diff --git "a/7NE4T4oBgHgl3EQf2Q0O/content/tmp_files/load_file.txt" "b/7NE4T4oBgHgl3EQf2Q0O/content/tmp_files/load_file.txt" new file mode 100644--- /dev/null +++ "b/7NE4T4oBgHgl3EQf2Q0O/content/tmp_files/load_file.txt" @@ -0,0 +1,864 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf,len=863 +page_content='Issa, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=', Ali, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=', & Rashid , T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' An Efficient Hybrid Classification Approach for COVID-19 Based on Harris Hawks Optimization and Salp Swarm Optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' International Journal of Online and Biomedi- cal Engineering (iJOE), 18(13), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 113–130.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='3991/ijoe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='v18i13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='33195 1 An efficient hybrid classification approach for COVID-19 based on Harris Hawks Optimiza- tion and Salp Swarm Optimization Abubakr Issa,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' University of Technology,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Baghdad,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' iraq Yossra Ali,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' University of Technology,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Baghdad,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Iraq Tarik Rashid,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' University of Kurdistan Hewler,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' KRG,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Iraq Abstract— Feature selection can be defined as one of the pre-processing steps that decrease the dimensionality of a dataset by identifying the most signif- icant attributes while also boosting the accuracy of classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' For solv- ing feature selection problems, this study presents a hybrid binary version of the Harris Hawks Optimization algorithm (HHO) and Salp Swarm Optimization (SSA) (HHOSSA) for Covid-19 classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=" The proposed (HHOSSA) pre- sents a strategy for improving the basic HHO's performance using the Salp algo- rithm's power to select the best fitness values." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' The HHOSSA was tested against two well-known optimization algorithms, the Whale Optimization Algorithm (WOA) and the Grey wolf optimizer (GWO), utilizing a total of 800 chest X-ray images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' A total of four performance metrics (Accuracy, Recall, Precision, F1) were employed in the studies using three classifiers (Support vector machines (SVMs), k-Nearest Neighbor (KNN), and Extreme Gradient Boosting (XGBoost)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' The proposed algorithm (HHOSSA) achieved 96% accuracy with the SVM classifier, and 98% accuracy with two classifiers, XGboost and KNN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Keywords—— Feature selection, Hybrid Swarm intelligence, classification, Covid-19, medical image 1 Introduction Medical image processing can be defined as one of the most significant areas in medical science, and it has a substantial effect on visualization applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Also, med- ical image processing has a broad range of applications in medical diagnoses (treating and investigating diseases) and medical sciences (such as physiological and anatomi- cal studies).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Medical physics, medical engineering, biology, and optics are some of the Issa, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=', Ali, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=', & Rashid , T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' An Efficient Hybrid Classification Approach for COVID-19 Based on Harris Hawks Optimization and Salp Swarm Optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' International Journal of Online and Biomedi- cal Engineering (iJOE), 18(13), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 113–130.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='3991/ijoe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='v18i13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='33195 2 fields of science that make up this medical science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' With the discovery of X-rays, Wil- liam Roentgen initiated the first efforts at contemporary medical imaging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Coronavirus (COVID-19), also known as SARS-Corona Virus-2, is a virus that results in causing severe acute respiratory syndrome (SARS-CoV2), is a viral infection that first occurred in Wuhan at the end of 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Due to such an outbreak, COVID-19 became a pandemic, threatening human lives and wreaking havoc on the economy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Therefore, many stud- ies have been launched in an attempt to identify a way to restrict mortality and spread.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Those researches include the suggested treatment strategy, the screening method for early-stage patients, and the evaluation of different phases and recovery of treated pa- tients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' In hospitals, imaging techniques like chest X-rays are commonly utilized for detecting the severity and existence of COVID-19 pneumonia [1][2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=" For improving the suggested system's training, X-ray images are often maintained in a medical data- base for subsequent investigation by multiple research organizations." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Low contrast, noise, blurs, and faded colors are frequent problems, and images should be pre-pro- cessed to enhance quality by reducing noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' The second stage is image segmentation, which depends on some attributes includ- ing color, texture, and depth measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' The type of image and characteristics of the problem (disease) are chosen to determine which segmentation technique is used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' The identification and extraction of features is the third stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' As the number of features that have been extracted from the image grows, the accuracy of classification decreases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' In the classification vision, we can call it the curse of dimensionality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Feature optimi- zation is a viable option for dealing with this issue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' [3] The 4th stage is the feature selection that has been obtained from the known proper- ties using robust Optimization algorithms for better disease identifications from the medical images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' The image was classified using one of the classifiers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Feature selection is a step in the preprocessing process that tries to increase the relevancy of obtained data by deleting irrelevant characteristics and choosing just relevant or useful variables [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Feature selection comprises reviewing feature subsets, employing certain search approaches to locate the best feature subset, assessing the chosen features, stopping cri- teria, and subset validation in general.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' [6] There are three types of feature selection classifiers: wrapper schemes, filer schemes, and embedding schemes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' The filter method, in contrast to the wrapper scheme, which is characterized by good classification accuracy and low speed, is rapid but inaccurate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' The embedded system is preferred in the case when handling a certain model [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Filter techniques use the qualities of training data to assess the quality of features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Those approaches do not employ machine learning algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Before choos- ing features with the highest score, filter methods usually take into account the score of all features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' At the same time, other filtering approaches favor features with the greatest score per iteration [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Other well-known methods, like the correlation-based feature selection approach in [9] as well as dimensionality reduction methods and NNs in [10], can greatly decrease computational load and system complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Filter approaches overlook the performance regarding the chosen characteristics despite their speed and low computational cost [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Issa, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=', Ali, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=', & Rashid , T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' An Efficient Hybrid Classification Approach for COVID-19 Based on Harris Hawks Optimization and Salp Swarm Optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' International Journal of Online and Biomedi- cal Engineering (iJOE), 18(13), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 113–130.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='3991/ijoe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='v18i13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='33195 3 Wrapper approaches utilize an evaluation algorithm to assess the specified features’ quality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' SVMs, Decision trees (DTs), KNN, Naïve Bayesian (NB), linear discriminant analysis (LDA), local neighborhood structure preserving embedding (LNSPE), artifi- cial neural networks (ANNs), and local geometrical structure Fisher analysis (LGSFA) are some of the major wrapper’s methods utilized for feature selection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' In almost all cases, wrapper approaches outperform filter ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Meta-heuristic algorithms are more advanced search algorithms that result from the evolution and expansion of feature selection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' For instance, ongoing research to increase the performance regard- ing evolutionary algorithms (EA) like Genetic Algorithms (GAs) and Swarm Intelli- gence (SI) like Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), and Ant Colony Optimization (ACO) are underway.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Grasshopper Optimization Algorithm (GOA), Grey Wolf Optimizer (GWO), Butterfly Optimization Algorithm (BOA), Har- ris Hawks Optimization (HHO) Whale Optimization Algorithm (WOA), and Ant Lion Optimization (ALO) are examples of recent algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Metaheuristic algorithms are classified according to their exploration and exploitation phases into single solution based (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=', Tabu Search (TS) and Simulated annealing (SA)) or population size based (in other words, GA, ACO, and PSO).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' The key contributions of this research are listed below: Suggest an effective hybrid classification method for COVID 19 with the use of the hybrid swarm algorithms (HHO, SSA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' This novel hybrid algorithm must improve resource consumption and performance, as well as storage capacity, reducing processing time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' With the use of multiple classifiers (KNN, SVM, XGboost), test the sug gested (HHOSSA) algorithm on datasets containing some positive negative COVID 19 chest X ray scan images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Individual, hybridized predictor models and state of the art techniques (WOA, GWO) are compared in terms of performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' The sections of this paper are organized as follows: Section 2 provides a concise summary of some of the most related works.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Section 3 discusses methodology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' In sec- tion 4 we described in detail our proposed approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Tools are illustrated in section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Performance evaluation is described in section 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Results and discussion are included in section 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Finally, the conclusions and future works are stated in section 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 2 Related Works Many studies have employed hybrid algorithms to handle a range of challenges re- cently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Hybrid algorithms have received a lot of attention lately, notably in feature se- lection optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Low-level hybrid algorithms and high-level hybrid algorithms are the 2 forms of hybrid algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' There are 2 types of hybridization schemes in high- level hybrid algorithms: high-level teamwork hybridization (HTH) and high-level rely- on hybridization (HRH).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' The self-contained meta-heuristics have been carried out in Issa, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=', Ali, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=', & Rashid , T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' An Efficient Hybrid Classification Approach for COVID-19 Based on Harris Hawks Optimization and Salp Swarm Optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' International Journal of Online and Biomedi- cal Engineering (iJOE), 18(13), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 113–130.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='3991/ijoe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='v18i13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='33195 4 order in HRH, whereas in the HTH, one algorithm assists the other by supplying infor- mation via cooperative search.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Low-level hybridization has been separated into two types: low-level teamwork hybrid (LTH) and low-level rely-on hybrid (LRH), both of which contain one meta-heuristic algorithm [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' In the feature selection field, it has been observed that hybrid algorithms surpass native algorithms concerning perfor- mance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' In the year 2004, the search process has been controlled by merging local search approaches with a GA algorithm, which was the first time a hybrid metaheuristics ap- proach was utilized in feature selection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' A combination with the EGA filter has been provided in a wrapper technique for text categorization [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' A hybrid ap- proach for feature selection has lately been created in various metaheuristic algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' In [13], the Binary Grey Wolf algorithm was combined with the Harris Hawks algo- rithm to create an excellent balance between exploitation and exploration to prevent local optimum solutions and increase solution precision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=" Harris Hawks was hybridized in [14] using Bitwise operations and Simulated Annealing for supporting the HHO al- gorithm's exploitation capacity and getting out of local optima." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' In [15], the Salp swarm algorithm was used to modify teaching–learning based optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' This integration gives TLBO more flexibility in the exploration of population and achieving variety while also allowing it to swiftly attain the optimal value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' They combined the Salp swarm algorithm with the Particle swarm algorithm in [16], in which the SSA was uti- lized for updating the salps positions and the PSO was utilized otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' This hybrid- ization was utilized for the improvement of the exploration and exploitation of the Salp swarm algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 3 Methodology 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='1 Harris Hawks optimization algorithm HHO can be defined as one of the swarm metaheuristic algorithms inspired by Har- ris Hawks\' hunting behavior of "seven kills" or "surprise pounce.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='" Based on the prey\'s fleeing behavior nature, hunting duration can range from some seconds to many hours.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' The modeling algorithm of HHO is split into 2 parts (exploitation and exploration).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=" Harris' hawks have been employed as candidate solutions in the HHO algorithm, with the best candidate solution reflecting the desired or optimum prey in each stage [17]." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' The first phase pertains to the process of perching and detection of the prey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=" The algo- rithm simulates Harris' hawks' perching methods in 2 separate scenarios." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=" Harris' hawks are assumed to perch in various locations during their group home range in the first scenario." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' In Eq (1), q=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='50 models that condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' X1 ⃗⃗⃗⃗ (t+1)= { 𝑋𝑟𝑎𝑛𝑑(𝑡) − 𝑟1|𝑋𝑟𝑎𝑛𝑑(𝑡) − 2𝑟2𝑋(𝑡)|, 𝑞 ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='50 (𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑋𝑚(𝑡)) − 𝑟3(𝐿𝐵 + 𝑟4(𝑈𝐵 − 𝐿𝐵)), 𝑞 < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content="50( 1 ) While the other likelihood is that Harris' hawks would perch on positions near other swarm members and prey." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' This condition has been introduced in Eq1 for q < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='50: Issa, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=', Ali, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=', & Rashid , T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' An Efficient Hybrid Classification Approach for COVID-19 Based on Harris Hawks Optimization and Salp Swarm Optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' International Journal of Online and Biomedi- cal Engineering (iJOE), 18(13), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 113–130.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='3991/ijoe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='v18i13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content="33195 5 where X1 ⃗⃗⃗⃗ (t+1) is Hawks' position vector," metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' t represents the following iteration,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 𝑋𝑟𝑎𝑛𝑑(𝑡) is a hawk that has been chosen at random from the current population,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 𝑋(𝑡) represents the position vector of hawks,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' r1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' r2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' r3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' r4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' and q represent random numbers in the range of (0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='1),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Xrabbit(t) represents rabbit position,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Xm denotes the aver- age position of the current population of the hawks,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=" lower and upper bounds for gener- ating random locations inside the Hawks' stadium are Lb and Ub," metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=" While in the phase of exploitation, the Harris' hawks attack prey which has been identified in the preceding step." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=" The algorithm has 4 different possibilities for modeling various attacking styles that have been utilized by Harris' hawks." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' While r denotes the probability of prey escaping, successful escape has been donated by r < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='50, whereas r ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='50 denotes failure to escape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=" Depending upon the prey's chances of escaping (r), hawks will use either soft or hard besieges to catch prey." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=" The algorithm's parameter E has been utilized for the determination of the type of attacking besieges." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' If the prey is unable to escape when r ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='50 hard besiege happens when |E| < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='50 and soft besiege takes the place in the case where |E|≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='50 The mathematical Modelling of soft besiege has been represented by Eqs (2) through (3), and hard besiege has been shown by Eq (4): 𝑿(𝒕 + 𝟏)=∆X(t) –E|JxXrabbit (t) –X(t)| ( 2 ) ∆(t) =Xrabbit (t) –X(t) ( 3 ) X( t+1) =Xrabbit(t) –E|∆X(t)| ( 4 ) In the case of successful escaping of the prey (r<0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='50), soft besiege with a progres- sive rapid dive take is applied in the case where |E|≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='50 as shown in Eq (5), Eq (7), Eq(8) while Hard besiege with the progressive fast dive occurs in a case where |E|≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='50 as shown in Eqs (6), (7), and (8): 𝒀 = 𝑿𝒓𝒂𝒃𝒃𝒊𝒕(𝒕) − 𝑬|𝑱 ∗ 𝑿𝒓𝒂𝒃𝒃𝒊𝒕(𝒕) − 𝑿(𝒕)| ( 5 ) 𝒀 = 𝑿𝒓𝒂𝒃𝒃𝒊𝒕(𝒕) − 𝑬|𝑱 ∗ 𝑿𝒓𝒂𝒃𝒃𝒊𝒕(𝒕) − 𝑿𝒎(𝒕)| , 𝑿𝒎(𝒕) = 𝟏 𝑵 ∗ ∑ 𝑿𝒊 𝑵 𝒊=𝟏 (𝒕) ( 6 ) 𝒁 = 𝒀 + 𝑺 × 𝑳𝑭(𝑫) ( 7 ) 𝑿(𝒕 + 𝟏) = {𝒀, 𝒊𝒇 𝒇(𝒀) < 𝑭(𝑿(𝒕)) 𝒁, 𝒊𝒇 𝒇(𝒁) < 𝑭(𝑿(𝒕)) ( 8 ) D represents the problem dimension and S represents the random vector by 1xD size and LF represents the function of levy flight, estimated with the use of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' (9): 𝑳𝑭(𝒙) = 𝟎.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 𝟎𝟏 × 𝒖 ×𝛔 |𝒗| 𝟏 𝜷 , 𝛔 = ( (𝜞(𝟏+𝜷) ×𝒔𝒊𝒏 (𝝅𝜷/𝟐) 𝜞(𝟏+𝜷 𝟐 )×𝜷×𝟐(𝜷−𝟏 𝟐 ) ) ( 9 ) The energy of a rabbit is modeled as 𝑬 = 𝟐𝑬𝟎 (𝟏 − 𝒕 𝑻) ( 10 ) Where E represents the prey’s escaping energy, T represents the maximal number of iterations, and Eo represents its initial energy state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Issa, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=', Ali, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=', & Rashid , T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' An Efficient Hybrid Classification Approach for COVID-19 Based on Harris Hawks Optimization and Salp Swarm Optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' International Journal of Online and Biomedi- cal Engineering (iJOE), 18(13), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 113–130.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='3991/ijoe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='v18i13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='33195 6 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='2 Salp swarm optimization algorithm SSA can be defined as a swarm metaheuristic algorithm [18] that was created for solving various optimization problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' It was inspired by the activity of Salps in na- ture;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' salps are a type of jellyfish with tissues comparable to jellyfish and a high water percentage in their moving behavior and weights [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' They move by contracting their bodies and shifting positions by pumping water through them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' The salp chain describes the swarming behavior of salps in the ocean.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' By allowing for faster and more harmonic changes, this behavior could benefit salps in foraging and better movement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' [18] Salp chains were theoretically modeled and after that tested in optimization problems as a result of this characteristic [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' The algorithm starts its work by dividing the generated population into 2 parts (which are: leader and followers ( where the leader leads the salp chain and the remaining salps play the role of followers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' A salp uses the food source as a target in an n-dimensional search space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=" The following equation has been used to update the leader's position: 𝑿𝒋 𝟏 = { 𝑭𝒋 + 𝒓𝟏 ((𝑽𝒎𝒂𝒙𝒋 − 𝑽𝒎𝒊𝒏𝒋)𝒓𝟐 + 𝑽𝒎𝒊𝒏𝒊) , 𝒓𝟑 ≥ 𝟎 𝑭𝒋 − 𝒓𝟏 ((𝑽𝒎𝒂𝒙𝒋 − 𝑽𝒎𝒊𝒏𝒋)𝒓𝟐 + 𝑽𝒎𝒊𝒏𝒊) , 𝒓𝟑 < 𝟎 } ( 11 ) Where 𝑋𝑗 1 represent the position of leader in the jth dimension and Fj is food's loca- tion." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' The upper is represented by 𝑉𝑚𝑎𝑥𝑗 and the lower bounds that have been denoted by 𝑉𝑚𝑖𝑛𝑗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' The search space is maintained using the 2 random variables 𝑟2 & 𝑟3 in the range [0, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' The parameter 𝑟1 is also an important control parameter in the process of exploration and exploitation and it is calculated by using Eq (12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 𝒓𝟏 = 𝟐𝒆(−𝟒𝒕 𝑵 )𝟐 ( 12 ) Where t represents the current iteration and N denotes the maximum amount of iter- ations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=" In a case where the position of the leader has been changed, Eq (13) is used to change the followers' position: 𝑿𝒋 𝒊 = 𝟏 𝟐 (𝑿𝒋 𝟏 − 𝑿𝒋 𝒊−𝟏) ( 13 ) Where 𝐗𝐣 𝐢 denotes the ith follower's position in the jth dimension, and the value of I must be > 1." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Issa, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=', Ali, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=', & Rashid , T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' An Efficient Hybrid Classification Approach for COVID-19 Based on Harris Hawks Optimization and Salp Swarm Optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' International Journal of Online and Biomedi- cal Engineering (iJOE), 18(13), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 113–130.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='3991/ijoe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='v18i13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='33195 7 4 The proposed approach Despite its simple structure and fast convergence rate, the HHO algorithm is not without flaws.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' However, in the domain of feature selection optimization, the algorithm may encounter a balancing problem between the exploration and exploitation phases, resulting in a local optimum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Problems can arise during the feature selection process when dealing with the high-dimensional feature set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' In general, the HHO algorithm optimization power depends on the best optimal solution selected based on the best fitness value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=" In this paper, we present a strategy for improving the basic HHO's per- formance using the Salp algorithm's power to select the best solution." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='1 The structure of HHOSSA The proposed hybrid algorithm HHOSSA contains many stages: Initialization and binarization function, Best fitness selection, and Evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='2 Initialization and binarization function In this phase,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' the HHO algorithm generates a random initial population X that con- tains k Hawks which is every k represents a new solution this vector of d dimension of features and using binary representations of (0 and 1) to represent the selected features where every feature that selected will represent by 1 and every refused feature will represent by 0 by using of the following binarization function: 𝑿 𝒃𝒊𝒏𝒂𝒓𝒚={𝟏 𝒊𝒇 𝒙>𝒕𝒉𝒓𝒆_𝒗𝒂𝒍 𝟎 𝒊𝒇 𝒙<𝒕𝒉𝒓𝒆_𝒗𝒂𝒍 𝒘𝒉𝒆𝒓𝒆 𝒕𝒉𝒓𝒆_𝒗𝒂𝒍=𝟎.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='𝟓 ( 14 ) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='3 Best fitness selection In basic HHO the position vectors Xrand and Xrabbit are responsible for the explo- ration step that has been characterized by Eq1, which is critical for balancing the ex- ploitation and exploration phases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Position vectors with higher significance speed up global exploration, while those with lower significance speed up exploitation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' As a re- sult, an appropriate Xrand and Xrabbit selection should be made to achieve a stable balance between local exploitation and global exploration [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' In this phase, the SSA algorithm will be used to find a better solution where the SSA algorithm finds the new fitness and if the new one is better than the one that has been found by the HHO algo- rithm so the new one will be replaced and the Xrabbit will be changed also otherwise, the HHO solution remains unchanged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' The goal of feature selection is to reduce the number of features and classification error rate, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=', through the removal of the redundant and irrelevant features and keeping the relevant ones only, classification accuracy is improved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' The KNN classifier was used in this study because it is simple to evaluate the fitness function Eq (15), which was used, expresses the fitness function that was used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Issa, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=', Ali, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=', & Rashid , T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' An Efficient Hybrid Classification Approach for COVID-19 Based on Harris Hawks Optimization and Salp Swarm Optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' International Journal of Online and Biomedi- cal Engineering (iJOE), 18(13), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 113–130.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='3991/ijoe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='v18i13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='33195 8 𝑭𝒊𝒕𝒏𝒆𝒔𝒔 = 𝒂 ∗ 𝒄𝒍𝒂𝒔𝒔𝒆𝒓𝒓 + 𝒃 ∗ ( 𝒇𝒔𝒆𝒍 𝒇𝒎𝒂𝒙) (15) Where a =0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='9 is constant for controlling the accuracy, b=[0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='1, a] random number enhances the accuracy,classerr is the rate of classification error and 𝒇𝒔𝒆𝒍 represents the number of the selected feature and 𝒇𝒎𝒂𝒙 represents the total amount of features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Algorithm1 Pseudo-Code of HHOSSA Algorithm Input: H population size, T iteration number, ub=1, lb=0, thre_val=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='5, levy_beta=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='5 Output: Best selected features vector Randomly initialize of population H random hawks xi (i=1,2,3,….' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='., H) Compute the fitness value of every one of the hawks Fhho Xrabbit = best solution found While (the stop condition isn’t met) do Compute the fitness values of the hawks Set Xrabbit as rabbit location (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' optimal location) For (each hawk (Xi)) do Update (Eo , J) if (|E| ≥ 1) then Update location vector according to Eq1 if (|E| < 1) then if (r ≥0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='50 & |E| ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='50 ) then Update location vector through utilizing Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' (2) else if (r ≥0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='50 & |E| < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='50 ) then Update location vector through utilizing Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' (4) else if (r <0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='50 & |E| < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='50 ) then Update location vector through utilizing Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' (8) else if (r <0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='50 & |E| < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='50 ) then Update location vector through utilizing Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' (8) Apply the SSA algorithm to find the best fitness Fssa using Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' (15) If (Fssa < Fhho ) Update (Xrabbit, Xrand ) End if End While Issa, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=', Ali, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=', & Rashid , T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' An Efficient Hybrid Classification Approach for COVID-19 Based on Harris Hawks Optimization and Salp Swarm Optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' International Journal of Online and Biomedi- cal Engineering (iJOE), 18(13), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 113–130.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='3991/ijoe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='v18i13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='33195 9 Figure 1: Structure of the proposed HHOSSA algorithm Start Randomly initialize of population H Calculate Fhho and Xrabbit Initialize of E0 and update E1 Stopping_condition met ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Yes No Apply SSA algorithm to found Fssa Fssa< Fhho Update Xrabbit and Xrand Keep Xrabbit and Xrand Evalute the selected feature with FS wrapper method by using KNN classifier Yes No Features Extraction Split the dataset into training and testing Preprocessing Stop Issa, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=', Ali, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=', & Rashid , T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' An Efficient Hybrid Classification Approach for COVID-19 Based on Harris Hawks Optimization and Salp Swarm Optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' International Journal of Online and Biomedi- cal Engineering (iJOE), 18(13), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 113–130.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='3991/ijoe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='v18i13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='33195 10 5 Tools 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='1 Dataset We are working with a dataset of 800 chest X-ray images obtained from [21-25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' This dataset consists of 400 chest X-ray images with confirmed COVID-19 infection, and 400 chest X-ray images of normal condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' This dataset images come with PNG file format and grey level scale and all images are resized to 200 × 200 pixels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content="2 Classifiers The main goal of classification is to categorize new samples that haven't been labeled for a particular class." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' However, we must first train the classifier for it to recognize the characteristics of the data, as well as the relationship between attribute values and the class label.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Three classifiers are used in the methodology presented in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' The first one K‑nearest neighbor classifier and it’s used for the reasons of its straightforward implementation, with only one parameter K denoting the number of neighbors, which makes it more useful for identifying the best subset of attributes [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' The second one is the SVM classifier which is a well-known constructive learning technique that is formalized by a separating hyperplane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Making a nonlinear transformation of the orig- inal input set to the high-dimensional set of features, where the optimum separating hyperplane may be found, can lead to a solution [27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' The third classifier is Extreme Gradient Boosting (XGBoost) which is a machine learning method that has been used for solving supervised learning problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' It has excellent scalability and a fast running speed, making it a popular machine-learning method [28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 6 Performance evaluation The metrics of evaluation that are used to measure classification performance in this study are accuracy, precision, recall, and F1 as defined below: 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 = 𝑻𝑷+𝑻𝑵 𝑻𝑷+𝑻𝑵+𝑭𝑷+𝑭𝑵 ( 16 ) 𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 = 𝑻𝑷 𝑻𝑷+𝑭𝑷 ( 17 ) 𝒓𝒆𝒄𝒂𝒍𝒍 = 𝑻𝑷 𝑻𝑷+𝑭𝑵 ( 18 ) 𝑭𝟏 = 𝟐 × 𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚 × 𝑹𝒆𝒄𝒂𝒍𝒍 𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚+ 𝑹𝒆𝒄𝒂𝒍𝒍 (19), 𝒔𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚 = 𝑻𝑵 𝑻𝑵+𝑭𝑷 (20) Issa, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=', Ali, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=', & Rashid , T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' An Efficient Hybrid Classification Approach for COVID-19 Based on Harris Hawks Optimization and Salp Swarm Optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' International Journal of Online and Biomedi- cal Engineering (iJOE), 18(13), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 113–130.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='3991/ijoe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='v18i13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='33195 11 In which "TP" (true positives) denotes positive COVID-19 images which the classi- fier accurately labeled, and "TN" (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' true negatives) corresponds to the nega- tives COVID-19 images that have been successfully labeled by the classifier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' False positives (FP) are positive COVID-19 images mislabeled as negative, whereas false negatives (FN) are negative COVID-19 images that have been incorrectly identified as positive COVID-19 images [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 7 Results and discussion A total of 800 X-ray images (400 covid-19 and 400 normal) have been collected from the digital database and utilized for testing the efficacy of the suggested hybrid approach, which utilized two state-of-art algorithms (SSA, HHO) for feature selection to improve the classification of the covid-19 infection with the use of automatic AI techniques and showed a high level of classification accuracy following testing and training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' The dataset was divided into two sections: 20% for validation and testing and 80% for training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Table 2 demonstrates that the suggested hybrid method has a high accuracy percentage based on the classifiers utilized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' The parameter setting for the sug- gested methodology has been listed in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Table1: Parameter values for used methods Methods Parameter values HHOSSA algorithm Feature size: 126 Population size: 30 Number of iterations for HHO:100 Number of iterations for SSA:20 Ub:1 Lb:0 Thre_val:0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='5 Beta:1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='5 Random variables a and b: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='9, [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='1, a ] KNN classifier K=5 Classes count:2 No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='of training set:224 SVM classifier Classes count:2 No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='of training set:224 XGboost classifier Classes count:2 No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='of training set:224 Table 2: Performance of HHOSSA over three classifiers KNN, SVM, and XGboost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Classifier Accuracy Precision Recall F1 KNN 98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='21428571428571 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='97 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='99 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='98 Issa, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=', Ali, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=', & Rashid , T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' An Efficient Hybrid Classification Approach for COVID-19 Based on Harris Hawks Optimization and Salp Swarm Optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' International Journal of Online and Biomedi- cal Engineering (iJOE), 18(13), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 113–130.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='3991/ijoe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='v18i13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='33195 12 SVM 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='42857142857143 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='96 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='96 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='96 XGboost 98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='21428571428571 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='99 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='96 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='98 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content="1 Comparative study The suggested system's performance was assessed utilizing a variety of modern op- timization methods (GWO, WOA)." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Table (3) shows the performance of the HHO algo- rithm used for feature selection and gets 94%,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='89%,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' and 94% over three classifiers KNN,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' SVM,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' and XGboost,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' while Table(4) shows the performance of the SSA algo- rithm used for feature selection and gets 96%,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='80%,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='94% over three classifiers KNN,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' SVM,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' XGboost,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Table (5) shows the performance of GWO algorithm used for feature selection and gets 96%,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='82%,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='92% over three classifiers KNN,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' SVM,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' XGboost,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' While Table (6) shows the performance of WOA algorithm used for feature selection and gets 96%,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='86%,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='96% over three classifiers KNN,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' SVM,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' XGboost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Table 3: Performance of HHO over three classifiers KNN, SVM, and XGboost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Classifier Accuracy Precision Recall F1 KNN 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='64285714285714 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='90 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='99 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='95 SVM 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='28571428571429 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='87 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='93 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='90 XGboost 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='64285714285714 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='93 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='96 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='95 Table 4: Performance of SSA over three classifiers KNN, SVM, and XGboost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Classifier Accuracy Precision Recall F1 KNN 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='64285714285714 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='93 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='96 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='95 SVM 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='35714285714286 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='81 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='79 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='80 XGboost 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='64285714285714 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='96 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='93 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='95 Table 5: Performance of GWO over three classifiers KNN, SVM, and XGboost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Classifier Accuracy Precision Recall F1 KNN 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='42857142857143 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='93 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='99 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='97 SVM 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='14285714285714 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='74 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='99 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='85 XGboost 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='85714285714286 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='90 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='96 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='93 Issa, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=', Ali, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=', & Rashid , T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' An Efficient Hybrid Classification Approach for COVID-19 Based on Harris Hawks Optimization and Salp Swarm Optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' International Journal of Online and Biomedi- cal Engineering (iJOE), 18(13), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 113–130.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='3991/ijoe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='v18i13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='33195 13 Table 6: Performance of WOA over three classifier KNN, SVM, and XGboost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Classifier Accuracy Precision Recall F1 KNN 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='64285714285714 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='90 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='99 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='95 SVM 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='28571428571429 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='87 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='93 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='90 XGboost 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='42857142857143 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='99 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='93 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='96 Figure 2: The accuracy, precision, recall, and the F1 values for all algorithms over the KNN classifier 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='84 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='86 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='88 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='92 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='94 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='96 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='98 1 HHOSSA HHO SSA WOA GWO Accuracy Precision Recall F1 Issa, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=', Ali, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=', & Rashid , T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' An Efficient Hybrid Classification Approach for COVID-19 Based on Harris Hawks Optimization and Salp Swarm Optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' International Journal of Online and Biomedi- cal Engineering (iJOE), 18(13), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 113–130.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='3991/ijoe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='v18i13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='33195 14 Figure 3: The accuracy, precision, recall, and the F1 values for all algorithms over the SVM classifier Figure 4: The accuracy, precision, recall, and the F1 values for all algorithms over the XGboost classifier 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='8 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='2 HHOSSA HHO SSA WOA GWO Accuracy Precision Recall F1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='84 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='86 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='88 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='92 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='94 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='96 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='98 1 HHOSSA HHO SSA WOA GWO Accuracy Precision Recall F1 Issa, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=', Ali, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=', & Rashid , T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' An Efficient Hybrid Classification Approach for COVID-19 Based on Harris Hawks Optimization and Salp Swarm Optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' International Journal of Online and Biomedi- cal Engineering (iJOE), 18(13), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 113–130.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='3991/ijoe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='v18i13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='33195 15 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='2 Software and Hardware Requirements The proposed system operates by using a personal computer Lenovo that has speci- fications such as Intel(R) Intel(R) Core(TM) i7-6500U @ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='59 GHz for CPU, 8 GB windows10 of RAM, and 64-bit Operating System.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' The proposed system is operated by using python 10 languages with (Pycharm) IDE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Table (7) shows the processing time of the proposed algorithm and stand-alone algorithms depending on the classifi- cation processing time of the testing dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Table 7: Processing time of proposed (HHOSSA), HHO, SSA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Algorithm Total processing time (seconds) HHOSSA 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='0661 HHO 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='9906 SSA 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content="1425 It should be noted that the hybrid algorithm's processing time for completing the clas- sification process is less than the sum of the processing times for the Harris hawk and Salp algorithms because the Salp algorithm's iterations are fewer than those of the Harris hawk algorithm within the hybrid algorithm." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=" However, this improved the clas- sification process and accelerated performance without degrading the hybrid algo- rithm's quality." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 8 Conclusion and future works The presented work presents a new hybrid swarm algorithm (referred to as HHOSSA) that combines the SSA and HHO for selecting the best features subset to improve the detection and classification of the COVID-19 virus with the use of chest X-ray images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='The ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='novel ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='method ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='provided ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='to ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='improve ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='the ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='process ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='of ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='the ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='feature ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='section ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='and ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='also ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='for ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='achieving ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='the ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='balance ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='between ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='exploitation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='and ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='exploration ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='of ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='the ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='HHO ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='algorithm ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='with ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='the ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='use ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='of ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='the ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='capability ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='of ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='SSA ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='for ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='finding ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='the ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='best ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='features ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='subset ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='It ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='is ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='noted ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='that ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='the ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='processing ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='time ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='required ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='to ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='complete ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='the ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='classification ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='process ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='using ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='the ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='hybrid ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='algorithm ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='is ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='less ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='than ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='the ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='sum ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='of ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='the ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='processing ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='time ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='of ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='the ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='Harris ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='hawk ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='and ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='Salp ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='algorithms ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='because ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='the ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='number ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='of ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='iterations ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='of ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='the ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='Salp ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='algorithm ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='is ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='less ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='than ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='the ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='iterations ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='of ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='Harris ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='hawk ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='algorithm ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='inside ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='hybrid ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='algorithm,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' However,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' this did not af- fect the quality of the hybrid algorithm,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' but rather it increased the speed of performance and improved the classification process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=" A total of 800 (400 covid-19 and 400 normal) X-ray images are taken from the digital database to assess the HHOSSA's performance." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' XGboost and KNN classifiers get 98% accuracy, whereas SVM classifiers score 96%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' We want to adapt the suggested technique to more applications in the future, including Issa, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=', Ali, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=', & Rashid , T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' An Efficient Hybrid Classification Approach for COVID-19 Based on Harris Hawks Optimization and Salp Swarm Optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' International Journal of Online and Biomedi- cal Engineering (iJOE), 18(13), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 113–130.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='3991/ijoe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='v18i13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='33195 16 signal processing and cloud computing task scheduling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=" Furthermore, the HHO algo- rithm's searching power was used to construct a novel suggested algorithm in several aspects." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 9 Acknowledgment The authors would like to thank the University of Technology, Baghdad, Iraq for their continuous support for this research work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 10 References [1] Lakshmanarao, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=', Raja Babu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=', & Srinivasa Ravi Kiran, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' An Efficient Covid19 Epidemic Analysis and Prediction Model Using Machine Learning Algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Inter- national Journal of Online and Biomedical Engineering (iJOE), 17(11), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 176–184.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='3991/ijoe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='v17i11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='25209 [2] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Cho, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Lim, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Kim, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='Wi, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Kwon,W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Youn, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Lee, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Kang, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=" Cho, ``Enhancement of soft-tissue contrast in cone-beam CT using an anti-scatter grid with a sparse sampling approach,'' Phys." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Medica, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 70, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 1_9, Feb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 2020 [3] Allam, Mohan, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Nandhini.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' "A study on optimization techniques in feature selection for medical image analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='" International Journal on Computer Science and Engineering (IJCSE) 9, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 3 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' [4] Deepa, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=', and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Aruna Devi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' "A survey on artificial intelligence approaches for med- ical image classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='" Indian Journal of Science and Technology 4, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 11 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' [5] Al-Wajih, Ranya, Said Jadid Abdulkadir, Norshakirah Aziz, Qasem Al-Tashi, and Noureen Talpur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' "Hybrid binary grey wolf with Harris hawks optimizer for feature selection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='" IEEE Access 9 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' [6] Salama, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=', & Hassan, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' A Novel Feature Selection Measure Partnership- Gain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' International Journal of Online and Biomedical Engineering (iJOE), 15(04), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 4–19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='3991/ijoe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='v15i04.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='9831 [7] Abdel-Basset, Mohamed, Weiping Ding, and Doaa El-Shahat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' "A hybrid Harris Hawks optimization algorithm with simulated annealing for feature selection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='" Artificial Intelligence Re- view54, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 1 (2021): 593-637.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' [8] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Ren,W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Fang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Qu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Zhang, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=" Shi, ``Comparison of eight filter-based feature selection methods for monthly streamflow forecasting_Three case studies on CAMELS data sets,'' J." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Hydrol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 586, Jul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 2020,Art.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 124897.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' [9] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Sadiq, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Yu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Yuan, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Zeming, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Rehman, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Ullah, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Li, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=" Xiao, ``Motor imagery EEG signals decoding by multivariate empirical wavelet transform-based framework for robust brain computer interfaces,'' IEEE Access, vol." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 7, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 171431_171451, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Issa, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=', Ali, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=', & Rashid , T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' An Efficient Hybrid Classification Approach for COVID-19 Based on Harris Hawks Optimization and Salp Swarm Optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' International Journal of Online and Biomedi- cal Engineering (iJOE), 18(13), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 113–130.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='3991/ijoe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='v18i13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='33195 17 [10] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Sadiq, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Yu, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=" Yuan, ``Exploiting dimensionality reduction and neural net- work techniques for the development of expert brain_computer interfaces,'' Expert Syst." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 164, Feb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' [11] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Xue, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Zhang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Browne, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=" Yao, ``A survey on evolutionary computation approaches to feature selection,'' IEEE Trans." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Evol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=',vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 20, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 606_626, Aug.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' [12] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='-G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Talbi, Metaheuristics: From Design to Implementation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Hoboken, NJ, USA: Wiley, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' [13] Al-Wajih, Ranya, Said Jadid Abdulkadir, Norshakirah Aziz, Qasem Al-Tashi, and Noureen Talpur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' "Hybrid binary grey wolf with Harris hawks optimizer for feature selec- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='" IEEE Access 9 (2021): 31662-31677.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' [14] Abdel-Basset, Mohamed, Weiping Ding, and Doaa El-Shahat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' "A hybrid Harris Hawks optimization algorithm with simulated annealing for feature selection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='" Artificial Intelligence Re- view54, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 1 (2021): 593-637.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' [15] Thawkar, Shankar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' "A hybrid model using teaching–learning-based optimization and Salp swarm algorithm for feature selection and classification in digital mammography.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='" Journal of Ambient Intelligence and Humanized Computing 12, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 9 (2021): 8793-8808.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' [16] Ibrahim, Rehab Ali, Ahmed A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Ewees, Diego Oliva, Mohamed Abd Elaziz, and Songfeng Lu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' "Improved salp swarm algorithm based on particle swarm optimization for feature selection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='" Journal of Ambient Intelligence and Humanized Computing 10, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 8 (2019): 3155-3169.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' [17] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Heidari, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Mirjalili, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Faris, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Aljarah, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Mafarja, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=" Chen, ``Harris hawks optimization: Algorithm and applications,''Future Gener." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 97, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 849872, Aug.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 2019 [18] Mirjalili, Seyedali, Amir H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Gandomi, Seyedeh Zahra Mirjalili, Shahrzad Saremi, Hos- sam Faris, and Seyed Mohammad Mirjalili.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' "Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='" Advances in Engineering Software 114 (2017): 163-191.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' [19] Henschke, Natasha, Jason D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Everett, Anthony J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Richardson, and Iain M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Suthers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' "Re- thinking the role of salps in the ocean.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='" Trends in Ecology & Evolution 31, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 9 (2016): 720- 733.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' [20] Gupta, Shubham, Kusum Deep, Ali Asghar Heidari, Hossein Moayedi, and Mingjing Wang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' "Opposition-based learning Harris hawks optimization with advanced transition rules: Principles and analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='" Expert Systems with Applications158 (2020): 113510.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' [21] Radiological Society of North America (RSNA), “Radiological Society of North America (RSNA),” Radiological Society of North America (RSNA), 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='rsna.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='org/ [22] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Dataset, “Radiopaedia dataset,” 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' https://radiopaedia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='org/articles/imaging-data-sets-artificial-in- telligence Issa, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=', Ali, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=', & Rashid , T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' An Efficient Hybrid Classification Approach for COVID-19 Based on Harris Hawks Optimization and Salp Swarm Optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' International Journal of Online and Biomedi- cal Engineering (iJOE), 18(13), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 113–130.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='3991/ijoe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='v18i13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='33195 18 [23] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Repository, “Cohen’s GitHub repository,” Cohen’s GitHub repository, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='com/ieee8023 [24] Italian Society of Medical and Interventional Radiology (SIRM), “Italian Society of Medical and Inter- ventional Radiology (SIRM),” Italian Society of Medical and Interventional Radiology (SIRM), 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' https://sirm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='org/la-radiologia-medica/ [25] Kaggle, “Kaggle’s chest X-ray images (Pneumonia) dataset,” Kaggle’s chest X-ray images (Pneumonia) dataset, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='kaggle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='com/datasets/paultimothymooney/chest-xray-pneumonia [26] Abdel-Basset, Mohamed, Weiping Ding, and Doaa El-Shahat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' "A hybrid Harris Hawks optimization algorithm with simulated annealing for feature selection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='" Artificial Intelligence Review54, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 1 (2021): 593-637.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' [27] Fusilier, Donato Hernández, Manuel Montes-y-Gómez, Paolo Rosso, and Rafael Guzmán Cabrera.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' "Detecting positive and negative deceptive opinions using PU-learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='" Information processing & manage- ment 51, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 4 (2015): 433-443.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' [28] Chen, Tianqi, and Carlos Guestrin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' "Xgboost: A scalable tree boosting system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='" In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 785-794.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' [29] Yasir, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=', & Ali, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Review on Real Time Background Extraction: Models, Applications, Environments, Challenges, and Evaluation Approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' International Journal of Online and Biomedical En- gineering (iJOE), 17(02), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 37–68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='3991/ijoe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='v17i02.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='18013 11 Authors Abubakr S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Issa received his bachelor’s degree in computer science department – Artificial intelligence branch from the University of Technology (UOT) – Iraq 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Since 2014, he is working as a programmer at the Information Technology Center, at the University of Technology up till now.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Meanwhile, he is an M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='Sc candidate at the University of Technology (UOT) – Iraq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Assistant Professor Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Yossra Hussain Ali.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' She received her B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='Sc, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='Sc, and Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' degrees in 1996, 2002, and 2006 respectively from Iraq, the University of Technology, Department of Computer Sciences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' She joined the University of Technology, Iraq in 1997.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' During her postgraduate studies, she worked on Computer Networks, Infor- mation systems, Agent Programming and Image Processing as well as some experience in Artificial Intelligent and Computer Data Security.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' She is a reviewer at many confer- ences and journals and she supervised several undergraduate and postgraduate (PhD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' and MSc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=') dissertations in Computer sciences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Yossra has many professional certifi- cates and she has published in well-regarded journals (e-mail: yossra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='ali@uotechnol- ogy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='iq).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Tarik A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' Rashid received his Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' in Computer Science and Informatics degree from the College of Engineering, Mathematical and Physical Sciences, University College Dublin (UCD) in 2001–2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' He pursued his Post-Doctoral Fellow at the Computer Science and Informatics School, College of Engineering, Mathematical and Physical Sciences, University College Dublin (UCD) from 2006–2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' He joined the University Issa, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=', Ali, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=', & Rashid , T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' An Efficient Hybrid Classification Approach for COVID-19 Based on Harris Hawks Optimization and Salp Swarm Optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' International Journal of Online and Biomedi- cal Engineering (iJOE), 18(13), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' 113–130.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='3991/ijoe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='v18i13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='33195 19 of Kurdistan Hewlêr (UKH) in 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content=' He has also been included in the prestigious Stan- ford University list of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'} +page_content='% of the best world researchers for the years 2020 and 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE4T4oBgHgl3EQf2Q0O/content/2301.05296v1.pdf'}