + T2 [T3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
185
+ page_content=' T4] = T2 + T3 g4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
186
+ page_content='8 [T2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
187
+ page_content=' T3] = T1 [T1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
188
+ page_content=' T4] = (1 + β)T1 [T2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
189
+ page_content=' T4] = T2 [T3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
190
+ page_content=' T4] = βT3 β ∈ [−1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
191
+ page_content=' 1] Table 1: Classification of 4-dimensional indecomposable real Lie algebras g4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
192
+ page_content='n with n = 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
193
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
194
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
195
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
196
+ page_content=' , 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
197
+ page_content=' The algebra 2g2,1 is decomposable, however does not have a u(1) fac- tor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
198
+ page_content=' To arrive at the corresponding classification of 10d EDAs, we solve quadratic constraints for each class in the table above to find all possible sets of the dual structure coefficients ˜fdabc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
199
+ page_content=' To solve the equations we use mathematical software Mathematica , that gives us all the 4 dimensional EDAs in the chosen class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
200
+ page_content=' The result is listed in Table 2, where only unique combinations of indices are explicitly given in the coefficients of the underlying algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
201
+ page_content=' The rest of the indices are obtained by the antisymmetric property of the structure coefficients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
202
+ page_content=' EDA Structure Constants ˜f abcd g4,1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
203
+ page_content=' ˜f 1232 = ˜f 1344, ˜f 1242 = ˜f 1343 ˜f 1234 = ˜f 1233 ˜f 1344 − ˜f 1244 ˜f 1344 2 ˜f 1343 ˜f 1243 = ( ˜f 1244 − ˜f 1233) ˜f 1343 2 ˜f 1344 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
204
+ page_content=' ˜f 1232 = − ˜f 1344, ˜f 1244 = ˜f 1233, ˜f 2344 = ˜f 1231 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
205
+ page_content=' ˜f 1242 = ˜f 1343 ˜f 1244 = ˜f 1233 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
206
+ page_content=' ˜f 1244 = ˜f 1233, ˜f 2344 = ˜f 1231 g4,2 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
207
+ page_content=' ˜f 1244 = −1 3 (1 + 2β) ˜f 1233 6 ˜f 2344 = 1 3β(β − 4) ˜f 1231 g4,3 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
208
+ page_content=' ˜f 2344 = 1 3 ˜f 1231 g4,4 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
209
+ page_content=' ˜f 1244 = − ˜f 123 3 g4,5 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
210
+ page_content=' ˜f 1244 = −2A−2B+C 3C ˜f 1233 9 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
211
+ page_content=' ˜f 1344 = 1 3B(2A − B + 2C) ˜f 1232 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
212
+ page_content=' ˜f 2344 = 1 3A(A − 2B − 2C) ˜f 1231 g4,6 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
213
+ page_content=' ˜f 2344 = 1 3A(A − 2B − 2C) ˜f 1231 g4,7 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
214
+ page_content=' ˜f 1244 = −5 3 ˜f 1233 g4,8 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
215
+ page_content=' ˜f 1244 = − 1 3β(4 − β) ˜f 1233 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
216
+ page_content=' ˜f 1344 = 1 3(1 + 4B) ˜f 1232 g4,9 ˜f abcd = 0 or imaginary g4,10 ˜f abcd = 0 2g2,1 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
217
+ page_content=' ˜f 1234 = ˜f 1232, ˜f 1342 = ˜f 1344 Table 2: All possible structure constant of 10d EDAs for each g4,n with n = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
218
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
219
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
220
+ page_content=' , 10 and 2g2,1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
221
+ page_content=' The constants A, B, C, β are the same as in the previous table.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
222
+ page_content=' Hence, given we are interested only in real non-trivial EDAs, we end up with 16 examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
223
+ page_content=' A natural question would be: whether there exists a pair of EDAs in this set that are equivalent up to an SL(5) transformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
224
+ page_content=' This would mean that the same EDA can be generated by two 4d Lie Algebras that belong to different classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
225
+ page_content=' In the supergravity language this would mean existence of a Nambu-Lie U-duality between 11D backgrounds geometrically realizing this pair of 4d Lie algebras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
226
+ page_content=' Result of our calculations is that there are no such pairs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
227
+ page_content=' To arrive at this statement we used Mathematica software and explicitly solve equations on components of the matrix CAB for each pair of 16 algebras with no further restrictions on the coefficients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
228
+ page_content=' This means, that although in Table 2 we list algebras as though all explicitly written dual structure constants are non-vanishing, our code does not assume that [39].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
229
+ page_content=' 3 Discussion In this work we obtain a classification of 10-dimensional EDA based on the classification of 4-dimensional real Lie Algebras by Mubarakzyanov [33].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
230
+ page_content=' We intentionally restrict only to such 4d algebras that cannot be decomposed into a 3d algebra and a 1d abelian factor, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
231
+ page_content='e, we are interested in Nambu-Lie U-dualities between 11d backgrounds, rather than dualities between 11D and Type IIB solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
232
+ page_content=' More specifically, we look only at EDAs whose isotropic (geomet- ric) subalgebra is given by g4,n with n = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
233
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
234
+ page_content=', 10 and 2g2,1 in terms of the Mubarakzyanov’s classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
235
+ page_content=' Given these restrictions the classification of EDAs is summarized in Table 2, 10 where 16 non-trivial EDAs are listed in terms of dual structure constants ˜fabcd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
236
+ page_content=' The important question we were interested in is whether there exists a Nambu-Lie U-duality between 11D solutions and supergravity equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
237
+ page_content=' Equivalently, in the algebraic language: whether any of the sixteen exceptional Drinfeld algebras are equivalent up to an SL(5) trans- formation?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
238
+ page_content=' For that we computed the explicit form of all possible transformations between all possible pairs of EDA listed in Table 2 of the form (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
239
+ page_content='13).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
240
+ page_content=' In our findings, we discovered that none of the EDA pairs except the (ED2, ED4) possess transformation matrices, taking the basis of one EDA to another, with a non-zero determinant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
241
+ page_content=' Moreover, the transformation relating the aforesaid algebras - ED2 and ED4 is simply a GL(4) transformation rotating the basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
242
+ page_content=' Hence, these two solutions are equivalent and their geometric realizations can be mapped into each other by a 4D coordinate transformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
243
+ page_content=' Hence, there are no Nambu-Lie U-dualities inside SL(5) exceptional Drinfeld algebras relating 11D backgrounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
244
+ page_content=' Note however, this does not rule out transformations between 11D and Type IIB backgrounds, explicit examples of which are known [28, 29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
245
+ page_content=' Previously in [30] the same has been shown for transformations involving external automorphisms of the algebra sl(5), suggested as the natural analogue of Non-Abelian T-duality transformations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
246
+ page_content=' Here we complete the statement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
247
+ page_content=' There are further directions to extend this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
248
+ page_content=' The most obvious task is to complete the classification including all 4D real Lie algebras and list sets of EDA’s mutually Nambu- Lie U-dual.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
249
+ page_content=' Less straightforward is to increase the dimension of the geometric subalgebra g by one and consider 16D Exceptional Drinfeld Algebras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
250
+ page_content=' Unfortunately, there is no ready to use classification of 5D real Lie algebras, but certain restricted classifications are present in the literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
251
+ page_content=' Some useful examples can be found in [40–43], for a review see [44].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
252
+ page_content=' Another interesting direction of further research is to list those EDAs from our classification that can be obtained as generalized Yang-Baxter deformations of the trivial EDA when all dual structure constants are zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
253
+ page_content=' In other words, to answer the question: for which algebras in Table 2 dual structre constants can be represented in the form ˜fa bcd = re[bcfae d], (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
254
+ page_content='1) where rabc is completely antisymmetric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
255
+ page_content=' In the case of classical Drinfeld algebras such trans- formations are known to preserve integrability of the 2d sigma-model on the corresponding background.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
256
+ page_content=' There is no analogous statement for 3d sigma-models describing membranes propagating on 11d supergravity backgrounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
257
+ page_content=' However, such defined generalized Yang-Baxter deformations are of certain interest (see [45] for a review).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
258
+ page_content=' 11 Acknowledgments This work has been supported by the Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS”, grant No 21-1-2-3-1 and by Russian Ministry of Education and Science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
259
+ page_content=' References [1] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
260
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
261
+ page_content=' Buscher, “A Symmetry of the String Background Field Equations,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
262
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
263
+ page_content=' B194 (1987) 59–62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
264
+ page_content=' [2] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
265
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
266
+ page_content=' Buscher, “Path Integral Derivation of Quantum Duality in Nonlinear Sigma Models,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
267
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
268
+ page_content=' B201 (1988) 466–472.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
269
+ page_content=' [3] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
270
+ page_content=' Giveon, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
271
+ page_content=' Porrati, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
272
+ page_content=' Rabinovici, “Target space duality in string theory,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
273
+ page_content='Rept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
274
+ page_content=' 244 (1994) 77–202, arXiv:hep-th/9401139 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
275
+ page_content=' [4] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
276
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
277
+ page_content=' de la Ossa and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
278
+ page_content=' Quevedo, “Duality symmetries from nonAbelian isometries in string theory,” Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
279
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
280
+ page_content=' B 403 (1993) 377–394, arXiv:hep-th/9210021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
281
+ page_content=' [5] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
282
+ page_content=' Giveon and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
283
+ page_content=' Rocek, “On Nonabelian duality,” Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
284
+ page_content='Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
285
+ page_content=' B421 (1994) 173–190, arXiv:hep-th/9308154 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
286
+ page_content=' [6] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
287
+ page_content=' Hassler and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
288
+ page_content=' Rochais, “α′-Corrected Poisson-Lie T-Duality,” Fortsch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
289
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
290
+ page_content=' 68 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
291
+ page_content=' 9, (2020) 2000063, arXiv:2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
292
+ page_content='07897 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
293
+ page_content=' [7] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
294
+ page_content=' Borsato and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
295
+ page_content=' Wulff, “Quantum Correction to Generalized T Dualities,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
296
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
297
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
298
+ page_content=' 125 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
299
+ page_content=' 20, (2020) 201603, arXiv:2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
300
+ page_content='07902 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
301
+ page_content=' [8] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
302
+ page_content=' Klimcik and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
303
+ page_content=' Severa, “Dual nonAbelian duality and the Drinfeld double,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
304
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
305
+ page_content=' B 351 (1995) 455–462, arXiv:hep-th/9502122.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
306
+ page_content=' [9] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
307
+ page_content=' Klimˇc´ık and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
308
+ page_content=' Severa, “Poisson-Lie T duality and loop groups of Drinfeld doubles,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
309
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
310
+ page_content=' B372 (1996) 65–71, arXiv:hep-th/9512040 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
311
+ page_content=' [10] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
312
+ page_content=' Klimcik, “Poisson-Lie T duality,” Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
313
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
314
+ page_content=' B Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
315
+ page_content=' Suppl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
316
+ page_content=' 46 (1996) 116–121, arXiv:hep-th/9509095.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
317
+ page_content=' 12 [11] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
318
+ page_content=' Sfetsos, “Recent developments in non-Abelian T-duality in string theory,” Fortsch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
319
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
320
+ page_content=' 59 (2011) 1149–1153, arXiv:1105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
321
+ page_content='0537 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
322
+ page_content=' [12] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
323
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
324
+ page_content=' Thompson, “An Introduction to Generalised Dualities and their Applications to Holography and Integrability,” PoS CORFU2018 (2019) 099, arXiv:1904.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
325
+ page_content='11561 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
326
+ page_content=' [13] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
327
+ page_content=' Hassler, “Poisson-Lie T-Duality in Double Field Theory,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
328
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
329
+ page_content=' B 807 (2020) 135455, arXiv:1707.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
330
+ page_content='08624 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
331
+ page_content=' [14] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
332
+ page_content=' Demulder, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
333
+ page_content=' Hassler, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
334
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
335
+ page_content=' Thompson, “An invitation to Poisson-Lie T-duality in Double Field Theory and its applications,” PoS CORFU2018 (2019) 113, arXiv:1904.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
336
+ page_content='09992 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
337
+ page_content=' [15] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
338
+ page_content=' Bugden, “Non-abelian T-folds,” JHEP 03 (2019) 189, arXiv:1901.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
339
+ page_content='03782 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
340
+ page_content=' [16] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
341
+ page_content=' Hlavat´y and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
342
+ page_content=' Petr, “T-folds as Poisson-Lie plurals,” arXiv:2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
343
+ page_content='08387 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
344
+ page_content=' [17] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
345
+ page_content=' Hlavaty and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
346
+ page_content=' Snobl, “Classification of 6-dimensional manin triples,” arXiv:math/0202209.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
347
+ page_content=' [18] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
348
+ page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
349
+ page_content=' Popovych, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
350
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
351
+ page_content=' Boyko, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
352
+ page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
353
+ page_content=' Nesterenko, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
354
+ page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
355
+ page_content=' Lutfullin, “Realizations of real low-dimensional Lie algebras,” J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
356
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
357
+ page_content=' A 36 (2003) 7337–7360, arXiv:math-ph/0301029.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
358
+ page_content=' [19] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
359
+ page_content=' Klimˇc´ık, “On integrability of the Yang-Baxter sigma-model,” J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
360
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
361
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
362
+ page_content=' 50 (2009) 043508, arXiv:0802.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
363
+ page_content='3518 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
364
+ page_content=' [20] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
365
+ page_content=' Cremmer and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
366
+ page_content=' Julia, “The SO(8) supergravity,” Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
367
+ page_content='Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
368
+ page_content=' B159 (1979) 141.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
369
+ page_content=' [21] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
370
+ page_content=' Cremmer, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
371
+ page_content=' Julia, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
372
+ page_content=' Lu, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
373
+ page_content=' Pope, “Dualization of dualities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
374
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
375
+ page_content=',” Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
376
+ page_content='Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
377
+ page_content=' B523 (1998) 73–144, arXiv:hep-th/9710119 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
378
+ page_content=' [22] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
379
+ page_content=' Obers and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
380
+ page_content=' Pioline, “U duality and M theory,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
381
+ page_content='Rept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
382
+ page_content=' 318 (1999) 113–225, arXiv:hep-th/9809039 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
383
+ page_content=' [23] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
384
+ page_content=' Duff, “Duality rotations in string theory,” Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
385
+ page_content='Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
386
+ page_content=' B335 (1990) 610.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
387
+ page_content=' [24] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
388
+ page_content=' Duff and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
389
+ page_content=' Lu, “Duality rotations in membrane theory,” Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
390
+ page_content='Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
391
+ page_content=' B347 (1990) 394–419.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
392
+ page_content=' 13 [25] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
393
+ page_content=' Sakatani, “U-duality extension of Drinfel’d double,” PTEP 2020 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
394
+ page_content=' 2, (2020) 023B08, arXiv:1911.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
395
+ page_content='06320 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
396
+ page_content=' [26] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
397
+ page_content=' Malek and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
398
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
399
+ page_content=' Thompson, “Poisson-Lie U-duality in Exceptional Field Theory,” JHEP 04 (2020) 058, arXiv:1911.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
400
+ page_content='07833 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
401
+ page_content=' [27] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
402
+ page_content=' Malek, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
403
+ page_content=' Sakatani, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
404
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
405
+ page_content=' Thompson, “E6(6) exceptional Drinfel’d algebras,” JHEP 01 (2021) 020, arXiv:2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
406
+ page_content='08510 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
407
+ page_content=' [28] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
408
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
409
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
410
+ page_content=' Blair, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
411
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
412
+ page_content=' Thompson, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
413
+ page_content=' Zhidkova, “Exploring Exceptional Drinfeld Geometries,” JHEP 09 (2020) 151, arXiv:2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
414
+ page_content='12452 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
415
+ page_content=' [29] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
416
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
417
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
418
+ page_content=' Blair and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
419
+ page_content=' Zhidkova, “Generalised U-dual solutions in supergravity,” JHEP 05 (2022) 081, arXiv:2203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
420
+ page_content='01838 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
421
+ page_content=' [30] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
422
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
423
+ page_content=' Musaev, “On non-abelian U-duality of 11D backgrounds,” arXiv:2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
424
+ page_content='01213 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
425
+ page_content=' [31] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
426
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
427
+ page_content=' Musaev and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
428
+ page_content=' Sakatani, “Non-Abelian U duality at work,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
429
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
430
+ page_content=' D 104 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
431
+ page_content=' 4, (2021) 046015, arXiv:2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
432
+ page_content='13263 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
433
+ page_content=' [32] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
434
+ page_content=' Hlavaty, “Classification of 6D Leibniz algebras,” PTEP 2020 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
435
+ page_content=' 7, (2020) 071B01, arXiv:2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
436
+ page_content='06164 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
437
+ page_content=' [33] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
438
+ page_content=' Mubarakzyanov, “On solvable Lie algebras,” Izv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
439
+ page_content=' Vys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
440
+ page_content=' Ucheb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
441
+ page_content=' Zaved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
442
+ page_content=' Matematika 1 (32) (1963) 114–123.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
443
+ page_content=' [34] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
444
+ page_content=' Samtleben and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
445
+ page_content=' Weidner, “The Maximal D=7 supergravities,” Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
446
+ page_content='Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
447
+ page_content=' B725 (2005) 383–419, arXiv:hep-th/0506237 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
448
+ page_content=' [35] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
449
+ page_content=' Hohm and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
450
+ page_content=' Samtleben, “U-duality covariant gravity,” JHEP 1309 (2013) 080, arXiv:1307.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
451
+ page_content='0509 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
452
+ page_content=' [36] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
453
+ page_content=' Hohm and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
454
+ page_content=' Samtleben, “Exceptional Form of D=11 Supergravity,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
455
+ page_content='Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
456
+ page_content='Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
457
+ page_content=' 111 (2013) 231601, arXiv:1308.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
458
+ page_content='1673 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
459
+ page_content=' [37] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
460
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
461
+ page_content=' Musaev, “Exceptional field theory: SL(5),” JHEP 02 (2016) 012, arXiv:1512.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
462
+ page_content='02163 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
463
+ page_content=' [38] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
464
+ page_content=' Sakatani, “Type II DFT solutions from Poisson-Lie T-duality/plurality,” arXiv:1903.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
465
+ page_content='12175 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
466
+ page_content=' [PTEP,073B04(2019)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
467
+ page_content=' 14 [39] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
468
+ page_content=' Kumar and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
469
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
470
+ page_content=' Musaev, “eda10,” 1, 2023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
471
+ page_content=' https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
472
+ page_content='com/emusaev/eda10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
473
+ page_content=' [40] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
474
+ page_content=' Darijani and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
475
+ page_content=' Usefi, “Classification of 5-dimensional restricted Lie algebras over perfect fields, I,” Journal of Algebra 464 (2016) 97–140, arXiv:1412.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
476
+ page_content='8377.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
477
+ page_content=' [41] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
478
+ page_content=' Andrada and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
479
+ page_content=' Fino, “A class of Sasakian 5-manifolds,” Transformation Groups 14 (2009) 493–512, arXiv:0807.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
480
+ page_content='1800 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
481
+ page_content='dg].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
482
+ page_content=' [42] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
483
+ page_content=' Bieszk, “Classification of Five-Dimensional Lie Algebras of Class T2,” Demonstratio Mathematica 30 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
484
+ page_content=' 2, (1997) 403–424.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
485
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
486
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
487
+ page_content='1515/dema-1997-0219.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
488
+ page_content=' [43] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
489
+ page_content=' Calvaruso and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
490
+ page_content=' Perrone, “Five-dimensional paracontact Lie algebras,” Differential Geometry and its Applications 45 (2016) 115–129.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
491
+ page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
492
+ page_content='sciencedirect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
493
+ page_content='com/science/article/pii/S0926224516000024.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
494
+ page_content=' [44] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
495
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
496
+ page_content=' Prieto, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
497
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
498
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
499
+ page_content=' Martel, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
500
+ page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
501
+ page_content=' Vald´es, and ´A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
502
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
503
+ page_content=' Tenorio, “A historical review of the classifications of Lie algebras,” Revista De La Union Matematica Argentina 54 (2013) 75–99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
504
+ page_content=' [45] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
505
+ page_content=' Gubarev and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
506
+ page_content=' Musaev, “Integrability structures in string theory,” arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
507
+ page_content='06486 [hep-th].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
508
+ page_content=' 15' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQf_y40/content/2301.11963v1.pdf'}
6tAyT4oBgHgl3EQfQfaP/content/tmp_files/2301.00047v1.pdf.txt ADDED
@@ -0,0 +1,375 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ The Simplest Proof of Parikh’s Theorem via
2
+ Derivation Trees
3
+ Alexander Rubtsov � �
4
+ National Research University Higher School of Economics
5
+ Moscow Institute of Physics and Technology
6
+ Abstract
7
+ Parikh’s theorem is a fundamental result of the formal language’s theory. There had been published
8
+ many proofs and many papers claimed to provide a simplified proof, but most of them are long and
9
+ still complicated. We provide the proof that is really short, simple and discloses the nature of this
10
+ fundamental result. We follow the technique closed to the original Parikh’s paper and our proof is
11
+ similar to the proof by Ryoma Sin’ya 2019, but we provide more detailed exposition and pretend to
12
+ more simplicity as well. We achieve the simplicity via nonconstructivenes that allows us avoiding
13
+ many difficulties met by other proofs.
14
+ 2012 ACM Subject Classification Theory of computation → Grammars and context-free languages
15
+ Keywords and phrases Formal Languages, Context-Free Languages, Parikh’s Theorem
16
+ Funding The paper was supported by RFBR grant 20-01-00645
17
+ Acknowledgements I want to thank Dmitry Chistikov for the helpfull discussion of the paper
18
+ 1
19
+ Introduction
20
+ Parikh’s theorem [6] is a fundamental theorem of the formal language’s theory. There had
21
+ been published many proofs (see [1], [4] for the survey of different proofs and detailed
22
+ exposition on the topic). Many papers claimed to provide a simplified proof ([2] looks to
23
+ be the most known), but most of them are long and still complicated. Despite really short
24
+ and simple proofs are already known (e.g., [7]), papers with another proofs continues to be
25
+ published [5]. We provide the proof that is really short, simple and discloses the nature of
26
+ this fundamental result. Our proof is based on derivations trees so as the original Parikh’s
27
+ proof [6]. As Parikh, we decompose derivation trees into small ones; we consider similar
28
+ kinds of trees: ordinary derivation trees and auxiliary ones (with only nonterminal in the
29
+ crown that is the same as the root). We get rid of duplicates in auxiliary trees and pump
30
+ them. While our technique is similar to the original proof in general, it is simpler since we
31
+ do not have restrictions on grammar and other technical issues (like considering derivation
32
+ trees that contains nonterminals from a fixed subset). The simplicity of our construction is
33
+ based on nonconstructivenes that allows us avoiding many technical issues. Also trees (in
34
+ the decomposition) in our construction have linear height (in the number of nonterminals)
35
+ while in the Parikh’s construction trees have quadratic height. In our proof we generalize the
36
+ idea of derivation from words to trees and translate the idea of the pumping lemma to the
37
+ trees as well. It makes our construction clear enough to explain students during a lecture in
38
+ a basic course of formal languages and automata theory, and so we hope that the detailed
39
+ version will help to spread it in the community.
40
+ Our technique is similar to [8]. Unlike concise exposition in [8], we provide more detailed
41
+ exposition and explain the intuition of the proof. And we do not use auxiliary results for our
42
+ proof (thanks to nonconstructivenes).
43
+ arXiv:2301.00047v1 [cs.FL] 30 Dec 2022
44
+
45
+ 2
46
+ The Simplest Proof of Parikh’s Theorem via Derivation Trees
47
+ 2
48
+ Definitions
49
+ We denote by N non-negative integers. Let Σk = {a1, . . . , ak} be an alphabet, k ⩾ 1. We
50
+ denote by Ψ : Σ∗
51
+ k → Nk the Parikh mapping that maps a word w to its Parikh’s image the
52
+ vector (|w|a1, |w|a2, . . . , |w|ak), where |w|aj is the number of letters aj in w. We denote the
53
+ Parikh’s image of a language L ⊆ Σ∗
54
+ k in the natural way:
55
+ Ψ(L) = {Ψ(w) | w ∈ L}.
56
+ A set S ⊆ Nk is linear if there exist vectors v0, v1, . . . , vm ∈ Nk such that
57
+ S = {v0 + v1t1 + v2t2 + . . . vmtm | t1, . . . tm ∈ N}.
58
+ A set is semi-linear if it is a union of finitely many linear sets.
59
+ ▶ Theorem 1 (Parikh). For each context-free language L the set Ψ(L) is semi-linear.
60
+ We use classical notation for context-free grammars [3]. We denote by N the set of
61
+ nonterminals, and denote nonterminals by capital letters. Small letters from the end of
62
+ the alphabet denote words and Greek letters denote words over the alphabet Σ ∪ N, called
63
+ sentential forms.
64
+ Our proof uses derivation trees and exploits the idea similar to the classical proof of the
65
+ pumping lemma. We use derivation trees not only for words, but also for sentential forms of
66
+ a special kind. We call a tree that corresponds to a derivation of the form A
67
+ ∗=⇒ uAv a block
68
+ tree. We call derivation trees for words ground trees. We say that a tree T (a ground or a
69
+ block one) is minimal if it does not have a block tree as a subtree, i.e. T does not have the
70
+ form (S
71
+ ∗=⇒ xAz
72
+ ∗=⇒ xuAvz
73
+ ∗=⇒ xuβvz). Hereinafter, we describe a tree by any derivation
74
+ corresponding to the tree.
75
+ S
76
+ A
77
+ A
78
+ x
79
+ u
80
+ y
81
+ v
82
+ z
83
+ S
84
+ A
85
+ y
86
+ x
87
+ z
88
+ A
89
+ A
90
+ u
91
+ v
92
+ Figure 1 Decomposition of tree T into the pair of trees (T1, T2)
93
+ A non-minimal ground tree has the form S
94
+ ∗=⇒ xAz
95
+ ∗=⇒ xuAvz
96
+ ∗=⇒ xuyvz. It can be
97
+ decomposed into a pair of the ground tree S
98
+ ∗=⇒ xAz
99
+ ∗=⇒ xyz and the block tree A
100
+ ∗=⇒ uAv,
101
+ see Fig. 1. Formally, we say that a tree T is decomposed to the pair of trees (T1, T2) if
102
+ for some B ∈ N : T = A
103
+ ∗=⇒ xBz
104
+ ∗=⇒ xuBvz
105
+ ∗=⇒ xuβvz, T1 = A
106
+ ∗=⇒ xBz
107
+ ∗=⇒ xβz and
108
+ T2 = B
109
+ ∗=⇒ uBv; here β is either A if T is a block tree or β ∈ Σ∗ if T is a ground tree (and
110
+ in this case A is the axiom). We say that T can be composed from T1 and T2. Note that T1
111
+ and T2 can be composed in several ways if T1 has several B nodes. We denote
112
+ T1 ◦ T2 = {T | T can be decomposed into (T1, T2)}
113
+
114
+ A. Rubtsov
115
+ 3
116
+ In addition to derivation of words we consider derivation of trees as follows.
117
+ ▶ Definition 2. A derivation of a tree starts with a minimal ground tree and each derivation
118
+ step leads to a ground tree as well. At a derivation step we choose a node A and a minimal
119
+ block tree A
120
+ ∗=⇒ xAy, replace the chosen node by the block tree; the subtree of the chosen
121
+ node is glued into A from the crown of the block tree.
122
+ So in the trees derivation a minimal ground tree has the role of the axiom (there can
123
+ be several ones), and a replacement A → Ti where Ti = (A
124
+ ∗=⇒ xAz) has the role of the
125
+ production rule.
126
+ ▶ Definition 3. Let S be a multiset of trees. We say that S′ is derived from S if S′ is
127
+ obtained from S by the replacement of two trees T1 and T2 by a tree T ∈ T1 ◦ T2. We denote
128
+ it as S ⊢ S′. We say that a multiset of trees S is well-formed such that S ⊢
129
+ ∗ {T} for some
130
+ ground tree T.
131
+ It is easy to see, that if S contains only minimal trees and S ⊢
132
+ ∗ {T}, then there exists a
133
+ derivation of T such that S = {T0, T1, . . . , Tn} where T0 is the ground tree and Ti, i ⩾ 1 is
134
+ the block tree that was chosen at the i-th derivation step.
135
+ We define the Parikh image for the trees in a natural way. Ψ(T) = Ψ(w) if T = (S
136
+ ∗=⇒ w)
137
+ and Ψ(T) = Ψ(xz) if T = (A
138
+ ∗=⇒ xAz). The following lemma directly follows from the
139
+ definitions.
140
+ ▶ Lemma 4.
141
+ If T, T ′ ∈ T1 ◦ T2, then Ψ(T) = Ψ(T ′) = Ψ(T1) + Ψ(T2).
142
+ If S ⊢
143
+ ∗ {T} and S ⊢
144
+ ∗ {T ′} then Ψ(T) = Ψ(T ′).
145
+ Lemma 4 implies that we can extend the definition of the Parikh map to well-formed
146
+ multisets: Ψ(S) = �
147
+ T ∈S Ψ(T).
148
+ By the pigeonhole principle each minimal tree has depth at most |N| − 1 (otherwise on
149
+ the longest path from the root to a leaf there would be a repetition of nonterminals). Since
150
+ (for a fixed grammar) each node of a tree has a bounded degree, there is only finitely many
151
+ minimal trees. Let us enumerate them and denote the number of minimal trees by m. So,
152
+ each multiset of minimal trees S has a corresponding vector ⃗v ∈ Nm where ⃗vi is the number
153
+ of occurrences of Ti in S.
154
+ 3
155
+ Proof
156
+ We begin with the proof idea. Any word w derived from a grammar G has some derivation
157
+ tree Tw and Ψ(Tw) = Ψ(w). We decompose Tw into a multiset Sw of minimal trees (Sw ⊢
158
+ ∗ Tw).
159
+ Denote by Tg the ground tree from Sw. Obtain the set S′
160
+ w from Sw by removing repetitions.
161
+ Note that S′
162
+ w ⊆ MG where MG is the finite set of minimal trees of grammar G. So we have
163
+ defined a mapping w �→ S′
164
+ w with a finite codomain 2MG. For any multiset S obtained from
165
+ S′
166
+ w by repetition of non-ground trees, there exists a derivation tree T (of G) such that S ⊢
167
+ ∗ T
168
+ (S is well-formed). Therefore Ψ(T) ∈ Ψ(L(G)). In other words,
169
+
170
+ �Ψ(S′
171
+ w) +
172
+
173
+ T ′∈S′w\{Tg}
174
+ tT ′ · Ψ(T ′)
175
+
176
+ � ∈ Ψ(L(G))
177
+
178
+ 4
179
+ The Simplest Proof of Parikh’s Theorem via Derivation Trees
180
+ no matter how we choose tT ′ ∈ N for each T ′. Let S be a well-formed multiset with a ground
181
+ tree Tg ∈ S. Denote by
182
+ Lin(S) =
183
+
184
+
185
+ �Ψ(S) +
186
+
187
+ T ′
188
+ i ∈S\{Tg}
189
+ ti · Ψ(T ′
190
+ i)
191
+ �����
192
+ ti ∈ N
193
+
194
+
195
+ � .
196
+ (1)
197
+ The set Lin(S) is linear by the definition. Since there are only finitely many different sets S′
198
+ w,
199
+ the set Ψ(L(G)) is a finite union of linear sets Lin(S′
200
+ w), so it is semilinear by the definition.
201
+ The scheme of the proof is depicted in Fig. 2
202
+ L(G)
203
+ Ψ(L(G))
204
+ {Tw : w ∈ L(G)}
205
+ {Sw : w ∈ L(G)}
206
+ {S′
207
+ w : w ∈ L(G)}
208
+ {Lin(S′
209
+ w) : w ∈ L(G)}
210
+ Ψ
211
+
212
+ Figure 2 Scheme of the proof
213
+ 3.1
214
+ Auxiliary Lemmas
215
+ ▶ Lemma 5. Let S be a well-formed multiset of minimal trees and S′′ be a multiset. Denote
216
+ by ⃗v and ⃗v′′ the corresponding vectors of S and S′′, respectively. Suppose ⃗vi > 0 iff ⃗v′′
217
+ i > 0;
218
+ then S′′ is a well-formed multiset as well.
219
+ Proof. The statement is equivalent to the conjunction of two claims. The first one: if ⃗vi > 0
220
+ and ⃗v′′
221
+ i = ⃗vi + 1 while ⃗v′′
222
+ j = ⃗vj for j ̸= i, then S′′ is well-formed. The second one: if ⃗vi > 1
223
+ and ⃗v′′
224
+ i = ⃗vi − 1 while ⃗v′′
225
+ j = ⃗vj for j ̸= i, then S′′ is well-formed. Starting with the vector ⃗v
226
+ and subsequently increasing or decreasing its components by 1 we can obtain any vector ⃗v′′
227
+ satisfying the conditions of the lemma. Since at each step the condition of one of the claims
228
+ hold, we obtain that the condition of the lemma holds in the result.
229
+ Recall Definitions 2 and 3 of trees and multiset derivations. Denote by Ti = (A
230
+ ∗=⇒ uAv)
231
+ the i-th block-tree. Fix a derivation tree T such that S ⊢
232
+ ∗ {T} with a derivation of the tree
233
+ T as well.
234
+ Proof of the first claim. Due to the form of Ti ∈ S, the tree T contains the non-terminal A.
235
+ So we can glue Ti into the place of some occurrence of the non-terminal A and obtain the
236
+ tree T ′ as the result. S′′ is well-formed, since T ′ is a derivation tree of G by the construction.
237
+ Proof of the second claim. If Ti is a subtree of T, than it can be removed from T (as
238
+ in Fig. 1) and the resulting tree T ′ would also be a derivation tree of G. Otherwise, let us
239
+ consider the steps of the fixed derivation of T. We change this derivation as follows. Recalling
240
+ that ⃗vi > 1, fix two copies T 1
241
+ i and T 2
242
+ i of the tree Ti in the multiset S such that T 1
243
+ i was used
244
+
245
+ A. Rubtsov
246
+ 5
247
+ earlier than T 2
248
+ i in the derivation of T. When T 2
249
+ i must be composed with the ground tree, we
250
+ skip this step. If at some step a tree Tj = (B
251
+ ∗=⇒ u′Bv′) is glued into a node B of T 2
252
+ i , then
253
+ we glue it into the corresponding node B of T 1
254
+ i (that is already in the ground tree). So, this
255
+ modification yields a derivation S ⊢
256
+ ∗ {T ′, T 2
257
+ i }, where T ′ is some ground tree. But then we
258
+ could do the same starting from S′′ and obtain S′′ ⊢
259
+ ∗ {T ′}. Therefore S′′ is well-formed.
260
+
261
+ ▶ Corollary 6. For any w ∈ L(G) : Lin(S′
262
+ w) ⊆ Ψ(L(G)).
263
+ ▶ Lemma 7. For any w ∈ L(G):
264
+ Ψ(w) ∈ Lin(S′
265
+ w).
266
+ Proof. From the definitions it follows that Ψ(w) = Ψ(Sw) ∈ Lin(Sw).
267
+ We prove that
268
+ Lin(Sw) ⊆ Lin(S′
269
+ w).
270
+ Note that Ψ(Sw) = Ψ(S′
271
+ w) + �m
272
+ i=1(⃗vi − 1)Ψ(Ti), where ⃗v is the
273
+ corresponding vector of Sw and Ti is the i-th minimal tree (in the enumeration above). By
274
+ the definition a vector ⃗u ∈ Lin(Sw) has the form
275
+ ⃗u = Ψ(Sw) +
276
+
277
+ T ′
278
+ j∈Sw\{Tg}
279
+ t′
280
+ j · Ψ(T ′
281
+ j) = Ψ(Sw) +
282
+ n
283
+
284
+ i=1
285
+ ti · Ψ(Ti),
286
+ where in the second equality we put together all T ′
287
+ j’s that are copies of the same tree Ti.
288
+ Note that each T ′
289
+ j is a minimal block tree, so T ′
290
+ j = Ti for some i. Thus,
291
+ ⃗u =
292
+
293
+ �Ψ(S′
294
+ w) +
295
+
296
+ i:⃗vi>0
297
+ (ti + ⃗vi − 1)Ψ(Ti)
298
+
299
+ � ∈ Lin(S′
300
+ w)
301
+
302
+ 3.2
303
+ Proof of Parikh’s theorem
304
+ Let G be a context-free grammar generating L. For a word w ∈ L denote by T(w) the set of
305
+ all derivation trees Tw. Note that T(w) ̸= ∅ and it can be even infinite if there are ε-rules
306
+ in G. Denote by S(w) = {Sw | ∃Tw ∈ T(w) : Sw ⊢
307
+ ∗ {Tw}} where Sw is a multiset consisting
308
+ only of minimal trees (as before). Finally S′(w) = {S′
309
+ w | Sw ∈ S(w)}; recall that S′
310
+ w is
311
+ the set obtained from Sw by deleting the duplicates. Now we show that S′(w) is finite for
312
+ each w and moreover the union ∪w∈LS′(w) = S′(L) is finite as well. Recall that there are
313
+ finitely many minimal trees, and we denote them by T1, . . . , Tm. Therefore, each Sw has a
314
+ corresponding m-dimensional vector ⃗v such that
315
+ Ψ(w) = Ψ(Sw) =
316
+ m
317
+
318
+ i=1
319
+ ⃗vi · Ψ(Ti).
320
+ The corresponding vector ⃗v′ of S′
321
+ w is a 0-1 vector such that ⃗v′
322
+ i = 1 iff ⃗vi > 0. So since there
323
+ are only finitely many 0-1 vectors of length m and each S′
324
+ w ∈ S′(L) has a corresponding 0-1
325
+ vector ⃗v′, then the set S′(L) is finite as well.
326
+ Putting everything together, by Lemma 7
327
+ Ψ(L) ⊆
328
+
329
+ S′∈S′(L)
330
+ Lin(S′)
331
+ and by Corollary 6
332
+
333
+ S′∈S′(L)
334
+ Lin(S′) ⊆ Ψ(L).
335
+
336
+ 6
337
+ The Simplest Proof of Parikh’s Theorem via Derivation Trees
338
+ Since the set S′(L) is finite and each set Lin(S′) is linear by Eq. (1), the equality
339
+ Ψ(L) =
340
+
341
+ S′∈S′(L)
342
+ Lin(S′)
343
+ proves Parikh’s theorem.
344
+
345
+ References
346
+ 1
347
+ Javier Esparza, Pierre Ganty, Stefan Kiefer, and Michael Luttenberger. Parikh’s theorem: A
348
+ simple and direct automaton construction. Information Processing Letters, 111(12):614–619,
349
+ 2011.
350
+ URL: https://www.sciencedirect.com/science/article/pii/S0020019011000822,
351
+ doi:https://doi.org/10.1016/j.ipl.2011.03.019.
352
+ 2
353
+ Jonathan Goldstine. A simplified proof of Parikh’s theorem. Discrete Mathematics, 19(3):235–
354
+ 239, 1977.
355
+ 3
356
+ John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. Introduction to automata theory,
357
+ languages, and computation. Acm Sigact News, 32(1):60–65, 2001.
358
+ 4
359
+ Caleb Koch. A friendly tour of Parikh’s theorem. 2018. URL: http://cakoch10.github.io/
360
+ papers/Kleene_Algebra.pdf.
361
+ 5
362
+ Toshihiro Koga. A proof of Parikh’s theorem via Dickson’s lemma. International Journal of
363
+ Foundations of Computer Science, 32(02):163–173, 2021. doi:10.1142/S012905412150009X.
364
+ 6
365
+ Rohit J. Parikh.
366
+ On Context-Free Languages.
367
+ J. ACM, 13(4):570–581, oct 1966.
368
+ doi:
369
+ 10.1145/321356.321364.
370
+ 7
371
+ Jeffrey O. Shallit. A Second Course in Formal Languages and Automata Theory. Cambridge
372
+ University Press, 2008.
373
+ 8
374
+ Ryoma Sin’ya. Simple proof of Parikh’s theorem a la Takahashi. CoRR, abs/1909.09393, 2019.
375
+
6tAyT4oBgHgl3EQfQfaP/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,215 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf,len=214
2
+ page_content='The Simplest Proof of Parikh’s Theorem via Derivation Trees Alexander Rubtsov � � National Research University Higher School of Economics Moscow Institute of Physics and Technology Abstract Parikh’s theorem is a fundamental result of the formal language’s theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
3
+ page_content=' There had been published many proofs and many papers claimed to provide a simplified proof, but most of them are long and still complicated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
4
+ page_content=' We provide the proof that is really short, simple and discloses the nature of this fundamental result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
5
+ page_content=' We follow the technique closed to the original Parikh’s paper and our proof is similar to the proof by Ryoma Sin’ya 2019, but we provide more detailed exposition and pretend to more simplicity as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
6
+ page_content=' We achieve the simplicity via nonconstructivenes that allows us avoiding many difficulties met by other proofs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
7
+ page_content=' 2012 ACM Subject Classification Theory of computation → Grammars and context-free languages Keywords and phrases Formal Languages, Context-Free Languages, Parikh’s Theorem Funding The paper was supported by RFBR grant 20-01-00645 Acknowledgements I want to thank Dmitry Chistikov for the helpfull discussion of the paper 1 Introduction Parikh’s theorem [6] is a fundamental theorem of the formal language’s theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
8
+ page_content=' There had been published many proofs (see [1], [4] for the survey of different proofs and detailed exposition on the topic).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
9
+ page_content=' Many papers claimed to provide a simplified proof ([2] looks to be the most known), but most of them are long and still complicated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
10
+ page_content=' Despite really short and simple proofs are already known (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
11
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
12
+ page_content=', [7]), papers with another proofs continues to be published [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
13
+ page_content=' We provide the proof that is really short, simple and discloses the nature of this fundamental result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
14
+ page_content=' Our proof is based on derivations trees so as the original Parikh’s proof [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
15
+ page_content=' As Parikh, we decompose derivation trees into small ones;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
16
+ page_content=' we consider similar kinds of trees: ordinary derivation trees and auxiliary ones (with only nonterminal in the crown that is the same as the root).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
17
+ page_content=' We get rid of duplicates in auxiliary trees and pump them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
18
+ page_content=' While our technique is similar to the original proof in general, it is simpler since we do not have restrictions on grammar and other technical issues (like considering derivation trees that contains nonterminals from a fixed subset).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
19
+ page_content=' The simplicity of our construction is based on nonconstructivenes that allows us avoiding many technical issues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
20
+ page_content=' Also trees (in the decomposition) in our construction have linear height (in the number of nonterminals) while in the Parikh’s construction trees have quadratic height.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
21
+ page_content=' In our proof we generalize the idea of derivation from words to trees and translate the idea of the pumping lemma to the trees as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
22
+ page_content=' It makes our construction clear enough to explain students during a lecture in a basic course of formal languages and automata theory, and so we hope that the detailed version will help to spread it in the community.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
23
+ page_content=' Our technique is similar to [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
24
+ page_content=' Unlike concise exposition in [8], we provide more detailed exposition and explain the intuition of the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
25
+ page_content=' And we do not use auxiliary results for our proof (thanks to nonconstructivenes).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
26
+ page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
27
+ page_content='00047v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
28
+ page_content='FL] 30 Dec 2022 2 The Simplest Proof of Parikh’s Theorem via Derivation Trees 2 Definitions We denote by N non-negative integers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
29
+ page_content=' Let Σk = {a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
30
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
31
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
32
+ page_content=' , ak} be an alphabet, k ⩾ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
33
+ page_content=' We denote by Ψ : Σ∗ k → Nk the Parikh mapping that maps a word w to its Parikh’s image the vector (|w|a1, |w|a2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
34
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
35
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
36
+ page_content=' , |w|ak), where |w|aj is the number of letters aj in w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
37
+ page_content=' We denote the Parikh’s image of a language L ⊆ Σ∗ k in the natural way: Ψ(L) = {Ψ(w) | w ∈ L}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
38
+ page_content=' A set S ⊆ Nk is linear if there exist vectors v0, v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
39
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
40
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
41
+ page_content=' , vm ∈ Nk such that S = {v0 + v1t1 + v2t2 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
42
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
43
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
44
+ page_content=' vmtm | t1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
45
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
46
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
47
+ page_content=' tm ∈ N}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
48
+ page_content=' A set is semi-linear if it is a union of finitely many linear sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
49
+ page_content=' ▶ Theorem 1 (Parikh).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
50
+ page_content=' For each context-free language L the set Ψ(L) is semi-linear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
51
+ page_content=' We use classical notation for context-free grammars [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
52
+ page_content=' We denote by N the set of nonterminals, and denote nonterminals by capital letters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
53
+ page_content=' Small letters from the end of the alphabet denote words and Greek letters denote words over the alphabet Σ ∪ N, called sentential forms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
54
+ page_content=' Our proof uses derivation trees and exploits the idea similar to the classical proof of the pumping lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
55
+ page_content=' We use derivation trees not only for words, but also for sentential forms of a special kind.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
56
+ page_content=' We call a tree that corresponds to a derivation of the form A ∗=⇒ uAv a block tree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
57
+ page_content=' We call derivation trees for words ground trees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
58
+ page_content=' We say that a tree T (a ground or a block one) is minimal if it does not have a block tree as a subtree, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
59
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
60
+ page_content=' T does not have the form (S ∗=⇒ xAz ∗=⇒ xuAvz ∗=⇒ xuβvz).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
61
+ page_content=' Hereinafter, we describe a tree by any derivation corresponding to the tree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
62
+ page_content=' S A A x u y v z S A y x z A A u v Figure 1 Decomposition of tree T into the pair of trees (T1, T2) A non-minimal ground tree has the form S ∗=⇒ xAz ∗=⇒ xuAvz ∗=⇒ xuyvz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
63
+ page_content=' It can be decomposed into a pair of the ground tree S ∗=⇒ xAz ∗=⇒ xyz and the block tree A ∗=⇒ uAv, see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
64
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
65
+ page_content=' Formally, we say that a tree T is decomposed to the pair of trees (T1, T2) if for some B ∈ N : T = A ∗=⇒ xBz ∗=⇒ xuBvz ∗=⇒ xuβvz, T1 = A ∗=⇒ xBz ∗=⇒ xβz and T2 = B ∗=⇒ uBv;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
66
+ page_content=' here β is either A if T is a block tree or β ∈ Σ∗ if T is a ground tree (and in this case A is the axiom).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
67
+ page_content=' We say that T can be composed from T1 and T2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
68
+ page_content=' Note that T1 and T2 can be composed in several ways if T1 has several B nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
69
+ page_content=' We denote T1 ◦ T2 = {T | T can be decomposed into (T1, T2)} A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
70
+ page_content=' Rubtsov 3 In addition to derivation of words we consider derivation of trees as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
71
+ page_content=' ▶ Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
72
+ page_content=' A derivation of a tree starts with a minimal ground tree and each derivation step leads to a ground tree as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
73
+ page_content=' At a derivation step we choose a node A and a minimal block tree A ∗=⇒ xAy, replace the chosen node by the block tree;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
74
+ page_content=' the subtree of the chosen node is glued into A from the crown of the block tree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
75
+ page_content=' So in the trees derivation a minimal ground tree has the role of the axiom (there can be several ones), and a replacement A → Ti where Ti = (A ∗=⇒ xAz) has the role of the production rule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
76
+ page_content=' ▶ Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
77
+ page_content=' Let S be a multiset of trees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
78
+ page_content=' We say that S′ is derived from S if S′ is obtained from S by the replacement of two trees T1 and T2 by a tree T ∈ T1 ◦ T2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
79
+ page_content=' We denote it as S ⊢ S′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
80
+ page_content=' We say that a multiset of trees S is well-formed such that S ⊢ ∗ {T} for some ground tree T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
81
+ page_content=' It is easy to see, that if S contains only minimal trees and S ⊢ ∗ {T}, then there exists a derivation of T such that S = {T0, T1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
82
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
83
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
84
+ page_content=' , Tn} where T0 is the ground tree and Ti, i ⩾ 1 is the block tree that was chosen at the i-th derivation step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
85
+ page_content=' We define the Parikh image for the trees in a natural way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
86
+ page_content=' Ψ(T) = Ψ(w) if T = (S ∗=⇒ w) and Ψ(T) = Ψ(xz) if T = (A ∗=⇒ xAz).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
87
+ page_content=' The following lemma directly follows from the definitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
88
+ page_content=' ▶ Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
89
+ page_content=' If T, T ′ ∈ T1 ◦ T2, then Ψ(T) = Ψ(T ′) = Ψ(T1) + Ψ(T2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
90
+ page_content=' If S ⊢ ∗ {T} and S ⊢ ∗ {T ′} then Ψ(T) = Ψ(T ′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
91
+ page_content=' Lemma 4 implies that we can extend the definition of the Parikh map to well-formed multisets: Ψ(S) = � T ∈S Ψ(T).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
92
+ page_content=' By the pigeonhole principle each minimal tree has depth at most |N| − 1 (otherwise on the longest path from the root to a leaf there would be a repetition of nonterminals).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
93
+ page_content=' Since (for a fixed grammar) each node of a tree has a bounded degree, there is only finitely many minimal trees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
94
+ page_content=' Let us enumerate them and denote the number of minimal trees by m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
95
+ page_content=' So, each multiset of minimal trees S has a corresponding vector ⃗v ∈ Nm where ⃗vi is the number of occurrences of Ti in S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
96
+ page_content=' 3 Proof We begin with the proof idea.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
97
+ page_content=' Any word w derived from a grammar G has some derivation tree Tw and Ψ(Tw) = Ψ(w).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
98
+ page_content=' We decompose Tw into a multiset Sw of minimal trees (Sw ⊢ ∗ Tw).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
99
+ page_content=' Denote by Tg the ground tree from Sw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
100
+ page_content=' Obtain the set S′ w from Sw by removing repetitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
101
+ page_content=' Note that S′ w ⊆ MG where MG is the finite set of minimal trees of grammar G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
102
+ page_content=' So we have defined a mapping w �→ S′ w with a finite codomain 2MG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
103
+ page_content=' For any multiset S obtained from S′ w by repetition of non-ground trees, there exists a derivation tree T (of G) such that S ⊢ ∗ T (S is well-formed).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
104
+ page_content=' Therefore Ψ(T) ∈ Ψ(L(G)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
105
+ page_content=' In other words, � �Ψ(S′ w) + � T ′∈S′w\\{Tg} tT ′ · Ψ(T ′) � � ∈ Ψ(L(G)) 4 The Simplest Proof of Parikh’s Theorem via Derivation Trees no matter how we choose tT ′ ∈ N for each T ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
106
+ page_content=' Let S be a well-formed multiset with a ground tree Tg ∈ S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
107
+ page_content=' Denote by Lin(S) = � � �Ψ(S) + � T ′ i ∈S\\{Tg} ti · Ψ(T ′ i) ����� ti ∈ N � � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
108
+ page_content=' (1) The set Lin(S) is linear by the definition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
109
+ page_content=' Since there are only finitely many different sets S′ w, the set Ψ(L(G)) is a finite union of linear sets Lin(S′ w), so it is semilinear by the definition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
110
+ page_content=' The scheme of the proof is depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
111
+ page_content=' 2 L(G) Ψ(L(G)) {Tw : w ∈ L(G)} {Sw : w ∈ L(G)} {S′ w : w ∈ L(G)} {Lin(S′ w) : w ∈ L(G)} Ψ ∪ Figure 2 Scheme of the proof 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
112
+ page_content='1 Auxiliary Lemmas ▶ Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
113
+ page_content=' Let S be a well-formed multiset of minimal trees and S′′ be a multiset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
114
+ page_content=' Denote by ⃗v and ⃗v′′ the corresponding vectors of S and S′′, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
115
+ page_content=' Suppose ⃗vi > 0 iff ⃗v′′ i > 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
116
+ page_content=' then S′′ is a well-formed multiset as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
117
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
118
+ page_content=' The statement is equivalent to the conjunction of two claims.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
119
+ page_content=' The first one: if ⃗vi > 0 and ⃗v′′ i = ⃗vi + 1 while ⃗v′′ j = ⃗vj for j ̸= i, then S′′ is well-formed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
120
+ page_content=' The second one: if ⃗vi > 1 and ⃗v′′ i = ⃗vi − 1 while ⃗v′′ j = ⃗vj for j ̸= i, then S′′ is well-formed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
121
+ page_content=' Starting with the vector ⃗v and subsequently increasing or decreasing its components by 1 we can obtain any vector ⃗v′′ satisfying the conditions of the lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
122
+ page_content=' Since at each step the condition of one of the claims hold, we obtain that the condition of the lemma holds in the result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
123
+ page_content=' Recall Definitions 2 and 3 of trees and multiset derivations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
124
+ page_content=' Denote by Ti = (A ∗=⇒ uAv) the i-th block-tree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
125
+ page_content=' Fix a derivation tree T such that S ⊢ ∗ {T} with a derivation of the tree T as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
126
+ page_content=' Proof of the first claim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
127
+ page_content=' Due to the form of Ti ∈ S, the tree T contains the non-terminal A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
128
+ page_content=' So we can glue Ti into the place of some occurrence of the non-terminal A and obtain the tree T ′ as the result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
129
+ page_content=' S′′ is well-formed, since T ′ is a derivation tree of G by the construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
130
+ page_content=' Proof of the second claim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
131
+ page_content=' If Ti is a subtree of T, than it can be removed from T (as in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
132
+ page_content=' 1) and the resulting tree T ′ would also be a derivation tree of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
133
+ page_content=' Otherwise, let us consider the steps of the fixed derivation of T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
134
+ page_content=' We change this derivation as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
135
+ page_content=' Recalling that ⃗vi > 1, fix two copies T 1 i and T 2 i of the tree Ti in the multiset S such that T 1 i was used A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
136
+ page_content=' Rubtsov 5 earlier than T 2 i in the derivation of T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
137
+ page_content=' When T 2 i must be composed with the ground tree, we skip this step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
138
+ page_content=' If at some step a tree Tj = (B ∗=⇒ u′Bv′) is glued into a node B of T 2 i , then we glue it into the corresponding node B of T 1 i (that is already in the ground tree).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
139
+ page_content=' So, this modification yields a derivation S ⊢ ∗ {T ′, T 2 i }, where T ′ is some ground tree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
140
+ page_content=' But then we could do the same starting from S′′ and obtain S′′ ⊢ ∗ {T ′}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
141
+ page_content=' Therefore S′′ is well-formed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
142
+ page_content=' ◀ ▶ Corollary 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
143
+ page_content=' For any w ∈ L(G) : Lin(S′ w) ⊆ Ψ(L(G)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
144
+ page_content=' ▶ Lemma 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
145
+ page_content=' For any w ∈ L(G): Ψ(w) ∈ Lin(S′ w).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
146
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
147
+ page_content=' From the definitions it follows that Ψ(w) = Ψ(Sw) ∈ Lin(Sw).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
148
+ page_content=' We prove that Lin(Sw) ⊆ Lin(S′ w).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
149
+ page_content=' Note that Ψ(Sw) = Ψ(S′ w) + �m i=1(⃗vi − 1)Ψ(Ti), where ⃗v is the corresponding vector of Sw and Ti is the i-th minimal tree (in the enumeration above).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
150
+ page_content=' By the definition a vector ⃗u ∈ Lin(Sw) has the form ⃗u = Ψ(Sw) + � T ′ j∈Sw\\{Tg} t′ j · Ψ(T ′ j) = Ψ(Sw) + n � i=1 ti · Ψ(Ti), where in the second equality we put together all T ′ j’s that are copies of the same tree Ti.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
151
+ page_content=' Note that each T ′ j is a minimal block tree, so T ′ j = Ti for some i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
152
+ page_content=' Thus, ⃗u = � �Ψ(S′ w) + � i:⃗vi>0 (ti + ⃗vi − 1)Ψ(Ti) � � ∈ Lin(S′ w) ◀ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
153
+ page_content='2 Proof of Parikh’s theorem Let G be a context-free grammar generating L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
154
+ page_content=' For a word w ∈ L denote by T(w) the set of all derivation trees Tw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
155
+ page_content=' Note that T(w) ̸= ∅ and it can be even infinite if there are ε-rules in G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
156
+ page_content=' Denote by S(w) = {Sw | ∃Tw ∈ T(w) : Sw ⊢ ∗ {Tw}} where Sw is a multiset consisting only of minimal trees (as before).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
157
+ page_content=' Finally S′(w) = {S′ w | Sw ∈ S(w)};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
158
+ page_content=' recall that S′ w is the set obtained from Sw by deleting the duplicates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
159
+ page_content=' Now we show that S′(w) is finite for each w and moreover the union ∪w∈LS′(w) = S′(L) is finite as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
160
+ page_content=' Recall that there are finitely many minimal trees, and we denote them by T1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
161
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
162
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
163
+ page_content=' , Tm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
164
+ page_content=' Therefore, each Sw has a corresponding m-dimensional vector ⃗v such that Ψ(w) = Ψ(Sw) = m � i=1 ⃗vi · Ψ(Ti).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
165
+ page_content=' The corresponding vector ⃗v′ of S′ w is a 0-1 vector such that ⃗v′ i = 1 iff ⃗vi > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
166
+ page_content=' So since there are only finitely many 0-1 vectors of length m and each S′ w ∈ S′(L) has a corresponding 0-1 vector ⃗v′, then the set S′(L) is finite as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
167
+ page_content=' Putting everything together, by Lemma 7 Ψ(L) ⊆ � S′∈S′(L) Lin(S′) and by Corollary 6 � S′∈S′(L) Lin(S′) ⊆ Ψ(L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
168
+ page_content=' 6 The Simplest Proof of Parikh’s Theorem via Derivation Trees Since the set S′(L) is finite and each set Lin(S′) is linear by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
169
+ page_content=' (1), the equality Ψ(L) = � S′∈S′(L) Lin(S′) proves Parikh’s theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
170
+ page_content=' ◀ References 1 Javier Esparza, Pierre Ganty, Stefan Kiefer, and Michael Luttenberger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
171
+ page_content=' Parikh’s theorem: A simple and direct automaton construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
172
+ page_content=' Information Processing Letters, 111(12):614–619, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
173
+ page_content=' URL: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
174
+ page_content='sciencedirect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
175
+ page_content='com/science/article/pii/S0020019011000822, doi:https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
176
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
177
+ page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
178
+ page_content='ipl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
179
+ page_content='2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
180
+ page_content='03.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
181
+ page_content='019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
182
+ page_content=' 2 Jonathan Goldstine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
183
+ page_content=' A simplified proof of Parikh’s theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
184
+ page_content=' Discrete Mathematics, 19(3):235– 239, 1977.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
185
+ page_content=' 3 John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
186
+ page_content=' Introduction to automata theory, languages, and computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
187
+ page_content=' Acm Sigact News, 32(1):60–65, 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
188
+ page_content=' 4 Caleb Koch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
189
+ page_content=' A friendly tour of Parikh’s theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
190
+ page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
191
+ page_content=' URL: http://cakoch10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
192
+ page_content='github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
193
+ page_content='io/ papers/Kleene_Algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
194
+ page_content='pdf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
195
+ page_content=' 5 Toshihiro Koga.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
196
+ page_content=' A proof of Parikh’s theorem via Dickson’s lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
197
+ page_content=' International Journal of Foundations of Computer Science, 32(02):163–173, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
198
+ page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
199
+ page_content='1142/S012905412150009X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
200
+ page_content=' 6 Rohit J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
201
+ page_content=' Parikh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
202
+ page_content=' On Context-Free Languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
203
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
204
+ page_content=' ACM, 13(4):570–581, oct 1966.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
205
+ page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
206
+ page_content='1145/321356.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
207
+ page_content='321364.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
208
+ page_content=' 7 Jeffrey O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
209
+ page_content=' Shallit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
210
+ page_content=' A Second Course in Formal Languages and Automata Theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
211
+ page_content=' Cambridge University Press, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
212
+ page_content=' 8 Ryoma Sin’ya.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
213
+ page_content=' Simple proof of Parikh’s theorem a la Takahashi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
214
+ page_content=' CoRR, abs/1909.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
215
+ page_content='09393, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfQfaP/content/2301.00047v1.pdf'}
6tE0T4oBgHgl3EQfwAE6/content/tmp_files/2301.02625v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
6tE0T4oBgHgl3EQfwAE6/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
7NE4T4oBgHgl3EQfcgzB/content/2301.05084v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b908d8cf809055aa9e72e21e2b848022e555aaf4670378c05810e2a56fb951a7
3
+ size 1028429
7NE4T4oBgHgl3EQfcgzB/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1966df9c186d3f2f0793a0df30f9a680df1fb69151e3627b6f16a83496a194d4
3
+ size 394391
9dAzT4oBgHgl3EQfFPqV/content/2301.01008v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2abea2ad74c8d8d04b25c9245121b3225e204d72e75fde4d405f9c99fbbb60c3
3
+ size 342927
9dAzT4oBgHgl3EQfFPqV/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21b38421cee1558ad96b1f826a8ff9b0a6b2cb459baf29ab2427d3a20d1c699a
3
+ size 3211309
9dAzT4oBgHgl3EQfFPqV/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:103465a3ca236fa1d9883c112a5347d21b046693790f51542729e81313c07a64
3
+ size 114529
A9E0T4oBgHgl3EQfxwJo/content/2301.02650v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a0707afbf0b7ad350c0b5a32e072ccc8da28c0dffc1628711e45322cb777cd9a
3
+ size 2030513
AdE4T4oBgHgl3EQf4w7g/content/tmp_files/2301.05317v1.pdf.txt ADDED
@@ -0,0 +1,1506 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.05317v1 [gr-qc] 12 Jan 2023
2
+ Next-to-leading-order Solution to Kerr-Newman Black Hole Superradiance
3
+ Shou-Shan Bao,1, ∗ Qi-Xuan Xu,2, † and Hong Zhang1, ‡
4
+ 1Institute of Frontier and Interdisciplinary Science,
5
+ Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, QingDao 266237, China
6
+ 2Theoretical Physics, Blackett Laboratory, Imperial College, London, SW7 2AZ, United Kingdom
7
+ (Dated: January 16, 2023)
8
+ The superradiant instabilities of Kerr-Newman black holes with charged or uncharged massive
9
+ spin-0 fields are calculated analytically to the next-to-leading order in the limit of α ∼ rgµ ≪ 1.
10
+ A missing factor of 1/2 in the previous leading-order result is identified. The next-to-leading order
11
+ result has a compact form and is in good agreement with existing numerical calculations.
12
+ The
13
+ percentage error increases with α, from a few percent for α ∼ 0.1 to about 50% for α ∼ 0.4.
14
+ Massive neutral scalars too heavy to be produced with Kerr black hole superradiance may exist in
15
+ the superradiant region of Kerr-Newman black holes.
16
+ I.
17
+ INTRODUCTION
18
+ Ultralight boson condensate could form around a rotat-
19
+ ing black hole (BH) if the boson’s Compton wavelength is
20
+ comparable to the size of the BH horizon. With proper
21
+ choice of parameters, such scalar condensate can con-
22
+ tinuously extract energy and angular momentum from
23
+ the BH until the BH spin is below some critical value
24
+ and/or nonlinear effects become important[1–3].
25
+ This
26
+ phenomenon is known as BH superradiance [4, 5]. There
27
+ exist numerous works on various bosons, including spin-
28
+ 0 [1, 6–26], spin-1 [25–38] and spin-2 [39, 40] fields. In
29
+ this work, we focus on the ultralight scalars. The super-
30
+ radiance of other types of bosons could be found in the
31
+ comprehensive review [41].
32
+ The scalar superradiance, especially with a Kerr BH, is
33
+ important in phenomenology. Such BH-condensate sys-
34
+ tems have been widely studied for constraining the scalar
35
+ properties and for the possible observation of the GW
36
+ emission. It has been shown that the BH evolves along
37
+ the Regge trajectories on the mass-spin plot if the su-
38
+ perradiant effect is strong [1, 17]. Consequently, there
39
+ are “holes” on the Regge plot in which BHs cannot re-
40
+ side. Combing with the observed BH spin distribution,
41
+ favored and unfavored scalar mass ranges can be iden-
42
+ tified [42–44]. On the other hand, with the continuous
43
+ GW generated by the BH-condensate, works has been
44
+ done to study the possibility of resolving these systems
45
+ from the backgrounds [1, 13–15, 18, 19, 45]. The pos-
46
+ itive frequency drift [13, 27] and the beat-like pattern
47
+ [46] have been proposed to distinguish them from other
48
+ monochromatic GW sources, such as neutron stars. The
49
+ unresolved BH-condensate systems have also been care-
50
+ fully studied as stochastic backgrounds for GW detectors
51
+ [18, 19].
52
+ The phenomenological study of BH superradiance de-
53
+ pends on the accurate determination of the bound state’s
54
+ ∗ ssbao@sdu.edu.cn
55
+ † qixuan.xu22@imperial.ac.uk
56
+ ‡ hong.zhang@sdu.edu.cn
57
+ eigenfrequency. For Kerr BHs, the numerical continued
58
+ fraction method was first proposed by Leaver for mass-
59
+ less scalars [47]. It is later developed for massive scalars
60
+ in Ref. [8] and further refined in Ref. [10]. In the small
61
+ α ∼ rgµ limit, an analytic approximation was obtained
62
+ by Detweiler [6].
63
+ Nonetheless, these two solutions are
64
+ not consistent with each other. The problem is recently
65
+ resolved in our previous work by including the next-to-
66
+ leading-order (NLO) contribution to the analytic approx-
67
+ imation [21]. A power-counting strategy is also proposed
68
+ which facilitates the NLO calculation.
69
+ In Ref. [48], Damour et.al. have shown that the su-
70
+ perradiance can also be realized with a charged massive
71
+ scalar field in Kerr-Newman spacetime.
72
+ Comparably,
73
+ it does not attract as much attention as that for Kerr
74
+ BHs. It may be because the Kerr-Newman BH (KNBH)
75
+ is unlikely to play important roles in astrophysics [49–
76
+ 51]. Nonetheless, as pointed out in Ref. [52], the KNBH
77
+ provides an ideal testing ground for studying the inter-
78
+ play between gravity and electrodynamics. In the pre-
79
+ vious studies of scalar superradiance with KNBHs, De-
80
+ tweiler’s method has been applied to obtain the leading-
81
+ order (LO) analytic approximation at the α ≪ 1 limit
82
+ [53–55]. The numerical solution has also been achieved
83
+ using the 3-term continued fraction method [56]. The pa-
84
+ rameter space of the KNBH superradiance is also probed
85
+ by analyzing the existence of the potential well [57–59].
86
+ In this work, we refine the power-counting strategy in
87
+ our previous work and apply it to calculate the NLO con-
88
+ tribution of the KNBH superradiance. A compact NLO
89
+ expression for α ≪ 1 is obtained which could be straight-
90
+ forwardly applied to phenomenological study. The scalar
91
+ field can be either neutral or charged.
92
+ By comparing
93
+ to the existing numerical results, the percentage error of
94
+ the analytic approximation increases with α, from a few
95
+ percent for α ∼ 0.1 to about 50% for α ∼ 0.4.
96
+ This paper is organized as follows. In Sec. II, we briefly
97
+ review the Klein-Gordon equation to be solved and ob-
98
+ tain the superradiance condition from its solution at the
99
+ outer horizon. Detweiler’s method is applied to derive
100
+ the LO and NLO analytic expressions in Sec. III.
101
+ In
102
+ Sec. IV, the obtained analytic expressions are compared
103
+
104
+ 2
105
+ to the existing numerical calculation. Some effects rel-
106
+ evant to phenomenology are also discussed. Finally, we
107
+ summarize our results in Sec. V.
108
+ II.
109
+ SCALARS IN KERR-NEWMAN SPACETIME
110
+ The spacetime around a KNBH with mass M, angular
111
+ momentum J and charge Q can be expressed in Boyer-
112
+ Lindquist coordinates [60],
113
+ ds2 = −
114
+
115
+ 1 − 2rgr − Q2
116
+ Σ2
117
+
118
+ dt2 + Σ2
119
+ ∆ dr2 + Σ2dθ2
120
+ +
121
+
122
+ (r2 + a2) + (2rgr − Q2)a2 sin2 θ
123
+ Σ2
124
+
125
+ sin2 θdϕ2
126
+ − 2(2rgr − Q2)a sin2 θ
127
+ Σ2
128
+ dtdϕ,
129
+ (1)
130
+ with
131
+ a = J/M,
132
+ (2a)
133
+ rg = GM,
134
+ (2b)
135
+ Σ2 = r2 + a2 cos2 θ,
136
+ (2c)
137
+ ∆ = r2 − 2rgr + a2 + Q2.
138
+ (2d)
139
+ The equation ∆ = 0 gives two event horizons at r± =
140
+ rg ± b with b =
141
+
142
+ r2g − a2 − Q2. In this work, we only
143
+ consider the KNBHs with r2
144
+ g − a2 − Q2 ≥ 0.
145
+ To study the superradiance of a scalar field close to a
146
+ BH, one needs to solve the combined Einstein and Klein-
147
+ Gordon field equations, which is a very difficult task. Es-
148
+ pecially, the existence of the scalar perturbs the space-
149
+ time around the BH. Nonetheless, it has been shown that
150
+ this perturbation could be safely ignored due to the tiny
151
+ energy-stress tensor of the scalar cloud for Kerr BH [17].
152
+ We assume the same situation happens for the KNBHs.
153
+ We further assume the self-interaction of the scalar field
154
+ can also be ignored. Then the problem reduces to solv-
155
+ ing the Klein-Gordon equation on the stationary Kerr-
156
+ Newman background,
157
+ (∇α − iqAα)(∇α − iqAα)φ − µ2φ = 0,
158
+ (3)
159
+ where µ and q are the mass and electric charge of the
160
+ scalar field, respectively.
161
+ The vector Aα is the back-
162
+ ground electromagnetic potential,
163
+ Aα = Qr
164
+ Σ2
165
+
166
+ −1, 0, 0, a sin2 θ
167
+
168
+ .
169
+ (4)
170
+ For complex scalars, φ can be written with the separation
171
+ of variables,
172
+ φ(t, r, θ, ϕ) =
173
+
174
+ l,m
175
+
176
+ dωRlm(r)Slm(θ)eimϕe−iωt.
177
+ (5)
178
+ Inserting it into Eq. (3), one obtains the angular equa-
179
+ tion,
180
+ 1
181
+ sin θ
182
+ d
183
+
184
+
185
+ sin θdSlm
186
+
187
+
188
+ +
189
+
190
+ −a2(µ2 − ω2) cos2 θ −
191
+ m2
192
+ sin2 θ + Λlm
193
+
194
+ Slm = 0,
195
+ (6)
196
+ where Λlm is the eigenvalue. Its solution Slm(θ) is called
197
+ the spheroidal harmonic function, whose properties can
198
+ be found in Ref. [61]. The corresponding radial equation
199
+ is [62],
200
+ ∆ d
201
+ dr
202
+
203
+ ∆dRlm
204
+ dr
205
+
206
+ + U(r)Rlm = 0,
207
+ (7)
208
+ with
209
+ U(r) =[ω(a2 + r2) − am − qQr]2
210
+ + ∆[2amω − µ2r2 − a2ω2 − Λlm].
211
+ (8)
212
+ These are the equations for the complex scalar field. For
213
+ real scalars, one should set q = 0 in Eq. (3) and choose
214
+ only the real part on the right side of Eq. (5).
215
+ The
216
+ obtained angular and radial equations are the same as
217
+ Eqs. (6) and (7) with q = 0. In the rest of this paper,
218
+ we focus on the equations for the complex scalars. The
219
+ case for the real scalars can then be simply obtained by
220
+ choosing q = 0.
221
+ To obtain a constraint of parameters that allow super-
222
+ radiance, we change to the tortoise coordinates,
223
+ dr∗ = r2 + a2
224
+
225
+ dr,
226
+ (9)
227
+ with which the interesting region r ∈ (r+, +∞) corre-
228
+ sponds to r∗ ∈ (−∞, +∞). We also define,
229
+ R∗(r∗) =
230
+
231
+ r2 + a2R(r).
232
+ (10)
233
+ Then Eq. (7) can be rewritten into a Schr¨odinger-like
234
+ equation,
235
+ d2R∗(r∗)
236
+ dr2∗
237
+ − V (r)R∗(r∗) = 0,
238
+ (11)
239
+ where the effective potential is,
240
+ V (r) = −
241
+
242
+ ω − am + qQr
243
+ a2 + r2
244
+ �2
245
+ +
246
+ ∆µ2
247
+ a2 + r2
248
+
249
+
250
+ (a2 + r2)2
251
+
252
+ 2amω − Λlm + a2(µ2 − ω2)
253
+
254
+ + ∆[∆ + 2r(r − rg)]
255
+ (a2 + r2)3
256
+
257
+ 3∆2r2
258
+ (a2 + r2)4 .
259
+ (12)
260
+ In the region close to the outer horizon r+, the potential
261
+ has the asymptotic form,
262
+ lim
263
+ r→r+ V (r) = −(ω − ωc)2 + O(r − r+),
264
+ (13)
265
+
266
+ 3
267
+ where the critical frequency is defined as,
268
+ ωc = ma + qQr+
269
+ r2
270
+ + + a2
271
+ = ma + qQr+
272
+ 2rgr+ − Q2 .
273
+ (14)
274
+ Inserting
275
+ this
276
+ asymptotic
277
+ expression
278
+ of
279
+ V (r)
280
+ into
281
+ Eq. (11), one gets the solution at the outer horizon,
282
+ lim
283
+ r∗→−∞R∗(r∗) = d1e−i(ω−ωc)r∗ + d2ei(ω−ωc)r∗,
284
+ (15)
285
+ where the first term is the wave falling into the outer hori-
286
+ zon, and the second term is the wave escaping from the
287
+ outer horizon, d1 and d2 are their amplitudes. Physically,
288
+ nothing can escape from the horizon, indicating d2 = 0.
289
+ The superradiance requires the phase velocity and the
290
+ group velocity to be in opposite directions, which leads
291
+ to the superradiance condition for a KNBH,
292
+ Re(ω) < ωc.
293
+ (16)
294
+ With Q fixed, it is more relaxed (strict) compared to the
295
+ superradiance condition of a Kerr BH if the charges of the
296
+ scalar and the BH have the same sign (different signs).
297
+ III.
298
+ ANALYTIC SOLUTION AT α ≪ 1
299
+ In the small α limit, the asymptotic matching method
300
+ first proposed in Ref. [6] gives a reasonable approxima-
301
+ tion of the complex eigenfrequency ω. In a previous work,
302
+ we have further calculated the NLO contribution for Kerr
303
+ BH superradiance [21]. The NLO result has a much bet-
304
+ ter agreement with the numerical solutions compared to
305
+ the LO approximation. In the current work, we apply
306
+ the method to KNBHs. In this section, we first repeat
307
+ the LO approximation in Ref. [56]. A missing factor of
308
+ 1/2 is identified. We then continue to calculate the NLO
309
+ contribution. The calculation is valid for both real and
310
+ complex scalar fields. For a real scalar field, one simply
311
+ sets q = 0 throughout.
312
+ A.
313
+ Leading-order Approximation
314
+ We first formally introduce the power-counting param-
315
+ eter α ∼ rgµ for the expansion. The scaling of other pa-
316
+ rameters are Re ω ∼ µ ∼ q and a ∼ Q ∼ r+ ∼ r− ∼ rg.
317
+ Unlike some previous calculations in which α is defined
318
+ to be rgµ, here we leave α as a power-counting parame-
319
+ ter, which could be rgµ or any other quantity with the
320
+ same scaling. In the limit r → +∞, the derivative term
321
+ in Eq. (7) divided by ∆2 can be written into a familiar
322
+ form,
323
+ 1
324
+
325
+ d
326
+ dr
327
+
328
+ ∆dR
329
+ dr
330
+
331
+ ≈ d2R
332
+ dr2 + 2
333
+ r
334
+ dR
335
+ dr = 1
336
+ r
337
+ d2
338
+ dr2 (rR).
339
+ (17)
340
+ The second term on the left side of Eq. (7) divided by
341
+ ∆2 can be expanded in powers of rg/r. Keeping terms
342
+ up to r2
343
+ g/r2, the radial function at large r limit (r ≫ rg)
344
+ can be simplified as,
345
+ d2
346
+ dr2 (rR) +
347
+
348
+ (ω2 − µ2) + 2(2rgω2 − rgµ2 − qQω)
349
+ r
350
+ − l′(l′ + 1)
351
+ r2
352
+ + O(r−3)
353
+
354
+ rR = 0,
355
+ (18)
356
+ where
357
+ l′(l′ + 1) =Λlm + 4r2
358
+ g(µ2 − 3ω2) + a2(ω2 − µ2)
359
+ + Q2(2ω2 − q2 − µ2) + 8rgqQω.
360
+ (19)
361
+ The l′ is related to the orbital angular number by,
362
+ l′ = l + ǫ.
363
+ (20)
364
+ Here ǫ ∼ O(α2) plays the role of a regulator and cannot
365
+ be simply dropped.
366
+ For a confined profile, the real part of ω is less than
367
+ the boson mass µ. The physical solution is the one that
368
+ decays exponentially at large r. It is more convenient to
369
+ define,
370
+ κ =
371
+
372
+ µ2 − ω2,
373
+ (21)
374
+ λ = 2rgω2 − rgµ2 − qQω
375
+ κ
376
+ ,
377
+ (22)
378
+ y = κr,
379
+ (23)
380
+ u(y) = yR
381
+ �y
382
+ κ
383
+
384
+ .
385
+ (24)
386
+ Then Eq. (18) can be rewritten as,
387
+ d2u(y)
388
+ dy2
389
+ +
390
+
391
+ −1 + 2λ
392
+ y − l′(l′ + 1)
393
+ y2
394
+
395
+ u(y) = 0.
396
+ (25)
397
+ The two solutions are Whittaker functions, and only one
398
+ of them has the correct behavior at r → +∞ required by
399
+ the bound states. The solution with the correct behavior
400
+ can be further written in terms of confluent hypergeo-
401
+ metric functions. Finally, the radial function at large r
402
+
403
+ 4
404
+ is,
405
+ R(r) = e−κr(2κr)l′U(l′ + 1 − λ, 2l′ + 2; 2κr),
406
+ (26)
407
+ up to an arbitrary normalization.
408
+ The bound states only exist if λ > 0.
409
+ The super-
410
+ radiance conditon in Eq. (16) gives another constraint
411
+ 2rgω < (ma + qQr+)/r+. Combining these two inequal-
412
+ ities, one can obtain,
413
+ 0 < 2rgω2 − rgµ2 − qQω
414
+ <
415
+ �ma
416
+ r+
417
+ + qQ
418
+
419
+ ω − rgµ2 − qQω
420
+ = ma
421
+ r+
422
+ ω − rgµ2.
423
+ (27)
424
+ So there is no superradiant bound state if m ≤ 0.
425
+ It also shows that Reissner-Nordstr¨om BHs could not
426
+ hold bounded scalar clouds [55]. The minimum KNBH
427
+ spin a allowing superradiant instability is approximately
428
+ rgr+µ/m.
429
+ Next, we look at Eq. (7) in the small r limit. For BH
430
+ superradiance, the inner boundary is the outer horizon
431
+ r = r+. It is more convenient to write the radial function
432
+ in terms of z = (r − r+)/2b,
433
+ z(z + 1) d
434
+ dz
435
+
436
+ z(z + 1)dR
437
+ dz
438
+
439
+ + U(z)R = 0,
440
+ (28)
441
+ where U(z) can be written as an expansion of z,
442
+ U(z) = p2 + z
443
+ �4rgr+ω
444
+ b
445
+
446
+ r+ω − am
447
+ 2r+
448
+ − Q2ω
449
+ 2rg
450
+
451
+ − (Λlm + r2
452
+ +µ2 + a2ω2) + qQ
453
+ b (am + r+qQ − a2ω − 3r2
454
+ +ω)
455
+
456
+ + z2(a2ω2 − Λlm + 2µ2a2 − 3µ2r2
457
+ + + 6r2
458
+ +ω2 + 2Q2µ2 + q2Q2 − 6r+qQω)
459
+ + 4z3b [rgµ2 + 2r+(ω2 − µ2) − qQω] + 4z4b2(ω2 − µ2),
460
+ (29)
461
+ in which,
462
+ p = (r2
463
+ + + a2)
464
+ 2b
465
+ (ω − ωc).
466
+ (30)
467
+ Note that both p and rgωc scale as O(α0).
468
+ In the limit of small α, the Λlm has the expanded form
469
+ Λlm = l(l+1)+O(α4). At the LO of α, we get the radial
470
+ equation in limit (r − r+) ≪ max(1/ω, 1/µ),
471
+ z(z + 1) d
472
+ dz
473
+
474
+ z(z + 1)dR
475
+ dz
476
+
477
+ +
478
+
479
+ p2 − l′(l′ + 1)z(1 + z)
480
+
481
+ R = 0.
482
+ (31)
483
+ In principle, the l′ should be replaced by l in this order.
484
+ Nonetheless, the ǫ in l′ plays the role of a regulator in
485
+ the intermediate steps. It will be set to zero at the end.
486
+ The general solution of Eq. (31) is a linear combination
487
+ of two associated Legendre functions, and the physical
488
+ solution is the one with the ingoing wave at r → r+.
489
+ After changing the variable back to r, the solution of the
490
+ radial function is,
491
+ R(r) =
492
+ �r − r+
493
+ r − r−
494
+ �−ip
495
+ 2F1
496
+
497
+ −l′, l′ + 1; 1 − 2ip; −r − r+
498
+ 2b
499
+
500
+ ,
501
+ (32)
502
+ up to an arbitrary normalization.
503
+ Next, we apply the matching method first proposed
504
+ in [6] and further developed recently in Ref. [21]. The
505
+ solution of Eq. (26) is only valid in r ≫ rg limit, while
506
+ the solution in Eq. (32) requires r ≪ rgα−2 from the ig-
507
+ norance of terms proportional to z3 and z4. They have
508
+ an overlapped region in the limit α ≪ 1. In this region,
509
+ the two solutions are expected to have the same behav-
510
+ ior. The behavior of Eq. (26) in the overlapped region is
511
+ obtained by looking at its small r limit, which is,
512
+ (2κ)l′Γ(−2l′ − 1)
513
+ Γ(−l′ − λ)
514
+ rl′ + (2κ)−l′−1Γ(2l′ + 1)
515
+ Γ(l′ + 1 − λ)
516
+ r−l′−1. (33)
517
+ On the other hand, the behavior of Eq. (32) in the over-
518
+ lapped region is obtained by looking at its large r limit,
519
+ which is,
520
+ (2b)−l′Γ(2l′ + 1)
521
+ Γ(l′ + 1)Γ(l′ + 1 − 2ip)rl′ + (2b)l′+1Γ(−2l′ − 1)
522
+ Γ(−l′ − 2ip)Γ(−l′) r−l′−1.
523
+ (34)
524
+ The ratio of the coefficients of the rl′ and r−l′−1 should be
525
+ the same for the two solutions in the overlap region. The
526
+ obtained equation is the eigenequation of ω. It can be
527
+
528
+ 5
529
+ solved perturbatively by the observation that the second
530
+ term in the expression (33) must be suppressed at small
531
+ r, indicating l′+1−λ is very close to zero or some negative
532
+ integer,
533
+ l′ + 1 − λ = −n − δλ,
534
+ (35)
535
+ where |δλ| ≪ 1 and n is zero or a positive integer.
536
+ Following the convention in literature, we also define
537
+ ¯n = n + l + 1. Then the above relation is re-expressed as
538
+ λ = ¯n + ǫ + δλ. At LO of α, it reduces to λ = ¯n + δλ.
539
+ Combining with the definition of λ in Eq. (22), the rgκ
540
+ scales as α2, which is important in power-counting. Since
541
+ |δλ| ≪ 1, one could solve for δλ perturbatively with ex-
542
+ pressions (33) and (34).
543
+ The LO calculation of δλ for Kerr BHs was completed
544
+ in Ref. [6], with the regulator ǫ set to zero from the be-
545
+ ginning. Recently, we have confirmed a missing factor
546
+ of 1/2 in that result [21], which was first identified in
547
+ Ref. [34]. The missing factor is conjectured to be from
548
+ mistreatments of Γ functions with negative integer argu-
549
+ ments. The correct formula is provided in the appendix of
550
+ Ref. [21]. This subtle calculation turns out to be straight-
551
+ forward with the regulator ǫ kept in the intermediate
552
+ steps.
553
+ More details could be found in Ref. [21].
554
+ For
555
+ KNBHs, the first LO calculation of δλ was completed
556
+ in Ref. [56]. It followed the same steps in Ref. [6] and
557
+ missed the factor 1/2 as well. After the correction, the
558
+ LO result of δλ is,
559
+ δλ(0) = − ip (4κb)2l+1 (n + 2l + 1)!(l!)2
560
+ n! [(2l)!(2l + 1)!]2
561
+ l�
562
+ j=1
563
+ (j2 + 4p2),
564
+ (36)
565
+ where the superscript (0) indicates that it is the LO re-
566
+ sult. It scales as O(α4l+2).
567
+ The eigen-frequency ω can be expressed in terms of δλ
568
+ with Eqs. (22) and (35). Defining ω = ω0 + ω1δλ(0) in
569
+ Eq. (22) and expanding it to the linear term of δλ(0), one
570
+ arrives at,
571
+ λ = rg(2ω2
572
+ 0 − µ2) − qQω0
573
+
574
+ µ2 − ω2
575
+ 0
576
+ + rgω0ω1(3µ2 − 2ω2
577
+ 0) − qQµ2ω1
578
+ (µ2 − ω2
579
+ 0)3/2
580
+ δλ(0) + O
581
+
582
+ (δλ(0))2�
583
+ .
584
+ (37)
585
+ On the other hand, we have λ = ¯n + δλ(0) from Eq. (35).
586
+ Then it is straightforward to get,
587
+ rg(2ω2
588
+ 0 − µ2) − qQω0
589
+
590
+ µ2 − ω2
591
+ 0
592
+ = ¯n,
593
+ (38a)
594
+ rgω0ω1(3µ2 − 2ω2
595
+ 0) − qQµ2ω1
596
+ (µ2 − ω2
597
+ 0)3/2
598
+ = 1.
599
+ (38b)
600
+ Note that in getting Eq. (38a), we have ignored the ǫ
601
+ which could be traced back to the l′ in Eq. (35). This
602
+ omission leads to an error in rgω0 at the order of O(α5).
603
+ Solving ω0 perturbatively from Eq. (38a), one arrives at,
604
+ ω(0)
605
+ 0
606
+ µ
607
+ = 1 − 1
608
+ 2
609
+ �rgµ − qQ
610
+ ¯n
611
+ �2
612
+ + O(α4).
613
+ (39)
614
+ Then the ω1 could be expressed in terms of ω0 from
615
+ Eq. (38b) and expanded in powers of α,
616
+ ω(0)
617
+ 1
618
+ µ
619
+ = (rgµ − qQ)2
620
+ ¯n3
621
+ + O(α4).
622
+ (40)
623
+ Since both ω0 and ω1 are real, ω0 and ω1δλ(0) are the
624
+ leading terms of the real and imaginary parts of ω, re-
625
+ spectively.
626
+ Especially, the imaginary part of ω scales
627
+ as O(α4l+5).
628
+ B.
629
+ Next-to-leading-order Approximation
630
+ In a previous work, we have carefully studied the su-
631
+ perradiance of a real scalar field around a Kerr BH [21].
632
+ The LO eigenfrequency ω obtained in Ref. [6] has an er-
633
+ ror as large as 160% compared to the numerical result.
634
+ After correcting the missing factor 1/2, the convergence
635
+ is improved, with the error ≲ 80%. Except for the large
636
+ discrepancy, the LO result also has some strange behav-
637
+ iors. Since the LO result is the leading term in the Taylor
638
+ series of the exact ω at α = 0, it is expected to converge
639
+ to the exact ω with α approaching zero. Nonetheless, the
640
+ relative error seems to be a nonzero constant for small α,
641
+ reaching as large as 30% at α = 0.07 for a = 0.99. This
642
+ discrepancy at small α puts the question on the power-
643
+ counting strategy. Moreover, the discrepancy at small α
644
+ increases quickly with the BH spin parameter a.
645
+ These problems are solved by adding the NLO correc-
646
+ tion of ω [21]. Below we follow the same steps for the
647
+ KNBHs. The key observation is that the first term in
648
+ the square bracket in Eq. (29), which scales as α2, is
649
+ enhanced by a factor of 1/b. For BHs with large spin
650
+ a and/or charge Q, this term can be as important as
651
+ the LO contribution. Other NLO contributions are also
652
+ added for consistency.
653
+ The first NLO correction appears as ǫ in the asymp-
654
+ totic radial wave function at large r, which is given in
655
+ Eq. (26). It can be calculated from the definition of l′ in
656
+ Eq. (19),
657
+ ǫ = −8r2
658
+ gµ2 + Q2µ2 + 8rgqQµ − q2Q2
659
+ 2l + 1
660
+ + O(α4).
661
+ (41)
662
+ The second NLO contribution is from the asymptotic ra-
663
+ dial wave function at small r.
664
+ The potential U(z) in
665
+ Eq. (29) can be approximated by p2−l′(l′+1)z(1+z)+zd,
666
+ where d is defined as
667
+ d =(4rgµ − 2qQ)p − 2(4rg − r+)rgµ2
668
+ + 2µqQ(4rg − r+) − q2Q2 + O(α3).
669
+
670
+ 6
671
+ Up to an arbitrary normalization, the corresponding ra-
672
+ dial function at the NLO is,
673
+ R(r) =(r − r−)
674
+
675
+ d−p2
676
+ (r − r+)ip
677
+ 2F1
678
+
679
+ − l′ − ip +
680
+
681
+ d − p2,
682
+ l′ + 1 − ip +
683
+
684
+ d − p2; 1 − 2ip; −r − r+
685
+ 2b
686
+
687
+ .
688
+ (42)
689
+ In the r → +∞ limit, the asymptotic behavior of this
690
+ function is,
691
+ (2b)−l′−ip+√
692
+ d−p2Γ(2l′ + 1)Γ(1 − 2ip)
693
+ Γ(l′ + 1 − ip −
694
+
695
+ d − p2)Γ(l′ + 1 − ip +
696
+
697
+ d − p2)
698
+ rl′
699
+ +
700
+ (2b)l′+1−ip+√
701
+ d−p2Γ(−2l′ − 1)Γ(1 − 2ip)
702
+ Γ(−l′ − ip −
703
+
704
+ d − p2)Γ(−l′ − ip +
705
+
706
+ d − p2)
707
+ r−l′−1.
708
+ (43)
709
+ Following similar matching steps above, the NLO contri-
710
+ bution of δλ could be obtained after some algebra,
711
+ δλ(1) =
712
+ � d
713
+ 2ǫ − ǫ
714
+ 2 − ip
715
+ � (4κb)2l′+1 Γ(n + 2l′ + 2)Γpd
716
+ n! [Γ(2l′ + 1)Γ(2l′ + 2)]2
717
+ ,
718
+ (44)
719
+ where the superscript (1) indicates it is the NLO result,
720
+ and the Γpd is defined as,
721
+ Γpd =
722
+ ���Γ(l′ + 1 + ip +
723
+
724
+ d − p2)Γ(l′ + 1 + ip −
725
+
726
+ d − p2)
727
+ ���
728
+ 2
729
+ Γ(1 + 2ǫ)Γ(1 − 2ǫ)
730
+ Γ(1 − ip −
731
+
732
+ d − p2 − ǫ)Γ(1 + ip +
733
+
734
+ d − p2 + ǫ)Γ(1 − ip +
735
+
736
+ d − p2 − ǫ)Γ(1 + ip −
737
+
738
+ d − p2 + ǫ)
739
+ .
740
+ (45)
741
+ The last NLO contribution is from ω0 and ω1. Defining
742
+ ω = ω(1)
743
+ 0
744
+ + ω(1)
745
+ 1 δλ(1), the expansion of λ in Eq. (37) is
746
+ still valid, only with δλ(0) replaced by δλ(1). Combining
747
+ with λ = ¯n + ǫ + δλ(1), one could follow the same steps
748
+ as in the LO calculation and obtain,
749
+ ω(1)
750
+ 0
751
+ µ
752
+ =1 − 1
753
+ 2
754
+ �rgµ − qQ
755
+ ¯n
756
+ �2
757
+ + (rgµ − qQ)2
758
+ 8¯n4
759
+ [3(rgµ − qQ)(5rgµ − qQ) + 8¯nǫ]
760
+ + O(α6),
761
+ (46a)
762
+ ω(1)
763
+ 1
764
+ µ
765
+ =(rgµ − qQ)2
766
+ ¯n3
767
+ − 3(rgµ − qQ)2
768
+ 2¯n5
769
+ [(rgµ − qQ)(5rgµ − qQ) + 2¯nǫ]
770
+ + O(α6).
771
+ (46b)
772
+ Finally, we discuss a subtle problem related to the ω
773
+ dependence in the definition of p. In the calculation of the
774
+ δλ(1), the ω in p should be replaced by ω(0)
775
+ 0 , rather than
776
+ ω(1)
777
+ 0 . Here we explain the reason. In deriving the small-r
778
+ asymptotic form of the radial function, we approximate
779
+ U(z) in Eq. (29) by p2 − l′(l′ + 1)z(z + z) + zd. The
780
+ coefficient of z and z2 are accurate at O(α2) and O(α0),
781
+ respectively. At z ∼ O(α), this two terms are at the same
782
+ order of O(α4). Consequently, we only need to keep the
783
+ terms in p2 up to O(α4), which then leads to ω = ω(0)
784
+ 0
785
+ in p. In comparison to the numerical calculation, this
786
+ choice of ω gives a satisfactory NLO result. Using ω(1)
787
+ 0
788
+ in p is not as satisfactory, due to partially including the
789
+ high-order contributions.
790
+ IV.
791
+ RESULTS
792
+ The eigenfrequency of the Kerr BH superradiance has
793
+ been studied in Refs. [8, 10, 21]. In comparison, the case
794
+ for Kerr-Newman BH has two more parameters, the BH
795
+ charge Q and the scalar charge q. In this section, we first
796
+ study the superradiance of a neutral scalar field, focusing
797
+ on the effect of Q. Then we consider the superradiance of
798
+ a charged scalar field. Comparisons with the numerical
799
+ calculations in the literature are also provided.
800
+ A.
801
+ Neutral Scalar Fields
802
+ In the following study of neutral scalar superradiance,
803
+ we adopt the NLO δλ(1) in Eq. (44), where the scalar
804
+ charge q is set to zero. The ω(1)
805
+ 0
806
+ and ω(1)
807
+ 1
808
+ in Eqs. (46)
809
+ are used. Then the NLO eigen-frequency is ω = ω(1)
810
+ 0
811
+ +
812
+ ω(1)
813
+ 1 δλ(1).
814
+ The BH charge Q cannot be chosen arbitrarily. In our
815
+ derivation, we have implicitly assumed the KNBH has
816
+
817
+ 7
818
+ horizons, which requires |Q| ≤
819
+
820
+ r2g − a2. In addition,
821
+ neutral scalars could not distinguish the sign of the BH
822
+ charge. Mathematically, it means the BH charge Q can
823
+ only appear in the formulas as Q2. So it is sufficient to
824
+ only consider positive Q.
825
+ The superradiance condition in Eq. (16) with q = 0
826
+ has the same form as the Kerr BH. The effect of the BH
827
+ charge Q is hidden in r+ = rg +
828
+
829
+ r2g − a2 − Q2. Keeping
830
+ the BH mass M and spin a fixed, larger charge Q results
831
+ in a larger upper limit of Re(ω). Thus massive scalars
832
+ too heavy to be produced with Kerr BH superradiance
833
+ may exist in the superradiant region of KNBHs.
834
+ Q=0
835
+ Q=0.1
836
+ Q=0.2
837
+ Q=0.3
838
+ Q=0.4
839
+ 0.0
840
+ 0.5
841
+ 1.0
842
+ 1.5
843
+ 10-13
844
+ 10-11
845
+ 10-9
846
+ 10-7
847
+ rg
848
+
849
+ Im (
850
+
851
+ ) /
852
+
853
+ l=m=1
854
+ l=m=2
855
+ l=m=3
856
+ a=0.9
857
+ Q=0
858
+ Q=0.2
859
+ Q=0.4
860
+ Q=0.6
861
+ Q=0.7
862
+ 0.0
863
+ 0.5
864
+ 1.0
865
+ 1.5
866
+ 10-13
867
+ 10-11
868
+ 10-9
869
+ 10-7
870
+ rg
871
+
872
+ Im (
873
+
874
+ ) /
875
+
876
+ l=m=1
877
+ l=m=2
878
+ l=m=3
879
+ a=0.7
880
+ FIG. 1. The imaginary part of NLO eigenfrequency with q =
881
+ 0 as a function of rgµ. Only the curves with n = 0 are shown.
882
+ In the top (bottom) panel, the BH spin a is 0.9 (0.7).
883
+ In
884
+ both panels, from left to right, the three bunches correspond
885
+ to l = m = 1, 2, 3, respectively. In each bunch, the curves
886
+ with different colors correspond to different values of the BH
887
+ charge Q.
888
+ Fig. 1 shows the imaginary part of �� as a function
889
+ of rgµ.
890
+ For comparison, the curves for Kerr BHs are
891
+ also shown, labeled with Q = 0.
892
+ All curves have the
893
+ same qualitative behavior. With an increasing value of
894
+ rgµ, they first increase, then drop rapidly to below zero
895
+ after reaching the maxima.
896
+ There are three effects of
897
+ the BH charge Q. Firstly, the superradiant region of rgµ
898
+ is enlarged with larger Q. Correspondingly, the peak of
899
+ Q=0.1
900
+ Q=0.2
901
+ Q=0.3
902
+ Q=0.4
903
+ 0.00
904
+ 0.05
905
+ 0.10
906
+ 0.15
907
+ 0.20
908
+ 0.25
909
+ 0.30
910
+ 0.8
911
+ 0.9
912
+ 1.0
913
+ 1.1
914
+ 1.2
915
+ 1.3
916
+ rg μ
917
+ s (Q)
918
+ a=0.9
919
+ Q=0.2
920
+ Q=0.4
921
+ Q=0.6
922
+ Q=0.7
923
+ 0.00
924
+ 0.05
925
+ 0.10
926
+ 0.15
927
+ 0.20
928
+ 0.5
929
+ 1.0
930
+ 1.5
931
+ 2.0
932
+ 2.5
933
+ 3.0
934
+ rg μ
935
+ s (Q)
936
+ a=0.7
937
+ FIG. 2. Factor s(Q) with q = 0 as a function of rgµ for BH
938
+ spin a = 0.9 (upper panel) and a = 0.7 (lower panel). The
939
+ vertical dashed line in each panel labels the value of rgµ where
940
+ Im ω(Q = 0) reaches its maximum value for the corresponding
941
+ spin parameter a.
942
+ the curve moves to the right with increasing Q.
943
+ The
944
+ maximum rgµ with positive Im(ω) is quite accurately
945
+ determined by µ = ωc. Secondly, the maximum Im(ω)
946
+ increases with larger Q. Fixing the BH spin to be a =
947
+ 0.9, the maximum values of rgIm(ω) with Q = 0 are
948
+ 2.088 × 10−8, 2.427 × 10−9 and 1.029 × 10−10 for l =
949
+ m = 1, 2, 3, respectively. The numbers for Q = 0.43 are
950
+ 1.476 × 10−7, 2.006 × 10−8 and 8.760 × 10−10, which are
951
+ larger than the Q = 0 cases by factors of 7.07, 8.26 and
952
+ 8.51. For BHs with spin a = 0.7, the maximum Q is 0.71.
953
+ The enhancement factors are 90.29, 269.91, and 707.16,
954
+ for l = m = 1, 2, 3, respectively. Finally, in the ranges of
955
+ small rgµ before reaching the round peaks of the Q = 0
956
+ curves, the charge Q turns out to impede the growth of
957
+ the scalar clouds. We define a factor s(Q) as
958
+ s(Q) =
959
+ Im ω(Q)
960
+ Im ω(Q = 0).
961
+ (47)
962
+ In Fig. 2, we show s(Q) as a function of rgµ, for two
963
+ different BH spins and several values of Q. Interestingly,
964
+ the suppression factor varies slowly with rgµ. It decreases
965
+ with increasing Q, reaching the minimum value ∼ 0.8 for
966
+
967
+ 8
968
+ a = 0.9 and ∼ 0.5 for a = 0.7.
969
+ In Ref. [56], the authors claim that when a ≳ 0.997rg,
970
+ the maximum value of Im ω decreases as Q grows. We do
971
+ not observe the same behavior. For any spin parameter
972
+ a, the peak value of Im ω from the NLO approximation
973
+ increases monotonically with Q.
974
+ B.
975
+ Charged Scalar Fields
976
+ In this part, we study the superradiance of KNBHs
977
+ under charged scalar perturbation. The NLO eigenfre-
978
+ qency is given by ω = ω(1)
979
+ 0
980
+ + ω(1)
981
+ 1 δλ(1), with the NLO
982
+ δλ(1) in Eq. (44), and the ω(1)
983
+ 0
984
+ and ω(1)
985
+ 1
986
+ in Eqs. (46).
987
+ Note that the ω in p should take the form of ω(0)
988
+ 0
989
+ in
990
+ Eq. (39), as explained at the end of Sec. III B. We also
991
+ compare the NLO results to the LO ones. The latter is
992
+ given by ω = ω(0)
993
+ 0
994
+ + ω(0)
995
+ 1 δλ(0), with the expressions de-
996
+ fined in Eqs. (36), (39) and (40). The ω in p is replaced
997
+ by µ for consistency.
998
+ -60
999
+ -40
1000
+ -20
1001
+ 0
1002
+ 20
1003
+ 10-9
1004
+ 10-8
1005
+ 10-7
1006
+ q
1007
+ Im (ω)
1008
+ μ=0.1
1009
+ μ=0.2
1010
+ μ=0.3
1011
+ μ=0.41
1012
+ FIG. 3. Comparison of the numerical result and the analytic
1013
+ approximations for n = 0, l = m = 1, a = 0.98, and Q = 0.01,
1014
+ with rg chosen to be 1 for compacity. The imaginary part of
1015
+ ω is plotted as a function of the scalar field charge q. The
1016
+ dashed (solid) curves are the LO (NLO) approximations and
1017
+ the scattered dots are numerical results taken from Fig. 6
1018
+ in Ref. [53]. The curves with different colors correspond to
1019
+ different values of µ, labeled above the corresponding curves
1020
+ with the same color.
1021
+ Fig. 3 shows the comparison of the LO and NLO ap-
1022
+ proximations to the numerical results taken from Fig. 6
1023
+ in Ref. [53]. The NLO approximation agrees much better
1024
+ with the numerical results. In particular, the average per-
1025
+ centage errors of the NLO results for the points in Fig. 3
1026
+ are 6.7%, 9.9%, 20.7% and 48.3% for rgµ = 0.1, 0.2, 0.3
1027
+ and 0.41, respectively. These numbers can be used as
1028
+ estimates of the NLO results for different values of α.
1029
+ Moreover, the convergence of NLO results is better for a
1030
+ smaller value of rgµ, qualifying the power-counting strat-
1031
+ egy. To the contrary, the LO results do not seem to con-
1032
+ verge to the numerical result at small rgµ, which is also
1033
+ observed for Kerr BHs [21]. The reason for the bad con-
1034
+ vergence of the LO result is explained at the beginning of
1035
+ Sec. III B. A caveat is that the curves for the LO approx-
1036
+ imations in Fig. 3 are not the same as those in Ref. [53].
1037
+ The latter misses a factor of 1/2.
1038
+ Table. I shows the comparison of the NLO results and
1039
+ the numerical solutions for five more parameter sets in
1040
+ the literature. They are the most unstable modes with
1041
+ different parameters. The percentage uncertainty of the
1042
+ NLO approximation varies from 14% to 29% compared
1043
+ to the numerical results.
1044
+ TABLE I. Comparison of the NLO approximations of Im(ω)
1045
+ with the numerical results from Ref. [56] (cases A to D) and
1046
+ from Ref. [53] (case E). All cases are with n = 0 and l =
1047
+ m = 1. The numbers below assume rg = 1 for compacity.
1048
+ The percentage error is calculated by taking the difference
1049
+ between the approximation and the numerical result, then
1050
+ dividing it by the numerical result.
1051
+ Case A: a = 0.9, Q = 0.2 , q = −0.264, µ = 0.282;
1052
+ Case B: a = 0.99, Q = 0.1105 , q = −0.6335, µ = 0.397;
1053
+ Case C: a = 0.997, Q = 0.004 , q = −18.91, µ = 0.39822;
1054
+ Case D: a = 0.997, Q = 0.0001, q = −756.68, µ = 0.39816;
1055
+ Case E: a = 0.98, Q = 0.01, q = −8, µ = 0.35.
1056
+ Case
1057
+ Type
1058
+ Im(ω)
1059
+ % error
1060
+ LO
1061
+ 5.623×10−9
1062
+ 74.9%
1063
+ A
1064
+ NLO
1065
+ 2.882×10−8
1066
+ 28.5%
1067
+ Numerical
1068
+ 2.243×10−8
1069
+ -
1070
+ LO
1071
+ 1.224×10−8
1072
+ 92.9%
1073
+ B
1074
+ NLO
1075
+ 1.981×10−7
1076
+ 14.1%
1077
+ Numerical
1078
+ 1.736×10−7
1079
+ -
1080
+ LO
1081
+ 1.264×10−8
1082
+ 92.9%
1083
+ C
1084
+ NLO
1085
+ 2.041×10−7
1086
+ 14.1%
1087
+ Numerical
1088
+ 1.788×10−7
1089
+ -
1090
+ LO
1091
+ 1.263×10−8
1092
+ 92.9%
1093
+ D
1094
+ NLO
1095
+ 2.041×10−7
1096
+ 14.1%
1097
+ Numerical
1098
+ 1.788×10−7
1099
+ -
1100
+ LO
1101
+ 1.27×10−8
1102
+ 88.8%
1103
+ E
1104
+ NLO
1105
+ 1.39×10−7
1106
+ 22.7%
1107
+ Numerical
1108
+ 1.13×10−7
1109
+ -
1110
+ Next, we analyze the effect of q. In the formulas, the
1111
+ q and Q appears as qQ and Q2.
1112
+ So it is sufficient to
1113
+ consider the case with Q > 0, and with q being either
1114
+ positive or negative. There are two constraints for the
1115
+ existence of the superradiant bound states. The superra-
1116
+ diance requires ω < ωc in Eq. (16). And the existence of
1117
+ the bound states gives the second constraint λ > 0 from
1118
+ Eq. (22), which is approximately rgµ − qQ > 0.
1119
+ If the scalar and the KNBH at the center have opposite
1120
+ charges, i.e.
1121
+ qQ < 0, the scalar cloud is more tightly
1122
+ bounded.
1123
+ In this case, the second constraint above is
1124
+ automatically satisfied. Fig. 4 shows the imaginary part
1125
+ of ω as a function of rgµ in the n = 0, l = m = 1
1126
+ bound state, with BH spin a = 0.9 and charge Q =
1127
+ 0.01.
1128
+ The scalar charge q varies from −45 to 0.
1129
+ The
1130
+ region of superradiance shrinks when q is more negative,
1131
+ which is a consequence that ωc decreases with q for fixed
1132
+
1133
+ 9
1134
+ q=0
1135
+ q=-5
1136
+ q=-10
1137
+ q=-15
1138
+ q=-30
1139
+ q=-45
1140
+ 0.00
1141
+ 0.05
1142
+ 0.10
1143
+ 0.15
1144
+ 0.20
1145
+ 0.25
1146
+ 0.30
1147
+ 0.35
1148
+ 10-20
1149
+ 10-17
1150
+ 10-14
1151
+ 10-11
1152
+ 10-8
1153
+ rg μ
1154
+ Im (
1155
+
1156
+ ) / μ
1157
+ FIG. 4. The imaginary part of NLO eigenfrequency as a func-
1158
+ tion of rgµ with different negative values of q. Other param-
1159
+ eters are n = 0, l = m = 1, a = 0.9 and Q = 0.01.
1160
+ TABLE II. The maximum value of Im(ω) obtained by varying
1161
+ q, with a and Q fixed.
1162
+ (a,Q)
1163
+ q
1164
+ Im(ω)
1165
+ -2.5
1166
+ 2.10313×10−8
1167
+ (0.9, 0.01)
1168
+ -2.25
1169
+ 2.10329×10−8
1170
+ -2.2
1171
+ 2.10329×10−8
1172
+ -2
1173
+ 2.10268×10−8
1174
+ -1.25
1175
+ 2.10814×10−8
1176
+ (0.9, 0.02)
1177
+ -1.1
1178
+ 2.10831×10−8
1179
+ -1
1180
+ 2.10815×10−8
1181
+ -0.75
1182
+ 2.10682×10−8
1183
+ -3
1184
+ 4.14247×10−10
1185
+ (0.7, 0.01)
1186
+ -2.8
1187
+ 4.14270×10−10
1188
+ -2.75
1189
+ 4.14260×10−10
1190
+ -2.5
1191
+ 4.14104×10−10
1192
+ -1.5
1193
+ 4.14863×10−10
1194
+ (0.7, 0.02)
1195
+ -1.4
1196
+ 4.14888×10−10
1197
+ -1.25
1198
+ 4.14726×10−10
1199
+ -1
1200
+ 4.13927×10−10
1201
+ Q. The peak value of Im(ω) seems to be smaller with
1202
+ decreasing q. Nonetheless, a more careful study shows
1203
+ that the maximum Im(ω) happens at some small but
1204
+ nonzero |q| (see Table. II).
1205
+ If the charges of the scalar and the KNBH have the
1206
+ same sign, i.e. qQ > 0, the scalar cloud is less bounded.
1207
+ The second constraint above gives rgµ > qQ for the ex-
1208
+ istence of bound states. Fig. 5 shows the imaginary part
1209
+ of ω as a function of rgµ in the n = 0, l = m = 1
1210
+ bound state, with BH spin a = 0.9 and charge Q = 0.01.
1211
+ With larger value of positive q, the superradiance region
1212
+ shrinks and the peak is lower as well.
1213
+ q=0
1214
+ q=5
1215
+ q=10
1216
+ q=15
1217
+ q=30
1218
+ 0.0
1219
+ 0.1
1220
+ 0.2
1221
+ 0.3
1222
+ 0� �
1223
+ 0.5
1224
+ 10-20
1225
+ 10-17
1226
+ 10-14
1227
+ 10-11
1228
+ 10-8
1229
+ rg μ
1230
+ Im (
1231
+
1232
+ ) / μ
1233
+ FIG. 5. The imaginary part of NLO eigenfrequency as a func-
1234
+ tion of rgµ with different positive values of q. Other parame-
1235
+ ters are n = 0, l = m = 1, a = 0.9 and Q = 0.01.
1236
+ V.
1237
+ CONCLUSION
1238
+ In this work, we have studied the scalar superradi-
1239
+ ant instability of the KNBH and obtained the LO and
1240
+ NLO expressions of the superradiant rate in the regime
1241
+ of α ≪ 1.
1242
+ The calculation is based on the matching
1243
+ method which is proposed by Detweiler for Kerr BHs in
1244
+ Ref. [6] and developed in our previous work [21]. In this
1245
+ manuscript, we further refine the power-counting strat-
1246
+ egy and apply it to the KNBH.
1247
+ The LO scalar superradiant rate for KNBH has been
1248
+ calculated previously in Ref. [53].
1249
+ With our refined
1250
+ power-counting strategy, a similar result is obtained but
1251
+ with an extra overall factor of 1/2. We conjecture the
1252
+ factor is from the mistreatment of the Γ functions with
1253
+ negative integer arguments, similar to the case of Kerr
1254
+ BHs. More analysis could be found in our previous work
1255
+ [21].
1256
+ We compare the LO and NLO results with the existing
1257
+ numerical calculations in the literature. The LO results
1258
+ are smaller than the numerical solutions by an order of
1259
+ magnitude. To the contrary, the percentage error of the
1260
+ NLO result ranges from a few percent to about 50%, de-
1261
+ pending on the value of α (see Fig. 3 and Table I). In
1262
+ particular, the error of the NLO result decreases for a
1263
+ smaller value of α, qualifying our power-counting strat-
1264
+ egy.
1265
+ The obtained NLO expression has a compact form
1266
+ and can be straightforwardly applied to phenomenolog-
1267
+ ical studies of the KNBH superradiance as well as the
1268
+ ultralight scalars, either neutral or charged. Besides the
1269
+ superradiance condition Re(ω) < mΩH as the Kerr BHs,
1270
+ there is another condition rgµ > qQ for the existence
1271
+ of bound states. For neutral scalars, larger BH charge
1272
+ Q leads to a larger superradiant range of rgµ as well as
1273
+ the maximum superradiant rate (see Fig. 1). Thus mas-
1274
+ sive neutral scalars too heavy to be produced with Kerr
1275
+
1276
+ 10
1277
+ BH superradiance may exist in the superradiant region
1278
+ of KNBHs. The situation is different for charged scalars.
1279
+ For fixed BH spin a and charge Q, increasing the scalar
1280
+ charge q always leads to narrower superradiant range of
1281
+ rgµ (see Figs. 4 and 5). Interestingly, the maximum su-
1282
+ perradiant rate happens at a small negative scalar charge
1283
+ q (see Table II). We have no explanation for this obser-
1284
+ vation.
1285
+ ACKNOWLEDGMENTS
1286
+ This work is supported in part by the National Nat-
1287
+ ural Science Foundation of China (NSFC) under Grant
1288
+ No.
1289
+ 12075136 and the Natural Science Foundation of
1290
+ Shandong Province under Grant No. ZR2020MA094.
1291
+ [1] A. Arvanitaki and S. Dubovsky, Phys. Rev. D 83, 044026
1292
+ (2011) [arXiv:1004.3558 [hep-th]].
1293
+ [2] H. Yoshino and H. Kodama, Prog. Theor. Phys. 128,
1294
+ 153-190 (2012) [arXiv:1203.5070 [gr-qc]].
1295
+ [3] M. Baryakhtar, M. Galanis, R. Lasenby and O. Simon,
1296
+ Phys. Rev. D 103, no.9, 095019 (2021) [arXiv:2011.11646
1297
+ [hep-ph]].
1298
+ [4] R. Penrose, Riv. Nuovo Cim. 1, 252-276 (1969)
1299
+ [5] C. W. Misner, Phys. Rev. Lett. 28, 994-997 (1972)
1300
+ [6] S. L. Detweiler, Phys. Rev. D 22, 2323-2326 (1980)
1301
+ [7] T. J. M. Zouros and D. M. Eardley, Annals Phys. 118,
1302
+ 139-155 (1979)
1303
+ [8] V. Cardoso and S. Yoshida, JHEP 07, 009 (2005)
1304
+ [arXiv:hep-th/0502206 [hep-th]].
1305
+ [9] R. A. Konoplya and A. Zhidenko, Phys. Rev. D 73,
1306
+ 124040 (2006) [arXiv:gr-qc/0605013 [gr-qc]].
1307
+ [10] S.
1308
+ R.
1309
+ Dolan,
1310
+ Phys.
1311
+ Rev.
1312
+ D
1313
+ 76,
1314
+ 084001
1315
+ (2007)
1316
+ [arXiv:0705.2880 [gr-qc]].
1317
+ [11] R. A. Konoplya and A. Zhidenko, Rev. Mod. Phys. 83,
1318
+ 793-836 (2011) [arXiv:1102.4014 [gr-qc]].
1319
+ [12] A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper
1320
+ and J. March-Russell, Phys. Rev. D 81, 123530 (2010)
1321
+ [arXiv:0905.4720 [hep-th]].
1322
+ [13] A. Arvanitaki, M. Baryakhtar and X. Huang, Phys. Rev.
1323
+ D 91, no.8, 084011 (2015) [arXiv:1411.2263 [hep-ph]].
1324
+ [14] A.
1325
+ Arvanitaki,
1326
+ M.
1327
+ Baryakhtar,
1328
+ S.
1329
+ Dimopoulos,
1330
+ S.
1331
+ Dubovsky and
1332
+ R. Lasenby,
1333
+ Phys. Rev.
1334
+ D
1335
+ 95,
1336
+ no.4, 043001 (2017) [arXiv:1604.03958 [hep-ph]].
1337
+ [15] H. Yoshino and H. Kodama, PTEP 2014, 043E02 (2014)
1338
+ [arXiv:1312.2326 [gr-qc]].
1339
+ [16] H. Yoshino and H. Kodama, Class. Quant. Grav. 32,
1340
+ no.21, 214001 (2015) [arXiv:1505.00714 [gr-qc]].
1341
+ [17] R. Brito, V. Cardoso and P. Pani, Class. Quant. Grav.
1342
+ 32, no.13, 134001 (2015) [arXiv:1411.0686 [gr-qc]].
1343
+ [18] R. Brito, S. Ghosh, E. Barausse, E. Berti, V. Cardoso,
1344
+ I. Dvorkin, A. Klein and P. Pani, Phys. Rev. D 96, no.6,
1345
+ 064050 (2017) [arXiv:1706.06311 [gr-qc]].
1346
+ [19] R. Brito, S. Ghosh, E. Barausse, E. Berti, V. Cardoso,
1347
+ I. Dvorkin, A. Klein and P. Pani, Phys. Rev. Lett. 119,
1348
+ no.13, 131101 (2017) [arXiv:1706.05097 [gr-qc]].
1349
+ [20] G. Ficarra, P. Pani and H. Witek, Phys. Rev. D 99,
1350
+ no.10, 104019 (2019) [arXiv:1812.02758 [gr-qc]].
1351
+ [21] S. Bao, Q. Xu and H. Zhang, Phys. Rev. D 106, no.6,
1352
+ 064016 (2022) [arXiv:2201.10941 [gr-qc]].
1353
+ [22] R. Roy, S. Vagnozzi and L. Visinelli, Phys. Rev. D 105,
1354
+ no.8, 083002 (2022) [arXiv:2112.06932 [astro-ph.HE]].
1355
+ [23] Y. Chen, R. Roy, S. Vagnozzi and L. Visinelli, Phys. Rev.
1356
+ D 106, no.4, 043021 (2022) [arXiv:2205.06238 [astro-
1357
+ ph.HE]].
1358
+ [24] L. Hui, Y. T. A. Law, L. Santoni, G. Sun, G. M. Tomaselli
1359
+ and E. Trincherini, [arXiv:2208.06408 [gr-qc]].
1360
+ [25] H. Witek, V. Cardoso, A. Ishibashi and U. Sperhake,
1361
+ Phys. Rev. D 87, no.4, 043513 (2013) [arXiv:1212.0551
1362
+ [gr-qc]].
1363
+ [26] S.
1364
+ Endlich
1365
+ and
1366
+ R.
1367
+ Penco,
1368
+ JHEP
1369
+ 05,
1370
+ 052
1371
+ (2017)
1372
+ [arXiv:1609.06723 [hep-th]].
1373
+ [27] M. Baryakhtar, R. Lasenby and M. Teo, Phys. Rev. D
1374
+ 96, no.3, 035019 (2017) [arXiv:1704.05081 [hep-ph]].
1375
+ [28] S. R. Dolan, Phys. Rev. D 98, no.10, 104006 (2018)
1376
+ [arXiv:1806.01604 [gr-qc]].
1377
+ [29] W. E. East, Phys. Rev. D 96, no.2, 024004 (2017)
1378
+ [arXiv:1705.01544 [gr-qc]].
1379
+ [30] W. E. East and F. Pretorius, Phys. Rev. Lett. 119, no.4,
1380
+ 041101 (2017) [arXiv:1704.04791 [gr-qc]].
1381
+ [31] W. E. East, Phys. Rev. Lett. 121, no.13, 131104 (2018)
1382
+ [arXiv:1807.00043 [gr-qc]].
1383
+ [32] V. P. Frolov, P. Krtouˇs, D. Kubizˇn´ak and J. E. Santos,
1384
+ Phys. Rev. Lett. 120, 231103 (2018) [arXiv:1804.00030
1385
+ [hep-th]].
1386
+ [33] P.
1387
+ Pani,
1388
+ V.
1389
+ Cardoso,
1390
+ L.
1391
+ Gualtieri,
1392
+ E.
1393
+ Berti
1394
+ and
1395
+ A. Ishibashi,
1396
+ Phys. Rev. Lett. 109,
1397
+ 131102 (2012)
1398
+ [arXiv:1209.0465 [gr-qc]].
1399
+ [34] P.
1400
+ Pani,
1401
+ V.
1402
+ Cardoso,
1403
+ L.
1404
+ Gualtieri,
1405
+ E.
1406
+ Berti
1407
+ and
1408
+ A.
1409
+ Ishibashi,
1410
+ Phys.
1411
+ Rev.
1412
+ D
1413
+ 86,
1414
+ 104017
1415
+ (2012)
1416
+ [arXiv:1209.0773 [gr-qc]].
1417
+ [35] N. Siemonsen and W. E. East, Phys. Rev. D 101, no.2,
1418
+ 024019 (2020) [arXiv:1910.09476 [gr-qc]].
1419
+ [36] J. Percival and S. R. Dolan, Phys. Rev. D 102, no.10,
1420
+ 104055 (2020) [arXiv:2008.10621 [gr-qc]].
1421
+ [37] A. Caputo, S. J. Witte, D. Blas and P. Pani, Phys. Rev.
1422
+ D 104, no.4, 043006 (2021) [arXiv:2102.11280 [hep-ph]].
1423
+ [38] W. E. East, Phys. Rev. Lett. 129, no.14, 141103 (2022)
1424
+ [arXiv:2205.03417 [hep-ph]].
1425
+ [39] R. Brito, V. Cardoso and P. Pani, Phys. Rev. D 88, no.2,
1426
+ 023514 (2013) [arXiv:1304.6725 [gr-qc]].
1427
+ [40] R. Brito, S. Grillo and P. Pani, Phys. Rev. Lett. 124,
1428
+ no.21, 211101 (2020) [arXiv:2002.04055 [gr-qc]].
1429
+ [41] R. Brito, V. Cardoso and P. Pani, Physics,” Lect.
1430
+ Notes Phys. 906, pp.1-237 (2015) 2020, ISBN 978-3-
1431
+ 319-18999-4, 978-3-319-19000-6, 978-3-030-46621-3, 978-
1432
+ 3-030-46622-0 [arXiv:1501.06570 [gr-qc]].
1433
+ [42] K. K. Y. Ng, O. A. Hannuksela, S. Vitale and T. G. F. Li,
1434
+ Phys. Rev. D 103, no.6, 063010 (2021) [arXiv:1908.02312
1435
+ [gr-qc]].
1436
+ [43] K.
1437
+ K.
1438
+ Y.
1439
+ Ng,
1440
+ S.
1441
+ Vitale,
1442
+ O.
1443
+ A.
1444
+ Hannuksela
1445
+ and
1446
+ T. G. F. Li, Phys. Rev. Lett. 126, no.15, 151102 (2021)
1447
+ [arXiv:2011.06010 [gr-qc]].
1448
+ [44] L. d. Cheng, H. Zhang and S. s. Bao, [arXiv:2201.11338
1449
+ [gr-qc]].
1450
+ [45] H. Yoshino and H. Kodama, PTEP 2015, no.6, 061E01
1451
+
1452
+ 11
1453
+ (2015) [arXiv:1407.2030 [gr-qc]].
1454
+ [46] Y. d. Guo, S. s. Bao and H. Zhang, [arXiv:2212.07186
1455
+ [gr-qc]].
1456
+ [47] E. W. Leaver, Proc. Roy. Soc. Lond. A 402, 285-298
1457
+ (1985)
1458
+ [48] T. Damour, N. Deruelle and R. Ruffini, Lett. Nuovo Cim.
1459
+ 15, 257-262 (1976)
1460
+ [49] G. W. Gibbons, Commun. Math. Phys. 44, 245-264
1461
+ (1975)
1462
+ [50] R. D. Blandford and R. L. Znajek, Mon. Not. Roy. As-
1463
+ tron. Soc. 179, 433-456 (1977)
1464
+ [51] E. Barausse, V. Cardoso and P. Pani, Phys. Rev. D 89,
1465
+ no.10, 104059 (2014) [arXiv:1404.7149 [gr-qc]].
1466
+ [52] M. Zilh˜ao, V. Cardoso, C. Herdeiro, L. Lehner and
1467
+ U. Sperhake, Phys. Rev. D 90, no.12, 124088 (2014)
1468
+ [arXiv:1410.0694 [gr-qc]].
1469
+ [53] H. Furuhashi and Y. Nambu, Prog. Theor. Phys. 112,
1470
+ 983-995 (2004) [arXiv:gr-qc/0402037 [gr-qc]].
1471
+ [54] S.
1472
+ Hod,
1473
+ Phys.
1474
+ Rev.
1475
+ D
1476
+ 90,
1477
+ no.2,
1478
+ 024051
1479
+ (2014)
1480
+ [arXiv:1406.1179 [gr-qc]].
1481
+ [55] S.
1482
+ Hod,
1483
+ Phys.
1484
+ Rev.
1485
+ D
1486
+ 94,
1487
+ no.4,
1488
+ 044036
1489
+ (2016)
1490
+ [arXiv:1609.07146 [gr-qc]].
1491
+ [56] Y. Huang, D. J. Liu, X. h. Zhai and X. z. Li, Phys. Rev.
1492
+ D 98, no.2, 025021 (2018) [arXiv:1807.06263 [gr-qc]].
1493
+ [57] Y. S. Myung, Eur. Phys. J. C 82, no.6, 518 (2022)
1494
+ [arXiv:2201.06706 [gr-qc]].
1495
+ [58] Y. S. Myung, Int. J. Mod. Phys. D 31, no.12, 2250087
1496
+ (2022) [arXiv:2204.04789 [gr-qc]].
1497
+ [59] Y. S. Myung, Phys. Rev. D 105, no.12, 124015 (2022)
1498
+ [arXiv:2204.06750 [gr-qc]].
1499
+ [60] R. H. Boyer and R. W. Lindquist, J. Math. Phys. 8, 265
1500
+ (1967)
1501
+ [61] E. Berti, V. Cardoso and M. Casals, Phys. Rev. D 73,
1502
+ 024013 (2006) [erratum: Phys. Rev. D 73, 109902 (2006)]
1503
+ [arXiv:gr-qc/0511111 [gr-qc]].
1504
+ [62] W. H. Press and S. A. Teukolsky, Astrophys. J. 185,
1505
+ 649-674 (1973)
1506
+
AdE4T4oBgHgl3EQf4w7g/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
CNE1T4oBgHgl3EQfDwNk/content/2301.02881v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:862674715e49f648eedff8260f650d36c2fb85f9c69905e8b953860772c1d1ee
3
+ size 1572542
DNE2T4oBgHgl3EQfoQhP/content/2301.04016v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:013c3d29422c41d8fb4f1d6f9138d64b1399ac35cc5599cdd51d495728bfe0c7
3
+ size 689865
DNE2T4oBgHgl3EQfoQhP/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b86249700479b49b8b7b1d36d49a46e0c24515a2ac74c9f268a99fdf3e9c02c
3
+ size 436988
EtE1T4oBgHgl3EQfEgOL/content/2301.02891v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1f6f52dba627d68736d6ed9c5b66bf484b65084a151b382a0d2f569e778a640
3
+ size 1458908
EtE1T4oBgHgl3EQfEgOL/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:35bf7837152b4f6266694160e268b8b4c064167af659ff1aafd5f6c898358118
3
+ size 121859
F9E0T4oBgHgl3EQfhQEq/content/tmp_files/2301.02428v1.pdf.txt ADDED
@@ -0,0 +1,965 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Sensitivity analysis using Physics-informed neural
2
+ networks
3
+ John M. Hannaa,b, Jos´e V. Aguadoa, Sebastien Comas-Cardonaa, Ramzi
4
+ Askrib, Domenico Borzacchielloa
5
+ aNantes Universit´e, Ecole Centrale Nantes, CNRS, GeM, UMR 6183, 1 Rue de la No¨e,
6
+ 44300 Nantes, France
7
+ bNantes Universit´e, IRT Jules Verne, 44340 Bouguenais, France
8
+ Abstract
9
+ The paper’s goal is to provide a simple unified approach to perform sensitiv-
10
+ ity analysis using Physics-informed neural networks (PINN). The main idea lies
11
+ in adding a new term in the loss function that regularizes the solution in a small
12
+ neighborhood near the nominal value of the parameter of interest. The added
13
+ term represents the derivative of the residual with respect to the parameter of
14
+ interest. The result of this modification is a solution to the problem along with
15
+ the derivative of the solution with respect to the parameter of interest (the sen-
16
+ sitivity). We call the new technique to perform sensitivity analysis within this
17
+ context SA-PINN. We show the effectiveness of the technique using 3 examples:
18
+ the first one is a simple 1D advection-diffusion problem to show the methodol-
19
+ ogy, the second is a 2D Poisson’s problem with 9 parameters of interest and the
20
+ last one is a transient two-phase flow in porous media problem.
21
+ Keywords:
22
+ Physics-informed neural networks, sensitivity analysis, two-phase
23
+ flow in porous media
24
+ 1. Introduction
25
+ Sensitivity analysis is a technique to measure the effect of uncertainties in
26
+ one or more input parameters on output quantities. Sensitivity can be regarded,
27
+ quantitatively, as the derivative of output quantities with respect to input pa-
28
+ rameters that might have some uncertainties. It has great importance in several
29
+ Preprint submitted to Computer Methods in Applied Mechanics and Engineering
30
+ arXiv:2301.02428v1 [math.NA] 6 Jan 2023
31
+
32
+ engineering applications. Examples of these applications include aerodynamic
33
+ optimization [1], shape optimization in solid mechanics [2], injection molding [3]
34
+ and biomedical applications [4, 5]. This is just to name few applications.
35
+ Several methods exist to calculate the sensitivities; the simplest one is the
36
+ finite difference approach. It includes solving the system repeatedly, using any
37
+ numerical technique, while varying the parameter of interest. Afterwards, the
38
+ derivatives can be approximated by calculating the finite differences.
39
+ This
40
+ method becomes impractical when the number of the parameters of interest
41
+ increases because the number of times the full system needs to be solved will
42
+ grow exponentially, thus getting the sensitivities will become computationally
43
+ intractable [6].
44
+ The adjoint method is becoming the state of the art for performing sensi-
45
+ tivity analysis specially in CFD applications [7]. The method attempts to solve
46
+ an adjoint system of equations that is usually derived from the primal system.
47
+ By solving the adjoint system, one obtains the gradient values with respect to
48
+ parameters of interest. Despite the success and increasing widespread of the
49
+ method, some issues still exist. One of these issues is related to the differentia-
50
+ bility of the solution with discontinuities appearing in shock wave problems or
51
+ two-phase flow problems that leads to instabilities [8].
52
+ Machine learning based techniques have been growing rapidly to solve prob-
53
+ lems governed by partial differential equations (PDEs). Physics-informed neu-
54
+ ral networks (PINN) is one of the fast growing fields that attempts to solve
55
+ forward and inverse problems governed by PDEs [9]. PINN gained wide in-
56
+ terest due to the lack of need to a big data set since the physics governed by
57
+ PDEs are used to regularize the model. PINN is powerful due to the use of feed
58
+ forward neural networks, that are universal approximators [10], as the approx-
59
+ imation space and the recent advances in automatic differentiation capabilities
60
+ [11] that facilitated the derivative calculations. The method has been applied
61
+ to several fields including solid mechanics [12], fluid mechanics [13, 14], addi-
62
+ tive manufacturing [15], two-phase flow in porous media [16] and many others
63
+ [17, 18, 19, 20, 21, 22, 23, 24].
64
+ 2
65
+
66
+ In this article, PINN is used as the base framework to develop the new sensi-
67
+ tivity analysis technique. The main objectives of the article can be summarized
68
+ as follows:
69
+ • Introducing a new technique to perform sensitivity analysis based on the
70
+ framework of PINN and we call it SA-PINN.
71
+ • Showing the ease and effectiveness of getting the sensitivity with respect
72
+ to multiple parameters of interest at once.
73
+ • Displaying the ability of SA-PINN to get the sensitivities for problems
74
+ with discontinuities such as moving boundaries or sharp gradients.
75
+ The paper is organized in the following manner. In chapter 2, a quick intro-
76
+ duction to PINN is given followed by explanation to SA-PINN. Chapter 3 intro-
77
+ duces three problems presented in the paper: 1D advection-diffusion problem,
78
+ 2D Poisson’s problem with multiple parameters of interest and a 1D unsteady
79
+ two-phase flow in porous media problem. Chapter 4 gives the results to the
80
+ three problems which includes the calculation of some sensitivities of interest.
81
+ Chapter 5 offers a summary to the method and a conclusion.
82
+ 2. Sensitivity Analysis-PINN (SA-PINN)
83
+ We consider a general partial differential equation of the form
84
+ ut + µL(u) = 0,
85
+ x ∈ Ω, t ∈ [0, T]
86
+ (1)
87
+ where ut is the time derivative, L a general differential operator and µ a ma-
88
+ terial parameter. Initial and boundary conditions for the problems are defined
89
+ as
90
+ u(0, x) = u0
91
+ (2)
92
+ u(t, xD) = uD
93
+ (3)
94
+ B(u(t, xN)) = f(xN)
95
+ (4)
96
+ 3
97
+
98
+ where B is a differential operator, xD the boundary where Dirichlet bound-
99
+ ary condition is enforced and xN the boundary where Neumann boundary con-
100
+ dition is applied.
101
+ 2.1. PINN
102
+ The first step to solve this problem with PINN is to choose the approxima-
103
+ tion space. The choice is a feed forward neural network. Through automatic
104
+ differentiation, a combined loss is formed of the residual of the PDE defined
105
+ at spatio-temporal points called collocation points and the error in the ini-
106
+ tial/boundary conditions’ enforcement.
107
+ A solution can be obtained through
108
+ updating the weights and biases of the neural network by minimizing the loss
109
+ function using algorithms such as: gradient-descent, Adam, BFGS, etc. The
110
+ loss function can be written as:
111
+ Loss = λ0 loss0 + λD lossD + λN lossN + λ1 lossr
112
+ (5)
113
+ where λi are the weights for each loss term which play an important role in
114
+ the optimization process and:
115
+ loss0 = 1
116
+ N0
117
+ N0
118
+
119
+ i=1
120
+ r2
121
+ 0(ti
122
+ 0, xi
123
+ 0) = 1
124
+ N0
125
+ N0
126
+
127
+ i=1
128
+ ||u(ti
129
+ 0, xi
130
+ 0) − ui
131
+ 0||2
132
+ (6)
133
+ lossD =
134
+ 1
135
+ ND
136
+ ND
137
+
138
+ i=1
139
+ r2
140
+ D(ti
141
+ D, xi
142
+ D) =
143
+ 1
144
+ ND
145
+ ND
146
+
147
+ i=1
148
+ ||u(ti
149
+ D, xi
150
+ D) − ui
151
+ D||2
152
+ (7)
153
+ lossN =
154
+ 1
155
+ NN
156
+ NN
157
+
158
+ i=1
159
+ r2
160
+ N(ti
161
+ N, xi
162
+ N) =
163
+ 1
164
+ NN
165
+ NN
166
+
167
+ i=1
168
+ ||B(u(ti
169
+ N, xi
170
+ N)) − f i
171
+ N||2
172
+ (8)
173
+ lossr = 1
174
+ Nr
175
+ Nr
176
+
177
+ i=1
178
+ ||r(ti
179
+ r, xi
180
+ r)||2 = 1
181
+ Nr
182
+ Nr
183
+
184
+ i=1
185
+ ||ut + µL(u)||2
186
+ (ti
187
+ r,xi
188
+ r)
189
+ (9)
190
+ (10)
191
+ lossi respectively are the losses representing the initial condition, Dirichlet,
192
+ Neumann boundary conditions and the PDE residual.
193
+ 4
194
+
195
+ 2.2. SA-PINN
196
+ The main objective of PINN is to find a solution that minimizes the residual
197
+ of the PDE within the spatiotemporal domain that is represented by the collo-
198
+ cation points while respecting the initial and boundary conditions. The result
199
+ is a solution ˆu(t, x; ˆµ) to the PDE at a specific value ˆµ. To perform sensitivity
200
+ analysis with µ as the input parameter of interest, we would like to find not
201
+ only the solution ˆu but also the derivative of the solution with respect to µ (the
202
+ sensitivity) at a given nominal value ˆµ.
203
+ One way to obtain the sensitivity in PINN is to build a parametric model.
204
+ This is done by changing the structure of the neural network to accommodate for
205
+ another input which is the parameter of interest µ. Then, one adds collocation
206
+ points in the spatiotemporal-parametric space. Then, the residual is minimized
207
+ in the whole parametric domain while respecting the initial and boundary con-
208
+ ditions.
209
+ Afterwards, the derivative of the solution with respect to µ can be
210
+ easily obtained through automatic differentiation. The main issue of building
211
+ such parametric models is that the number of collocation points grows exponen-
212
+ tially with the number of parameters of interest. The problem can, then, easily
213
+ become computationally intractable if we have several parameters of interest
214
+ which is common in most engineering applications.
215
+ To overcome this issue, we thought that instead of only minimizing the
216
+ residual of the PDE, we can also minimize the derivative of the residual with
217
+ respect to the parameter of interest. First, the structure of the neural network
218
+ should accommodate for µ as an input. Then, the loss function is formed as the
219
+ sum of the residual and the derivative of the residual with respect to µ along
220
+ with the terms to respect the initial and boundary conditions. This way we
221
+ make sure that the solution is accurate within a small neighborhood of ˆµ, thus
222
+ sensitivity can be calculated. We call this technique SA-PINN. The technique
223
+ can be summarized in points as follows:
224
+ • Choose the neural network to have inputs related to space, time and pa-
225
+ rameter of interest.
226
+ 5
227
+
228
+ • Sample the collocation points only in space and time, however the points
229
+ will be living in a higher dimension but without adding more points.
230
+ • Create the loss function having terms related to PDE residual, the residual
231
+ derivative with respect to the parameter of interest and the terms related
232
+ to the initial and boundary conditions.
233
+ The modified loss function will then be
234
+ Lossm = Loss + λ0µ loss0µ + λDµ lossDµ + λNµ lossNµ + λ1µ lossrµ
235
+ (11)
236
+ where
237
+ loss0µ = 1
238
+ N0
239
+ N0
240
+
241
+ i=1
242
+ ����
243
+ ∂r0(ti
244
+ 0, xi
245
+ 0, µi
246
+ 0)
247
+ ∂µ
248
+ ����
249
+ (12)
250
+ lossDµ =
251
+ 1
252
+ ND
253
+ ND
254
+
255
+ i=1
256
+ ����
257
+ ∂rD(ti
258
+ D, xi
259
+ D, µi
260
+ D)
261
+ ∂µ
262
+ ����
263
+ (13)
264
+ lossNµ =
265
+ 1
266
+ NN
267
+ NN
268
+
269
+ i=1
270
+ ����
271
+ ∂rN(ti
272
+ N, xi
273
+ N, µi
274
+ N)
275
+ ∂µ
276
+ ����
277
+ (14)
278
+ lossrµ = 1
279
+ Nr
280
+ Nr
281
+
282
+ i=1
283
+ ����
284
+ ∂r(ti
285
+ r, xi
286
+ r, µi
287
+ r)
288
+ ∂µ
289
+ ����
290
+ (15)
291
+ (16)
292
+ Figure 1 shows a diagram that summarizes the methodology of SA-PINN.
293
+ The parts in orange are the added parts from classical PINN. The u − ˆu term
294
+ represents the mismatch of the solution from the initial and boundary condi-
295
+ tions. It must be noted that we sample the collocation points only in space and
296
+ time, but the points have another coordinate µ and all have a nominal value ˆµ.
297
+ 6
298
+
299
+ Figure 1: Diagram explaining the methodology of SA-PINN.
300
+ 3. Model problems
301
+ In this section, we introduce the models of the three examples that are used
302
+ to show the effectiveness of the technique.
303
+ 3.1. 1D diffusion-advection equation
304
+ The first example is a steady one-dimensional diffusion-advection equation
305
+ where we would like to study the effect of perturbations in the diffusion term ϵ
306
+ on the solution. The strong form of the problem can be written as follows:
307
+ ϵ yxx − yx + 1 = 0,
308
+ x ∈ [0, 1],
309
+ y(0) = 1,
310
+ y(1) = 3
311
+ (17)
312
+ The chosen nominal value for ϵ is 0.1. yxx and yx are respectively the second
313
+ and first order derivatives of the solution y. The weights for the different terms
314
+ in the loss function are set to 1 for the original PINN terms and 0.1 for the
315
+ added sensitivity terms.
316
+ 7
317
+
318
+ X
319
+ dr
320
+ ne
321
+ t
322
+ NN
323
+ LosS
324
+ u
325
+ u-a
326
+ a(u-a)
327
+ ne3.2. 2D Poisson’s problem
328
+ The next example is a 2-dimensional Poisson’s problem where we have mul-
329
+ tiple parameters to study their effect on the solution. The domain is shown in
330
+ figure 2 where there exists 9 subdomains each having different diffusivity value.
331
+ k1
332
+ k3
333
+ k2
334
+ k4
335
+ k9
336
+ k6
337
+ k5
338
+ k8
339
+ k7
340
+ Figure 2: 2D Poisson’s problem domain
341
+ The strong form of the problem can be written as:
342
+ k ∆u = −1,
343
+ in Ω,
344
+ u = 0,
345
+ on ∂Ω
346
+ (18)
347
+ where Ω is a square with unit sides and k is the diffusivity. The 9 subdomains
348
+ have equal areas. The nominal values for the diffusivity is 1; k1 = k2 = ... =
349
+ k9 = 1.
350
+ The main PINN terms weights are set to 1 and 0.1 for the added
351
+ sensitivity terms.
352
+ 3.3. 1D two-phase flow in porous media
353
+ In this section, we introduce a 1D two-phase flow in porous media problem.
354
+ The problem is faced in Liquid Transfer Molding composite manufacturing pro-
355
+ cesses, where resin is injected in a mold that has prepositioned fibrous matrix.
356
+ The problem is shown in figure 3. At t = 0, the domain is initially saturated
357
+ with one fluid (fluid 1). Another fluid (fluid 2) is being injected from the left
358
+ end at constant pressure pin, while the pressure at the other end is fixed to pout.
359
+ 8
360
+
361
+ pin
362
+ pout
363
+ Flow front
364
+ fluid 2
365
+ fluid 1
366
+ Figure 3: One-dimensional domain (filling problem)
367
+ The momentum equation can be approximated with Darcy’s law that can
368
+ be written in 1D as follow:
369
+ v = − k
370
+ φµpx
371
+ (19)
372
+ where v is the volume average Darcy’s velocity, µ the viscosity, and px the
373
+ pressure gradient, and φ the porosity. Both fluids are assumed to be incom-
374
+ pressible, therefore, the mass conservation equation reduces to
375
+ vx = 0
376
+ (20)
377
+ Pressure boundary conditions can prescribed on the inlet and oulet:
378
+ p(xinlet, t) = pin,
379
+ p(xoutlet, t) = pout
380
+ (21)
381
+ To track the interface between the two fluids, the Volume Of Fluids (VOF)
382
+ technique is used; a fraction function c is introduced which takes a value 1 for
383
+ the resin and 0 for the air. The viscosity µ is redefined as
384
+ µ = cµ2 + (1 − c)µ1
385
+ (22)
386
+ where µ2 and µ1 are the two fluids’ viscosities. c evolves with time according
387
+ to the following advection equation
388
+ ct + vcx = 0
389
+ (23)
390
+ 9
391
+
392
+ where ct and cx are the time and spatial derivative of the fraction function
393
+ c, respectively.
394
+ Initial and boundary conditions are defined to solve the advection of c.
395
+ c(x, t = 0) = c0(x),
396
+ c(xinlet, t) = 1
397
+ (24)
398
+ To sum up, the strong form of the problem can be written as:
399
+ ct + v cx = 0,
400
+ x ∈ [0, l],
401
+ t ∈ [0, T],
402
+ v = − k
403
+ φµpx,
404
+ x ∈ [0, l],
405
+ t ∈ [0, T],
406
+ vx = 0,
407
+ x ∈ [0, l],
408
+ t ∈ [0, T],
409
+ µ = cµ2 + (1 − c)µ1
410
+ p(0, t) = pin,
411
+ p(l, t) = pout
412
+ c(0, t) = 1,
413
+ c(x, 0) = 0
414
+ (25)
415
+ The parameters of the problem are shown in table 1.
416
+ Table 1: Parameters used for the two-phase flow problem.
417
+ Parameter
418
+ Value
419
+ k
420
+ 1
421
+ µ1
422
+ 10−5
423
+ µ2
424
+ 1
425
+ pin
426
+ 1
427
+ pout
428
+ 0
429
+ l
430
+ 1
431
+ φ
432
+ 1
433
+ The main PINN terms weights are set to 1 and 0.01 for the added sensitivity
434
+ terms. The adaptivity algorithm presented in [16] is used to get a better sharper
435
+ solution.
436
+ 10
437
+
438
+ 4. Results
439
+ 4.1. 1D diffusion-advection equation
440
+ The solution u using PINN and SA-PINN is shown in figure 4 along with
441
+ the analytical solution for ϵ = 0.1.
442
+ Figure 4: Solution u at ϵ = 0.1 using PINN and SA-PINN along with the analytical solution
443
+ of the 1D advection-diffusion problem.
444
+ From figure 4, we can see that PINN and SA-PINN acturetly captures the
445
+ analytical solution to the problem. The derivative of the solution with respect
446
+ to ϵ at to ϵ = 0.1 is shown in figure 5.
447
+ 11
448
+
449
+ 3.00
450
+ 2.75-
451
+ 2.50
452
+ 2.25 -
453
+ u
454
+ 2.00
455
+ 1.75 -
456
+ 1.50
457
+ Analytical
458
+ PINN
459
+ 1.25-
460
+ SA-PINN
461
+ 1.00
462
+ 0.0
463
+ 0.2
464
+ 0.4
465
+ 0.6
466
+ 0.8
467
+ 1.0
468
+ XFigure 5:
469
+ ∂u
470
+ ∂ϵ at ϵ = 0.1 using PINN and SA-PINN along with the finite difference solution of
471
+ the 1D advection-diffusion problem.
472
+ The reference finite difference solution in figure 5 is obtained by obtaining
473
+ different PINN solutions near ϵ = 0.1 and then calculating the derivative. We
474
+ can see that classical PINN fails to predict the derivative, while, SA-PINN
475
+ accurately predicts the derivative due to the added regularization term in the
476
+ loss function. The loss function for different values of ϵ is plotted in figure 6 for
477
+ PINN and SA-PINN.
478
+ 12
479
+
480
+ 4
481
+ -2
482
+ 3e/ne
483
+ -4
484
+ -6
485
+ Finite difference
486
+ -8 -
487
+ PINN
488
+ SA-PINN
489
+ -10
490
+ 0.0
491
+ 0.2
492
+ 0.4
493
+ 0.6
494
+ 0.8
495
+ 1.0
496
+ XFigure 6: Loss function for different ϵ values using PINN and SA-PINN of the 1D advection-
497
+ diffusion problem.
498
+ As seen in figure 6, SA-PINN has the effect of greatly flattening the loss
499
+ curve in a neighborhood near the nominal value of ϵ = 0.1. This leads to better
500
+ solutions that PINN in the neighborhood and accurate derivative calculation at
501
+ ϵ = 0.1.
502
+ 4.2. 2D Poisson’s problem
503
+ The PINN solution of the boundary value problem is shown in figure 7. The
504
+ solution appears to be accurate and agrees with the analytical solution of the
505
+ problem.
506
+ 13
507
+
508
+ 3.0
509
+ PINN
510
+ SA-PINN
511
+ 2.5
512
+ 2.0
513
+ Loss funcion
514
+ 1.5
515
+ 1.0
516
+ 0.5
517
+ 0.06
518
+ 0.08
519
+ 0.10
520
+ 0.12
521
+ 0.14Figure 7: PINN solution of the 2D Poisson’s boundary value problem.
522
+ The sensitivity terms
523
+ ∂u
524
+ ∂ki can then be plotted to see the effect of the diffu-
525
+ sivity on the solution.
526
+ 14
527
+
528
+ 1.0
529
+ 0.08
530
+ 0.07
531
+ 0.8
532
+ 0.06
533
+ 0.05
534
+ 0.6
535
+ 0.04
536
+ 0.4 -
537
+ 0.03
538
+ 0.02
539
+ 0.2 -
540
+ 0.01
541
+ +0'0
542
+ 0.00
543
+ 0.0
544
+ 0.2
545
+ 0.4
546
+ 0.6
547
+ 0.8
548
+ 1.0
549
+ XFigure 8: Different derivatives of the solution with respect to ki of the 2D Poisson’s problem.
550
+ The computational time is plotted versus the number of parameters with
551
+ respect to which sensitivity terms are added in figure 9.
552
+ 15
553
+
554
+ au/aki
555
+ au/ak2
556
+ au/ak3
557
+ 1.0 -
558
+ 0.002
559
+ 1.0
560
+ 0.0025
561
+ 1.0
562
+ 0.002
563
+ 0.000
564
+ 0.0000
565
+ 0.000
566
+ 0.8
567
+ 0.8
568
+ 0.0025
569
+ 0.8
570
+ 0.002
571
+ 0.002
572
+ 0.0050
573
+ 0.6
574
+ 0.004
575
+ 0.6 -
576
+ 0.6
577
+ 0.004
578
+ 0.0075
579
+ y
580
+ 0.006
581
+ y
582
+ y
583
+ 0.006
584
+ 0.0100
585
+ 0.4
586
+ 0.008
587
+ 0.4
588
+ 0.4
589
+ 0.0125
590
+ 0.008
591
+ 0.010
592
+ 0.2
593
+ 0.2
594
+ 0.0150
595
+ 0.010
596
+ 0.2
597
+ 0.012
598
+ 0.0175
599
+ 0.012
600
+ 0.0
601
+ 0.014
602
+ 0.0
603
+ 0.0200
604
+ 0'0
605
+ 0.2
606
+ 0.4
607
+ 0.6
608
+ 8'0
609
+ 1.0
610
+ 0'0
611
+ 0.2
612
+ 0.4
613
+ 0.6
614
+ 8'0
615
+ 1.0
616
+ 0.0 +
617
+ 0.2
618
+ 0.4
619
+ 0.8
620
+ 0.014
621
+ 0'0
622
+ 0.6
623
+ 1.0
624
+ x
625
+ x
626
+ x
627
+ au/ak4
628
+ au/aks
629
+ au/ak6
630
+ 1.0
631
+ 0.002
632
+ 1.0
633
+ 0.000
634
+ 1.0
635
+ 0.0000
636
+ +0.000
637
+ 0.003
638
+ 0.0025
639
+ 80
640
+ 0.002
641
+ 0.8
642
+ 0.8
643
+ 0.006
644
+ 0.0050
645
+ 0.004
646
+ 0.6
647
+ 0.009
648
+ 0.6
649
+ 0.6
650
+ 0.0075
651
+ 0.006
652
+ y
653
+ y
654
+ 0.012
655
+ y
656
+ 0.0100
657
+ 0.008
658
+ 0.4
659
+ 0.4
660
+ 0.015
661
+ 0.4
662
+ 0.0125
663
+ 0.010
664
+ 0.018
665
+ 0.2
666
+ 0.0150
667
+ 0.2 -
668
+ 0.012
669
+ 0.2
670
+ 0.014
671
+ 0.021
672
+ 0.0175
673
+ 0.0 +
674
+ 0.016
675
+ 0.0
676
+ 0.2
677
+ 0.4
678
+ 0.6
679
+ 8'0
680
+ 1.0
681
+ 0.024
682
+ 0.0+
683
+ 0.4
684
+ 0.6
685
+ 80
686
+ 0.0200
687
+ 0.0
688
+ 0.2
689
+ 0.4
690
+ 9'0
691
+ 8:0
692
+ 1.0
693
+ 0.0
694
+ 0.0
695
+ 0.2
696
+ 1.0
697
+ x
698
+ x
699
+ x
700
+ au/ak7
701
+ au/akg
702
+ au/akg
703
+ 1.0
704
+ T 0.000
705
+ 1.0
706
+ 0.0000
707
+ 1.0 -
708
+ 0.002
709
+ 0.0025
710
+ 0.002
711
+ 0.000
712
+ 0.8
713
+ 0.8
714
+ 80
715
+ 0.0050
716
+ 0.004
717
+ 0.002
718
+ 0.6
719
+ 0.6
720
+ 0.0075
721
+ 0.6
722
+ 0.004
723
+ 0.006
724
+ y
725
+ y
726
+ 0.0100
727
+ y
728
+ 0.006
729
+ 0.4
730
+ 0.008
731
+ 0.4
732
+ 0.0125
733
+ 0.4
734
+ 0.008
735
+ 0.010
736
+ 0.0150
737
+ 0.010
738
+ 0.2
739
+ 0.2
740
+ 0.2 -
741
+ 0.012
742
+ 0.0175
743
+ 0.012
744
+ 0.0 +
745
+ 0.014
746
+ 0.0 +
747
+ 0.0200
748
+ 0.0+
749
+ 0.014
750
+ 0.0
751
+ 0.2
752
+ 0.4
753
+ 0.6
754
+ 0.8
755
+ 1.0
756
+ 0.0
757
+ 0.2
758
+ 0.4
759
+ 0.6
760
+ 0.8
761
+ 1.0
762
+ 0.0
763
+ 0.2
764
+ 0.4
765
+ 0.6
766
+ 8'0
767
+ 1.0
768
+ x
769
+ x
770
+ xFigure 9: Computational time vs. no of sensitivity parameters.
771
+ It can be seen from the figure that the computational time grows linearly
772
+ when increasing the number of parameters the sensitivity is calculated with
773
+ respect to. This happens because the number of collocation points is the same
774
+ when adding a new term to the loss function; the added cost is the same when
775
+ adding new sensitivity terms.
776
+ 4.3. 1D transient two-phase flow in porous media
777
+ First, we plot the front location for three different values of k by taking the
778
+ 0.5 level set of the fraction function c in figure 10. We compare SA-PINN with
779
+ classical PINN along with the analytical solution.
780
+ 16
781
+
782
+ 1000
783
+ computation time (s)
784
+ 800
785
+ 600
786
+ 400
787
+ 200 -
788
+ 0
789
+ 2
790
+ 4
791
+ 6
792
+ 8
793
+ no of parametersFigure 10: Flow front location vs. time for three different values of k (k = 1, 0.5 and 2) of
794
+ the transient two-phase flow in porous media problem.
795
+ We can notice that SA-PINN provides good results for values of k away from
796
+ the nominal value k = 1. Classical PINN accurately predicts the solution only
797
+ at the nominal values, however, away from that values, random solutions were
798
+ obtained which is clear from the two red lines.
799
+ In figure 11, we plot the time the flow front reaches x = 0.5 vs. k. We
800
+ compare the solution from SA-PINN with the analytical solution.
801
+ 17
802
+
803
+ 1.0
804
+ 1.0
805
+ 1.0
806
+ 0.8
807
+ 0.8 -
808
+ 0.8
809
+ 0.6
810
+ 0.6 -
811
+ 0.6 .
812
+ 0.4
813
+ 0.4
814
+ 0.4 -
815
+ 0.2 .
816
+ 0.2 1/
817
+ 0.2
818
+ Analytical
819
+ PINN
820
+ SA-PINN
821
+ 0.0 +
822
+ 0.0
823
+ 0.1
824
+ 0.2
825
+ 0
826
+ 0.4
827
+ 0.5
828
+ 0.1
829
+ 0.2
830
+ 0.3
831
+ 0.4
832
+ 0.5
833
+ 0.1
834
+ 0.2
835
+ 0.3
836
+ 0.4
837
+ 0.5
838
+ 0.0
839
+ 0.0
840
+ 0.0
841
+ TimeFigure 11: Time at which the flow front reaches x = 0.5 vs. k for the transient two-phase flow
842
+ in porous media problem.
843
+ We can see a good estimation of the filling time at different values of k using
844
+ SA-PINN. This result can be useful in applications of injection processes to
845
+ estimate the filling time as a function of a parameter of interest.
846
+ 5. Conclusion
847
+ In the article, we presented a new method to perform sensitivity analysis
848
+ based on the paradigm of PINN. The method is easy to implement using any
849
+ of the machine learning libraries as TensorFlow or PyTorch. We show, through
850
+ the examples, that the technique is easy to use when sensitivity with respect to
851
+ multiple parameters of interest are studied at the same time. The computation
852
+ time grows linearly as the parameters increase which is an advantage to the
853
+ method. We also show through the last example that the method is working for
854
+ a problem where a discontinuity exists (flow front) and VOF method is used.
855
+ 18
856
+
857
+ 0.5
858
+ Analytical
859
+ SA-PINN
860
+ 0.4 -
861
+ 0.3
862
+ time
863
+ 0.2
864
+ 0.1
865
+ 0.0
866
+ 0.6
867
+ 0.8
868
+ 1.0
869
+ 1.2
870
+ 1.4
871
+ kAcknowledgements
872
+ This study was funded under the PERFORM Thesis program of IRT Jules
873
+ Verne.
874
+ References
875
+ [1] J. E. Peter, R. P. Dwight, Numerical sensitivity analysis for aerodynamic
876
+ optimization: A survey of approaches, Computers & Fluids 39 (3) (2010)
877
+ 373–391.
878
+ [2] L.-J. Leu, S. Mukherjee, Sensitivity analysis and shape optimization in
879
+ nonlinear solid mechanics, Engineering analysis with boundary elements
880
+ 12 (4) (1993) 251–260.
881
+ [3] D. E. Smith, D. A. Tortorelli, C. L. Tucker III, Analysis and sensitivity
882
+ analysis for polymer injection and compression molding, Computer Meth-
883
+ ods in Applied Mechanics and Engineering 167 (3-4) (1998) 325–344.
884
+ [4] G. L. Pishko, G. W. Astary, T. H. Mareci, M. Sarntinoranont, Sensitivity
885
+ analysis of an image-based solid tumor computational model with hetero-
886
+ geneous vasculature and porosity, Annals of biomedical engineering 39 (9)
887
+ (2011) 2360–2373.
888
+ [5] L. Santos, M. Martinho, R. Salvador, C. Wenger, S. R. Fernandes,
889
+ O. Ripolles, G. Ruffini, P. C. Miranda, Evaluation of the electric field in the
890
+ brain during transcranial direct current stimulation: a sensitivity analysis,
891
+ in: 2016 38th Annual International Conference of the IEEE Engineering in
892
+ Medicine and Biology Society (EMBC), IEEE, 2016, pp. 1778–1781.
893
+ [6] M. Koda, A. H. Dogru, J. H. Seinfeld, Sensitivity analysis of partial differen-
894
+ tial equations with application to reaction and diffusion processes, Journal
895
+ of Computational Physics 30 (2) (1979) 259–282.
896
+ 19
897
+
898
+ [7] A. Lincke, T. Rung, Adjoint-based sensitivity analysis for buoyancy-driven
899
+ incompressible navier-stokes equations with heat transfer, in: Proceedings
900
+ of the Eighth Internat. Conf. on Engineering Computational Technology,
901
+ Dubrovnik, Croatia, 2012.
902
+ [8] N. K¨uhl, J. Kr¨oger, M. Siebenborn, M. Hinze, T. Rung, Adjoint comple-
903
+ ment to the volume-of-fluid method for immiscible flows, Journal of Com-
904
+ putational Physics 440 (2021) 110411.
905
+ [9] M. Raissi, P. Perdikaris, G. E. Karniadakis, Physics-informed neural net-
906
+ works: A deep learning framework for solving forward and inverse problems
907
+ involving nonlinear partial differential equations, Journal of Computational
908
+ Physics 378 (2019) 686–707.
909
+ [10] K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks
910
+ are universal approximators, Neural networks 2 (5) (1989) 359–366.
911
+ [11] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, J. M. Siskind, Automatic
912
+ differentiation in machine learning: a survey, Journal of machine learning
913
+ research 18 (2018).
914
+ [12] E. Haghighat, M. Raissi, A. Moure, H. Gomez, R. Juanes, A deep learning
915
+ framework for solution and discovery in solid mechanics, arXiv preprint
916
+ arXiv:2003.02751 (2020).
917
+ [13] S. Cai, Z. Mao, Z. Wang, M. Yin, G. E. Karniadakis, Physics-informed
918
+ neural networks (pinns) for fluid mechanics: A review, Acta Mechanica
919
+ Sinica (2022) 1–12.
920
+ [14] M. Raissi, A. Yazdani, G. E. Karniadakis, Hidden fluid mechanics: Learn-
921
+ ing velocity and pressure fields from flow visualizations, Science 367 (6481)
922
+ (2020) 1026–1030.
923
+ [15] Q. Zhu, Z. Liu, J. Yan, Machine learning for metal additive manufactur-
924
+ ing: predicting temperature and melt pool fluid dynamics using physics-
925
+ informed neural networks, Computational Mechanics 67 (2) (2021) 619–635.
926
+ 20
927
+
928
+ [16] J. M. Hanna, J. V. Aguado, S. Comas-Cardona, R. Askri, D. Borzacchiello,
929
+ Residual-based adaptivity for two-phase flow simulation in porous media
930
+ using physics-informed neural networks, Computer Methods in Applied
931
+ Mechanics and Engineering 396 (2022) 115100.
932
+ [17] A. D. Jagtap, G. E. Karniadakis, Extended physics-informed neural net-
933
+ works (xpinns):
934
+ A generalized space-time domain decomposition based
935
+ deep learning framework for nonlinear partial differential equations, Com-
936
+ munications in Computational Physics 28 (5) (2020) 2002–2041.
937
+ [18] A. D. Jagtap, E. Kharazmi, G. E. Karniadakis, Conservative physics-
938
+ informed neural networks on discrete domains for conservation laws: Ap-
939
+ plications to forward and inverse problems, Computer Methods in Applied
940
+ Mechanics and Engineering 365 (2020) 113028.
941
+ [19] G. Pang, L. Lu, G. E. Karniadakis, fpinns: Fractional physics-informed
942
+ neural networks, SIAM Journal on Scientific Computing 41 (4) (2019)
943
+ A2603–A2626.
944
+ [20] K. Shukla, P. C. Di Leoni, J. Blackshire, D. Sparkman, G. E. Karniadakis,
945
+ Physics-informed neural network for ultrasound nondestructive quantifica-
946
+ tion of surface breaking cracks, Journal of Nondestructive Evaluation 39 (3)
947
+ (2020) 1–20.
948
+ [21] S. A. Niaki, E. Haghighat, T. Campbell, A. Poursartip, R. Vaziri, Physics-
949
+ informed neural network for modelling the thermochemical curing process
950
+ of composite-tool systems during manufacture, Computer Methods in Ap-
951
+ plied Mechanics and Engineering 384 (2021) 113959.
952
+ [22] L. Sun, H. Gao, S. Pan, J.-X. Wang, Surrogate modeling for fluid flows
953
+ based on physics-constrained deep learning without simulation data, Com-
954
+ puter Methods in Applied Mechanics and Engineering 361 (2020) 112732.
955
+ [23] A. M. Tartakovsky, C. O. Marrero, P. Perdikaris, G. D. Tartakovsky,
956
+ D. Barajas-Solano, Physics-informed deep neural networks for learning pa-
957
+ 21
958
+
959
+ rameters and constitutive relationships in subsurface flow problems, Water
960
+ Resources Research 56 (5) (2020) e2019WR026731.
961
+ [24] S. Goswami, C. Anitescu, S. Chakraborty, T. Rabczuk, Transfer learning
962
+ enhanced physics informed neural network for phase-field modeling of frac-
963
+ ture, Theoretical and Applied Fracture Mechanics 106 (2020) 102447.
964
+ 22
965
+
F9E0T4oBgHgl3EQfhQEq/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
F9E1T4oBgHgl3EQfqwX2/content/2301.03348v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b008cbdfc9dbd622e2912a82a9b5f261e8f1f41cb8a53b45c96ddb697bbfc14
3
+ size 7590582
F9E1T4oBgHgl3EQfqwX2/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ddaed406db83455db408d8c6fe71250220ca8722b150595bc184161635765a1
3
+ size 5111853
FNE1T4oBgHgl3EQfEwMv/content/tmp_files/2301.02893v1.pdf.txt ADDED
@@ -0,0 +1,1278 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ J. Bio. & Env. Sci. 2022
2
+
3
+ 109 | Javier et al.
4
+
5
+
6
+ RE
7
+ RE
8
+ RE
9
+ RESEARCH
10
+ SEARCH
11
+ SEARCH
12
+ SEARCH PAPER
13
+ PAPER
14
+ PAPER
15
+ PAPER
16
+
17
+
18
+
19
+
20
+
21
+
22
+
23
+
24
+ OPEN ACCESS
25
+ OPEN ACCESS
26
+ OPEN ACCESS
27
+ OPEN ACCESS
28
+
29
+ MangngalApp- An integrated package of technology for
30
+ COVID- 19 response and rural development: Acceptability and
31
+ usability using TAM
32
+
33
+ Billy S. Javier*, Leo P. Paliuanan, James Karl A. Agpalza, Jesty S. Agoto
34
+
35
+ College of Information and Computing Sciences, Cagayan State University, Aparri, Philippines
36
+
37
+ Article published on October 20, 2022
38
+ Key words: Acceptability, COVID-19, Fishers, POTs, Technology acceptance model, ISO 25010
39
+ Abstract
40
+ The COVID19 pandemic has challenged universities and organizations to devise mechanisms to uplift the well-
41
+ being and welfare of people and communities. In response, the design and development of an integrated package
42
+ of technologies, MangngalApp- A web-based portal and mobile responsive application for rural development
43
+ served as an opportunity. It showcases different packets of technologies that were outputs of R&D in the field of
44
+ fisheries and aqua-culture, innovations that were IP-protected, and technologies that harness locally available
45
+ resources for post-harvest development and aiding in sustaining growth and development in the communities.
46
+ This paper focused on the usability and acceptability of the MangngalApp implementing a descriptive research
47
+ design using the Technology Acceptance Model or TAM and ISO 25010 software quality standards. Constrained
48
+ by government health restrictions due to COVID- 19, a Google form-based questionnaire was forwarded to
49
+ consented participants via an email with the attached consent and evaluation form. Results revealed that the
50
+ MangngalApp was found to be very acceptable and usable, and compliant to ISO 25010 software quality
51
+ characteristics to the higher extent. From the results, it is concluded that the developed MangngalApp will be a
52
+ usable and responsive technology that aids to rural development especially among target users- fishers,
53
+ gatherers, processors, traders, and farmers. Considering compatibility and usefulness, the MangngalApp is
54
+ expected to provide greater social development in the community.
55
+ *Corresponding Author: Billy S. Javier  billyjavier@csu.edu.ph
56
+
57
+
58
+
59
+
60
+
61
+
62
+
63
+
64
+
65
+
66
+
67
+
68
+
69
+
70
+
71
+
72
+
73
+
74
+ Journal of Biodiversity and Environmental Sciences (JBES)
75
+ ISSN: 2220-6663 (Print) 2222-3045 (Online)
76
+ Vol. 21, No. 4, p. 109-117, 2022
77
+ http://www.innspub.net
78
+
79
+
80
+ J. Bio. & Env. Sci. 2022
81
+
82
+ 110 | Javier et al.
83
+ Introduction
84
+ The COVID 19 pandemic has disrupted many
85
+ organizations,
86
+ government
87
+ and
88
+ non-government
89
+ institutions,
90
+ schools,
91
+ companies,
92
+ and
93
+ various
94
+ communities. As a result, more displaced workers and
95
+ job losses increased, more families sent home, locked
96
+ down due to COVID19 restrictions and uncertain of
97
+ how and where to obtain immediate income for the
98
+ family. The government may have provided financial
99
+ assistance to erring families and fed empty stomachs.
100
+ However, resources deplete as no concrete measure to
101
+ total stop the threat of the on-going pandemic the
102
+ Filipino people is enjoying. The Cagayan State
103
+ University is mandated to transforming the lives of
104
+ people and communities through high quality
105
+ instruction, innovative research, development, and
106
+ production. Through the years, CSU has been
107
+ working hard on innovating technologies that could
108
+ help alleviate poverty, increase productivity and
109
+ improve socioeconomic status of the communities,
110
+ and
111
+ help
112
+ in
113
+ sustaining
114
+ and
115
+ protecting
116
+ the
117
+ environment. However, no matter how promising
118
+ these
119
+ technologies
120
+ are
121
+ if
122
+ these
123
+ packages
124
+ of
125
+ technologies are not widely accessible to target
126
+ communities, to its intended stakeholders: fishers,
127
+ farmers, gatherers, and processors. In fact, Sharma A,
128
+ and Kiranmayi, D (2019) was unable to find in many
129
+ literature and studies pertaining to a package of
130
+ technologies as an IEC initiative to adopting and
131
+ utilizing research-based fisheries technologies, post-
132
+ harvest technologies, and aquaculture techniques.
133
+ Most of the 124 applications reported focused on
134
+ mobile apps for angling, aquaculture management,
135
+ aquarium management, marine fisheries, and fisheries
136
+ governance, marketing and biology.
137
+
138
+ Research project generating innovative technologies
139
+ and products has been funded and curated by experts
140
+ in
141
+ the
142
+ various
143
+ fields
144
+ leading
145
+ to
146
+ technology
147
+ commercialization. These then has to be extended to
148
+ communities via available and relevant technologies
149
+ so that as an academic institution, it really radiates its
150
+ mantra of improving the lives of people and
151
+ communities. The MangngalApp research program
152
+ was generally geared at providing a solution for a
153
+ well-informed
154
+ utilization
155
+ of
156
+ the
157
+ packets
158
+ of
159
+ technologies (POTs) developed as results of scientific
160
+ inquiries and experiments of the University and
161
+ collaborating agencies. It has been said that
162
+ technologies should be utilized by the communities,
163
+ adopted via technology-transfer, generating income
164
+ from them. However, access to POTs may have not
165
+ deliberately
166
+ reaching
167
+ the
168
+ realms
169
+ of
170
+ coastal
171
+ communities. Lack of or limited access to POTs
172
+ among fishers, farmers, gatherers, and processors
173
+ may cause inefficiency, increased cost for production,
174
+ and lower productivity among fishers, fish processors
175
+ and gatherers, as well as farmers in the coastal
176
+ communities in northern Philippines.
177
+
178
+ With aqua-marine as banner program in the Aparri
179
+ Campus, a multi-disciplinary research program was
180
+ proposed with the hope of generating a package of
181
+ technology showcasing the science-based packages of
182
+ technologies of university along fishing activities,
183
+ seaweed farming, post-harvest, product development
184
+ and more. The research is expected to benefit the
185
+ coastal communities through provision of mobile-
186
+ ready and friendly application accessible to users
187
+ aiding to improve productivity, increased awareness
188
+ and protection for the environment, and providing
189
+ livelihood for women and differently-able persons.
190
+ Packages of technologies developed will be best
191
+ adopted or utilized in the community once an
192
+ integrated package or technology is made available.
193
+ Hence, the potential benefits expand from the fishers
194
+ in the conduct of and management of their fisheries
195
+ activities to any other intended users. Coastal farmers
196
+ will be able to uncover scientific ways to conservation
197
+ and management of marine species or seaweeds. Fish
198
+ processors will have the potential to improve
199
+ productivity, creation of jobs, and increased revenues.
200
+
201
+ Adapting the vision of the Food and Agriculture
202
+ Organization of the United Nations (FAO) on
203
+ enhancing the role of small-scale fisheries in
204
+ contributing to poverty alleviation and food security,
205
+ the project also focused on understanding the
206
+ technology awareness, technology adoption practices,
207
+ the information needs and seeking behaviors, media
208
+
209
+ J. Bio. & Env. Sci. 2022
210
+
211
+ 111 | Javier et al.
212
+ literacy and media adoption of various stakeholders
213
+ in the fishing communities of Northeastern Cagayan
214
+ Philippines. In the academe, students and teachers
215
+ may benefit from the having obtained the scientific
216
+ packages of technologies for instruction purposes, and
217
+ an opportunity for more relevant research formulation.
218
+ The results of the study hope to provide and cultivate
219
+ new knowledge for students, researchers, and teachers.
220
+ In so doing, students and teachers may devise projects,
221
+ programs, and studies that could add up to the
222
+ packages of technologies. Institutions or organization
223
+ may have devise appropriate strategies, programs and
224
+ plans from data mining and knowledge data discovery
225
+ thru the program.
226
+
227
+ The emergence of an information, communication,
228
+ and education platform through varied technologies
229
+ is a must especially in the dissemination of scientific
230
+ results and innovations from rigid experiments and
231
+ research. Digital visibility is considered an efficient
232
+ and reasonable way to publicize the outputs of
233
+ innovative
234
+ developments
235
+ and
236
+ research
237
+ results
238
+ (Magdalinou, 2019). The Technology Acceptance
239
+ Model (TAM) is a theory in information systems that
240
+ explain how consumers come to embrace the use of a
241
+ technology. When consumers are introduced with
242
+ new technology, the model argues that a variety of
243
+ factors influence their decision on how and when to
244
+ use it. TAM has been critiqued for a variety of
245
+ reasons, but it is a useful overall framework that is
246
+ compatible with several studies examining the
247
+ elements that influence older individuals' willingness
248
+ to utilize new technology (Braun, 2013).
249
+
250
+ This paper generally aims to describe the usability
251
+ and acceptability of the developed mobile responsive
252
+ web project known as MangngalApp - an integrated
253
+ package of technology using open-source web
254
+ development platform.
255
+
256
+ The assessment of the usability and acceptability of
257
+ the MangngalApp using the Technology Acceptance
258
+ Model (TAM) focused on (a) Perceived Ease of Use,
259
+ (b) Perceived usefulness, (c)Attitudes towards usage,
260
+ (d) Behavioral intention to use, and Relevance to the
261
+ present job. In addition, the assessment of the
262
+ developed MangngalApp based on ISO 25010
263
+ software quality characteristics has been reported.
264
+
265
+ Materials and methods
266
+ The descriptive research design was implemented in
267
+ this part of the project. The assessment of the
268
+ usability and acceptability of the developed Mangngal
269
+ App using the Technology Acceptance Model or TAM
270
+ was participated by 200 non-technical respondents.
271
+ These included fishers, farmers, fish processors,
272
+ gatherers, and households involved in post-harvest. A
273
+ listing of which was taken from municipal agriculture
274
+ office
275
+ thru
276
+ communications.
277
+ Meanwhile,
278
+ the
279
+ assessment of the 20 technical respondents applying
280
+ ISO 25010 software quality standards, provided proof
281
+ of the compliance in terms of compatibility,
282
+ reliability, user-friendliness, security, portability, and
283
+ functional suitability. The profile of the technical
284
+ respondents is presented herein in table 1. The
285
+ survey-questionnaire included some profile data of
286
+ respondents, their assessment of the MangngalApp,
287
+ and an optional remark or comment part. A consent
288
+ form was part of the questionnaire, while prior
289
+ presentation or orientation on its use was provided
290
+ via Google Meet.
291
+
292
+ The researchers took the assistance of partner-
293
+ students and community leaders handled by the team
294
+ in the locality to share the MangngalApp project and
295
+ guide intended users including those involved in
296
+ actual fishing, post-harvest development, processing,
297
+ gathering, as well as those who are trading. This is a
298
+ COVID-19 initiative of the project team in order to
299
+ gather sentiments and assessment of those greater
300
+ users. On the other hand, the technical respondents
301
+ were
302
+ communicated
303
+ formally
304
+ requesting
305
+ their
306
+ expertise, and provided the team consent to
307
+ participate in the assessment.
308
+
309
+ The respondents in the evaluation of the technical
310
+ compliance, usability and acceptability standards
311
+ using TAM included 10 industry practitioners, 10 ICT
312
+ teachers
313
+ with
314
+ experiences
315
+ in
316
+ databases,
317
+ web
318
+ development and design, and programming.
319
+
320
+ J. Bio. & Env. Sci. 2022
321
+
322
+ 112 | Javier et al.
323
+ Table 1. Profile of the Technical Respondents.
324
+ Participants
325
+ Male
326
+ Female
327
+ Total
328
+ %
329
+ Classification
330
+
331
+
332
+
333
+
334
+ Industry
335
+ Practitioners
336
+ 6
337
+ 4
338
+ 10
339
+ 50.0
340
+ ICT Teachers
341
+ 5
342
+ 5
343
+ 10
344
+ 50.0
345
+ Area of Interest
346
+
347
+
348
+
349
+
350
+ Web Design
351
+ 2
352
+ 3
353
+ 5
354
+ 25.0
355
+ Web Programming
356
+ 3
357
+ 2
358
+ 5
359
+ 25.0
360
+ Databases
361
+ 2
362
+ 2
363
+ 4
364
+ 20.0
365
+ Programming
366
+ 2
367
+ 2
368
+ 4
369
+ 20.0
370
+ Networks
371
+ 2
372
+
373
+ 2
374
+ 10.0
375
+ Years of Relevant ICT Experience
376
+
377
+
378
+ 1 to 3
379
+ 4
380
+ 5
381
+ 9
382
+ 45.0
383
+ 4 to 6
384
+ 6
385
+ 3
386
+ 9
387
+ 45.0
388
+ More than 6
389
+ 1
390
+ 1
391
+ 2
392
+ 10.0
393
+
394
+
395
+
396
+ The participants were notified via email on their
397
+ participation in the assessment. A brief orientation
398
+ via Google Meet was conducted to provide them
399
+ overview of the project. The project team provided the
400
+ link of web based MangngalApp project. They were
401
+ given at least 2 to 5 weeks to access the web project
402
+ and were requested to fill out the evaluation forms via
403
+ Google Forms. Treating the assessment of the
404
+ Usability and Acceptability of the MangngalApp using
405
+ the Technology Acceptance Model, the 4-point Likert
406
+ scale was used: 1 being not acceptable and usable to 4
407
+ being very acceptable and usable. The MangngalApp
408
+ web portal was developed applying the Design
409
+ Science Research (DSR) for Information Systems. The
410
+ Design Science Research creates and evaluates IT
411
+ artifacts intended to solve identified organizational
412
+ problems, (Peffers, 2007). Accessible thru http://cics-
413
+ csuaparri.org.ph/mangngalapp,
414
+ the
415
+ XAMPP
416
+ development framework was mainly used. XAMPP is
417
+ a cross-platform development tool involving the use
418
+ of the PHP scripting language, My SQL database
419
+ engine, and Apache web service. Other tools used
420
+ included CSS3, HTML5 and JavaScript.
421
+
422
+
423
+ Fig. 1. The MangngalApp Ecosystem.
424
+ The MangngalApp Web Project is an ecosystem that
425
+ involves people in the research and development,
426
+ technologies for development and dissemination of
427
+ research outputs, people and communities that are
428
+ the main reason for this project towards rural
429
+ development. The research outputs of the researchers
430
+ and scientific organization that were IP-registered are
431
+ highlighted for dissemination towards adoption
432
+ strategy. Bridging the gap is maximizing the use of
433
+ web tools and technologies that are accessible to the
434
+ communities. The package of technology available in
435
+ the
436
+ current
437
+ version
438
+ contains
439
+ 14
440
+ IP-registered
441
+ technologies showcasing most of the CSU Aparri-
442
+ based research and innovations.
443
+
444
+ Permissions were sought through the Knowledge and
445
+ Technology Management Office and the Office of the
446
+ Research and Development, and Extension. End-
447
+ users of the project may click on the view process to
448
+ see the detailed descriptions, as well as the steps
449
+ involved in making, producing, or utilizing the
450
+ technology. The project is scalable, it will still house
451
+ other registered post-harvest technologies, fisheries-
452
+ based products, and technologies supporting the
453
+ different
454
+ arrays
455
+ of
456
+ fisheries
457
+ and
458
+ aquaculture
459
+ development for rural use.
460
+
461
+
462
+ Fig. 2. Mobile View of the MangngalApp.
463
+
464
+ Results and discussions
465
+ Assessment of the Usability and Acceptability of the
466
+ MangngalApp using the Technology Acceptance
467
+ Model (TAM)
468
+ Table 3 presents the results of the assessment made by
469
+ the technical respondents along the aspects of perceived
470
+ ease of use, perceived usefulness, attitudes towards
471
+ usage, behavioral intention to use, and job relevance.
472
+
473
+ Fishersfarmers,gatherersandprocessors
474
+ Inaddition,currenttechnologyadoption
475
+ practices,accesstorelevantdata,
476
+ preferencesonfishingandfarming
477
+ NOODLESEINRICHEDWITHARAMANG
478
+ DeVEIOPCDRLENMFAPMOLNA
479
+ technologiesthemobileinternetand
480
+ VwProcOSS
481
+ medialiteracyandtheneedtosupport
482
+ activitiesofthefishers,farmers,and
483
+ processorswillbeobtained.TheprojectMangngalApp
484
+ MangngalApp
485
+ Home
486
+ PackagesofTechnology
487
+ Packs ofTechnology
488
+ AboutMangngalApp
489
+ NewsandUpdates
490
+ describestheinformation seeking
491
+ ARAMANG-ENRICHEDPOLVORON
492
+ DeVelODer:DR.LENMFARANOLINA
493
+ practices,technologyawareness
494
+ WewProc心5出
495
+ RESEARCH
496
+ TECHNOLOGY
497
+ MangngalAppll
498
+ APP
499
+ Aeelicotlon
500
+ DATABASE
501
+ mamgalapn.cics顺
502
+ csuanarrlorg.hJ. Bio. & Env. Sci. 2022
503
+
504
+ 113 | Javier et al.
505
+ Table 1. Assessment of the Usability and Acceptability using TAM.
506
+ VAU AU SAU NAU Weighted DV
507
+ Aspects of the Technology Acceptance
508
+ f
509
+ f
510
+ f
511
+ f
512
+ Mean
513
+
514
+ Perceived Ease of Use
515
+
516
+
517
+
518
+
519
+ 3.14
520
+ AU
521
+ I feel that using MangngalApp would be easy for me
522
+ I feel that my interaction with MangngalApp would be clear
523
+ 8
524
+ 12
525
+ 0
526
+ 0
527
+ 3.40
528
+
529
+ VAU
530
+ and understandable
531
+ I feel that it would be easy to become skillful at using
532
+ 6
533
+ 12
534
+ 1
535
+ 0
536
+ 3.25
537
+ VAU
538
+ MangngalApp
539
+ 3
540
+ 15
541
+ 1
542
+ 0
543
+ 3.10
544
+ AU
545
+ I would find MangngalApp to be flexible to interact with
546
+ 6
547
+ 12
548
+ 1
549
+ 0
550
+ 3.25
551
+ VAU
552
+ Learning to operate MangngalApp would be easy for me
553
+ It would be easy for me to get MangngalApp to do what I
554
+ 6
555
+ 12
556
+ 2
557
+ 0
558
+ 3.20
559
+ AU
560
+ want to do
561
+ I feel that my ability to determine MangngalApp ease of use
562
+ 2
563
+ 13
564
+ 4
565
+ 0
566
+ 2.90
567
+ AU
568
+ is limited by my lack of experience
569
+ 4
570
+ 11
571
+ 3
572
+ 2
573
+ 2.85
574
+ AU
575
+ Perceived Usefulness
576
+
577
+
578
+
579
+
580
+ 3.32
581
+ VAU
582
+ Using MangngalApp in disseminating technologies to intended
583
+ users would enable me or users to accomplish
584
+
585
+
586
+
587
+
588
+
589
+
590
+ tasks more quickly
591
+ Using MangngalApp would improve my skills and is useful
592
+ 11
593
+ 8
594
+ 1
595
+ 0
596
+ 3.50
597
+
598
+ VAU
599
+ in the fishers and user's needs.
600
+ 7
601
+ 12
602
+ 1
603
+ 0
604
+ 3.30
605
+ VAU
606
+ Using MangngalApp would increase my productivity
607
+ Using MangngalApp would enhance other users' capabilities
608
+ 7
609
+ 12
610
+ 1
611
+ 0
612
+ 3.30
613
+ VAU
614
+ adopting the technology shared.
615
+ Using MangngalApp would make it easier to know new
616
+ technological updates in fishing, postharvest and related
617
+ 7
618
+ 12
619
+ 1
620
+ 0
621
+ 3.30
622
+ VAU
623
+ activities.
624
+ I would find MangngalApp useful in helping the fishers and
625
+ 6
626
+ 12
627
+ 2
628
+ 0
629
+ 3.20
630
+ AU
631
+ related sectors towards rural development.
632
+ 7
633
+ 12
634
+ 1
635
+ 0
636
+ 3.30
637
+ VAU
638
+ Attitudes towards Usage
639
+
640
+
641
+
642
+
643
+ 3.43
644
+ VAU
645
+ I believe it is a good idea to use the MangngalApp web
646
+
647
+
648
+
649
+
650
+
651
+
652
+ project
653
+ 8
654
+ 12
655
+ 0
656
+ 0
657
+ 3.40
658
+ VAU
659
+ I like the idea of using the MangngalApp web project
660
+ 8
661
+ 12
662
+ 0
663
+ 0
664
+ 3.40
665
+ VAU
666
+ Using the MangngalApp is a positive idea
667
+ 10
668
+ 10
669
+ 0
670
+ 0
671
+ 3.50
672
+ VAU
673
+ Behavioural Intention to Use
674
+
675
+
676
+
677
+
678
+ 3.22
679
+ AU
680
+ I tend to use the MangngalApp web project for seeking new
681
+ innovations in fisheries post-harvest and technologies.
682
+ 6
683
+ 13
684
+ 1
685
+ 0
686
+
687
+ 3.25
688
+ VAU
689
+ I tend to use MangngalApp to enhance my interest in related
690
+ fishing, aqua-culture, and post-harvest activities
691
+ I tend to use the MangngalApp to provide multi-approaches on
692
+ sharing and obtaining technological and innovations in
693
+ 6
694
+ 12
695
+ 2
696
+ 0
697
+ 3.20
698
+ AU
699
+ fisheries, aqua-marine and post-harvest activities.
700
+ 6
701
+ 12
702
+ 2
703
+ 0
704
+ 3.20
705
+ AU
706
+ Relevance of the MangngalApp to Current Job
707
+
708
+
709
+ 3.35 VAU
710
+ In disseminating new packets of technologies along fisheries and
711
+ aqua-marine, the usage of MangngalApp is important
712
+ 8
713
+ 11
714
+ 1
715
+ 0
716
+ 3.35
717
+ VAU
718
+ In disseminating new packets of technologies along fisheries and
719
+ aqua-marine, the usage of MangngalApp is timely relevant
720
+ 8
721
+ 11
722
+ 1
723
+ 0
724
+ 3.35
725
+ VAU
726
+ Overall Weighted Mean
727
+
728
+ 3.29
729
+ VAU
730
+ 3.25 – 4.00 >> Very acceptable and usable (VAU)
731
+ 1.75 – 2.49 >>
732
+ Somewhat acceptable and
733
+ usable (SAU)
734
+ 2.50 – 3.24 >> Acceptable and usable (AU)
735
+ 1.00 – 1.74 >> Not acceptable and usable (NAU)
736
+
737
+ With an overall mean of 3.29, the assessment of the
738
+ MangngalApp along the usability and acceptability
739
+ aspects were found to be “very acceptable and usable”
740
+ (table 3). Specifically, the assessment of perceived
741
+ usefulness (3.32), their attitude towards usage (3.43),
742
+ and relevance (3.45) were rated very acceptable and
743
+ usable. The perceived usefulness could be associated
744
+ to their perceived attitude towards its usage as well as
745
+ how relevant the MangngalApp web project specially
746
+ to intended users. For the purpose of clarity and
747
+ understanding, the project team intended to have the
748
+ MangngalApp project be assessed by the fishers,
749
+ processors, farmers, traders, and gathers. However,
750
+ the team was constrained to do the actual
751
+ demonstration due to restrictions of the COVID-19
752
+ virus and high-risk alert levels of cases in the locality.
753
+ The team also tried to meet the all intended
754
+ participants via virtual setup in a video conferencing
755
+
756
+ J. Bio. & Env. Sci. 2022
757
+
758
+ 114 | Javier et al.
759
+ tool
760
+ as
761
+ well
762
+ as
763
+ used
764
+ other
765
+ strategies
766
+ like
767
+ communicating with students and leaders in the area.
768
+ Feed backs from the students who were parents of the
769
+ fishers and farmers as well as processors; said most of
770
+ their parents prefer to have the project demonstrated
771
+ in face-to-face setup so they could easily grasp the
772
+ technology. The team decided to conduct the actual
773
+ dissemination and training in the actual users in the
774
+ ground upon notice of approval from relevant office
775
+ still confirming to minimum health protocols. It is
776
+ one of the key future directions the team is looking
777
+ forward.
778
+
779
+ As presented, the group of non-technical respondents
780
+ generally assessed the usability and acceptability of
781
+ the MangngalApp as “very acceptable and usable”
782
+ with a mean of 3.39. This rating is associated to the
783
+ very acceptable and usable descriptive values for
784
+ perceived usefulness, attitude towards usage, and job
785
+ relevance. Interestingly, more male respondents
786
+ perceived higher valuation of the Mangngal App
787
+ compared to their female counterparts. Meanwhile,
788
+ the technical respondents rated the aspects of TAM as
789
+ “acceptable and usable” with a mean of 3.21. Higher
790
+ assessment has been made by female industry
791
+ practitioners with a mean of 3.38, especially along
792
+ usefulness, attitudes towards usage, behavioral
793
+ intention to use and job relevance. There were 40
794
+ percent
795
+ of
796
+ the
797
+ respondents
798
+ who
799
+ rated
800
+ the
801
+ MangngalApp as overall very acceptable and usable.
802
+
803
+ Table 2. Detailed presentation of the assessment of the usability and acceptability
804
+ Aspects of TAM
805
+ Technical Respondents
806
+ Non-Technical Respondents
807
+ Male
808
+ Female
809
+ Weighted
810
+ Mean
811
+ Descriptive
812
+ Value
813
+ Male
814
+ Female
815
+ Weighted
816
+ Mean
817
+ Descriptive
818
+ Value
819
+ 1. Perceived ease of use
820
+ 3.07
821
+ 3.14
822
+ 3.10
823
+ AU
824
+ 3.23
825
+ 3.11
826
+ 3.17
827
+ AU
828
+ 2. Perceived usefulness
829
+ 3.00
830
+ 3.50
831
+ 3.27
832
+ VAU
833
+ 3.47
834
+ 3.27
835
+ 3.37
836
+ VAU
837
+ 3. Attitude towards usage
838
+ 3.33
839
+ 3.50
840
+ 3.40
841
+ VAU
842
+ 3.47
843
+ 3.47
844
+ 3.47
845
+ VAU
846
+ 4. Behavioral intention to use
847
+ 3.00
848
+ 3.50
849
+ 3.20
850
+ AU
851
+ 3.40
852
+ 3.07
853
+ 3.23
854
+ AU
855
+ 5. Job Relevance
856
+ 3.17
857
+ 3.50
858
+ 3.30
859
+ VAU
860
+ 3.40
861
+ 3.40
862
+ 3.40
863
+ VAU
864
+ Overall
865
+ 3.12
866
+ 3.38
867
+ 3.32
868
+ AU
869
+ 3.37
870
+ 3.23
871
+ 3.30
872
+ VAU
873
+
874
+
875
+ 3.21
876
+
877
+ AU
878
+
879
+ 3.39
880
+ VAU
881
+
882
+ Percentage of those who rated the
883
+ MangngalApp as overall “very acceptable
884
+ and usable”
885
+
886
+
887
+ 40%
888
+
889
+
890
+ 40%
891
+
892
+ Compliance to ISO 25010 software quality characteristics of the developed MangngalApp
893
+
894
+ Table 3. Summary table of the assessment of the developed MangngalApp based on ISO 25010 software quality
895
+ characteristics.
896
+ Indicator
897
+ Technical Evaluators
898
+ Non-Technical (Fisher)
899
+ Overall
900
+ WM
901
+ DV
902
+ WM
903
+ DV
904
+ WM
905
+ DV
906
+ Accuracy
907
+ 3.47
908
+ VHE
909
+ 3.87
910
+ VHE
911
+ 3.67
912
+ VHE
913
+ Reliability
914
+ 3.53
915
+ VHE
916
+ 3.90
917
+ VHE
918
+ 3.72
919
+ VHE
920
+ Security
921
+ 3.50
922
+ VHE
923
+ 4.00
924
+ VHE
925
+ 3.75
926
+ VHE
927
+ Functional Suitability
928
+ 3.60
929
+ VHE
930
+ 3.93
931
+ VHE
932
+ 3.77
933
+ VHE
934
+ Portability
935
+ 3.67
936
+ VHE
937
+ 3.87
938
+ VHE
939
+ 3.77
940
+ VHE
941
+ Usability
942
+ 3.60
943
+ VHE
944
+ 3.9
945
+ VHE
946
+ 3.75
947
+ VHE
948
+ Maintainability
949
+ 3.57
950
+ VHE
951
+ 3.87
952
+ VHE
953
+ 3.72
954
+ VHE
955
+ Efficiency
956
+ 3.60
957
+ VHE
958
+ 3.90
959
+ VHE
960
+ 3.75
961
+ VHE
962
+ Overall Weighted Mean
963
+ 3.57
964
+ VHE
965
+ 3.91
966
+ VHE
967
+ 3.74
968
+ VHE
969
+ Legend:
970
+ WM– Weighted Mean; DV– Descriptive Value
971
+ 3.25-4.00 >> Very High Extent (VHE, 1.75-2.49 >> Fair Extent (FE)
972
+ 2.50-3.24 >> High Extent (HE), 1.00-1.74>> Poor Extent (PE)
973
+
974
+ Presented in table the summary table of the
975
+ assessment
976
+ of
977
+ the
978
+ MangngalApp
979
+ web
980
+ project
981
+ following
982
+ the
983
+ ISO
984
+ 25010
985
+ software
986
+ quality
987
+ characteristics. The assessment of the technical and
988
+ non-technical respondents revealed an overall remark
989
+ of excellent with an overall mean of 3.74. Notably,
990
+ both groups made a high remark or excellent
991
+ highlighting functionality and portability aspects.
992
+
993
+ J. Bio. & Env. Sci. 2022
994
+
995
+ 115 | Javier et al.
996
+ The functionality can be associated to the fact that the
997
+ MangngalApp follows a WYSWYG approach making
998
+ ease of access and functional. Meanwhile, the
999
+ portability aspect could be associated to the project
1000
+ being compatible to varied devices making it
1001
+ convenient to users.
1002
+
1003
+ The participants were asked about their problems and
1004
+ challenges associated to the use of the MangngalApp.
1005
+ Although the participants are technical evaluators, it
1006
+ is believed that common issues will be experienced by
1007
+ the intended users. This includes but not limited to:
1008
+ a. Internet connectivity issues
1009
+ b. Not very good using via tablets PC
1010
+ c. Limited contents only focused to fisheries and
1011
+ aquaculture
1012
+ d. Cannot visualize from just an image
1013
+
1014
+ There were comments and suggestions highlighted by
1015
+ the respondents. This includes but not limited to:
1016
+ a. Strengthen internet connection in the area
1017
+ b. Share more techno guides that are easily
1018
+ understood by intended users
1019
+ c. Produce video of the steps which are visibly
1020
+ understood by intended users
1021
+ d. Add more contents not only along post-harvest
1022
+ and processing.
1023
+ e. Translation of contents to Filipino or vernaculars
1024
+ if possible
1025
+
1026
+
1027
+ Moreover, the overall impressions made by the
1028
+ participants include:
1029
+ a. MangngalApp as a good project for rural
1030
+ development
1031
+ b. The project is impressive
1032
+ c. Great project especially if with more contents for
1033
+ the intended users
1034
+ d. Very good one-stop IEC mechanism
1035
+
1036
+ Considering the above-mentioned, the project team is
1037
+ looking way forward to scale up the project, fast-track
1038
+ the translation to Filipino, as well as integrating other
1039
+ technologies that would benefit the communities for
1040
+ rural development. The translation is in coordination
1041
+ with owners of the technology.
1042
+ Conclusions
1043
+ The MangngalApp project was found to be very
1044
+ acceptable and usable based on the assessment of the
1045
+ technical respondents. There were uncontrolled
1046
+ issues or problems in the use of the MangngalApp,
1047
+ the constructive comments and suggestions, as well as
1048
+ the overall impressions over the project. Based on the
1049
+ ISO 25010 software quality characteristics, the
1050
+ respondents generally remark it as “excellent” with an
1051
+ overall mean of 3.74.
1052
+
1053
+ From the results, it is concluded that the developed
1054
+ MangngalApp will be a usable and responsive
1055
+ technology that aids to rural development especially
1056
+ among target users- fishers, gatherers, processors,
1057
+ traders, and farmers. Considering compatibility and
1058
+ usefulness, the MangngalApp is expected to provide
1059
+ greater social development in the community.
1060
+
1061
+ Social Implications
1062
+ The use of the MangngalApp would offer greater
1063
+ opportunity for local users to livelihood development
1064
+ adopting the technologies being shared from the
1065
+ output of scientific undertakings at the University and
1066
+ with collaborators. Meanwhile, the adoption of the
1067
+ technologies
1068
+ may
1069
+ be
1070
+ undertaken
1071
+ providing
1072
+ opportunities for small to medium organizations
1073
+ towards livelihood development – forging partnership
1074
+ with the University and other stakeholders and
1075
+ private institutions.
1076
+
1077
+ Project Limitations
1078
+ The researchers acknowledge the technical challenge
1079
+ that may have encountered by the participants as
1080
+ there were very limited face-to-face presentations
1081
+ made with intended users, thus may affect the results
1082
+ in the study. There is a need to perform actual
1083
+ demonstration
1084
+ with
1085
+ them
1086
+ upon
1087
+ approval
1088
+ of
1089
+ authorities and observing minimum health protocols.
1090
+
1091
+ Recommendations
1092
+ From the results of the study, it is recommended to
1093
+ integrate the fully translated content and additional
1094
+ technologies geared towards full utilization of the
1095
+ MangngalApp especially creating opportunities for
1096
+
1097
+ J. Bio. & Env. Sci. 2022
1098
+
1099
+ 116 | Javier et al.
1100
+ livelihood development. Further, the conduct of
1101
+ extension activities to adopt and utilize the project
1102
+ accessible in the web is highly encouraged thru
1103
+ demonstration activities forging collaboration with
1104
+ fishers and women organizations. In addition, there is
1105
+ a need to constantly update and make the project
1106
+ scalable providing other opportunities for rural
1107
+ development
1108
+ in
1109
+ general
1110
+ especially
1111
+ when
1112
+ new
1113
+ innovations are IP-registered from the research
1114
+ innovations in fisheries and aqua-marine. The
1115
+ development of a video production is suggested for
1116
+ actual demonstration of the processes involved
1117
+ especially in post-harvest or product development.
1118
+
1119
+ Acknowledgement
1120
+ The research project would not be a success without
1121
+ the support of the administration of the Cagayan
1122
+ State University headed by Dr. Urdujah G. Alvarado,
1123
+ the kind assistance and support of the RDE for the
1124
+ funding thru VP for RDE Dr. Junel Guzman, as well
1125
+ as the commitment and leadership of the Campus
1126
+ Executive Officer Dr. Simeon R. Rabanal, Jr. The
1127
+ project team is ever grateful for the usual and
1128
+ unparalleled support and drive of the Coordinator for
1129
+ Research and Development Dr. Lenimfa Molina for
1130
+ sharing the technologies and helping us in the project
1131
+ contents. Special mention to Ms. Eunice Daluddung
1132
+ for her patience and assistance to the project team.
1133
+ Kind appreciation is extended to Dr. Corazon T.
1134
+ Talamayan for supporting us in the project. Morever,
1135
+ the assessment of the project as well as how could we
1136
+ better improve the MangngalApp is greatly attributed
1137
+ to the self-less sharing of time, effort and expertise of
1138
+ the industry practitioners and ICT teachers despite
1139
+ being very busy also. To all the fishers, farmers,
1140
+ processors, gatherers, and small-scale merchants – we
1141
+ owe this project to you, as our inspiration of doing the
1142
+ project towards rural development. Special mention
1143
+ goes to the member of the review committee in the 2
1144
+ in-house reviews conducted – Engr. Gil Mark Hizon of
1145
+ DOST RO2 and Dr. Emma Ballad of BFAR RO2 for
1146
+ their constructive comments, guidance and inspiration:
1147
+ GAD-Focal Person Prof Kristine Lara, Extension
1148
+ coordinator Josie Bas-ong and KTM Coordinator Dr.
1149
+ Gilbert Magulod Jr for the inputs and support.
1150
+ References
1151
+ Abdelaziz T, Elammari M, Bani W. 2015.
1152
+ Applying the ISO Standard in Assessing the Quality of
1153
+ Software Systems. American Journal of Computer
1154
+ Science and Information Engineering 2(3), 28-32.
1155
+ Retrieved from www.aascit.org/journal/ajcsie
1156
+
1157
+ Davis FD. 1989. Perceived usefulness, perceived
1158
+ ease of use, and user acceptance of information
1159
+ technology.
1160
+ MIS
1161
+ Quarterly
1162
+ 13(3),
1163
+ 319-340.
1164
+ https:/doi.org/10.2307/249008
1165
+
1166
+ Department
1167
+ of
1168
+ Agriculture
1169
+ -
1170
+ Bureau
1171
+ of
1172
+ Agricultural
1173
+ Research.
1174
+ 2016.
1175
+ Research
1176
+ and
1177
+ Development, and Extension Agenda and Programs
1178
+ 2016-2022. Retrieved April 2018, from DA-BAR
1179
+ Website: http://www.bar.gov.ph/downloadables.
1180
+
1181
+ Dhaka BL. 2016. Farmers’ experience with ICTs on
1182
+ transfer
1183
+ of
1184
+ technology
1185
+ in
1186
+ changing
1187
+ agri-rural
1188
+ environment. Indian Research Journal of Extension
1189
+ Education 10(3), 114-118.
1190
+
1191
+ FAO. 2018. Fishery and Aquaculture Country
1192
+ Profiles.
1193
+ Retrieved
1194
+ March
1195
+ 2018,
1196
+ from
1197
+ FAO:
1198
+ http://www.fao.org/fishery/facp/PHL/en
1199
+
1200
+ Gyaneshwar
1201
+ Singh
1202
+ Kushwaha
1203
+ DB.
1204
+ 2010.
1205
+ Development of a theoretical framework of supply
1206
+ chain quality management. Serbian Journal of
1207
+ Management
1208
+ 5(1),
1209
+ 127-142.
1210
+ Retrieved
1211
+ from
1212
+ http://www.sjm06.com/SJM%20ISSN1452-
1213
+ 4864/5_1_2010_May_1188/5_1_127-142.pdf
1214
+
1215
+ Hossain
1216
+ MI.
1217
+ 2021.
1218
+ COVID-19
1219
+ Impacts
1220
+ on
1221
+ Employment and Livelihood of Marginal People in
1222
+ Bangladesh: Lessons Learned and Way Forward.
1223
+ SAGE Journals South Asian Survey 28(1), 57-71.
1224
+ DOI: https://doi.org/10.1177/0971523121995072
1225
+
1226
+ Magdalinou AM. 2019. Disseminating Research
1227
+ Outputs: The Crowd Health Project. Acta informatica
1228
+ medica: AIM: journal of the Society for Medical
1229
+ Informatics of Bosnia & Herzegovina :Casopis Drustva
1230
+ za medicinsku informatiku BiH 27(5), 348-354.
1231
+ DOI: https://doi.org/10.5455/aim.2019.27.348-354
1232
+
1233
+ J. Bio. & Env. Sci. 2022
1234
+
1235
+ 117 | Javier et al.
1236
+ Patel N. 2020. Future of On-Demand Economy | Rise of
1237
+ On-DemandApps. Retrieved from globalvincitore.com:
1238
+ https://www.globalvincitore.com/rise-of-on-demand
1239
+
1240
+ Patel
1241
+ R.
1242
+ 2019.
1243
+ On-demand
1244
+ App
1245
+ Benefits,
1246
+ Applications
1247
+ and
1248
+ Future.
1249
+ Retrieved
1250
+ from
1251
+ yourstory.com:
1252
+ https://yourstory.com/mystory/on-
1253
+ demand-app/amp
1254
+
1255
+ Robbert-Jan
1256
+ van
1257
+ der
1258
+ Burg
1259
+ KA.
1260
+ 2019.
1261
+ Investigating the on-demand service characteristics:
1262
+ an empirical study. Journal of Service Management.
1263
+ DOI: 10.1108/JOSM-01-2019-0025
1264
+ The Strait Times Asia. 2020. Philippines Suffers
1265
+ worst job losses in 15 years due to Covid-19 and
1266
+ lockdown. Retrieved June 2021, from The Strait
1267
+ Times Asia:
1268
+
1269
+ Truong T, Rothschild BJ, Azadivar F. 2005.
1270
+ Decision Support System for Fisheries Management.
1271
+ DOI: 10.1145/1162708.1163075
1272
+
1273
+
1274
+
1275
+
1276
+
1277
+
1278
+
FNE1T4oBgHgl3EQfEwMv/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,435 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf,len=434
2
+ page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
3
+ page_content=' Bio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
4
+ page_content=' & Env.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
5
+ page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
6
+ page_content=' 2022 109 | Javier et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
7
+ page_content=' RE RE RE RESEARCH SEARCH SEARCH SEARCH PAPER PAPER PAPER PAPER OPEN ACCESS OPEN ACCESS OPEN ACCESS OPEN ACCESS MangngalApp- An integrated package of technology for COVID- 19 response and rural development: Acceptability and usability using TAM Billy S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
8
+ page_content=' Javier*, Leo P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
9
+ page_content=' Paliuanan, James Karl A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
10
+ page_content=' Agpalza, Jesty S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
11
+ page_content=' Agoto College of Information and Computing Sciences, Cagayan State University, Aparri, Philippines Article published on October 20, 2022 Key words: Acceptability, COVID-19, Fishers, POTs, Technology acceptance model, ISO 25010 Abstract The COVID19 pandemic has challenged universities and organizations to devise mechanisms to uplift the well- being and welfare of people and communities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
12
+ page_content=' In response, the design and development of an integrated package of technologies, MangngalApp- A web-based portal and mobile responsive application for rural development served as an opportunity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
13
+ page_content=' It showcases different packets of technologies that were outputs of R&D in the field of fisheries and aqua-culture, innovations that were IP-protected, and technologies that harness locally available resources for post-harvest development and aiding in sustaining growth and development in the communities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
14
+ page_content=' This paper focused on the usability and acceptability of the MangngalApp implementing a descriptive research design using the Technology Acceptance Model or TAM and ISO 25010 software quality standards.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
15
+ page_content=' Constrained by government health restrictions due to COVID- 19, a Google form-based questionnaire was forwarded to consented participants via an email with the attached consent and evaluation form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
16
+ page_content=' Results revealed that the MangngalApp was found to be very acceptable and usable, and compliant to ISO 25010 software quality characteristics to the higher extent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
17
+ page_content=' From the results, it is concluded that the developed MangngalApp will be a usable and responsive technology that aids to rural development especially among target users- fishers, gatherers, processors, traders, and farmers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
18
+ page_content=' Considering compatibility and usefulness, the MangngalApp is expected to provide greater social development in the community.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
19
+ page_content=' *Corresponding Author: Billy S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
20
+ page_content=' Javier \uf02a billyjavier@csu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
21
+ page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
22
+ page_content='ph Journal of Biodiversity and Environmental Sciences (JBES) ISSN: 2220-6663 (Print) 2222-3045 (Online) Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
23
+ page_content=' 21, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
24
+ page_content=' 4, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
25
+ page_content=' 109-117, 2022 http://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
26
+ page_content='innspub.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
27
+ page_content='net J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
28
+ page_content=' Bio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
29
+ page_content=' & Env.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
30
+ page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
31
+ page_content=' 2022 110 | Javier et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
32
+ page_content=' Introduction The COVID 19 pandemic has disrupted many organizations, government and non-government institutions, schools, companies, and various communities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
33
+ page_content=' As a result, more displaced workers and job losses increased, more families sent home, locked down due to COVID19 restrictions and uncertain of how and where to obtain immediate income for the family.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
34
+ page_content=' The government may have provided financial assistance to erring families and fed empty stomachs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
35
+ page_content=' However, resources deplete as no concrete measure to total stop the threat of the on-going pandemic the Filipino people is enjoying.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
36
+ page_content=' The Cagayan State University is mandated to transforming the lives of people and communities through high quality instruction, innovative research, development, and production.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
37
+ page_content=' Through the years, CSU has been working hard on innovating technologies that could help alleviate poverty, increase productivity and improve socioeconomic status of the communities, and help in sustaining and protecting the environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
38
+ page_content=' However, no matter how promising these technologies are if these packages of technologies are not widely accessible to target communities, to its intended stakeholders: fishers, farmers, gatherers, and processors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
39
+ page_content=' In fact, Sharma A, and Kiranmayi, D (2019) was unable to find in many literature and studies pertaining to a package of technologies as an IEC initiative to adopting and utilizing research-based fisheries technologies, post- harvest technologies, and aquaculture techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
40
+ page_content=' Most of the 124 applications reported focused on mobile apps for angling, aquaculture management, aquarium management, marine fisheries, and fisheries governance, marketing and biology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
41
+ page_content=' Research project generating innovative technologies and products has been funded and curated by experts in the various fields leading to technology commercialization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
42
+ page_content=' These then has to be extended to communities via available and relevant technologies so that as an academic institution, it really radiates its mantra of improving the lives of people and communities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
43
+ page_content=' The MangngalApp research program was generally geared at providing a solution for a well-informed utilization of the packets of technologies (POTs) developed as results of scientific inquiries and experiments of the University and collaborating agencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
44
+ page_content=' It has been said that technologies should be utilized by the communities, adopted via technology-transfer, generating income from them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
45
+ page_content=' However, access to POTs may have not deliberately reaching the realms of coastal communities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
46
+ page_content=' Lack of or limited access to POTs among fishers, farmers, gatherers, and processors may cause inefficiency, increased cost for production, and lower productivity among fishers, fish processors and gatherers, as well as farmers in the coastal communities in northern Philippines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
47
+ page_content=' With aqua-marine as banner program in the Aparri Campus, a multi-disciplinary research program was proposed with the hope of generating a package of technology showcasing the science-based packages of technologies of university along fishing activities, seaweed farming, post-harvest, product development and more.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
48
+ page_content=' The research is expected to benefit the coastal communities through provision of mobile- ready and friendly application accessible to users aiding to improve productivity, increased awareness and protection for the environment, and providing livelihood for women and differently-able persons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
49
+ page_content=' Packages of technologies developed will be best adopted or utilized in the community once an integrated package or technology is made available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
50
+ page_content=' Hence, the potential benefits expand from the fishers in the conduct of and management of their fisheries activities to any other intended users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
51
+ page_content=' Coastal farmers will be able to uncover scientific ways to conservation and management of marine species or seaweeds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
52
+ page_content=' Fish processors will have the potential to improve productivity, creation of jobs, and increased revenues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
53
+ page_content=' Adapting the vision of the Food and Agriculture Organization of the United Nations (FAO) on enhancing the role of small-scale fisheries in contributing to poverty alleviation and food security, the project also focused on understanding the technology awareness, technology adoption practices, the information needs and seeking behaviors, media J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
54
+ page_content=' Bio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
55
+ page_content=' & Env.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
56
+ page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
57
+ page_content=' 2022 111 | Javier et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
58
+ page_content=' literacy and media adoption of various stakeholders in the fishing communities of Northeastern Cagayan Philippines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
59
+ page_content=' In the academe, students and teachers may benefit from the having obtained the scientific packages of technologies for instruction purposes, and an opportunity for more relevant research formulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
60
+ page_content=' The results of the study hope to provide and cultivate new knowledge for students, researchers, and teachers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
61
+ page_content=' In so doing, students and teachers may devise projects, programs, and studies that could add up to the packages of technologies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
62
+ page_content=' Institutions or organization may have devise appropriate strategies, programs and plans from data mining and knowledge data discovery thru the program.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
63
+ page_content=' The emergence of an information, communication, and education platform through varied technologies is a must especially in the dissemination of scientific results and innovations from rigid experiments and research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
64
+ page_content=' Digital visibility is considered an efficient and reasonable way to publicize the outputs of innovative developments and research results (Magdalinou, 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
65
+ page_content=' The Technology Acceptance Model (TAM) is a theory in information systems that explain how consumers come to embrace the use of a technology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
66
+ page_content=' When consumers are introduced with new technology, the model argues that a variety of factors influence their decision on how and when to use it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
67
+ page_content=" TAM has been critiqued for a variety of reasons, but it is a useful overall framework that is compatible with several studies examining the elements that influence older individuals' willingness to utilize new technology (Braun, 2013)." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
68
+ page_content=' This paper generally aims to describe the usability and acceptability of the developed mobile responsive web project known as MangngalApp - an integrated package of technology using open-source web development platform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
69
+ page_content=' The assessment of the usability and acceptability of the MangngalApp using the Technology Acceptance Model (TAM) focused on (a) Perceived Ease of Use, (b) Perceived usefulness, (c)Attitudes towards usage, (d) Behavioral intention to use, and Relevance to the present job.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
70
+ page_content=' In addition, the assessment of the developed MangngalApp based on ISO 25010 software quality characteristics has been reported.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
71
+ page_content=' Materials and methods The descriptive research design was implemented in this part of the project.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
72
+ page_content=' The assessment of the usability and acceptability of the developed Mangngal App using the Technology Acceptance Model or TAM was participated by 200 non-technical respondents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
73
+ page_content=' These included fishers, farmers, fish processors, gatherers, and households involved in post-harvest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
74
+ page_content=' A listing of which was taken from municipal agriculture office thru communications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
75
+ page_content=' Meanwhile, the assessment of the 20 technical respondents applying ISO 25010 software quality standards, provided proof of the compliance in terms of compatibility, reliability, user-friendliness, security, portability, and functional suitability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
76
+ page_content=' The profile of the technical respondents is presented herein in table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
77
+ page_content=' The survey-questionnaire included some profile data of respondents, their assessment of the MangngalApp, and an optional remark or comment part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
78
+ page_content=' A consent form was part of the questionnaire, while prior presentation or orientation on its use was provided via Google Meet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
79
+ page_content=' The researchers took the assistance of partner- students and community leaders handled by the team in the locality to share the MangngalApp project and guide intended users including those involved in actual fishing, post-harvest development, processing, gathering, as well as those who are trading.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
80
+ page_content=' This is a COVID-19 initiative of the project team in order to gather sentiments and assessment of those greater users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
81
+ page_content=' On the other hand, the technical respondents were communicated formally requesting their expertise, and provided the team consent to participate in the assessment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
82
+ page_content=' The respondents in the evaluation of the technical compliance, usability and acceptability standards using TAM included 10 industry practitioners, 10 ICT teachers with experiences in databases, web development and design, and programming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
83
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
84
+ page_content=' Bio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
85
+ page_content=' & Env.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
86
+ page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
87
+ page_content=' 2022 112 | Javier et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
88
+ page_content=' Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
89
+ page_content=' Profile of the Technical Respondents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
90
+ page_content=' Participants Male Female Total % Classification Industry Practitioners 6 4 10 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
91
+ page_content='0 ICT Teachers 5 5 10 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
92
+ page_content='0 Area of Interest Web Design 2 3 5 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
93
+ page_content='0 Web Programming 3 2 5 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
94
+ page_content='0 Databases 2 2 4 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
95
+ page_content='0 Programming 2 2 4 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
96
+ page_content='0 Networks 2 2 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
97
+ page_content='0 Years of Relevant ICT Experience 1 to 3 4 5 9 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
98
+ page_content='0 4 to 6 6 3 9 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
99
+ page_content='0 More than 6 1 1 2 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
100
+ page_content='0 The participants were notified via email on their participation in the assessment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
101
+ page_content=' A brief orientation via Google Meet was conducted to provide them overview of the project.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
102
+ page_content=' The project team provided the link of web based MangngalApp project.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
103
+ page_content=' They were given at least 2 to 5 weeks to access the web project and were requested to fill out the evaluation forms via Google Forms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
104
+ page_content=' Treating the assessment of the Usability and Acceptability of the MangngalApp using the Technology Acceptance Model, the 4-point Likert scale was used: 1 being not acceptable and usable to 4 being very acceptable and usable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
105
+ page_content=' The MangngalApp web portal was developed applying the Design Science Research (DSR) for Information Systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
106
+ page_content=' The Design Science Research creates and evaluates IT artifacts intended to solve identified organizational problems, (Peffers, 2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
107
+ page_content=' Accessible thru http://cics- csuaparri.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
108
+ page_content='org.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
109
+ page_content='ph/mangngalapp, the XAMPP development framework was mainly used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
110
+ page_content=' XAMPP is a cross-platform development tool involving the use of the PHP scripting language, My SQL database engine, and Apache web service.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
111
+ page_content=' Other tools used included CSS3, HTML5 and JavaScript.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
112
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
113
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
114
+ page_content=' The MangngalApp Ecosystem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
115
+ page_content=' The MangngalApp Web Project is an ecosystem that involves people in the research and development, technologies for development and dissemination of research outputs, people and communities that are the main reason for this project towards rural development.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
116
+ page_content=' The research outputs of the researchers and scientific organization that were IP-registered are highlighted for dissemination towards adoption strategy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
117
+ page_content=' Bridging the gap is maximizing the use of web tools and technologies that are accessible to the communities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
118
+ page_content=' The package of technology available in the current version contains 14 IP-registered technologies showcasing most of the CSU Aparri- based research and innovations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
119
+ page_content=' Permissions were sought through the Knowledge and Technology Management Office and the Office of the Research and Development, and Extension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
120
+ page_content=' End- users of the project may click on the view process to see the detailed descriptions, as well as the steps involved in making, producing, or utilizing the technology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
121
+ page_content=' The project is scalable, it will still house other registered post-harvest technologies, fisheries- based products, and technologies supporting the different arrays of fisheries and aquaculture development for rural use.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
122
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
123
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
124
+ page_content=' Mobile View of the MangngalApp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
125
+ page_content=' Results and discussions Assessment of the Usability and Acceptability of the MangngalApp using the Technology Acceptance Model (TAM) Table 3 presents the results of the assessment made by the technical respondents along the aspects of perceived ease of use, perceived usefulness, attitudes towards usage, behavioral intention to use, and job relevance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
126
+ page_content=' Fishersfarmers,gatherersandprocessors Inaddition,currenttechnologyadoption practices,accesstorelevantdata, preferencesonfishingandfarming NOODLESEINRICHEDWITHARAMANG DeVEIOPCDRLENMFAPMOLNA technologiesthemobileinternetand VwProcOSS medialiteracyandtheneedtosupport activitiesofthefishers,farmers,and processorswillbeobtained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
127
+ page_content='TheprojectMangngalApp MangngalApp Home PackagesofTechnology Packs ofTechnology AboutMangngalApp NewsandUpdates describestheinformation seeking ARAMANG-ENRICHEDPOLVORON DeVelODer:DR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
128
+ page_content='LENMFARANOLINA practices,technologyawareness WewProc心5出 RESEARCH TECHNOLOGY MangngalAppll APP Aeelicotlon DATABASE mamgalapn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
129
+ page_content='cics顺 csuanarrlorg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
130
+ page_content='hJ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
131
+ page_content=' Bio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
132
+ page_content=' & Env.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
133
+ page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
134
+ page_content=' 2022 113 | Javier et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
135
+ page_content=' Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
136
+ page_content=' Assessment of the Usability and Acceptability using TAM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
137
+ page_content=' VAU AU SAU NAU Weighted DV Aspects of the Technology Acceptance f f f f Mean Perceived Ease of Use 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
138
+ page_content='14 AU I feel that using MangngalApp would be easy for me I feel that my interaction with MangngalApp would be clear 8 12 0 0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
139
+ page_content='40 VAU and understandable I feel that it would be easy to become skillful at using 6 12 1 0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
140
+ page_content='25 VAU MangngalApp 3 15 1 0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
141
+ page_content='10 AU I would find MangngalApp to be flexible to interact with 6 12 1 0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
142
+ page_content='25 VAU Learning to operate MangngalApp would be easy for me It would be easy for me to get MangngalApp to do what I 6 12 2 0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
143
+ page_content='20 AU want to do I feel that my ability to determine MangngalApp ease of use 2 13 4 0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
144
+ page_content='90 AU is limited by my lack of experience 4 11 3 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
145
+ page_content='85 AU Perceived Usefulness 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
146
+ page_content='32 VAU Using MangngalApp in disseminating technologies to intended users would enable me or users to accomplish tasks more quickly Using MangngalApp would improve my skills and is useful 11 8 1 0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
147
+ page_content="50 VAU in the fishers and user's needs." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
148
+ page_content=' 7 12 1 0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
149
+ page_content="30 VAU Using MangngalApp would increase my productivity Using MangngalApp would enhance other users' capabilities 7 12 1 0 3." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
150
+ page_content='30 VAU adopting the technology shared.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
151
+ page_content=' Using MangngalApp would make it easier to know new technological updates in fishing, postharvest and related 7 12 1 0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
152
+ page_content='30 VAU activities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
153
+ page_content=' I would find MangngalApp useful in helping the fishers and 6 12 2 0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
154
+ page_content='20 AU related sectors towards rural development.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
155
+ page_content=' 7 12 1 0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
156
+ page_content='30 VAU Attitudes towards Usage 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
157
+ page_content='43 VAU I believe it is a good idea to use the MangngalApp web project 8 12 0 0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
158
+ page_content='40 VAU I like the idea of using the MangngalApp web project 8 12 0 0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
159
+ page_content='40 VAU Using the MangngalApp is a positive idea 10 10 0 0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
160
+ page_content='50 VAU Behavioural Intention to Use 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
161
+ page_content='22 AU I tend to use the MangngalApp web project for seeking new innovations in fisheries post-harvest and technologies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
162
+ page_content=' 6 13 1 0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
163
+ page_content='25 VAU I tend to use MangngalApp to enhance my interest in related fishing, aqua-culture, and post-harvest activities I tend to use the MangngalApp to provide multi-approaches on sharing and obtaining technological and innovations in 6 12 2 0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
164
+ page_content='20 AU fisheries, aqua-marine and post-harvest activities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
165
+ page_content=' 6 12 2 0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
166
+ page_content='20 AU Relevance of the MangngalApp to Current Job 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
167
+ page_content='35 VAU In disseminating new packets of technologies along fisheries and aqua-marine, the usage of MangngalApp is important 8 11 1 0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
168
+ page_content='35 VAU In disseminating new packets of technologies along fisheries and aqua-marine, the usage of MangngalApp is timely relevant 8 11 1 0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
169
+ page_content='35 VAU Overall Weighted Mean 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
170
+ page_content='29 VAU 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
171
+ page_content='25 – 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
172
+ page_content='00 >> Very acceptable and usable (VAU) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
173
+ page_content='75 – 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
174
+ page_content='49 >> Somewhat acceptable and usable (SAU) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
175
+ page_content='50 – 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
176
+ page_content='24 >> Acceptable and usable (AU) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
177
+ page_content='00 – 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
178
+ page_content='74 >> Not acceptable and usable (NAU) With an overall mean of 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
179
+ page_content='29, the assessment of the MangngalApp along the usability and acceptability aspects were found to be “very acceptable and usable” (table 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
180
+ page_content=' Specifically, the assessment of perceived usefulness (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
181
+ page_content='32), their attitude towards usage (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
182
+ page_content='43), and relevance (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
183
+ page_content='45) were rated very acceptable and usable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
184
+ page_content=' The perceived usefulness could be associated to their perceived attitude towards its usage as well as how relevant the MangngalApp web project specially to intended users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
185
+ page_content=' For the purpose of clarity and understanding, the project team intended to have the MangngalApp project be assessed by the fishers, processors, farmers, traders, and gathers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
186
+ page_content=' However, the team was constrained to do the actual demonstration due to restrictions of the COVID-19 virus and high-risk alert levels of cases in the locality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
187
+ page_content=' The team also tried to meet the all intended participants via virtual setup in a video conferencing J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
188
+ page_content=' Bio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
189
+ page_content=' & Env.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
190
+ page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
191
+ page_content=' 2022 114 | Javier et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
192
+ page_content=' tool as well as used other strategies like communicating with students and leaders in the area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
193
+ page_content=' Feed backs from the students who were parents of the fishers and farmers as well as processors;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
194
+ page_content=' said most of their parents prefer to have the project demonstrated in face-to-face setup so they could easily grasp the technology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
195
+ page_content=' The team decided to conduct the actual dissemination and training in the actual users in the ground upon notice of approval from relevant office still confirming to minimum health protocols.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
196
+ page_content=' It is one of the key future directions the team is looking forward.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
197
+ page_content=' As presented, the group of non-technical respondents generally assessed the usability and acceptability of the MangngalApp as “very acceptable and usable” with a mean of 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
198
+ page_content='39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
199
+ page_content=' This rating is associated to the very acceptable and usable descriptive values for perceived usefulness, attitude towards usage, and job relevance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
200
+ page_content=' Interestingly, more male respondents perceived higher valuation of the Mangngal App compared to their female counterparts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
201
+ page_content=' Meanwhile, the technical respondents rated the aspects of TAM as “acceptable and usable” with a mean of 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
202
+ page_content='21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
203
+ page_content=' Higher assessment has been made by female industry practitioners with a mean of 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
204
+ page_content='38, especially along usefulness, attitudes towards usage, behavioral intention to use and job relevance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
205
+ page_content=' There were 40 percent of the respondents who rated the MangngalApp as overall very acceptable and usable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
206
+ page_content=' Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
207
+ page_content=' Detailed presentation of the assessment of the usability and acceptability Aspects of TAM Technical Respondents Non-Technical Respondents Male Female Weighted Mean Descriptive Value Male Female Weighted Mean Descriptive Value 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
208
+ page_content=' Perceived ease of use 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
209
+ page_content='07 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
210
+ page_content='14 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
211
+ page_content='10 AU 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
212
+ page_content='23 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
213
+ page_content='11 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
214
+ page_content='17 AU 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
215
+ page_content=' Perceived usefulness 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
216
+ page_content='00 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
217
+ page_content='50 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
218
+ page_content='27 VAU 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
219
+ page_content='47 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
220
+ page_content='27 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
221
+ page_content='37 VAU 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
222
+ page_content=' Attitude towards usage 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
223
+ page_content='33 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
224
+ page_content='50 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
225
+ page_content='40 VAU 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
226
+ page_content='47 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
227
+ page_content='47 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
228
+ page_content='47 VAU 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
229
+ page_content=' Behavioral intention to use 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
230
+ page_content='00 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
231
+ page_content='50 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
232
+ page_content='20 AU 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
233
+ page_content='40 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
234
+ page_content='07 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
235
+ page_content='23 AU 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
236
+ page_content=' Job Relevance 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
237
+ page_content='17 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
238
+ page_content='50 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
239
+ page_content='30 VAU 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
240
+ page_content='40 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
241
+ page_content='40 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
242
+ page_content='40 VAU Overall 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
243
+ page_content='12 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
244
+ page_content='38 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
245
+ page_content='32 AU 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
246
+ page_content='37 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
247
+ page_content='23 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
248
+ page_content='30 VAU 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
249
+ page_content='21 AU 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
250
+ page_content='39 VAU Percentage of those who rated the MangngalApp as overall “very acceptable and usable” 40% 40% Compliance to ISO 25010 software quality characteristics of the developed MangngalApp Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
251
+ page_content=' Summary table of the assessment of the developed MangngalApp based on ISO 25010 software quality characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
252
+ page_content=' Indicator Technical Evaluators Non-Technical (Fisher) Overall WM DV WM DV WM DV Accuracy 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
253
+ page_content='47 VHE 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
254
+ page_content='87 VHE 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
255
+ page_content='67 VHE Reliability 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
256
+ page_content='53 VHE 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
257
+ page_content='90 VHE 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
258
+ page_content='72 VHE Security 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
259
+ page_content='50 VHE 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
260
+ page_content='00 VHE 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
261
+ page_content='75 VHE Functional Suitability 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
262
+ page_content='60 VHE 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
263
+ page_content='93 VHE 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
264
+ page_content='77 VHE Portability 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
265
+ page_content='67 VHE 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
266
+ page_content='87 VHE 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
267
+ page_content='77 VHE Usability 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
268
+ page_content='60 VHE 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
269
+ page_content='9 VHE 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
270
+ page_content='75 VHE Maintainability 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
271
+ page_content='57 VHE 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
272
+ page_content='87 VHE 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
273
+ page_content='72 VHE Efficiency 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
274
+ page_content='60 VHE 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
275
+ page_content='90 VHE 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
276
+ page_content='75 VHE Overall Weighted Mean 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
277
+ page_content='57 VHE 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
278
+ page_content='91 VHE 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
279
+ page_content='74 VHE Legend: WM– Weighted Mean;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
280
+ page_content=' DV– Descriptive Value 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
281
+ page_content='25-4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
282
+ page_content='00 >> Very High Extent (VHE, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
283
+ page_content='75-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
284
+ page_content='49 >> Fair Extent (FE) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
285
+ page_content='50-3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
286
+ page_content='24 >> High Extent (HE), 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
287
+ page_content='00-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
288
+ page_content='74>> Poor Extent (PE) Presented in table the summary table of the assessment of the MangngalApp web project following the ISO 25010 software quality characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
289
+ page_content=' The assessment of the technical and non-technical respondents revealed an overall remark of excellent with an overall mean of 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
290
+ page_content='74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
291
+ page_content=' Notably, both groups made a high remark or excellent highlighting functionality and portability aspects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
292
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
293
+ page_content=' Bio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
294
+ page_content=' & Env.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
295
+ page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
296
+ page_content=' 2022 115 | Javier et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
297
+ page_content=' The functionality can be associated to the fact that the MangngalApp follows a WYSWYG approach making ease of access and functional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
298
+ page_content=' Meanwhile, the portability aspect could be associated to the project being compatible to varied devices making it convenient to users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
299
+ page_content=' The participants were asked about their problems and challenges associated to the use of the MangngalApp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
300
+ page_content=' Although the participants are technical evaluators, it is believed that common issues will be experienced by the intended users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
301
+ page_content=' This includes but not limited to: a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
302
+ page_content=' Internet connectivity issues b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
303
+ page_content=' Not very good using via tablets PC c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
304
+ page_content=' Limited contents only focused to fisheries and aquaculture d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
305
+ page_content=' Cannot visualize from just an image There were comments and suggestions highlighted by the respondents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
306
+ page_content=' This includes but not limited to: a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
307
+ page_content=' Strengthen internet connection in the area b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
308
+ page_content=' Share more techno guides that are easily understood by intended users c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
309
+ page_content=' Produce video of the steps which are visibly understood by intended users d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
310
+ page_content=' Add more contents not only along post-harvest and processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
311
+ page_content=' e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
312
+ page_content=' Translation of contents to Filipino or vernaculars if possible Moreover, the overall impressions made by the participants include: a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
313
+ page_content=' MangngalApp as a good project for rural development b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
314
+ page_content=' The project is impressive c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
315
+ page_content=' Great project especially if with more contents for the intended users d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
316
+ page_content=' Very good one-stop IEC mechanism Considering the above-mentioned, the project team is looking way forward to scale up the project, fast-track the translation to Filipino, as well as integrating other technologies that would benefit the communities for rural development.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
317
+ page_content=' The translation is in coordination with owners of the technology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
318
+ page_content=' Conclusions The MangngalApp project was found to be very acceptable and usable based on the assessment of the technical respondents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
319
+ page_content=' There were uncontrolled issues or problems in the use of the MangngalApp, the constructive comments and suggestions, as well as the overall impressions over the project.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
320
+ page_content=' Based on the ISO 25010 software quality characteristics, the respondents generally remark it as “excellent” with an overall mean of 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
321
+ page_content='74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
322
+ page_content=' From the results, it is concluded that the developed MangngalApp will be a usable and responsive technology that aids to rural development especially among target users- fishers, gatherers, processors, traders, and farmers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
323
+ page_content=' Considering compatibility and usefulness, the MangngalApp is expected to provide greater social development in the community.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
324
+ page_content=' Social Implications The use of the MangngalApp would offer greater opportunity for local users to livelihood development adopting the technologies being shared from the output of scientific undertakings at the University and with collaborators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
325
+ page_content=' Meanwhile, the adoption of the technologies may be undertaken providing opportunities for small to medium organizations towards livelihood development – forging partnership with the University and other stakeholders and private institutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
326
+ page_content=' Project Limitations The researchers acknowledge the technical challenge that may have encountered by the participants as there were very limited face-to-face presentations made with intended users, thus may affect the results in the study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
327
+ page_content=' There is a need to perform actual demonstration with them upon approval of authorities and observing minimum health protocols.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
328
+ page_content=' Recommendations From the results of the study, it is recommended to integrate the fully translated content and additional technologies geared towards full utilization of the MangngalApp especially creating opportunities for J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
329
+ page_content=' Bio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
330
+ page_content=' & Env.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
331
+ page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
332
+ page_content=' 2022 116 | Javier et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
333
+ page_content=' livelihood development.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
334
+ page_content=' Further, the conduct of extension activities to adopt and utilize the project accessible in the web is highly encouraged thru demonstration activities forging collaboration with fishers and women organizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
335
+ page_content=' In addition, there is a need to constantly update and make the project scalable providing other opportunities for rural development in general especially when new innovations are IP-registered from the research innovations in fisheries and aqua-marine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
336
+ page_content=' The development of a video production is suggested for actual demonstration of the processes involved especially in post-harvest or product development.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
337
+ page_content=' Acknowledgement The research project would not be a success without the support of the administration of the Cagayan State University headed by Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
338
+ page_content=' Urdujah G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
339
+ page_content=' Alvarado, the kind assistance and support of the RDE for the funding thru VP for RDE Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
340
+ page_content=' Junel Guzman, as well as the commitment and leadership of the Campus Executive Officer Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
341
+ page_content=' Simeon R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
342
+ page_content=' Rabanal, Jr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
343
+ page_content=' The project team is ever grateful for the usual and unparalleled support and drive of the Coordinator for Research and Development Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
344
+ page_content=' Lenimfa Molina for sharing the technologies and helping us in the project contents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
345
+ page_content=' Special mention to Ms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
346
+ page_content=' Eunice Daluddung for her patience and assistance to the project team.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
347
+ page_content=' Kind appreciation is extended to Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
348
+ page_content=' Corazon T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
349
+ page_content=' Talamayan for supporting us in the project.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
350
+ page_content=' Morever, the assessment of the project as well as how could we better improve the MangngalApp is greatly attributed to the self-less sharing of time, effort and expertise of the industry practitioners and ICT teachers despite being very busy also.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
351
+ page_content=' To all the fishers, farmers, processors, gatherers, and small-scale merchants – we owe this project to you, as our inspiration of doing the project towards rural development.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
352
+ page_content=' Special mention goes to the member of the review committee in the 2 in-house reviews conducted – Engr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
353
+ page_content=' Gil Mark Hizon of DOST RO2 and Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
354
+ page_content=' Emma Ballad of BFAR RO2 for their constructive comments, guidance and inspiration: GAD-Focal Person Prof Kristine Lara, Extension coordinator Josie Bas-ong and KTM Coordinator Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
355
+ page_content=' Gilbert Magulod Jr for the inputs and support.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
356
+ page_content=' References Abdelaziz T, Elammari M, Bani W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
357
+ page_content=' 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
358
+ page_content=' Applying the ISO Standard in Assessing the Quality of Software Systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
359
+ page_content=' American Journal of Computer Science and Information Engineering 2(3), 28-32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
360
+ page_content=' Retrieved from www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
361
+ page_content='aascit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
362
+ page_content='org/journal/ajcsie Davis FD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
363
+ page_content=' 1989.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
364
+ page_content=' Perceived usefulness, perceived ease of use, and user acceptance of information technology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
365
+ page_content=' MIS Quarterly 13(3), 319-340.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
366
+ page_content=' https:/doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
367
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
368
+ page_content='2307/249008 Department of Agriculture - Bureau of Agricultural Research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
369
+ page_content=' 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
370
+ page_content=' Research and Development, and Extension Agenda and Programs 2016-2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
371
+ page_content=' Retrieved April 2018, from DA-BAR Website: http://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
372
+ page_content='bar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
373
+ page_content='gov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
374
+ page_content='ph/downloadables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
375
+ page_content=' Dhaka BL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
376
+ page_content=' 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
377
+ page_content=' Farmers’ experience with ICTs on transfer of technology in changing agri-rural environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
378
+ page_content=' Indian Research Journal of Extension Education 10(3), 114-118.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
379
+ page_content=' FAO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
380
+ page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
381
+ page_content=' Fishery and Aquaculture Country Profiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
382
+ page_content=' Retrieved March 2018, from FAO: http://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
383
+ page_content='fao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
384
+ page_content='org/fishery/facp/PHL/en Gyaneshwar Singh Kushwaha DB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
385
+ page_content=' 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
386
+ page_content=' Development of a theoretical framework of supply chain quality management.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
387
+ page_content=' Serbian Journal of Management 5(1), 127-142.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
388
+ page_content=' Retrieved from http://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
389
+ page_content='sjm06.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
390
+ page_content='com/SJM%20ISSN1452- 4864/5_1_2010_May_1188/5_1_127-142.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
391
+ page_content='pdf Hossain MI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
392
+ page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
393
+ page_content=' COVID-19 Impacts on Employment and Livelihood of Marginal People in Bangladesh: Lessons Learned and Way Forward.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
394
+ page_content=' SAGE Journals South Asian Survey 28(1), 57-71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
395
+ page_content=' DOI: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
396
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
397
+ page_content='1177/0971523121995072 Magdalinou AM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
398
+ page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
399
+ page_content=' Disseminating Research Outputs: The Crowd Health Project.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
400
+ page_content=' Acta informatica medica: AIM: journal of the Society for Medical Informatics of Bosnia & Herzegovina :Casopis Drustva za medicinsku informatiku BiH 27(5), 348-354.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
401
+ page_content=' DOI: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
402
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
403
+ page_content='5455/aim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
404
+ page_content='2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
405
+ page_content='27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
406
+ page_content='348-354 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
407
+ page_content=' Bio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
408
+ page_content=' & Env.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
409
+ page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
410
+ page_content=' 2022 117 | Javier et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
411
+ page_content=' Patel N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
412
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
413
+ page_content=' Future of On-Demand Economy | Rise of On-DemandApps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
414
+ page_content=' Retrieved from globalvincitore.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
415
+ page_content='com: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
416
+ page_content='globalvincitore.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
417
+ page_content='com/rise-of-on-demand Patel R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
418
+ page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
419
+ page_content=' On demand App Benefits, Applications and Future.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
420
+ page_content=' Retrieved from yourstory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
421
+ page_content='com: https://yourstory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
422
+ page_content='com/mystory/on demand app/amp Robbert-Jan van der Burg KA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
423
+ page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
424
+ page_content=' Investigating the on-demand service characteristics: an empirical study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
425
+ page_content=' Journal of Service Management.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
426
+ page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
427
+ page_content='1108/JOSM-01-2019-0025 The Strait Times Asia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
428
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
429
+ page_content=' Philippines Suffers worst job losses in 15 years due to Covid-19 and lockdown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
430
+ page_content=' Retrieved June 2021, from The Strait Times Asia: Truong T, Rothschild BJ, Azadivar F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
431
+ page_content=' 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
432
+ page_content=' Decision Support System for Fisheries Management.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
433
+ page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
434
+ page_content='1145/1162708.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
435
+ page_content='1163075' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FNE1T4oBgHgl3EQfEwMv/content/2301.02893v1.pdf'}
FNFRT4oBgHgl3EQfyzjn/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29b45c06bb95179ea87a4b292a3ec93c71ebbedfb4219b40e74f1c7f812d8469
3
+ size 1703981