diff --git "a/JdAzT4oBgHgl3EQfH_vd/content/tmp_files/load_file.txt" "b/JdAzT4oBgHgl3EQfH_vd/content/tmp_files/load_file.txt" new file mode 100644--- /dev/null +++ "b/JdAzT4oBgHgl3EQfH_vd/content/tmp_files/load_file.txt" @@ -0,0 +1,27313 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf,len=27312 +page_content='Objectivity in continuum mechanics, an introduction Motions, Eulerian and Lagrangian variables and functions, deformation gradient, Lie derivatives, velocity-addition formula, Coriolis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Gilles Leborgne, www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='isima.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='fr/leborgne January 4, 2023 In classical mechanics, there are two objectivities: 1- The covariant objectivity concerns the universal laws of physics required to be observer independent (true in any reference frame);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' This is a main topic in this manuscript.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 2- The isometric objectivity concerns the constitutive laws of materials once expressed in a reference frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Covariant objectivity in continuum mechanics follows Maxwell’s requirements, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [13] page 1: “2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') The formula at which we arrive must be such that a person of any nation, by substituting for the different symbols the numerical value of the quantities as measured by his own national units, would arrive at a true result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') The introduction of coordinate axes into geometry by Des Cartes was one of the greatest steps in mathematical progress, for it reduced the methods of geometry to calculations performed on numerical quantities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The position of a point is made to depend on the length of three lines which are always drawn in determinate directions (.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') But for many purposes in physical reasoning, as distinguished from calculation, it is desirable to avoid explicitly introducing the Cartesian coordinates, and to fix the mind at once on a point of space instead of its three coordinates, and on the magnitude and direction of a force instead of its three components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' This mode of contemplating geometrical and physical quantities is more primitive and more natural than the other,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..” And see the (short) historical note given in the introduction of Abraham and Marsden book “Foun- dations of Mechanics” [1], about qualitative versus quantitative theory: “Mechanics begins with a long tradition of qualitative investigation culminating with Kepler and Galileo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Following this is the period of quantitative theory (1687-1889) characterized by concomitant developments in mechanics, mathemat- ics, and the philosophy of science that are epitomized by the works of Newton, Euler, Lagrange, Laplace, Hamilton, and Jacobi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') For celestial mechanics (.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') resolution we owe to the genius of Poincaré, who resurrected the qualitative point of view (.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') One advantage (.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') is that by suppressing unnecessary coordinates the full generality of the theory becomes evident.” After having defined motions, Eulerian and Lagrangian variables and functions, we give the definition of the deformation gradient as a function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' We then obtain a simple understanding of the Lie derivatives of vector fields which meet the needs of engineers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then we get the velocity addition formula and verify that the Lie derivatives are objective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Note that Cauchy would certainly have used the Lie derivatives if they had existed during his lifetime: To get a stress, Cauchy had to compare two vectors, whereas one vector is enough when using the derivatives of Lie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' We systematically start with qualitive definitions (observer independent), before quantifying with bases and/or Euclidean dot products (observer dependent).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A fairly long appendix tries to give in one manuscript the definitions, properties and interpretations, usually scattered across several books (and not always that easy to find).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='01056v1 [physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='class-ph] 3 Jan 2023 2 CONTENTS Contents I Motions, Eulerian and Lagrangian descriptions, flows 11 1 Motions 11 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Referential .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 11 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Einstein’s convention (duality notation) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 12 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Motion of an object .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 12 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Virtual and real motion .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 12 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Hypotheses (Newton and Einstein) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 13 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 Configurations .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 13 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 Definition of the Eulerian and Lagrangian variables .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 13 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8 Trajectories .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 13 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9 Pointed vector, tangent space, fiber, vector field, bundle .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 13 2 Eulerian description (spatial description at actual time t) 14 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 The set of configurations .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 14 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Eulerian variables and functions .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 14 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Eulerian velocity (spatial velocity) and speed .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 15 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Spatial derivative of the Eulerian velocity .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 15 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definition .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 16 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 The convective derivative dEul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 16 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Quantification in a basis: df.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u is written (⃗u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗ grad)f .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 16 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Representation relative to a Euclidean dot product: ⃗ gradf .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 17 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Vector valued functions .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 17 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Streamline (current line) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 17 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 Material time derivative (dérivées particulaires) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 18 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Usual definition .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 18 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Remark: About notations .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 19 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Definition bis: Time-space definition .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 19 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 The material time derivative is a derivation .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 20 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Commutativity issue .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 20 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 Eulerian acceleration .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 20 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8 Time Taylor expansion of �Φ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 21 3 Motion from an initial configuration: Lagrangian description 21 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Initial configuration and Lagrangian “motion” .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 21 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definition .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 21 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Diffeomorphism between configurations .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 22 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Trajectories .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 22 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Streaklines (lignes d’émission) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 22 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Lagrangian variables and functions .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 23 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definition .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 23 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 A Lagrangian function is a two point tensor .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 23 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Lagrangian function associated with a Eulerian function .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 24 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definition .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 24 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Remarks .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 24 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Lagrangian velocity .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 24 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definition .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 24 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Lagrangian velocity versus Eulerian velocity .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 24 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Relation between differentials .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 25 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Computation of d⃗v called L = F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F −1 wih Lagrangian variables .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 25 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Lagrangian acceleration .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 25 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 Time Taylor expansion of Φt0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 26 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 A vector field that let itself be deformed by a motion .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 26 2 3 CONTENTS 4 Deformation gradient F := dΦ 26 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definitions .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 27 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definition of the deformation gradient F .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 27 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Push-forward (values of F) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 27 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 F is a two point tensors .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 28 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Evolution: Toward the Lie derivative (in continuum mechanics) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 28 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Pull-back .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 29 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Quantification with bases .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 29 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 The unfortunate notation d⃗x = F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d ⃗X .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 30 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Issue .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 30 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Where does this unfortunate notation come from?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 30 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Interpretation: Vector approach .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 30 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Interpretation: Differential approach .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 30 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 The ambiguous notation d⃗x = F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d ⃗X .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 31 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Tensorial notations, warnings, remarks .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 31 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Change of coordinate system at t for F .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 32 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 Spatial Taylor expansion of Φ and F .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 32 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 Time Taylor expansion of F .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 32 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8 Homogeneous and isotropic material .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 33 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9 The inverse of the deformation gradient .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 33 5 Flow 34 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Introduction: Motion versus flow .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 34 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Definition .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 34 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Cauchy–Lipschitz theorem .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 34 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Examples .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 36 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Composition of flows .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 36 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Law of composition of flows (determinism) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 36 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Stationnary case .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 37 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 Velocity on the trajectory traveled in the opposite direction .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 38 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 Variation of the flow as a function of the initial time .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 38 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Ambiguous and non ambiguous notations .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 38 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Variation of the flow as a function of the initial time .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 39 II Push-forward 40 6 Push-forward 40 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definition .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 40 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Push-forward and pull-back of points .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 40 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Push-forward and pull-back of curves .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 41 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Push-forward and pull-back of scalar functions .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 41 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definitions .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 41 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Interpretation: Why is it useful?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 42 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Push-forward and pull-back of vector fields .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 42 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 A definition by approximation .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 42 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 The definition of the push-forward of a vector field .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 42 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Pull-back of a vector field .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 43 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 Quantification with bases .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 44 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Usual result .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 44 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Example: Polar coordinate system .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 44 7 Push-forward and pull-back of differential forms 46 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definition .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 46 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Incompatibility: Riesz representation and push-forward .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 47 3 4 CONTENTS 8 Push-forward and pull-back of tensors 48 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Push-forward and pull-back of order 1 tensors .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 48 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Push-forward and pull-back of order 2 tensors .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 48 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Push-forward and pull-back of endomorphisms .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 49 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Application to derivatives of vector fields .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 49 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Ψ∗(d⃗u) versus d(Ψ∗⃗u): No commutativity .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 50 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 Application to derivative of differential forms .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 50 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 Ψ∗(dα) versus d(Ψ∗α): No commutativity .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 50 III Lie derivative 51 9 Lie derivative 51 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='0 Purpose and first results .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 51 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Purpose?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 51 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Basic results .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 51 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definition .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 51 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Issue (ubiquity gift).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 51 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='Toward a solution (without ubiquity gift).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 52 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The Lie derivative, first definition .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 52 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 A more general definition .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 52 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Equivalent definition (differential geometry) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 53 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Lie derivative of a scalar function .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 53 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Lie derivative of a vector field .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 54 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Formula .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 54 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Interpretation: Flow resistance measurement .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 54 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Autonomous Lie derivative and Lie bracket .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 55 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Examples .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 55 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Lie Derivative of a vector field along itself .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 55 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Lie derivative along a uniform flow .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 55 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Lie derivative of a uniform vector field .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 55 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Uniaxial stretch of an elastic material .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 55 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Simple shear of an elastic material .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 56 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 Shear flow .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 56 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 Spin .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 57 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8 Second order Lie derivative .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 57 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Lie derivative of a differential form .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 57 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 Incompatibility with Riesz representation vectors .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 59 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 Lie derivative of a tensor .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 59 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Lie derivative of a mixed tensor .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 59 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Lie derivative of a up-tensor .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 60 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Lie derivative of a down-tensor .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 60 IV Velocity-addition formula 61 10 Change of referential and velocity-addition formula 61 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='0 Issue and result (summary) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 61 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Referentials and “matrix motions” .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 61 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Absolute and relative referentials .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 61 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Motion of a material object Obj .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 62 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Quantification: Absolute and relative “motion” of Obj .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 62 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Motion of RB .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 63 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Quantification: Drive and static “motion” of RB .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 63 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 The translator Θt .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 64 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definition of Θt .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 64 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Translation at t for the motion �Φ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 64 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 dΘt .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 64 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Push-forward .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 64 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Θt is affine in classical mechanics .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 65 4 5 CONTENTS 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Translated velocities .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 65 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Definition of Θ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 66 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 The “Θ-velocity” is the drive velocity .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 66 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 The velocity-addition formula .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 66 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8 Coriolis acceleration, and the acceleration-addition formula .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 67 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9 With an initial time .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 67 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10Drive and Coriolis forces .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 68 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1Fundamental principal: requires a Galilean referential .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 68 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2Drive + Coriolis forces = the inertial force .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 68 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11Summary for “Sun and Earth” .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 69 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1Coriolis forces on the Earth .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 69 11 Objectivities 71 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 “Isometric objectivity” and “Frame Invariance Principle” .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 71 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Definition and characterization of the covariant objectivity .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 71 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Framework of classical mechanics .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 71 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Covariant objectivity of a scalar function .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 71 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Covariant objectivity of a vector field .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 72 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Covariant objectivity of differential forms .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 72 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Covariant objectivity of tensors .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 72 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Non objectivity of the velocities .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 73 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Eulerian velocity ⃗v : not covariant (and not isometric) objective .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 73 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 d⃗v is not objective .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 73 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 d⃗v + d⃗vT is “isometric objective” .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 74 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Lagrangian velocities .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 74 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 The Lie derivatives are covariant objective .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 74 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Scalar functions .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 74 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Vector fields .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 74 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Tensors .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 75 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Taylor expansions and ubiquity gift .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 76 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 In Rn with ubiquity .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 76 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 General case .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 76 V Appendix 78 A Classical and duality notations 78 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Contravariant vector and basis .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 78 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Contravariant vector .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 78 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Basis .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 78 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Canonical basis .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 78 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Cartesian basis .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 78 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Representation of a vector relative to a basis .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 79 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Dual basis .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 79 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Linear forms = “Covariant vectors” .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 79 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Covariant dual basis (= the functions that give the components of a vector) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 80 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Example: aeronautical units .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 81 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Matrix representation of a linear form .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 81 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Example: Thermodynamic .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 82 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Einstein convention .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 82 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definition .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 82 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Do not mistake yourself .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 83 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Change of basis formulas .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 83 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Change of basis endomorphism and transition matrix .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 83 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Inverse of the transition matrix .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 84 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Change of dual basis .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 84 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Change of coordinate system for vectors and linear forms .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 84 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 Bidual basis (and contravariance) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 85 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 Bilinear forms .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 85 5 6 CONTENTS A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definition .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 85 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 The transposed of a bilinear form .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 85 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Symmetric and definite positive bilinear forms .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 86 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Inner dot product, and metric .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 86 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Quantification: Matrice [βij] and tensorial representation .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 86 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8 Linear maps .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 87 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definition .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 87 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Quantification: Matrices [Lij] = [Lij] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 88 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Trace of an endomorphism .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 89 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9 Transposed matrix .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 89 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10 A transposed endomorphism: depends on a chosen inner dot product .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 90 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definition (requires an inner dot product: Not objective) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 90 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Quantification with bases .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 90 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Symmetric endomorphism .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 91 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 The general flat ♭ notation for an endomorphism: Relative to a (·, ·)g .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 92 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11 A transposed of a linear map: depends on chosen inner dot products .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 92 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definition (subjective) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 93 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Quantification with bases .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 93 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Deformation gradient symmetric: Absurd .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 93 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Isometry .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 94 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12 The adjoint of a linear map (objective) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 94 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definition .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 94 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Quantification .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 95 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Relation with the transposed when inner dot products are introduced .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 95 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13 Tensorial representation of a linear map .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 95 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 A tensorial representation .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 95 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Warning: Confusion between transposed and adjoint .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 96 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14 Change of basis formulas for bilinear forms and linear maps .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 96 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Notations for transitions matrices for bilinear forms and linear maps .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 96 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Change of coordinate system for bilinear forms ∈ L(A, B;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 97 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Change of coordinate system for bilinear forms ∈ L(A∗, B∗;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 97 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Change of coordinate system for bilinear forms ∈ L(B∗, A;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 97 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Change of coordinate system for tri-linear forms ∈ L(A∗, A, A;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 98 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 Change of coordinate system for linear maps ∈ L(A;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' B) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 98 B Euclidean Frameworks 98 B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Euclidean basis .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 99 B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Euclidean dot product .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 99 B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Change of Euclidean basis .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 100 B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Two Euclidean dot products are proportional .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 100 B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Counterexample : non existence of a Euclidean dot product .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 100 B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Euclidean transposed of the deformation gradient .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 100 B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 The Euclidean transposed for endomorphisms .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 100 B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 Unit normal vector, unit normal form .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 101 B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Framework .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 101 B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Unit normal vector .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 101 B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Unit normal form n♭ associated to ⃗n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 102 B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 Integration by parts (Green–Gauss–Ostrogradsky) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 102 C Rate of deformation tensor and spin tensor 103 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 The symmetric and antisymmetric parts of d⃗v .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 103 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Quantification with a basis .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 103 D Interpretation of the rate of deformation tensor 104 6 7 CONTENTS E Rigid body motions and the spin tensor 104 E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Affine motions and rigid body motions .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 104 E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Affine motions .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 104 E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Rigid body motion .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 105 E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Alternative definition of a rigid body motion: d⃗v + d⃗vT = 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 106 E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Representation of the spin tensor Ω: vectors, and pseudo-vectors .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 106 E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Reminder .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 106 E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Definition of the vector product (cross product) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 107 E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Calculation of the vector product .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 107 E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Antisymmetric endomorphism represented by a vector .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 108 E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Curl .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 109 E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Pseudo-cross product, and pseudo-vector .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 109 E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definition .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 109 E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Antisymmetric matrix represented by a pseudo-vector .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 110 E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Antisymmetric endomorphism and its pseudo-vectors representations .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 110 E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Examples .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 110 E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Rectilinear motion .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 110 E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Circular motion .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 111 E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Motion of a planet (centripetal acceleration) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 112 F Riesz representation theorem 115 F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 The Riesz representation theorem .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 115 F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 The Riesz representation operator .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 116 F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Quantification with a basis .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 116 F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Change of Riesz representation vector, and Euclidean case .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 117 F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 A Riesz representation vector is contravariant .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 118 F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 What is a vector versus a (·, ·)g-vector?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 119 F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 The “(·, ·)g-dual vectorial bases” of one basis (and warnings) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 119 F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 A basis and its many associated “dual vectorial basis” .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 119 F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Components of ⃗ejg in the basis (⃗ei) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 120 F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Multiple admissible notations for the components of ⃗ejg .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 121 F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 (Huge) differences between “the (covariant) dual basis” and “a dual vectorial basis” 121 F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 About the notation gij = shorthand notation for (g♯)ij .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 121 G Cauchy–Green deformation tensor C = F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F 122 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='0 Goal .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 122 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Transposed F T : Inner dot products required .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 122 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definition of the function F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 122 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Quantification with bases (matrix representation) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 123 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Remark: F ∗ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 123 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Cauchy–Green deformation tensor C .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 124 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definition of C .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 124 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Quantification .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 125 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Time Taylor expansion of C .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 125 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Remark: C♭ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 126 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definition of C♭.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 126 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' and remarks about C♭.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' and Jaumann .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 126 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Stretch ratio and deformed angle .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 127 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Stretch ratio .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 127 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Deformed angle .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 127 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 Decompositions of C .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 128 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Spherical and deviatoric tensors .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 128 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Rigid motion .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 128 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Diagonalization of C .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 128 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Mohr circle .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 128 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 Green–Lagrange deformation tensor E .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 129 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8 Small deformations (linearization): The infinitesimal strain tensor ε .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 130 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Landau notations big-O and little-o .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 130 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Definition of the infinitesimal strain tensor ε .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 130 7 8 CONTENTS H Finger tensor F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F T (left Cauchy–Green tensor) 131 H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definition .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 131 H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 b−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 132 H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Time derivatives of b−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 132 H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Euler–Almansi tensor a .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 133 H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Time Taylor expansion for a .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 133 H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 Almansi modified Infinitesimal strain tensor �ε .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 133 I Polar decomposition, elasticity and objectivity 133 I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Polar decompositions of F (“isometric objectivity”) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 133 I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 F = R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='U (right polar decomposition) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 134 I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 F = S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='R0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='U (shifted right polar decomposition for covariant objectivity) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 134 I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 F = V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='R (left polar decomposition) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 135 I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Linear elasticity: A Classical “tensorial” approach .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 136 I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Classical approach (“isometric objectivity”), and an issue .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 136 I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 A functional (tensorial) formulation (“isometric objectivity”) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 136 I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Second functional formulation: With the Finger tensor .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 138 I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Elasticity with a covariant objective approach?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 138 J Displacement 139 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 The displacement vector ⃗U .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 139 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 The differential of the displacement vector .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 140 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Deformation “tensor” ε (matrix), bis .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 140 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Small displacement hypothesis, bis .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 141 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Displacement vector with differential geometry .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 141 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 The shifter .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 141 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 The displacement vector .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 142 K Determinants 142 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Alternating multilinear form .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 142 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Leibniz formula .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 142 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Determinant of vectors .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 143 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Determinant of a matrix .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 144 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Volume .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 144 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 Determinant of an endomorphism .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 145 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definition and basic properties .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 145 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 The determinant of an endomorphism is objective .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 146 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 Determinant of a linear map .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 147 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definition and first properties .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 147 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Jacobian of a motion, and dilatation .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 147 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Determinant of the transposed .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 148 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8 Dilatation rate .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 148 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 ∂Jt0 ∂t (t, pt0) = Jt0(t, pt0) div⃗v(t, pt) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 148 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Leibniz formula .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 149 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9 ∂J/∂F = J F −T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 150 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Meaning of ∂ det ∂Mij ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 150 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Calculation of ∂ det ∂Mij .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 150 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 ∂J/∂F = J F −T usually written [ ∂J ∂Fij ] = J F −T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 150 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Interpretation of ∂J ∂Fij ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 150 L Transport of volumes and areas 151 L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Transformed parallelepiped .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 151 L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Transformed volumes .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 151 L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Transformed parallelogram .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 151 L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Transformed surface .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 152 L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Deformation of a surface .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 152 L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Euclidean dot product and unit normal vectors .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 152 L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Relations between surfaces .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 153 L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Piola identity .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 153 8 9 CONTENTS L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 Piola transformation .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 154 M Work and power 154 M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definitions .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 154 M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Work .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 154 M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 And its associated power density .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 155 M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Piola–Kirchhoff tensors .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 155 M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Objective internal power for the stress: function of d⃗v .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 155 M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 The first Piola–Kirchhoff tensor .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 156 M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 The second Piola–Kirchhoff tensor .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 156 M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Classical hyper-elasticity: ∂W/∂F .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 157 M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definition .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 157 M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Expression with bases (quantification): The ∂W/∂Lij .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 157 M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Motions and ω-lemma .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 158 M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Application to classical hyper-elasticity: PK = ∂W/∂F .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 159 M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Corollary (hyper-elasticity): SK = ∂W/∂C .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 160 N Conservation of mass 160 O Balance of momentum 161 O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Framework .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 161 O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Master balance law .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 161 O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Cauchy theorem ⃗T = σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗n (stress tensor σ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 161 P Balance of moment of momentum 163 Q Uniform tensors in Lr s(E) 163 Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Tensorial product and multilinear forms .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 163 Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Tensorial product of functions .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 163 Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Tensorial product of linear forms: multilinear forms .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 163 Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Uniform tensors in L0 s(E) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 164 Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definition of type �0 s � uniform tensors .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 164 Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Example: Type �0 1 � uniform tensor = linear forms .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 164 Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Example: Type �0 2 � uniform tensor .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 164 Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Example: Determinant .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 164 Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Uniform tensors in Lr s(E) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 164 Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definition of type �r s � uniform tensors .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 165 Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Example: Type �1 0 � uniform tensor: Identified with a vector .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 165 Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Example: Type �1 1 � uniform tensor .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 165 Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Example: Type �1 2 � uniform tensor .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 166 Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Exterior tensorial products .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 166 Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Contractions .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 166 Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Contraction of a linear form with a vector .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 166 Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Contraction of a �1 1 � tensor and a vector .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 166 Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Contractions of uniform tensors .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 167 Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Objective double contractions of uniform tensors .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 168 Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Non objective double contraction: Double matrix contraction .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 169 Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 Kronecker (contraction) tensor, trace .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 169 R Tensors in T r s (U) 170 R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Introduction, module, derivation .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 170 R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Field of functions and vector fields .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 170 R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Field of functions .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 170 R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Vector fields .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 171 R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Differential forms .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 171 R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Tensors .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 171 R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 First Examples .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 172 R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Type �0 1 � tensor = differential forms .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 172 R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Type �1 0 � tensor (identified to a vector field) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 172 9 10 CONTENTS R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 A metric is a �0 2 � tensor .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 172 R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 �1 1 � tensor, identification with fields of endomorphisms .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 172 R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 Unstationary tensor .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 172 S Differential, its eventual gradients, divergences 173 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Differential .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 173 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Framework .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 173 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Directional derivative and differential (observer independent) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 173 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Notation for the second order Differential .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 174 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 A basis and the j-th partial derivative .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 174 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Application 1: Scalar valued functions .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 175 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Differential of a scalar valued function (objective) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 175 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Quantification .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 175 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Gradients (subjective) associated with a differential through inner dot products .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 176 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Application 2: Coordinate system basis and Christoffel symbols .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 176 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Coordinate system, and coordinate system basis .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 176 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Parametric expression of the differential of a scalar valued function .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 177 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Christoffel symbols .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 178 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Application 3: Differential of a vector field .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 179 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 Application 4: Differential of a differential form .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 180 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 Application 5: Differential of a 1 1 tensor .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 180 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8 Divergence of a vector field: Invariant .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 181 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9 Objective divergence for 1 1 tensors .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 182 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Divergence of a 2 0 tensor .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 183 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Divergence of a 0 2 tensor .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 183 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10 Euclidean framework and “classic divergence” of a tensor (subjective) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 184 T Natural canonical isomorphisms 184 T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 The adjoint of a linear map .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 184 T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 An isomorphism E ≃ E∗ is never natural (never objective) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 185 T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Natural canonical isomorphism E ≃ E∗∗ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 186 T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Natural canonical isomorphisms L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) ≃ L(F ∗, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) ≃ L(E∗;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F ∗) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 186 T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Natural canonical isomorphisms L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F)) ≃ L(E, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) ≃ L(F ∗, E, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 187 U Distribution in brief: A covariant concept 188 U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definitions .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 188 U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Derivation of a distribution .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 189 U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Hilbert space H1(Ω) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 190 U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Motivation .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 190 U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Definition of H1(Ω) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 190 U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Subspace H1 0(Ω) and its dual space H−1(Ω) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 191 10 11 A quantity f being given then: g defined by « g equals f » is noted g := f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Part I Motions, Eulerian and Lagrangian descriptions, flows 1 Motions The framework is classical mechanics, time being decoupled from space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R3 is the classical geometric affine space (the space we live in), and ( ⃗R3, +, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') = { ⃗pq : p, q ∈ R3} =noted ⃗R3 is the associated vector space of bipoint vectors equipped with its usual rules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' We also consider R and R2 as subspaces of R3, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' we consider Rn and ⃗Rn, n = 1, 2, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Referential Origin: An observer chooses an origin O ∈ Rn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus a point p ∈ Rn can be located by the observer thanks to the bipoint vector −→ Op = ⃗x ∈ ⃗Rn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Hence p = O + ⃗x, and ⃗x = −→ Op =noted p − O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Another observer chooses an origin � O ∈ Rn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus the point p can also be located by this observer with the bipoint vector −→ � Op = �⃗x ∈ ⃗Rn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So p = O + ⃗x = � O + �⃗x, and �⃗x = −−→ O � O + ⃗x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Cartesian coordinate system: A Cartesian coordinate system in the affine space Rn is a set RCart = (O, (⃗ei)i=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',n), where O is an origin and (⃗ei) := (⃗ei)i=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',n is a basis in ⃗Rn chosen by the observer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus the location of a point p ∈ Rn can quantified by the observer ∃⃗x ∈ ⃗Rn s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' p = O + ⃗x with ⃗x = n � i=1 xi⃗ei, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [−→ Op]|⃗e = [⃗x]|⃗e = � � x1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' xn � � , (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1) [⃗x]|⃗e = [−→ Op]|⃗e being the column matrix containing the components xi ∈ R of −→ Op = ⃗x in the basis (⃗ei).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Another observer with his origin Ob and his Cartesian basis (⃗bi)i=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',n make the Cartesian coordinate system RCart,b = (Ob, (⃗bi)i=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',n), and gets for the same position p in Rn, p = Ob + ⃗y with ⃗y = n � i=1 �yi�⃗bi, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [−−→ Obp]|⃗b = [⃗y]|⃗b = � � � y1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' yn � � � , (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2) [⃗y]|⃗b = [−−→ Obp]|⃗b being the column matrix containing the components yi ∈ R of −−→ Obp = ⃗y in the basis (⃗bi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And −−→ Obp = −−→ ObO + −→ Op, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗y = −−→ � OO + ⃗x, gives the relation between ⃗x and ⃗y (drawing).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Chronology: A chronology (or temporal coordinate system) is a set Rtime = (t0, (∆t)) chosen by an observer, where t0 ∈ R is the time origin, and (∆t) is the time unit (a basis in ⃗R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Referentiel: A referential R is the set R = (Rtime, RCart) = (t0, (∆t), O, (⃗ei)i=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',n) = (“chronologie”,“Cartesian coordinate system”), (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3) made of a chronology and a Cartesian coordinate system, chosen by an observer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In the following, to simplify the writings, the same implicit chronology is used by all observers, and a referential R = (Rtime, RCart) will simply be noted as the reference frame R = (O, (⃗ei)) (so := RCart).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 11 12 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Einstein’s convention (duality notation) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Einstein’s convention (duality notation) Starting point: The classical notation xi for the components of a vector ⃗x relative to a basis, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then the duality notion is introduced: xi =noted xi (enables to see the difference between a vector and a function when using components).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So ⃗x = n � i=1 xi⃗ei � �� � classic not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' = n � i=1 xi⃗ei � �� � duality not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' , and [⃗x]|⃗e clas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' = � � x1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' xn � � dual = � � x1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' xn � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4) The duality notation is part of the Einstein’s convention;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Moreover Einstein’s convention uses the notation �n i=1xi⃗ei =noted xi⃗ei, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' the sum sign �n i=1 can be omitted when an index (i here) is used twice, once up and once down, details at § A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' However this omission of the sum sign � will not be made in this manuscript (to avoid ambiguities): The TEX-LATEX program makes it easy to print �n i=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Example 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 The height of a child is represented on a wall by a vertical bipoint vector ⃗x starting from the ground up to a pencil line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Question: What is the size of the child ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer: It depends.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' on the observer (quantitative value = subjective result).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', an English observer chooses a vertical basis vector ⃗a1 which length is one English foot (ft).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So he writes ⃗x = x1⃗a1, and for him the size of the child (size of ⃗x) is x1 in foot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' x1 = 4 means the child is 4 ft tall.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A French observer chooses a vertical basis vector ⃗b1 which length is one metre (m).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So he writes ⃗x = y1⃗b1, and for him the size of the child (size of ⃗x) is y1 metre.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', if x1 = 4 then y1 ≃ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22, since 1 ft := 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3048 m: The child is both 4 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22 tall.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' in foot or metre.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' This quantification is written ⃗x = 4 ft = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22 m, where ft means ⃗a1 and m means ⃗b1 here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' NB: The qualitative vector ⃗x is the same vector for all observers, not the quantitative values 4 or 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22 (depends on a choice of a unit of measurement).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' With duality notation: ⃗x = x1⃗a1 = y1⃗b1, so if x1 = 4 then y1 ≃ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' This manuscript insists on covariant objectivity;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus an English engineer (and his foot) and a French engineer (and his metre) will be able to work together .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' and be able to avoid crashes like that of the Mars Climate Orbiter probe, see remark A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And they will be able to use the results of Galileo, Descartes, Newton, Euler.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' who used their own unit of length, and knew nothing about the metre defined in 1793 and adopted in 1799 in France (after 6 years of measurements), and considered by the scientific community at the end of the ninetieth century.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' and couldn’t explicitly use the “Euclidean dot products” either (which seems to have been defined mathematically by Grassmann around 1844).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Motion of an object Let Obj be a “real object”, or “material object”, made of particles (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', the Moon: Exists independently of an observer).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let t1, t2 ∈ R, t1 < t2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 The motion of Obj in Rn is the map �Φ : � � � � � [t1, t2] × Obj → Rn (t, PObj) � �� � particle → p = �Φ(t, PObj) � �� � its position at t in the Universe .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5) And t is the time variable, p is the space variable, and (t, p) ∈ R × Rn is the time-space variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And �Φ is supposed to be C2 in time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' With an origin O (observer dependent), the motion can be described with the bi-point vector ⃗x = −−−−−−−→ O�Φ(t, PObj) = −→ Op noted = �⃗ϕ(t, PObj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6) But then, two observers with different origins O and Ob have different description of the motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' There- fore, in the following we won’t use �⃗ϕ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then (quantification) with a Cartesian basis (⃗ei) to make a referential R, we get (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Virtual and real motion Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 A virtual (or possible) motion of Obj is a function �Φ “regular enough for the calculations to be meaningful”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Among all the virtual motions, the observed motion is called the real motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 12 13 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Hypotheses (Newton and Einstein) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Hypotheses (Newton and Einstein) Hypotheses of Newtonian mechanics (Galileo relativity) and general relativity (Einstein): 1- You can describe a phenomenon only at the actual time t and from the location p you are at (you have no gift of ubiquity in time or space);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 2- You don’t know the future;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 3- You can use your memory, so use some past time t0 and some past position pt0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 4- You can use someone else memory (results of measurements) if you can communicate objectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 Configurations Fix t ∈ [t1, t2], and define �Φt : � Obj → Rn PObj �→ p = �Φt(PObj) := �Φ(t, PObj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 The “configuration at t” of Obj is the range (or image) of �Φt, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' is the subset of Rn (affine space) defined by Ωt := {p ∈ Rn : ∃PObj ∈ Obj s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' p = �Φt(PObj)} noted = �Φt(Obj) noted = Im(�Φt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7) If t is the actual time then Ωt is the actual (or current or Eulerian) configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' If t0 is a time in the past then Ωt0 is the past (or initial or Lagrangian) configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Hypothesis: At any time t, Ωt is supposed to be a “smooth domain” in Rn, and the map �Φt is assumed to be one-to-one (= injective): Obj does not crash onto itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 Definition of the Eulerian and Lagrangian variables If t is the actual time, then pt = �Φt(PObj) ∈ Ωt is called the Eulerian variable relative to PObj and t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' If t0 is a time in the past, then pt0 = �Φt0(PObj) ∈ Ωt0 is called the Lagrangian variable relative to PObj and t0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A Lagrangian variable is a “past Eulerian variable”).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Two observers with two different origin of time t0 and t0′ get two different Lagrangian variable while they have the same Eulerian variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8 Trajectories Let �Φ be a motion of Obj, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5), and PObj ∈ Obj (a particle in Obj = e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' the Moon).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 The (parametric) trajectory of PObj is the function �ΦPObj : � [t1, t2] → Rn, t �→ p(t) = �ΦPObj (t) := �Φ(t, PObj) (position of PObj at t in the Universe).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8) Its geometric trajectory is the range (image) of �ΦPObj , i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' geometric trajectory of PObj := {q ∈ Rn : ∃t ∈ [t1, t2] s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' q = �ΦPObj (t)} = Im(�ΦPObj ) = �ΦPObj ([t1, t2]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9 Pointed vector, tangent space, fiber, vector field, bundle (See e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Abraham–Marsden [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') To deal with surfaces S in R3, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' with S = a sphere (and more generally with manifolds in Rn), a vector cannot simply be a “bi-point vector connecting two points of S” (would get “through the surface”).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A vector is defined to be tangent to S: Consider a “regular” curve c : s ∈] − ε, ε[→ c(s) ∈ S where S is a surface in an affine space, and the vector tangent to S at c(0) is ⃗w(c(0)) = limh→0 c(h)−c(0) h (it is defined with a parametrization of c in a general manifold);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Considering all the possible curves, we get “all possible vectors on S”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Notation: TpS := {tangent vectors ⃗wp at S at p} = The tangent space at p ∈ S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10) E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', if S is a sphere in R3 and p ∈ S, then TpS is its usual tangent plane at p at S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', particular case: If S = Ω is an open set in Rn, then TpS = TpΩ = ⃗Rn is independent of p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 13 14 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The set of configurations Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 The fiber at p := {p} × TpS = { (p, ⃗wp) � �� � pointed vector ∈ {p} × TpS}, (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', the fiber at p is the set of “pointed vectors at p”, a pointed vector being the couple (p, ⃗wp) made of the “base point” p and the vector ⃗wp defined at p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Drawing: A vector in ⃗Rn can be drawn anywhere in Rn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' While a “pointed vectors at p” has to be drawn at the point p in Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' If the context is clear, a pointed vector is simply noted �⃗w(p) =noted ⃗w(p) (lighten the writing).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Particular case: If S = Ω is an open set in Rn, then the fiber at p is TpΩ = {p} × ⃗Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 The tangent bundle TS := � p∈S ({p} × TpS), (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12) that is, is the union of the fibers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8 A vector field �⃗w in S is a C∞ function (or at least C2 in the following) �⃗w : � S → TS p → �⃗w(p) = (p, ⃗w(p)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13) If the context is clear, a vector field is simply noted �⃗w =noted ⃗w (lighten the writing).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 2 Eulerian description (spatial description at actual time t) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 The set of configurations Let �Φ be a motion of Obj, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5), and Ωt = �Φt(Obj) ⊂ Rn be the configuration at t, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The set of configurations is the subset C ⊂ R × Rn (the “time-space”) defined by C := � t∈[t1,t2] ({t} × Ωt) (= set in which you find particles in “time-space”) = {(t, p) ∈ R × Rn : ∃(t, PObj) ∈ [t1, t2] × Obj, p = �Φ(t, PObj)}, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1) Question: Why don’t we simply use � t∈[t1,t2] Ωt instead of C = � t∈[t1,t2]({t} × Ωt)?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer: C gives the film of the life of Obj = the succession of the photos Ωt taken at each t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And Ωt is obtained from C thanks to the pause feature at t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Whereas � t∈[t1,t2] Ωt ⊂ Rn is the superposition of all the photos on the image � t∈[t1,t2] Ωt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' and we don’t distinguish the past from the present.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Eulerian variables and functions Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 In short: A Eulerian function relative to Obj is a function, with m ∈ N∗, Eul : � C → ⃗ Rm (or more generally a suitable set of tensors) (t, p) → Eul(t, p), (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2) the spatial variable p being the Eulerian variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In details: A function Eul being given as in (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2), the associated Eulerian function � Eul is the function � Eul : � C → C × ⃗ Rm (or C× some suitable set of tensors) (t, p) → � Eul(t, p) = ((t, p), Eul(t, p)) = (time-space position , value), (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3) and is called “a field of functions”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So � Eul(t, p) is the “pointed Eul(t, p)” at (t, p) (in time-space).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So, the range Im( � Eul) = � Eul(C) of an Eulerian function � Eul is the graph of Eul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Recall: The graph of a function f : x ∈ A → f(x) ∈ B is the subset {(x, f(x)) ∈ A × B} ⊂ A × B: gives the “drawing of f”).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' If there is no ambiguity, � Eul =noted Eul for short.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 14 15 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Eulerian velocity (spatial velocity) and speed At t, the Eulerian vector field at t is � Eult : � Ωt → Ωt × ⃗Rn p → � Eult(p) := (p, Eult(p)) = (position , value).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Eul(t, p) = θ(t, p) ∈ R = temperature of the particle PObj which is at t at p = �Φ(t, PObj);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Eul(t, p) = ⃗u(t, p) ∈ ⃗Rn = force applied on the particle PObj which is at t at p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Eul(t, p) = d⃗u(t, p) ∈ L(⃗Rn : ⃗Rn) = the differential at t at p of a Eulerian function ⃗u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Question: Why introduce � Eul?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Isn’t Eul sufficient?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer: The “pointed value” � Eul(t, p) = ((t, p), Eul((t, p))) is drawn on the graph of Eul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', at t at p the velocity vector ⃗v(t, p) ∈ ⃗R3 can be drawn anywhere, while the “pointed vector” �⃗v(t, p) = ((t, p);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v(t, p)) is ⃗v(t, p) drawn at t at p (and �⃗v is called the velocity field).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Moreover (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3) emphasizes the difference between a Eulerian vector field and a Lagrangian vector function, see (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', the initial framework of Cauchy for his description of forces is Eulerian: The Cauchy stress vector ⃗t = σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗n is considered at the actual time t at a point p ∈ Ωt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (It is not Lagrangian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Eulerian velocity (spatial velocity) and speed Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 In short: Consider a particle PObj and its (regular) trajectory �ΦPObj : t → p(t) = �ΦPObj (t), cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Its Eulerian velocity at t at p(t) = �ΦPObj (t) is ⃗v(t, p(t)) := �ΦPObj ′(t) noted = ∂�Φ ∂t (t, PObj), when p(t) = �ΦPObj (t), (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ⃗v(t, p(t)) is the tangent vector at t at p(t) = �ΦPObj (t) to the trajectory �ΦPObj .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' This defines the vector field (in short) ⃗v : � C → ⃗Rn (t, pt) → ⃗v(t, pt) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In details: cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3), the Eulerian velocity is the function �⃗v : � C → C × ⃗ Rm (t, p) → �⃗v(t, p) = ((t, p),⃗v(t, p)) � (pointed vector) where ⃗v(t, p) is given by (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 d�ΦPObj dt (t) = ⃗v(t, �ΦPObj (t)), with p(t) = �ΦPObj (t), is often written dp dt (t) = ⃗v(t, p(t)), or d⃗x dt (t) = ⃗v(t, ⃗x(t)), or d⃗x dt = ⃗v(t, ⃗x), (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5) the two last notations when an origin O is chosen and ⃗x(t) = −−−→ Op(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Such an equation is the pro- totype of an ODE (ordinary differential equation) solved with the Cauchy–Lipschitz theorem, see § 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A Lagrangian velocity does not produce an ODE, see (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='21).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8 If an observer chooses a Euclidean dot product (·, ·)g (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' foot or metre built), the associated norm being ||.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='||g, then the length ||⃗v(t, p)||g is the speed (or scalar velocity) of PObj (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' in ft/s or in m/s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And the context must remove the ambiguities: the “velocity” is either the vector velocity ⃗v(t, p) = �ΦPObj ′(t) or the speed (the scalar velocity) ||⃗v(t, p)||g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9 Euclidean dot product (·, ·)g, ⃗x(t) = −−−→ Op(t), ⃗T(t) = ⃗x ′(t) ||⃗x ′(t)||g , and f(t) = ||⃗x ′(t)||g (speed).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Prove : df dt(t) = (⃗x ′′(t), ⃗T(t))g =noted ⃗x ′′(t) • ⃗T(t) (= tangential acceleration).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 2-D and Euclidean basis: ⃗x(t) = � x(t) y(t) � gives f(t) = (x′(t)2 + y′(t)2) 1 2 , thus f ′(t) = x′(t)x′′(t)+y′(t)y′′(t) f(t) = ⃗r ′(t) • ⃗r ′′(t) ||⃗r ′(t)|| .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Idem in n-D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Spatial derivative of the Eulerian velocity t ∈ [t1, t2] is fixed, Eul is a given Eulerian function, and Eult : � Ωt → ⃗ Rm p → Eult(p) := Eul(t, p) � is C1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 15 16 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Spatial derivative of the Eulerian velocity 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definition Recall: If Ω is an open set in Rn and if f : Ω → R is differentiable at p, then its differential at p is the linear form df(p) ∈ L(⃗Rn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) (linear map with real values) defined by, for all ⃗u ∈ ⃗Rn (vector at p), df(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u = lim h→0 f(p+h⃗u) − f(p) h .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6) This expression is the same for all observers (English, French.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=': There is no inner dot product here).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10 The space derivative of Eul at (t, p) is the differential dEult at p, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', for all t ∈ [t1, t2], all p ∈ Ωt and all ⃗wp ∈ ⃗Rn t (vector at p), (dEult(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wp =) dEul(t, p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wp = lim h→0 Eul(t, p+h⃗wp) − Eul(t, p) h noted = ∂Eul ∂p (t, p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7) In Ωt (the photo at t), dEul(t, p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wp gives the rate of variations of Eult at p in the direction ⃗wp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', at t, the space derivative d⃗v of the Eulerian velocity field is defined by d⃗v(t, p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wp = lim h→0 ⃗v(t, p+h⃗wp) − ⃗v(t, p) h (= d⃗vt(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wp).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8) Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11 In differential geometry, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6) is also written ⃗u(f)(p) = d dhf(p+h⃗u)|h=0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Don’t use this notation if you are not at ease with differential geometry (where a vector is defined to be a derivation, so ⃗u[f] is the derivation of f by ⃗u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 The convective derivative dEul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12 If ⃗v is the Eulerian velocity field, then dEul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v is called the convective derivative of Eul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Quantification in a basis: df.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u is written (⃗u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗ grad)f Quantification: Let f : p ∈ Rn → f(p) ∈ R be C1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let (⃗ei) be a basis in ⃗Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let (usual definition) ∂f ∂xi (p) := df(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ei and [df(p)]|⃗e = ( ∂f ∂x1 (p) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ∂f ∂xn (p) ) (line matrix).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9) (Recall: The matrix which represents a linear form is a line matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') And [df(p)]|⃗e is the Jacobian matrix of f at p relative to (⃗ei).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So, with ⃗u = �n i=1ui⃗ei a vector at p, and with the usual matrix multiplication rule, we have df(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u = [df(p)]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗u]|⃗e = n � i=1 ∂f ∂xi (p)ui = n � i=1 ui ∂f ∂xi (p) noted = (⃗u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗ grad)|ef(p), (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10) where (⃗u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗ grad)|e : C1(��;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) → C0(Ω;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) is the differential operator defined relative to a basis (⃗ei) by (⃗u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗ grad)|e(f) = n � i=1 ui ∂f ∂xi .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11) If the basis (⃗ei) is unambiguously imposed, then (⃗u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗ grad)|e =noted ⃗u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗ grad For vector valued functions ⃗f : Ω → ⃗ Rm, the above steps apply to the components of ⃗f in a basis (⃗bi) in ⃗ Rm: If ⃗f = �m i=1fi⃗bi, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗f(p) = �m i=1fi(p)⃗bi, then (⃗u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗ grad)|e(⃗f) = m � i=1 (dfi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u)⃗bi = m � i=1 ((⃗u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗ grad)|efi)⃗bi = m � i=1 n � j=1 (uj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ∂fi ∂xj )⃗bi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12) 16 17 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Streamline (current line) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Representation relative to a Euclidean dot product: ⃗ gradf An observer chooses a distance unit (foot, metre.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') and uses the associated Euclidean dot product (·, ·)g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let Ω be an open set in Rn, f ∈ C1(Ω;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) (scalar valued function), and p ∈ Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then the (·, ·)g-Riesz representation vector of the differential form df(p) is called the gradient of f at p relative to (·, ·)g, and named ⃗ gradgf(p) ∈ ⃗Rn: It is defined by ∀⃗u ∈ ⃗Rn, ( ⃗ gradgf(p), ⃗u)g = df(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u, written ⃗ gradf • ⃗u = df.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13) the last notation iff a Euclidean dot product (·, ·)g is imposed to all observer (quite subjective: foot, metre ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (The first order Taylor expansion f(p+h⃗u) = f(p) + h df(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u + o(h) can therefore, after a choice of an Euclidean dot product, be written f(p+h⃗u) = f(p) + h ⃗ gradgf(p) •g ⃗u + o(h).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Quantification: Let (⃗ei) be a Cartesian basis in Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13) gives [df].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗u] = [ ⃗ gradf]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [g].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗u], for all ⃗u ∈ ⃗Rn t (more precisely [df]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗u]|⃗e = [ ⃗ gradgf]T |⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[g]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗u]|⃗e), thus (since [g]|⃗e is symmetric) [ ⃗ gradf] = [g].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [df]T (column matrix).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14) I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', if ⃗ gradf = �n i=1ai⃗ei then ai = �n j=1gij ∂f ∂xj for all i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In particular, if (⃗ei) is a (·, ·)g-orthonormal basis then [ ⃗ gradf] = [df]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' With duality notations, ⃗ gradf = �n i=1ai⃗ei and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14) gives ai = �n j=1gij ∂f ∂xj : The Einstein convention is not satisfied (the index j is twice bottom), which is expected since the definition of ⃗ gradgf depends on a subjective choice (unit of length).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In comparison, df = �n i=1 ∂f ∂xi dxi satisfies the Einstein convention (a differential is objective).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Mind the notations: The gradient ⃗ gradgf =noted ⃗ gradf depends on (·, ·)g, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13)-(2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14), while (⃗u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗ grad)f does not (only depends on a basis), cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11) (historical notations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Vector valued functions For vector valued functions ⃗f : Ω → ⃗ Rm, the above steps apply to the components fi of ⃗f relative to a basis (⃗bi) in ⃗ Rm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' But, depending on the book you read: 1- Ambiguous: d⃗f, the differential of ⃗f, is unfortunately also sometimes called the “gradient matrix” (although no Euclidean dot product is required).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 2- Ambiguous: It could mean the differential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' or the Jacobian matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' or its transposed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' because an orthonormal basis relative to an imposed Euclidean dot product is chosen (which one?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') and then [ ⃗ gradfi] = [dfi]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And calculations confuses [.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='] and [.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 3- Non ambiguous: In the objective framework of this manuscript, we will use the differential d⃗f (objective) to begin with;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And only after an explicit choice of bases (⃗ei) for quantitative purposes, the Jacobian matrix, which is [df]|⃗e, will be used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13 A Euclidean framework being chosen, prove: (⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗ grad)⃗v = 1 2 ⃗ grad(||⃗v||2) + ⃗ rot⃗v ∧ ⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Euclidean basis ( ⃗Ei), Euclidean dot product (·, ·)g =noted (·, ·), associated norm ||.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='||g =noted ||.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='||.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus ⃗v = �n i=1vi ⃗Ei gives ||⃗v||2 = � i v2 i , thus ∂||⃗v||2 ∂xk = � i 2vi ∂vi ∂xk , for any k = 1, 2, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And, the first component of ⃗ rot⃗v is ( ⃗ rot⃗v)1 = ∂v3 ∂x2 − ∂v2 ∂x3 , idem for ( ⃗ rot⃗v)2 and ( ⃗ rot⃗v)3 (circular permutation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus (first component) ( ⃗ rot⃗v∧⃗v)1 = ( ∂v1 ∂x3 − ∂v3 ∂x1 )v3−( ∂v2 ∂x1 − ∂v1 ∂x2 )v2, idem for ( ⃗ rot⃗v∧⃗v)2 and ( ⃗ rot⃗v∧⃗v)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus ( 1 2 ⃗ grad(||⃗v||2)+ ⃗ rot⃗v∧⃗v)1 = v1 ∂v1 ∂x1 + v2 ∂v2 ∂x1 + v3 ∂v3 ∂x1 + ∂v1 ∂x3 v3 − ∂v3 ∂x1 v3 − ∂v2 ∂x1 v2 + ∂v1 ∂x2 v2 = v1 ∂v1 ∂x1 + v2 ∂v1 ∂x2 + v3 ∂v1 ∂x3 = (⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗ grad)v1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Idem for the other components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Streamline (current line) Fix t ∈ R, and consider the photo Ωt = �Φt(Obj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let pt ∈ Ωt, ε > 0, and consider the spatial curve in Ωt at pt defined by: cpt : � ] − ε, ε[ → Ωt s → q = cpt(s) � s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' cpt(0) = pt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='15) 17 18 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Material time derivative (dérivées particulaires) So s is a curvilinear spatial coordinate (dimension of a length), and the graph of cpt is drawn in the photo Ωt at t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14 ⃗v : (t, p) → ⃗v(t, p) being the Eulerian velocity field of Obj, a streamline through a point pt ∈ Ωt is a (parametric) spatial curve cpt solution of the differential equation dcpt ds (s) = ⃗vt(cpt(s)) with cpt(0) = pt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16) And Im(cpt) is the geometric associated streamline (⊂ Ωt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' NB: (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16) cannot be confused with (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5): In (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5) the variable is the time variable t, while in (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16) the variable is the space variable s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Usual notation: If an origin O is chosen at t by an observer and ⃗x(s) := −−−−−→ Ocpt(s) , then (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16) is written d⃗x ds (s) = ⃗vt(⃗x(s)) with ⃗x(0) = −−→ Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='17) Moreover, with a Cartesian basis (⃗ei)) chosen at t by the observer, with ⃗x(s) = �n i=1xi(s)⃗ei we get d⃗x ds (s) = �n i=1 dxi ds (s)⃗ei, and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='17) reads as the differential system of n equations in ⃗Rn ∀i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', n, dxi ds (s) = vi(t, x1(s), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', xn(s)) with xi(0) = (−−→ Opt)i (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='18) (the n functions xi : s → xi(s) are the unknown).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Also written dx1 v1 = .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' = dxn vn = ds, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='19) which means: It is the differential system (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='18) of n equations and n unknowns which must be solved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (With duality notations, dxi ds (s) = vi(t, x1(s), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', xn(s)) and xi(0) = (−−→ Opt)i for all i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 Material time derivative (dérivées particulaires) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Usual definition Goal: To compute the variations of a Eulerian function Eul along the trajectory �ΦPObj of a particle PObj (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' the temperature of a particle along its trajectory).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So consider the function gPObj giving the values of Eul relative to a PObj along its trajectory: gPObj (t) := Eul(t, p(t)) when p(t) := �ΦPObj (t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='20) Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='15 The Material time derivative of Eul at (t, p(t)) is gPObj ′(t) =noted DEul Dt (t, p(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So: DEul Dt (t, p(t)) := gPObj ′(t) (= lim h→0 Eul(t+h, p(t+h)) − Eul(t, p(t)) h ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='21) Since gPObj (t) := Eul(t, �ΦPObj (t)) we get gPObj ′(t) = ∂Eul ∂t (t, �ΦPObj (t))+dEul(t, �ΦPObj (t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='�Φ′ PObj (t), thus, having �Φ′ PObj (t) = ⃗v(t, p(t)) (Eulerian velocity), DEul Dt (t, p(t)) = ∂Eul ∂t (t, p(t)) + dEul(t, p(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v(t, p(t)): DEul Dt := ∂Eul ∂t + dEul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22) Exercice 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16 Prove, if Eul is C2: D2Eul Dt2 = ∂2Eul ∂t2 + 2d∂Eul ∂t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v + dEul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='∂⃗v ∂t + d2Eul(⃗v,⃗v) + dEul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='23) Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' D2Eul Dt2 = D DEul Dt Dt = g′′ PObj (t) = ∂( ∂Eul ∂t + dEul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v) ∂t + d(∂Eul ∂t + dEul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v = ∂2Eul ∂t2 + ∂(dEul) ∂t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v + dEul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='∂⃗v ∂t + d∂Eul ∂t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v + d2Eul(⃗v,⃗v) + dEul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v, and Eul C2 gives ∂ ∂t ◦ d = d ◦ ∂ ∂t (Schwarz theorem), hence (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='23).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 18 19 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Material time derivative (dérivées particulaires) Exercice 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='17 Prove, if Eul is C2, for any vector field ⃗w, D(dEul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w) Dt = d∂Eul ∂t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w + dEul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='∂ ⃗w ∂t + d2Eul(⃗v, ⃗w) + dEul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='24) Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' D(dEul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w) Dt = ∂(dEul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w) ∂t + d(dEul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v = ∂dEul ∂t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w + dEul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='∂ ⃗w ∂t + (d(dEul).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w + dEul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And the Schwarz theorem gives ∂(dEul) ∂t = d( ∂Eul ∂t ) since Eul ∈ C2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Hence (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='24).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Remark: About notations The notation d dt (lowercase letters) concerns a function of one variable, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' dgPObj dt (t) := gPObj ′(t) := limh→0 gPObj (t+h))−gPObj (t) h ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The notation ∂ ∂t concerns a function with more than one variable, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ∂Eul ∂t (t, p) = limh→0 Eul(t+h,p)−Eul(t,p) h ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The notation D Dt (capital letters) concerns a Eulerian function differentiated along a motion, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='21).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Other notations, often practical but might be ambiguous if composed functions are considered: dEul(t, p(t)) dt := DEul Dt (t, p(t)), and dEul(t, p(t)) dt |t=t0 := DEul Dt (t0, p(t0)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='25) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Definition bis: Time-space definition Consider a C1 time-space function f : (t, p) ∈ R × Rn → f(t, p) where t = time and p = space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='18 The differential of f : (t, p) ∈ Rn+1 → f(t, p) considered as a function on the Cartesian (time×space) product R × Rn is called the “total differential”, or “total derivative”, and is written Df (here time and space are of a different nature).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So if p+ = (t, p) ∈ R×Rn and ⃗w+ = (w0, ⃗w) ∈ ⃗R×⃗Rn (time×space) then, by definition of a differential, Df(p+).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w+ := lim h→0 f(p+ + h⃗w+) − f(p+) h , (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='26) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Df(t, p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (w0, ⃗w) := lim h→0 f(t+hw0, p+h⃗w) − f(t, p) h .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='27) Thus Df(t, p) = ∂f ∂t (t, p) dt + df(t, p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='28) Along a trajectory �ΦPObj : t → p(t) = �ΦPObj (t) with f = Eul a Eulerian function: Consider the time-space trajectory �ΨPObj : � [t1, t2] → R × Rn t → �ΨPObj (t) := (t, �ΦPObj (t)) (= (t, p(t))).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='29) (So Im(�ΨPObj ) = graph(�ΦPObj ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') The tangent vector to this curve at t is �ΨPObj ′(t) = (1, �ΦPObj ′(t)) = (1,⃗v(t, p(t)) ∈ ⃗R × ⃗Rn (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='30) where ⃗v(t, p(t)) the Eulerian velocity at p+ = (t, p(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='20) reads gPObj (t) = (Eul ◦ �ΨPObj )(t) = Eul(�ΨPObj (t)), (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='31) thus g′ PObj (t) = DEul(�Ψ(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='�ΨPObj ′(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='32) And we recover (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22): g′ PObj (t) =(2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='28) ∂Eul ∂t (t, p(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1+dEul(t, p(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v(t, p(t)) =noted DEul Dt (t, p(t)) : The ma- terial time derivative is the “total derivative” DEul along the time-space trajectory �ΨPObj .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 19 20 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Eulerian acceleration 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 The material time derivative is a derivation Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='19 All the functions are Eulerian and supposed C1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Linearity: D(Eul1 + λEul2) Dt = DEul1 Dt + λDEul2 Dt .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='33) Product rules: If Eul1, Eul2 are scalar valued functions then D(Eul1Eul2) Dt = DEul1 Dt Eul2 + Eul1 DEul2 Dt .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='34) And if ⃗w is a vector field and T a compatible tensor (so T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w is meaningful) then D(T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w) Dt = DT Dt .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w + T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='D ⃗w Dt .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='35) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let i = 1, 2, and gi defined by gi(t) := Euli(t, p(t)) where p(t) = �ΦPObj (t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (g1 + λg2)′ = g′ 1 + λg′ 2 gives (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='33).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' On the one hand D(T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w) Dt = ∂(T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w) ∂t + d(T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v = ∂T ∂t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w + T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ∂ ⃗w ∂t + (dT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w + T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='(d⃗w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v), and on the other hand DT Dt .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w + T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' D ⃗w Dt = ( ∂T ∂t + dT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w + T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='( ∂ ⃗w ∂t + d⃗w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='34)-(2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='35).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Commutativity issue The Schwarz theorem that, when Eul is C2, the derivatives ∂Eul ∂t and dEul commute.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' But Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='20 The material time derivative D Dt does not commute with the temporal derivation ∂ ∂t or with the spatial derivation d: We have ∂( DEul Dt ) ∂t ̸= D( ∂Eul ∂t ) Dt and d( DEul Dt ) ̸= D(dEul) Dt in general (because the variables t and p are not independent along a trajectory).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In facts: ∂( DEul Dt ) ∂t = D( ∂Eul ∂t ) Dt + dEul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='∂⃗v ∂t = ∂2Eul ∂t2 + d∂Eul ∂t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v + dEul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='∂⃗v ∂t � � � � � � � , and � � � � � d(DEul Dt ) = D(dEul) Dt + dEul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v = ∂(dEul) ∂t + d2Eul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v + dEul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='36) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ∂ DEul Dt ∂t = ∂( ∂Eul ∂t + dEul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v) ∂t = ∂( ∂Eul ∂t ) ∂t + ∂dEul ∂t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v + dEul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='∂⃗v ∂t Schwarz = ∂( ∂Eul ∂t ) ∂t + d∂Eul ∂t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v + dEul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='∂⃗v ∂t , thus (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='36)1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' dDEul Dt = d(∂Eul ∂t + dEul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v) = ∂(dEul) ∂t + d(dEul).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v + dEul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v, thus (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='36)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So ∂( DEul Dt ) ∂t ̸= D( ∂Eul ∂t ) Dt and d(DEul Dt ) ̸= D(dEul) Dt in general.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='21 Prove (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='36) with components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (⃗ei) is a Cartesian basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ∂ DEul Dt ∂t = ∂( ∂Eul ∂t +� i ∂Eul ∂xi .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='vi) ∂t = ∂2Eul ∂t2 + � i ∂2Eul ∂t∂xi .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='vi + � i ∂Eul ∂xi .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ∂vi ∂t = ∂2Eul ∂t2 + � i ∂2Eul ∂t∂xi .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='vi + dEul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ∂⃗v ∂t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And D( ∂Eul ∂t ) Dt = ∂2Eul ∂t2 + � i ∂ ∂Eul ∂t ∂xi .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='vi = ∂2Eul ∂t2 + � i ∂2Eul ∂t∂xi .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='vi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And d( DEul Dt ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w = � j ∂ DEul Dt ∂xj wj = � j ∂( ∂Eul ∂t +� i ∂Eul ∂xi vi) ∂xj wj = � j ∂2Eul ∂t∂xj wj +� ij ∂2Eul ∂xi∂xj viwj +� ij ∂Eul ∂xi ∂vi ∂xj wj = � j ∂2Eul ∂t∂xj wj + d2Eul(⃗v, ⃗w) + dEul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And D(dEul) Dt .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w = ( ∂(dEul) ∂t + d(dEul).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w = ∂(dEul) ∂t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w + d2Eul(⃗v, ⃗w) = � i ∂2Eul ∂xi∂t wi + d2Eul(⃗v, ⃗w).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus d( DEul Dt ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w = D(dEul) Dt .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w + dEul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w for all ⃗w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 Eulerian acceleration Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22 In short: If �ΦPObj is C2, then the Eulerian acceleration of the particle PObj which is at t at pt = �Φ(t, PObj) is ⃗γ(t, pt) := �ΦPObj ′′(t) noted = ∂2�Φ ∂t2 (t, PObj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='37) In details: as in (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3), the Eulerian acceleration (vector) field �⃗γ is defined with (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='37) by �⃗γ(t, pt) = ((t, pt),⃗γ(t, pt)) ∈ C × ⃗Rn t (pointed vector).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='38) 20 21 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Time Taylor expansion of �Φ Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='23 ⃗γ = D⃗v Dt = ∂⃗v ∂t + d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='39) And if ⃗v is C2 then d⃗γ = ∂(d⃗v) ∂t + d2⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v + d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v = D(d⃗v) Dt + d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='40) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' With g(t) = ⃗v(t, p(t)) = �ΦPObj ′(t) and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22) we get ⃗γ(t, p(t)) = g′(t) = D⃗v Dt (t, p(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And ⃗v being C2, the Schwarz theorem gives d ∂⃗v ∂t = ∂(d⃗v) ∂t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='24 If an observer chooses a Euclidean dot product (·, ·)g (based on a foot, a metre.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='), the associated norm being ||.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='||g, then the length ||⃗γ(t, pt)||g is the (scalar) acceleration of PObj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8 Time Taylor expansion of �Φ Let PObj ∈ Obj and t ∈]t1, t2[.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Suppose �ΦPObj ∈ C2(]t1, t2[;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Rn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Its second-order (time) Taylor expansion of �ΦPObj is, in the vicinity of a t ∈]t1, t2[, �ΦPObj (τ) = �ΦPObj (t) + (τ−t)�Φ′ PObj (t) + (τ−t)2 2 �Φ′′ PObj (t) + o((τ−t)2), (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='41) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' p(τ) = p(t) + (τ−t)⃗v(t, p(t)) + (τ−t)2 2 ⃗γ(t, p(t)) + o((τ−t)2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='42) 3 Motion from an initial configuration: Lagrangian description Instead of working on Obj, an observer may prefer to work with an initial configuration Ωt0 = �Φ(t0, Obj) of Obj (essential for elasticity): This is the “Lagrangian approach”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' This Lagrangian approach is not objective: Two observers may choose two different initial (times and) configurations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Initial configuration and Lagrangian “motion” 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definition Obj is a material object, �Φ : [t1, t2[×Obj → Rn is its motion, Ωτ = �Φτ(Obj) is its configuration at τ, t0 ∈]t1, t2[ is an “initial time”, and Ωt0 is the initial configuration for the observer who chose t0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 The motion of Obj relative to the initial configuration Ωt0 = �Φ(t0, Obj) is the function Φt0 : � [t1, t2] × Ωt0 → Rn (t, pt0) �→ pt = Φt0(t, pt0) := �Φ(t, PObj) when pt0 = �Φ(t0, PObj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1) So, pt = Φt0(t, pt0) := �Φ(t, PObj) is the position at t of the particle PObj which was at pt0 at t0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In particular pt0 = Φt0(t0, pt0) := �Φ(t0, PObj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Marsden and Hughes notations: Once an initial time t0 has been chosen by an observer, then Φt0 =noted Φ, then pt0 =noted P (capital letter for positions at t0) and pt =noted p (lowercase letter for positions at t), so p = Φ(t, P) ∈ Ωt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2) (When objectivity is under concern, we need to switch back to the notations Φt0, pt0 and pt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') NB: • Talking about the motion of a position pt0 is absurd: A position in Rn does not move.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus Φt0 has no existence without the definition, at first, of the motion �Φ of particles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The domain of definition of Φt0 depends on t0 through Ωt0: The superscript t0 recalls it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And a late observer with initial time t0′ > t0 defines Φt0 ′ which domain of definition is [t1, t2]×Ωt0′;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And Φt0 ′ ̸= Φt0 in general because Ωt0′ ̸= Ωt0 in general.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 21 22 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Initial configuration and Lagrangian “motion” The following notation is also used: Φt0(t, pt0) = Φ(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' t0, pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3) (The couple (t0, pt0) is “the initial condition”, or t0 and pt0 are the initial conditions, see the § on flows).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' If a origin O ∈ Rn is chosen by the observer, we may also use, with (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6), ⃗xt0 = −−→ Opt0 = ⃗ϕ t0(t0, ⃗xt0) = ⃗X = −−→ OP and ⃗xt = −−→ Opt = ⃗ϕ t0(t, ⃗xt0) = ⃗x = −→ Op.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Diffeomorphism between configurations With (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1), define Φt0 t : � Ωt0 → Ωt pt0 → pt = Φt0 t (pt0) := Φt0(t, pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5) Hypothesis: For all t0, t ∈]t1, t2[, the map Φt0 t : Ωt0 → Ωt is a Ck diffeomorphism (a Ck invertible function whose inverse is Ck), where k ∈ N∗ depends on the required regularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5) gives �Φt(PObj) = Φt0 t (�Φt0(PObj)), true for all PObj ∈ Obj, thus Φt0 t ◦ �Φt0 = �Φt, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Φt0 t := �Φt ◦ (�Φt0)−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6) Thus, Φt0 t0 = I and Φt t0 ◦ Φt0 t = (�Φt ◦ (��Φt0)−1) ◦ (�Φt0 ◦ (�Φt)−1) = I give Φt t0 = (Φt0 t )−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Trajectories Let (t0, pt0) ∈ [t1, t2] × Ωt0 (initial conditions) and with (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1) define Φt0 pt0 : � [t1, t2] → Rn t �→ p(t) = Φt0 pt0 (t) := �ΦPObj (t) = Φt0(t, pt0) when pt0 = �ΦPObj (t0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8) Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Φt0 pt0 is called the (parametric) “trajectory of pt0”, which means: Φt0 pt0 is the trajectory of the particle PObj that is located at pt0 = �Φ(t, PObj) at t0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And the geometric “trajectory of pt0” is Im(Φt0 pt0 ) = Φt0 pt0 ([t1, t2]) = � t∈[t1,t2] {Φt0 pt0 (t)} (= Im(�ΦPObj )).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9) NB: The terminology “trajectory of pt0” is awkward, since a position pt0 does not move: It is indeed the trajectory �ΦPObj of a particle PObj which is at pt0 at t0 that must be understood.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Streaklines (lignes d’émission) Take a film between t0 and T (start and end).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Let Q be a fixed point in Rn (you see the point Q on each photo that make up the film).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The streakline through Q is the set Et0,T (Q) = {p ∈ Ω : ∃τ ∈ [t0, T] : p = Φτ T (Q) = (ΦT τ )−1(Q)} = {p ∈ Ω : ∃u ∈ [0, T−t0] : p = ΦT −u T (Q) = (ΦT T −u)−1(Q)} (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10) = the set at T of the positions (a line in Rn) of all the particles which were at Q at a τ ∈ [t0, T].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Example 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Smoke comes out of a chimney.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Fix a camera nearby, choose a point Q at the top of the chimney where the particles are colored, and make a film.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' At T stop filming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then (at time T) superimpose the photos in the film: The colored curve we see is the streakline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In other words = � τ∈[t0,T ]{Φτ Q(T)} = � u∈[0,T −t0]{ΦT −u Q (T)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 22 23 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Lagrangian variables and functions 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Lagrangian variables and functions 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definition Consider a motion �Φ, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' An observer chose (subjective) a t0 ∈ [t1, t2] (“in the past”);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So Ωt0 = �Φ(t0, Obj) is his initial configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let m ∈ N∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 In short: A Lagrangian function, relative to Obj, �Φ and t0, is a function Lagt0 : � [t1, t2] × Ωt0 → ⃗ Rm (or, more generally, some adequat set) (t, pt0) → Lagt0(t, pt0), (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11) and pt0 is called the Lagrangian variable relative to the (subjective) choice t0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (To compare with (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2): A Eulerian function does not depend on any t0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Example 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 Scalar values: Lagt0(t, pt0) = Θt0(t, pt0) = temperature at t at pt = Φt0 t (pt0) = �Φ(t, PObj) of the particle PObj that was at pt0 at t0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (So, continuing example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2, Θt0(t, pt0) = θ(t, pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Example 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 Vectorial values: Lagt0(t, pt0) = ⃗U t0(t, pt0) = force at t at pt = Φt0 t (pt0) = �Φ(t, PObj) acting on the particle PObj that was at pt0 at t0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (So, continuing example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3, ⃗U t0(t, pt0) = ⃗u(t, pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') If t is fixed or if pt0 ∈ Ωt0 is fixed, then we define Lagt0 t : � Ωt0 → ⃗ Rm (or, more generally, some adequat set) pt0 → Lagt0 t (pt0) := Lagt0(t, pt0), (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12) Lagt0 pt0 : � [t1, t2] → ⃗ Rm (or, more generally, some adequat set) t → Lagt0 pt0 (t) := Lagt0(t, pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13) Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8 The position pt0 is also sometimes called a “material point”, which is counter intuitive: PObj (objective) is the material point, and pt0 is just its spatial position at t0 (subjective);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And a Eulerian variable pt is not called a “material point” at t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' By the way, the variable pt is also called the “updated Lagrangian variable”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 A Lagrangian function is a two point tensor Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9 In details: Lagt0 being defined in (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11), a Lagrangian function is a function � Lag t0 : � [t1, t2] × Ωt0 → C × ⃗ Rm (t, pt0) → � Lag t0(t, pt0) = ((t, pt), Lagt0(t, pt0)) when pt = Φt0 t (pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14) I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' � Lag t0(t, pt0) = ((t, Φt0 t (pt0)), Lagt0(t, pt0)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (And ⃗ Rm can be replaced by some set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10 (Marsden and Hughes [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') A Lagrangian function is a “two point vector field” (or more generally a “two point tensor”) in reference to the points pt0 ∈ Ωt0 (departure set) and pt ∈ Ωt (arrival set) where the value Lagt0(t, pt0) is considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Interpretation: (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14) tells that Lagt0(t, pt0) is not represented at (t, pt0), but at (t, pt): That is, having graph(Lagt0) = {((t, pt0), Lagt0(t, pt0)) and Im(� Lag t0) = {((t, pt), Lagt0(t, pt0))}, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='15) we have Im(� Lag t0) ̸= graph(Lagt0) : (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16) So a Lagrangian function does not define a tensor in the usual sense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' To compare with the Eulerian function Eul which defines a tensor (in particular Im( � Eul) = graph(Eul)), cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 23 24 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Lagrangian function associated with a Eulerian function 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Lagrangian function associated with a Eulerian function 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definition Let �Φ be a motion, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let Eul be a Eulerian function, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let t0 ∈ [t1, t2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11 The Lagrangian function Lagt0 associated with the Eulerian function Eul is defined by, for all (t, PObj) ∈ [t1, t2] × Obj, Lagt0(t, �Φ(t0, PObj)) := Eul(t, �Φ(t, PObj)), (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='17) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', for all (t, pt0) ∈ [t1, t2] × Ωt0, Lagt0(t, pt0) := Eul(t, pt), when pt = �Φ(t, PObj) = Φt0 t (pt) (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='18) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', Lagt0(t, pt0) := Eul(t, pt) when pt0 = (Φt0 t )−1(pt) for all (t, pt) ∈ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In other words: Lagt0 t := Eult ◦ Φt0 t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='19) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Remarks If you have a Lagrangian function, then you can associate the function Eult0 t := Lagt0 t ◦ (Φt0 t )−1 (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='20) which thus a priori depends on t0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' But, a Eulerian function is independent of any initial time t0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' For one measurement, there is only one Eulerian function Eul, while there are as many associated Lagrangian function Lagt0 as they are t0 (as many as observers): The Lagrangian function Lagt0 ′ of a late observer who chooses t0′ > t0 is different from Lagt0 since the domains of definition Ωt0 and Ωt0′ are different (in general).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Lagrangian velocity 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definition Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12 In short: The Lagrangian velocity at t at pt = �Φ(t, PObj) of the particle PObj is the function ⃗V t0 : � R × Ωt0 → ⃗Rn (t, pt0) → ⃗V t0(t, pt0) := �ΦPObj ′(t) when pt0 = �Φ(t0, PObj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='21) In details: With (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='21), the Lagrangian velocity is the two point vector field given by � ⃗V t0(t, pt0) : � � � R × Ωt0 → C × ⃗Rn (t, pt0) → � ⃗V t0(t, pt0) := ((t, pt), ⃗V t0(t, pt0)), when pt = Φt0(t, pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22) Thus ⃗V t0(t, pt0) = �ΦPObj ′(t) = ⃗v(t, pt) is the velocity at t at pt = �Φ(t, PObj) of the particle PObj which was at pt0 = �Φ(pt0, PObj) at t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And ⃗V t0(t, pt0) is not tangent to graph(⃗V t0), cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16): It is tangent to graph(⃗v) at (t, pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' If t is fixed, or if pt0 ∈ Ωt0 is fixed, then we define ⃗V t0 t (pt0) := ⃗V t0(t, pt0), or ⃗V t0 pt0 (t) := ⃗V t0(t, pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='23) Remark: A usual definition is given without explicit reference to a particle;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' It is, instead of (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='21), ⃗V t0(t, pt0) := ∂Φt0 ∂t (t, pt0), ∀(t, pt0) ∈ R × Ωt0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='24) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Lagrangian velocity versus Eulerian velocity (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='21) and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4) give (alternative definition), with pτ = �Φ(τ, PObj), ⃗V t0(t, pt0) = ⃗v(t, pt) (= ∂Φt0 ∂t (t, pt0) = �ΦPObj ′(t) = velocity at t at pt of PObj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='25) In other words, ⃗V t0 t = ⃗vt ◦ Φt0 t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='26) 24 25 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Lagrangian acceleration 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Relation between differentials For C2 motions (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='26) gives d⃗V t0 t (pt0) = d⃗vt(pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΦt0 t (pt0) when pt = Φt0 t (pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='27) I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', with F t0 t = dΦt0 t noted = the deformation gradient relative to t0 and t, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='28) d⃗V t0 t (pt0) = d⃗vt(pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F t0 t (pt0) when pt = Φt0 t (pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='29) Abusively written (dangerous notation: At what points, relative to what times?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') d⃗V = d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='30) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Computation of d⃗v called L = F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F −1 wih Lagrangian variables The Lagrangian approach can be introduced before the Eulerian approach: ⃗V t0 being given, define ⃗vt0(t, pt) := ⃗V t0(t, pt0), when pt = Φt0 t (pt0), (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='31) cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='20).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗vt0(t, pt) := ⃗V t0(t, Φt0 t −1(pt))).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So ⃗vt0(t, Φt0 t (pt0)) = ∂Φt0 ∂t (t, pt0), thus d⃗vt0(t, pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΦt0(t, pt0) = d(∂Φt0 ∂t )(t, pt0) = ∂(dΦt0) ∂t (t, pt0) = ∂F t0 ∂t (t, pt0), (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='32) when Φt0 is C2 and F t0 := dΦt0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus d⃗vt0(t, pt) = ∂F t0 ∂t (t, pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F t0(t, pt0)−1, written in short d⃗v = F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F −1 (points?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' times?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='33) And d⃗vt0 t can be written Lt0 t in classical mechanics books, so you can find Lt0 t (pt) := F t0 pt0 (t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F t0 t (pt0)−1, written in short L = F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F −1 (at what points, what times?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='34) Here it is not obvious that Lt0 t (pt) does not depend on t0, which is indeed the case, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='29): Lt0 t (pt) = d⃗vt(pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='35) Reminder: if possible, use Eulerian quantities as long as possible1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Lagrangian acceleration Let PObj ∈ Obj, t0, t ∈ R, pt0 = �ΦPObj (t0) and pt = �ΦPObj (t) (positions of PObj at t0 and t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13 In short, the Lagrangian acceleration at t at pt of the particle PObj is ⃗Γ t0(t, pt0) := �ΦPObj ′′(t) when pt0 = �ΦPObj (t0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='36) In other words ⃗Γ t0(t, pt0) := ⃗γ(t, pt) when pt = Φt0(t, pt0), (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='37) where ⃗γ(t, pt) = �ΦPObj ′′(t) is the Eulerian acceleration at t at pt = �Φ(t, PObj), cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='37).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In details, the Lagrangian acceleration is the “two point vector field” defined on R × Ωt0 by � ⃗Γ t0(t, pt0) = ((t, pt), �ΦPObj ′′(t)), when pt = Φt0(t, pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='38) (To compare with (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='38).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') In particular ⃗Γ t0(t, pt0) is not drawn on the graph of ⃗Γ t0 at (t, pt0), but on the graph of ⃗γ at (t, pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 1To get Eulerian results from Lagrangian computations can make the understanding of a Lie derivative quite difficult: To introduce the “so-called” Lie derivatives in classical mechanics you can find the following steps: 1- At t consider the Cauchy stress vector ⃗t (Eulerian), 2- then with a unit normal vector ⃗n, define the associated Cauchy stress tensor σ (satisfying ⃗t = σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗n),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 3- then use the virtual power and the change of variables in integrals to be back into Ωt0 to be able to work with Lagrangian variables,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 4- then introduce the first Piola–Kirchhoff (two point) tensor PK,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 5- then introduce the second Piola–Kirchhoff tensor SK (endomorphism in Ωt0),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 6- then differentiate SK in Ωt0 (in the Lagrangian variables although the initials variables are the Eulerian variables in Ωt),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 7- then back in Ωt to get back to Eulerian functions (change of variables in integrals),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 8- then you get some Jaumann or Truesdell or other so called Lie derivatives type terms,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' the appropriate choice among all these derivatives being quite obscure because the covariant objectivity has been forgotten en route.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' While, with simple Eulerian considerations, it requires a few lines to understand the (real) Lie derivative (Eulerian concept) and its simplicity, see § 9, and deduce second order covariant objective results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 25 26 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Time Taylor expansion of Φt0 If t is fixed, or if pt0 ∈ Ωt0 is fixed, then define ⃗Γ t0 t (pt0) := ⃗Γ t0(t, pt0), and ⃗Γt0 pt0 (t) := ⃗Γ t0(t, pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='39) Thus ⃗Γ t0 t = ⃗γt ◦ Φt0 t , and d⃗Γ t0 t (pt0) = d⃗γt(pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F t0 t (pt0), (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='40) when pt = Φt0 t (pt0) and F t0 t := dΦt0 t (the deformation gradient).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Risky notation: d⃗Γ = d⃗γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F (points?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' times?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 Time Taylor expansion of Φt0 Let pt0 ∈ Ωt0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then, at second order, ��t0 pt0 (τ) = Φt0 pt0 (t) + (τ−t)Φt0 pt0 ′(t) + (τ−t)2 2 Φt0 pt0 ′′(t) + o((τ−t)2), (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='41) that is, with p(τ) = �ΦPObj (τ) = Φt0 τ (pt0), p(τ) = p(t) + (τ−t)⃗V t0(t, pt0) + (τ−t)2 2 ⃗Γ t0(t, pt0) + o((τ−t)2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='42) NB: There are three times involved: t0 (observer dependent), t and τ (for the Taylor expansion).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' To compare with (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='41)-(2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='42): p(τ) = p(t)+(τ−t)⃗v(t, p(t))+ (τ−t)2 2 ⃗γ(t, p(t))+o((τ−t)2), independent of t0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 A vector field that let itself be deformed by a motion Consider a C0 Eulerian vector field ⃗w : � C → ⃗Rn (t, pt) → ⃗w(t, pt) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let t0 ∈ [t1, t2[ and let ⃗wt0 : � Ωt0 → ⃗Rn pt0 → ⃗wt0(pt0) := ⃗w(t0, pt0) � (vector field in Ωt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then define the (virtual) vector field ⃗wt0∗ : � C → ⃗Rn (t, pt) → ⃗wt0∗(t, pt) := dΦt0(t, pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wt0(pt0), when p(t) = Φt0(t, pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='43) (The push-forward = result of the deformation of ⃗wt0 by the motion, see figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14 For C2 motions, we have (time variation rate along a virtual trajectory) D ⃗wt0∗ Dt = d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wt0∗, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='44) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' L⃗v ⃗wt0∗ = ⃗0, where L⃗v⃗u := D⃗u Dt −d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u (= ∂⃗u ∂t +d⃗u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v −d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u) is the Lie derivative of a (unsteady) vector field ⃗u : C → ⃗Rn along ⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Interpretation: We will see that L⃗v ⃗w(t0, pt0) = limt→t0 ⃗w(t,p(t))− ⃗wt0∗(t,p(t)) h measures the “re- sistance of ⃗w to a motion”, see § 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus the result L⃗v ⃗wt0∗(t0, pt0) = ⃗0 is “obvious” (= limt→t0 ⃗wt0∗(t,p(t))− ⃗wt0∗(t,p(t)) h ): If ⃗w = ⃗wt0∗ then the vector (“force”) field ⃗w does not oppose any re- sistance to the flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' pt0 being fixed, with dΦt0(t, pt0) =noted F(t) we have ⃗wt0∗(t, p(t)) =(3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='43) F(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wt0(pt0), thus D ⃗wt0∗ Dt (t, p(t)) = F ′(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wt0(pt0) = F ′(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F(t)−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wt0∗(t, p(t)) =(3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='33) d⃗v(t, p(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wt0∗(t, p(t)), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='44).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 4 Deformation gradient F := dΦ Consider a motion �Φ : � R × Obj → Rn (t, PObj) → pt = �Φ(t, PObj) � , Ωt := �Φ(t, Obj) the configuration of Obj at any t, fix t0, t in R, and let Φt0 t : � Ωt0 → Ωt pt0 = �Φ(t0, PObj) → pt = Φt0 t (pt0) := �Φ(t, PObj) � , supposed to be a C1 diffeomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Notations for calculations (quantification), to comply with practices: 26 27 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definitions 1- Classical (unambiguous) notations as in Arnold, Germain: E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', (⃗ai) and (⃗bi) are bases resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' in ⃗Rn t0 and ⃗Rn t , ⃗wt0(pt0) = � i wt0,i(pt0)⃗ai ∈ ⃗Rn t0, ⃗wt,i(pt) = � i wt,i(pt)⃗bi ∈ ⃗Rn t ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And 2- Marsden–Hughes duality notations: Capital letters at t0, lower case letters at t, duality notation, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ( ⃗EI) and (⃗ei) are bases resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' in ⃗Rn t0 and ⃗Rn t , ⃗W(P) = � I W I(P) ⃗EI ∈ ⃗Rn t0, ⃗w(p) = � i wi(p)⃗ei ∈ ⃗Rn t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definitions 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definition of the deformation gradient F Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 The differential dΦt0 t =noted F t0 t : � Ωt0 → L(⃗Rn t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t ) pt0 → F t0 t (pt0) := dΦt0 t (pt0) � is called “the covari- ant deformation gradient between t0 and t”, or simply “the deformation gradient”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And “the covariant deformation gradient at pt0 between t0 and t”, or in short “the deformation gradient at pt0” is the linear map F t0 t (pt0) ∈ L(⃗Rn t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t ), so defined by, for all ⃗wt0(pt0) ∈ ⃗Rn t0 (vector at pt0), F t0 t (pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wt0(pt0) := lim h→0 Φt0 t (pt0+h⃗wt0(pt0)) − Φt0 t (pt0) h noted = (Φt0 t )∗(⃗wt0)(pt) noted = ⃗wt0∗(t, pt), (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1) with pt = Φt0 t (pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' See figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Marsden–Hughes notations: Φ := Φt0 t , F := dΦ, P := pt0, ⃗W(P) := ⃗wt0(pt0), p = Φ(P), thus F(P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W(P) := lim h→0 Φ(P+h ⃗W(P)) − Φ(P) h noted = Φ∗ ⃗W(p) noted = ⃗w∗(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2) Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1: ⃗w is a Eulerian vector field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' At t0 define vector field ⃗wt0 in Ωt0 by ⃗wt0(pt0) := ⃗w(t0, pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The (spatial) curve ct0 : s → pt0 = ct0(s) in Ωt0 is an integral curve of ⃗wt0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' satisfies ct0 ′(s) = ⃗wt0(ct0(s)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' It is transformed by Φt0 t into the (spatial) curve ct = Φt0 t ◦ ct0 : s → pt = ct(s)=Φt0 t (ct0(s)) in Ωt;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Hence ct′(s) = dΦt0 t (pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='ct0 ′(s) = dΦt0 t (pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wt0(pt0) =noted ⃗wt0∗(t, pt) is the tangent vector at ct at pt (the push-forward of ⃗wt0 by Φt0 t ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And ⃗w(t, p(t)) (actual value) is also drawn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' NB: The “deformation gradient” F t0 t = dΦt0 t is not a “gradient” (its definition does not need a Euclidean dot product);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' This lead to confusions when covariance-contravariance and objectivity are at stake.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' It would be simpler to stick to the name “F t0 t = the differential of Φt0 t ”, but it is not the standard usage, except in thermodynamics: E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', the differential dU of the internal energy U is not called “the gradient of U” (there is no meaningful inner dot product): It is just called “the differential of U”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Push-forward (values of F) Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Let ⃗wt0 : � Ωt0 → ⃗Rn t0 pt0 → ⃗wt0(pt0) � be a vector field in Ωt0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Its push-forward by Φt0 t is the vector field (Φt0 t )∗(⃗wt0) in Ωt defined by (Φt0 t )∗ ⃗wt0(pt) = F t0 t (pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wt0(pt0) noted = ⃗wt0∗(t, pt) when pt = Φt0 t (pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3) See figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Marsden notation: Φ∗ ⃗W(p) = F(P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W(P) =noted ⃗w∗(p) when p = Φt0 t (P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 27 042 w(p Cto Ct28 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definitions In other words (Φt0 t )∗ ⃗wt0 := (F t0 t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wt0) ◦ (Φt0 t )−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4) Marsden notation: Φ∗ ⃗W = (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W) ◦ Φ−1 = ⃗w∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 F is a two point tensors With (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1), “the tangent map” is � F t0 t : � Ωt0 → Ωt × L(⃗Rn t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t ) pt0 → � F t0 t (pt0) = (pt, F t0 t (pt0)) when pt = Φt0 t (pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5) Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 (Marsden–Hughes [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') The function � F t0 t is called a two point tensor, referring to the points pt0 ∈ Ωt0 (departure set) and pt = Φt0 t (pt0) ∈ Ωt (arrival set where ⃗wt0∗(t, pt) = F t0 t (pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wt0(pt0) is drawn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And in short � F t0 t =noted F t0 t is said to be a two point tensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 The name “two point tensor” is a shortcut than can create confusions and errors when dealing with the transposed: F t0 t is not immediately a “tensor”: A tensor is a multilinear form, so gives scalar results (∈ R), while F(P) := F t0 t (P) =noted FP ∈ L(⃗Rn t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t ) gives vector results (in ⃗Rn t ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' However FP can be naturally and canonically associated with the bilinear form �FP ∈ L(⃗Rn∗ t , ⃗Rn t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) defined by, for all ⃗uP ∈ ⃗Rn t0 and ℓp ∈ ⃗Rn∗ t , with p = Φt0 t (P), �FP (ℓp, ⃗uP ) := ℓp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='FP .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗uP (∈ R), (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6) see § A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13, and it is �FP which defines the so-called “two point tensor”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' But don’t forget that the transposed of a linear form (FP here) is not deduced from the transposed of the associated bilinear form ( �FP here).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So be careful with the word “transposed” and its two distinct definitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Indeed, the transposed of a bilinear form b(·, ·) is intrinsic to b(·, ·) (is objective), given by bT (⃗u, ⃗w) = b(⃗w, ⃗u), while the transposed of a linear function L is not intrinsic to L (is subjective), given by (LT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u, ⃗w)g = (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w, ⃗u)h where (·, ·)g and (·, ·)h are inner dot products chosen by human beings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (details in § A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 and § A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 More generally for manifolds, the differential of Φ := Φt0 t at P ∈ Ωt0 is F(P) := dΦ(P) : � TP Ωt0 → TpΩt ⃗W(P) → ⃗w∗(p) := dΦ(P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W(P) � with p = Φt0 t (P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And the tangent map is TΦ : � TΩt0 → TΩt (P, ⃗W(P)) → TΦ(P, ⃗W(P)) := (p, dΦ(P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W(P)) = (p, ⃗w∗(p)), where p = Φt0 t (P), (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7) called the associated two point tensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Evolution: Toward the Lie derivative (in continuum mechanics) Consider a Eulerian vector field ⃗w : � � � C = � t ({t} × Ωt) → ⃗Rn (t, p) → ⃗w(t, p) � � �, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' a “force field”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then, at t0 consider ⃗wt0 : � Ωt0 → ⃗Rn t0 pt0 → ⃗wt0(pt0) := ⃗w(t0, pt0) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The push-forward of ⃗wt0 by Φt0 t is, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2), ⃗wt0∗(t, p(t)) = F t0 t (pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wt0(pt0), where p(t) = Φt0(t, pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8) See figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then, without any ubiquity gift, at t at p(t) we can compare ⃗w(t, p(t)) (real value of ⃗w at t at p(t)) with ⃗wt0∗(t, p(t)) (transported memory along the trajectory).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus the rate ⃗w(t, p(t)) − ⃗wt0∗(t, p(t)) t − t0 = actual(t, p(t)) − memory(t, p(t)) t − t0 is meaningful at (t, p(t)) (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9) (no ubiquity gift required).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' This rate gives, as h → 0, the Lie derivative L⃗v ⃗w (the rate of stress), and we will see at § 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 that L⃗v ⃗w = D ⃗w Dt − d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w (the d⃗v term tells that a “non-uniform flow” acts on the stress).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 28 29 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Quantification with bases 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Pull-back Formally the pull-back is the push-forward with (Φt0 t )−1: Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 The pull-back (Φt0 t )∗ ⃗wt of a vector field ⃗wt defined on Ωt is the vector field defined on Ωt0 by, with pt0 = (Φt0 t )−1(pt), ⃗w∗ t (t0, pt0) = (Φt0 t )∗ ⃗wt(pt0) := (F t0 t )−1(pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wt(pt), written ⃗W ∗(P) = F −1(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Quantification with bases (Simple Cartesian framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') (⃗ai) is a Cartesian basis in ⃗ Rn t0, (⃗bi) is a Cartesian basis in ⃗ Rn t , ot is an origin in Rn at t, Φt0 t =noted Φ supposed C1, ϕi : Ωt0 → R is its components in the referential (ot, (⃗bi)): Φ(pt0) = ot + n � i=1 ϕi(pt0)⃗bi, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' −−−−−→ otΦ(pt0) = n � i=1 ϕi(pt0)⃗bi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11) Thus, with the classic notation dϕi(pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj =noted ∂ϕi ∂Xj (pt0) since (⃗ai) is a Cartesian basis, and (⃗bi) being a Cartesian basis, dΦ(pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj = n � i=1 (dϕi(pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj)⃗bi = n � i=1 ∂ϕi ∂Xj (pt0)⃗bi, thus [dΦ(pt0)][⃗a,⃗b] = [ ∂ϕi ∂Xj (pt0)] = [F(pt0)][⃗a,⃗b], [dΦ(pt0)][⃗a,⃗b] = [F(pt0)][⃗a,⃗b] being the Jacobian matrix of Φ at pt0 relative to the chosen bases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In short: dΦ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj = n � i=1 ∂ϕi ∂Xj ⃗bi, thus [dΦ][⃗a,⃗b] = [ ∂ϕi ∂Xj ] = [F][⃗a,⃗b] = [Fij], (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12) Thus, if ⃗W ∈ ⃗Rn t0 is a vector at pt0 and ⃗W = �n j=1Wj⃗aj then, by linearity of differentials, dΦ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W = F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W = n � i=1 FijWj⃗bi, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W]|⃗b = [F]|⃗a,⃗b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [ ⃗W]|⃗a (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13) (more precisely: F t0 t (pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W(pt0) = �n i=1Fij(pt0)Wj(pt0)⃗bi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Similarly, for the second order derivative d2Φ = dF (when Φ is C2): With ⃗U = �n j=1Uj⃗aj and ⃗W = �n k=1Wk⃗ak, and with (⃗ai) and (⃗bi) Cartesian bases, we get dF(⃗U, ⃗W) = d2Φ(⃗U, ⃗W) = n � i=1 d2ϕi(⃗U, ⃗W)⃗bi = n � i,j,k=1 ∂2ϕi ∂Xj∂Xk UjWk⃗bi = n � i=1 � [⃗U]T |⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[d2ϕi]|⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [ ⃗W]|⃗a � ⃗bi, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14) [d2ϕi(pt0)]|⃗a = [ ∂2ϕi ∂Xj∂Xk (pt0)] j=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',n k=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',n being the Hessian matrix of ϕi at pt0 relative to the basis (⃗ai).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' With Marsden duality notations: p = Φ(P) = ot + n � i=1 ϕi(P)⃗ei, F i J(P) = ∂ϕi ∂XJ (P) (= dϕi(P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗EJ), F(P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W = n � i,J=1 F i J(P) W J⃗ei, [F] = [F i J] = [dΦ], dF(⃗U, ⃗W) = d2Φ(⃗U, ⃗W) = n � i,J,K=1 ∂2ϕi ∂XJ∂XK U JW K⃗ei = n � i=1 � [⃗U]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [d2ϕi].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [ ⃗W] � ⃗ei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='15) Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 J, j are dummy variables when used in a summation: E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', df.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W = �n j=1 ∂f ∂Xj W j = �n J=1 ∂f ∂XJ W J = �n α=1 ∂f ∂Xα W α = ∂f ∂X1 W 1 + ∂f ∂X2 W 2 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (there is no uppercase for 1, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And Marsden–Hughes notations (capital letters for the past) are not at all compulsory, classical notations being just as good and even preferable if you hesitate (because they are not misleading).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' See § A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 29 30 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The unfortunate notation d⃗x = F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d ⃗X 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 The unfortunate notation d⃗x = F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d ⃗X 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Issue (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗w∗(p) := F(P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W(P), is sometimes written d⃗x = F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d ⃗X : “a very unfortunate and misleading notation” (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16) which amounts to “confuse a length and a speed”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And you also the phrase “(4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16) is still true if ||d ⃗X|| = 1”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' while d ⃗X is supposed to be small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Where does this unfortunate notation come from?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The notation (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16) comes from the first order Taylor expansion Φ(Q) = Φ(P) + dΦt0 t (P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Q−P) + o(||Q−P||), where P, Q ∈ Ωt0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', with p = Φt0 t (P) and q = Φt0 t (Q) and h = ||Q−P||, q − p = F(P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Q−P) + o(h), written δ⃗x = F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='δ ⃗X + o(δ ⃗X), (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='17) or −→ pq = F(P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='−−→ PQ + o(h).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So as Q → P we get 0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Quite useless, isn’t it?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' While q − p h = F(P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='Q − P h + o(1) is useful: (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='18) As Q → P we get ⃗w∗ = F(P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W which relates tangent vectors, see figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Details: 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Interpretation: Vector approach Consider a spatial curve ct0 : � [s1, s2] → Ωt0 s → P := ct0(s) � in Ωt0, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' It is deformed by Φt0 t to become the spatial curve defined by ct := Φt0 t ◦ ct0 : � [s1, s2] → Ωt s → p := ct(s) = Φt0 t (ct0(s)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' in Ωt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Hence, relation between tangent vectors: dct ds (s) = dΦt0 t (ct0(s)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dct0 ds (s), , i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗w∗(p) = F(P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W(P) written d⃗x ds = F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d ⃗X ds , (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='19) But you can’t simplify by ds to get d⃗x = F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d ⃗X: It is absurd to confuse “a slope d ⃗ X ds (s)” and “a length δ ⃗X”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' NB: || dct ds (s)|| = || d ⃗ X ds (s)|| = 1 is meaningful in (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='19): It means that the parametrization of the curve ct0 in Ωt0 uses a spatial parameter s such that ||ct0 ′(s)|| = 1 for all s, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' || ⃗WP || = 1 in figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' You cannot simplify by ds: ||d ⃗X|| = 1 is absurd together with d ⃗X “small”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Interpretation: Differential approach (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16) is a relation between differentials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' if you adopt the correct notations;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let us do it: With (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11), ⃗x = −→ otp = −−−−−−→ otΦt0 t (P) = n � i=1 ϕi(P)⃗bi noted = n � i=1 xi(P)⃗bi, where ϕi noted = xi (function of P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='20) Thus, with (πai) = (dXi) the (covariant) dual basis of (⃗ai) we get the system of n equations (functions): dΦ = F, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' � � � � � � � � � dϕ1(P) = �n j=1 ∂ϕ1 ∂Xj (P) dXj .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' dϕn(P) = �n j=1 ∂ϕn ∂Xj (P) dXj � � � � � � � � � , which is noted d⃗x = F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d ⃗X, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='21) this last notation being often misunderstood2: It is nothing more than dΦ = F (coordinate free notation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 2Spivak [17] chapter 4: Classical differential geometers (and classical analysts) did not hesitate to talk about “infinitely small” changes dxi of the coordinates xi, just as Leibnitz had.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' No one wanted to admit that this was nonsense, because true results were obtained when these infinitely small quantities were divided into each other (provided one did it in the right way).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Eventually it was realized that the closest one can come to describing an infinitely small change is to describe a direction in which this change is supposed to occur, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', a tangent vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Since df is supposed to be the infinitesimal change of f under an infinitesimal change of the point, df must be a function of this change, which means that df should be a function on tangent vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The dXi themselves then metamorphosed into functions, and it became clear that they must be distinguished from the tangent vectors ∂/∂Xi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Once this realization came, it was only a matter of making new definitions, which preserved the old notation, and waiting for everybody to catch up.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 30 31 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Tensorial notations, warnings, remarks 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 The ambiguous notation d⃗x = F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d ⃗X The bad notation d⃗x = F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d ⃗X gives the unfortunate and misunderstood notations d⃗x = F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d ⃗X, and then d⃗x = L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗x where L = F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22) Question: What is the meaning (and legitimate notation) of (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22)?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer: d⃗x = L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗x means D ⃗wt0∗ Dt = d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wt0∗ = evolution rate of tangent vectors along a trajectory (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='23) see figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Indeed, ⃗wt0∗(t, p(t)) =(4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8) F t0(t, pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wt0(pt0) gives D ⃗wt0∗ Dt (t, p(t)) = ∂F t0 ∂t (t, pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wt0(pt0) = ∂F t0 ∂t (t, pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (F t0 t (pt0)−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wt0∗(t, p(t))), (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='24) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' D ⃗wt0∗ Dt (t, p(t)) = d⃗v(t, p(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wt0∗(t, p(t)), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='23).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In particular D ⃗wt0∗ Dt (t0, pt0) = d⃗v(t0, pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wt0(pt0) is the evolution rate of tangent vectors at t0 at pt0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Tensorial notations, warnings, remarks As already noted, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6), the linear map F := dΦt0 t (pt0) ∈ L(⃗Rn t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t ) is naturally canonically associated with the bipoint tensor �F ∈ L(⃗Rn∗ t , ⃗Rn t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) defined by, for all (ℓ, ⃗W) ∈ ⃗Rn∗ t × ⃗Rn t0, �F(ℓ, ⃗W) := ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='25) Quantification of �F: basis (⃗ai) with dual basis (πai) in ⃗Rn t0, basis (⃗bi) in ⃗Rn t : if F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj = n � i=1 ∂ϕi ∂Xj ⃗bj then �F = n � i,j=1 ∂ϕi ∂Xj ⃗bi ⊗ πaj = n � i=1 ⃗bi ⊗ dϕi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='26) And similarly d �F = n � i,j,k=1 ∂2ϕi ∂Xj∂Xk ⃗bi ⊗ (πaj ⊗ πak) = n � i=1 ⃗bi ⊗ d2ϕi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='27) Warning: The tensorial notation can be misleading, in particular if you use the transposed, see re- mark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So, you should always use the standard notation for the linear form F ∈ L(⃗Rn t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t ) to begin with, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' use F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj = �n j=1Fij⃗bi or F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗EJ = �n i,j=1F i J⃗ei (Marsden notations).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And only use the tensorial notations for calculations purposes at the end (after application of the proper definitions).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8 In some manuscripts you find the notation F = dΦ =noted Φ ⊗ ∇X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' It does not help to understand what F is (it is the differential dΦ), and should not be used as far as objectivity is concerned: A differentiation is not a tensorial operation, see example R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1, so why use the tensor product notation Φ ⊗ ∇X, when the standard notation dΦ ≃ �F = �n i=1⃗ei ⊗ dϕi is legitimate, explicit, objective and easy to manipulate?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And it could be misinterpreted, since, in mechanics, ∇f is often understood to be the vector � i ∂f ∂xi⃗ei (contravariant) which needs a Euclidean dot product to be defined (which one?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ), while the differential df is covariant (a differential is unmissable in thermodynamics because you can’t use gradients).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' It gives the confusing notation Φ ⊗ ∇X ⊗ ∇X, instead of the legitimate d2Φ = �n i=1⃗bi ⊗ d2ϕi which is explicit, objective and easy to manipulate: d2Φ(⃗U, ⃗W) = �n i=1d2ϕi(⃗U, ⃗W)⃗bi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9 Use Marsden duality notations for (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='26)-(4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='27).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Cartesian bases, with (dXi) the (covariant) dual basis of ( ⃗Ei): with F i J = ∂ϕi ∂XJ , we get dΦ =noted �F = �n i=1⃗ei ⊗ dϕi = �n i,J=1F i J ⃗ei ⊗ dXJ, and d2Φ = �n i=1⃗ei ⊗ d2ϕi = �n i,J,K=1 ∂2ϕi ∂XJ ∂XK ⃗ei ⊗ (dXJ ⊗ dXK).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 31 32 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Change of coordinate system at t for F 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Change of coordinate system at t for F Let pt0 ∈ Ωt0, pt = Φt0 t (pt0) ∈ Ωt, ⃗W(pt0) ∈ ⃗Rn t0, ⃗w(pt) = F t0 t (pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W(pt0) ∈ ⃗Rn t (its push-forward), written ⃗w = F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W for short.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The observer at t0 used a basis (⃗ai) in ⃗Rn t0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' At t, in ⃗Rn t , a first observer chooses a Cartesian basis (⃗bold,i), and a second observer chooses a Cartesian basis (⃗bnew,i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let P = [Pij] be the transition matrix from (⃗bold,i) to (⃗bnew,i), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗bnew,j = �n i=1Pij⃗bold,i for all j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The change of basis formula for vectors from (⃗bold,i) to (⃗bnew,i) (in ⃗Rn t ) gives [⃗w]|⃗bnew = P −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗w]|⃗bold, thus [F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W]|⃗bnew = P −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W]|⃗bold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='28) Thus [F]|⃗a,⃗bnew.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [ ⃗W]|⃗a = P −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[F]|⃗a,⃗bold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [ ⃗W]|⃗a, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='29) true for all ⃗W, thus [F]|⃗a,⃗bnew = P −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [F]|⃗a,⃗bold .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='30) NB: (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='30) is not the change of basis formula [L]|new = P −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [L]|old.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P for endomorphisms, which would be nonsense since F := F t0 t (pt0) : ⃗Rn t0 → ⃗Rn t is not an endomorphism;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='30) is just the usual change of basis formula for vectors ⃗w in ⃗Rn t , cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='28).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 Spatial Taylor expansion of Φ and F Φt0 t =noted Φ is supposed to be C2 for all t0, t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let P ∈ Ωt0, dΦ = F, and ⃗W ∈ ⃗Rn t0 vector at P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then, in Ωt, Φ(P+h ⃗W) = Φ(P) + h F(P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W + h2 2 dF(P)( ⃗W, ⃗W) + o(h).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='31) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 Time Taylor expansion of F The motion �Φ is supposed to be C3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' t0 ∈ R, Φt0 be the associated motion, p(t) = �Φ(t, PObj) and pt0 = �Φ(t0, PObj), with ⃗v(t, pt) = ∂�Φ ∂t (t, PObj) the Eulerian velocity and ⃗V t0(t, pt0) := ∂Φt0 ∂t (t, pt0) = ⃗v(t, pt) the Lagrangian velocity, and F t0 pt0 (t) = F t0(t, pt0) = dΦt0(t, pt0) =noted F(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' We have ∂F t0 ∂t (t, pt0) = ∂(dΦt0) ∂t (t, pt0) = d(∂Φt0 ∂t )(t, pt0) = d⃗V t0(t, pt0) = d⃗v(t, p(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F(t), in short F = d⃗V = d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='32) Then ∂2Φt0 ∂t2 (t, pt0) = ⃗At0(t, pt0) = ⃗γ(t, p(t)) (Lagrangian and Eulerian accelerations), hence ∂2F t0 ���t2 (t, pt0) = d ⃗At0(t, pt0) = d⃗γ(t, pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F(t), in short •• F = d ⃗A = d⃗γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='33) Thus, the second order time Taylor expansion of F t0 pt0 =noted F is, in the vicinity of t, F(t+h) = F(t) + h d⃗V (t) + h2 2 d ⃗A(t) + o(h2) = � I + h d⃗v + h2 2 d⃗γ � (t, p(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F(t) + o(h2) when p(t) = Φt0(t, pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='34) NB: They are three times are involved: t and t+h as usual, and t0 through F := F t0 pt0 , ⃗V := ⃗V t0 pt0 and ⃗A := ⃗At0 pt0 (observer dependent), as for (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='41).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In particular F(pt0) := F t0 t0 (pt0) = I gives, in the vicinity of t0, F(t0+h) = � I + h d⃗v + h2 2 d⃗γ � (t0, pt0) + o(h2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='35) Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10 γ = ∂⃗v ∂t + d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v is not linear in ⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Idem, d⃗γ = d(D⃗v Dt ) = d(∂⃗v ∂t + d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v) = d∂⃗v ∂t + d2⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v + d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v (= D(d⃗v) Dt + d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v) (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='36) is non linear in ⃗v, and gives F t0 pt0 ′′(t) = (d ∂⃗v ∂t + d2⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v + d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v)(t, pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F t0 pt0 (t), non linear in ⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 32 33 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Homogeneous and isotropic material Exercice 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11 Directly check that F ′ = d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F gives F ′′ = d⃗γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F ′(t) = d⃗v(t, p(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F(t) gives F ′′(t) = D(d⃗v) Dt (t, p(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F(t) + d⃗v(t, p(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F ′(t) with D(d⃗v) Dt = d⃗γ − d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='36), thus F ′′(t) = (d⃗γ − d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v)(t, p(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F(t) + d⃗v(t, p(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v(t, p(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F(t) = d⃗γ(t, p(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8 Homogeneous and isotropic material Let P ∈ Ωt0, let F t0 t (P) := dΦt0 t (P);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Suppose that the “Cauchy stress vector” ⃗ft(pt) à t at pt = Φt0 t (P) only depends on P, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' there exists a function ⃗ fun such that ⃗ft(pt) = ⃗ fun(P, F t0 t (P)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='37) Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12 A material is homogeneous iff ⃗ fun doesn’t depend on the first variable P, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', iff, for all P ∈ Ωt0, ⃗ fun(P, F t0 t (P)) = ⃗ fun(F t0 t (P)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='38) (Same mechanical property at any point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13 (Isotropy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Consider a Euclidean dot product, the same at all time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A material is isotropic at P ∈ Ωt0 iff ⃗ fun is independent of the direction you consider, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', iff, for any rotation Rt0(P) in ⃗Rn t0, ⃗ fun(P, F t0 t (P) = ⃗ fun(P, F t0 t (P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='Rt0(P)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='39) (Mechanical property unchanged when rotating the material first.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14 A material is isotropic homogeneous iff it is isotropic and homogeneous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9 The inverse of the deformation gradient ((Φt0 t )−1 ◦ Φt0 t )(P) = P gives, with p = Φt0 t (P), d(Φt0 t )−1(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΦt0 t (P) = It0, thus d(Φt0 t )−1(p) = dΦt0 t (P)−1 = F t0 t (P)−1, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='40) where F t0 t = dΦt0 t is the deformation gradient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' We have thus define the two point tensor Ht0 t := (F t0 t )−1 : � � � Ωt → L(⃗Rn t ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t0) p → Ht0 t (p) = (F t0 t )−1(p) := (F t0 t (P))−1 when p = Φt0 t (P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='41) So Ht0 t (p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w(p) = (F t0 t )−1(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w(p) := F t0 t (P)−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w(p) ∈ ⃗Rn t0, in short H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w = F −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='42) for all ⃗w(p) ∈ ⃗Rn t vector at p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' This defines, with pt = Φt0(t, P), Ht0 : � � � C = � t ({t} × Ωt) → L(⃗Rn t ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t0) (t, pt) → Ht0(t, pt) := Ht0 t (pt) = (F t0(t, P))−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='43) NB: Ht0 looks like a Eulerian map, but isn’t: Ht0 depends on a initial time t0 and is a two point tensor (starts in ⃗Rn t , arrives in ⃗Rn t0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' We will however use the material time derivative D Dt notation in this case, that is, we define, along a trajectory t → p(t) = Φt0(t, P), DHt0 Dt (t, p(t)) := ∂Ht0 ∂t (t, p(t)) + dHt0(t, p(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v(t, p(t)), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' DHt0 Dt = ∂Ht0 ∂t + dHt0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='44) which is the time derivative g′(t) of the function g : t → g(t) = Ht0(t, Φt0(t, P)) (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' g(t) = Ht0(t, p(t))).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Hence, with p(t) = Φt0(t, P) and Ht0(t, p(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F t0(t, P) = It0, written H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F = I, we get DH Dt .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F + H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='∂F ∂t = 0, thus DH Dt = −H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='45) since ∂F ∂t (t, P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F −1(t, p(t)) = d⃗v(t, p(t)) cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='32).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 33 34 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Introduction: Motion versus flow Exercice 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='15 With ⃗wt0∗(t, p(t)) = F t0(t, P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W(P), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Ht0(t, p(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wt0∗(t, p(t)) = ⃗W(P), when p(t) = Φt0(t, P), prove (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='45).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' D ⃗wt0∗ Dt (t, p(t)) = d⃗v(t, p(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wt0∗(t, p(t)), cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='23);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And (Ht0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wt0∗)(t, p(t)) = ⃗W(P) gives DHt0 Dt .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wt0∗ + Ht0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' D ⃗wt0∗ Dt = 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus DHt0 Dt .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wt0∗ + Ht0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wt0∗ = 0, thus DH Dt = −H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16 Prove: Ht0 t = Ht0 t1 ◦ Ht1 t and DHt0 Dt (t, p(t)) = Ht0 t1 (pt1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' DHt1 Dt (t, p(t)) for all t0, t1 with pt1 = Φt0 t1(pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' We have Φt0 t (pt0) = Φt1 t (Φt0 t1(pt0)), cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='18), hence F t0 t (pt0) = F t1 t (pt1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F t0 t1 (pt0), thus F t0 t (pt0)−1 = F t0 t1 (pt0)−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F t1 t (pt1)−1, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Ht0 t (pt) = Ht0 t1 (pt1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='Ht1 t (p(t)), thus, Ht0(t, p(t)) = Ht0 t1 (pt1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='Ht1(t, p(t)), thus DHt0 Dt (t, p(t)) = Ht0 t1 (pt1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' DHt1 Dt (t, p(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 5 Flow 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Introduction: Motion versus flow Motion: A motion �Φ : (t, PObj) → pt = �Φ(t, PObj) locates at t a particle PObj in the affine space Rn, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' From which the Eulerian velocity field ⃗v is deduced: ⃗v(t, pt) := d�ΦPObj dt (t, PObj), cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Flow: A flow starts with a Eulerian velocity field ⃗v, from which we deduce a motion by solving the ODE (ordinary differential equation) dΦ dt (t) = ⃗v(t, Φ(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Definition Let ⃗v : � R × Rn → ⃗Rn (t, p) → ⃗v(t, p) � be a unstationary vector field (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', a Eulerian velocity ��eld which definition domain is C = � t∈[t1,t2]({t} × Ωt)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' We look for maps Φ : � R → Rn t → p = Φ(t) � which are locally (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' in the vicinity of some t0) solutions of the ODE (ordinary differential equation) dΦ dt (t) = ⃗v(t, Φ(t)), also written dp dt (t) = ⃗v(t, p(t)), or d⃗x dt (t) = ⃗v(t, ⃗x(t)) (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1) where ⃗x(t) = −−−→ Op(t) after a choice of an origin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Also written dp dt = ⃗v(t, p) or d⃗x dt = ⃗v(t, ⃗x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 A solution Φ of (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1) is a flow of ⃗v;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Also called an integral curve of ⃗v since (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1) also reads Φ(t) = � t τ=t1 ⃗v(τ, Φ(τ)) dτ + Φ(t1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Remark 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Improper notation for (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1): dp dt (t) noted = dp(t) dt (= ⃗v(t, p(t))).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2) Question: If the notation dp(t) dt is used, then what is the meaning of dp(f(t)) dt ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer: It means, either dp dt (f(t)), or d(p◦f) dt (t) = dp dt (f(t)) df dt(t): Ambiguous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So it is better to use dp dt (t), and to avoid dp(t) dt , unless the context is clear (no composite functions).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Cauchy–Lipschitz theorem Let (t0, pt0) be in the definition domain of ⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' We look for Φ solution of “the ODE with initial condition (t0, pt0)”, in some vicinity of t0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' such that dΦ dt (t) = ⃗v(t, Φ(t)) and Φ(t0) = pt0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3) (The couple (t0, pt0) is the initial condition, and the values t0 and pt0 are the initial conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Let t1, t2 ∈ R, t1 < t2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let Ω be an open set in Rn and Ω its closure supposed to be a regular domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let ||.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='|| be a norm in ⃗Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A continuous map ⃗v : [t1, t2] × Ω → ⃗Rn is Lipschitzian iff it is “space Lipschitzian, uniformly in time”, that is, iff ∃k > 0, ∀t ∈ [t1, t2], ∀p, q ∈ Ω, ||⃗v(t, q) − ⃗v(t, p)|| ≤ k||q − p||.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4) So, ||⃗vt(q)−⃗vt(p)|| ||q−p|| ≤ k, for all t and all p ̸= q (the variations of ⃗v are bounded in space, uniformly in time).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 34 35 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Cauchy–Lipschitz theorem Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 (and definifion) (Cauchy–Lipschitz).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' If ⃗v : [t1, t2] × Ω → ⃗Rn is Lipschitzian and (t0, pt0) ∈]t1, t2[×Ω, then there exists ε = εt0,pt0 > 0 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3) has a unique solution Φ :]t0−ε, t0+ε[→ Rn, noted Φt0 pt0 : dΦt0 pt0 dt (t) = ⃗v(t, Φt0 pt0 (t)) and Φt0 pt0 (t0) = pt0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5) Moreover, if ⃗v is Ck then Φ is Ck+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' See e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Arnold [2], or any ODE course.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In particular ||⃗v||∞ := sup t∈]t0−ε,t0+ε[, p∈Ω ||⃗v(t, p)||Rn (maximum speed) exists since ⃗v ∈ C0 on the compact [t1, t2]×Ω), see definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3, hence we can choose ε = min(t0−t1, t2−t0, d(pt0,∂Ω) ||⃗v||∞ ) (the time needed to reach the border ∂Ω from pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' We have thus defined the function, also called “a flow”, Φ : � ]t1, t2[×]t1, t2[× Ωt0 → Ω (t, t0, pt0) → p = Φ(t, t0, pt0) := Φt0 pt0 (t) noted = Φ(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' t0, pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6) And (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5) reads ∂Φ ∂t (t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' t0, pt0) = ⃗v(t, Φ(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' t0, pt0)), with Φ(t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' t0, pt0) = pt0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7) We have thus defined the function, also called “a flow”, Φt0 : � [t0−ε, t0+ε] × Ωt0 → Rn (t, pt0) → p = Φt0(t, pt0) := Φt0 pt0 (t) : (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8) And (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5) reads ∂Φt0 ∂t (t, pt0) = ⃗v(t, Φt0(t, pt0)), and Φt0(t0, pt0) = pt0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9) Other definition and notation (can be ambiguous): Φt;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t0 = Φt0 t : Ωt0 → Rn, and (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7) is written dΦt;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t0(pt0) dt = ⃗v(t, Φt;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t0(pt0)), and Φt0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t0(pt0) = pt0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10) Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Let ⃗v be Lipschitzian, let t0 ∈]t1, t2[, and let Ωt0 be an open set s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Ωt0 ⊂⊂ Ω (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' there exists a compact set K ∈ Rn s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Ωt0 ⊂ K ⊂ Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then there exists ε > 0 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' a flow Φt0 exists on ]t0−ε, t0+ε[×Ωt0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let d = d(K, Rn−Ω) (la distance of K to the border of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let ||⃗v||∞ := sup t∈[t1,t2],p∈Ω ||⃗v(t, p)||Rn (exists since ⃗v ∈ C0 on the compact [t1, t2] × Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let ε = min(t0−t1, t2−t0, d ||⃗v||∞ ) (less that the minimum time to reach the border from K at maximum speed ||v||∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let pt0 ∈ K and t ∈]t0−ε, t0+ε[.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then Φt0 pt0 exists, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4, and ||Φt0 pt0 (t) − Φt0 pt0 (t0)||Rn ≤ [t−t0| supτ∈]t0−ε,t0+ε[(||(Φt0 pt0 )′(τ)||Rn) (mean value theorem since, ⃗v being C0, Φ is C1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus ||Φt0 pt0 (t)− Φt0 pt0 (t0)||Rn ≤ [t − t0| ||v||∞, thus Φt0 pt0 (t) ∈ Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus Φt0 pt0 exists on ]t0−ε, t0+ε[, for all pt0 ∈ K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Remark 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 The definition of a flow starts with a Eulerian velocity (independent of any initial time), and then, due to the introduction of initial conditions, leads to the Lagrangian functions Φt0, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Once again, Lagrangian functions are the result of Eulerian functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 35 36 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Examples 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Examples Example 1 R2 with an origin O, a Euclidean basis (⃗e1,⃗e2) and Ω = [0, 2]×[0, 1] (observation window).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let p ∈ R2, −→ Op =noted ⃗x = x⃗e1 + y⃗e2 =noted (x, y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let t1 = −1, t2 = 1, t0 ∈]t1, t2[, a, b ∈ R, a ̸= 0, and ⃗v(t, p) = � v1(t, x, y) = ay, v2(t, x, y) = b sin(t−t0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11) (b = 0 corresponds to the stationary case = shear flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') ⃗x(t0) = � x0 y0 � , ⃗x(t) = � x(t) y(t) � = −−−−−−→ OΦt0 pt0 (t) and (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9) give � � � � � dx dt (t) = v1(t, x(t), y(t)) = ay(t), dy dt (t) = v2(t, x(t), y(t)) = b sin(t−t0), with � x(t0) = x0, y(t0) = y0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12) Thus ⃗x(t) = −−−→ Op(t) = −−−−−−→ OΦt0 pt0 (t) = � x(t) = x0 + a(y0 + b)(t−t0) − ab sin(t−t0) y(t) = y0 + b − b cos(t−t0) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13) Example 2 Similar framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let ω > 0 and consider (spin vector field) ⃗v(t, x, y) = � −ωy ωx � = ω � 0 −1 1 0 � � x y � noted = ⃗v(x, y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14) With −−→ Opt0 = ⃗xt0 = � xt0 yt0 � , rt0 = � x2 t0 + y2 t0, and θ0 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗xt0 = � xt0 = rt0 cos(ωt0) yt0 = rt0 sin(ωt0) � , the solution Φt0 pt0 of (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9) is ⃗x(t) = −−−→ Op(t) = −−−−−−→ OΦt0 pt0 (t) = � x(t) = rt0 cos(ωt) y(t) = rt0 sin(ωt) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='15) Indeed, � ∂x ∂t (t, ⃗x0) ∂y ∂t (t, ⃗x0) � = � v1(t, x(t, ⃗x0), y(t, ⃗x0)) v2(t, x(t, ⃗x0), y(t, ⃗x0)) � = � −ωy(t, ⃗x0) ωx(t, ⃗x0) � , thus ∂x ∂t (t, ⃗x0) = −ωy(t, ⃗x0) and ∂y ∂t (t, ⃗x0) = ωx(t, ⃗x0), thus ∂2y ∂t2 (t, ⃗x0) = −ω2y(t, ⃗x0), hence y;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Idem for x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Here d⃗v(t, x, y) = ω � 0 −1 1 0 � = ω � cos π 2 − sin π 2 sin π 2 cos π 2 � is the π/2-rotation composed with the homothety with ratio ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Composition of flows Let ⃗v be a vector field on R × Ω and Φt0 pt0 solution of (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' We use the notations pt = Φt0 t (pt0) = Φt;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t0(pt0) := Φt0 pt0 (t) = Φt0(t, pt0) = Φ(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' t0, pt0) = Φt0,pt0 (t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Law of composition of flows (determinism) Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 For all t0, t1, t2 ∈ R, we have (determinism) Φt1 t2 ◦ Φt0 t1 = Φt0 t2, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Φt2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t1 ◦ Φt1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t0 = Φt2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='17) (“The composition of the photos gives the film”).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So, pt2 = Φt1 t2(pt1) = Φt0 t2(pt0) when pt1 = Φt0 t1(pt0), (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='18) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', pt2 = Φt2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t1(pt1) = Φt2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t0(pt0) when pt1 = Φt1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t0(pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='19) Thus dΦt1 t2(pt1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΦt0 t1(pt0) = dΦt0 t2(pt0), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' dΦt2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t1(pt1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΦt1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t0(pt0) = dΦt2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t0(pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='20) Summary with commutative diagrams: pt1 Φt1 t2 � pt0 Φt0 t1 � Φt0 t2 � pt2 i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' pt1 Φt2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t1 � pt0 Φt1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t0 � Φt2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t0 � pt2 36 37 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Composition of flows Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let pt1 = Φt0 pt0 (t1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9) gives � � � � � � � dΦt0 pt0 dt (t) = ⃗v(t, Φt0 pt0 (t)), dΦt1 pt1 dt (t) = ⃗v(t, Φt1 pt1 (t)), � � � � � � � with pt1 = Φt0 pt0 (t1) = Φt1 pt1 (t1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus Φt0 pt0 and Φt1 pt1 satisfy the same ODE with the same value at t1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus they are equal (uniqueness thanks to Cauchy–Lipschitz theorem), thus Φt1 pt1 (t) = Φt0 pt0 (t) when pt1 = Φt0 t1(pt0), that is, Φt1 t (pt1) = Φt0 t (pt0) when pt1 = Φt0 t1(pt0), which is (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='17) for any t = t2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='20).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Corollary 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8 A flow is compatible with the motion �Φ of an object Obj: (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6) gives Φt1 t2 ◦ Φt0 t1 = (�Φt2 ◦ (�Φt1)−1) ◦ (�Φt1 ◦ (�Φt0)−1) = �Φt2 ◦ (�Φt0)−1 = Φt0 t2, that is (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='17).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Stationnary case Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9 ⃗v is a stationary vector field iff ∂⃗v ∂t = 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And then ⃗v(t, p) =noted ⃗v(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And the associated flow Φt0 which satisfies ∂Φt0 ∂t (t, pt0) = ⃗v(pt) when pt = Φt0(t, pt0), (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='21) is said to be stationary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10 If ⃗v is a stationary vector field then, for all t0, t1, h, when meaningful (h small enough and t1 close enough to t0), Φt1 t1+h = Φt0 t0+h, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Φt1+h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t1 = Φt0+h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t0, (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Φt1 t1+h(q) = Φt0 t0+h(q), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Φ(t1+h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' t1, q) = Φ(t0+h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' t0, q) for all q ∈ Ωt0 (see theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In other words, Φt0+h t1+h = Φt0 t1, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Φt1+h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t0+h = Φt1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t0, (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='23) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Φt0+h t1+h(q) = Φt0 t1(q), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Φ(t1+h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' t0+h, q) = Φ(t1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' t0, q) for all q ∈ Ωt0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let q ∈ Ωt0, α(h) = Φt0 t0+h(q) = Φt0 q (t0+h) and β(h) = Φt1 t1+h(q) = Φt1 q (t1+h).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus α′(h) = dΦt0 q dt (t0+h) = ⃗v(t0+h, Φt0 q (t0+h)) = ⃗v(Φt0 q (t0+h)) = ⃗v(α(h)) (stationary flow), and β′(h) = dΦt1q dt (t1+h) = ⃗v(t1+h, Φt1 q (t1+h)) = ⃗v(Φt1 q (t1+h)) = ⃗v(β(h)) (stationary flow).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus α and β satisfy the same ODE with the same initial condition α(0) = β(0) = q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus α = β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Hence (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus, with h = t1−t0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' with t1 = t0+h and t0+h = t1, we get (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='23).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Corollary 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11 If ⃗v is a stationary vector field, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='21), then dΦt0 t (pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v(pt0) = ⃗v(pt) when pt = Φt0 t (pt0), (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='24) that is, if ⃗v is stationary, then ⃗v is transported (push-forwarded by Φt0 t ) along itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='18), t2 = t1+s and t1 = t0+s give Φt0+s t1+s(Φt0 t0+s(pt0)) = Φt0 t1+s(pt0), and ⃗v is stationary, thus Φt0 t1(Φt0 t0+s(pt0)) = Φt0 t1+s(pt0), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Φ(t1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' t0, Φt0,pt0 (t0+s)) = Φt0,pt0 (t1+s), thus (s derivative) dΦ(t1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' t0, Φ(t0+s;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' t0, pt0)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='Φt0,pt0 ′(t0+s) = Φt0,pt0 ′(t1+s), thus dΦt0 t1(Φ(t0+s;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' t0, pt0)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v(t0+s, Φt0,pt0 (t0+s)) = ⃗v(t1+s, Φt0,pt0 (t1+s)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus with s = 0, and ⃗v being stationary, dΦt0 t1(Φ(t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' t0, pt0)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v(Φt0,pt0 (t0)) = ⃗v(Φt0,pt0 (t1)), thus (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='24).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 37 38 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Velocity on the trajectory traveled in the opposite direction 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 Velocity on the trajectory traveled in the opposite direction Let t0, t1 ∈ R, t1 > t0, and pt0 ∈ Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Consider the trajectory Φt0 pt0 : � [t0, t1] → Rn t → p(t) = Φt0 pt0 (t) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So pt0 is the beginning of the trajectory, pt1 = Φt0 t1(pt0) at the end, ⃗v(t, p(t)) = dΦt0 pt0 dt (t) being the velocity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Define the trajectory traveled in the opposite direction, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' define Ψt1 pt1 : � [t0, t1] → Rn u → q(u) = Ψt1 pt1 (u) := Φt0 pt0 (t0+t1−u) = Φt0 pt0 (t) = p(t) when t = t0+t1−u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='25) In particular q(t0) = Ψt1 pt1 (t0) = Φt0 pt0 (t1) = p(t1) and q(t1) = Ψt1 pt1 (t1) = Φt0 pt0 (t0) = p(t0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12 The velocity on the trajectory traveled in the opposite direction is the opposite of the velocity on the initial trajectory: dΨt1 pt1 du (u) = q′(u) = −p′(t) = −⃗v(t, p(t)) when t = t0+t1−u, (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='26) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Ψt1 pt1 (u) = Φt0 pt0 (t0+t1−u) gives dΨt1 pt1 du (u) = − dΦt0 pt0 dt (t0+t1−u) = −⃗v(t0+t1−u, Φt0 pt0 (t0+t1−u)) = −⃗v(t, Φt0 pt0 (t)) when t = t0+t1−u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 Variation of the flow as a function of the initial time 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Ambiguous and non ambiguous notations Let Φ : (t, u, p) ∈ R × R × Rn → Φ(t, u, p) ∈ Rn be a C1 function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The partial derivatives are ∂1Φ(t, u, p) := lim h→0 Φ(t+h, u, p) − Φ(t, u, p) h , (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='27) ∂2Φ(t, u, p) := lim h→0 Φ(t, u+h, p) − Φ(t, u, p) h , (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='28) and ∂3Φ(t, u, p), defined for all ⃗w ∈ ⃗Rn (a vector at p) by, ∂3Φ(t, u, p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w := lim h→0 Φ(t, u, p+h⃗w) − Φ(t, u, p) h noted = dΦ(t, u, p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w, (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='29) When the name of the first variable is systematically noted t, then ∂1Φ(t, u, p) noted = ∂Φ ∂t (t, u, p) noted = ∂Φ(t, u, p) ∂t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='30) NB: This notation can be ambiguous: What is the meaning of ∂Φ ∂t (t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' t, p)?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In ambiguous situations, use the notation ∂1Φ, or (if no composed functions inside) use ∂Φ(t,u,p) ∂t |u=t (so t is the derivation variable, and after the calculation you take u = t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' When the name of the second variable is systematically noted u, then ∂2Φ(t, u, p) noted = ∂Φ ∂u (t, u, p) noted = ∂Φ(t, u, p) ∂u .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='31) NB: Idem this notation can be ambiguous: What is the meaning of ∂Φ ∂u (u;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' u, p)?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In ambiguous situations, use the notation ∂2Φ, or use ∂Φ(t,u,p) ∂u |t=u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' When the name of the third variable is systematically a space variable noted p, then ∂3Φ(t, u, p) noted = dΦ(t, u, p) noted = ∂Φ ∂p (t, u, p) noted = ∂Φ(t, u, p) ∂p .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='32) 38 39 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Variation of the flow as a function of the initial time 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Variation of the flow as a function of the initial time The law of composition of the flows gives (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='19) gives Φ(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' u, Φ(u;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' t0, p0)) = Φ(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' t0, p0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus the derivative in u gives ∂2Φ(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' u, Φ(u;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' t0, p0)) + dΦ(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' u, Φ(u;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' t0, p0)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='∂1Φ(u;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' t0, p0) = 0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ∂2Φ(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' u, p(u)) = −dΦ(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' u, p(u)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v(u, p(u)) when p(u) = Φ(u;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' t0, p0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='33) In particular u = t0 gives, for all (t, t0, p0) ∈ R2 × Ωt0, (∂Φ(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' t0, p0) ∂t0 =) ∂2Φ(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' t0, p0) = −dΦ(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' t0, p0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v(t0, p0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='34) In particular (dΦ(t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' t0, p0) dt0 |t=t0 =) ∂2Φ(t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' t0, p0) = −⃗v(t0, p0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='35) 39 40 Part II Push-forward 6 Push-forward The general tool to describe “transport” is “push-forward by a motion” (the “take with you” operator), cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' § 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 and figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The push-forward also gives the tool needed to understand the velocity addition formula: In that case, the push-forward is the translator between observers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The push-forward can also be used to write coordinate systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' As usual, we start with qualitative results (observer independent results);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then, quantitative results are deduced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definition E and F are affine spaces, E and F are the associated vector spaces equipped with norms ||.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='||E and ||.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='||F with dim E = dim F = n, UE and UF are open sets in the affine space E and F, or possibly the vector spaces E and F, and Ψ : � UE → UF pE → pF = Ψ(pE) is a diffeomorphism (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1) (a C1 invertible map which inverse is C1), called the push-forward, and Ψ−1 is the pull-back (push-forward with Ψ−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1: cE : s → pE = cE(s) is a curve in UE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Push-forwarded by Ψ it becomes the curve cE∗ := Ψ ◦ cE in UF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The tangent vector at pE = cE(s) is ⃗wE(pE) = cE ′(s), and the tangent vector at pF = cF(s) = Ψ(cE(s)) is ⃗wE∗(pF) = cF ′(s) = dΨ(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wE(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Other illustation: See figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Example: Ψ = Φt0 t : Ωt0 → Ωt, the motion that transforms Ωt0 into Ωt, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Example: Ψ : UE → UF a coordinate system, see example 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Example: Ψ = Θt : RB → RA, a change of referential at t (change of observer), see § 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Push-forward and pull-back of points Definition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 If pE ∈ UE (a point in UE) then its push-forward by Ψ is the point pF = Ψ∗pE := Ψ(pE) = pE∗ ∈ UF, (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2) see figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1, the last notation if Ψ is implicit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And if pF ∈ UF then its pull-back by Ψ is the point pE = Ψ∗pF := Ψ−1(pF) = pF ∗ ∈ UE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3) We immediately have Ψ∗ ◦ Ψ∗ = I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The notations ∗ for push-forward and ∗ for pull-back have been proposed by Spivak;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Also see Abraham and Marsden [1] (second edition) who adopt this notation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 40 Us 亚 we(pe p =C(s P = 亚(p) Im(c* Im(C41 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Push-forward and pull-back of curves 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Push-forward and pull-back of curves We push-forward (and pull-back) the points on a curve: Definition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Let cE : � ] − ε, ε[ → UE s → pE = cE(s) � be a curve in UE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Its push-forward by Ψ is the curve Ψ∗cE := Ψ ◦ cE : � ] − ε, ε[ → UF s → pF = Ψ∗cE(s) := Ψ(cE(s)) noted = cE∗(s) (= Ψ(pE)), (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4) see figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Ψ∗cE =noted cE∗ when Ψ is implicit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') This defines Ψ∗ : � F(] − ε, ε[;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' UE) → F(] − ε, ε[;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' UF) cE → Ψ∗(cE) := Ψ ◦ cE noted = Ψ∗cE = cE∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5) Definition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Let cF : � ] − ε, ε[ → UF s → pF = cF(s) � is a curve in UF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Its pull-back by Ψ is Ψ∗cF := Ψ−1 ◦ cE � ] − ε, ε[ → UE s → pE = Ψ∗cF(s) := Ψ−1(cF(s)) noted = cF ∗(s) (= Ψ−1(pF)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6) We have thus defined Ψ∗ : � F(C1(] − ε, ε[;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' UF) → F(C1(] − ε, ε[;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' UE) cF → Ψ∗(cF) := Ψ−1 ◦ cF noted = Ψ∗cF = cF ∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7) 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Push-forward and pull-back of scalar functions 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definitions Definition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Let fE : � UE → R pE → fE(pE) � (scalar valued function).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Its push-forward by Ψ is the (scalar valued) function Ψ∗fE := fE ◦ Ψ−1 : � UF → R pF → Ψ∗fE(pF) := fE(pE) noted = fE∗(pF) when pE = Ψ−1(pF), (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8) (noted fE∗ when Ψ is implicit), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Ψ∗fE(Ψ∗pE) := fE(pE), or fE∗(pE∗) := fE(pE) when pE∗ = Ψ(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' We have thus defined Ψ∗ : � F(UE;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) → F(UF;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) fE → fF := Ψ∗(fE) = fE ◦ Ψ−1 noted = Ψ∗fE, (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9) the notation Ψ∗(fE) = Ψ∗fE since Ψ∗ is linear: ((fE + λgE) ◦ Ψ−1)(pF) = (fE + λgE)(pE) = fE(pE) + λgE(pE) = (fE ◦ Ψ−1)(pF) + λ(gE ◦ Ψ−1)(pF) gives Ψ∗(fE + λgE) = Ψ∗(fE) + λΨ∗(gE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Let fF : � UF → R pF → fF(pF) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Its pull-back by Ψ is the push-forward by Ψ−1, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' is Ψ∗fF := fF ◦ Ψ : � UE → R pE → Ψ∗fF(pE) := fF(pF) noted = fF ∗(pE) when pF = Ψ(pE), (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Ψ∗fF(Ψ∗pF) := fF(pF), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' fF ∗(pF ∗) := fF(pF) when pF = Ψ∗(pF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' We have thus defined Ψ∗ : � F(UF;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) → F(UE;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) fF → Ψ∗(fF) = fF ∗ := fF ◦ Ψ noted = Ψ∗fF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11) We immediately have Ψ∗ ◦ Ψ∗ = I and Ψ∗ ◦ Ψ∗ = I (the first I is the identity in F(UE;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R), the second I is the identity in F(UF;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' NB: We used the same notations Ψ∗ and Ψ∗ than for the push-forward and pull-backs of points: The context removes ambiguities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 41 42 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Push-forward and pull-back of vector fields 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Interpretation: Why is it useful?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' : Let �Φ : R × Obj → Rn be a motion of an object Obj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' An observer records the temperature θ at all t ∈ [t0, T] and all p = �Φ(t, Obj): He gets θ : � � � C = � t ({t} × Ωt) → R (t, p) → θ(t, p) � � � a Eulerian scalar valued function, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then he chooses an initial time t0 and considers the associated motion Φt0, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1), and considers θt0 : � Ωt0 → R pt0 → θt0(pt0) := θ(t0, pt0) � (snapshot of the temperatures at t0 in Ωt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The push-forward of θt0 by Φt0 t is (Φt0 t )∗θt0 := θt0 ◦ (Φt0 t )−1 defines the “memory function” (Φt0 t )∗θt0 : � Ωt → R pt → (Φt0 t )∗θt0(pt) := θt0(pt0) when pt = Φt0 t (pt0), (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12) And he writes (Φt0 t )∗θt0(pt) =noted θt0∗(t, pt), so the memory transported is at t at pt (along a trajectory) by θt0∗(t, p(t)) = θt0(pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13) Question: Why do we introduce θt0∗ since we have θt0?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer: An observer does not have the gift of temporal and/or spatial ubiquity;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' He has to do with values at the actual time t and position pt where he is (Newton and Einstein’s point of view).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So, when he was at t0 at pt0 the observer wrote the value θt0(pt0) on a piece of paper (for memory), puts the piece of paper is his pocket, then once at t at p(t) = Φt0(t, pt0), he takes the paper out of his pocket, and renames the value he reads as θt0∗(t, pt) because he is now at t at pt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And, now at t at pt, he can compare the past and present value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In particular the rate θ(t, p(t)) − θt0∗(t, p(t)) t − t0 = actual(t, p(t)) − memory∗(t, p(t)) t − t0 (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14) is physically meaningful for one observer at t at pt (no ubiquity gift required).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' For scalar value functions, we get the usual rate θ(t,p(t))−θ(t0,p(t0)) t−t0 , but it isn’t that simple for vector valued functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And the limit t → t0 in (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14) defines the Lie derivative for scalar valued functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Push-forward and pull-back of vector fields This is one of the most important concept for mechanical engineers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 A definition by approximation Elementary introduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let pE and qE be points in UE, and let pF = pE∗ = Ψ(pE) and qF = qE∗ = Ψ(qE) in UF be the push-forwards by Ψ cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The first order Taylor expansion gives (Ψ(qE) − Ψ(pE) =) qF − pF = dΨ(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (qE − pE) + o(||qE − pE||E), (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='15) thus, −−→ pFqF ||−−→ pEqE||E = dΨ(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' −−→ pEqE ||−−→ pEqE||E + o(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16) And the definition of the push-forward is obtained by “neglecting” the o(1) (limit as qE → pE): Definition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 If ⃗wE(pE) ∈ E is a vector at pE ∈ U then its push-forward by Ψ is the vector ⃗wF(pF) =noted ⃗wE∗(pF) =noted Ψ∗ ⃗wE(pF) ∈ F defined at pF = pE∗ = Ψ(pE) ∈ UF by ⃗wF(pF) = ⃗wE∗(pF) := dΨ(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wE(pE) noted = Ψ∗ ⃗wE(pF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='17) 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 The definition of the push-forward of a vector field To fully grasp the definition, and to avoid making interpretation errors as in § 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 (the unfortunate notation d⃗x = F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d ⃗X), we use the following definition of “a vector”: It is a “tangent vector to a curve” (needed for surfaces and manifolds).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Details: 42 43 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Push-forward and pull-back of vector fields Let cE : � ] − ε, ε[ → UE s → pE = cE(s) � be a C1 curve in UE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Its tangent vector at pE = cE(s) is ⃗wE(pE) := cE ′(s) (= lim h→0 cE(s + h) − cE(s) h ), (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='18) see figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' This defines the function ⃗wE : � Im(cE) → E pE → ⃗wE(pE) � called a vector field along Im(cE)⊂UE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The push-forward of cE by Ψ being the image curve cE∗ = Ψ ◦ cE (the curve transformed by Ψ) cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4), its tangent vector at pF = cE∗(s) is ⃗wE∗(pF) := cE∗ ′(s) thus = dΨ(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='cE ′(s) = dΨ(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wE(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='19) Thus we have defined the vector field ⃗wE∗ along Im(cE∗) called the push-forward of ⃗wE by Ψ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' With all the integral curves of a vector field defined in UE, we get: Definition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 The push-forward by Ψ of a C0 vector field ⃗wE : � UE → E pE → ⃗wE(pE) � is the vector field Ψ∗ ⃗wE = ⃗wE∗ : � � � UF → F pF → Ψ∗ ⃗wE(pF) := dΨ(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wE(pE) noted = ⃗wE∗(pF) when pF = Ψ(pE), (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='20) see figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Ψ∗ ⃗wE =noted ⃗wE∗ if Ψ is implicit).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In other words, Ψ∗ ⃗wE := (dΨ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wE) ◦ Ψ−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='21) This defines the map Ψ∗ : � C∞(UE;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E) → C∞(UF;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) ⃗wE → Ψ∗(⃗wE) := Ψ∗ ⃗wE = ⃗wE∗ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (We use the same notation Ψ∗ as in definition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 for scalar valued functions: The context removes ambiguity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Remark 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8 Unlike scalar functions, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' § 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2: At t0 at pt0 you cannot just draw a vector ⃗wt0(pt0) on a piece of paper, put the paper in your pocket, then let yourself be carried by the flow Ψ = Φt0 t (push-forward), then, once arrived at t at pt, take the paper out of your pocket and read it to get the push-forward: The direction and length of the vector ⃗wt0∗(t, pt) are modified by the flow (a vector is not just a collection of scalar components).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9 Prove: ⃗cE ′′(s) = d⃗wE(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wE(pE), (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22) and d⃗wE∗(pF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΨ(pE) = dΨ(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗wE(pE) + d2Ψ(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wE(pE), (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='23) and cE∗ ′′(s) = d⃗wE∗(pF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wE∗(pF) (= dΨ(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗cE ′′(s) + d2Ψ(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗cE ′(s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗cE ′(s)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='24) Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗cE ′(s) = ⃗wE(cE(s)) gives ⃗cE ′′(s) = d⃗wE(cE(s)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗cE ′(s), hence (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗wE∗(Ψ(pE)) = dΦ(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wE(pE) by definition of ⃗wE∗, hence (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='23).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' cF(s) = Ψ(cE(s)) gives ⃗cF ′(s) = dΨ(cE(s)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗cE ′(s) = dΨ(cE(s)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wE(cE(s)) = ⃗wE∗(cF(s)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus ⃗cF ′′(s) = (d2Ψ(cE(s)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗cE ′(s)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗cE ′(s) + dΨ(cE(s)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗cE ′′(s) = d⃗wE∗(cF(s)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗cF ′(s), hence (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='24).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Pull-back of a vector field Definition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10 If ⃗wF : � UF → F pF → ⃗wF(pF) � is a vector field on UF, then its pull-back by Ψ is the push-forward by Ψ−1, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' is the vector field on UE defined by Ψ∗ ⃗wF : � � � UE → E pE → Ψ∗ ⃗wF(pE) := dΨ−1(pF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wF(pF) noted = ⃗wF ∗(pE), when pF = Ψ(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='25) In other words, Ψ∗ ⃗wF := (dΨ−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wF) ◦ Ψ noted = ⃗wF ∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='26) 43 44 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Quantification with bases And we get Ψ∗ ◦ Ψ∗ = I and Ψ∗ ◦ Ψ∗ = I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='27) Indeed, Ψ∗(Ψ∗ ⃗wE)(pE) = dΨ−1(pF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='Ψ∗ ⃗wE(pF) = dΨ−1(pF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΨ(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wE(pE) = ⃗wE(pE), for all pE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Idem for the second equality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 Quantification with bases 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Usual result (⃗ai) is a Cartesian basis in E, OF and (⃗bi) are an origin in F and a Cartesian basis in F, pE ∈ UE, pF = Ψ(pE) = OF + n � i=1 ψi(pE)⃗bi, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [−−−→ OFpF]|⃗b = � � � ψ1(pE) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ψn(pE) � � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='28) Then, if ⃗wE is a vector field in UE and ⃗wE = � i wj⃗ai, we get Ψ∗ ⃗wE(pF) = dΨ(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wE(pE) = �n i=1(dψi(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wE(pE))⃗bi = �n i,j=1wj(pE)(dψi(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj)⃗bi = �n i,j=1 ∂ψi ∂xj (pE)wj(pE)⃗bi, so [Ψ∗ ⃗wE(pF)]|⃗b = [dΨ(pE)]|⃗a,⃗b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗wE(pE)]|⃗a, (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='29) where [dΨ(pE)]|⃗a,⃗b = [dψi(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj] =noted [ ∂ψi ∂xj (pE)] is the Jacobian matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Example: Polar coordinate system Example 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11 Change of coordinate system interpreted as a push-forward: Paradigmatic example of the polar coordinate system (model generalized for the parametrization of any manifold).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Parametric Cartesian vector space R × R =noted ⃗R2 p = {⃗q = (r, θ)}, with its canonical basis (⃗a1,⃗a2), and ⃗q = r⃗a1 + θ⃗a2 =noted (r, θ), so [⃗q]|⃗a = � r θ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Geometric affine space R2 (of positions), p ∈ R2, associated vector space ⃗R2, O ∈ R2 (origin), ⃗x = −→ Op, and a Euclidean basis (⃗b1,⃗b2) in ⃗R2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The “polar coordinate system” is the associated map Ψ : � ⃗R∗ + × R ⊂ ⃗R2 p → ⃗R2 ⃗q = (r, θ) → ⃗x = Ψ(⃗q) = Ψ(r, θ), � defined by ⃗x = Ψ(⃗q) := r cos θ⃗b1 + r sin θ⃗b2, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗x]|⃗b = � x = r cos θ y = r sin θ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='30) The i-th coordinate line at ⃗q in ⃗R2 p (parametric space) is the straight line ⃗c⃗q,i : � R → ⃗R2 p s → ⃗c⃗q,i(s) = ⃗q + s⃗ai � , and its tangent vector at ⃗c⃗q,i(s) is ⃗c⃗q,i′(s) = ⃗ai for all s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' This line is transformed by Ψ into the curve Ψ∗(cq,i) = Ψ ◦ ⃗c⃗q,i =noted c⃗x,i : � R → R2 s → c⃗x,i(s) = Ψ(⃗q + s⃗ai) � (in particular c⃗x,i(0) = ⃗x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So [−−−−−→ Oc⃗x,1(s)]|⃗b = � (r+s) cos θ (r+s) sin θ � (straight line), and [−−−−−→ Oc⃗x,2(s)]|⃗b = � r cos(θ+s) r sin(θ+s) � (circle).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='31) And the tangent vector at c⃗x,i(s) is c⃗x,i′(s) =noted ⃗ai∗(⃗x) (push-forward by Ψ), so ⃗a1∗(⃗x) := Ψ∗⃗a1(⃗x) = dΨ(⃗q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗a1 = lim h→0 Ψ(⃗q+h⃗a1) − Ψ(⃗q) h = lim h→0 Ψ(r+h, θ) − Ψ(r, θ) h = ∂Ψ ∂r (⃗q), ⃗a2∗(⃗x) := Ψ∗⃗a2(⃗x) = dΨ(⃗q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗a2 = lim h→0 Ψ(⃗q+h⃗a2) − Ψ(⃗q) h = lim h→0 Ψ(r, θ+h) − Ψ(r, θ) h = ∂Ψ ∂θ (⃗q), (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='32) Thus ⃗a1∗(⃗x) = cos θ⃗b1 + sin θ⃗b2 and ⃗a2∗(⃗x) = −r sin θ⃗b1 + r cos θ⃗b2, (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='33) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗a1∗(⃗x)]|⃗b = � cos θ sin θ � and [⃗a2∗(⃗x)]|⃗b = � −r sin θ r cos θ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='34) The basis (⃗a1∗(⃗x),⃗a2∗(⃗x)) is called the basis of the polar coordinate system at ⃗x (it is orthogonal but not orthonormal since ||⃗a2∗(⃗x)|| = r ̸= 1 in general);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And [dΨ(⃗q)]|⃗a,⃗b = � [ ∂Ψ ∂r (⃗q)]|⃗b [ ∂Ψ ∂θ (⃗q)]|⃗b � = � [⃗a1∗(⃗x)]|⃗b [⃗a2∗(⃗x)]|⃗b � = � cos θ −r sin θ sin θ r cos θ � = [ ∂Ψi ∂qj (⃗q)] is the Jacobian matrix of Ψ at ⃗q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 44 45 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Quantification with bases And the dual basis of the polar system basis (⃗a1∗(⃗x),⃗a2∗(⃗x)) is called (dq1(⃗x), dq2(⃗x)) (defined by dqi(⃗x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj∗(⃗x) = δij), so dq1(⃗x) = cos θ dx1 + sin θ dx2 and dq2(⃗x) = −1 r sin θ dx1 + 1 r cos θ dx2, (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='35) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [dq1(⃗x)]|⃗b = ( cos θ sin θ ) and [dq2(⃗x)]|⃗b = − 1 r ( sin θ cos θ ) (row matrices) when ⃗x = Ψ(⃗q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Remark 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12 The components γk ij(⃗x) of the vector d⃗aj∗(⃗x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ai∗(⃗x) ∈ ⃗R2 in the basis (⃗ai∗(⃗x)) are the Christoffel symbols of the polar coordinate system (with duality notations as it is usually presented): d⃗aj∗(⃗x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ai∗(⃗x) = n � k=1 γk ij(⃗x)⃗ak∗(⃗x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='36) At ⃗x = Ψ(⃗q), with ⃗aj∗(⃗x) = dΨ(⃗q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (⃗aj∗ ◦ Ψ)(⃗q) = ∂Ψ ∂qj , we get d⃗aj∗(⃗x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ai∗(⃗x) = ∂2Ψ ∂qi∂qj (⃗q) = d⃗ai∗(⃗x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj∗(⃗x), so γk ij = γk ji (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='37) for all i, j (symmetry of the bottom indices as soon as Ψ is C2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Here for the polar coordinates, ∂Ψ ∂r (⃗q) = cos θ⃗b1 + sin θ⃗b2 gives ∂2Ψ ∂r2 (⃗q) = ⃗0, thus γ1 11 = γ2 11 = 0, and ∂2Ψ ∂θ∂r(⃗q) = − sin θ⃗b1 + cos θ⃗b2 = 1 r⃗a2∗(⃗x), thus γ1 12 = 0 = γ1 21 and γ2 12 = 1 r = γ2 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And ∂Ψ ∂θ (⃗q) = −r sin θ⃗b1 + r cos θ⃗b2 gives ∂2Ψ ∂θ2 (⃗q) = −r cos θ⃗b1 − r sin θ⃗b2 = −r⃗a1∗(⃗x), thus γ1 22 = −r and γ2 22 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Remark 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13 The (widely used) normalized polar coordinate basis (⃗n1(⃗x),⃗n2(⃗x)) = (⃗a1∗(⃗x), 1 r⃗a2∗(⃗x)) is not holonomic, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' is not the basis of a coordinate system (and its use makes higher deriva- tion formulas complicated).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Indeed ⃗n2(⃗x) = 1 r⃗a2∗(⃗x) gives d⃗n2(⃗x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗n1(⃗x) = (d( 1 r)(⃗x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗n1(⃗x))⃗a2∗(⃗x) + 1 rd⃗a2∗(⃗x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗n1(⃗x), and ⃗n1(⃗x) = ⃗a1∗(⃗x) gives d⃗n1(⃗x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗n2(⃗x) = d⃗a1∗(⃗x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ( 1 r⃗a2∗), thus d⃗n2(⃗x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗n1(⃗x) − d⃗n1(⃗x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗n2(⃗x) = (d( 1 r)(⃗x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗n1(⃗x))⃗a2∗(⃗x) ̸= ⃗0, since 1 r = (x2 + y2)− 1 2 gives d( 1 r)(⃗x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗n1(⃗x) = ( −x(x2 + y2)− 3 2 −y(x2 + y2)− 3 2 ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' � cos θ sin θ � = 1 r3 (−r cos2 θ − r sin2 θ) = −1 r2 ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Remark 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14 (Pay attention to the notations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Let f : ⃗q ∈ ⃗R2 p → f(⃗q) ∈ R be C2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Call g its push- forward by Ψ, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' g : ⃗x ∈ R2 → g(⃗x) = f(⃗q) ∈ R when ⃗x = Ψ(⃗q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So f(⃗q) = (g ◦ Ψ)(⃗q)and df(⃗q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj = dg(Ψ(⃗q)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΨ(⃗q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj = dg(⃗x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj∗(⃗x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='38) With df(⃗q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj =noted ∂f ∂qj (⃗q) and dg(⃗x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗bj =noted ∂g ∂xj (⃗x) and ⃗aj∗(⃗x) = dΨ(⃗q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj = � i ∂Ψi ∂qj (⃗q)⃗aj, we get ∂f ∂qj (⃗q) = � i ∂g ∂xi (⃗x)∂Ψi ∂qj (⃗q) noted = ∂g ∂qj (⃗x) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='39) Mind this notation!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' g is a function of ⃗x, not of ⃗q, so ∂g ∂qi (⃗x) means = ∂f ∂qi (⃗q), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ∂g ∂qi (⃗x) means = ∂(g ◦ Ψ) ∂qi (⃗q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' which is [df(⃗q)] = [dg(⃗x)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [dΨ(⃗q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then (with f and Ψ C2) ∂ ∂g ∂qi ∂qj (⃗x) means = ∂ ∂(g◦Ψ) ∂qi ∂qj (⃗q) = d(dg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ai∗)(⃗x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΨ(⃗q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj = d(dg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ai∗)(⃗x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj∗(⃗x) = d((dg(⃗x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj∗(⃗x)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ai∗(⃗x) + dg(⃗x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (d⃗ai∗(⃗x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj(⃗x)) noted = ∂2g ∂qi∂qj (⃗x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='40) So ∂2g ∂qi∂qj (⃗x) means = d2g(⃗x)(⃗ai∗(⃗x),⃗aj∗(⃗x)) + n � k=1 ∂g ∂xk (⃗x)γk ij(⃗x)⃗ak(⃗x), (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='41) and ∂2g ∂qi∂qj (⃗x) is not reduced to d2g(⃗x)(⃗ai∗(⃗x),⃗aj∗(⃗x)) (the Christoffel symbols have appeared): First order derivatives ∂g ∂xk are still alive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Contrary to ∂2g ∂xi∂xj (⃗x) = d2g(⃗x)(⃗bi,⃗bj) with a Cartesian basis (⃗bi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') NB: The independent variables r and θ don’t have the same dimension (a length and an angle): There is no physical meaningful inner dot product in the parameter space ⃗R2 p = R×R = {(r, θ)}, but this space is very useful.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (As in thermodynamics: No meaningful inner dot product in the (T, P) space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') 45 46 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition 7 Push-forward and pull-back of differential forms 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definition Setting of § 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Consider a differential form αE : � UE → E∗ = L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) pE → αE(pE) � on UE (a field of linear forms), and a vector field ⃗wE : � UE → E pE → ⃗wE(pE) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Hence fE = αE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wE : � UE → R pE → fE(pE) = (α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wE)(pE) = αE(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wE(pE) is a scalar valued function (value of ⃗wE given by αE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8) gives (push-forward fE = αE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wE by Ψ) Ψ∗(αE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wE)(pF) = (αE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wE)(pE) = αE(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wE(pE) when pF = Ψ(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1) With ⃗wE∗(pF) = dΨ(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wE(pE) cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='20) (push-forward of ⃗wE), we get Ψ∗(αE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wE)(pF) = αE(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΨ(pE)−1 � �� � =noted αE∗(pF) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wF(pF) when pF = Ψ(pE) : (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2) Definition 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 The push-forward of a differential form αE ∈ Ω1(UE) is the differential form ∈ Ω1(UF) given by Ψ∗αE : � � � UF → F ∗ = L(F;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) pF → Ψ∗αE(pF) := αE(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΨ(pE)−1 noted = αE∗(pF) when pF = Ψ(pE), (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3) the last notation when Ψ is implicit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In other words, Ψ∗αE(pF) = αE(Ψ−1(pF)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΨ−1(pF), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Ψ∗αE := (αE ◦ Ψ−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΨ−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4) (Once again, we used the same notation Ψ∗ than for the push-forward of vector fields and functions: The context removes any ambiguities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Remark 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 We cannot always see a vector field (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' we can’t see an internal force field): To know it we need to measure it with a well defined tool, the tool being here a differential form;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And the definition 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 is a compatbility definition so that we can recover the push-forward of the vector field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 The pull-forward of a a differential form αF ∈ Ω1(UF) is the differential form Ψ∗αF : � UE → L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) pE → Ψ∗αF(pE) := αF(pF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΨ(pE) noted = αF ∗(pE) when pF = Ψ(pE), (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5) In other words, Ψ∗αF := (αF ◦ Ψ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΨ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6) (For an alternative definition, see remark 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Proposition 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 For all αE ∈ Ω1(UE) and αF ∈ Ω1(UF) (differential forms), and ⃗wE ∈ Γ(UE) and ⃗wF ∈ Γ(UF) (vector fields), we have (objectivity result) (Ψ∗αE)(pF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wF(pF) = αE(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Ψ∗ ⃗wF)(pE) when pF = Ψ(pE), (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' αE∗(pF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wF(pF) = αE(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wF ∗(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In particular with αE = df (exact differential form) where f ∈ C1(UE;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R), d(Ψ∗f) = Ψ∗(df).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8) (This commutativity result is very particular to the case α = df: In general d(Ψ∗T) ̸= Ψ∗(dT) for a tensor of order ≥ 2, see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='19)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 46 47 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Incompatibility: Riesz representation and push-forward Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' αE∗(pF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wF(pF) = (αE(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΨ−1(pF)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wF(pF) = αE(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (dΨ−1(pF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wF(pF)) = αE(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w∗ F(pE), for all pF = Ψ(pE) ∈ UF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And Ψ∗f(pF) := f(pE) = f(Ψ−1(pF)), thus d(Ψ∗f)(pF) = df(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΨ−1(pF) = Ψ∗(df)(pF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And we have Ψ∗ ◦ Ψ∗ = I and Ψ∗ ◦ Ψ∗ = I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9) Indeed Ψ∗(Ψ∗αE)(pE) = Ψ∗αE(pF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΨ(pE) = αE(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΨ−1(pF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΨ(pE) = αE(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Idem for Ψ∗ ◦ Ψ∗ = I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Remark 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 The pull-back αF ∗ can also be defined thanks to the natural canonical isomorphism � L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) → L(F ∗;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E∗) L → L∗ � given by L∗(ℓF ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗uE = ℓF .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗uE) for all (⃗uE, ℓF ) ∈ E×F ∗, and L∗(ℓF ) = ℓF .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L is called the pull-back of ℓF by L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In particular with ℓF = αF(pF) and L = dΨ(pE) we get dΨ(pE)∗(αF(pF)) = αF(pF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΨ(pE), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Incompatibility: Riesz representation and push-forward A push-forward is independent of any inner dot product: It is objective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' But here we introduce inner dot products (·, ·)g in E and (·, ·)h in F, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Euclidean dot products in ⃗Rn t0 and ⃗Rn t (observer dependent therefore subjective), because some mechanical engineers can’t begin with their beloved Euclidean dot products.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let αE ∈ Ω1(UE) and call βF := Ψ∗αE its push-forward by Ψ, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' βF(pF) := αE(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΨ(pE)−1 when pF = Ψ(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10) Then call ⃗ag(pE) ∈ E and ⃗bh(pF) ∈ F the (·, ·)g and (·, ·)h-Riesz representation vectors of αE and βF, so, for all ⃗uE ∈ Γ(UE) and all ⃗wF ∈ Γ(UF), in short, αE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗uE = (⃗ag, ⃗uE)g, and βF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wF = (⃗bh, ⃗wF)h, (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11) which means αE(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗uE(pE) = (⃗ag(pE), ⃗uE(pE))g and βF(pF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wF(pF) = (⃗bh(pF), ⃗wF(pF))h, for all pE ∈ UE and pF ∈ UF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' This defines the vector fields ⃗ag ∈ Γ(UE) and ⃗bh ∈ Γ(UF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proposition 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 ⃗bh ̸= Ψ∗⃗ag in general (although βF = Ψ∗αE), because ⃗bh(pF) = dΨ(pE)−T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ag(pE) ̸= dΨ(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ag(pE) in general (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12) (unless dΨ(pE)−T = dΨ(pE), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' dΨ(pE)T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΨ(pE)−1 = I, as a rigid body motion).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So the Riesz representation vector of the push-forwarded linear form is not the push-forwarded rep- resentation vector of the linear form push-forwarded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' This is not a surprise: A push-forward is independent of any inner dot product, while a Riesz repre- sentation vector depends on a chosen inner dot product (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Euclidean foot?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' metre?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So, as long as possible (not before you need to quantify), you should avoid using a Riesz representation vector, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' you should use the original (the qualitative differential form) as long as possible, and delay the use of a representative (quantification with which dot product?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') as late as possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Recall: The transposed relative to (·, ·)g and (·, ·)h of the linear map dΨ(pE) ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) is the linear map dΨ(pE)T gh =noted dΨ(pE)T ∈ L(F;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E) defined by, for all ⃗uE ∈ E and ⃗wF ∈ F vectors at pE and pF, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='68), (dΨ(pE)T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wF, ⃗uE)g = (⃗wF, dΨ(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗uE)h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13) (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11) gives, with pF = Ψ(pE), (⃗ag(pE), ⃗uE)g = αE(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗uE = � βF(pF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΨ(pE) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗uE = βF(pF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' � dΨ(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗uE � = (⃗bh(pF), dΨ(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗uE)h = (dΨ(pE)T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗bh(pF), ⃗uE)g, (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14) true for all ⃗uE, thus ⃗ag(pE) = dΨ(pE)T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗bh(pF), thus (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 47 48 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Push-forward and pull-back of order 1 tensors 8 Push-forward and pull-back of tensors To lighten the presentation, we only deal with order 1 and 2 tensors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Similar approach for any tensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Push-forward and pull-back of order 1 tensors Proposition 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 If T is either a vector field or a differential form, then its push-forward satisfies, for all ξ vector field or differential form (when required) in UF, in short: (Ψ∗T)(ξ) = T(Ψ∗ξ), written Ψ∗T(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') = T(Ψ∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ), (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Ψ∗T)(pF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='ξ(pF) = T(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='Ψ∗ξ(pE) when pF = Ψ(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Similarly: in short: (Ψ∗T)(ξ) = T(Ψ∗ξ), written Ψ∗T(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') = T(Ψ∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ), (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Ψ∗T)(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='ξ(pE) = T(pF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='Ψ∗ξ(pF) when pF = Ψ(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' • Case T = αE ∈ Ω1(UE) (differential form = a �0 1 � tensor), then here ξ = ⃗wF ∈ Γ(UF) and we have to check: (Ψ∗αE)(pF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wF(pF) = αE(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='Ψ∗ ⃗wF(pE), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (αE(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΨ−1(pE)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wF(pF) = αE(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (dΨ−1(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wF(pF)): True.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Case T = ⃗wE ∈ Γ(UE) (vector field ≃ a �1 0 � tensor), then here ξ = αF ∈ Ω1(UF) we have to check: (Ψ∗ ⃗wE)(pF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='αF(pF) = ⃗wE(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='Ψ∗(αF)(pE), where we implicitly use to the natural canonical isomorphism J : � E → E∗∗ ⃗w → w noted = ⃗w � defined by w(ℓ) = ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w for all ℓ ∈ E∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So we have to check: αF(pF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Ψ∗ ⃗wE)(pF) = Ψ∗(αF)(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wE(pE), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' αF(pF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (dΨ(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wE(pE)) = (αF(pF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΨ(pE)−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wE)(pE) : True.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' For (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2), use Ψ−1 instead of Ψ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Push-forward and pull-back of order 2 tensors Definition 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Let T be an order 2 tensor in UE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Its push-forward by Ψ is the order 2 tensor Ψ∗T in UF defined by, for all ξ1, ξ2 vector field or differential form (when required) in UF, in short: Ψ∗T(ξ1, ξ2) := T(Ψ∗ξ1, Ψ∗ξ2) written Ψ∗T(·, ·) := T(Ψ∗·, Ψ∗·), (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Ψ∗T(pF)(ξ1(pF), ξ2(pF)) := T(pE)(Ψ∗ξ1(pE), Ψ∗ξ2(pE)) when pF = Ψ(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let T be an order 2 tensor in UF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Its pull-back by Ψ is the order 2 tensor Ψ∗T in UE defined by, for all ξ1, ξ2 vector field or differential form (when required) in UE, in short: Ψ∗T(ξ1, ξ2) := T(Ψ∗ξ1, Ψ∗ξ2) written Ψ∗T(·, ·) := T(Ψ∗·, Ψ∗·), (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', Ψ∗T(pE)(ξ1(pE), ξ2(pE)) := T(pF)(Ψ∗ξ1(pF), Ψ∗ξ2(pF)) when pF = Ψ(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Example 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 If T ∈ T 0 2 (UE) (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', a metric) then, for all vector fields ⃗w1, ⃗w2 in UF, T∗(⃗w1, ⃗w2) (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3) = T(⃗w1 ∗, ⃗w2 ∗) = T(dΨ−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w1, dΨ−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w2), (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', T∗(pF)(⃗w1(pF), ��w2(pF)) = T(pE)(dΨ−1(pF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w1(pF), dΨ−1(pF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w2(pF)) when pF = Ψ(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Expression with bases (⃗ai) in E and (⃗bi) in F: In short we have (T∗)ij = T∗(⃗bi,⃗bj) = T(⃗bi∗,⃗bj∗) = [⃗b∗ i ]T |⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[T]|⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗b∗ j]|⃗a = ([⃗bi]T |⃗b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [dΨ]−T |⃗a,⃗b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[T]|⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ([dΨ]−1 |⃗a,⃗b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗bj]|⃗b) = ([dΨ]−T |⃗a,⃗b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[T]|⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [dΨ]−1 |⃗a,⃗b)ij, thus [T∗]|⃗b = [dΨ]−T |⃗a,⃗b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[T]|⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [dΨ]−1 |⃗a,⃗b, (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6) which means [(Ψ∗T)(pF)]|⃗b = ([dΨ(pE)]|⃗a,⃗b)−T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [T(pE)]|⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ([dΨ(pE)]|⃗a,⃗b)−1 when pF = Ψ(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Particular case of an elementary tensor T = α1 ⊗ α2 ∈ T 0 2 (UE), where α1, α2 ∈ Ω1(UE), so T(⃗u1, ⃗u2) = (α1 ⊗ α2)(⃗u1, ⃗u2) = (α1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u1)(α2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u2): For all ⃗w1, ⃗w2 ∈ Γ(UF), (α1 ⊗ α2)∗(⃗w1, ⃗w2) (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3) = (α1 ⊗ α2)(⃗w∗ 1, ⃗w∗ 2) = (α1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w∗ 1)(α2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w∗ 2) (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7) = (α1∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w1)(α2∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w2), (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7) thus (α1 ⊗ α2)∗ = α1∗ ⊗ α2∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8) (And any tensor is a finite sum of elementary tensors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') 48 49 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Push-forward and pull-back of endomorphisms And for the pull-back: For all vector fields ⃗u1, ⃗u2 in UE, T ∗(⃗u1, ⃗u2) (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3) = T(⃗u1∗, ⃗u2∗) = T(dΨ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u1, dΨ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9) Example 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 If T ∈ T 1 1 (UE) then for all vector fields ⃗w ∈ Γ(UF) and differential forms β ∈ Ω1(UF), T∗(β, ⃗w) = T(β∗, ⃗w∗) = T(β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΨ, dΨ−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w), (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', T∗(pF)(β(pF), ⃗w(pF)) = T(pE)(β(pF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΨ(pE), dΨ−1(pF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w(pF)) when pF = Ψ(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' For the elementary tensor T = ⃗u ⊗ α ∈ T 1 1 (UE), made of the vector field ⃗u ∈ Γ(UE) and of the differential form α ∈ Ω1(UE): For all β, ⃗w ∈ Ω1(UF) × Γ(UF), in short, (⃗u ⊗ α)∗(β, ⃗w) (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3) = (⃗u ⊗ α)(β∗, ⃗w∗) = (⃗u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='β∗)(α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w∗) (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7) = (⃗u∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='β)(α∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w) = (⃗u∗ ⊗ α∗)(β, ⃗w), (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11) thus (⃗u ⊗ α)∗ = ⃗u∗ ⊗ α∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12) Expression with bases (⃗ai) in E and (⃗bi) in F: In short we have (T∗)ij = T∗(bi,⃗bj) = T(Ψ∗(bi), Ψ∗(⃗bj)) = [Ψ∗(bi)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[T].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [Ψ∗(⃗bj)] = [bi].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[dΨ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[T].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[dΨ−1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗bj] = ([dΨ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[T].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [dΨ−1])ij, thus [T∗]|⃗b = [dΨ]|⃗a,⃗b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[T]|⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [dΨ]−1 |⃗a,⃗b, (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13) which means [(Ψ∗T)(pF)]|⃗b = [dΨ(pE)]|⃗a,⃗b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[T(pE)]|⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [dΨ(pE)]−1 |⃗a,⃗b when pF = Ψ(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Push-forward and pull-back of endomorphisms We have the natural canonical isomorphism J2 : � L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E) → L(E∗, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) L → TL = J2(L) where TL(α, ⃗u) := α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u, ∀(α, ⃗u) ∈ E∗ × E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14) Thus Ψ∗TL(m, ⃗w) = TL(Ψ∗m, Ψ∗ ⃗w) = (Ψ∗m).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Ψ∗ ⃗w) = m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΨ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΨ−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w, thus: Definition 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 The push-forward by Ψ of a field of endomorphisms L on UE is the field of endomorphisms Ψ∗L = L∗ on UF defined by in short: Ψ∗L = L∗ = dΨ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΨ−1 , (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='15) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', L∗(pF) = dΨ(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΨ−1(pF) when pF = Ψ(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus with bases we get [L∗]|⃗b = [dΨ]|⃗a,⃗b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[L]|⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [dΨ]−1 |⃗a,⃗b, “as in (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13)”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Example 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 Elementary field of endomorphisms L = (J2)−1(⃗u ⊗ α), where ⃗u ∈ Γ(E) and α ∈ Ω1(E): So TL = ⃗u ⊗ α and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u2 = (α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u2)⃗u for all ⃗u2 ∈ Γ(UE)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus L∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w2 = dΨ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΨ−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w2 = dΨ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w2∗ = (α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w2∗)dΨ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u = (α∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w2)⃗u∗ for all ⃗w2 ∈ Γ(E), thus (TL)∗ = ⃗u∗ ⊗ α∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 Let L be a field of endomorphisms on UF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Its pull-back by Ψ is the field of endomorphisms Ψ∗L = L∗ on UE defined by in short: Ψ∗L = L∗ = dΨ−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΨ , (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', L∗(pE) = dΨ−1(pF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L(pF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΨ(pE) when pF = Ψ(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Application to derivatives of vector fields ⃗u ∈ Γ(UE) is a C1 vector field in UE), pE ∈ UE, so d⃗u : UE → L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E) (given by d⃗u(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w(pE) = limh→0 ⃗u(pE+h⃗w(pE))−⃗u(pE) h for all ⃗w ∈ Γ(UE)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus its push-forward: ((d⃗u)∗ =) Ψ∗(d⃗u) = dΨ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΨ−1 (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='17) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (d⃗u)∗(pF) = dΨ(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗u(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΨ(pE)−1 when pF = Ψ(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 49 50 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Ψ∗(d⃗u) versus d(Ψ∗⃗u): No commutativity 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Ψ∗(d⃗u) versus d(Ψ∗⃗u): No commutativity Here Ψ is C2, ⃗u ∈ Γ(UE), pE ∈ UE, pF = Ψ(pE), so Ψ∗⃗u(pF) = dΨ(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u(pE) = (dΨ(Ψ−1(pF)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (⃗u(Ψ−1(pF)), and, for all ⃗w ∈ Γ(UF), d(Ψ∗⃗u)(pF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w(pF) = (d2Ψ(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (dΨ−1(pF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w(pF))).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u(pE) + dΨ(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗u(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΨ−1(pF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w(pF), (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='18) with Ψ∗(d⃗u)(pF) = dΨ(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗u(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΨ−1(pF), thus, in short, d(Ψ∗⃗u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w = Ψ∗(d⃗u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w + d2Ψ(Ψ∗ ⃗w, ⃗u) ̸= Ψ∗(d⃗u) in general.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='19) So the differentiation d and the push-forward ∗ do not commute (d(Ψ∗⃗u) = Ψ∗(d⃗u) iff Ψ is affine).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 Application to derivative of differential forms Let α ∈ Ω1(UE) (a differential form on UE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Its derivative dα : UE → L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E∗) is given by dα(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u(pE) = limh→0 α(pE+h⃗u(pE))−α(pE) h ∈ E∗, for all ⃗u ∈ Γ(UE), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', for all ⃗u1, ⃗u2 ∈ Γ(UE), (dα(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u1(pE)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u2(pE) = lim h→0 α(pE + h⃗u1(pE)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u2(pE) − (α(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u1(pE)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u2(pE) h ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='20) With the natural canonical isomorphism L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E∗) ≃ L(E, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R), cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16) with E∗∗ ≃ E, we can write dα(pE)(⃗u1(pE)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u2(pE) = dα(pE)(⃗u1(pE), ⃗u2(pE)), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' dα(⃗u1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u2 = dα(⃗u1, ⃗u2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='21) Thus the push-forward Ψ∗(dα) =noted (dα)∗ of dα, is given by, for all ⃗w1, ⃗w2 ∈ Γ(UF), in short, (dα)∗(⃗w1, ⃗w2) = dα(⃗w∗ 1, ⃗w∗ 2), (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', with pF = Ψ(pE), (dα)∗(pF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w1(pF)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w2(pF) = (dα(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΨ−1(pF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w1(pF)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΨ−1(pF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w2(pF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In particular, (d2f)∗(⃗w1, ⃗w2) = d2f(dΨ−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w1, dΨ−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w2) (= d2f(⃗w∗ 1, ⃗w∗ 2)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 Ψ∗(dα) versus d(Ψ∗α): No commutativity Here Ψ is C2, ⃗u ∈ Γ(UE), pE ∈ UE and pF = Ψ(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' We have Ψ∗α(pF) = α(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΨ−1(pF) = α(Ψ−1(pF)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΨ−1(pF), thus, for all ⃗w1 ∈ Γ(UF), d(ψ∗α)(pF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w1(pF) = (dα(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΨ−1(pF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w1(pF)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΨ−1(pF) + α(pE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d2Ψ−1(pF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w1(pF) ∈ F ∗, (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='23) thus, for all ⃗w1, ⃗w2 ∈ Γ(UF), in short d(ψ∗α)(⃗w1, ⃗w2) = dα(dΨ−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w1, dΨ−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w2) + α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d2Ψ−1(⃗w1, ⃗w2) ̸= dα(⃗w∗ 1, ⃗w∗ 2) in general.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='24) So the differentiation d and the push-forward ∗ do not commute (d(Ψ∗α) = Ψ∗(dα) iff Ψ is affine).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 50 51 Part III Lie derivative 9 Lie derivative 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='0 Purpose and first results 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Purpose?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Cauchy’s approach may be insufficient, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' : 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' - Cauchy’s approach aims to compare two vectors deformed by a motion, thanks to a Euclidean dot product and the deformation gradient F, with the deformation tensor C defined by (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W1) • ⃗W2 := (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W1) • (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' It is a quantitative approach (needs a chosen Euclidean dot product: foot?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' metre?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Cauchy’s approach is a first order method (dedicated to linear material): Only the first order Taylor expansion of the motion is used: Only dΦ = F is used (the “slope”), not d2Φ = dF (the “curvature”) or higher derivatives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' - Lie’s approach aims to build qualitative “covariant objective constitutive laws” (some will be discred- ited afterward, because of invariance or thermodynamical requirements).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Lie’s approach “naturally” applies to non-linear materials thanks to second order Lie derivatives which uses the second order Taylor expansion of the motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In a non planar surface S, you need the Lie derivative if you want to derive along a trajectory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In a Galilean Euclidean framework (quantification), the first order Lie derivatives approach give the same results than Cauchy’s approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Cauchy died in 1857, and Lie was born in 1842: Unfortunately Cauchy could not use the Lie derivative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Basic results The Eulerian velocity of the motion is ⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' With the material derivative is DEul Dt := ∂Eul ∂t + dEul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The Lie derivative L⃗vf of a Eulerian scalar valued function f is the material derivative L⃗vf = Df Dt .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The Lie derivative L⃗v ⃗w of a (Eulerian) vector field ⃗w is more than just the material derivative D ⃗w Dt : L⃗v ⃗w = D ⃗w Dt − d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2) L⃗v ⃗w gives the rate of stress on ⃗w due to a flow, and in particular the −d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w term in L⃗v ⃗w tells that the spatial variations of ⃗v (variations of the flow) act on the evolution of the stress (anticipated).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1)-(9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2) enable to define the Lie derivatives of tensors of any order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definition 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Issue (ubiquity gift).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' �Φ is supposed to be regular.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗v(t, p(t)) = ∂�Φ ∂t (t, PObj) is the Eulerian velocity at t at p(t) = �Φ(t, PObj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Recall: If Eul is a Eulerian function then its material time derivative is DEul Dt (t, p(t)) = lim h→0 Eul(t+h, p(t+h)) − Eul(t, p(t)) h .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3) Issue: The rate Eul(t+h,p(t+h))−Eul(t,p(t)) h raises questions: 1- The difference Eul(t+h, p(t+h)) − Eul(t, p(t)) requires the time and space ubiquity gift to be cal- culated by an observer, since it mixes two distinct times, t and t+h, and two distinct locations, p(t) and p(t+h).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 2- The difference Eul(t+h, p(t+h)) − Eul(t, p(t)) can be impossible: E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' if Eul = ⃗w is a vector field in a “non planar surface considered on its own” (manifold) then Eul(t+h, p(t+h)) and Eul(t, p(t)) don’t belong to the same (tangent) vector space (so the difference ⃗w(t+h, p(t+h)) − ⃗w(t, p(t)) is meaningless).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 51 52 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='Toward a solution (without ubiquity gift).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' To compare Eul(t+h, p(t+h)) and Eul(t, p(t)) (to get the evolution of Eul along a trajectory), you need the duration h to get from t to t+h and to move from p(t) to p(t+h).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So, you must: take the value Eul(t, pt)) with you (for memory), move along the considered trajectory, and doing so, the value Eul(t, pt) has possibly changed to, with τ = t+h, ((Φt τ)∗Eult)(pτ) noted = Eult∗(τ, pτ) (push-forward);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4) And now, at (τ, pτ) where you are, you can compare the actual value Eul(τ, pτ) with the value Eult∗(τ, pτ) you arrived with (the transported memory), thus the difference Eul(τ, pτ) − Eult∗(τ, pτ) (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5) is meaningful for a human being since it is computed at a unique time τ and at a unique point pτ (no gift of ubiquity required).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Figure 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1: To compute (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5) with Eul = ⃗w a (Eulerian) vector field: At t define the vector field ⃗wt in Ωt by ⃗wt(pt) := ⃗w(t, pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The (spatial) curve ct : s → pt = ct(s) in Ωt is an integral curve of ⃗wt, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' satisfies ct′(s) = ⃗wt(ct(s)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ct is transformed by Φt τ into the (spatial) curve cτ = Φt τ ◦ct : s → pτ = cτ(s)=Φt τ(ct(s)) in Ωτ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Hence cτ ′(s) = dΦt τ(pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='c′(s) = dΦt τ(pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wt(pt) =noted ⃗wt∗(τ, pτ) is the tangent vector at cτ at pτ (push-forward).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus the difference ⃗w(τ, pτ)− ⃗wt∗(τ, pτ) can be computed by a human being, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' without ubiquity gift.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The Lie derivative, first definition Definition 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 The Lie derivative L⃗vEul along ⃗v of an Eulerian function Eul is the Eulerian function L⃗vEul defined by, at t at pt = �Φ(t, PObj), L⃗vEul(t, pt) := lim h→0 Eul(t+h, p(t+h)) − (Φt t+h)∗Eult(p(t+h)) h .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6) Interpretation: L⃗vEul measures the rate of change of Eul along a trajectory: Eul(t+h, p(t+h)) is the value of Eul at t+h at p(t+h), see figure 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Eult∗(t+h, p(t+h)) = ((Φt t+h)∗Eult)(t+h, p(t+h)) is exclusively strain related: It is the memory transported along a flow, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' the value Eul(t, pt) distorted by the flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So, with g defined by g(τ) = ((Φt τ)∗Eult)(pτ) (in particular g(t) = Eult(pt)): L⃗vEul(t, pt) := g′(t) = lim τ→t g(τ) − g(t) τ − t also written = d((Φt t+h)∗Eult)(p(t+h)) dt |τ=t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7) 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 A more general definition The rate in (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6) has to be slightly modified to be adequate in all situations: Eul(t+h, p(t+h)) − Eul∗(t+h, p(t+h)) is computed at (t+h, p(t+h)) which moves as h → 0, and on a “non-planar mani- fold” this is problematic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The “natural” definition is to arrive with the memory: 52 ex(E, Pe) 2 2 pz= 中(p)= Ex (b) Pt=C (p)53 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Lie derivative of a scalar function Definition 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 The Lie derivative L⃗vEul along ⃗v of an Eulerian function Eul is the Eulerian function L⃗vEul defined by, at t at pt = �ΦPObj (t), L⃗vEul(t, pt) := lim h→0 Eul(t, pt) − (Φt−h t )∗Eult−h(pt) h .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8) I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' with �g defined by �g(τ) = ((Φτ t )∗Eulτ)(pt) (in particular �g(t) = Eul(t, pt)): L⃗vEul(t, pt) := �g′(t) = lim τ→t �g(t) − �g(τ) t − τ = lim τ→t �g(τ) − �g(t) τ − t also written = d((Φτ t )∗Eulτ)(pt) dτ |τ=t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9) Here the observer must: At t−h at p(t−h) = �ΦPObj (t−h), take the value Eul(t−h, p(t−h)), travel along the trajectory �ΦPObj , once at t at pt = �ΦPObj (t), this value has become ((Φt t−h)∗Eult−h)(pt) (transported memory), and then the comparison with Eul(t, pt) can be done in Ωt (no ubiquity gift required).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Prove: (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6) and (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8) are equivalent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' With (Φt t+h)∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Φt t+h)∗ = I, (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6) gives L⃗vEul(t, pt) = limh→0 (Φt t+h)∗Eul(t,pt)−Eult(t,pt) h = limh→0 (Φt t−h)∗Eult−h)(pt)−Eult(pt) −h = limh→0 Eult(pt)−((Φt t−h)∗Eult−h)(pt) h , and (Φt t−h)∗ = (Φt−h t )∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Equivalent definition (differential geometry) Definition 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 The Lie derivative of a Eulerian function Eul along a flow of Eulerian velocity ⃗v is the Eulerian function L⃗vEul defined at (t, pt) by L⃗vEul(t, pt) := lim h→0 ((Φt t+h)∗Eult+h)(pt) − Eul(t, pt) h , rate in Ωt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10) In other words, if ˆg is defined by ˆg(τ) = ((Φt τ)∗Eulτ)(pt) (in particular ˆg(t) = Eul(t, pt)), then L⃗vEul(t, pt) := ˆg′(t) = lim τ→t ˆg(τ) − ˆg(t) τ − t also written = d((Φt τ)∗Eulτ)(pt) dτ |τ=t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11) Exercice 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Prove: (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8) and (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10) are equivalent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10) also reads L⃗vEul(t, pt) = limh→0 ((Φt t−h)∗Eult−h)(pt)−Eult(pt) −h , and (Φt t−h)∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Φt−h t )∗ = I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Remark 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 More precise definition, as in (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3): E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' with (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10), the Lie derivative �L⃗vEul of a Eulerian function � Eul along a flow of Eulerian velocity ⃗v is the Eulerian function defined by, at t at pt = �Φ(t, PObj), �L⃗vEul(t, pt) := ((t, pt), L⃗vEul(t, pt) (pointed function at (t, pt)), (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12) And, to lighten the notation, �L⃗vEul(t, pt) =noted L⃗vEul(t, pt) (second component of �L⃗vEul(t, pt)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Lie derivative of a scalar function Let f be a C1 Eulerian scalar valued function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' With (Φt−h t )∗ft−h(pt) = ft−h(p(t−h)), cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10), we get L⃗vf(t, pt) (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8) = lim h→0 f(t, pt) − f(t−h, p(t−h)) h , i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' L⃗vf = Df Dt = ∂f ∂t + df.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13) So, for scalar functions, the Lie derivative is the material derivative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Interpretation: L⃗vf measures the rate of change of f along a trajectory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proposition 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 L⃗vf = 0 iff f is constant along any trajectory (the real value is the memory value): L⃗vf = 0 ⇐⇒ ∀t, τ ∈ [t0, T], (Φt τ ∗)ft(pτ) = f(t, p(t)) when pτ = Φt τ(pt), (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' iff f(t, p(t)) = f(t0, pt0) when p(t) = Φt0(t, pt0), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' iff f let itself be carried by the flow (unchanged).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 53 54 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Lie derivative of a vector field Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let p(t) = �Φ(t, PObj) = pt for all t, so p(τ) = �Φ(τ, PObj) = pτ = Φt t+h(pt) = Φt(τ, pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⇐: If fτ = (Φt t+h)∗ft, then fτ(pτ) = ft(pt), thus limτ→t f(τ,p(τ))−f(t,p(t)) τ−t = 0, that is, Df Dt = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⇒: If Df Dt = 0 then f(t, p(t)) is a constant function on the trajectory t → �Φ(t, PObj), for any parti- cle PObj, so f(τ, p(τ)) = f(t, pt) when p(τ) = Φt t+h(pt), that is, f(τ, pτ) = (Φt t+h)∗ft(pτ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8 Prove: L⃗v(L⃗vf) = D2f Dt2 = ∂2f ∂t2 + 2d( ∂f ∂t ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v + d2f(⃗v,⃗v) + df.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ( ∂⃗v ∂t + d⃗v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' See (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='23).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Lie derivative of a vector field 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Formula Let ⃗w be a C1 (Eulerian) vector field (interpreted as an “internal force field” in the following).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proposition 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9 L⃗v ⃗w = D ⃗w Dt − d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w = ∂ ⃗w ∂t + d⃗w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v − d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='15) So the Lie derivative is not reduced to the material derivative D ⃗w Dt (unless d⃗v = 0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' unless ⃗v is uniform): The spatial variations d⃗v of ⃗v influences the rate of stress: ⃗v tries to bend ⃗w (which is expected).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let ⃗g : τ → ⃗g(τ) = (Φt∗ τ ⃗w)(t, p(t)) = dΦt τ(pt)−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w(τ, p(τ)) when p(τ) = Φt(τ, pt), so (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10) reads L⃗v ⃗w(t, pt) = ⃗g ′(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' With ⃗z(τ) := ⃗w(τ, p(τ)) = dΦt(τ, pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗g(τ), ⃗z ′(τ) = D ⃗w Dτ (τ, p(τ)) = ∂(dΦt) ∂τ (τ, pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗g(τ) + dΦt(τ, pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗g ′(τ) = (d⃗v(τ, p(τ)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F t(τ, pt)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (F t(τ, pt)−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w(τ, p(τ))) + F t τ(pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗g ′(τ) = d⃗v(τ, p(τ)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w(τ, p(τ)) + F t τ(pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗g ′(τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16) Thus D ⃗w Dt (t, pt) = d⃗v(t, pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w(t, pt) + I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗g ′(t), thus ⃗g ′(t) = D ⃗w Dt (t, pt) − d⃗v(t, pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w(t, pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Quantification: Basis (⃗ei), ⃗v = � i vi⃗ei, ⃗w = � i wi⃗ei, d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej = � ij vi|j⃗ei, d⃗w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej = � ij wi|j⃗ei;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then L⃗v ⃗w = n � i=1 ∂wi ∂t ⃗ei + n � i,j=1 wi|jvj⃗ei − n � i,j=1 vi|jwj⃗ei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='17) So (column matrix), with [·] := [·]|⃗e, [L⃗v ⃗w] = [D ⃗w Dt ] − [d⃗v].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗w] (= [∂ ⃗w ∂t ] + [d⃗w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v] − [d⃗v].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗w]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='18) (And [d⃗w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v] = [d⃗w].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[⃗v].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Duality notations: L⃗v ⃗w = � i ∂wi ∂t ⃗ei + � ij wi |jvj⃗ei − � ij vi |jwj⃗ei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Interpretation: Flow resistance measurement Proposition 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10 Φt0 is supposed to be a C2 motion and a C1 diffeomorphism in space, and ⃗w is a vector field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' L⃗v ⃗w = 0 ⇐⇒ ∀t ∈ [t0, T], ⃗wt = (Φt0 t )∗ ⃗wt0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='19) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', D ⃗w Dt = d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w ⇔ the actual vector ⃗w(t, p(t)) is equal to F t0 t (pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wt0(pt0) = ⃗wt0∗(t, p(t)) the deformed vector by the flow, see figure 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So: The Lie derivative L⃗v ⃗w vanishes iff ⃗w does not resist the flow (let itself be deformed by the flow), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' iff ⃗w(t, pt) = ⃗wt0∗(t, pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' We have L⃗v ⃗w = D ⃗w Dt − d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w and ∂F t0 ∂t (t, pt0) = d⃗v(t, p(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F t0 t (pt0), cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='33).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⇐ (derivation): Suppose ⃗w(t, p(t)) = F t0(t, pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w(t0, pt0) when p(t) = Φt0 t (pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then D ⃗w Dt (t, p(t)) = ∂F t0 ∂t (t, pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w(t0, pt0) = (d⃗v(t, p(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F t0 t (pt0)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (F t0 t (pt0)−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w(t, p(t))) = d⃗v(t, p(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w(t, p(t)), thus D ⃗w Dt − d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (See proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') ⇒ (integration): Suppose D ⃗w Dt = d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let ⃗f(t) = (F t0 t (pt0))−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w(t, p(t)) (= pull-back (Φt0 t )∗ ⃗w(t0, pt0)) when p(t) = Φt0(t, pt0);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So ⃗w(t, p(t)) = F t0(t, pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗f(t) and D ⃗w Dt (t, p(t)) = ∂F t0 ∂t (t, pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗f(t) + F t0 t (pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗f ′(t) = d⃗v(t, p(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F t0 t (pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗f(t) + F t0 t (pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗f ′(t) = d⃗v(t, p(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w(t, p(t)) + F t0 t (pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗f ′(t) =hyp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' D ⃗w Dt (t, p(t))+F t0 t (pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗f ′(t) for all t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus F t0 t (pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗f ′(t) = ⃗0, thus ⃗f ′(t) = ⃗0 (because Φt0 t is a di���eomorphism), thus ⃗f(t) = ⃗f(t0), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗wt = (Φt0 t )∗ ⃗wt0, for all t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 54 55 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Examples 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Autonomous Lie derivative and Lie bracket The Lie bracket of two vector fields ⃗v and ⃗w is [⃗v, ⃗w] := d⃗w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v − d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w noted = L0 ⃗v ⃗w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='20) And L0 ⃗v ⃗w = [⃗v, ⃗w] is called the autonomous Lie derivative of ⃗w along ⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus L⃗v ⃗w = ∂ ⃗w ∂t + [⃗v, ⃗w] = ∂ ⃗w ∂t + L0 ⃗v ⃗w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='21) NB: L0 ⃗v ⃗w is used when ⃗v et ⃗w are stationary vector fields, thus does not concern objectivity: A stationary vector field in a referential is not necessary stationary in another (moving) referential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Examples 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Lie Derivative of a vector field along itself (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='15) with ⃗w = ⃗v gives L⃗v⃗v = ∂⃗v ∂t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In particular, if ⃗v is a stationary vector field then L⃗v⃗v = ⃗0 (= [⃗v,⃗v]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Lie derivative along a uniform flow Here d⃗v = 0, thus L⃗v ⃗w = D ⃗w Dt = ∂ ⃗w ∂t + d⃗w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v (when d⃗v = 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22) Here the flow is rectilinear (d⃗v = 0): there is no curvature (of the flow) to influence the stress on ⃗w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Moreover, if ⃗w is stationary, that is ∂ ⃗w ∂t = 0, then L⃗v ⃗w = d⃗w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v = the directional derivative ∂ ⃗w ∂⃗v of the vector field ⃗w in the direction ⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Lie derivative of a uniform vector field Here d⃗w(t, p) = 0, thus L⃗v ⃗w = ∂ ⃗w ∂t − d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w (when d⃗w = 0), (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='23) thus the stress on ⃗w is due to the space variations of ⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Moreover, is ⃗w is stationary then L⃗v ⃗w = −d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Uniaxial stretch of an elastic material Strain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' With [−−→ OP]|⃗e = [ ⃗X]|⃗e = � X Y � , with ξ > 0, t ≥ t0, p(t) = Φt0(t, P) and [⃗x]|⃗e = [−−−→ Op(t)]|⃗e: [⃗x]|⃗e = � x y � = � X Y � + ξ(t−t0) � X 0 � = � X(1 + ξ(t−t0)) Y � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='24) Eulerian velocity ⃗v(t, p) = � ξX 0 � = � ξ 1+ξ(t−t0)x 0 � , d⃗v(t, p) = � ξ 1+ξ(t−t0) 0 0 0 � (independent of p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Deformation gradient (independent of P), with κt = ξ(t−t0): Ft = dΦt0 t (P) = � 1 + κt 0 0 1 � = I + κt � 1 0 0 0 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='25) Infinitesimal strain tensor, with F T t = Ft here: εt0 t (P) = Ft − I = κt � 1 0 0 0 � = εt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='26) Stress.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Constitutive law = Linear isotropic elasticity: σt(pt) = λTr(εt)I + 2µεt = κt � λ+2µ 0 0 λ � = σt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='27) Cauchy stress vector ⃗T on a surface at p with normal ⃗nt(p) = � n1 n2 � = ⃗n: ⃗Tt(pt) = σt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗n = κt � (λ+2µ)n1 λn2 � = ξ(t−t0) � (λ+2µ)n1 λn2 � = ⃗Tt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='28) Push-forwards: ⃗Tt0(pt0) = 0, thus F t0 t0+h(pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗Tt0(pt0) = ⃗0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 55 56 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Examples Lie derivative: L⃗v ⃗T(t0, pt0) = lim t→t0 ⃗Tt(pt) − F t0 t (pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗Tt0(pt0) t − t0 = ξ � (λ+2µ)n1 λn2 � (rate of stress at (t0, pt0)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='29) Generic computation with L⃗v ⃗T = ∂ ⃗T ∂t + d⃗T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v − d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗T: (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='28) gives ∂ ⃗T ∂t = ξ � (λ+2µ) n1 λ n2 � and d⃗T = 0 and d⃗vt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗Tt = � ξ 1+ξ(t−t0) 0 0 0 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='ξ(t−t0) � (λ+2µ) n1 λ n2 � = ξ2(t−t0) 1+ξ(t−t0) � (λ+2µ) n1 0 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In particu- lar, d⃗v(t0, pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗T(t0, pt0) = ⃗0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus L⃗v ⃗T(t0, pt0) = ξ � (λ+2µ) n1 λ n2 � = rate of stress at the initial (t0, pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Simple shear of an elastic material Euclidean basis (⃗e1,⃗e2) in R2, the same basis at any time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Initial configuration Ωt0 = [0, L1] ⊗ [0, L2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Initial position [−−→ OP]⃗e = [−−→ Opt0]⃗e = [ ⃗X]⃗e = � X Y � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let ξ ∈ R∗, pt = Φt0 t (pt0), [⃗x]|⃗e = [−−−→ Op(t)]|⃗e, and [⃗x]⃗e = � x = ϕ1(t, X, Y ) = X y = ϕ2(t, X, Y ) � = � X + ξ(t−t0)Y Y � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='30) Eulerian velocity ⃗vt(pt) = � ξY 0 � = � ξy 0 � , thus d⃗vt(pt) = � 0 ξ 0 0 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Strain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' With κt = ξ(t−t0), deformation gradient (independent of P): dΦt0 t (P) = � 1 κt 0 1 � = F t0 t , thus F t0 t − I = κt � 0 1 0 0 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='31) Infinitesimal strain tensor: εt0 t (P) = F t0 t (P)−I + (F t0 t (P)−I)T 2 = κt 2 � 0 1 1 0 � = εt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='32) Stress.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Constitutive law, usual linear isotropic elasticity (requires a Euclidean dot product): σ(t, pt) = λTr(εt)I + 2µεt = µκt � 0 1 1 0 � = σt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='33) Cauchy stress vector ⃗T(t, pt) (at t at pt) on a surface at p with normal ⃗nt(p) = � n1 n2 � = ⃗n: ⃗Tt = σt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗n = µκt � n2 n1 � = µξ(t−t0) � n2 n1 � = ⃗T(t) (stress independent of pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='34) Lie derivative, with ⃗Tt0 = ⃗0: L⃗v ⃗T(t0, pt0) = lim t→t0 ⃗Tt(pt) − F t0 t (pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗Tt0(pt0) t − t0 = µξ � n2 n1 � (rate of stress at (t0, pt0)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='35) Generic computation: L⃗v ⃗T = ∂ ⃗T ∂t + d⃗T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v − d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='34) gives ∂ ⃗T ∂t (t, p) = µξ � n2 n1 � and d⃗T = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' With d⃗vt0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗Tt0 = ⃗0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus L⃗v ⃗T(t0, pt0) = µξ � n2 n1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 Shear flow Stationary shear field, see (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11) with α = 0 and t0 = 0: ⃗v(x, y) = � v1(x, y) = λy, v2(x, y) = 0, d⃗v(x, y) = � 0 λ 0 0 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='36) Let ⃗w(t, p) = � 0 b � = ⃗w(t0, pt0) (constant in time and uniform in space).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then L⃗v ⃗w = −d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w = � −λb 0 � measures “the resistance to deformation due to the flow”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' See figure 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2, the virtual vector ⃗w∗(t, p) = dΦ(t0, pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w(t0, pt0) being the vector that would have let itself be carried by the flow (the push-forward).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 56 57 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Lie derivative of a differential form Figure 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2: Shear flow, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='36), with ⃗w constant and uniform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' L⃗v ⃗w measures the resistance to the deformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 Spin Rotating flow: Continuing (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14): ⃗v(x, y) = ω � 0 −1 1 0 � � x y � , d⃗v(x, y) = ω � 0 −1 1 0 � = ω Rot(π/2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='37) In particular d2⃗v = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' With ⃗w = ⃗w0 constant and uniform we get L⃗v ⃗w0 = −d⃗v(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w0 = −ω Rot(π/2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w0 (⊥ � a b � = ⃗w0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='38) gives “the force at which ⃗w refuses to turn with the flow”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8 Second order Lie derivative Exercice 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11 Let ⃗v, ⃗w be C2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Prove: L⃗v(L⃗v ⃗w) = D2 ⃗w Dt2 − 2d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='D ⃗w Dt − D(d⃗v) Dt .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w + d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w, = ∂2 ⃗w ∂t2 + 2d∂ ⃗w ∂t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v − 2d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='∂ ⃗w ∂t + d⃗w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='∂⃗v ∂t − d∂⃗v ∂t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w + (d2 ⃗w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v + d⃗w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v − 2d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v − (d2⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w + d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='39) Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' L⃗v(L⃗v ⃗w) = D(L⃗v ⃗w) Dt − d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (L⃗v ⃗w) = D( D ⃗w Dt − d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w) Dt − d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (D ⃗w Dt − d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w) = D2 ⃗w Dt2 − D(d⃗v) Dt .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w − d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='D ⃗w Dt − d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='D ⃗w Dt + d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w, thus (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='39)1, thus (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='39)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Lie derivative of a differential form When the Lie derivative of a vector field ⃗w cannot be obtained by direct measurements, you need to use a “measuring device” (Germain: To know the weight of a suitcase you have to lift it: You use work).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Here we consider a measuring device which is a differential form α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So, if ⃗w is a vector field then f = α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v is a scalar function, and (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13) gives L⃗v(α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w) = D(α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w) Dt = Dα Dt .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w + α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' D ⃗w Dt , thus L⃗v(α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w) = Dα Dt .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w + α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w � �� � →(L⃗vα).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w + α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='D ⃗w Dt − α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w � �� � =α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L⃗v ⃗w : (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='40) Definition 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12 Let α be a differential form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The Lie derivative of α along ⃗v is the differential form L⃗vα := Dα Dt + α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v = ∂α ∂t + dα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v + α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='41) (An equivalent definition is given at (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='47).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', for all vector field ⃗w, L⃗vα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w := Dα Dt .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w + α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w (= ∂α ∂t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w + (dα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w + α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='42) 57 (B ) A q=c (t 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='% w(t) w(t,/p) w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='(t,p) od T V(B) (t)58 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Lie derivative of a differential form The definition of L⃗vα, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='41), immediately gives the “derivation property” L⃗v(α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w) = (L⃗vα).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w + α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (L⃗v ⃗w) (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' L⃗v is a derivation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='43) Quantification: Relative to a basis (⃗ei) and with [·] := [·]|⃗e, [L⃗vα] = [Dα Dt ] + [α].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [d⃗v] (row matrix) = [∂α ∂t ] + [dα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v] + [α].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [d⃗v].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='44) Thus [L⃗vα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w] = [L⃗vα].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗w] = [∂α ∂t ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗w] + [dα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗w] + [α].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[d⃗v].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗w].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='45) Exercice 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13 Prove (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='44) with components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And prove [dα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v] = [⃗v]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [dα]T (row matrix), thus [dα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗w] = [⃗v]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [dα]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗w] = [⃗w]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [dα].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗v].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Basis (⃗ei), dual basis (πei), thus (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='41) gives [L⃗vα] = [ Dα Dt ] + [α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let α = � i αiπei, ⃗v = � i vi⃗ei, d⃗v = � ij vi|j⃗ei ⊗ πej (tensorial writing convenient for calculations), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [d⃗v]|⃗e = [vi|j], thus α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v = � ij αivi|jπej, thus [α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v]|πe = [α]|πe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [d⃗v]|⃗e (row matrix).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And dα = � ij αi|jπei ⊗ πej, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [dα]|πe = [αi|j], gives dα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v = � ij αi|jvjπei = � ij viαj|iπej, and [dα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v]|πe is a row matrix (dα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v is a differential form), thus [dα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v]|πe = [⃗v]T |⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [dα]T |πe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Or compute (dα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w = � ij αi|jvjwi = [⃗w]T |⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[dα]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗v]|⃗e = [⃗v]T |⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [dα]T |πe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[⃗w]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Exercice 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14 Let α be a differential form, and let αt(p) := α(t, p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Prove, when Φt0 t is a diffeomorphism, L⃗vα = 0 ⇐⇒ ∀t ∈ [t0, T], αt = (Φt0 t )∗αt0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='46) I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' : Dα Dt = −α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v ⇐⇒ αt(pt) = αt0(pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F t0 t (pt0)−1 for all t, when pt = Φt0 t (pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⇐: If αt(p(t)) = αt0(pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F t0 t (pt0)−1, then α(t, p(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F t0(t, pt0) = αt0(pt0), thus Dα Dt (t, pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F t0 t (pt0) + αt(pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ∂F t0 ∂t (t, pt0) = 0, thus Dα Dt (t, p(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F t0 t (pt0) + αt(pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v(t, pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F t0 t (pt0) = 0, thus L⃗vα = 0, since Φt0 t is a diffeomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⇒: If β(t) := (Φt0 t )∗αt0(pt0) = αt(p(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F t0 t (pt0) (pull-back at (t0, pt0)), then β(t) = α(t, p(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F t0(t, pt0), thus β′(t) = Dα Dt (t, pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F t0 t (pt0) + α(t, pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v(t, pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F t0 t (pt0) = 0 (hypothesis L⃗vα = 0), thus β(t) = β(t0) = αt0(pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Remark 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='15 A definition equivalent to (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='41) is, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10), L⃗vα(t, pt) := lim τ→t (Φt τ)∗ατ(pt) − αt(pt) τ − t (= lim τ→t ατ(pτ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΦt τ(pt) − αt(pt) τ − t ) noted = D(Φt∗ τ ατ(pt)) Dτ |τ=t noted = D(α∗ τ(pt)) Dτ |τ=t (= D(ατ(pτ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΦt τ(pt)) Dτ |τ=t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='47) Indeed, if β(τ) = (Φt τ)∗ατ(pt) = ατ(pτ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΦt τ(pt), then β′(τ) and then τ = t give (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='41).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16 ⃗v and α being C2, prove: L⃗v(L⃗vα) = ∂2α ∂t2 + 2d∂α ∂t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v + 2∂α ∂t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v + dα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='∂⃗v ∂t + α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='∂d⃗v ∂t + (d2α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v + dα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v) + 2(dα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v + α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (d2⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v) + (α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='48) Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='41) gives L⃗v(L⃗vα) = L⃗v(∂α ∂t ) + L⃗v(dα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v) + L⃗v(α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v) = ∂2α ∂t2 + d∂α ∂t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v + ∂α ∂t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v + ∂(dα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v) ∂t + d(dα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v + (dα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v + ∂(α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v) ∂t + d(α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v + (α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v = ∂2α ∂t2 + d∂α ∂t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v + ∂α ∂t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v + ∂dα ∂t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v + dα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='∂⃗v ∂t + (d2α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v + dα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v) + (dα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v + ∂α ∂t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v + α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='∂d⃗v ∂t + (dα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v + α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d2⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v + (α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v = ∂2α ∂t2 + 2d∂α ∂t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v + 2∂α ∂t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v + dα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='∂⃗v ∂t + (d2α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v + dα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v) + 2(dα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v + α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='∂d⃗v ∂t + α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (d2⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v) + (α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 58 59 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Incompatibility with Riesz representation vectors 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 Incompatibility with Riesz representation vectors The Lie derivative has nothing to do with any inner dot product (the Lie derivative does not compare two vectors, contrary to a Cauchy type approach).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Here we introduce a Euclidean dot product (·, ·)g and show that the Lie derivative of a linear form α is not trivially deduced from the Lie derivative of a Riesz representation vector of α (which one?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Same issue as at § 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Let α be a Eulerian differential form;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then let ⃗ag(t, p) ∈ ⃗Rn be the (·, ·)g-Riesz representation vector of the linear form α(t, p) ∈ Rn∗: So, for all Eulerian vector field ⃗w, α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w = (⃗ag, ⃗w)g (= ⃗ag •g ⃗w), (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='49) which means α(t, p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w(t, p) = (⃗ag(t, p), ⃗w(t, p))g at all admissible (t, p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' This defines the Eulerian vector field ⃗ag (not intrinsic to α: ⃗ag depends on the choice of (·, ·)g, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proposition 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='17 For all ⃗v, ⃗w ∈ ⃗Rn, ∂α ∂t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w = (∂⃗ag ∂t , ⃗w)g, (dα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w = (d⃗ag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v, ⃗w)g, Dα Dt .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w = (D⃗ag Dt , ⃗w)g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='50) Thus L⃗vα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w = (L⃗v⃗ag, ⃗w)g + (⃗ag, (d⃗v+d⃗vT ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w)g, and L⃗vα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w ̸= (L⃗v⃗ag, ⃗w)g in general.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='51) So L⃗v⃗ag is not the Riesz representation vector of L⃗vα (but for solid body motions).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Expected: A Lie derivative is covariant objective, see § 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4, and the use of an inner dot product ruins this objectivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A Euclidean dot product g(·, ·) is bilinear constant and uniform, thus: α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w = (⃗ag, ⃗w)g gives ∂α ∂t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w + α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ∂ ⃗w ∂t = ( ∂⃗ag ∂t , ⃗w)g + (⃗ag, ∂ ⃗w ∂t )g, with α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ∂ ⃗w ∂t = (⃗ag, ∂ ⃗w ∂t )g, thus we are left with ∂α ∂t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w = ( ∂⃗ag ∂t , ⃗w)g, for all ⃗w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w = (⃗ag, ⃗w)g gives d(α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v = d(⃗ag, ⃗w)g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v for all ⃗v, ⃗w, thus (dα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w + α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (d⃗w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v) = (d⃗ag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v, ⃗w)g + (⃗ag, d⃗w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v)g, with α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (d⃗w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v) = (⃗ag, d⃗w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v)g, thus we are left with (dα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w = (d⃗ag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v, ⃗w)g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus Dα Dt .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w = ( D⃗ag Dt , ⃗w)g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus (L⃗vα).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w = Dα Dt .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w + α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w = ( D⃗ag Dt , ⃗w)g + (⃗ag, d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w)g = (L⃗v⃗ag + d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ag, ⃗w)g + (d⃗vT g .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ag, ⃗w)g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Remark 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='18 Chorus: a “differential form” (measuring instrument, covariant) should not be confused with a “vector field” (object to be measured, contravariant);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus, the use of a dot product (which one?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') and the Riesz representation theorem should be restricted for computational purposes, after an objective equation has been established.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' See also remark F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 Lie derivative of a tensor The Lie derivative of any tensor of order ≥ 2 is defined thanks to L⃗v(T ⊗ S) = (L⃗vT) ⊗ S + T ⊗ (L⃗vS) (derivation formula).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='52) (Or direct definition: L⃗vT(t0, pt0) = D((Φt0 t )∗Tt)(pt0) Dt |t=t0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Lie derivative of a mixed tensor Let Tm ∈ T 1 1 (Ω), and Tm is called a mixed tensor;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Its Lie derivative, called the Jaumann derivative, is given by L⃗vTm = DTm Dt − d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='Tm + Tm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v = ∂Tm ∂t + dTm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v − d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='Tm + Tm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='53) Can be checked with an elementary tensor T = ⃗w ⊗α: we have d(⃗w ⊗α).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v = (d⃗w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v)⊗α+ ⃗w ⊗(dα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v) and (d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w)⊗α = d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (⃗w⊗α), and ⃗w⊗(α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v) = (⃗w⊗α).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v , thus (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='52) gives L⃗v(⃗w⊗α) = (L⃗v ⃗w)⊗α+ ⃗w⊗(L⃗vα) = ∂ ⃗w ∂t ⊗ α + (d⃗w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v) ⊗ α − (d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w) ⊗ α + ⃗w ⊗ ∂α ∂t + ⃗w ⊗ (dα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v) + ⃗w ⊗ (α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v) = ∂ ⃗w⊗α ∂t + d(⃗w ⊗ α).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v − d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (⃗w ⊗ α) + (⃗w ⊗ α).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 59 60 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Lie derivative of a tensor Quantification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Relative to a basis (⃗ei): [L⃗vTm] = [DTm Dt ] − [d⃗v].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [Tm] + [Tm].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [d⃗v] (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='54) (the signs ∓ are mixed).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' “Mixed” also refers to positions of indices (up and down with duality notations): Tm = �n i,j=1T ij⃗ei ⊗ ej with the dual basis (ei), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [Tm]|⃗e = [T ij].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='19 With components, prove (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='54).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ∂Tm ∂t = � ij ∂T ij ∂t ⃗ei ⊗ ej, dTm = � ijk T i j|k⃗ei ⊗ ej ⊗ ek, ⃗v = � i vi⃗ei, d⃗v = � ij vi |j⃗ei ⊗ ej, thus dTm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v = � ijk T i j|kvk⃗ei ⊗ ej, d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='Tm = � ijk vi |kT k j⃗ei ⊗ ej, Tm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v = � ijk T i kvk |j⃗ei ⊗ ej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Lie derivative of a up-tensor Recall: If L ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) (a linear map) then its adjoint L∗ ∈ L(F ∗;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E∗) is defined by, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' § A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12, ∀m ∈ F ∗, L∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='m := m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L , i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ∀m, ⃗u ∈ (F ∗ × E), (L∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='m).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u = m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='55) (There is no inner dot product involved here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') In particular, d⃗v∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='m := m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v for all m ∈ ⃗Rn∗ t , i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (d⃗v∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='m).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u = (m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u = m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='(d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u) for all m ∈ ⃗Rn∗ t and all ⃗u ∈ ⃗Rn t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let Tu ∈ T 2 0 (Ω), and Tu is called a up tensor;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Its Lie derivative is called the upper-convected (Maxwell) derivative or the Oldroyd derivative and is given by L⃗vTu = DTu Dt − d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='Tu − Tu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v∗ = ��Tu ∂t + dTu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v − d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='Tu − Tu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='56) Can be checked with an elementary tensor T = ⃗u ⊗ ⃗w and L⃗v(⃗u ⊗ ⃗w) = (L⃗v⃗u) ⊗ ⃗w + ⃗u ⊗ (L⃗v ⃗w).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Quantification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Relative to a basis (⃗ei): [L⃗vTu] = [DTu Dt ] − [d⃗v].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [Tu] − [Tu].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [d⃗v]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='57) “up” also refers to positions of indices (with duality notations): Tu = �n i,j=1T ij⃗ei ⊗ ⃗ej with the dual basis (ei), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [Tu]|⃗e = [T ij].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='20 With components, prove (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='56).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ∂Tu ∂t = � ij ∂T ij ∂t ⃗ei⊗⃗ej, dTu = � ijk T ij |k⃗ei⊗⃗ej⊗ek, ⃗v = � i vi⃗ei, d⃗v = � ij vi |j⃗ei⊗ej, d⃗v∗ = � ij vj |iei⊗⃗ej, thus dTu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v = � ijk T ij |k vk⃗ei ⊗ ej, d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='Tu = � ijk vi |kT kj⃗ei ⊗ ⃗ej, Tu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v∗ = � ijk T ikvj |kei ⊗ ⃗ej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Lie derivative of a down-tensor Let Td ∈ T 0 2 (Ω), and Td is called a down tensor;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The Lie derivative is called the lower-convected Maxwell derivative and is given by L⃗vTd = DTd Dt + Td.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v + d⃗v∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='Td = ∂Td ∂t + dTd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v + Td.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v + d⃗v∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='Td.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='58) Can be checked with an elementary tensor T = ℓ ⊗ m and L⃗v(ℓ ⊗ m) = (L⃗vℓ) ⊗ m + ℓ ⊗ (L⃗vm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Quantification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Relative to a basis (⃗ei): [L⃗vTd] = [DTd Dt ] + [Td].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [d⃗v] + [d⃗v]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [Td].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='59) “down” also refers to positions of indices (with duality notations): Td = �n i,j=1Tijei ⊗ ej with the dual basis (ei), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [Td]|⃗e = [Tij].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='21 With components, prove (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='59).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ∂Td ∂t = � ij ∂Tij ∂t ei⊗ej, dTd = � ijk Tij|kei⊗ej⊗ek, ⃗v = � i vi⃗ei, d⃗v = � ij vi |j⃗ei⊗ej, d⃗v∗ = � ij vj |iei⊗⃗ej, thus dTd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v = � ijk Tij|kvkei ⊗ ej, Td.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v = � ijk Tikvk |jei ⊗ ⃗ej, d⃗v∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='Td = � ijk vk |iTkjei ⊗ ⃗ej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Example 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22 Let g = (·, ·)g ∈ T 0 2 (Ω) be a constant and uniform metric (a unique inner dot product for all t, p, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', a Euclidean dot product at all t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then Dg Dt = 0, thus L⃗vg = 0 + g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v + d⃗v∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g, thus [L⃗vg] = [g].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [d⃗v] + [d⃗v]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [g].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 60 61 Part IV Velocity-addition formula 10 Change of referential and velocity-addition formula 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='0 Issue and result (summary) The velocity-addition formula is (in classical mechanics) ⃗vA = ⃗vB + ⃗vD, (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1) where ⃗vA, ⃗vB and ⃗vD are the absolute, relative and drive velocity, ⃗vA and ⃗vD being velocities described by an observer A with his referential RA = (OA, ( ⃗Ai)) and ⃗vB being a velocity described by an observer B with his referential RB = (OB, ( ⃗Bi)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' But (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1) is problematic (inconsistent): The velocities ⃗vA and ⃗vD are quantified in RA, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' expressed in foot/s by the absolute observer, The velocity ⃗vB is a quantified in RB, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' expressed in metre/s by the relative observer, Thus (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1) with ⃗vB + ⃗vD tells that you add metre/s and foot/s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' absurd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So: Question: What are we missing (and what does (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1) really mean)?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer: We miss a functional link: The translator between A and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Summary: Call �Φ the motion of a observed object Obj;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' �Φ is quantified by A in his referential RA = (OA, ( ⃗Ai)) as the “motion” ⃗ϕA = [ −−→ OA�Φ]| ⃗A, and is quantified by B in his referential RB = (OB, ( ⃗Bi)) as the “motion” ⃗ϕB = [ −−→ OB �Φ]| ⃗B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' At t, the translator Θ connects these numerical values: ⃗ϕA(t, PObj) = Θ(t, ⃗ϕB(t, PObj)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus ∂ ⃗ϕA ∂t (t, PObj) = ∂Θ ∂t (t, ⃗xBt) + dΘ(t, ⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ∂ ⃗ϕB ∂t (t, PObj), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗vA(t, ⃗xAt) = ∂Θ ∂t (t, ⃗xBt) + dΘ(t, ⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗vB(t, ⃗xBt) where ⃗xAt = ⃗ϕA(t, PObj) and ⃗xBt = ⃗ϕB(t, PObj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then call dΘt(⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗vBt(⃗xBt) = ⃗vBt∗(⃗xAt) = “the translated relative velocity at t from B to A”, (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2) thus, with ∂Θ ∂t (t, ⃗xBt) = ⃗vD(t, ⃗xAt) the drive velocity, which gives ⃗vA(t, ⃗xAt) = ⃗vB∗(t, ⃗xAt) + ⃗vD(t, ⃗xAt): so ⃗vA = ⃗vB∗ + ⃗vD = the velocity addition formula in RA, (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' : (Absolute velocity) = (Translated relative velocity) + (Drive velocity).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In other words, with ⃗v the velocity of Obj and with ⃗vRB the velocity of RB in RA: For all pt = �Φ(t, PObj), [⃗vt(pt)]| ⃗A = dΘt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗vt(pt)] ⃗B + [⃗vRBt(pt)]| ⃗A, (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4) relation between the numerical values of the velocities stored by A and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Example 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Translation motion of RB in RA, so [⃗vRBt(pt)]| ⃗A = [⃗vRBt]| ⃗A is independent of pt;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' with ( ⃗Bit) = λ( ⃗Ait) (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Ai in foot and ⃗Bi in meter give λ ≃ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='28), dΘt = λI, hence [⃗vt(pt)]| ⃗A = λ[⃗vt(pt)] ⃗B + [⃗vRBt]| ⃗A, which is the expected relation (“sum of the velocities with the good units”).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Example 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Motion of the Earth around the Sun: See § 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Referentials and “matrix motions” 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Absolute and relative referentials Classical mechanics framework: Time and space are decoupled, all the observers share the same time unit (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' the second) and live in “our” Universe modeled as R3 (affine space) with its usual associated vector space ⃗R3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In the following, the affine space is Rn associated to the vector space ⃗Rn, n ∈ {1, 2, 3}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' An observer A, which we will call the absolute observer, chooses a (rigid body) object ObjRA in the Universe, chooses one particle in ObjRA, calls OAt its position at t, and chooses three more particles in ObjRA, calls PAti their positions at t (in the Universe), such that the bi-point vectors ⃗Ait := −−−−−→ OAtPAti make a basis in ⃗Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' He has thus built his (Cartesian) referential RAt = (OAt, ( ⃗Ait)), called the absolute referential, and written RA = (OA, ( ⃗Ai)) when used by A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ObjRA is the “Sun extended to infinity”, and at t, OAt is the position of the center of the Sun in the Universe, ( ⃗Ait) is a Euclidean basis in foot fixed relative to stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 61 62 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Referentials and “matrix motions” An observer B, which we will call the relative observer, proceeds similarly: He chooses a (rigid body) object ObjRB in the Universe, builds his Cartesian referential RBt = (OBt, ( ⃗Bit)), called the relative referential, written RB = (OB, ( ⃗Bi)) when used by B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ObjRB is the “Earth extended to infinity”, and at t, OBt is the position of the center of the Earth and ( ⃗Bit) is a Euclidean basis in metre fixed relative to the Earth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Mn1 is the vectorial space of n ∗ 1 matrices (column matrices).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A and B call Mn1(A) and Mn1(B) the affine spaces of n ∗ 1 matrices made of the “matrix positions” [−−−→ OAtpt]| ⃗A and [−−−→ OBtpt]| ⃗B where pt is the position at t of a particle in the Universe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' If a function ϕ is given as ϕ(t, x), then ϕt(x) := ϕ(t, x), and conversely.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Motion of a material object Obj An object Obj is considered by all observers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Its motion in the Universe is �Φ : � [t1, t2] × Obj → Rn (t, PObj) → pt = �Φ(t, PObj) = position of the particle PObj at t in the Universe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5) At t at pt = �Φ(t, PObj), the Eulerian velocities and accelerations of PObj are ⃗v(t, pt) = ∂�Φ ∂t (t, PObj) and ⃗γ(t, pt) = ∂2�Φ ∂2t (t, PObj) (∈ ⃗Rn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6) 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Quantification: Absolute and relative “motion” of Obj At t, the position pt = �Φ(t, PObj) of a particle PObj ∈ Obj is spotted by A, resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' B, with the bi-point vectors −−−→ OAtpt, resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' −−−→ OBtpt in ⃗Rn, which components is stored by A, resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' B, in his referentials: With −−−→ OAtpt = n � i=1 xAti ⃗Ait and −−−→ OBtpt = n � i=1 xBti ⃗Bit, (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7) and with ( ⃗Ei) the canonical basis in Mn1, the n ∗ 1 matrices ⃗xAt := [−−−→ OApt]| ⃗A = � � xAt1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' xAtn � � = n � i=1 xAti ⃗Ei, and ⃗xBt := [−−−→ OBpt]| ⃗B = � � xBt1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' xBtn � � = n � i=1 xBti ⃗Ei, (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8) are stored by A and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Initial notation: ⃗xAt := [−−−→ OAtpt]|( ⃗Ait), but here OAt and ( ⃗Ait) are fixed in RA, idem for B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Mind the notations: pt is a point, −−−→ OAtpt is a vector, ⃗xAt is a column matrix (components).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' This defines the “absolute motion” ⃗ϕA and “relative motion” ⃗ϕB of Obj (matrix valued): ⃗ϕA : � � � � � [t1, t2]×Obj → Mn1(A) (t, PObj) → ⃗ϕA(t, PObj) := [ −−−−−−−−→ OA�Φ(t, PObj)]| ⃗A = n � i=1 xAi(t) ⃗Ei noted = ⃗xA(t) = [−−−−→ OAp(t)]| ⃗A, (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9) ⃗ϕB : � � � � � [t1, t2]×Obj → Mn1(B) (t, PObj) → ⃗ϕB(t, PObj) := [ −−−−−−−−→ OB �Φ(t, PObj)]| ⃗B = n � i=1 xBi(t) ⃗Ei noted = ⃗xB(t) = [−−−−→ OBp(t)]| ⃗B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10) And the “absolute” and “relative” velocities and accelerations of PObj are (matrix valued in Mn1): ⃗vA(t, ⃗xAt) := [⃗v(t, pt)]| ⃗A and ⃗γA(t, ⃗xAt) := [⃗γ(t, pt)]| ⃗A, when ⃗xAt := [−−−→ OApt]| ⃗A, (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11) ⃗vB(t, ⃗xBt) := [⃗v(t, pt)]| ⃗B and ⃗γB(t, ⃗xBt) := [⃗γ(t, pt)]| ⃗B, when ⃗xBt := [−−−→ OBpt]| ⃗B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12) 62 63 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Referentials and “matrix motions” Exercice 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Prove: ⃗vA(t, ⃗xAt) = ∂ ⃗ϕA ∂t (t, PObj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' −−−−−−−→ OAt�ΦPObj (t) = � i xAi(t) ⃗Ai(t) gives ⃗v(t, pt) = � i xAi ′(t) ⃗Ai(t) + xAi(t) ⃗Ai ′(t), thus [⃗v(t, pt)]| ⃗ A = � i xAi ′(t)[ ⃗Ai(t)]| ⃗ A + xAi(t)[ ⃗Ai ′(t)]| ⃗ A (since Mn1 is a vector space) = � i xAi ′(t) ⃗Ei + [⃗0] (the ⃗Ai(t) are static in RA: [ ⃗Ai ′(t)]| ⃗ A = [limh→0 ⃗ Ai(t+h)− ⃗ Ai(t) h ]| ⃗ A = limh→0 [ ⃗ Ai(t+h)]| ⃗ A−[ ⃗ Ai(t)]| ⃗ A h = limh→0 ⃗ Ei− ⃗ Ei h = 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And ⃗ϕAPObj (t) = [ −−−−−−−→ OA�ΦPObj (t)]| ⃗ A = � i xAi(t)[ ⃗Ai(t)]| ⃗ A = � i xAi(t) ⃗Ei, thus ⃗ϕAPObj ′(t) = � i xAi ′(t) ⃗Ei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 ⃗u is a C1 vector field, p is a point, ⃗xA := [−−→ OAp]| ⃗A and ⃗uA(⃗xA) := [⃗u(p)]| ⃗A (matrices).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Prove: d⃗uA(⃗xA) = [d⃗u(p)]| ⃗A (endomorphism in Mn1), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' d⃗uA(⃗xA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗w]| ⃗A = [d⃗u(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w]| ⃗A for all ⃗w ∈ ⃗Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The point p+h⃗w ∈ Rn is referenced by A as [−−→ OAp + h⃗w]| ⃗ A = [−−→ OAp]| ⃗ A + h[⃗w]| ⃗ A = ⃗xA + h[⃗w]| ⃗ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus d⃗uA(⃗xA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗w]| ⃗ A = limh→0 ⃗uA(⃗xA+h[ ⃗w]| ⃗ A)−⃗uA(⃗xA) h = limh→0 [⃗u(p+h ⃗w)]| ⃗ A−[⃗u(p)]| ⃗ A h = limh→0 [⃗u(p+h ⃗w)− ⃗w(p)]| ⃗ A h = [limh→0 ⃗u(p+h ⃗w)− ⃗w(p) h ]| ⃗ A = [d⃗u(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w]| ⃗ A = [d⃗u(p)]| ⃗ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗w]| ⃗ A, true for all ⃗w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Call Qt the transition matrix from ( ⃗Ait) to ( ⃗Bit) at t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Prove ⃗xAt = [−−−−→ OAOBt]| ⃗A + Qt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗xBt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗xAt = [−−−→ OApt]| ⃗ A = [−−−−→ OAOBt + −−−→ OBtpt]| ⃗ A = [−−−−→ OAOBt]| ⃗ A + [−−−→ OBtpt]| ⃗ A, and the change of basis formula gives [−−−→ OBtpt]| ⃗ B = Q−1 t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [−−−→ OBtpt]| ⃗ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Motion of RB Particular case Obj = ObjRB: Its motion in the Universe, also called the motion of RB, is noted �ΦRB : � [t1, t2] × ObjRB → Rn (t, QRB) → qt = �ΦRB(t, QRB).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13) At t at qt = �ΦRB(t, QRB), the Eulerian velocities and accelerations of QRB are ⃗vRB(t, qt) = ∂�ΦRB ∂t (t, QRB) and ⃗γRB(t, qt) = ∂2�ΦRB ∂2t (t, QRB).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14) 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Quantification: Drive and static “motion” of RB The “drive motion” ⃗ϕD, also called the motion of RB in RA, and the “static motion” ⃗ϕS is the quantification of �ΦRB by A and by B: ⃗ϕD : � � � [t1, t2] × ObjRB → Mn1(A) (t, QRB) → ⃗ϕD(t, QRB) := [ −−−−−−−−−−→ OA�ΦRB(t, QRB)]| ⃗A noted = ⃗yD(t) = [−−−−→ OAq(t)]| ⃗A, (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='15) ⃗ϕS : � � � ObjRB → Mn1(B) QRB → ⃗ϕS(QRB) := [ −−−−−−−−−−→ OB �ΦRB(t, QRB)]| ⃗B noted = ⃗yS = [−−−−→ OBq(t)]| ⃗B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16) (⃗ϕS is independent of t since ObjRB is fixed in RB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') The drive velocity, also called the velocity of RB in RA, and static velocity of QRB are ⃗vD(t, ⃗yDt) := [⃗vRB(t, qt)]| ⃗A when ⃗yDt := [−−→ OAqt]| ⃗A, (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='17) ⃗vS(t, ⃗yS) := [⃗vRB(t, qt)]| ⃗B = [⃗0] noted = ⃗0 (null matrix).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='18) And the drive and static accelerations are ⃗γD(t, ⃗yDt) = [⃗γRB(t, qt)]| ⃗A and ⃗γS(t, ⃗yS) = ⃗0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 Why introduce ⃗ϕS (static)?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' You can’t confuse a particle QRB with its stored positions ⃗yS or ⃗yDt at t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And see (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='19).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 63 64 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The translator Θt 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 The translator Θt 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definition of Θt Definition 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 At t, the translator Θt : Mn1(B) → Mn1(A) is defined with (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='15)-(10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16) by: � � � [−−−−→ OBq(t)]| ⃗B = ⃗ϕS(QRB) = ⃗yS position of QRB in RB (static), and [−−−−→ OAq(t)]| ⃗A = ⃗ϕDt(QRB) = ⃗yDt position of QRB at t in RA (moving) � � � =⇒ ⃗yDt = Θt(⃗yS), (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='19) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Θt is the “inter-referential function at t” which translates the “matrix position” ⃗yS = ⃗ϕS(QRB) = [ −−−−−−−−−−→ OB �ΦRB(t, QRB)]| ⃗B ∈ Mn1(B) (position of QRB as stored by B) to the “matrix position” ⃗yDt = ⃗ϕD(t, QRB) = [ −−−−−−−−−−→ OA�ΦRB(t, QRB)]| ⃗A ∈ Mn1(A) (position of QRB as stored by A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So Θt is defined by ⃗ϕDt = Θt ◦ ⃗ϕS : � ObjRB → Mn1(A) QRB → ⃗ϕDt(QRB) := Θt(⃗ϕS(QRB)), (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='20) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' defined by Θt := ⃗ϕDt ◦ ⃗ϕ −1 S : � Mn1(B) → Mn1(A) ⃗yS → ⃗yDt = Θt(⃗yS) := ⃗ϕDt(⃗ϕ −1 S (⃗yS)) (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='21) (stored position by B to stored position by A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', for QOB the particle in ObjRB at t at OBt (chosen by B to locate its origin), (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='20) gives, with ⃗0 the null matrix in Mn1, [−−−−→ OAOBt]| ⃗A = Θt(⃗0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22) So, Θt is defined such that the following diagram commutes: ⃗yS = ⃗ϕS(QRB) = localization of QRB by B Θt � QRB ∈ ObjRB ⃗ϕS � ⃗ϕDt � ⃗yDt = ⃗ϕDt(QRB) = Θt(⃗yS) = localization at t of QRB by A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='23) 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Translation at t for the motion �Φ t is fixed, the position pt = �Φ(t, PObj) of a particle PObj ∈ Obj is also the position qt = �ΦRB(t, QRB) of a particle QRB ∈ ObjRB, so ⃗ϕAt(PObj) = [−−−→ OApt]| ⃗A = [−−→ OAqt]| ⃗A = ⃗ϕDt(QRB), and ⃗ϕBt(PObj) = [−−−→ OBpt]| ⃗B = [−−−→ OBqt]| ⃗B = ⃗ϕS(QRB), thus (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='20) gives ⃗ϕAt = Θt ◦ ⃗ϕBt .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='24) 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 dΘt 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Push-forward If ⃗yS ∈ Mn1(B), ⃗wS ∈ Mn1 and ⃗yDt = Θt(⃗yS) , then ⃗wSt∗(⃗yDt) := dΘt(⃗yS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wS (= lim h→0 Θt(⃗yS + h⃗wB) − Θt(⃗yS) h ) (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='25) is the push-forward of the matrix ⃗wS ∈ Mn1 by Θt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So, ⃗wSt∗([−−→ OAqt]| ⃗A) = dΘt([−−−→ OBqt]| ⃗B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗wt(qt)]| ⃗B for all qt ∈ Rn and all ⃗wt : Rn → ⃗Rn (vector field).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 64 65 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Translated velocities 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Θt is affine in classical mechanics Proposition 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8 In R3 (in classical mechanics), Θt is affine: For all QB0, QB1 ∈ ObjRB and all t, u ∈ R, with qti = �ΦRB(t, QBi) ∈ Rn (positions at t in our Universe), Θt([−−−→ OBqt0]| ⃗B + u [−−−→ qt0qt1]| ⃗B) = [−−−→ OAqt0]| ⃗A + u [−−−→ qt0qt1]| ⃗A, and [−−−→ qt0qt1]| ⃗A = dΘt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [−−−→ qt0qt1]| ⃗B (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='26) the differential dΘt(⃗yS0) =noted dΘt being independent of ⃗yS0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In particular [ ⃗Bit] ⃗A = dΘt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [ ⃗Bi]| ⃗B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In other words, for all ⃗yS0, ⃗yS1 ∈ Mn1(B) and all t, u ∈ R, Θt((1−u)⃗yS0 + u ⃗yS1) = (1−u)Θt(⃗yS0) + u Θt(⃗yS1), and Θt(⃗yS1) = Θt(⃗yS0) + dΘt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='(⃗yS1−⃗yS0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='27) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Consider the straight line (possible in classical mechanics in R3) qt : u → qt(u) = qt0 +u −−−→ qt0qt1 ∈ Rn (fixed in RB), in particular, qt(0) = qt0 and qt(1) = qt1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let ⃗yS(u) = [−−−−−→ OBqt(u)]| ⃗B (positions stored by B), so ⃗yS(u) = [−−−→ OBqt0 + u −−−→ qt0qt1]| ⃗B = [(1−u)−−−→ OBqt0 + u −−−→ OBqt1]| ⃗B = (1−u)[−−−→ OBqt0]| ⃗B + u [−−−→ OBqt1]| ⃗B = (1−u)⃗yS0 + u ⃗yS1, where ⃗yS0 = [−−−→ OBqt0]| ⃗B = ⃗yS(0) and ⃗yS1 = [−−−→ OBqt1]| ⃗B = ⃗yS(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Idem for A: ⃗yDt(u) = [−−−−−→ OAqt(u)]| ⃗A = (1−u)⃗yDt0 + u⃗yDt1 (positions stored by A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus (1−u)Θt(⃗yS0) + uΘt(⃗yS1) (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='19) = (1−u)⃗yDt0 + u⃗yDt1 = ⃗yDt(u) (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='19) = Θt(⃗yS(u)) = Θt((1−u)⃗yS0 + u⃗yS1), thus (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='27)1, thus (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='26)1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Hence (derivation in u): −Θt(⃗yS0) + Θt(⃗yS1) = dΘt(⃗yS(u)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (−⃗yS0 + ⃗yS1), true for all u, thus dΘt(⃗yS(u)) is independent of u, dΘt(⃗yS(u)) = dΘt(⃗yS0), true for all ⃗yS0, so dΘt(⃗yS0) =noted dΘt, thus (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='27)2, thus (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='26)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus [−−−−−→ OBtPBti]| ⃗A = dΘt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [−−−−−→ OBtPBti]| ⃗B where PBti is s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Bit = −−−−−→ OBtPBti, thus [ ⃗Bit] ⃗A = dΘt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [ ⃗Bi]| ⃗B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9 Call Qt = [Qt,ij] the transition matrix from ( ⃗Ait) to ( ⃗Bit) in ⃗Rn, and ( ⃗Ei) the canonical basis in Mn1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Prove [dΘt]| ⃗E = Qt, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' dΘt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Ej = n � i=1 Qt,ij ⃗Ei, ∀j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='28) Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Bjt = �n i=1Qt,ij ⃗Ait gives [ ⃗Bjt]| ⃗ A = �n i=1Qt,ij ⃗Ei, and [ ⃗Bjt]| ⃗ A =(10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='26) dΘt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [ ⃗Bjt]| ⃗ B = dΘt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Ej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Translated velocities t is fixed, ⃗vt(pt) = ∂�Φ ∂t (t, PObj) is the velocity of a particle PObj ∈ Obj at t at pt, ⃗xAt := [−−−→ OAtpt]| ⃗A, ⃗xBt := [−−−→ OBtpt]| ⃗B, and Θt affine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10 The translated relative velocity and acceleration from B to A at t at pt are the matrices ⃗vBt∗(⃗xAt) := dΘt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗vBt(⃗xBt) and ⃗γBt∗(⃗xAt) = dΘt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗��Bt(⃗xBt) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='29) I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ⃗vBt∗(⃗xAt) = dΘt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗vt(pt)] ⃗B and ⃗γBt∗(⃗xAt) = dΘt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗γt(pt)] ⃗B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Interpretation: Let qt0 and qt1 be particles in ObjRB s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗vBt(⃗xBt) = [−−−→ qt0qt1]| ⃗B where ⃗xBt = [−−−→ OBqt0]| ⃗B (here −−−→ qt0qt1 is a tangent vector at qt0 to the curve qt : u → qt(u) = qt0 +u −−−→ qt0qt1 in the proof of prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then [−−−→ qt0qt1]| ⃗A =(10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='26) dΘt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [−−−→ qt0qt1]| ⃗B gives [−−−→ qt0qt1]| ⃗A = dΘt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗vBt(⃗xBt) = ⃗vBt∗(⃗xAt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Similarly for ⃗γBt∗(⃗xAt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11 ( ⃗Ai) and ( ⃗Bi) are Euclidean basis (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' in foot and metre), (·, ·)A and (·, ·)B are the associated Euclidean dot products, λ = || ⃗Bi||A (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ≃ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='28), ( ⃗Ei) is the canonical basis in Mn1, and (·, ·)M is the canonical inner dot product in Mn1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Call ⃗Eit∗ := dΘt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Ei and prove: ∀i, j, ( ⃗Eit∗, ⃗Ejt∗)M = λ2δij, and dΘt T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΘt = λ2I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='30) Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ( ⃗Bit) is a Euclidean basis for B, thus is a Euclidean orthogonal basis for all observers, in particular for A, with || ⃗Bit||A = λ for all i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And ⃗Eit∗ = dΘt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [ ⃗Bjt]| ⃗ B =(10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='26) [ ⃗Bit]| ⃗ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus ( ⃗Eit∗, ⃗Ejt∗)M = [ ⃗Eit∗]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [ ⃗Ejt∗] = [ ⃗Bit]T | ⃗ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [ ⃗Bjt]| ⃗ A = ( ⃗Bit, ⃗Bjt)A = λ2( ⃗Bit, ⃗Bjt)B = λ2δij, thus (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='30)1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then λ2δij = (dΘt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Ei, dΘt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Ej)M = (dΘt T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΘt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Ei, ⃗Ej)M, true for all i, j, thus dΘt T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΘt = λ2I, thus (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='30)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 65 66 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition of Θ 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Definition of Θ Definition 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12 The translator from B to A is the function Θ defined with (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='20) by Θ : � � � � � � t∈[t1,t2] ({t} × Mn1(B)) → Mn1(A) (t, ⃗yS) → Θ(t, ⃗yS) := Θt(⃗yS) , (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='31) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', for all QRB ∈ ObjRB and all t, Θ(t, [ −−−−−−−−−−→ OB �ΦRB(t, QRB)]| ⃗B) = [ −−−−−−−−−−→ OA�ΦRB(t, QRB)]| ⃗A, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Θ(t, ⃗ϕS(QRB)) = ⃗ϕD(t, QRB).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='32) E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22) gives Θ(t,⃗0) = [−−−−−→ OAOB(t)]| ⃗A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Remark 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13 The translator Θ looks like a motion, but is not: A “usual” motion is defined by one observer and connects one particle to its position;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' While Θ connects two “matrix positions” of one particle relative to two referentials: Θ is an “inter-referential” function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 The “Θ-velocity” is the drive velocity Definition 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14 The “Θ-velocity” and “Θ-acceleration” are defined by (Eulerian type definition) with ⃗yDt = Θ(t, ⃗yS), � � � � � ⃗vΘ(t, ⃗yDt) := ∂Θ ∂t (t, ⃗yS) (∈ Mn1), ⃗γΘ(t, ⃗yDt) = ∂2Θ ∂t2 (t, ⃗yS) (∈ Mn1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='33) Proposition 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='15 ⃗vΘ = ⃗vD and ⃗γΘ = ⃗γD , (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='34) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗vΘ(t, ⃗y) = ⃗vD(t, ⃗y) and ⃗γΘ(t, ⃗y) = ⃗γD(t, ⃗y) in Mn1, for all t and all ⃗y ∈ Mn1(A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Θ(t, ⃗ϕS(QRB)) = ⃗ϕD(t, QRB) gives ∂Θ ∂t (t, ⃗ϕS(QRB)) = ∂⃗ϕD ∂t (t, QRB), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗vΘ(t, Θ(t, ⃗ϕS(QRB))) = ⃗vD(t, ⃗ϕD(t, QRB)), (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='35) thus ⃗vΘ(t, ⃗ϕD(t, QRB)) = ⃗vD(t, ⃗ϕD(t, QRB)), thus ⃗vΘ(t, ⃗y) = ⃗vD(t, ⃗y) for all ⃗y ∈ Mn1(A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Idem with ∂2 ∂t2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 The velocity-addition formula (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='24) gives ⃗ϕA(t, PObj) = Θ(t, ⃗ϕB(t, PObj)), (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='36) thus ∂⃗ϕA ∂t (t, PObj) = ∂Θ ∂t (t, ⃗ϕB(t, PObj)) + dΘ(t, ⃗ϕB(t, PObj)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='∂⃗ϕB ∂t (t, PObj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='37) Thus ⃗vA(t, ⃗xAt) = ⃗vΘ(t, ⃗xAt) + dΘ(t, ⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗vB(t, ⃗xBt), (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='38) where ⃗xBt = ⃗ϕB(t, PObj) and ⃗xAt = ⃗ϕA(t, PObj) = Θt(⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus, with ��vΘ =(10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='34) ⃗vD, ⃗vAt = ⃗vBt∗ + ⃗vDt where ⃗vBt∗(⃗xAt) := dΘt(⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗vBt(⃗xBt), (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='39) which is the velocity-addition formula in RA: ⃗vAt the absolute velocity = ⃗vBt∗ the translated relative velocity from B to A + ⃗vDt the drive velocity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='40) In other words (relation between the numerical values of the velocities stored by A and B), [⃗vt(pt)]| ⃗A = dΘt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗vt(pt)] ⃗B + [⃗vRBt(pt)]| ⃗A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='41) 66 67 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Coriolis acceleration, and the acceleration-addition formula 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8 Coriolis acceleration, and the acceleration-addition formula (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='37) gives ∂2⃗ϕA ∂t2 (t, PObj) = ∂2Θ ∂t2 (t, ⃗xBt) + d∂Θ ∂t (t, ⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='∂⃗ϕB ∂t (t, PObj) + �∂(dΘ) ∂t (t, ⃗xBt) + d2Θ(t, ⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='∂⃗ϕB ∂t (t, PObj) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='∂⃗ϕB ∂t (t, PObj) + dΘ(t, ⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='∂2⃗ϕB ∂t2 (t, PObj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='42) And d2Θt = 0 in our classical framework (Θt is affine);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And ∂Θ ∂t (t, ⃗yS) = ⃗vΘt(Θt(⃗yS)) gives ∂(dΘ) ∂t (t, ⃗yS) = d( ∂Θ ∂t )(t, ⃗yS) = d⃗vΘt(Θt(⃗yS)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΘt(⃗yS);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And ∂ ⃗ϕB ∂t (t, PObj) = ⃗vBt(⃗xBt) where ⃗xBt = ⃗ϕB(t, PObj);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus ⃗γAt(⃗xAt) = ⃗γΘt(⃗xAt) + 2d⃗vΘt(⃗xAt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΘt(⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗vBt(⃗xBt) + dΘt(⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗γBt(⃗xBt) = ⃗γDt(⃗xAt) + 2d⃗vDt(⃗xAt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗vBt∗(⃗xAt) + ⃗γBt∗(⃗xAt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='43) Definition 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16 At t, the Coriolis acceleration ⃗γCt at ⃗xAt is ⃗γCt(⃗xAt) = 2d⃗vDt(⃗xAt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗vBt∗(⃗xAt), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗γCt = 2d⃗vDt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗vBt∗ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='44) And the Coriolis acceleration ⃗γC at t at ⃗xAt is ⃗γC(t, ⃗xAt) := ⃗γCt(⃗xAt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='43) gives the acceleration-addition formula in RA: ⃗γAt = ⃗γBt∗ + ⃗γDt + ⃗γCt , i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='45) ⃗γAt the absolute acceleration = ⃗γBt∗ the translated relative acceleration from B to A + ⃗γDt the drive acceleration + ⃗γCt the Coriolis acceleration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='46) In other words (relation between the numerical values of the acceletations stored by A and B), [⃗γt(pt)]| ⃗A = dΘt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗γt(pt)] ⃗B + [⃗γRBt(pt)]| ⃗A + 2[d⃗vRBt]| ⃗A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΘt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗vt(pt)]| ⃗B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='47) 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9 With an initial time Let t0, t ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Consider the Lagrangian associated function Φt0 t with the motion �Φ of Obj: Φt0 t : � Ωt0 → Ωt pt0=�Φ(t0, PObj) → pt = Φt0 t (pt0) := �Φ(t, PObj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='48) And, with ⃗xAt = ⃗ϕA(t, PObj) = [−−−→ OApt]| ⃗A and ⃗xBt = ⃗ϕB(t, PObj) = [−−−→ OBpt]| ⃗B, define the “matrix motions” ⃗ϕt0 At : Mn1(A) → Mn1(A) and ⃗ϕt0 Bt : Mn1(B) → Mn1(B) by � � � ⃗ϕt0 At(⃗xAt0) := ⃗xAt (= [ −−−−−−−−→ OA�Φ(t, PObj)]| ⃗A = [−−−−−−−→ OAΦt0 t (pt0)]| ⃗A = ⃗ϕAt(PObj)), ⃗ϕt0 Bt(⃗xBt0) := ⃗xBt (= [ −−−−−−−−→ OB �Φ(t, PObj)]| ⃗B = [−−−−−−−→ OBΦt0 t (pt0)]| ⃗B = ⃗ϕBt(PObj)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='49) And Θt(⃗xBt) = ⃗xAt, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Θt(⃗ϕt0 Bt(⃗xBt0)) = ⃗ϕt0 At(⃗xAt0) with ⃗xAt0 = Θt0(⃗xBt0), thus Θt ◦ ⃗ϕt0 Bt = ⃗ϕt0 At ◦ Θt0 : Mn1(B) → Mn1(A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='50) In other words, the following diagram commutes: ⃗xBt0 = ⃗ϕB(t0, PObj) Θt0 � ⃗ϕt0 Bt � ⃗xBt = ⃗ϕt0 Bt(⃗xBt0) Θt � PObj ∈ Obj ⃗ϕBt0 � ⃗ϕAt0 � ⃗xAt0 = ⃗ϕA(t0, PObj) = Θt0(⃗xBt0) ⃗ϕt0 At � ⃗xAt = ⃗ϕt0 At(⃗xAt0) = Θt(⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='51) Thus, for any vector field ⃗uBt0 in RB, dΘt(⃗xBt) � �� � (translation at t) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' d⃗ϕt0 Bt(⃗xBt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗uBt0(⃗xBt0) � �� � (deformation from t0 to t) = d⃗ϕt0 At(⃗xAt0) � �� � (deformation from t0 to t) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' dΘt0(⃗xBt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗uBt0(⃗xBt0) � �� � (translation at t0) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='52) 67 68 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Drive and Coriolis forces Exercice 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='17 Redo the above steps with ObjRB instead of Obj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Consider the Lagrangian associated function Φt0 RBt with the motion �ΦRB of ObjRB: Φt0 RBt : � ΩRBt0 = Rn → ΩRBt = Rn qt0 = �ΦRB(t0, QRB) → qt = Φt0 RBt(qt0) := �ΦRB(t, QRB), � (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='53) then define the “matrix motions” ⃗ϕt0 Dt : Mn1(A) → Mn1(A) and ⃗ϕt0 St : Mn1(B) → Mn1(B) by � � � ⃗ϕt0 Dt(⃗yDt0) := ⃗yDt (= [ −−−−−−−−−−→ OA�ΦRB(t, QRB)]| ⃗ A = [−−−−−−−−→ OAΦt0 RBt(pt0)]| ⃗ A = ⃗ϕDt(QRB)), ⃗ϕt0 St(⃗yS) := ⃗yS (= [ −−−−−−−−−−→ OB �ΦRB(t, QRB)]| ⃗ B = [−−−−−−−−→ OBΦt0 RBt(qt0)]| ⃗ B = ⃗ϕS(QRB)), (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='54) Thus ⃗ϕS is a time-shift, which is also abusively noted ⃗ϕt0 St = I (algebraic identity).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So with Θt(⃗yS) = ⃗yDt we get Θt(⃗ϕt0 Dt(⃗yS)) = ⃗ϕt0 Dt(⃗yDt0), with ⃗yDt0 = Θt0(⃗yS), thus Θt ◦ ⃗ϕt0 St = ⃗ϕt0 Dt ◦ Θt0 : Mn1(B) → Mn1(A) (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='55) (also abusively written Θt = ⃗ϕt0 Dt ◦ Θt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In other words, the following diagram commutes: ⃗yS = ⃗ϕS(QRB) Θt0 � ⃗ϕt0 St = time shift � ⃗yS = ⃗ϕS(QRB) Θt � QRB ∈ ObjRB ⃗ϕS � ⃗ϕt0 D � ⃗yDt0 = ⃗ϕDt0(QRB) = Θt0(⃗yS) ⃗ϕt0 Dt � ⃗yDt = ⃗ϕDt(QRB) = ⃗ϕt0 Dt(⃗yDt0) = Θt(⃗yS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='56) And (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='55) gives, for any ⃗yS = ⃗ϕS(QRB) and all vector field ⃗uS (static in RB), with ⃗yDt0 = Θt0(⃗yS), dΘt(⃗yS) � �� � (translation at t) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' d⃗ϕt0 St(⃗yS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗uS(⃗yS) � �� � (time shift from t0 to t) = d⃗ϕt0 Dt(⃗yDt0) � �� � (Drive motion from t0 to t) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' dΘt0(⃗yS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗uS(⃗yS) � �� � (translation at t0) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='57) 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10 Drive and Coriolis forces 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Fundamental principal: requires a Galilean referential Second Newton’s law of motion (fundamental principle of dynamics): In a Galilean referential, the sum of the external forces ⃗f on an object is equal to its mass multiplied by its acceleration: � external⃗f = m⃗γ (in a Galilean referential).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='58) Question: And in a Non Galilean referential?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer: Then you have to add “observer dependent forces”, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' you have to add “apparent forces” due to the motion of the non Galilean observer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Indeed, the motion of an object in our Universe does not care about the observer motion (his accelerations and velocities).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' See e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='youtube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='com/watch?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='v=_36MiCUS1ro for a carousel (a merry-go-round), See e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='youtube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='com/watch?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='v=aeY9tY9vKgs for tornadoes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Drive + Coriolis forces = the inertial force Consider ⃗f(t, pt) = the sum of the external forces acting on PObj at t at pt = �Φ(t, PObj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In a Galilean referential RA, Newton laws (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='58) means [⃗ft(pt)]| ⃗A = m [⃗γt(pt)]| ⃗A, written ⃗fAt(⃗xAt) = m⃗γAt(⃗xAt) ∈ Mn1, (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='59) with ⃗xAt := [−−−→ OApt]| ⃗A, ⃗fAt(⃗xAt) := [⃗ft(pt)]| ⃗A and ⃗γAt(⃗xAt) = [⃗γt(pt)]| ⃗A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' With ⃗xAt = Θt(⃗xBt), the accelera- tion addition formula gives ⃗fAt(⃗xAt) = m(dΘt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗γB(⃗xBt) + ⃗γDt(⃗xAt) + ⃗γCt(⃗xAt)) ∈ RA, thus, in RB, dΘt −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗fAt(⃗xAt) � �� � ⃗fAt∗(⃗xBt)= ⃗fBt(⃗xBt) = m⃗γB(⃗xBt) + m dΘt −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗γDt(⃗xAt) � �� � m ⃗γDt∗(⃗xBt) + m dΘt −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗γCt(⃗xAt) � �� � m ⃗γCt∗(⃗xBt) , (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='60) and dΘt −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗ft(pt)]| ⃗A = dΘt −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗fAt(⃗xAt) =(10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='26) [⃗ft(pt)]| ⃗B =noted ⃗fBt(⃗xBt) is the external forces as quanti- fied by B at t, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='26) (with Θt supposed to be affine).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And with the pull-back notation, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='26): 68 69 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Summary for “Sun and Earth” Definition 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='18 At t on pt, define The drive force ⃗fBDt(⃗xBt) := −m dΘt −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗γDt(⃗xAt) (= −m⃗γDt ∗(⃗xBt)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The Coriolis force ⃗fBCt(⃗xBt) := −m dΘt −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗γCt(⃗xAt) (= −m⃗γCt ∗(⃗xBt)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (The inertial, or fictitious, force := ⃗fBDt(⃗xBt) + ⃗fBCt(⃗xBt) = −m dΘt −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (⃗γDt + ⃗γCt)(⃗xAt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='61) Then (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='60) gives the fundamental principle quantified in RB (non Galilean referential): ⃗fBt(⃗xBt) + ⃗fBDt(⃗xBt) + ⃗fBCt(⃗xBt) = m⃗γB(⃗xBt) , (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='62) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', at t, in RB: The external force + the Drive and Coriolis forces = m times the acceleration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11 Summary for “Sun and Earth” Illustation with a simplified (circular) motion of the Earth around the Sun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Coriolis forces on the Earth 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Referentials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Relative referential RB = (OB, ( ⃗B1, ⃗B2, ⃗B3)) chosen by the observer B fixed on the Earth, where OBt = �ΦRB(t, QOB) is the position of the particle QOB at the center of the Earth, written OB by B (fixed for B), and ( ⃗B1t, ⃗B2t, ⃗B3t) is a Euclidean basis (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' built with the metre) fixed in the Earth, written ( ⃗B1, ⃗B2, ⃗B3) by B (fixed for B), with ⃗B3 chosen to be along the rotation axis of the Earth and oriented from the south pole to the north pole;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And (·, ·)B is the associated Euclidean dot product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So, a fixed particle QRB in the Earth at longitude θQRB ∈] − π, π] and latitude ϕQRB ∈ [− π 2 , π 2 ] is referenced by observer B as the matrix ⃗yS = ⃗ϕS(QRB) = [ −−−−−−−−−−→ OB �ΦRB(t, QRB)]| ⃗B = RB � � cos(θQRB ) cos(ϕQRB ) sin(θQRB ) cos(ϕQRB ) sin(ϕQRB ) � � where RB = || −−−−−−−−−−→ OB �ΦRB(t, QRB)||B is the distance between QOB and QRB (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' if QRB is on the surface of the Earth then RB ≃ 6371 km).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Initial Galilean referential RA0 = (OA0, ( ⃗A1, ⃗A2, ⃗A3)): OA0 is at the center of the Sun and ( ⃗A1, ⃗A2, ⃗A3) is a Euclidean basis (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' built with the foot) fixed relative to the stars, such that ⃗A3 = µ ⃗B3 with µ > 0 (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' µ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3048 and λ = 1 µ ≃ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='28);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And (·, ·)A is the associated Euclidean dot product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Deduced absolute Galilean referential RA = (OAt, ( ⃗A1, ⃗A2, ⃗A3)) chosen by observer A fixed on Earth, where OAt = OBt, written OA by A (fixed for A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Since it takes more that 365 days for QOB to complete a rotation around the Sun, the motion of QOB will be considered to be rectilinear at constant velocity “in a short interval of time” sufficient for the computation of the Coriolis acceleration with “sufficient accuracy” (simplifies the calculations).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (If A prefers to work with the initial Galilean referential RA0, then the absolute matrix motion ⃗ϕA(t, PObj) = [ −−−−−−−−→ OA�Φ(t, PObj)]| ⃗A has to be replaced by ⃗ϕA(t, PObj) = [−−−−−−→ OA0OB(t)]| ⃗A + [ −−−−−−−−−−→ OB(t)�Φ(t, PObj)]| ⃗A, idem for the drive motion ⃗ϕD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Drive motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The motion t → qt = �ΦRB(t, QRB) of a particle QRB in the Earth is stored by A as the drive motion ⃗ϕD given by (matrix valued), with ω the angular velocity of the Earth in RA, ⃗yD(t) = ⃗ϕD(t, QRB) = RA(QRB) � � cos(ωt) cos ϕQRB sin(ωt) cos ϕQRB sin ϕQRB � � = [−−−−→ OAq(t)]| ⃗A = � � yD1(t) yD2(t) yD3 � � , (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='63) where RA(QRB) = ||−−−−−→ QOBQRB||| ⃗A is the distance between QOB and QRB for A (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' RA ≃ 20902231 foot if QRB is on the surface of the Earth).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (And (ωt) by replaced by (α0+ω(t−t0)) to be more general.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Drive velocity: With ⃗ωD := ω ⃗A3, ⃗vD(t, ⃗yD(t)) = ⃗yD ′(t) = ωRA � � − sin(ωt) cos ϕQRB cos(ωt) cos ϕQRB 0 � � = ω � � −y2(t) y1(t) 0 � � = ω � � 0 −1 0 1 0 0 0 0 0 � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗yD(t) = ⃗ωD∧⃗yD(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='64) 69 70 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Summary for “Sun and Earth” 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Drive acceleration: ⃗γD(t, ⃗yDt) = ⃗yD ′′(t) = ⃗ωD ∧ ⃗yD ′(t) = ⃗ωD ∧ ⃗vD(t, ⃗yDt) = ⃗ωD ∧ (⃗ωD ∧ ⃗yD(t)) = −ω2 � � yD1(t) yD2(t) 0 � � (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='65) = the usual centrifugal acceleration (in a plane parallel to the equatorial plane, drawing).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Differential of the drive velocity (time and space independent here): (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='64) gives d⃗vD(t, ⃗yDt) = d⃗vD = � � 0 −ω 0 ω 0 0 0 0 0 � � = ⃗ωD ∧ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='66) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Translator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Here OAt = OBt, thus Θt(⃗0) = ⃗0 (with [⃗0] =noted ⃗0 = the null matrix), cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Calculation of dΘt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' With Θt affine, dΘt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [ ⃗Bit]| ⃗B = [ ⃗Bit]| ⃗A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus ⃗B3 = λ ⃗A3 (hypothesis) and dΘt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [ ⃗B3]| ⃗B = [ ⃗B3t]| ⃗A give dΘt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗E3 = λ ⃗E3 where ( ⃗Ei) is the canonical basis in Mn1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then let QBi ∈ ObjRB be the Earth particle which position qti = �ΦRB(t, QBi) makes ⃗Bit := −−−−→ OBtqti.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So, ⃗B1 and ⃗B2 being in the equatorial plane, (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='63) gives dΘt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗E1 = dΘt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [ ⃗B1]| ⃗B = [ ⃗B1]| ⃗A = [−−−→ OAqt1]| ⃗A = λ � � cos(ωt) sin(ωt) 0 � �, and dΘt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗E2 = dΘt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [ ⃗B2]| ⃗B = [ ⃗B2]| ⃗A = [−−−→ OAqt2]| ⃗A = λ � � − sin(ωt) cos(ωt) 0 � �.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus [dΘt]| ⃗E = λ � � cos(ωt) − sin(ωt) 0 sin(ωt) cos(ωt) 0 0 0 1 � � = the expected rotation matrix expanded by λ (change of unit of measurement).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Calculation of Θt (affine): Θt(⃗yS) = Θt(⃗0) + dΘt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗yS, so, with OAt = OBt here, ⃗yDt := Θt(⃗yS) = dΘt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗yS (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='67) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Motions of Obj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' B quantifies the motion �Φ of Obj, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' he stores the relative motion ⃗ϕB of Obj, and the relative velocities and accelerations ⃗vBt and ⃗γB (matrices), cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10)-(10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Translations for A: With ⃗xAt = Θt(⃗xBt), ⃗vBt∗(⃗xAt) = dΘt(⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗vBt(⃗xBt) and ⃗γBt∗(⃗xAt) = dΘt(⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗γBt(⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='68) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Drive force (apparent force in RB due to the motion of B): ⃗fBDt(⃗xBt) = −m dΘt −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗γDt(⃗xAt) (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='65) = λmω2dΘt −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' � � xA1(t) xA2(t) 0 � � (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='67) = λmω2 � � xB1(t) xB2(t) 0 � � , (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='69) centrifugal force (in a “parallel plane” at latitude of PObj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Coriolis acceleration (apparent acceleration due to the motion of B): ⃗γCt(⃗xAt) = 2 d⃗vDt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (dΘt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗vBt(⃗xBt)) = 2 dΘt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗vDt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗vBt(⃗xBt) (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='70) because dΘt commutes with d⃗vDt (composition of “rotations along the same south-north axis” which reads as eiωt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='ei π 2 = ei π 2 eiωt = ei( π 2 +ωt) in the equatorial plane).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Coriolis force (apparent force due to the motion of B): ⃗fBCt(⃗xBt) = −m dΘt −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗γCt(⃗xAt) = −2m d⃗vDt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗vBt(⃗xBt) = −2m⃗ω ∧ ⃗vBt(⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='71) 70 71 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' “Isometric objectivity” and “Frame Invariance Principle” 11 Objectivities Goal: To give an objective expression of the laws of mechanics;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' As Maxwell [13] said: “The formula at which we arrive must be such that a person of any nation, by substituting for the different symbols the numerical value of the quantities as measured by his own national units, would arrive at a true result”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Generic notation: if a function z is given as z(t, x), then zt(x) := z(t, x), and conversely.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 “Isometric objectivity” and “Frame Invariance Principle” This manuscript is not intended to describe “isometric objectivity”: “Isometric objectivity” is the framework in which the “principle of material frame-indifference” (“frame invariance principle”) is settled, principle which states that “Rigid body motions should not affect the stress constitutive law of a material”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', Truesdell–Noll [19] p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 41: « Constitutive equations must be invariant under changes of frame of reference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' » Or Germain [9] : « Axiom of power of internal forces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The virtual power of the "internal forces" acting on a system S for a given virtual motion is an objective quantity;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', it has the same value whatever be the frame in which the motion is observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' » NB: Both of these affirmations are limited to “isometric changes of frame” (the same metric for all), as Truesdell–Noll [19] page 42-43 explain: The “isometric objectivity” concern one observer who defines his Euclidean dot product and consider only orthonormal change of bases to validate a constitutive law.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' If you want to interpret “isometric objectivity” in the “covariant objectivity” framework, then “isometric objectivity” corresponds to a dictatorial management: One observer with his Euclidean referential (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' based on the English foot), imposes his unit of length to all other users (isometry hypothesis).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Note: The metre was not adopted by the scientific community until after 1875.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Moreover, isometric objectivity leads to despise the difference between covariance and contravariance, due to the uncontrolled use of the Riesz representation theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Remark 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Marsden and Hughes [12] p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 8 use this isometric framework to begin with.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' But, pages 22 and 163, they write that a “good modelization” has to be “covariant objective” (observer independent) to begin with;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And they propose a covariant modelization for elasticity at § 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Definition and characterization of the covariant objectivity 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Framework of classical mechanics Framework of classical mechanics to simplify.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Consider two observers A and B and their referentials RA = (OA, ( ⃗Ai)) and RB = (OB, ( ⃗Bi)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ( ⃗Ai) and ( ⃗Bi) are Euclidean bases in foot and metre, (·, ·)A and (·, ·)B is their associated Euclidean dot products.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And Θ is the translator, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='19).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Consider a regular motion �Φ of an object Obj, pt = �Φ(t, PObj) ∈ Rn the position at t of a particle in our Universe, Ωt = �Φ(t, Obj) the configuration at t, and C = � t∈[a,b]({t} × Ωt) the set of configurations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And ⃗xAt := [−−−→ OApt]| ⃗A ∈ Mn1(A) and ⃗xBt := [−−−→ OBpt]| ⃗B ∈ Mn1(B) are the stored components of pt relative to the chosen referentials, Mn1(A) and Mn1(B) being the spaces of n ∗ 1 matrices as referred to by A and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Covariant objectivity of a scalar function Let f : � C → R (t, pt) → f(t, pt) � be a Eulerian scalar function (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', a temperature field).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' f is quantified by A and B as the functions fA : � R×Mn1(A) → R (t, ⃗xAt) → fA(t, ⃗xAt) := f(t, pt) � and fB : � R×Mn1(B) → R (t, ⃗xBt) → fB(t, ⃗xBt) := f(t, pt) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 f is objective covariant iff, for all referentials RA and RB and for all t, fAt(⃗xAt) = fBt(⃗xBt) when ⃗xAt = Θt(⃗xBt), (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' fAt = fBt∗ is the push-forward of fBt by Θt cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 71 72 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition and characterization of the covariant objectivity 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Covariant objectivity of a vector field Let ⃗w : � C → ⃗Rn (t, pt) → ⃗w(t, pt) � be a Eulerian vector field (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', a force field).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗w is quan- tified by A and B as the functions ⃗wA : � R×Mn1(A) → Mn1(A) (t, ⃗xAt) → ⃗wA(t, ⃗xAt) := [⃗w(t, pt)] ⃗A � and ⃗wB : � R×Mn1(B) → Mn1(B) (t, ⃗xBt) → ⃗wB(t, ⃗xBt) := [⃗w(t, pt)] ⃗B � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So ⃗wA(t, ⃗xAt) and ⃗wB(t, ⃗xBt) are the column matrices of the components of ⃗w(t, pt) in RA and RB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 ⃗w is objective covariant iff, for all referentials RA and RB and for all t, ⃗wAt(⃗xAt) = dΘt(⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wBt(⃗xBt) when ⃗xAt = Θt(⃗xBt), (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗wAt = ⃗wBt∗ is the push-forward of ⃗wBt by Θt cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='20).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Example 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Fundamental counter-example: A Eulerian velocity field is not objective, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='39), because of the drive velocity ⃗vD ̸= ⃗0 in general.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Neither is a Eulerian acceleration field, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='45).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Example 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 The field of gravitational forces (external forces) is objective covariant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Covariant objectivity of differential forms Let α : � C → Rn∗ (t, pt) → α(t, pt) � be a Eulerian differential form (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' a measuring device used to get the inter- nal power).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' α is quantified by A and B as the functions αA : � R×Mn1(A) → Mn1(A) (t, ⃗xAt) → αA(t, ⃗xAt) := [α(t, pt)] ⃗A � and αB : � R×Mn1(B) → Mn1(B) (t, ⃗xBt) → αB(t, ⃗xBt) := [α(t, pt)] ⃗B � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So αA(t, ⃗xAt) and αB(t, ⃗xBt) are the row matrices of the components of α(t, pt) in RA and RB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 α is objective covariant iff, for all referentials RA and RB and for all t, αAt(⃗xAt) = αBt(⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΘt(⃗xBt)−1 when ⃗xAt = Θt(⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' αAt = αBt∗ is the push-forward of αBt by Θt cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' NB: (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3) and (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2) are compatible: If ⃗w is an objective vector field and if α is an objective differential form, then the scalar function α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w is objective: αAt(⃗xAt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wAt(⃗xAt) = αBt(⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wBt(⃗xBt) (= (α(t, pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w(t, pt)), (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4) since αAt(⃗xAt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wAt(⃗xAt) = (αBt(⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΘt(⃗xBt)−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (dΘt(⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wBt(⃗xBt)) = αBt(⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wBt(⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Covariant objectivity of tensors A tensor acts on both vector fields and differential forms, and its objectivity is deduced from the previous §.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So, let T be a (Eulerian) tensor corresponding to a “physical quantity”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The observers A and B describe T as being the functions TA and TB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 T is objective covariant iff, for all referentials RA and RB and for all t, TAt(⃗xAt) = TBt∗(⃗xAt) (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' TAt is the push-forward of TBt by Θt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Recall: TBt∗(⃗xAt)(α1(⃗xAt), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ⃗w1(⃗xAt)) := TBt(⃗xBt)(α1∗(⃗xBt), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ⃗w1∗(⃗xBt)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') 72 73 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Non objectivity of the velocities Example 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8 (Non covariant objectivity of a differential d⃗w) Let ⃗w be an objective vector field, seen as ⃗wA by A and ⃗wB by B;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So ⃗wAt(⃗xAt) =(11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2) dΘt(⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wBt(⃗xBt) when ⃗xAt = Θt(⃗xBt), thus d⃗wAt(⃗xAt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΘt(⃗xBt) = dΘt(⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗wBt(⃗xBt) + (d2Θt(⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wBt(⃗xBt)), (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6) hence d⃗wAt(⃗xAt) = dΘt(⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗wBt(⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΘt(⃗xBt)−1 + (d2Θt(⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wBt(⃗xBt)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΘt(⃗xBt)−1 ̸= dΘt(⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗wBt(⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΘt(⃗xBt)−1 when d2Θt ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7) Thus d⃗w is not covariant objective in general.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' However in classical mechanics for “change of Cartesian referentials” Θt is affine, so d2Θt = 0, and in particular d⃗w is objective when ⃗w is.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And (d2 ⃗wAt(⃗xAt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΘt(⃗xBt)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΘt(⃗xBt) + d⃗wAt(⃗xAt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d2Θt(⃗xBt) = dΘt(���xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d2 ⃗wBt(⃗xBt) + 2 d2Θt(⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗wBt(⃗xBt) + d3Θt(⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wBt(⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8) Thus d2 ⃗w is not covariant objective in general (but if Θt is affine then d2 ⃗w is objective if ⃗w is).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Non objectivity of the velocities 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Eulerian velocity ⃗v : not covariant (and not isometric) objective Velocity addition formala: With ⃗vBt∗(⃗xAt) = dΘt(⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w(⃗xBt) when ⃗xAt = Θt(⃗xBt), cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='39), ⃗vAt(⃗xAt) = ⃗vBt∗(⃗xAt) + ⃗vDt(⃗xAt) ̸= ⃗vBt∗(⃗xAt) when ⃗vDt(⃗xAt) ̸= ⃗0, (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9) thus a Eulerian velocity field is not covariant objective (and not isometric objective).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 d⃗v is not objective The velocity addition formula, (⃗vAt − ⃗vDt)(⃗xAt) = ⃗vBt∗(⃗xAt) = dΘt(⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗vBt(⃗xBt) when ⃗xAt = Θt(⃗xBt), gives d(⃗vAt − ⃗vDt)(⃗xAt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΘt(⃗xBt) = dΘt(⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗vBt(⃗xBt) + d2Θt(⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗vBt(⃗xBt), (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10) thus d⃗v is neither covariant objective nor isometric objective because of d⃗vD: d⃗vAt(⃗xAt) = d⃗vBt∗(⃗xAt) + d⃗vDt(⃗xAt) + d2Θt(⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗vBt(⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΘt(⃗xBt)−1 ̸= d⃗vBt∗(⃗xAt) in general.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11) Remark 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9 Recall: “Isometric objective” implies The use of the same Euclidean metric in RB and RA, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (·, ·)A = (·, ·)B, �ΦRB (motion of RB) is a solid body motion, and Θt is affine (so d2Θt = 0 for all t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10 Prove, with Qt the (orthonormal) transition matrix from ( ⃗Ai) to ( ⃗Bi): [d⃗vt]| ⃗B = Qt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [d⃗vt]| ⃗A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='Q−1 t + Q′(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='Q−1 t , written [L]| ⃗B = Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [L]| ⃗A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='QT + Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='QT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12) (Used in classical mechanics courses, to prove that d⃗v isn’t “isometric objective” because of Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='QT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' t0, t ∈ R, pt0 = �Φ(t0, PObj), pt = �Φ(t, PObj) = Φt0 t (pt0), ⃗v(t, pt) = ∂ �Φ ∂t (t, PObj), and F t0 t (pt0) = dΦt0 t (pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So ⃗v(t, Φt0 t (pt0)) = ∂Φt0 pt0 ∂t (t, pt0), thus d⃗v(t, pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F t0 pt0 (t) = ∂F t0 pt0 ∂t (t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='30), with F t0 pt0 =noted F, gives [F(t)]|⃗at0 , ⃗ B = Q(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [F(t)]|⃗at0 , ⃗ A, thus [F ′(t)]|⃗at0 , ⃗ B = Q′(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [F(t)]|⃗at0 , ⃗ A + Q(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [F ′(t)]|⃗at0 , ⃗ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus [d⃗v(t, pt)]| ⃗ B = [F t0 pt0 ′(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F t0 pt0 (t)]| ⃗ B = [F t0 pt0 ′(t)]| ⃗ B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [F t0 pt0 (t)]| ⃗ B = (Q′(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [F(t)]|⃗at0 , ⃗ A + Q(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [F ′(t)]|⃗at0 , ⃗ A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [F(t)]−1 |⃗at0 , ⃗ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='Q(t)−1 = Q′(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='Q(t)−1 + Q(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [F ′(t)]|⃗at0 , ⃗ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [F(t)]−1 |⃗at0 , ⃗ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='Q(t)−1 = Q′(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='Q(t)−1 + Q(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [d⃗v(t, pt)]| ⃗ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='Q(t)−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='34)- (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='35).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11 Prove that d2⃗v is “isometric objective” when �ΦRB is a rigid body motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8) with ⃗vA − ⃗vD instead of ⃗wA, and ⃗vB instead of ⃗wB give, in an “isometric objective” framework, d2(⃗vAt − ⃗vDt)(⃗xAt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (⃗uBt∗, ⃗wBt∗) = dΘt(⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d2⃗vBt(⃗xBt)(⃗uB, ⃗wB).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13) Here d2⃗vDt = 0 (rigid body motion), thus d2⃗v is “isometric objective”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 73 74 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The Lie derivatives are covariant objective 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 d⃗v + d⃗vT is “isometric objective” Proposition 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12 If �ΦRB is a rigid body motion then d⃗vt + d⃗vT t is “isometric objective” d⃗vAt + d⃗vT At = (d⃗vBt + d⃗vT Bt)∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14) (Isometric framework: The rate of deformation tensor is independent of an added added rigid motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='QT = I gives Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='QT + ( Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='QT )T = 0, then apply (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13 Prove that Ω = d⃗v−d⃗vT 2 is not isometric objective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11) gives d⃗vT At = d⃗vT Bt∗ + d⃗vT Dt, thus d⃗vAt−d⃗vT At 2 = d⃗vBt∗−d⃗vT Bt∗ 2 + d⃗vDt−d⃗vT Dt 2 ̸= d⃗vBt∗−d⃗vT Bt∗ 2 , even if �ΦRB is a solid body motion (then d⃗vDt−d⃗vT Dt 2 = ⃗ω∧ is a rotation time a dilation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Lagrangian velocities The Lagrangian velocities do not define a vector field, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' § 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus asking about the objectivity of Lagrangian velocities is meaningless.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 The Lie derivatives are covariant objective Framework of § 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In particular we have the velocity-addition formula ⃗vAt = ⃗vBt∗ + ⃗vDt in RA where ⃗vBt∗(⃗xAt) = dΘt(⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗vBt(⃗xBt) and ⃗xBt = Θt(⃗xAt), cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='39).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The objectivity under concern is the covariant objectivity (no inner dot product or basis required).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The Lie derivatives are also called “objective rates” because they are covariant objectives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Easy proofs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Scalar functions Proposition 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14 If f be a covariant objective function, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1), then its Lie derivative L⃗vf is covariant objective: L⃗vAfA = Θ∗(L⃗vBfB), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' L⃗vAfA(t, ⃗xAt) = L⃗vBfB(t, ⃗xBt) when ⃗xAt = Θt(⃗xBt), (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='15) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', DfA Dt (t, ⃗xAt) = DfB Dt (t, ⃗xBt), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ( ∂fA ∂t + dfA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗vA)(t, ⃗xAt) = ( ∂fB ∂t + dfB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗vB)(t, ⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Consider the motion t → p(t) = �Φ(tPObj) of a particle PObj, and ⃗xA(t) = [−−−−→ OAp(t)]| ⃗A and ⃗xB(t) = [−−−−→ OBp(t)]| ⃗B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' With f objective, (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1) gives fB(t, ⃗xB(t)) = fA(t, Θ(t, ⃗xB(t))) (= fA(t, ⃗xA(t))), thus DfB Dt (t, ⃗xB(t)) = ∂fA ∂t (t, ⃗xA(t)) + dfAt(⃗xA(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (∂Θ ∂t (t, ⃗xB(t)) � �� � ⃗vDt(⃗xAt) + dΘt(⃗xB(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗vBt(⃗xB(t))) � �� � ⃗vBt∗(⃗xAt) = ∂fA ∂t (t, ⃗xAt) + dfAt(⃗xAt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗vAt(⃗xAt) = DfA Dt (t, ⃗xAt), (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16) thanks to velocity addiction formula ⃗vAt = ⃗vBt∗ + ⃗vDt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Vector fields Proposition 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='15 Let ⃗w be a covariant objective vector field, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then its Lie derivative L⃗v ⃗w is covariant objective: L⃗vA ⃗wA = Θ∗(L⃗vB ⃗wB), (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='17) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', when ⃗xAt = Θt(⃗xBt), L⃗vA ⃗wA(t, ⃗xAt) = dΘt(⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L⃗vB ⃗wB(t, ⃗xBt), (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='18) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', (D ⃗wA Dt − d⃗vA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wA)(t, ⃗xAt) = dΘ(t, ⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (D ⃗wB Dt − d⃗vB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wB)(t, ⃗xBt), (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='19) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', (∂ ⃗wA ∂t + d⃗wA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗vA − d⃗vA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wA)(t, ⃗xAt) = dΘ(t, ⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (∂ ⃗wB ∂t + d⃗wB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗vB − d⃗vB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wB)(t, ⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='20) But the partial, convected, material, and Lie autonomous derivatives are not covariant objective (not 74 75 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The Lie derivatives are covariant objective even isometric objective because of the drive velocity ⃗vD): We have (d⃗wAt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (⃗vAt−⃗vDt))(⃗xAt) = (dΘt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (d⃗wBt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗vBt) + (d2Θt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗vBt)(⃗xBt), (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='21) (d(⃗vAt−⃗vDt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wAt)(⃗xAt) = (dΘt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (d⃗vBt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wBt) + (d2Θt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗vBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wBt)(⃗xBt), (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22) (d(⃗vAt−⃗vDt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (⃗vAt−⃗vDt))(⃗xAt) = (dΘt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (d⃗vBt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗vBt) + d2Θt(⃗vBt,⃗vBt))(⃗xBt), (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='23) L0 (⃗vAt−⃗vDt) ⃗wAt(⃗xAt) = dΘt(⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L0 ⃗vBt ⃗wBt(⃗xBt), (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='24) ∂ ⃗wA ∂t (t, ⃗xAt) + L0 ⃗vD ⃗wAt(⃗xAt) = dΘt(⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='∂ ⃗wB ∂t (t, ⃗xBt), (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='25) D ⃗wA Dt (t, ⃗xAt) − d⃗vDt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wAt(⃗xAt) = dΘt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='D ⃗wB Dt (t, ⃗xBt) + d2Θt(⃗vBt, ⃗wBt)(⃗xBt), (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='26) ∂(⃗vA−⃗vD) ∂t (t, ⃗xAt) + L0 ⃗vD(⃗vA−⃗vD)(t, ⃗xAt) = dΘt(⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='∂⃗vB ∂t (t, ⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='27) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' • ⃗wAt(Θt(⃗xBt)) = dΘt(⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wBt(⃗xBt) gives d⃗wAt(⃗xAt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΘt(⃗xBt) = d2Θt(⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wBt(⃗xBt) + dΘt(⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗wB(⃗xBt), (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='28) thus, with dΘt(⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗vBt(⃗xBt) = (⃗vAt−⃗vDt)(⃗xAt) = ⃗vBt∗(⃗xAt) (velocity-addition formula), d⃗wAt(⃗xAt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (⃗vAt−⃗vDt)(⃗xAt) = (d2Θt(⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗vBt(⃗xBt)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wBt(⃗xBt) + dΘt(⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗wBt(⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗vBt(⃗xBt), hence (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='21).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In particular d⃗wAt(⃗xAt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗vAt(⃗xAt) ̸= dΘt(⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (d⃗wBt(⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗vBt(⃗xBt)) (the vector field d⃗w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v is not objective).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (⃗vAt−⃗vDt)(Θt(⃗xBt)) = dΘt(⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗vBt(⃗xBt) gives d(⃗vAt−⃗vDt)(⃗xAt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΘt(⃗xBt) = d2Θt(⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗vBt(⃗xBt) + dΘt(⃗xBt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗vBt(⃗xBt), so, applied to ⃗wBt (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗vBt), we get (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22) (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='23)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Hence (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='24).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' If ⃗xAt = Θt(⃗xB), then ⃗wA(t, Θ(t, ⃗xB)) = dΘ(t, ⃗xB).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wB(t, ⃗xB), so, with ∂Θ ∂t (t, ⃗xB) = ⃗vΘt(⃗xAt), we get ∂ ⃗wA ∂t (t, ⃗xAt) + d⃗wAt(⃗xAt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗vΘt(⃗xAt) = d∂Θ ∂t (t, ⃗xB).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wBt(⃗xB) + dΘt(⃗xB).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='∂ ⃗wB ∂t (t, ⃗xB) = (d⃗vΘt(⃗xAt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΘt(⃗xB)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wBt(⃗xB) + dΘt(⃗xB).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='∂ ⃗wB ∂t (t, ⃗xB), Thus (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='25) since ⃗vΘ = ⃗vD;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='21) gives (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='26).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗vB∗(t, Θ(t, ⃗xB)) = dΘ(t, ⃗xB).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗vB(t, ⃗xB) gives ∂⃗vB∗ ∂t (t, ⃗xAt) + d⃗vB∗(⃗xAt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗vΘ(t, ⃗xAt) = ∂dΘ ∂t (t, ⃗xB) � �� � d⃗vΘt(⃗xAt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΘt(⃗xB) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗vBt(⃗xB) + dΘ(t, ⃗xB).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='∂⃗vB ∂t (t, ⃗xB, ) since ∂dΘ ∂t (t, ⃗xB) = d( ∂Θ ∂t )(t, ⃗xB) and ∂Θ ∂t (t, ⃗xB) = ⃗vΘ(t, ⃗xAt) = ⃗vΘt(Θt(⃗xB));' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' hence (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='27).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Tensors Proposition 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16 It T is a covariant objective tensor, then its Lie derivatives are covariant objectives: L⃗vATA = Θ∗(L⃗vBTB).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='29) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Corollary of (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='15) and (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='18) to get L⃗v(α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w) = (L⃗vα).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w + α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (L⃗v ⃗w);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then use L⃗v(t1 ⊗ t2) = (L⃗vt1) ⊗ t2 + t1 ⊗ (L⃗vt2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 75 76 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Taylor expansions and ubiquity gift 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Taylor expansions and ubiquity gift 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 In Rn with ubiquity Generic formula: f(t) = f(t0) + (t−t0) f ′(t0) + (t−t0)2 2 f ′(t0)2 + o((t−t0)2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='30) In particular f(t) = ⃗w(t, p(t)) gives ⃗w(t, p(t)) = ⃗w(t0, p(t0)) + (t−t0) D ⃗w Dt (t0, p(t0)) + (t−t0)2 2 D ⃗w Dt (t0, p(t0))2 + o((t−t0)2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='31) Problem : ⃗w(t, p(t)) is a vecteur at t at p(t) while ⃗w(t0, p(t0)) is a vecteur at t0 at p(t0), so (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='31) cannot be written ⃗w(t, p(t)) − � ⃗w(t0, p(t0)) + (t−t0) D ⃗w Dt (t0, p(t0)) + (t−t0)2 2 D ⃗w Dt (t0, p(t0))2� = o((t−t0)2), (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='32) since the left-hand side supposes the ubiquity gift.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' in a non-planar manifold (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' a surface in R3 considered on its own), ⃗w(t, pt) ∈ Tpt(Ωt) = the linear tangent space at p(t) = pt, whereas ⃗w(t0, pt0) ∈ Tpt0(Ωt0) = the linear tangent space at p(t0) = pt0, and the tangent spaces Tpt(Ωt) and Tpt0(Ωt0) are distinct at two distinct points in general;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus the left-hand side of (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='32) is meaningless.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In R3 our affine space (our Universe), Tpt(Ωt) and Tpt0(Ωt0) are identified with ⃗R3, and (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='31) is well defined, and very useful!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 General case By definition, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10), with p(t) = Φt0(t, pt0) = Φt0 t (pt0), L⃗v ⃗w(t0, pt0) = dΦt0 t (pt0)−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w(t, p(t)) − ⃗w(t0, pt0) t − t0 + o(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='33) Thus, dΦt0 t (pt0)−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w(t, p(t)) = ⃗w(t0, pt0) + (t−t0) L⃗v ⃗w(t0, pt0) + o(t−t0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='34) Hence we get the first order Taylor expansion without ubiquity gift: ⃗w(t, p(t)) = dΦt0 t (pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' � ⃗w + (t−t0) L⃗v ⃗w � (t0, pt0) + o(t−t0), (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='35) both side of the equality being in Tpt(Ωt) (meaningful in any manifold).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proposition 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='17 In Rn, with the gift of ubiquity, (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='35) gives (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='31).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' dΦt0(t0+h, pt0)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w(t0, pt0) =(4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='35) ⃗w(t0, pt0) + h d⃗v(t0, pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w(t0, pt0) + o(h), thus ⃗w(t, pt) (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='35) = (I + h d⃗v(t0, pt0) + o(h)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' � (⃗w + h D ⃗w Dt − h d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w)(t0, pt0) + o(h) � = (⃗w + h d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w + h D ⃗w Dt − h d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w)(t0, pt0) + o(h) = (⃗w + h D ⃗w Dt )(t0, pt0) + o(h), which is (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='31).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proposition 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='18 In Rn, at second order, ⃗w(t, p(t)) = dΦt0 t (pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' � (⃗w + hL⃗v ⃗w + h2 2 L⃗v(L⃗v ⃗w))(t0, pt0) + o(h2) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='36) So if the values ⃗w(t0, pt0), L⃗v ⃗w(t0, pt0) and L⃗v(L⃗v ⃗w)(t0, pt0) are known, then ⃗w(t, p(t)) is estimated at second order thanks to the push-forward of (⃗w + hL⃗v ⃗w + h2 2 L⃗v(L⃗v ⃗w))(t0, pt0) by Φt0 t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 76 77 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Taylor expansions and ubiquity gift Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let dΦt0(t, pt0) = F t0 pt0 (t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let ⃗g(t) = dΦt0(t, pt0)−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w(t, p(t)) when p(t) = Φt0(t, pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So L⃗v ⃗w(t0, pt0) = ⃗g ′(t0), cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And D ⃗w Du (u, p(u)) = d⃗v(u, p(u)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w(u, p(u)) + F t u(pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗g ′(u), cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus D2 ⃗w Du2 (u, p(u)) = D(d⃗v) Du (u, p(u)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w(u, p(u)) + d⃗v(u, p(u)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' D ⃗w Du (u, p(u)) + d⃗v(u, p(u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F t u(pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗g ′(u) + F t u(pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗g ′′(u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus D2 ⃗w Dt2 (t, p(t)) = ( D(d⃗v) Dt .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w + d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' D ⃗w Dt + d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L⃗v ⃗w)(t, p(t)) + ⃗g ′′(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' With (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='39) we get ⃗g ′′(t) = L⃗v(L⃗v ⃗w)(t, p(t)), cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='39).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Alternate proof (calculation): (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='34) gives F t0 pt0 (t) = It0 + h d⃗v(t0, pt0) + h2 2 d⃗γ(t0, pt0) + o(h2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus, omitting the reference to (t0, pt0) to lighten the writing, dΦt0 t (pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (⃗w + hL⃗v ⃗w + h2 2 L⃗vL⃗v ⃗w + o(h2)) = � I + h d⃗v + h2 2 d(D⃗v Dt ) + o(h2) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' � ⃗w + hL⃗v ⃗w + h2 2 L⃗vL⃗v ⃗w + o(h2) � (11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='37) The h0 term is I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w = ⃗w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The h term is L⃗v ⃗w + d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w = D ⃗w Dt .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The h2 term is the sum of 1 2L⃗vL⃗v ⃗w = 1 2(D2 ⃗w Dt2 − 2 d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='D ⃗w Dt − D(d⃗v) Dt .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w + d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w), cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='39), d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L⃗v ⃗w = d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='D ⃗w Dt − d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w = 1 2(2d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='D ⃗w Dt − 2d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w), 1 2d(D⃗v Dt ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w = 1 2(D(d⃗v) Dt .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w + d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w), cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='36).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And the sum gives D2 ⃗w Dt2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 77 78 Part V Appendix In this appendix, we tried to give standard results useful in mechanics, results that are scattered in the existing literature, and sometimes difficult to find except in math books (differential geometry).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The definitions, notations and results are detailed, so that no ambiguity is possible (some notations can be nightmarish when not understood, or misused, or come like a bull in a china-shop).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' All the results presented apply to solids, fluids, thermodynamics, general relativity, electromagnetism, quantum mechanics, chemistry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (the same math applies to all.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' even applies to mechanical engineers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A Classical and duality notations A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Contravariant vector and basis A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Contravariant vector Let (E, +, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') =noted E be a real vector space (= a linear space on the field R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 An element ⃗x ∈ E is called a vector, or a “contravariant vector”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A vector is a vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So why this name contravariant?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Historical answer: Because of the change of basis formula [⃗x]|new = P −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗x]|old, see (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='28), which uses P −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So, what is a covariant vector?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer: From the vector space E, you can build the vector space (an overlay) L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) =noted E∗ = the space of linear forms on E (a linear form is a measuring instrument that gives values to vectors).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then an element ℓ ∈ E∗ will be called a covariant vector, because of the change of basis formula [ℓ]|new = [ℓ]|old.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' See § A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 for details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Basis Definitions: • n vectors ⃗e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗en ∈ E are linearly independent iff, for all λ, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', λn ∈ R, the equality �n i=1λi⃗ei = ⃗0 implies λi = 0 for all i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' n vectors ⃗e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗en ∈ E span E iff, for all ⃗x ∈ E, ∃λ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', λn ∈ R such that ⃗x = �n i=1λi⃗ei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A basis in E is a set {⃗e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗en} ⊂ E made of n linearly independent vectors which span E, in which case the dimension of E is n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Canonical basis Consider the field R of reals and the Cartesian product ⃗Rn = R × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' × R, n times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The canonical basis is ⃗e1 = (1, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', 0), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ⃗en = (0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', 0, 1), (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1) with 0 = the addition identity element used n−1 times, and 1 = the multiplication identity element used once.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Remark A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 The 3-D geometric space we live in has no canonical basis: What would the identity element 1 mean?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 1 metre?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 1 foot?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And there is no “intrinsic” preferred direction to define ⃗e1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So the Cartesian product ⃗Rn = R × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' × R and its canonical basis form an abstract mathematical model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Cartesian basis (René Descartes 1596-1650.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Let n = 1, 2, 3, let Rn be the usual affine space (space of points), and let ⃗Rn = (⃗Rn, +, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') be the usual real vector space of bipoint vectors with its usual algebraic operations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let p ∈ Rn, and let (⃗ei(p)) be a basis at p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A Cartesian basis in ⃗Rn is a basis independent of p (the same at all p), and then (⃗ei(p)) =noted (⃗ei).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Example of a non Cartesian basis: The polar basis, see example 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11 (polar coordinate system).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And a Euclidean basis is a particular Cartesian basis described in § B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' More generally, a Cartesian basis refers to En = E ×.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='×E (n-times) where E is a dimension 1 vector space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 78 79 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Representation of a vector relative to a basis A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Representation of a vector relative to a basis We give: the classical notation (non ambiguous), e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' used by Arnold [3] and Germain [8], and the duality notation (can be ambiguous because of misuses), e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' used by Marsden and Hughes [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Both classical and duality notation are equally good, but if you have any doubt, use the classical notations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Let ⃗x ∈ E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let (⃗ei) be a basis in E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The components of ⃗x relative to the basis (⃗ei) are the n real numbers x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', xn (classical notation) also named x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', xn (duality notation) such that ⃗x = x1⃗e1 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' + xn⃗en � �� � clas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' = x1⃗e1 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' + xn⃗en � �� � dual , i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗x]|⃗e = � � x1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' xn � � � �� � clas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' = � � x1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' xn � � � �� � dual , (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2) [⃗x]|⃗e being the column matrix representing ⃗x relative to the basis (⃗ei).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Of course xi = xi for all i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') And the column matrix [⃗x]|⃗e is simply named [⃗x] if one chosen basis is imposed to all.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' With the sum sign: ⃗x = n � i=1 xi⃗ei � �� � clas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' = n � i=1 xi⃗ei � �� � dual (= n � J=1 xJ⃗eJ = n � α=1 xα⃗eα).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3) (The index in a summation is a dummy index, even if you do not write the sum sign � as can be done with Enstein’s convention: ⃗x = �n j=1xj⃗ej =noted xj⃗ej = xi⃗ei = xJ⃗eJ = xα⃗eα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Example A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 In ⃗R2 with ⃗x = 3⃗e1 + 4⃗e2 = �2 i=1 xi⃗ei = �2 i=1 xi⃗ei: We have x1=x1=3 and x2=x2=4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And [⃗x]|⃗e = 3[⃗e1]|⃗e +4[⃗e2]|⃗e = �2 i=1 xi[⃗ei]|⃗e = �2 i=1 xi[⃗ei]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In particular, with δi j = δij := � = 1 if i=j = 0 if i̸=j � the Kronecker symbols, ⃗ej = n � i=1 δij⃗ei � �� � clas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' = n � i=1 δi j⃗ei � �� � dual , i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗e1]|⃗e = � � � � 1 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 0 � � � � , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', [⃗en]|⃗e = � � � � 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 0 1 � � � � , (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4) that is, the components of ⃗ej are δij with classical notations, and δi j with duality notations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And the matrices [⃗ej]|⃗e mimic the use of theoretical Cartesian space ⃗Rn = R × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' × R and its canonical basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Remark A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 The column matrix [⃗x]|⃗e is also called a “column vector”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' NB: A “column vector” is not a vector, but just a matrix (a collection of real numbers).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' See the change of basis formula (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='28) where the same vector is represented by two “column vectors” (two column matrices).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Dual basis Recall: Let E and F be vector spaces and (F(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F), +, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') =noted F(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) be the usual real vector space of functions with the internal addition (f, g) → f +g defined by (f +g)(x) := f(x)+g(x) and the external multiplication (λ, f) → λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='f defined by (λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='f)(x) := λ(f(x)), for all f, g ∈ F(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F), x ∈ E, λ ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='f =noted λf for all f ∈ F(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) and λ ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Linear forms = “Covariant vectors” Definition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 The set E∗ := L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) of linear scalar valued functions is called the dual of E: E∗ := L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) = the dual of E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5) And a linear scalar valued function ℓ ∈ E∗ is called a linear form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' More precisely, E∗ as defined in (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5) is the algebraic dual of E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' To define the topological dual usually needed with L2 functions in mechanics, E needs to be a Banach space (a vector space equipped with a norm with which E is complete), and E∗ is then the set of continuous linear forms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (If E is finite dimensional then any linear form is continuous relative to any norm since all norms are equivalent in finite dimension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') 79 80 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Dual basis E∗ is a vector space: sub-space of (F(R;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R), +, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') (trivial).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Interpretation: It answers the question: What does a function E → R do?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer: Like any function, it gives values to vectors: ℓ(⃗u) = the value of ⃗u through ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' That is, a ℓ ∈ E∗ is a measuring tool for vectors: If ���u ∈ E then ℓ(⃗u) = real value given by ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Notation: If ℓ ∈ E∗ then ∀⃗u ∈ E, ℓ(⃗u) noted = ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u, (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6) also written ⟨ℓ, ⃗u⟩E∗,E where ⟨.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⟩E∗,E is the duality bracket: The dot in ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u is “the distributivity dot” since linearity ℓ(⃗u + λ⃗v) = ℓ(⃗u) + λℓ(⃗v) = distributivity ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (⃗u + λ⃗v) = ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u + λℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' NB: The dot in ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u is not an inner dot product (since ℓ /∈ E while ⃗u ∈ E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 A linear form ℓ in E∗ is also called a “covariant vector”;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Co-variant refers to: 1- The action of a function on a vector, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6) (co-variant calculation), and 2- The change of coordinate formula [ℓ]new = [ℓ]|old.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P, see (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='28) (covariant formula).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' NB: E∗ being a vector space, an element ℓ ∈ E∗ is indeed a vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' But E∗ has no existence if E has not been specified first since E∗ := L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And ℓ ∈ E∗ can’t be confused with a vector ⃗u ∈ E since there is no natural canonical isomorphism between E and E∗ (no “intrinsic representation”), see § T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Remark A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8 Misner–Thorne–Wheeler [14], box 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1, insist: “Without it [the distinction between covari- ance and contravariance], one cannot know whether a vector is meant or the very different object that is a linear form.” A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Covariant dual basis (= the functions that give the components of a vector) Notation: If ⃗u1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ⃗uk are vectors in E, then Vect{⃗u1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ⃗uk} := the vector space spanned by ⃗u1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ⃗uk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let E be a finite dimensional vector space, and let (⃗ei)i=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',n be a basis in E Definition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9 Let i ∈ [1, n]N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The scalar projection on Vect{⃗ei} parallel to Vect{⃗e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗ei−1,⃗ei+1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗en} is the linear form named πei ∈ E∗ with the classical notation, named ei ∈ E∗ with the duality notation, defined by, for all i, j, � clas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' : πei(⃗ej) = δij, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' πei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej = δij, dual not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' : ei(⃗ej) = δi j, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej = δi j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7) Thus, πei = ei being linear, if ⃗x =clas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' �n i=1xi⃗ei =dual �n i=1xi⃗ei (classical or duality notations), then (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7) gives πei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x clas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' = xi = xi dual = ei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x, (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' πei = ei gives the i-th component of a vector ⃗x relative to the basis (⃗ei), see figure A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Figure A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1: Parallel projections: πe1(⃗x) = x1 and πe2(⃗x) = x2 (dual not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' : e1(⃗x) = x1 and e2(⃗x) = x2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' NB: The dual basis (πei) is intrinsic to (⃗ei);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And there can’t be any notion of orthogonality in E here since we can’t use a inner dot product: The functions πei = ei and vectors ⃗x do not belong to a same vector space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proposition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10 and definition of the dual basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (πei)i=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',n = (ei)i=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',n is a basis in E∗, called the (covariant) dual basis of the basis (⃗ei).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 80 2 f 1 1 2 1 er81 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Dual basis Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' If �n i=1λiπei = 0, then 0 = (�n i=1λiπei)(⃗ej) = �n i=1λiπei(⃗ej) = �n i=1λiδij = λj for all j, thus (πei)i=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',n is a family of n independent vectors in E∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then let ℓ ∈ E∗ and m = � i(ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ei)πei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus m ∈ E∗ (since E∗ is a vector space), and m(⃗ej) = � i(ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ei)(πei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej) = � i(ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ei)δij = (ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej), thus m = ℓ, thus ℓ = � i(ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ei)πei, thus Vect{(πei)i=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',n} span E∗;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus (πei)i=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',n is a basis in E∗;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus dim E∗ = n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Use duality notations if you prefer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Example A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11 Following example 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The size of a child is represented on a wall by a bipoint vector ⃗u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And English observer chooses the foot as unit of length, represented by a vertical bipoint vector which he names ⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And then defines the linear form πe : ⃗R → R by πe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗e = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus πe is a measuring instrument, which gives s = πe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u = the size of the child in foot, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗u = s⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12 Let (⃗ai) and (⃗bi) be bases and let (πai) and (πbi) be the dual bases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let λ ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Prove: If ∀i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', n, ⃗bi = λ⃗ai, then ∀i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', n, πbi = 1 λ πai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9) (With duality notations, bi = 1 λ ai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' πbi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗bj = δij = πai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj = πai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗bj λ = 1 λ πai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗bj for all j (since πai is linear), thus πbi = 1 λ πai, true for all i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Example: aeronautical units Example A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13 International aeronautical units: Horizontal length = nautical mile (NM), altitude = English foot (ft).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Application: An air traffic controller chooses the point O = the position of its control tower, and a plane p is located thanks to the bipoint vector ⃗x = −→ Op.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And the traffic controller chooses ⃗e1 = the vector of length 1 NM oriented South (first runway), ⃗e2 = the vector of length 1 NM oriented Southwest (second runway), ⃗e3 = the vertical vector of length 1 ft.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus his referential is R = (O, (⃗e1,⃗e2,⃗e3)), and his dual basis (πe1, πe2, πe3) is defined by πei(⃗ej) = δij for all i, j, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' He writes ⃗x = �n i=1xi⃗ei ∈ ⃗Rn, so that x1 = πe1(⃗x) = the distance to the south in NM, x2 = πe2(⃗x) = the distance to the southwest in NM, x3 = πe3(⃗x) = the altitude in ft.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Here the basis (⃗ei) is not a Euclidean basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' This non Euclidean basis (⃗ei) is however vital if you take a plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A Euclidean basis is not essential to life.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' See next remark A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Remark A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14 The metre is the international unit for NASA that launched the Mars Climate Orbiter probe, and the foot is the international vertical unit for aviation;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And for the Mars Climate Orbiter landing procedure, NASA (uses the metre) asked Lockheed Martin (uses the foot) to do the computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Result?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The Mars Climate Orbiter space probe burned in the Martian atmosphere because of λ ∼ 3 times too high a speed during the landing procedure: One metre is λ ∼ 3 times one foot, and someone forgot it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Although NASA and Lockheed Martin used a Euclidean dot product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' But not the same (one based on a metre, and one based on the foot).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Objectivity and covariance can be useful.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Matrix representation of a linear form Let ℓ ∈ E∗, let (⃗ei) be a basis: The components of ℓ are the n reals ℓi := ℓ(⃗ei) = ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ei, and [ℓ]|⃗e = ( ℓ1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ℓn ) (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10) is the row matrix of ℓ, called the matrix of ℓ relative to (⃗ei).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus, if ⃗x ∈ E and ⃗x =clas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' �n i=1xi⃗ei =dual �n i=1xi⃗ei, then ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x clas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' = n � i=1 ℓixi dual = n � i=1 ℓixi = [ℓ]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗x]|⃗e (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11) with usual matrix computation rules (a 1 ∗ n matrix times a n ∗ 1 matrix).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In particular for the dual basis (πei) = (ei) (classical and duality notations), [πej]|⃗e = [ej]|⃗e = (0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 0 1 ���� jth position 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 0) (= row matrix = [⃗ej]T |⃗e).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12) Thus we have, with classical and duality notations, ℓ clas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' = n � i=1 ℓi πei dual = n � i=1 ℓi ei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13) 81 82 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Einstein convention Remark A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='15 Relative to a basis, a vector is represented by a column matrix, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2), and a linear form by a row matrix, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' This enables: The use of matrix calculation to compute ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x = [ℓ]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗x]|⃗e, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11), not to be confused with an inner dot product calculation ⃗x • ⃗y relative to an inner dot product in E for ⃗x, ⃗y ∈ E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Not to confuse the “nature of objects”: Relative to a basis, a (contravariant) vector is a mathematical object represented by a column matrix, while a linear form (covariant vector) is a mathematical object represented by a row matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' remark A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Example: Thermodynamic Consider the Cartesian space ⃗R2 = {(T, P) ∈ R×R} = {(temperature,pressure)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' There is no meaningful inner dot product in this ⃗R2: What would √ T 2+P 2 mean (Pythagoras: Can you add Kelvin degrees and kg/(m·s2)?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus, in thermodynamics, the (covariant) dual bases are the main ingredient for calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', in the Cartesian product ⃗R2 = R × R consider the basis ( ⃗E1=(1, 0), ⃗E2=(0, 1)) (after a choice of temperature and pressure units);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let ⃗X ∈ ⃗R2, ⃗X = T ⃗E1 + P ⃗E2 =noted (T, P), and let (πE1, πE2) = (E1, E2) =noted (dT, dP) be the (covariant) dual basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The first principle of thermodynamics tells that the density α of internal energy is an exact differential form: ∃U ∈ C1( ⃗R2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' α = dU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So, at any ⃗X0 = (T0, P0), α( ⃗X0) = dU( ⃗X0) = ∂U ∂T ( ⃗X0) dT + ∂U ∂P ( ⃗X0) dP and [dU( ⃗X0)]| ⃗E = � ∂U ∂T ( ⃗X0) ∂U ∂P ( ⃗X0) � (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14) (row matrix).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And we have the first order Taylor expansion in the vicinity of ⃗X0, U( ⃗X0 + δ ⃗X) = U( ⃗X0) + dU( ⃗X0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='δ ⃗X + o(δ ⃗X) = U(T0, P0) + δT ∂U ∂T (T0, P0) + δP ∂U ∂T (T0, P0) + o((δT, δP)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='15) Matrix computation: Column matrices for vectors, row matrices for linear forms: [ ⃗E1]| ⃗E = � 1 0 � , [ ⃗E2]| ⃗E = � 0 1 � , [ ⃗X0]| ⃗E = � T0 P0 � , [δ ⃗X]| ⃗E = � δT δP � , (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16) [E1]| ⃗E = [dT]| ⃗E = ( 1 0 ) , [E2]| ⃗E = [dP]| ⃗E = ( 0 1 ) , [dU]| ⃗E = ( ∂U ∂T ∂U ∂P ) (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='17) give dU( ⃗X0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='δ ⃗X = � ∂U ∂T ( ⃗X0) ∂U ∂P ( ⃗X0) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' � δT δP � = ∂U ∂T ( ⃗X0)δT + ∂U ∂P ( ⃗X0)δP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='18) This is a “covariant calculation” (in particular no inner dot product has been used).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Einstein convention A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definition When you work with components (after a choice of a basis), the goal is to visually differentiate a lin- ear form from a vector (to visually differentiate covariance from contravariance).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Framework: a finite dimension vector space E, dim E = n, and duality notations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Einstein Convention: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A basis in E (contravariant) is written with bottom indices: E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', (⃗ei) is a basis in E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A vector ⃗x ∈ E (contravariant) has its components relative to (⃗ei) (quantification) written with top indices: ⃗x = �n i=1xi⃗ei, and is represented by the column matrix [⃗x]|⃗e = � � x1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' xn � �.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Classical notations: ⃗x = �n i=1xi⃗ei, and column matrix of xi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A basis in E∗ = L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) (covariant) is written with top indices: E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', (ei) ∈ E∗n is the dual basis of the basis (⃗ei).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Classical notations: (πei).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A linear form ℓ ∈ E∗ (covariant) has its components relative to (ei) (quantification) written with bottom indices: ℓ = �n i=1ℓiei, and its matrix representation is the row matrix [ℓ]|⃗e = ( ℓ1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ℓn ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 82 83 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Change of basis formulas 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' You can also omit the sum sign � when there are repeated indices at a different position;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' �n i=1xi⃗ei =noted xi⃗ei, and �n i=1Lij⃗ei =noted Li j⃗ei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In fact, before computers and word processors, to print �n i=1 was not easy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' But with LATEX this is no more a problem, so in this manuscript the sum sign � is not omitted (and some confusions are avoided).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Remark A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16 Einstein’s convention is not mandatory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Arnold doesn’t use it when he doesn’t need it, or when it makes reading difficult, or when it induces misunderstandings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In classical mechanics, Einstein’s convention may induce more confusion than understandings, and may be misused.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' so it is better not to use it: Golden rule: Use classical notations when in doubt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Do not mistake yourself 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Einstein’s convention is just meant not to confuse a linear function with a vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' It only deals with quantification relative to a basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Classical notations are as good as duality notations, even you are told that classical notations cannot detect obvious errors in component manipulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' But duality notations can be misused in classical mechanics (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' the paradigmatic example of the vectorial dual basis, correctly treated at § F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And thus add confusion to the confusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The convention does not admit shortcuts;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' with a metric: g(⃗u,⃗v) = �n i,j=1gijuivj shows the observer dependence on a choice of a basis thanks to the gij;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And even if gij = δij you cannot write g(⃗u,⃗v) = �n i,j=1uivj: You have to write g(⃗u,⃗v) = �n i,j=1gijuivj: Unmissable in physics because you need to see the metric and bases in use.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Golden rule: Return to classical notations if in doubt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Einstein’s convention can add confusions, un- truths, misinterpretations, absurdities, misuses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Change of basis formulas E being a finite dimension vector space, dim E = n, let (⃗eold,i) and (⃗enew,i) be two bases in E, and let (πold,i) and (πnew,i) be the dual bases in E∗, written (ei old) and (ei new) with duality notations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Change of basis endomorphism and transition matrix Definition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='17 The change of basis endomorphism P ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E) from (⃗eold,i) to (⃗enew,i) is the endo- morphism (= the linear map E → E) defined by, for all j ∈ [1, n]N, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗eold,j = ⃗enew,j .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='19) Definition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='18 The transition matrix from (⃗eold,i) to (⃗enew,i) is the matrix P := [P]|⃗eold = [Pij] of the endomorphism P relative to the basis (⃗eold,i), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' defined by, for all j, ⃗enew,j = P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗eold,j = n � i=1 Pij ⃗eold,i, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗enew,j]|⃗eold = P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[⃗eold,j]|⃗eold = � � � P1j .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Pnj � � � , (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='20) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', [⃗enew,j]|⃗eold is the j-th column of P = [P]|⃗eold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Duality notations: ⃗enew,j = �n i=1P ij ⃗eold,i and P := [P]|⃗eold = [P ij].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Apart from the classical and notations, you may find other “component type” notations: ⃗enew,j = n � i=1 Pij ⃗eold,i = n � i=1 (Pj)i ⃗eold,i = n � i=1 P i j ⃗eold,i = n � i=1 (Pj)i ⃗eold,i, (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='21) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Pij = (Pj)i = P ij = (Pj)i are four notations for the i-th component of ⃗ej, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗enew,j]|⃗eold = � � � P1j .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Pnj � � � = � � � (Pj)1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Pj)n � � � = � � � P 1 j .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' P n j � � � = � � � (Pj)1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Pj)n � � � (= the j-th column of P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22) 83 84 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Change of basis formulas A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Inverse of the transition matrix The inverse endomorphism Q := P−1 ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E), cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='19), is given by, for all j ∈ [1, n]N, ⃗eold,j = Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗enew,j (= P−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗enew,j), (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='23) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Q is change of basis endomorphism from (⃗enew,i) to (⃗eold,i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And Q := [Q]|⃗enew = [Qij] is the transition matrix from (⃗enew,i) to (⃗eold,i): ⃗eold,j = n � i=1 Qij⃗enew,i, [⃗eold,j]|⃗enew = � � � Q1j .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Qnj � � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='24) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Q is change of basis endomorphism from (⃗enew,i) to (⃗eold,i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Use other notation if you prefer: Qij = (Qj)i = Qij = (Qj)i Proposition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='19 Q = P −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='25) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗enew,j = P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗eold,j = �n i=1Pij⃗eold,i = �n i=1Pij(�n k=1Qki⃗enew,k) = �n k=1(�n i=1QkiPij)⃗enew,k = �n k=1(Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P)kj⃗enew,k for all j, thus (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P)kj = δkj for all j, k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Hence Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P = I, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='25).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='20 Prove � [P]|⃗eold = [P]|⃗enew = P, [Q]|⃗enew = [Q]|⃗eold = Q, � , i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' � P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗enew,j = �n i,j=1Pij⃗enew,i (= �n i,j=1P ij⃗enew,i = �n i,j=1(Pj)i⃗enew,i), Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗eold,j = �n i,j=1Qij⃗eold,i (= �n i,j=1Qij⃗eold,i = �n i,j=1(Qj)i⃗eold,i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='26) Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Z = [Zij] = [P]|⃗enew means P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗enew,j = � i Zij⃗enew,i, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗enew,j = Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (�n i=1Zij⃗enew,i) = �n i=1ZijQ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗enew,i = �n i=1Zij(�n k=1Qki⃗enew,k) = �n k=1(�n i=1QkiZij)⃗enew,k = �n k=1(Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='Z)kj⃗enew,k for all j, thus (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='Z)kj = δkj for all j, k, thus Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='Z = I, thus Z = P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Idem for Q, thus (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='26).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Remark A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='21 P T ̸= P −1 in general.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', (⃗eold,i) = (⃗ai) is a foot-built Euclidean basis, and (⃗enew,i) = (⃗bi) is a metre-built Euclidean basis, and ⃗bi = λ⃗ai for all i (the basis are “aligned”), so P = λI;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus P T = λI and P −1 = 1 λI ̸= P T , since λ = 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3048 ̸= 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus it is essential not to confuse P T and P −1 (not to confuse covariance with contravariance), cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' the Mars Climate Orbiter crash (remark A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Change of dual basis Proposition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22 (πnew,i) and (πold,i) being the dual bases of (⃗enew,i) and (⃗eold,i), for all i ∈ [1, n]N, πnew,i = n � j=1 Qijπold,i, and [πnew,i]|⃗eold = ( Qi1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Qin ) (i-th row of Q), (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='27) to compare with (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='20) (matrices of linear forms are row matrices).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Duality notations: ei new = �n j=1Qijej old and [ei new]|⃗eold = ( Qi1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Qin ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' πnew,i(⃗eold,k) =(A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='24) πnew,i(� j Qjk⃗enew,j) = � j Qjk πnew,i(⃗enew,j) = � j Qjk δij = Qik, and � j Qijπold,j(⃗eold,k) = � j Qijδjk = Qik, true for all i, k, thus πnew,i = � j Qij, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='27) A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Change of coordinate system for vectors and linear forms Proposition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='23 Let ⃗x ∈ E and ℓ ∈ E∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then [⃗x]|⃗enew = P −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗x]|⃗eold (contravariance formula for vectors: between column matrices), [ℓ]|⃗enew = [ℓ]|⃗eold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P (covariance formula for linear forms: between row matrices).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='28) And the scalar value ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x is computed indifferently with one or the other basis (objective result): ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x = [ℓ]|⃗eold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗x]|⃗eold = [ℓ]|⃗enew.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗x]|⃗enew.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='29) 84 85 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Bidual basis (and contravariance) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let ⃗x = � j xj⃗eold,j = � i yi⃗enew,i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' We have ⃗x = � j xj⃗eold,j = � j xj(�n i=1Qij⃗enew,i) = � ij Qijxj⃗enew,i, thus yi = � j Qijxj for all i, thus (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='28)1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And ℓ = � j mjπnew,j = � i ℓiπold,i =(A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='27) � ij ℓiPijπnew,j gives mj = � i ℓiPij for all j, thus (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='28)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Use duality notations if you prefer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Thus [ℓ]|⃗enew.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗x]|⃗enew = ([ℓ]|⃗eold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (P −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗x]|⃗eold) = [ℓ]|⃗eold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗x]|⃗eold, hence (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='29).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Notation: (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='28) and ⃗x = � j xj⃗eold,j = � i yi⃗enew,i give yi = �n j=1Qijxj, which means: yi is the function defined by yi(x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', xn) = �n j=1Qijxj, thus Qij = ∂yi ∂xj (x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', xn);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Similarly with Pij;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Which is written Qij = ∂yi ∂xj , and Pij = ∂xi ∂yj .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='30) (Use duality notations if you prefer, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Qij = ∂yi ∂xj .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 Bidual basis (and contravariance) Definition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='24 The dual of E∗ is E∗∗ := (E∗)∗ = L(E∗;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) and is named the bidual of E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E∗∗ is also called the space of contravariant vectors = the space of directional derivatives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='25 Let (⃗ei) be a basis in E, let (πei) be its dual basis (basis in E∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The dual basis (∂i) of (πei) is called the bidual basis of (⃗ei).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Duality notations: (πei) = (ei).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') (The notation ∂i refers to the derivation in the direction ⃗ei: ∂i(df(⃗x)) = df(⃗x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ei = ∂f ∂xi (⃗x), see § S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Thus, the linear form ∂i ∈ E∗∗ = L(E∗;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) are characterized by, for all j, ∂i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='πej = δij = πej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ei, so ℓ = n � i=1 ℓiπei iff ℓi = ∂i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='ℓ (= ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ei).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='31) Indeed, ∂i(ℓ) = ∂i(�n j=1ℓjπej) = �n j=1ℓj∂i(πej) = �n j=1ℓjδij = ℓi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Duality notation: ∂i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='ej = δj i = ej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ei and ℓ = �n i=1ℓiei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Remark: With the natural canonical isomorphism J : � E → E∗∗ = L(E∗;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) ⃗u → J (⃗u), where J (⃗u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='ℓ := ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u, ∀ℓ ∈ E∗ � see (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9), we can identify ⃗u and J (⃗u) (observer independent identification), thus ∂i = J (⃗ei) =noted ⃗ei, and (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='31) reads (usual notation in differential geometry) ⃗ei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='πej = δij and ℓi = ⃗ei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 Bilinear forms A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definition Let E and F be vector spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='26 • A bilinear form is a 2-multilinear form β(·, ·) : � E × F → R (⃗u, ⃗w) → β(⃗u, ⃗w) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So, β(⃗u1 +λ⃗u2, ⃗w) = β(⃗u1, ⃗w)+λβ(⃗u2, ⃗w) and β(⃗u, ⃗w1 +λ⃗w2) = β(⃗u, ⃗w1)+λβ(⃗u, ⃗w2) for all ⃗u, ⃗u1, ⃗u2 ∈ E, ⃗w, ⃗w1, ⃗w2 ∈ F, λ ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' L(E, F;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) is the set of bilinear forms E × F → R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' If (ℓ, m) ∈ E∗ × F ∗, then the bilinear form ℓ ⊗ m ∈ L(E, F;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) is defined by (ℓ ⊗ m)(⃗u, ⃗w) = ℓ(⃗u)m(⃗w) (= (ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u)(m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w)) (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='32) for all (⃗u, ⃗w) ∈ E × F, and is called an elementary bilinear form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 The transposed of a bilinear form (Warning: Not to be confused with the subjective definition of a transposed of a linear map which requires inner dot products to be defined, see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='54).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Definition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='27 If β ∈ L(E, F;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) then its transposed is the bilinear form βT ∈ L(F, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) defined by, for all (⃗w, ⃗u) ∈ F × E, βT (⃗w, ⃗u) = β(⃗u, ⃗w).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='33) (This definition is observer independent: no basis or inner dot product is required in this definition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') 85 86 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Bilinear forms A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Symmetric and definite positive bilinear forms Definition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='28 Here F = E (no choice), and β ∈ L(E, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' β is semi-positive, iff for all ⃗u ∈ E, β(⃗u, ⃗u) ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='34) β is definite positive, iff for all ⃗u ̸= ⃗0, β(⃗u, ⃗u) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='35) β is symmetric iff βT = β, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', for all ⃗u,⃗v ∈ E, β(⃗u,⃗v) = β(⃗v, ⃗u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='36) A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Inner dot product, and metric Definition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='29 • An “inner dot product” (or “scalar inner dot product”, or “inner scalar product”, or “inner product”) in a vector space E is a bilinear form β =noted g =noted g(·, ·) ∈ L(E, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) which is symmetric and definite positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And then (for inner dot products) g(·, ·) noted = (·, ·)g noted = g ·, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' g(⃗u, ⃗w) = (⃗u, ⃗w)g noted = ⃗u •g ⃗w, ∀⃗u, ⃗w ∈ E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='37) Then two vectors ⃗u, ⃗w ∈ E are (·, ·)g-orthogonal iff (⃗u, ⃗w)g = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And the associated norm with (·, ·)g is the function ||.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='||g : E → R+ given by, for all ⃗u ∈ E, ||⃗u||g = � (⃗u, ⃗u)g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='38) (To prove that it is a norm, use the Cauchy–Schwarz inequality (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='39).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') An “semi-inner dot product” (·, ·)g (or “semi-scalar inner dot product”) in a vector space E is a bilinear form β =noted g(·, ·) ∈ L(E, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) which is symmetric and semi-positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And the associated semi-norm is given by (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='38).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proposition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='30 (Cauchy–Schwarz inequality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') (·, ·)g being an inner dot product in E, ∀⃗u, ⃗w ∈ E, |(⃗u, ⃗w)g| ≤ ||⃗u||g||⃗w||g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='39) And |(⃗u, ⃗w)g| = ||⃗u||g||⃗w||g iff ⃗u and ⃗w are parallel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let p(λ) = ||⃗u+λ⃗w||2 g = (⃗u+λ⃗w, ⃗u+λ⃗w)g, so p(λ) = aλ2 + bλ + c where a = ||⃗w||2 g, b = 2(⃗u, ⃗w)g and c = ||⃗u||2 g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' With p(λ) ≥ 0 (since(·, ·)g is positive), we get b2 − 4ac ≥ 0, thus (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='39), and p(λ) = 0 iff ⃗u+λ⃗w = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='31 (Metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') With Rn our usual affine geometric space, n = 1, 2 or 3, and ⃗Rn = the usual associated vector space made of bipoint vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let Ω ⊂ Rn be open in Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A metric in Ω is a C∞ function g : � Ω → L(⃗Rn, ⃗Rn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) p → g(p) noted = gp � such that gp is an inner dot product in ⃗Rn at each p ∈ Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Particular Case: When the gp is independent of p (general case in continuum mechanics), a metric is simply called a inner dot product (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' a Euclidean metric is called a Euclidean dot product).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (In a differentiable manifold Ω, a metric is a C∞ �0 2 � tensor g s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' g(p) is an inner dot product at each p ∈ Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A Riemannian metric is a metric s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' g(p) is a Euclidean dot product at each p ∈ Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Quantification: Matrice [βij] and tensorial representation dim E = n, dim F = m, β ∈ L(E, F;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R), (⃗ai) is a basis in E which dual basis is (πai), (⃗bi) is a basis in F which dual basis is (πbi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (With duality notations, (πai) = (ai) and (πbi) = (bi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Definition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='32 The components of β ∈ L(E, F;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) relative to the bases (⃗ai) and (⃗bi) are the nm reals βij := β(⃗ai,⃗bj), and [β]|⃗a,⃗b = [βij] i=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',n j=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',m (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='40) is the matrix of β relative to the bases (⃗ai) and (⃗bi), simply written [βij] if the bases are implicit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And if F = E and (⃗bi) = (⃗ai) then [β]|⃗a,⃗b =noted [β]|⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 86 87 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Linear maps Proposition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='33 A bilinear form β ∈ L(E, F;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) is known as soon as the nm scalars βij = β(⃗ai,⃗bj) are known, and, for all (⃗u, ⃗w) ∈ E × F, β(⃗u, ⃗w) = [⃗u]|⃗a T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [β]|⃗a,⃗b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗w]|⃗b, written β(⃗u, ⃗w) = [⃗u]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [β].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗w] , (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='41) so β = n � i=1 m � j=1 βijπai ⊗ πbj, (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='42) and a basis in L(E, F;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) is made of the nm functions πai ⊗ πbj, and dim L(E, F;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) = nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Duality notations: β = �n i=1 �m j=1βijai ⊗ bj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' β being bilinear, ⃗u = �n i=1ui⃗ai and ⃗w = �n j=1wj⃗bj give β(⃗u, ⃗w) = �n i,j=1uiwjβ(⃗ai,⃗bj) = �n i,j=1uiβijwj = ([⃗u]|⃗a)T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [β]|⃗a,⃗b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗w]|⃗b, thus (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='41).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In particular, if the βij are known, then b is known.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And (πai ⊗ πbj)(⃗ak,⃗bℓ) =(A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='32) (πai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ak)(πbj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗bℓ) = δikδjℓ (all the elements of the matrix [πai ⊗ πbj]|⃗a,⃗b are zero except the element at the intersection of row i and column j which is equal to 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And (πai ⊗ πbj)(⃗u, ⃗w) =(A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='32) (πai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u)(πbj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w) = uiwj, thus β(⃗u, ⃗w) = �n i,j=1βijuiwj = �n i,j=1βij(πai ⊗ πbj)(⃗u, ⃗w), thus β := �n i,j=1βij(πai ⊗ πbj), thus the πai ⊗ πbj span L(E, F;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And � ij λij(πai ⊗ πbj) = 0 implies 0 = (� ij λij(πai ⊗ πbj))(⃗ak,⃗bℓ) = � ij λij(πai ⊗ πbj)(⃗ak,⃗bℓ) = λkℓ = 0 for all k, ℓ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus the πai ⊗ πbj are independent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus (πai ⊗ πbj) is a basis in L(E, F;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) and dim(L(E, F;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R)) = nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Duality notations: β(⃗u, ⃗w) = �n i,j=1βijuiwj and β := �n i,j=1βij ai ⊗ bj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Example A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='34 dim E = dim F = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [β]|⃗a,⃗b = � 1 2 0 3 � means β(⃗a1,⃗b1) = β11 = 1, β(⃗a1,⃗b2) = β12 = 2, β(⃗a2,⃗b1) = β21 = 0, β(⃗a2,⃗b2) = β22 = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And β12 = [⃗a1]T |⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[β]|⃗a,⃗b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗b2]|⃗b = ( 1 0 ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' � 1 2 0 3 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' � 0 1 � = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='35 Let β ∈ L(E, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R), let (⃗ai) and (⃗bi) be two bases in A, and let λ ∈ R∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Prove: if, ∀i ∈ [1, n]N, ⃗bi = λ⃗ai, then [β]|⃗b = λ2[β]|⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='43) (A change of unit, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' from foot to metre, has a “big” influence on the matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗bi = λ⃗ai give β(⃗bi,⃗bj) = β(λ⃗ai, λ⃗aj) = λ2β(⃗ai,⃗aj) (bilinearity), thus [β]|⃗b = λ2[β]|⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='36 Prove [βT ]⃗b,⃗a = ([β]⃗a,⃗b)T , written [βT ] = [β]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='44) Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let[β]⃗a,⃗b = [βij] i=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',n j=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',m and [βT ]⃗b,⃗a = [γij] i=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',m j=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' We have γij = βT (⃗bi,⃗aj) = β(⃗aj,⃗bi) = βji, qed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8 Linear maps A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definition Let E and F be vector spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='37 • A function L : E → F is linear iff L(⃗u1 + λ⃗u2) = L(⃗u1) + λL(⃗u2) for all ⃗u1, ⃗u2 ∈ E and all λ ∈ R (distributivity type relation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And (distributivity notation): L(⃗u) noted = L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u, so L(⃗u1 + λ⃗u2) = L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='(⃗u1 + λ⃗u2) = L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u1 + λL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='45) NB: This dot notation L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u is a linearity notation (distributivity type notation);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' It is an “outer” dot product between a (linear) function and a vector;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' It is not an “inner” dot product since L and ⃗u don’t belong to a same space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' It is not a matrix product since no basis has been introduced yet (no quantification has been done yet).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) is the set of linear maps E → F (vector space, subspace of (F(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F), +, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' )).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' If F = E then a linear map L ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E) is called an endomorphism in E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (If F = R then a linear map E → R is called a linear form, and E∗ := L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) is the dual of E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') 87 88 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Linear maps Vocabulary: Let Li(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E) be the space of linear invertible linear maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' If E is a finite dimension vector space, dim E = n, then, in algebra, the set (Li(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E), ◦) of linear maps equipped with the composition rule is named GLn(E) = “the linear group” (it is indeed a group, easy check).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And the “linear group” of n ∗ n invertible matrices is GLn(Mn) := (Li(Mn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Mn), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Li(Mn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Mn) with the matrix product rule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='38 (Math exercise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Let E = (E, ||.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='||E) and F = (F, ||.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='||F ) be Banach spaces, and let Lic(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) be the space of invertible linear continuous maps E → F, with its usual norm ||L|| = sup||⃗x||E=1 ||L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x||F .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let Z : � Lic(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) → Lic(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) L → L−1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Prove dZ(L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='M = −L−1 ◦ M ◦ L−1, for all M ∈ Lic(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Recall: In finite dimension, a linear map is always continuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Consider limh→0 Z(L+hM)−Z(L) h = limh→0 (L+hM)−1−L−1 h ( =noted dZ(L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='M if the limit exists).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' With N = L−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='M we have L + hM = L(I + hN), and (I + hN) is invertible as soon as ||hN|| < 1, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' h < 1 ||N|| = 1 ||L−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='M||, its inverse being I − hN + h2N − .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Neumann serie);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus I + hN = I − hN + o(h), and (L + hM)−1 = (I + hN)−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L−1 = (I − hN + o(h)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L−1 = L−1 − hN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L−1 + o(h).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus (L+hM)−1−L−1 h = L−1−hN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L−1+o(h)−L−1 h = −N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L−1 + o(1) −→h→0 −N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Quantification: Matrices [Lij] = [Lij] dim E = n, dim F = m, L ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F), (⃗ai) is a basis in E which dual basis is (πai), (⃗bi) is a basis in F which dual basis is (πbi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (With duality notations, (πai) = (ai) and (πbi) = (bi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Definition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='39 The components of a linear map L ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) relative to the bases (⃗ai) and (⃗bi) are the nm reals named Lij (classical notation) = Lij (duality notation), which are the components of the vectors L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj relative to the basis (⃗bi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' That is: � � � � � � � � � � � clas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' : L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj = m � i=1 Lij⃗bi, dual not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj = m � i=1 Li j⃗bi, � � � � � � � � � � � , i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj]|⃗b clas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' = � � � L1j .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Lmj � � � dual = � � � L1j .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Lmj � � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='46) And [L]|⃗a,⃗b clas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' = [Lij] i=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',m j=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',n dual = [Li j] i=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',m j=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',n (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='47) is the matrix of L relative to the bases (⃗ai) and (⃗bi) (so [L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj]|⃗b is the j-th column of [L]|⃗a,⃗b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Particular case: If E = F (so L is an endomorphism) and if (⃗bi) = (⃗ai) then [L]|⃗a,⃗a =noted [L]|⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Example A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='40 n = m = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [L]|⃗a,⃗b = � 1 2 0 3 � means L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗a1 = ⃗b1 and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗a2 = 2⃗b1 + 3⃗b2 (column reading).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Here L11=1, L12=2, L21=0, L22=3 (duality notations: L11=1, L12=2, L21=0, L22=3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And L being linear, for all ⃗u ∈ E, ⃗u = �n j=1uj⃗aj = �n j=1uj⃗aj, we get, thanks to linearity, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u clas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' = m � i=1 n � j=1 Lijuj⃗bi dual = m � i=1 n � j=1 Li juj⃗bi, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u]|⃗b = [L]|⃗a,⃗b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗u]|⃗a .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='48) Shortened notation: [L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u] = [L].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗u] when the bases are implicit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proposition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='41 A linear map L ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) is known as soon as the n vectors L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj are known, j ∈ [1, n]N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And the linear maps Lij ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) defined by Lij.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aℓ = δjℓ⃗bi (all the elements of the matrix [Lij]|⃗a,⃗b vanish except the element at the intersection of row i and column j which is equal to 1), for i, ℓ = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', n and j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', m, constitute a basis ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Duality notations: Lij =noted Lij, and Lij.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aℓ = δj ℓ⃗bi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') So, dim(L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F)) = nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗u ∈ E and ⃗u = � k uj⃗aj give L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u = � j ujL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj, since L is linear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus L is known iff the n vectors L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj are known for all j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', n;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ak = � i Lik⃗bi together with � ij LijLij.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ak = � ij Lijδjk⃗bi = � i Lik⃗bi, for all k, thus L = � ij LijLij, thus the Lij span L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And �m i=1 �n j=1λijLij = 0 implies, for all ℓ, ⃗0 = �m i=1 �n j=1λijLij.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aℓ = �m i=1 �n j=1λijδjℓ⃗bi = �m i=1λiℓ⃗bi, thus λiℓ = 0, for all i and ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus the Lij are independent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus (Lij) i=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',n j=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',m is a basis in L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 88 89 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Transposed matrix Exercice A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='42 If L ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E) (endomorphism), if (⃗ai) is a basis in E, prove: if λ ∈ R∗ and ⃗bi = λ⃗ai ∀i ∈ [1, n]N, then [L]|⃗b = [L]|⃗a, (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='49) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', a change of unit has not influence on the matrix of an endomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Check with the change of basis formulas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' NB: To compare with (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='43): Covariance and contravariance should not be confused.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj = �n i=1Laij⃗ai and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗bj = �n i=1Lbij⃗bi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then �n i=1Lbij⃗bi = L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗bj = L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='(λ⃗aj) = λL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj = λ�n i=1Laij⃗ai = λ�n i=1Laij ⃗bi λ = �n i=1Laij⃗bi, thus Lbij = Laij.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Change of basis formula: [L]|⃗b = P −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [L]|⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P with P = λI here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Trace of an endomorphism Let E be a vector space, dim E = n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let ⃗u ∈ E and ℓ ∈ E∗ and call L ⃗w,ℓ ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E) the endomorphism, called an elementary endomorphism, defined by L ⃗w,ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u := ⃗w(ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u) = (ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u)⃗w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='50) Definition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='43 The trace of the endomorphism L ⃗w,ℓ is the real Tr(L ⃗w,ℓ) := ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='51) And the trace operator is the linear map Tr : � L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E) → R L → Tr(L) � defined on elementary endomor- phisms ℓ ⊗ ⃗w by (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='51).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proposition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='44 Let L ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The real Tr(L) is objective (is intrinsic to L), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' is independent of any basis in E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And (quantification) if (⃗ei) is a basis and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej = �n i=1Lij⃗ei for all j, then Tr(L) = n � i=1 Lii (∈ R), (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='52) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', Tr(L) is the trace of the matrix [L]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Duality notations L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej = �n i=1Lij⃗ei and Tr(L) = �n i=1Lii.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Tr(L ⃗w,ℓ) := ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w is a real that can be considered by any observer, and which value is the same for all observers, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='29): It is objective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let L ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let (⃗ai) be a basis and (πai) be its (covariant) dual basis, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj = � i Lij⃗ai, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [L][⃗a = [Lij].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And we have (� ik LikL⃗ai,πak).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj = � ik LikL⃗ai,πak.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj =(A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='50) � ik Lik⃗ai(πak.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj) = � ik Lik⃗aiδkj = � i Lij⃗ai, thus L = � ij LijL⃗ai,πaj (sum of elementary endomorphisms), thus, Tr being linear Tr(L) = � ij LijTrL⃗ai,πaj = � ij Lijδji = � i Lii, thus (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='52).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='45 Check with the change of basis formula that Tr(L) is an invariant (the same value for all observers).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let (⃗ai) and (⃗bi) be two bases, P = [Pij] be the transition matrix from (⃗ai) to (⃗bi), Q = P −1, [L][⃗a = [(La)ij], [L][⃗b = [(Lb)ij].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' We have [L][⃗b =(A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='104) P −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [L][⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Lb)ij = � kℓ Qik(La)kℓPℓj, thus � i(Lb)ii = � ikℓ Qik(La)kℓPℓi = � kℓ(P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='Q)ℓk(La)kℓ = � kℓ δℓk(La)kℓ = � k(La)kk, qed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Alternative definition with one-one tensors: see § Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9 Transposed matrix The definition can be found in any elementary books, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', Strang [18]: If M = [Mij] i=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',m j=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',n is an m ∗ n matrix then its transposed is the n ∗ m matrix M T = [(M T )ij] i=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',n j=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',m defined by (M T )ij := Mji (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='53) (exchange rows and columns).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', M = � 1 2 3 4 � gives M T = � 1 3 2 4 � , and (M T )12=M21=3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And M is symmetric iff M T = M (this requires m=n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='N = [� k MikNkj] i j gives (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='N)T = [� k MjkNki] i j = [� k(N T )ik(M T )kj] i j = N T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='M T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='46 Prove: If M is an n ∗ n invertible matrix then M T is invertible and (M T )−1 = (M −1)T ( =noted M −T );' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And if moreover M is symmetric, then M −1 is symmetric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='M −1 = I gives (M −1)T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='M T = IT = I, thus M T is invertible with (M T )−1 = (M −1)T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Moreover if M = M T then M −1 = (M −1)T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 89 90 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A transposed endomorphism: depends on a chosen inner dot product A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10 A transposed endomorphism: depends on a chosen inner dot product Not to be confused with the transposed of a matrix, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='53).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And not to be confused with the transposed of a bilinear form (observer independent), cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='33);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In particular, a transposed of a linear map depends on the observer who use it (depends on the choice of an inner dot product).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definition (requires an inner dot product: Not objective) Let E be a finite dimensional vector space equipped with an inner dot product g(·, ·) = (·, ·)g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='47 The transpose of an endomorphism L ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E) relative to (·, ·)g is the endomorphism LT g ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E) defined by ∀⃗x, ⃗y ∈ E, (LT g .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗y, ⃗x)g = (⃗y, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x)g, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (LT g .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗y) •g ⃗x = ⃗y •g (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='54) (It depends on (·, ·)g, see (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='59).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') If (·, ·)g is an imposed Euclidean dot product (isometric framework) then LT g =noted LT , thus (LT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗y, ⃗x)g = (⃗y, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x)g, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (LT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗y) • ⃗x = ⃗y • (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='48 (Math exercise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') The existence and uniqueness of LT g is e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' proved with a basis in E when E is finite dimensional, see next § A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' More general proof: Prove: If (E, (·, ·)g) is an infinite dimensional Hilbert space and if L ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E) is continuous, then LT g exists, is unique, and is continuous (apply the Riesz representation theorem F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let ⃗y ∈ E, then let ℓ⃗yg : ⃗x ∈ E → ℓ⃗yg(⃗x) := (⃗y, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x)g ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ℓ⃗yg is linear (trivial since L is linear and (·, ·)g is bilinear) and continuous: |ℓ⃗yg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x| ≤ ||⃗y||g||L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x||g ≤ ||⃗y||g||L|| ||⃗x||g gives ||ℓ⃗yg||E∗ ≤ ||L|| ||⃗y||g < ∞;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let ⃗ℓ⃗yg ∈ E be the (·, ·)g-Riesz representation of ℓ⃗yg ∈ E∗: ℓ⃗yg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x = (⃗ℓ⃗yg, ⃗x)g for all ⃗x, with ||⃗ℓ⃗yg||g = ||ℓ⃗yg||E∗;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' We have thus defined LT g : ⃗y ∈ E → LT g (⃗y) := ⃗ℓ⃗yg ∈ E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' with (LT g (⃗y), ⃗x)g = (⃗ℓ⃗yg, ⃗x)g = ℓ⃗yg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x = (⃗y, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x)g, thus LT g is linear (since (·, ·)g is bilinear) and continuous: ||LT g .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗y||g = ||⃗ℓ⃗yg||g = ||ℓ⃗yg||E∗ ≤ ||L|| ||⃗y||g gives ||LT g || ≤ ||L||L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='E) < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Remark A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='49 Recall: The transposed βT of a bilinear form β is objective, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='33): We don’t need any tool like an inner dot product to define βT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Not to be confused with: The transposed LT g =noted LT of a linear map L is subjective: It depends on a choice of an inner dot products (·, ·)g by an observer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In particular it is dangerous to represent a linear map in a basis with its “bilinear tensorial representation” when dealing with the transposed: L ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) is naturally canonically represented by the bilinear form βL ∈ L(F ∗, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R), and thus (βL)T ∈ L(E, F ∗;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj = n � i=1 Li j⃗bi gives βL = n � i,j=1 Li j⃗bi ⊗ aj, thus (βL)T (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='33) = n � i,j=1 Lj iai ⊗⃗bj, (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='55) while LT ∈ L(F;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E) is naturally canonically represented by the bilinear form β(LT ) ∈ L(E∗, F;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R), and LT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗bj = n � i=1 (LT )i j⃗ai gives b(LT ) = n � i,j=1 (LT )i j⃗ai ⊗ bj, thus β(LT ) ̸= (βL)T (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='56) for two reasons: 1- ⃗ai ⊗ bj ̸= ai ⊗ ⃗bj, and 2- LT := LT gh depends on chosen inner dot products (·, ·)g and (·, ·)h by observers in E and F, see (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='73): (LT )ij =(A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='73) �n k,ℓ=1([g]−1)ikLℓk hℓj;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' While (βL)T is independent of any inner dot products.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (In fact (βL)T ∈ L(F ∗, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) is the tensorial representation of the adjoint L∗ ∈ L(F ∗;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E∗) of L: With L∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='bj = �n i=1(L∗)ijai we get � (L∗) = �n i,j=1(L∗)ijai ⊗⃗bj = (βL)T , see (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='83).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') So in continuum mechanics it is strongly advised not to use the tensorial notation for linear maps when dealing with transposed (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' when using F T the transposed of the deformation gradient).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Quantification with bases Let (⃗ei) be a basis in E, let gij := g(⃗ei,⃗ej), so [g]|⃗e := [gij] =noted [g], and let (classical notation) L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej = n � i=1 Lij⃗ei, LT g .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej = n � i=1 (LT g )ij, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [L]|⃗e = [Lij] noted = [L], [LT g ]|⃗e = [(LT g )ij] noted = [LT g ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='57) 90 91 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A transposed endomorphism: depends on a chosen inner dot product (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='54) gives [⃗x]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [g].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [LT g .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗y] = [L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [g].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗y] for all ⃗x, ⃗y, thus [g].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [LT g ] = [L]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [g], i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' n � k=1 gik(LT g )kj = n � k=1 Lki gkj (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='58) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', [LT g ] = [g]−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [L]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [g] , i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (LT g )ij = n � k,ℓ=1 ([g]−1)ikLℓkgℓj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='59) To compare with (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='56).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' If and only if (⃗ei) is (·, ·)g-orthonormal then [g] = [δij] and (LT g )ij = Lji.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' With duality notations, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej = �n i=1Lij⃗ei, LT g .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej = �n i=1(LT g )ij, [L]|⃗e = [Lij], [LT g ]|⃗e = [(LT g )ij], and n � k=1 gik(LT g )k j = n � k=1 Lk i gkj, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (LT g )i j = n � k,ℓ=1 ([g]−1)ikLℓ k gℓj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='60) Remark A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='50 The last equation (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='60)2 is also written (LT g )i j = n � k,ℓ=1 gikLℓ k gℓj when ([g]⃗e)−1 = [gij]−1 noted = [gij].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='61) Don’t be fooled by the notation gij, defined by [gij] := [gij]−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (It is also the short notation for (g♯)ij, see (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='32).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Use classical notations to avoid misuses and misinterpretations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Remark A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='51 A bilinear form β ∈ L(E, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) satisfies [βT ] = [β]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A linear endomorphism L ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E) satisfies [LT g ] = [g]−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [L]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [g] ̸= [L]T in general (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' take [L] = � 0 1 1 0 � and [g] = � 1 0 0 2 � ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So do not confuse a bilinear on E (objective) with a linear endomorphism on E (subjective).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='52 In ⃗R2, let (⃗e1,⃗e2) be a basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let L ∈ L( ⃗R2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗R2) be defined by [L]|⃗e = � 0 1 1 0 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Find two inner dot products (·, ·)g and (·, ·)h in ⃗R2 such that LT g ̸= LT h (a transposed endomorphism is not unique, is not intrinsic to L, since it depends on a choice of an inner dot product by an observer).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Calculations with (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='58): Choose (·, ·)g given by [g]|⃗e = � 1 0 0 1 � = [I].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus [LT g ]|⃗e = [I].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[L]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [I] = � 0 1 1 0 � ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So LT g = L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Choose (·, ·)h given by [h]|⃗e = � 1 0 0 2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus [LT h ]|⃗e = [h]−1 |⃗e .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [L]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [h]|⃗e = � 0 2 1 2 0 � ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So LT h ̸= L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus LT h ̸= LT g , e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ⃗e2 = LT g .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗e1 ̸= LT h .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗e1 = 1 2⃗e2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='53 Prove: If L is invertible then LT g is invertible, and (LT g )−1 = (L−1)T g (written L−T g ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Suppose: ∃⃗y ∈ E, ⃗y ̸= ⃗0, s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' LT g .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗y = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' L being invertible, ∃!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x ∈ E s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x = ⃗y, with ⃗x ̸= ⃗0 since ⃗y ̸= ⃗0 and L is linear;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And LT g .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗y = 0 gives LT g .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x = 0, thus (LT g .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x, ⃗x)g = 0, thus ||L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x||2 g = 0, thus L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x = 0, thus ⃗x = 0 since L is linear bijective;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Absurd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus Ker(LT g ) = {⃗0}, thus LT g is invertible since it is an endomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And (LT g .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (L−1)T g .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x, ⃗y)g (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='54) = ((L−1)T g .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗y)g (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='54) = (⃗x, (L−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗y)g = (⃗x, ⃗y)g = (LT g .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (LT g )−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x, ⃗y)g, true ∀⃗x, ⃗y, thus LT g .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (L−1)T g = LT g .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (LT g )−1, thus (L−1)T g = (LT g )−1 since LT g is invertible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='54 Special case of proportional inner dot products (·, ·)a and (·, ·)b: ∃λ > 0 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (·, ·)a = λ2(·, ·)b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Prove: LT a = LT b : Two proportional inner dot products give the same transposed endomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (LT b .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗y, ⃗x)b = (⃗y, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x)b = λ2(⃗y, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x)a = λ2(LT a .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗y, ⃗x)a = (LT a .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗y, ⃗x)b, for all ⃗x, ⃗y, so LT b = LT a .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Symmetric endomorphism Definition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='55 An endomorphism L ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E) is (·, ·)g-symmetric iff LT g = L: L (·, ·)g-symmetric ⇐⇒ LT g = L ⇐⇒ (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x, ⃗y)g = (⃗x, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗y)g, ∀⃗x, ⃗y ∈ E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='62) Remark A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='56 The symmetric character of an endomorphism L is not intrinsic to the endomorphism: It depends on (·, ·)g;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' See exercise A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='52 where L is (·, ·)g-symmetric while it is not (·, ·)h-symmetric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 91 92 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A transposed of a linear map: depends on chosen inner dot products A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 The general flat ♭ notation for an endomorphism: Relative to a (·, ·)g Let (·, ·)g be an inner dot product in a vector space E, and let L ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E) (a C0 endomorphism).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='57 The bilinear form L♭ g ∈ L(E, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) which is (·, ·)g-associated to the endomorphism L ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E) is defined by, for all ⃗u, ⃗w ∈ E, L♭ g(⃗u, ⃗w) := (⃗u, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w)g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='63) (L♭ g depends on a choice of a (·, ·)g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') We have thus defined the (·, ·)g-dependent operator: (.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' )♭ g = Jg(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') : � L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E) → L(E, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) L → Jg(L) := L♭ g, (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='64) If (·, ·)g is imposed, then L♭ g =noted L♭.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (The bilinearity of L♭ g is trivial since L is linear and (·, ·)g is bilinear, and the bilinear form L♭ g continuous as soon as L and (·, ·)g are since |L♭ g(⃗u,⃗v)| ≤ ||g|| ||L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u|| ||⃗v|| ≤ (||g|| ||L||) ||⃗u|| ||⃗v||.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Proposition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='58 With the natural canonical isomorphism L ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E) ≃ TL ∈ L(E∗, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) given by TL(ℓ, ⃗w) = ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w, and with TL =noted L, the function (.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' )♭ g is the change of contravariance to covariance mapping given by L♭ g = g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='65) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Recall: The contraction of an elementary �0 2 � tensor ℓ1 ⊗ ℓ2 with an elementary �1 1 � tensor ⃗v ⊗ ℓ3 is the �0 2 � tensor (ℓ1 ⊗ℓ2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (⃗v ⊗ℓ3) := (ℓ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v)ℓ1 ⊗ℓ3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And the contraction on any tensors is the bilinear map defined on elementaty tensors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So, with a basis (⃗ei) in E and its dual basis (ei) in E∗, if g = � ij gijei⊗ej and L = � ij Lij⃗ei ⊗ ej then g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L = � ijk gikLkj⃗ei ⊗ ej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus (g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L)(⃗u, ⃗w) = � ij uiwj(g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L)(⃗ei,⃗ej) = � ijk uiwjgikLkj = � ik uigik(L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w)k = � ik uigik(L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w)k = g(⃗u, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w) = L♭ g(⃗u, ⃗w).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Quantification: Let (⃗ei) be a basis in E, and, with duality notations motivated by the flat notation “i top changed into i bottom” in the components Lij of L, let gij := g(⃗ei,⃗ej), L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej = �n i=1Lij⃗ei and L♭ g,ij = L♭ g(⃗ei,⃗ej), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' with tensorial notations for calculations g = � ij gijei ⊗ ej, L = � ij Li j⃗ei ⊗ ej, L♭ g = � ij L♭ g,ijei ⊗ ej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='66) So [g]|⃗e = [gij], [L]|⃗e = [Lij] and [L♭ g]|⃗e = [L♭ g,ij].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='65) gives (or see next exercise) [L♭ g] = [g].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [L] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='67) Exercice A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='59 Prove (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='67) with components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' With (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='63) we get L♭ g,ij = L♭ g(⃗ei,⃗ej) = (⃗ei, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej)g = (⃗ei, � k Lk j⃗ek)g = � k Lk jgik = ([g].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [L])ij.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Remark A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='60 A change of variance, here from the �1 1 � type tensor L to the �0 2 � tensor L♭ g, is necessarily observer dependent: There is no natural canonical isomorphism between a vector space E and its dual E∗, see § T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Details: Here fix ⃗w and write ℓg,⃗w(⃗u) = (⃗u, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w)g (= L♭ g(⃗u, ⃗w));' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus ℓg,⃗w ∈ E∗ is the (·, ·)g- representation function (linear form) of the vector L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ℓg,⃗w = ⃗Rg(L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w) where ⃗Rg is the (·, ·)g-Riesz- representation operator (the change of variance operator, see (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11 A transposed of a linear map: depends on chosen inner dot products This paragraph is needed to define the transposed of the deformation gradient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Not to be confused with the transposed of a matrix, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='53).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And not to be confused with the objective transposed of a bilinear form, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='33);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', a transposed of a linear map is not objective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 92 93 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A transposed of a linear map: depends on chosen inner dot products A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definition (subjective) (E, (·, ·)g) and (F, (·, ·)h) are Hilbert spaces, and L ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) (which is supposed to be continuous if E and F are infinite dimensional).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', E = ⃗Rn t0, F = ⃗Rn t , L = dΦt0 t (P) ∈ L(⃗Rn t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t ) = the deformation gradient, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1), (·, ·)g is the foot built Euclidean dot product chosen by the observer who made the measurements at t0, (·, ·)h is the metre built Euclidean dot product chosen by the observer who makes the measurements at t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='61 The transposed of L ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) relative to (·, ·)g and (·, ·)h is the linear map LT gh ∈ L(F;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E) defined by, for all (⃗x, ⃗y) ∈ E × F, (LT gh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗y, ⃗x)g = (⃗y, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x)h, (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='68) where we used the dot notation LT gh(⃗y) =noted LT gh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗y since LT gh is linear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' This defines the map (.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' )T gh : � L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) → L(F;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E) L → (.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' )T gh(L) := LT gh (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='69) NB: So a linear map has an infinite number of transposed (it depends on inner dot products).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Notation: If (·, ·)g and (·, ·)h are imposed then LT gh =noted LT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And if F = E and (·, ·)h = (·, ·)g then LT gh = LT g , see § A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Quantification with bases Let (⃗ai) and (⃗bi) be bases in E and F, let gij := g(⃗ai,⃗aj), hij := h(⃗bi,⃗bj), [g]|⃗a = [gij], [h]|⃗b = [hij], and let (classical notation) L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj = m � i=1 Lij⃗bi, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [L]|⃗a,⃗b = [Lij] noted = [L], LT gh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗bj = n � i=1 (LT gh)ij⃗ai, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [LT gh]|⃗b,⃗a = [(LT gh)ij] noted = [LT gh].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='70) (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='68) gives [⃗x]T |⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[g]|⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [LT gh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗y]|⃗y = ([L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x]|⃗b)T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [h]|⃗b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗y]|⃗b for all ⃗x, ⃗y, thus, [g]|⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [LT gh]|⃗b,⃗a = ([L]|⃗a,⃗b)T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [h]|⃗b and [LT gh]|⃗b,⃗a = [g]−1 |⃗a .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ([L]|⃗a,⃗b)T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [h]|⃗b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Shortened notation: [g].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [LT ] = [L]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [h], i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' n � k=1 gik(LT gh)kj = m � k=1 Lki hkj, (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='71) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [LT ] = [g]−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [L]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [h] , i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (LT gh)ij = n � k=1 m � ℓ=1 ([g]−1)ikLℓkhℓj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='72) With duality notations, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej = �n i=1Lij⃗ei, [L]|⃗e = [Lij], LT gh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej = �n i=1(LT gh)ij, [LT gh]|⃗e = [(LT gh)ij], and n � k=1 gik(LT gh)k j = n � k=1 Lk i hkj, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (LT gh)i j = n � k,ℓ=1 ([g]−1)ikLℓ k hℓj ( noted = n � k,ℓ=1 (gikLℓ k hℓj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='73) (Be careful with the notation ([g]−1)ik =noted gij, see remark A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Exercice A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='62 Prove: If L is invertible then (LT gh)−1 = (L−1)T hg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (LT gh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (L−1)T hg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x, ⃗y)g = ((L−1)T hg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗y)h = (⃗x, L−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗y)g = (⃗x, ⃗y)g = (LT gh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (LT gh)−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x, ⃗y)g, true ∀⃗x, ⃗y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Deformation gradient symmetric: Absurd The symmetry of a linear map L ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) is a nonsense if E ̸= F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' : The gradient of deformation F t0 t (pt0) = dΦt0 t (pt0) =noted F ∈ L(⃗Rn t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t ) cannot be symmetric since F T ∈ L(⃗Rn t ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Idem for the first Piola–Kirchhoff tensor PKt0 t , which motivates the introduction of the symmetric second Piola–Kirchhoff tensor SKt0 t , see Marsden–Hughes [12] or § M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 93 94 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The adjoint of a linear map (objective) A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Isometry Definition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='63 A linear map L ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) is an isometry relative to (·, ·)g and (·, ·)h iff ∀⃗x, ⃗y ∈ E, (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗y)h = (⃗x, ⃗y)g, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' LT gh ◦ L = IE (identity in E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='74) In particular, an endomorphism L ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E) is a (·, ·)g-isometry iff ∀⃗x, ⃗y ∈ E, (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗y)g = (⃗x, ⃗y)g, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' LT g ◦ L = IE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='75) Thus, if L ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) is an isometry and (⃗ei) is a (·, ·)g-orthonormal basis, then (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ei) is a (·, ·)h- orthonormal basis, since (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ei, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej)h = (⃗ei,⃗ej)g = δij for all i, j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='64 Let ⃗f : E → F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Prove: if ⃗f is an isometry then ⃗f is linear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='76) Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let (⃗ei) be a (·, ·)g-orthonormal basis;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus (⃗f(⃗ei)) is a (·, ·)h-orthonormal basis (since ⃗f is an isometry).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus, if ⃗x = �n i=1xi⃗ei then ⃗f(⃗x) b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='o.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' = n � i=1 (⃗f(⃗x), ⃗f(⃗ei))h ⃗f(⃗ei) hyp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' = n � i=1 (⃗x,⃗ei)g ⃗f(⃗ei) b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='o.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' = n � i=1 xi ⃗f(⃗ei), thus ⃗f(⃗x+λ⃗y) = n � i=1 (xi + λyi)⃗f(⃗ei) = n � i=1 xi ⃗f(⃗ei) + λ n � i=1 yi ⃗f(⃗ei) = ⃗f(⃗x) + λ⃗f(⃗y), thus ⃗f is linear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='65 Rn is an affine space, ⃗Rn is the usual associated vector space, and (·, ·)g is an inner dot product in ⃗Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition: A distance-preserving function f : p ∈ Rn → f(p) ∈ Rn is a function s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ||−−−−−→ f(p)f(q)||g = ||−→ pq||g, ∀p, q ∈ Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='77) Prove: If f is a distance-preserving function, then f is affine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let O ∈ Rn (an origin) and ⃗f : ⃗x = −→ Op ∈ ⃗Rn → ⃗f(⃗x) := −−−−−−→ f(O)f(p) (vectorial associated function).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let ⃗x = −→ Op and ⃗y = −→ Oq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then the remarkable identity 2(⃗f(⃗x), ⃗f(⃗y))g = ||⃗f(⃗x)||2 g + ||⃗f(⃗y)||2 g − ||⃗f(⃗x)−⃗f(⃗y)||2 g gives 2(⃗f(⃗x), ⃗f(⃗y))g = ||⃗f(⃗x)||2 g+||⃗f(⃗y)||2 g−||−−−−−→ f(q)f(p)||2 g = ||⃗f(⃗x)||2 g+||⃗f(⃗y)||2 g−||−→ qp||2 g = ||⃗x||2 g+||⃗y||2 g−||⃗x−⃗y||2 g = 2(⃗x, ⃗y)g, thus ⃗f is an isometry, thus ⃗f is linear cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='76), thus f is affine since f(p) = f(O) + ⃗f(−→ Op).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12 The adjoint of a linear map (objective) (For mathematicians;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' May produce misunderstandings, misuses, problematic mechanical interpretations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') No inner dot product is required here: A linear map L has only one adjoint L∗ (intrinsic to L);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' While L has many transposed LT = LT gh which depend on inner dot products.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definition E and F are vector spaces, and E∗ = L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) and F ∗ = L(F;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) are the dual spaces (made of linear continuous forms).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (If E and F are finite dimensional, the continuity is always satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Definition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='66 Let L ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) (linear and continuous);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Its adjoint is the linear map L∗ ∈ L(F ∗;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E∗) canonically defined by L∗ : � F ∗ → E∗ m → L∗(m) := m ◦ L, (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='78) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', for all (⃗x, m) ∈ E × F ∗, (L∗(m))(⃗x) := m(L(⃗x)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='79) (The adjoint L∗ cannot be confused with a transposed LT which requires inner dot products, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='68).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') The linearity of L∗ is trivial, thus, together with the linearity of m and L, we can use the dot notation: L∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='m := m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L, and (L∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='m).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x := m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='80) And ||L∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='m||E∗ = ||m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L||E∗ ≤ ||m||F ∗||L||L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F ) gives ||L∗||L(F ∗;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='E∗) ≤ ||L||L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F ) < ∞, thus L∗ is continuous (when L is).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 94 95 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Tensorial representation of a linear map A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Quantification E and F are finite dimensional, dim E = n, dim F = m, and (⃗ai) and (⃗bi) are bases in E and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let [L]|⃗a,⃗b =noted [L], [L∗]|b,a =noted [L∗], [m]|b =noted [m] and [⃗x]|⃗a =noted [⃗x] be the matrices relative to the chosen bases: (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='80) gives ([L∗].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[m].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗x] = [m].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[L].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗x] for all ⃗x ∈ E and m ∈ F ∗, thus, for all m ∈ F ∗ (recall that [m] is a line matrix), thus [L∗].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [m]T = ([L]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [m]T , thus [L∗] = [L]T (transposed matrix).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='81) (Full notation: [L∗]|b,a = ([L]|⃗a,⃗b)T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Details: With the dual bases (πai) and (πbi), with L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj = �m i=1Lij⃗bi, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [L]|⃗a,⃗b = [Lij] i=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',m j=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',n , and with L∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='πbj = �n i=1(L∗)ijπai, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [L∗]|b,a = [(L∗)ij] i=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',n j=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',m , (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='80) gives, for all (i, j) ∈ [1, n]N × [1, m]N, (L∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='πbj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ai = πbj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ai), thus (L∗)ij = Lji and [L∗] = [L]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='82) Duality notations (warning: can be misused): L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj = �m i=1Lij⃗bi, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [L]|⃗a,⃗b = [Lij] i=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',m j=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',n , and L∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='bj = �n i=1(L∗)i jai, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [L∗]|b,a = [((L∗)i j] i=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',n j=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',m , thus, for all (i, j) ∈ [1, n]N × [1, m]N, (L∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='bj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ai = bj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ai), thus (L∗)i j = Lj i and [L∗] = [L]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='83) (Recall: Use classical notations if in doubt, or, preferably, don��t use duality notations here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Remark A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='67 Reminder: The transposed bT of a bilinear b form is intrinsic to b, and the adjoint L∗ of a linear map L is intrinsic to L;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' But a transposed LT of a linear form L is not intrinsic to the linear form (it depends on chosen inner dot products): Watch out for the (unfortunate) vocabulary “transpose”!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Relation with the transposed when inner dot products are introduced let L ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' We need inner dot products (·, ·)g and (·, ·)h in E and F to define LT = LT gh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' To have a functional relation between L∗ and LT gh, we use the (·, ·)g-Riesz representation mapping ⃗Rg : � E∗ → E ℓ → ⃗Rg(ℓ) = ⃗ℓg � , where ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x = (⃗ℓg, ⃗x)g for all ⃗x ∈ E, see (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' idem with F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let L ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) (continuous).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' For all ⃗x ∈ E and all m ∈ F ∗ we have (L∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='m).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='79) = m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='(L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x), thus (⃗Rg(L∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='m), ⃗x)g = (⃗Rh(m), L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x)h, (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='84) thus ((⃗Rg ◦ L∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='m), ⃗x)g = ((LT gh ◦ ⃗Rh).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='m, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x)g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus ⃗Rg ◦ L∗ = LT gh ◦ ⃗Rh, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' LT gh = ⃗Rg ◦ L∗ ◦ (⃗Rh)−1 i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E LT gh ←− F ⃗Rg ↑ ↑ ⃗Rh E∗ ←− L∗ F ∗ is a commutative diagram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='85) Exercice A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='68 From (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='85), recover (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='71), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [LT gh] = [g]−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [L]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [h].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [LT gh] =(A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='85) [⃗Rg].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[L∗].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗Rh]−1 =(F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6) [g]−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [L]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [h].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13 Tensorial representation of a linear map A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 A tensorial representation Consider the natural canonical isomorphism (between linear maps E → F and bilinear forms F ∗×E → R) � J : � L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) → L(F ∗, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) L → βL = � J (L) � where βL(m, ⃗u) := m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='(L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u), ∀(m, ⃗u) ∈ F ∗ × E, (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='86) see § T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And βL is also named L for calculations purposes, see (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='89).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (NB: It can be dangerous to substitute L with βL, see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' § A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') 95 96 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Change of basis formulas for bilinear forms and linear maps Quantification: Let (⃗ai)i=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',n be a basis in E, (⃗bi)i=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',m be a basis in F which dual basis is (πbi), L ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then βL(πbi,⃗ai) = πbi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='87) Thus, if L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj = m � i=1 Lij⃗bi then βL = m � i=1 n � j=1 Lij⃗bi ⊗ πaj (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='88) Indeed, (� ij Lij⃗bi ⊗ πaj)(πbk,⃗aℓ) = � ij Lij(⃗bi ⊗ πaj)(πbk,⃗aℓ) = � ij Lij(⃗bi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='πbk)(πaj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aℓ) = � ij Lij(⃗bi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='πbk)(πaj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aℓ) = � ij Lijδkiδjℓ = Lkℓ = πbk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aℓ, so (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='87) gives (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='88).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Duality notations: L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj = �m i=1Lij⃗bi and βL = �m i=1 �n j=1Lij⃗bi ⊗ aj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Contraction rule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' If you write L = �m i=1 �n j=1Lij⃗bi ⊗πaj (≃ βL), then the vector L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u ∈ F is computed thanks to the “contraction rule”: L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u = ( m � i=1 n � j=1 Lij⃗bi ⊗ πaj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u � �� � contraction := m � i=1 n � j=1 Lij⃗bi(πaj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u) = m � i=1 n � j=1 Lijuj⃗bi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='89) (With duality notations: L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u = ( m � i=1 n � j=1 Li j⃗bi ⊗ aj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u � �� � contraction = m � i=1 n � j=1 Li j⃗bi(aj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u) = m � i=1 n � j=1 Li juj⃗bi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Remark A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='69 Warning: The bilinear form βL should not be confused with the linear map L: The domain of definition of βL is F ∗ × E, and βL acts on the two objects ℓ (linear form) and ⃗u (vector) to get a scalar result;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' While the domain of definition of L is E, and L acts one object ⃗u to get a vector result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' However, you can use the tensorial notation for L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' only to calculate L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u with (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='89).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Warning: Confusion between transposed and adjoint The transposed LT ∈ L(F;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E) of a linear map L ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) needs inner dot products to be defined, cf (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='68): It is not intrinsic to L, not objective ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' While the transposed bT ∈ L(B, A;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) of a bilinear form b ∈ L(A, B;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) is intrinsic to L (it does not need inner dot products to be defined).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So if you represent a linear map L ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) by its tensorial representation βL ∈ L(F ∗, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R), cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='88), then 1- you know the transposed (βL)T (given by (βL)T (⃗w, ⃗u) = βL(⃗u, ⃗w)), 2- but you cannot deduce the transposed LT ∈ L(F;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E) from (βL)T (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', to start with (βL)T is misleading): You need to choose inner dot products, and then use the formula (LT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗y, ⃗x)g = (⃗y, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x)h where LT := LT gh to get [LT ] = [g]−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [L]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [h] (and [LT ] ̸= [L]T in general).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 3- In particular: If L ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E) is symmetric (relative to the chosen inner dot products), then βL ∈ L(E∗, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) is never symmetric because E∗ ̸= E !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Recall: there is no natural canonical isomorphism between E and E∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14 Change of basis formulas for bilinear forms and linear maps A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Notations for transitions matrices for bilinear forms and linear maps Let A and B be finite dimension vector spaces, dim A = n, dim B = m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' application to the change of basis formula for the deformation gradient A=⃗Rn t0 → B=⃗Rn t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Let (⃗aold,i) and (⃗anew,i) be two bases in A, and (⃗bold,i) and (⃗bnew,i) be two bases in B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let PA and PB be the change of basis endomorphisms from old to new bases, and PA := [PA]|⃗aold = [PAij] and PB := [PB]|⃗bold = [PBij] be the associated transition matrices, and QA = PA −1 and QB = PB −1: ⃗anew,j = PA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aold,i = n � i,j=1 PAij⃗aold,i, πanew,j = n � i=1 QAijπaold,i, ⃗bnew,j = PB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗bold,i = m � i,j=1 PBij⃗bold,i, πbnew,j = n � i,j=1 QBijπbold,i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='90) Duality notations: ⃗anew,j = �n i=1PA i j⃗aold,i and ai new = �n j=1QA i jaj old and ⃗bnew,j = �n i=1PB i j⃗bold,i and bi new = �n j=1QB i jbj old.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 96 97 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Change of basis formulas for bilinear forms and linear maps A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Change of coordinate system for bilinear forms ∈ L(A, B;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) Let g ∈ L(A, B;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R), and, for all (i, j) ∈ [1, n]N × [1, m]N, g(⃗aold,i,⃗bold,j) = Mij, g(⃗anew,i,⃗bnew,j) = Nij, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' � � � [g]|olds = M = [Mij] i=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',n j=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',m , [g]|news = N = [Nij] i=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',n j=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',m .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='91) Proposition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='70 Change of basis formula: [g]|news = PA T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [g]|olds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='PB, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' N = PA T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='PB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='92) In particular, if A = B and (⃗aold,i) = (⃗bold,i) and (⃗anew,i) = (⃗bnew,i), then PA = PB =noted P, and [g]|new = P T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [g]old.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P , i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' N = P T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='93) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Nij = g(⃗anew,i,⃗bnew,j) = � kℓ PA k iPB ℓ jg(⃗aold,k,⃗bold,ℓ) = � kℓ PA k iMkℓPB ℓ j = � kℓ(PA T )ikMkℓPB ℓ j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='71 Prove (objective result): g(⃗u, ⃗w) = [⃗u]T |⃗anew.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[g]|news.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗w]|⃗bnew = [⃗u]T |⃗aold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[g]|olds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗w]|⃗bold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='94) Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗u]T |⃗anew.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[g]|news.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗w]|⃗bnew = (PA −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗u]|⃗aold)T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (PA T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [g]|olds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='PB).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (PB −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗w]|⃗bold).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Change of coordinate system for bilinear forms ∈ L(A∗, B∗;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) Let z ∈ L(A∗, B∗;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R), and, for all (i, j) ∈ [1, n]N × [1, m]N, z(ai old, bj old) = M ij, z(ai new, bj new) = N ij, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' � � � [z]|olds = M = [M ij] i=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',n j=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',m , [z]|news = N = [N ij] i=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',n j=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',m .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='95) Proposition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='72 Change of basis formula: [z]|news = PA −T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [z]|olds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='PB −1, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' N = PA −T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='PB −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='96) In particular, if A = B and (⃗aold,i) = (⃗bold,i) and (⃗anew,i) = (⃗bnew,i), then PA = PB =noted P, and [z]|new = P −T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [z]old.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P −1 , i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' N = P −T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='97) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Nij = z(ai new, bj new) = � kℓ QA k iQB ℓ jz(ak old, bℓ old) = � kℓ QA k iM kℓQB ℓ j = � kℓ(QA T )ikM kℓQB ℓ j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Change of coordinate system for bilinear forms ∈ L(B∗, A;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) (Toward linear maps L ∈ L(A;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' B) ≃ L(B∗, A;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) thanks to the natural canonical isomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Let T ∈ L(B∗, A;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R), and, for all (i, j) ∈ [1, n]N × [1, m]N, T(bi old,⃗aold,j) = M i j, T(bi new,⃗anew,j) = N i j, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' � � � [T]|olds = M = [M i j] i=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',n j=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',m , [T]|news = N = [N i j] i=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',n j=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',m .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='98) Proposition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='73 Change of basis formula: [T]|news = PB −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [T]|olds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='PA, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' N = QA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='PB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='99) In particular, if A = B and (⃗aold,i) = (⃗bold,i) and (⃗anew,i) = (⃗bnew,i), then PA = PB =noted P, and [T]|new = P −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [T]old.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P , i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' N = P −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' N i j = n � k,ℓ=1 Qi kM k ℓP ℓ j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='100) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' N ij = T(bi new,⃗anew,j) = � kℓ QB i kPA ℓ jT(bi old,⃗aold,j) = � kℓ QB i kM ijPA ℓ j 97 98 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Change of basis formulas for bilinear forms and linear maps A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Change of coordinate system for tri-linear forms ∈ L(A∗, A, A;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) (Toward d2⃗u: For a vector field ⃗u ∈ Γ(U) ≃ T 1 0 (U), ⃗u(p) ∈ ⃗Rn, its differential satisfies d⃗u(p) ∈ L(⃗Rn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn) ≃ L(Rn∗, ⃗Rn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R), and d2⃗u(p) ∈ L(⃗Rn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' L(⃗Rn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn)) ≃ L(Rn∗, ⃗Rn, ⃗Rn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R), see § S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Consider a tri-linear form T ∈ L(A∗, A, A;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R), and M i jk = T(ai old,⃗aold,j,⃗aold,k), N i jk = T(ai new,⃗anew,j,⃗anew,k), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [T]|⃗aold = [M i jk], [T]|⃗anew = [N i jk].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='101) Then N i jk = n � λ,µ,ν=1 Qi λP µ j P ν k M λ µν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='102) Indeed � λµν M λ µν⃗aold,λ ⊗ aµ old ⊗ aν old = � λµνijk M λ µνQi λP µ j P ν k⃗anew,i ⊗ aj new ⊗ ak new.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 Change of coordinate system for linear maps ∈ L(A;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' B) Notation of § A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let L ∈ L(A;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' B) be a linear map, and let, for all j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', n, � � � � � � � � � � � L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aold,j = m � i=1 Mij⃗bold,i = m � i=1 M i j⃗bold,i i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [L]|olds = M = [Mij] = [M i j] i=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',m j=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',n , L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗anew,j = m � i=1 Nij⃗bnew,i = m � i=1 N i j⃗bnew,i i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [L]|news = N = [Nij] = [N i j] i=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',m j=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',n , (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='103) with classical and duality notations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proposition A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='74 Change of bases formula: [L]|news = PB −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [L]|olds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='PA, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' N = PB −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='PA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='104) In particular, if A = B, if (⃗aold,i) = (⃗bold,i), (⃗anew,i) = (⃗bnew,i), then PA = PB =noted P and [L]|new = P −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [L]|old.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P , i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' N = P −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Nij = n � k,ℓ=1 QikMkℓPℓj, (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='105) with Q = P −1, and with duality notations N ij = � kℓ QikM kℓP ℓj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗anew,j = � i N ij⃗bnew,i = � ik N ijPB k i⃗bold,k = � k(PB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='N)kj⃗bold,k and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗anew,j = L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='(� i PA i j⃗aold,i) = � i PA i j � k M ki⃗bold,k = � k(M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='PA)kj⃗bold,k, for all j, thus PB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='N = M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='PA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='75 Prove: ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u = [ℓ]|⃗bnew.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[L]|news.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗u]|⃗anew = [ℓ]|⃗bold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[L]|olds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗u]|⃗aold (objective result).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='106) Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [ℓ]|⃗bnew.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[L]|news.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗u]|⃗anew = ([ℓ]|⃗bold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='PB).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (PB −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[L]|olds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='PA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (PA −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗u]|⃗aold).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Remark A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='76 Bilinear forms in L(A, A;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) and endomorphisms in L(A;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A) behave differently: The formulas (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='93) and (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='105) should not be confused since P −1 ̸= P T in general.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', if an English observer uses a Euclidean (old) basis (⃗ai) = (⃗aold,i) in foot, if a French observer uses a Euclidean (new) basis (⃗bi) = (⃗anew,i) in metre, and if (simple case) ⃗bi = λ⃗ai for all i (change of unit), then [L]|new = [L]|old, while [g]|new = λ2 ���� >10 [g]|old.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='107) Quite different results!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' P −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [L]|old.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P ̸= P T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [L]|old.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P for a general change of basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' See the Mars Climate Orbiter crash, remark A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14, where someone forgot that 1 foot ̸= 1 metre.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' B Euclidean Frameworks Time and space are decoupled (classical mechanics).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Rn is the geometric affine space, n = 1, 2, 3, and ⃗Rn is the associated vector space made of “bi-point vectors”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 98 99 B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Euclidean basis B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Euclidean basis Manufacturing of a Euclidean basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' An observer chooses a unit of measure (foot, metre, a unit of length used by Euclid, the diameter a of pipe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') and makes a “unit rod” of length 1 in this unit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Postulate: The length of the rod does not depend on its direction in space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Space dimension n = 1: This rod models a vector ⃗e1 which makes a basis (⃗e1) called the Euclidean basis relative to the chosen unit of measure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Space dimension n ≥ 2: The observers makes three rods of length 3, 4 and 5, and makes a triangle (A, B, C) with A, B and C are the vertices and A not on the side on length 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Pythagoras: 32 + 42 = 52 gives: The triangle (A, B, C) is said to have a right angle at A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Two vectors ⃗u and ⃗w in ⃗Rn are orthogonal iff the triangle (A, B, C) can be positioned such that ⃗ AB and ⃗ AC are parallel to ⃗u and ⃗w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A basis (⃗ei)i=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',n is Euclidean relative to the chosen unit of measurement iff the ⃗ei are two to two orthogonal and their length is 1 (relative to the chosen unit).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Example B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 An English observer defines a Euclidean basis (⃗ai) using the foot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A French observer defines a Euclidean basis (⃗bi) using the metre.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' We have 1 foot = µ metre, µ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3048, and 1 metre = λ foot, λ = 1 µ ≃ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1) (µ = 0, 3048 is the official length in metre for the English foot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', the bases are “aligned” iff, for all i, ⃗bi = λ⃗ai (change of measurement unit), (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2) thus the transition matrix from (⃗ai) to (⃗bi) is P = λI, thus P T = P, P −1 = 1 λI and P T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P = λ2I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Remark B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 The bases used in practice are not all Euclidean.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' See example A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13, especially if you fly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Euclidean dot product Definition B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 An observer who has built) his Euclidean basis (⃗ei), cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' § B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The associated Euclidean dot product is the bilinear form g(·, ·) = (·, ·)g ∈ L(⃗Rn, ⃗Rn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) defined by (gij =) g(⃗ei,⃗ej) = δij, ∀i, j, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [g]|⃗e = [δij] = I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3) In other words, (·, ·)g := n � i=1 πei ⊗ πei = n � i=1 ei ⊗ ei, (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4) with classical and duality notations, (πei) = (ei) being the dual basis of (⃗ei).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And if you want to use the Einstein convention you have to write (·, ·)g := �n i,j=1δijei ⊗ ej: You cannot avoid writing δij = gij.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus, for all ⃗x, ⃗y ∈ ⃗Rn, with ⃗x = �n i=1xi⃗ei and ⃗y = �n i=1yi⃗ei (classical notations), (⃗x, ⃗y)g = n � i=1 xiyi = [⃗x]T |⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗y]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5) With duality notations, ⃗x = �n i=1xi⃗ei, ⃗y = �n i=1yi⃗ei and (⃗x, ⃗y)g = �n i=1xiyi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And if you want to use the Einstein convention then write (⃗x, ⃗y)g := �n i,j=1δijxiyj: You cannot avoid writing δij.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 The associated norm is ||.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='||g := � (·, ·)g, and the length of a vector ⃗x relative to the chosen Euclidean unit of measurement is ||⃗x||g := � (⃗x, ⃗x)g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus with the Euclidean basis (⃗ei) (used to build (·, ·)g), if ⃗x = �n i=1xi⃗ei, then ||⃗x||g = ��n i=1x2 i is the length of ⃗x relative to the chosen Euclidean unit of measure (Pythagoras).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (With duality notations ||⃗x||g = ��n i=1(xi)2, and if you want to use the Einstein convention: ||⃗x||g = ��n i,j=1δijxixj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Definition B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 The angle θ(⃗x, ⃗y) between two vectors ⃗x, ⃗y ∈ ⃗Rn − {⃗0} is defined by cos(θ(⃗x, ⃗y)) = ( ⃗x ||⃗x||g , ⃗y ||⃗y||g )g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6) (With a calculator, this formula gives θ(⃗x, ⃗y) = arccos(( ⃗x ||⃗x||g , ⃗y ||⃗y||g )g) a value in [0, π].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') 99 100 B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Change of Euclidean basis B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Change of Euclidean basis Let (⃗ai) (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' English observer basis built with the foot) and (⃗bi) (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' French observer basis built with the metre) be Euclidean bases in ⃗Rn, and let (·, ·)g and (·, ·)h be the associated Euclidean dot products.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Two Euclidean dot products are proportional Proposition B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 If λ = ||⃗b1||g, then ||⃗bi||g = λ for all i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', n (change of unit) and (·, ·)g = λ2(·, ·)h, and ||.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='||g = λ||.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='||h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' By definition of a Euclidean basis, the length of the rod that enabled to define (⃗bi) is independent of i, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' § B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1, thus ||⃗bi||g = ||⃗b1||g for all i, and here ||⃗bi||g =noted λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus ||⃗bi||2 g = λ2 = λ2||⃗bi||2 h for all i, since ||⃗bi||2 h = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And if i ̸= j then (⃗bi,⃗bj)g = 0 = (⃗bi,⃗bj)h since ⃗bi and ⃗bj form a right angle (Pythagoras), cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Hence (⃗bi,⃗bj)g = λ2(⃗bi,⃗bj)h for all i, j, thus (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Example B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 Continuation of example B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1: (·, ·)a = �n i=1ai ⊗ ai is the English Euclidean dot product (foot), and (·, ·)b = �n i=1bi ⊗ bi is the French Euclidean dot product (metre).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7) and (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1) give: (·, ·)a = λ2(·, ·)b and ||.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='||a = λ||.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='||b, with λ ≃ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='28 and λ2 ≃ 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8) In particular, if ⃗w is s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ||⃗w||b = 1 (its length is 1 metre), then ||⃗w||a = λ (its length is λ ≃ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='28 foot).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Counterexample : non existence of a Euclidean dot product 1- Thermodynamic: Let T be the temperature and P the pressure, and consider the Cartesian vector space {(T, P)} = {(temperature,pressure)} = R × R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' There is no associated Euclidean dot product: An associated norm would give ||(T, P)|| = √ T 2 + P 2 ∈ R which is meaningless (incompatible dimensions).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' See § A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 2- Polar coordinate system ⃗q = (r, θ) ∈ R × R: There is no Euclidean norm √ r2 + θ2 for ⃗q that is physically meaningful (incompatible dimensions), see example 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Euclidean transposed of the deformation gradient Let n ∈ {1, 2, 3} and consider a linear map L ∈ L(⃗Rn t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t ) (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', L = F t0 t (P)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let (·, ·)G be a Euclidean dot product in ⃗Rn t0 (used in the past by someone), and let (·, ·)g and (·, ·)h be Euclidean dot products in ⃗Rn t (the actual space where the results are obtained by two observers, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', (·, ·)g built with a foot and (·, ·)h built with a metre).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let LT Gg and LT Gh be the transposed of L relative to the dot products, that is, LT Gg and LT Gh in L(⃗Rn t ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t0) are characterized by, for all ( ⃗X, ⃗y) ∈ ⃗Rn t0 × ⃗Rn t , cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='68), (LT Gg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗y, ⃗X)G = (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗X, ⃗y)g and (LT Gh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗y, ⃗X)G = (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗X, ⃗y)h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9) Corollary B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8 if (·, ·)g = λ2(·, ·)h then LT Gg = λ2LT Gh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10) NB: Do not forget λ2, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' remark A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14 (Mars Climate Orbiter crash).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (LT Gg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗y, ⃗X)G (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9) = (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗X, ⃗y)g (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10)1 = λ2(L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗X, ⃗y)h (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9) = λ2(LT Gh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗y, ⃗X)G for all ⃗X ∈ ⃗Rn t0 and all ⃗y ∈ ⃗Rn t , thus LT Gg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗y = λ2LT Gh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗y for all ⃗y ∈ ⃗Rn t , thus (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 The Euclidean transposed for endomorphisms Let n ∈ {1, 2, 3} and consider an endomorphism L ∈ L(⃗Rn t ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t ) (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' L = d⃗vt(p) ∈ L(⃗Rn t ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t ) the differential of the Eulerian velocity).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let (·, ·)g and (·, ·)h be dot products in ⃗Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let LT g and LT h be the transposed of L relative to (·, ·)g and (·, ·)h, that is, LT g and LT h in L(⃗Rn t ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t ) are the endomorphisms defined by, for all ⃗x, ⃗y ∈ ⃗Rn t , cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='54), (LT g .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗y, ⃗x)g = (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x, ⃗y)g, and (LT h .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗y, ⃗x)h = (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x, ⃗y)h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11) 100 101 B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Unit normal vector, unit normal form Corollary B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9 if (·, ·)g = λ2(·, ·)h then LT g = LT h noted = LT ∈ L(⃗Rn t ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t ) (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12) (an endomorphism type relation): Thus we can speak of “the Euclidean transposed of an endomorphism”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (LT g .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗y, ⃗x)g (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11) = (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x, ⃗y)g hyp = λ2(L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x, ⃗y)h (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11) = λ2(LT h .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗y, ⃗x)h hyp = (LT h .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗y, ⃗x)g for all ⃗x, ⃗y ∈ ⃗Rn, thus LT g .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗y = LT h .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗y for all ⃗y ∈ ⃗Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 Unit normal vector, unit normal form The results in this § are not objective: We need a Euclidean dot product (need a unit of length: Foot?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Meter?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') to get a unit (Euclidean) normal vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Framework (·, ·)g is a Euclidean dot product (needed to define Euclidean orthonormality) and, for all ⃗u, ⃗w ∈ ⃗Rn, (⃗u, ⃗w)g noted = ⃗u •g ⃗w (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13) (or =noted ⃗u • ⃗w when one chosen Euclidean dot product is imposed to all).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Ω is a regular open bounded set in Rn, n = 2 or 3, and Γ := ∂Ω is its regular surface (dimension n−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' If p ∈ Γ then TpΓ is the tangent plane at p to Γ, and a basis (⃗β1(p), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ⃗βn−1(p)) in TpΓ is known (usually obtained thanks to a coordinate system describing Γ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And, to lighten the writings, (⃗β1(p), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ⃗βn−1(p)) is written (⃗β1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ⃗βn−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Unit normal vector Call ⃗ng(p) the unit outward normal vector at p ∈ Γ at TpΓ relative to (·, ·)g;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So ⃗ng(p) •g ⃗βi(p) = 0 for all i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', n−1, and ||⃗ng(p)||g = 1, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗ng is defined on Γ by (up to its sign) ∀i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', n−1, ⃗βi •g ⃗ng = 0, and ⃗ng •g ⃗ng = 1 (= ||⃗ng||2 g), (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', at any p ∈ Γ, ⃗ng(p) is orthogonal to the hyperplane Vect{⃗β1(p), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ⃗βn−1(p)} and ⃗ng(p) is unitary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So (⃗β1(p), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ⃗βn−1(p),⃗ng(p)) is a basis at p in ⃗Rn, written in short (⃗β1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ⃗βn−1,⃗ng).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Drawing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus, for all ⃗w ∈ ⃗Rn, if ⃗w = �n−1 i=1 wi⃗βi + wn⃗ng (classical notations) then wn = ⃗w •g ⃗ng = the normal component of ⃗w at p at Γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='15) (wn depends on (·, ·)g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') (Duality notations: ⃗w = �n−1 i=1 wi⃗βi + wn⃗ng and wn = ⃗w •g ⃗ng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Exercice B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10 Let (⃗ai) be a basis in ⃗Rn, ⃗βj = �n i=1Bij⃗ai for j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', n−1, and ⃗ng = �n i=1ni⃗ai, and gij = g(⃗ai,⃗aj) for all i, j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' What equations satisfy the nj?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And particular case (⃗ai) is (·, ·)g-orthonormal?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14) gives [⃗βi]T |⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[g]|⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗ng]|⃗a = 0 for i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', n−1 (so n−1 equations), with [⃗ng]T |⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[g]|⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗ng]|⃗a = 1 (so 1 equation), and ⃗ng is obtained up to its sign.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' If (⃗ai) is (·, ·)g-orthonormal, then �n j=1Bijnj = 0 for j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', n−1, with �n i=1n2 i = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11 Let (⃗ai) be a Euclidean basis in foot, (⃗bi) a Euclidean basis in metre, (·, ·)a and (·, ·)b the associated Euclidean dot products, so (·, ·)a = λ2(·, ·)b with λ ≃ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='28, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let ⃗na(p) and ⃗nb(p) be the corresponding unit outward normal vectors, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 1- Prove (up to the sign): ⃗nb = λ⃗na, and (⃗w,⃗na)a = λ(⃗w,⃗nb)b ∀⃗w ∈ ⃗Rn (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16) 2- Then let ⃗na = �m i=1nai⃗ai and ⃗nb = �m i=1nbi⃗bi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Prove: If, ∀i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', n, ⃗bi = λ⃗ai then ∀i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', n, nai = nbi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='17) So the vectors ⃗na and ⃗nb are different (λ > 1), and their respective components are equal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' relative to different bases!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And of course 1 = ||⃗na||2 a = �n i=1(nai)2 = �n i=1(nbi)2 = ||⃗nb||2 b = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗na(p) ∥ ⃗nb(p), since the vectors are Euclidean and orthogonal to TpΓ cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And ||.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='||a = λ||.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='||b cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8), thus ||⃗nb||b = 1 = ||⃗na||a = λ||⃗na||b = ||λ⃗na||b, so ⃗nb = ±λ⃗na.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And they both are outward vectors, so ⃗nb = +λ⃗na.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus (⃗w,⃗na)a = λ2(⃗w,⃗na)b = λ2(⃗w, ⃗nb λ )b = λ(⃗w,⃗nb)b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And if ⃗bi = λ⃗ai (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16) gives �n i=1ni b⃗bi = λ�n i=1ni a⃗ai = �n i=1ni a(λ⃗ai) = �n i=1ni a⃗bi, then ni a = ni b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 101 102 B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Integration by parts (Green–Gauss–Ostrogradsky) B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Unit normal form n♭ associated to ⃗n (For mathematicians;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' May produce misunderstandings and lack of mechanical interpretations;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Don’t forget: n♭ is obtained after ⃗n has been defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') At p ∈ Γ, once you have computed ⃗ng(p), you can define the associated unit normal form n♭ g(p) ∈ Rn∗: It is the linear form defined by n♭ g(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w := ⃗ng(p) •g ⃗w for all ⃗w ∈ ⃗Rn, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' on Γ, for all ⃗w ∈ ⃗Rn, n♭ g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w := ⃗ng •g ⃗w (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='18) ( =noted ⃗n • ⃗w if one chosen Euclidean dot product is imposed to all).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus [n♭ g].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗w] = [⃗ng]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [g].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗w].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Quantification: Let (⃗ei) be a basis in ⃗Rn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='18) gives [n♭ g]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗w]|⃗e = [⃗ng]T |⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[g]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗w]|⃗e simply written [n♭ g].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗w] = [⃗ng]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [g].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗w] if the basis (⃗ei) is imposed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So, with duality notations to justify the ♭ notation, with (ei) the dual basis of (⃗ei), let ⃗ng = n � i=1 ni g⃗ei and n♭ g = n � i=1 ngiei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='19) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ni g and ngi are the components of ⃗ng and n♭ g relative to the basis (⃗ei) and (ei).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Since (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='18) gives n♭ g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ei := ⃗ng •g ⃗ei for all i, we get, for all i, nig = n � j=1 gijnj g (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='20) Particular case (⃗ei) is a (·, ·)g-Euclidean basis, then nig = ni g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Classical notations: ⃗ng = �n i=1(⃗ng)i⃗ei, dual basis (πei), n♭ g = �n i=1(n♭ g)iπei, (n♭ g)i = �n j=1gij(⃗ng)j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' NB: In physics don’t forget to write the gij in (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='20) even if gij = δij, since you need to see the chosen metric and basis (and verify the Einstein convention), although (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='20) is simply written ni = �n j=1gijnj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 Integration by parts (Green–Gauss–Ostrogradsky) Let Ω be a regular bounded open set in Rn and Γ = ∂Ω its frontier, let ϕ ∈ C1(Ω;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R), let (⃗ei) be a Euclidean basis and (·, ·)g ites associated Euclidean dot product, let ∂ϕ ∂xi (p) := dϕ(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ei (usual notation), let ⃗ng(p) = ⃗n(p) = �n i=1ni(p)⃗ei (classical notations) be the unit outward normal at p ∈ Γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then, for i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', n, � p∈Ω ∂ϕ ∂xi (p) dΩ = � p∈Γ ϕ(p)ni(p) dΓ, in short � Ω ∂ϕ ∂xi dΩ = � Γ ϕni dΓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='21) Thus, for any v ∈ C1(Ω;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R), with ϕv instead of ϕ in (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='21), we get the integration by parts formula (Green formula): � Ω ∂ϕ ∂xi v dΩ = − � Ω ϕ ∂v ∂xi dΩ + � Γ ϕvni dΓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22) Thus, for any ⃗v ∈ C1(Ω;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn) (vector field), with ⃗v(p) = �n i=1vi(p)⃗ei) we get � Ω ∂ϕ ∂xi vi dΩ = − � Ω ϕ ∂vi ∂xi dΩ + � Γ ϕvini dΓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='23) Thus, with the gradient vector ⃗ gradϕ(p) = �n i=1 ∂ϕ ∂xi⃗ei and with div⃗v = �n i=1 ∂vi ∂xi , we get the Gauss– Ostrogradsky formula: � Ω ⃗ gradϕ • ⃗v dΩ = − � Ω ϕ div⃗v dΩ + � Γ ϕ⃗v • ⃗n dΓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='24) (And � Γ ϕ⃗v • ⃗n dΓ gives the flux through Γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Exercice B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12 Use the differential dϕ instead of the gradient ⃗ gradϕ (which is the (·, ·)g-Riesz represen- tation vector of dϕ) to express (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='23).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Is the use of n♭ useful in that case?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' � Ω dϕ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v dΩ = − � Ω ϕ div⃗v dΩ + � Γ ϕ⃗v • ⃗n dΓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Since n♭ depends on ⃗n (definition), there is no reason that justifies the use of n♭ (unless you want to introduce useless notations here).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 102 103 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The symmetric and antisymmetric parts of d⃗v C Rate of deformation tensor and spin tensor Let �Φ : [t1, t2] × Obj → Rn be a regular motion, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5), and let ⃗v : C → ⃗Rn be the Eulerian velocity field, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4), that is, ⃗v(t, p) = ∂Φ ∂t (t, PObj) when p = �Φ(t, PObj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Its differential d⃗v is given in (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' At t, an observer chooses a unit of measurement (foot, metre.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') and builds the associated Euclidean dot product (·, ·)g in ⃗Rn t , cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' § B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (We loose the objective point of view here).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And the same (·, ·)g is used at all t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 The symmetric and antisymmetric parts of d⃗v With the imposed chosen Euclidean dot product (·, ·)g in ⃗Rn t , we can consider the transposed endomor- phism d⃗vt(p)T g =noted d⃗vt(p)T ∈ L(⃗Rn t ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t ), which is defined by, for all ⃗w1, ⃗w2 ∈ ⃗Rn t vectors at p, (d⃗vt(p)T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w1, ⃗w2)g = (⃗w1, d⃗vt(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w2)g (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1) cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' § A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' We have thus defined d⃗vT t : � Ωt → L(⃗Rn t ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t ) p → d⃗vT t (p) := d⃗vt(p)T (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2) Other usual notations (definitions): d⃗vt(p)T =noted d⃗v(t, p)T =noted d⃗vT (t, p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 The (Eulerian) rate of deformation tensor, or stretching tensor, is the (·, ·)g-symmetric part of d⃗v: D = d⃗v + d⃗vT 2 , i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ∀(t, p) ∈ � t∈R ({t} × Ωt), D(t, p) = d⃗v(t, p) + d⃗v(t, p)T 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3) The (Eulerian) spin tensor is the (·, ·)g-antisymmetric part of d⃗v: Ω = d⃗v − d⃗vT 2 , i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ∀(t, p) ∈ � t∈R ({t} × Ωt), Ω(t, p) = d⃗v(t, p) − d⃗v(t, p)T 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4) (So d⃗v = D + Ω with D the rate of deformation tensor and Ω = ⃗ω∧ a rotation times a dilation, see the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') NB: The same notation is used for the set of points Ωt = Φt0 t (Ωt0) ⊂ Rn and for the spin tensor Ωt = d⃗vt−d⃗vT t 2 : The context removes ambiguities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Quantification with a basis With a basis (⃗ei) in ⃗Rn t , (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1) gives [g]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [d⃗vT ]|⃗e = [d⃗v]T |⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [g]|⃗e, and [d⃗vT ]|⃗e = [g]−1 |⃗e .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [d⃗v]T |⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [g]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5) In particular, if (⃗ei) is a (·, ·)g-orthonormal basis, then [d⃗vT ]|⃗e = [d⃗v]T |⃗e (orthonormal basis case).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus for the endomorphisms D and Ω, and with the above Euclidean framework and its Euclidean orthonormal basis, we have D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej = �n i=1Dij⃗ei and Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej = �n i=1Ωij⃗ei with Dij = 1 2( ∂vi ∂xj + ∂vj ∂xi ) and Ωij = 1 2( ∂vi ∂xj − ∂vj ∂xi ), that is, [D]|⃗e = [d⃗v]|⃗e + [d⃗v]T |⃗e 2 and [Ω]|⃗e = [d⃗v]|⃗e − [d⃗v]T |⃗e 2 (Euclidean framework).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6) Duality notations: D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej = �n i=1Di j⃗ei, Di j = 1 2( ∂vi ∂xj + ∂vj ∂xi ) and Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej = �n i=1Ωij⃗ei, Ωij = 1 2( ∂vi ∂xj − ∂vj ∂xi ), so with Di j = Dj i and Ωij = −Ωji.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 103 104 E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Affine motions and rigid body motions D Interpretation of the rate of deformation tensor We are interested in the evolution of the deformation gradient F(t) := F t0 pt0 (t) along the trajectory of a particle PObj which was at pt0 at t0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So: Let ⃗A = ⃗a(t0, pt0) and ⃗B = ⃗b(t0, pt0) be vectors at t0 at pt0 in Ωt0, and consider their push-forwards by the flow Φt0 t (the transported vectors), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' the vectors at t at p(t) = Φt0 pt0 (t) given by ⃗a(t, p(t)) := F(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗A and ⃗b(t, p(t)) := F(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1) see (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3) and figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' They define the function (⃗a,⃗b)g : � C → R (t, pt) → (⃗a,⃗b)g(t, pt) := (⃗a(t, pt),⃗b(t, pt))g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2) Proposition D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 The rate of deformation tensor D = d⃗v+d⃗vT 2 gives (half) the evolution rate between two vectors deformed by the flow, that is, along trajectories, D(⃗a,⃗b)g Dt = 2(D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗a,⃗b)g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' f(t) := (⃗a(t, p(t)),⃗b(t, p(t)))g = (F(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗A, F(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗B)g gives f ′(t) = (F ′(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗A, F(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗B)g + (F(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗A, F ′(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗B)g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4) And F ′(t) = d⃗v(t, p(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F(t), cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='33).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus, with ⃗a(t, p(t)) = F(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗A and ⃗b(t, p(t)) = F(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗B, f ′(t) = (d⃗v(t, p(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗A, F(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗B)g + (F(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗A, d⃗v(t, p(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗B)g = (d⃗v(t, p(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗a(t, p(t)),⃗b(t, p(t)))g + (⃗a(t, p(t)), d⃗v(t, p(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗b(t, p(t)))g = ((d⃗v(t, p(t)) + d⃗v(t, p(t))T ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗a(t, p(t)),⃗b(t, p(t)))g, (D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3), since f(t) = (⃗a,⃗b)g(t, p(t)) gives f ′(t) = D(⃗a,⃗b)g Dt (t, p(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E Rigid body motions and the spin tensor Choose a Euclidean dot product (·, ·)g (required to characterize a rigid body motion).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Result: A rigid body motion is a motion whose Eulerian velocity satisfies d⃗v + d⃗vT = 0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', D = 0 (Eulerian approach independent of any initial time t0 chosen by some observer).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' But the usual classical introduction to rigid body motion relies on some initial time t0 (Lagrangian approach).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So, to begin with, let us do it with the Lagrangian approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Recall: T the first order Taylor expansion of Φt0 t in the vicinity of a pt0 ∈ Ωt0 is Φt0 t (qt0) = Φt0 t (pt0) + F t0 t (pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='−−−→ pt0qt0 + o(−−−→ pt0qt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1) E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Affine motions and rigid body motions E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Affine motions Definition E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Φt0 is an affine motion (understood “affine motion in space”) iff Φt0 t is an “affine motion”, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' iff Φt0 t is a C1 diffeomorphism (in space), and (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1) reads, for all pt0, qt0 ∈ Ωt0 and all t ∈ [t1, t2], Φt0 t (qt0) = Φt0 t (pt0) + F t0 t (pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='−−−→ pt0qt0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2) Marsden–Hughes notations: Φ(Q) = Φ(P) + F(P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='−−→ PQ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proposition E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 and definition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' If Φt0 is an affine motion, then F t0 t (pt0) is independent of pt0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', for all t ∈]t1, t2[ and all pt0 ∈ Ωt0 and all qt0 ∈ Ωt0, F t0 t (pt0) = F t0 t (qt0) noted = F t0 t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3) And then dF t0 t (pt0) = 0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' d2Φt0 t (pt0) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And for all t ∈]t1, t2[, Φt is an affine motion: For all τ ∈]t1, t2[ and all pt, qt ∈ Ωt, Φt τ(qt) = Φt τ(pt) + F t τ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='−−→ ptqt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4) And �Φ is said to be an affine motion (understood “affine motion in space”).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 104 105 E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Affine motions and rigid body motions Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' qt0 = pt0 + −−−→ pt0qt0 gives Φt0 t (qt0) = Φt0 t (pt0 + −−−→ pt0qt0) = Φt0 t (pt0) + dΦt0 t (pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='−−−→ pt0qt0, and, similarly, Φt0 t (pt0) = Φt0 t (qt0 +−−−→ qt0pt0) = Φt0 t (qt0)+dΦt0 t (qt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='−−−→ qt0pt0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus (addition) Φt0 t (qt0)+Φt0 t (pt0) = Φt0 t (pt0)+ Φt0 t (qt0) + (dΦt0 t (pt0) − dΦt0 t (qt0)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='−−−→ pt0qt0, thus (dΦt0 t (pt0) − dΦt0 t (qt0)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='−−−→ pt0qt0 = 0, true for all pt0, qt0, thus dΦt0 t (pt0) − dΦt0 t (qt0) = 0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus d2Φt0 t (pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ut0 = limh→0 dΦt0 t (pt0+h⃗ut0)−dΦt0 t (pt0) h = limh→0 dΦt0 t −dΦt0 t h = 0 for all pt0 and all ⃗ut0, thus d2Φt0 t (pt0) = 0 for all pt0, thus d2Φt0 t = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='17) gives (Φt τ ◦ Φt0 t )(pt0) = Φt0 τ (pt0), thus, with pt = Φt0 t (pt0), we get dΦt τ(pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΦt0 t (pt0) = dΦt0 τ (pt0), thus dΦt τ(pt) = dΦt0 τ (pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΦt0 t (pt0)−1, and (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2) gives dΦt τ(pt) = dΦt0 τ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΦt0 t −1 noted = dΦt τ (independent of pt), (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5) thus (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Corollary E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 If �Φ is affine then, ⃗vt is affine for all t, and ⃗V t0 t is affine for all t0, t, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', for all pt ∈ Ωt we have d⃗vt(pt) = d⃗vt (independent of pt), and for all pt0 ∈ Ωt0 we have d⃗V t0 t (pt0) =noted d⃗V t0 t (independent of pt0): For all qt ∈ Ωt and all qt0 ∈ Ωt0, � ⃗vt(qt) = ⃗vt(pt) + d⃗vt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='−−→ ptqt, ⃗V t0 t (qt0) = ⃗V t0 t (pt0) + d⃗V t0 t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='−−−→ pt0qt0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2) gives Φt0(t, qt0) = Φt0(t, pt0) + F t0(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='−−−→ pt0qt0, and the derivation in time gives (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6)2, then (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6)1 thanks to pt = Φt0 t (pt0), qt = Φt0 t (qt0) and −−−→ pt0qt0 = (F t0 t )−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='−−→ ptqt, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Example E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 In R2, with a basis ( ⃗E1, ⃗E2) in ⃗Rn t0 and a basis (⃗e1,⃗e2) ∈ ⃗Rn t , then F t0 t given by [F t0 t ]| ⃗E,⃗e = � 1 + t 2t2 3t3 et � derives from the affine motion [−−−−−−−−−−−→ Φt0 t (pt0)Φt0 t (qt0)]|⃗e = � 1 + t 2t2 3t3 et � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [−−−→ pt0qt0]| ⃗E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Rigid body motion A Euclidean dot product (·, ·)g in ⃗Rn t is chosen, the same at all time t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let Φ := Φt0 t and F := F t0 t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Recall: If P ∈ Ωt0 and p = Φ(P) (∈ Ωt) then the transposed of the linear map F(P) ∈ L(⃗Rn t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t ) relative to (·, ·)g is the linear map F T (p) := F(P)T ∈ L(⃗Rn t ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t0) defined by F T (p) := F(P)T : � ⃗Rn t → ⃗Rn t0 ⃗wp → F T (p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wp s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (F T (p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wp, ⃗UP )g = (⃗wp, F(P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗UP )g, ∀⃗UP ∈ ⃗Rn t0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7) We have thus defined the function F T : Ωt → L(⃗Rn t ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Particular case: For an affine motion, since F is independent of P, we get F T is independent of p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 A rigid body motion is an affine motion �Φ such that, for all t0, t ∈ R, P ∈ Ωt0, ⃗UP , ⃗WP ∈ ⃗Rn t0, and with p = Φt0 t (P), (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗UP , F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗WP )g = (⃗UP , ⃗WP )g, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗UP , ⃗WP )g = (⃗UP , ⃗WP )g, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F = I .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8) (Angles and lengths are unchanged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') In other words, with the Cauchy strain tensor C ∈ L(⃗Rn t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t0) defined by C = F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F, the motion is rigid iff it is affine and C = I , i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F −1 = F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9) Proposition E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 If Φt0 is a rigid body motion, if ( ⃗Ai) is a (·, ·)g-Euclidean basis in ⃗Rn t0, if P ∈ Ωt0, if t ∈ [t0, T] and p = Φt0 t (P), and if ⃗ai(t, p) = F t0(t, P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Ai for all i, then ⃗ai(t, p) =noted ⃗ai,t is independent of p, and (⃗ai,t) is a (·, ·)g-Euclidean basis with the same orientation than ( ⃗Ai) for all t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 105 106 E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Representation of the spin tensor Ω: vectors, and pseudo-vectors Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Φt0 t is affine, thus, for all t, P, F t0 t (P) = F t0 t (independent of P), thus ⃗ai,t(p) = F t0 t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Ai ∈ ⃗Rn t is independent of p, this at all t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let t be fixed and ⃗ai,t =noted ⃗ai (= F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Aj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' We get (⃗ai,⃗aj)g = (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Ai, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Aj)g = (F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Ai, ⃗Aj)g = (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Ai, ⃗Aj)g = ( ⃗Ai, ⃗Aj)g = δij for all i, j, thus (⃗ai) is (·, ·)g-orthonormal basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And det(⃗a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗an) = det(F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗A1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗An) = det(F) det( ⃗A1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ⃗An) = det(F) since ( ⃗Ai) is a (·, ·)g- orthonormal basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And, Φt0 t being a diffeomorphism, t → det(F t0 t ) is continuous, does not vanish, moreover with det(F t0 t0 ) = det(I) = 1 > 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus det(F t0 t ) > 0 for all t, hence det(⃗a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗an) > 0: The bases have the same orientation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Example E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 In R2, a rigid body motion is given by F t0 t = � cos(θ(t)) − sin(θ(t)) sin(θ(t)) cos(θ(t)) � with θ a regular function s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' θ(t0) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8 Let �Φ be a rigid body motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Prove (F T )′(t) = (F ′(t))T , and F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F ′ is antisymmetric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10) Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let t ∈ R, p(t) = Φt0 t (P), ⃗U, ⃗W ∈ ⃗Rn t0 and ⃗w(t, p(t)) = F(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And recall that the function F T : t → F T (t) is defined (as usual) by F T (t) := (F(t))T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' We have (F(t)T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w(t, p(t)), ⃗U)g = (⃗w(t, p(t)), F(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗U)g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus ((F T )′(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w(t, p(t))+F T (t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' D ⃗w Dt (t, p(t)), ⃗U)g = ( D ⃗w Dt (t, p(t)), F(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗U)g+(⃗w(t, p(t)), F ′(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗U)g, which simplifies into ((F T )′(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w(t, p(t)), ⃗U)g = (⃗w(t, p(t)), F ′(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗U)g = ((F ′(t))T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w(t, p(t)), ⃗U)g, thus (F T )′(t) = (F ′(t))T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8) reads F T (t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F(t) = It0, thus (F T )′(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F(t)+F T (t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F ′(t) = 0, thus (F ′)T (t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F(t)+F T (t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F ′(t) = 0, thus F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F ′ is antisymmetric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Alternative definition of a rigid body motion: d⃗v + d⃗vT = 0 The stretching tensor Dt = d⃗vt+d⃗vT t 2 and the spin tensor Ωt = d⃗vt−d⃗vT t 2 have been defined in (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3)-(C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proposition E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9 If �Φ is a rigid body motion, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8), then the endomorphism d⃗vt ∈ L( ⃗ Rn t ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗ Rn t ) is antisymmetric at all t: d⃗vt = Ωt, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Dt = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11) Conversely, if d⃗vt + d⃗vT t = 0 at all t, then �Φ is a rigid body motion (here no initial time is required).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So the relation « d⃗vt + d⃗vT t = 0 for all t » gives an equivalent definition to the definition E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let F(t) := F t0 pt0 (t) and F T (t) := F(t)T and V (t) := ⃗V t0 pt0 (t) = (Φt0 pt0 )′(t) = ⃗v(t, pt) (the Lagrangian and Eulerian velocities).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8) gives (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F T )′(t) = 0 = F ′(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F(t)T + F(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (F T )′(t) (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10) = F ′(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F(t)T + (F ′(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F(t)T )T = dV (t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F(t)−1 + (dV (t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F(t)−1)T (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='27) = d⃗v(t, pt) + d⃗v(t, pt)T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Conversely, suppose d⃗v + d⃗vT = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then (D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3) gives D(⃗a,⃗b)g Dt = 0, thus (⃗a,⃗b)g(t, pt) = (⃗a,⃗b)g(t0, pt0) for all t, t0 and all pt0 = Φt0 t (pt), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (F t0 t (pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗A, F t0 t (pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗B)g = ( ⃗A, ⃗B)g for all t, t0, all pt0 and all ⃗A, ⃗B ∈ ⃗Rn t0: Thus �Φ is a rigid body motion, cf (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Representation of the spin tensor Ω: vectors, and pseudo-vectors We are dealing here with concepts that are sometimes misunderstood.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Framework: Rn = R3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Reminder The determinant det|⃗e associated with a basis (⃗ei) in R3 is the alternating multilinear form defined by det|⃗e(⃗e1,⃗e2,⃗e3) = 1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The algebraic volume (or signed volume) limited by three vectors ⃗u1, ⃗u2, ⃗u3 is det|⃗e(⃗u1, ⃗u2, ⃗u3);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And the (positive) volume is | det|⃗e(⃗u1, ⃗u2, ⃗u3)|, see § K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let A and B be two observers (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A=English and B=French), let (⃗ai) be a Euclidean basis chosen by A (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' based on the foot), let (⃗bi) be a Euclidean basis chosen by B (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' based on the metre), see § B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 106 107 E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Representation of the spin tensor Ω: vectors, and pseudo-vectors Let λ = ||⃗b1||a > 0 (change of unit of length coefficient).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The relation between the determinants is: det |⃗a = ±λ3 det |⃗b with � � � � � + if det |⃗a (⃗b1,⃗b2,⃗b3) > 0 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' if the bases have the same orientation), − if det |⃗a (⃗b1,⃗b2,⃗b3) < 0 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' if the bases have opposite orientation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12) In particular, if A and B use the same unit of length (or if A uses two (·, ·)g-Euclidean basis (⃗ai) and (⃗bi)), then λ = 1 and det|⃗a = ± det|⃗b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' With an imposed Euclidean dot product (·, ·)g: An endomorphism L is (·, ·)g-antisymmetric iff ∀���u,⃗v, (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u,⃗v)g + (⃗u, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v)g = 0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' LT = −L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13) E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Definition of the vector product (cross product) Let (⃗ei) be a (·, ·)g-orthonormal basis, let ⃗u,⃗v ∈ ⃗R3, and let ℓ⃗e,⃗u,⃗v ∈ L( ⃗R3, R) be the linear form defined by ℓ⃗e,⃗u,⃗v : � � � ⃗R3 → R ⃗z → ℓ⃗e,⃗u,⃗v(⃗z) := det |⃗e (⃗u,⃗v, ⃗z) (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14) (the algebraic volume of the parallelepiped limited by ⃗u,⃗v, ⃗z in the Euclidean chosen unit).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10 The vector product, or cross product, ⃗u ∧e ⃗v of two vectors ⃗u and ⃗v is the (·, ·)g-Riesz representation vector of ℓ⃗e,⃗u,⃗v, that is, ⃗u ∧e ⃗v ∈ ⃗R3 is characterized by ℓ⃗e,⃗u,⃗v(⃗z) = (⃗u ∧e ⃗v, ⃗z)g for all ⃗z ∈ ⃗R3, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ∀⃗z ∈ ⃗R3, (⃗u ∧e ⃗v, ⃗z)g = det |⃗e (⃗u,⃗v, ⃗z) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='15) NB: ⃗u ∧e ⃗v depends on (·, ·)g since we need a (·, ·)g-Euclidean basis (⃗ei) (and depends on the orientation of (⃗ei).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' We have thus defined the bilinear cross product operator ∧e : � ⃗R3 × ⃗R3 → ⃗R3 (⃗u,⃗v) → ∧e(⃗u,⃗v) := ⃗u ∧e ⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16) (The bilinearity is trivial thanks to the multilinearity of the determinant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') If one Euclidean basis is imposed by one observer to all the other observers, then ⃗u ∧e ⃗v is written ⃗u ∧ ⃗v (non objective).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Calculation of the vector product ⃗u = �3 i=1 ui⃗ei, ⃗v = �3 i=1 vi⃗ei and (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='15) give (⃗u ∧e ⃗v,⃗e1)g = det |⃗e (⃗u,⃗v,⃗e1) = det � � u1 v1 1 u2 v2 0 u3 v3 0 � � = det � u2 v2 u3 v3 � = u2v3 − u3v2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='17) Similar calculation for (⃗u ∧e ⃗v,⃗e2)e and (⃗u ∧e ⃗v,⃗e3)e, thus ⃗u ∧e ⃗v = 3 � i=1 (ui+1vi+2 − ui+2vi+1)⃗ei, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗u ∧e ⃗v]|⃗e = � � u2v3 − u3v2 u3v1 − u1v3 u1v2 − u2v1 � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='18) with the generic notation w4 := w1 and w5 = w2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (In particular ⃗ei ∧e ⃗ei+1 = ⃗ei+2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Proposition E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11 1- ⃗u ∧e ⃗v = −⃗v ∧e ⃗u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 2- ⃗u ∥ ⃗v iff ⃗u ∧e ⃗v = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 3- If ⃗u and ⃗v are independent then ⃗u ∧e ⃗v is orthogonal to the linear space Vect{⃗u,⃗v} generated by ⃗u and ⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 4- ⃗u ∧e ⃗v depends on the unit of measurement and on the orientation of (⃗ei): If (·, ·)a and (·, ·)b are two Euclidean dot products, let λ > 0 such that (·, ·)a = λ2(·, ·)b, and then ⃗u ∧a ⃗v = ±λ⃗u ∧b ⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='19) 107 108 E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Representation of the spin tensor Ω: vectors, and pseudo-vectors Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 1- det|⃗e(⃗u,⃗v, ⃗z) = − det|⃗e(⃗v, ⃗u, ⃗z) (since det|⃗e is alternated).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 2- If ⃗u ∥ ⃗v then det|⃗e(⃗u,⃗v, ⃗z) = 0 = (⃗u ∧e ⃗v, ⃗z)e, so ⃗u ∧e ⃗v ⊥g ⃗z, for all ⃗z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And if ⃗u ∧e ⃗v = 0 then (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='18) gives ⃗u ∥ ⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 3- If ⃗z ∈ Vect{⃗u,⃗v} then det|⃗e(⃗u,⃗v, ⃗z) = 0 = (⃗u ∧e ⃗v,⃗z)g thus ⃗u ∧e ⃗v ⊥g ⃗z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 4- (⃗u ∧a ⃗v, ⃗z)a (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='15) = det |⃗a (⃗u,⃗v, ⃗z) (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12) = ±λ3 det |⃗b (⃗u,⃗v, ⃗z) (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='15) = ±λ3(⃗u ∧b ⃗v, ⃗z)b = ±λ3 1 λ2 (⃗u ∧b ⃗v, ⃗z)a, true for all ⃗z, thus (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='19).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12 Prove that ⃗u ∧e ⃗v is a contravariant vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' It is a vector (Riesz representation vector) in ⃗R3, so it is contravariant;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Or calculation: It satisfies the contravariance change of basis formula, see (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='17).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Antisymmetric endomorphism represented by a vector Proposition E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13 Let (⃗ei) be a chosen (·, ·)g-Euclidean basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' If an endomorphism Ω ∈ L( ⃗R3;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗R3) is (·, ·)g-antisymmetric then there exists a unique vector ⃗ωe ∈ ⃗R3 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', for all ⃗y, ⃗z ∈ ⃗R3, (Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗y, ⃗z)g = det |⃗e (⃗ωe, ⃗y,⃗z), (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='20) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', there exists a unique vector ⃗ωe ∈ ⃗R3 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', for all ⃗y, ⃗z ∈ ⃗R3, Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗y = ⃗ωe ∧e ⃗y , (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='21) And [Ω]|⃗e = � � 0 −c b c 0 −a −b a 0 � � iff [⃗ωe]|⃗e = � � a b c � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22) In particular Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ωe = ⃗0 (= ⃗ωe ∧e ⃗ωe), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗ωe is an eigenvector associated with the eigenvalue 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Ω is antisymmetric, thus [Ω]|⃗e is given as in (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In particular [Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗e1]|⃗e = [Ω]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗e1]|⃗e = � � 0 c −b � �.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Calculation of the components of ⃗ωe if it exists: Let ⃗ω = ω1⃗e1 + ω2⃗e2 + ω3⃗e3;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' thus [⃗ω ∧ ⃗e1]|⃗e = � � 0 ω3 −ω2 � �, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='18), thus ω3 = c and ω2 = b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Idem with ⃗e2 so that ω1 = a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus if it exists ⃗ω is unique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And ⃗ωe given in (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22) satisfies (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='21): It exists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proposition E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14 Let (·, ·)a and (·, ·)b be two Euclidean dot products (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' in foot and metre), let (⃗ai) and (⃗bi) be Euclidean associated bases, let ||⃗b1||a = λ (change of unit coefficient), so (·, ·)a = λ2(·, ·)b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Suppose [Ω]|⃗a = � � 0 −c b c 0 −a −b a 0 � �, thus [⃗ωa]|⃗a = � � a b c � �, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then (change of representation vector for Ω): If (⃗bi) and (⃗ai) have the same orientation, then ⃗ωb = λ⃗ωa, If (⃗bi) and (⃗ai) have opposite orientation, then ⃗ωb = −λ⃗ωa, (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='23) E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', if ⃗bi = λ⃗ai for all i (change of unit, same orientation) then ⃗ωb = λ⃗ωa, and if ⃗b1 = −λ⃗a1, ⃗b2 = λ⃗a2, ⃗b3 = λ⃗a3 (change of unit, opposite orientation) then ⃗ωb = −λ⃗ωa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' NB: The formula ⃗ωb = ±λ⃗ωa is a change of vector formula, not a change of basis formula.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Apply (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='19).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Interpretation of ⃗ωe: Suppose [Ω]|⃗e = α � � 0 −1 0 1 0 0 0 0 0 � �.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So Ω is the rotation with angle π 2 in the horizontal plane composed with the dilation with ratio α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And [⃗ωe]|⃗e = α � � 0 0 1 � � = α⃗e3 is orthogonal to the horizontal plane and gives the rotation axis and the dilation coefficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 108 109 E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Pseudo-cross product, and pseudo-vector Exercice E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='15 Let Ω s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [Ω]|⃗e = � � 0 −c b c 0 −a −b a 0 � � (see (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Find a direct orthonormal basis (⃗bi) (relative to (⃗ei)) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [Ω]|⃗b = √ a2+b2+c2 � � 0 −1 0 1 0 0 0 0 0 � �.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let ⃗b3 = ⃗ωe ||⃗ωe||e , that is, [⃗b3]|⃗e = 1 √ a2+b2+c2 � � a b c � �.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then choose ⃗b1 ⊥ ⃗b3, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗b1]|⃗e = 1 √ a2+b2 � � −b a 0 � �.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then choose ⃗b2 = ⃗b3 ∧e ⃗b1, that is, [⃗b2]|⃗e = 1 √ a2+b2 1 √ a2+b2+c2 � � −ac −bc a2 + b2 � �.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus (⃗bi) is a direct orthonormal basis, and the transition matrix from (⃗ei) to (⃗bi) is P = � [⃗b1]|⃗e [⃗b2]|⃗e [⃗b3]|⃗e � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And [Ω]|⃗b = P −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [Ω]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P (change of basis formula), with P −1 = P T (change of orthonormal basis), thus [Ω]|⃗b = P T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [Ω]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P With [Ω]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗b1]|⃗e = 1 √ b2+c2 � � 0 −c b c 0 −a −b a 0 � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' � � −b a 0 � � = 1 √ b2+c2 � � −ac −bc a2 + b2 � � = √ a2+b2+c2[⃗b2]|⃗e (expected), [Ω]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗b2]|⃗e = 1 √ b2+c2 1 √ a2+b2+c2 � � 0 −c b c 0 −a −b a 0 � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' � � −ac −bc a2 + b2 � � = 1 √ b2+c2 1 √ a2+b2+c2 � � bc2 + b(a2 + b2) −ac2 − a(a2 + b2) abc − abc � � = − √ a2+b2+c2[⃗b1]|⃗e (expected), and [Ω]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗b3]|⃗e = [⃗0] (expected since ⃗b3 ∥ ⃗ωe).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus [Ω]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P = √ a2+b2+c2 � [⃗b2]|⃗e −[⃗b1]|⃗e [⃗0]|⃗e � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And (P T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [Ω]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P)ij = [⃗bi]T |⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[Ω]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗bj]|⃗e gives the result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Curl Definition E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16 If ⃗v is a C1 vector field, if (⃗ei) is a Euclidean basis in ⃗R3, and if ⃗v = �3 i=1 vi⃗ei, then the curl (or rotational) of ⃗v relative to (⃗ei) is the vector field ⃗ curle⃗v = ⃗ rote⃗v given by ⃗ curle⃗v = 3 � i=1 ( ∂vi+2 ∂xi+1 − ∂vi+1 ∂xi+2 )⃗ei, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [ ⃗ curle⃗v]|⃗e = � � ∂v3 ∂x2 − ∂v2 ∂x3 ∂v1 ∂x3 − ∂v3 ∂x1 ∂v2 ∂x1 − ∂v1 ∂x2 � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='24) Proposition E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='17 Let Ω(t, pt) = d⃗v(t,pt)−d⃗v(t,pt)T 2 , and let ⃗ωe(t, pt) be the associated vector relative to the Euclidean basis (⃗ei), cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='21).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then ⃗ωe = 1 2 ⃗ curle⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='25) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6) gives [Ω]|⃗e = 1 2 � � 0 ∂v1 ∂x2 − ∂v2 ∂x1 ∂v1 ∂x3 − ∂v3 ∂x1 0 ∂v2 ∂x3 − ∂v3 ∂x2 0 � �, with [Ω]|⃗e antisymmetric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22), (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='18) and (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='24) gives (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='25).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Pseudo-cross product, and pseudo-vector Framework: M31 the space of 3∗1 matrices, so we leave the vector framework to enter the matrix world.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definition Definition E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='18 A column matrice is also called a pseudo-vector, or a column vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='19 � � x1 x2 x3 � � noted = [⃗x] and � � y1 y2 y3 � � noted = [⃗y] being two matrices in M31, their pseudo-cross product is � � x1 x2 x3 � � ⟲∧ � � y1 y2 y3 � � := � � x2y3 − x3y2 x3y1 − x1y3 x1y2 − x2y1 � � noted = [⃗x] ⟲∧[⃗y].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='26) Thus the pseudo-cross product of two pseudo-vectors is a pseudo-vector (is a matrix).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 109 110 E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Examples E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Antisymmetric matrix represented by a pseudo-vector Definition E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='20 Let A = [Aij] = � � 0 −c b c 0 −a −b a 0 � � be an antisymmetric matrix (Aji = −Aij for all i, j).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The pseudo-vecteur ⟲ω associated to A is the column matrix ⟲ω := � � a b c � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗y] = ⟲ω ⟲∧[⃗y] , i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' � � y1 y2 y3 � � = ⟲ω ⟲∧ � � y1 y2 y3 � � , for all matrix [⃗y] = � � y1 y2 y3 � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='27) E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Antisymmetric endomorphism and its pseudo-vectors representations Let R3 be our usual affine space, (·, ·)g be a Euclidean dot product, and (⃗ei) be a (·, ·)g-Euclidean associated basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let Ω be an antisymmetric endomorphism relative to (·, ·)g, so ΩT = −Ω, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus [Ω]|⃗e is an antisymmetric matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Call ⟲ω the associated pseudo-vector, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='27), for all ⃗y ∈ ⃗R3, [Ω]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗y]|⃗e = ⟲ω ⟲∧[⃗y]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='28) This formula is widely used in mechanics, and unfortunately sometimes noted Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗y = ⃗ω ∧ ⃗y (!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ): Be careful: (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='28) is not a vectorial formula;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' This is just a formula for matrix calculations which gives false result if a change of basis is considered;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', with (⃗a1,⃗a2,⃗a3) be a (·, ·)g-Euclidean basis, and (⃗b1,⃗b2,⃗b3) = (−⃗a1,⃗a2,⃗a3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So (⃗bi) is also a (·, ·)g-Euclidean basis, but with a different orientation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 1- Vector approach: Let P be the transition matrix from (⃗ai) to (⃗bi), so P = � � −1 0 0 0 1 0 0 0 1 � �.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let [Ω]|⃗a = � � 0 −c b c 0 −a −b a 0 � �.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus, Ω being an endomorphism, the change of basis formula gives [Ω]|⃗b = P −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [Ω]|⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P = � � −1 0 0 0 1 0 0 0 1 � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' � � 0 −c b c 0 −a −b a 0 � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' � � −1 0 0 0 1 0 0 0 1 � � = � � 0 c −b −c 0 −a b a 0 � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='29) Thus the vectors ⃗ωa and ⃗ωb are given by (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22): [⃗ωa]|⃗a = � � a b c � � , [⃗ωb]|⃗b = � � a −b −c � � , i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' � ⃗ωa = a⃗a1 + b⃗a2 + c⃗a3, ⃗ωb = a⃗b1 − b⃗b2 − c⃗b3, � thus ⃗ωb = −⃗ωa .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='30) 2- Matrix approach (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='27) gives [Ω]|⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗y] = ⟲ωa ⟲∧[⃗y] and [Ω]|⃗b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗y] = ⟲ωb ⟲∧[⃗y], with ⟲ωa = � � a b c � � and ⟲ωb = � � a −b −c � � , so ⟲ωa ̸= − ⟲ωb .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='31) And ⟲ω does not represent a single vector either, since it does not satisfy the vector change of basis formula ⟲ωb ̸= P −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⟲ωa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus ⟲ω is not a vector (is not tensorial): It is just a matrix (called a “pseudo-vector”).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Examples E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Rectilinear motion Let �Φ : [t1, t2] × Obj → Rn be a C1 motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let t0 ∈]t1, t2[ and PObj ∈ Obj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 110 111 E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Examples Definition E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='21 The motion of PObj is rectilinear iff, for all t0, t ∈ [t1, t2], �ΦPObj (t) − �ΦPObj (t0) t−t0 ∥ �ΦPObj ′(t0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='32) And the motion is rectilinear uniform iff, for all t0, t ∈ [t1, t2], �ΦPObj (t) = �ΦPObj (t0) + (t−t0) �ΦPObj ′(t0), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' p(t) = p(t0) + (t−t0) ⃗V t0(t0, p(t0)) (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='33) when p(t) = �Φ(t, PObj), that is, the trajectory is traveled at constant velocity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Circular motion Let ( ⃗E1, ⃗E2) be a Euclidean basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let t0 ∈ [t1, t2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A motion Φt0 is a circular motion iff −−−−−→ OΦt0 P (t) = x(t) ⃗E1 + y(t) ⃗E2, [−−−−−→ OΦt0 P (t)]| ⃗E = � x(t) = a + R cos(θ(t)) y(t) = b + R sin(θ(t)) � , (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='34) for some R > 0 (called the radius), some a, b ∈ R, and some function θ : R → R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And � a b � = OC ∈ R2 is the center of the circle and θ(t) is the angle at t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And the particle PObj (s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' �Φ(t0, PObj) = P) stays on the circle with center OC and radius R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The circular motion is uniforme iff, for all t, θ′′(t) = 0, that is, ∃ω0 ∈ R, ∀t ∈ [t1, t2], θ(t) = ω0t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Notation: ⃗ϕt0 P (t) = R cos(θ(t) ⃗E1 + R sin(θ(t)) ⃗E2, so [⃗ϕt0 P (t)]| ⃗E = � R cos(θ(t)) R sin(θ(t)) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='35) Thus the Lagrangian velocity of a circular motion is ⃗V t0 P (t) = (Φt0 t )′(t) = (⃗ϕt0 P )′(t), so [⃗V t0 P (t)]| ⃗E = Rθ′(t) � − sin(θ(t)) cos(θ(t)) � , (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='36) and ⃗V t0 P (t) is orthogonal to ⃗ϕt0 P (t) (the radius vector).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And the Lagrangian acceleration is ⃗Γ t0 P (t) = Rθ′′(t) � − sin(θ(t)) cos(θ(t)) � + R(θ′(t))2 � − cos(θ(t)) − sin(θ(t)) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='37) Consider ⃗er(t) = ⃗ϕt0 P (t) ||⃗ϕt0 P (t)|| = � cos(θ(t)) sin(θ(t)) � , and ⃗eθ(t) = � − sin(θ(t)) cos(θ(t)) � , (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='38) thus (⃗er(t),⃗eθ(t)) is an orthonormal basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then : ⃗V t0 P (t) = Rθ′(t)⃗eθ(t), (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='39) and : ⃗Γ t0 P (t) = −R(θ′(t))2 ⃗er(t) + Rθ′′(t)⃗eθ(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='40) E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', in R3 and a motion in he “horizontal” plane given by (⃗e1,⃗e2), the vertical line being given by ⃗E3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Here ⃗V t0 P (t) = ⃗ω(t) ∧ ⃗ϕt0 P (t), where ⃗ω(t) = ω(t)⃗e3 and ω(t) = θ′(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='41) And ⃗Γ t0(t) = d⃗ω dt (t) ∧ ⃗ϕt0 P (t) + ⃗ω(t) ∧ ⃗V t0 P (t) (= Rdω dt (t)⃗eθ(t) − ω2(t)R⃗er(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='42) 111 112 E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Examples E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Motion of a planet (centripetal acceleration) Illustration: Obj is e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' a planet from the solar system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let (⃗e1,⃗e2,⃗e3) be a Euclidean basis (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' fixed relative to stars an (⃗e1,⃗e2) define the ecliptic plane), (·, ·)g be the Euclidean associated dot product, ||.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='|| the Euclidean associated norm, O an origin in R3 (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' the center of the Sun), and R = (O, (⃗ei)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Consider a motion �Φ of Obj in R, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let t0 ∈ [t1, t1], and consider Φt0 =noted Φ or ⃗ϕ t0 =noted ⃗ϕ, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1)-(3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22 The motion of a particle PObj is a centripetal acceleration motion iff the particle is not static and, at all time, its acceleration vector ⃗A(t) points to a fixed point F (focus).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' We will take the focus F as the origin of the referential, that is, O := F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus, for all t ∈ [t1, t2], −−−−−→ OΦP (t) ∥ ⃗AP (t), that is, −−−−−→ OΦP (t) ∧ ⃗AP (t) = ⃗0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='43) Remark E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='23 A rectilinear motion is a centripetal acceleration motion, but such a motion is usually excluded in the definition E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Example E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='24 The motion of a planet from the solar system is a centripetal acceleration motion: An elliptical motion of focus the center of the Sun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Example E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='25 The second Newton’s law of motion � ⃗f = m⃗γ (Galilean referential) gives: If � ⃗f is, at all time, directed to a unique point F, then the motion is a centripetal acceleration motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let Φ be a centripetal acceleration motion, let O be the focus, and let ⃗ϕP (t) := −−−−−→ OΦP (t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So the Lagrangian velocity and acceleration are ⃗VP (t) = dΦP dt (t) = d⃗ϕP dt (t), and ⃗AP (t) = d2ΦP dt2 (t) = d2⃗ϕP dt2 (t), (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='44) and ⃗ϕP (t) ∧ ⃗AP (t) = ⃗0, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='43).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='26 The areolar velocity at t is the vector ⃗Z(t) = 1 2 ⃗ϕP (t) ∧ ⃗VP (t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='45) Proposition E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='27 If Φ is a centripetal acceleration motion, then the areolar velocity is contant, that is, d⃗Z dt (t) = ⃗0 pour tout t, so ⃗Z(t) = ⃗Z(t0), ∀t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='46) That is, the position vectors sweep equal areas in equal times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And ⃗Z(t0) = ⃗0 iff Φ is a rectilinear motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' If ⃗Z(t0) ̸= ⃗0 then : ⃗ϕP (t) and ⃗VP (t) are orthogonal to ⃗Z(t0) at all time t, The motion of the particle PObj takes place in the affine plane orthogonal to ⃗Z(t0) passing through O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗VP (t) never vanishes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='45) and (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='43) give 2 d⃗Z dt (t) = d⃗ϕP dt (t)∧⃗VP (t)+⃗ϕ(t)∧ d⃗VP dt (t) = ⃗VP (t)∧⃗VP (t)+⃗ϕ(t)∧ ⃗AP (t) = ⃗0+⃗0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus ⃗Z is constant, ⃗Z(t) = ⃗Z(t0) for all t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then, if ⃗Z(t0) ̸= ⃗0 then ⃗Z(t) ̸= ⃗0 pour tout t, and ⃗Z(t) = 1 2 ⃗ϕP (t) ∧ ⃗VP (t) gives that ⃗ϕP (t) et ⃗VP (t) are orthogonal to ⃗Z(t0) for all t, thus ⃗AP (t) is orthogonal to ⃗Z(t0), cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='43).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The Taylor expansion reads ⃗ϕP (t) = ⃗ϕP (t0) + ⃗VP (t0)(t−t0) + � t τ=t0 ⃗AP (τ)(t−τ)2 dτ, with ⃗VP (t0) and ⃗AP (τ) ⊥ ⃗Z(t0) for all τ, thus ⃗ϕP (t) − ⃗ϕP (t0) ⊥ ⃗Z(t0) for all τ, that is −−−→ Op(t) − −−→ OP = −−−→ Pp(t) ⊥ ⃗Z(t0) for all τ, Thus p(t) belongs to the affine plane containing P orthogonal to ⃗Z(t0), for all t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And −−→ OP = ⃗ϕP (t0) ⊥ ⃗Z(t0), thus O belong to the same plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Z(t) = ⃗Z(t0) ̸= ⃗0 implies ⃗VP (t) ̸= ⃗0 for all t, and (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='45) gives: (⃗ϕP (t), ⃗VP (t), ⃗Z(t0)) is a positively- oriented basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Since ⃗ϕP and ⃗V are continuous and do not vanish, since ⃗Z(t0) ̸= ⃗0, we get: PObj “turns around ⃗Z(t0)” and keeps its direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 112 113 E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Examples If ⃗Z(t) = ⃗0 then ⃗ϕP (t) ∥ ⃗VP (t) for all t, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='45), so ⃗VP (t) = f(t)⃗ϕP (t) where f is some scalar function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And ⃗VP (t) = ⃗ϕP ′(t) gives ⃗ϕP ′(t) = f(t)⃗ϕP (t), thus ⃗ϕP (t) = ⃗ϕP (t0)eF (t) where F is a primitive of f s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F(t0) = 0, thus ⃗ϕP (t) ∥ ⃗ϕP (t0), so −−−−−→ OΦP (t) ∥ −−−−−−→ OΦP (t0), for all t: The motion is rectilinear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Interpretation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Non rectilinear motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') The area swept by ⃗ϕP (t) is, at first order, the area of the triangle whose sides are ⃗ϕP (t) and ⃗ϕP (t + τ) (“anglular sector”).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So, with τ close to 0, let ⃗St(τ) = 1 2 ⃗ϕP (t) ∧ ⃗ϕP (t + τ), and St(τ) = ||⃗St(τ)||, (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='47) the vectorial an scalar area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' With ⃗ϕP (t+τ) = ⃗ϕP (t) + ⃗VP (t)τ + o(τ) we get ⃗St(τ) = 1 2 ⃗ϕP (t) ∧ (⃗VP (t)τ + o(τ)), (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='48) Since ⃗St(0) = 0 we get ⃗St(τ)−⃗S(0) τ = 1 2 ⃗ϕP (t) ∧ ⃗VP (t) + o(1), then d⃗St dτ (0) = 1 2 ⃗ϕP (t) ∧ ⃗VP (t) = ⃗Z(t) = ⃗Z(t0), (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='49) thanks to (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='46), thus d⃗St dτ (0) = d⃗St0 dτ (0), ∀t ∈ [t0, T], (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='50) that is, the rate of variation of ⃗St is constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And with ||⃗St(∆τ)||2 = (⃗St(∆τ), ⃗St(∆τ)) we get d||⃗St||2 dτ (∆τ) = 2(d⃗St dτ (∆τ), ⃗St(∆τ)), (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='51) so, since ⃗St(0) = 0, d||⃗St||2 dτ (0) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='52) Therefore the function t → ||⃗St(0)||2 = St(0)2 is constant, thus t → St(0) est constant, and dSt dτ (0) is constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='28 Give a parametrization of the swept area, and redo the calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let r(t) = ||⃗ϕP (t)||, θ(t) = � p(t)OP (angle), (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='53) then ⃗ϕP (t) = � � r(t) cos(θ(t)) r(t) sin(θ(t)) 0 � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='54) Thus ⃗VP (t) = � � r′(t) cos(θ(t) − r(t))θ′(t) sin(θ(t)) r′(t) sin(θ(t) + r(t))θ′(t) cos(θ(t)) 0 � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='55) With (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='45) we get ⃗Z(t) = 1 2 � � 0 0 r2(t)θ′(t) � � , with r2(t)θ′(t) = r2(t0)θ′(t0) (constant), (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='56) cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='46).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A parametrization of the swept area is then ⃗A : � [0, 1] × [t0, T] → R3 (ρ, t) → ⃗A(ρ, t) � , ⃗A(ρ, t) = � � ρ r(t) cos(θ(t)) ρ r(t) sin(θ(t)) 0 � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='57) Therefore, the tangent associated vectors are ∂ ⃗A ∂ρ (ρ, t) = � � r(t) cos(θ(t)) r(t) sin(θ(t)) 0 � � , ∂ ⃗A ∂t (ρ, t) = � � ρr′(t) cos(θ(t) − ρr(t))θ′(t) sin(θ(t)) ρr′(t) sin(θ(t) + ρr(t))θ′(t) cos(θ(t)) 0 � � , (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='58) 113 114 E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Examples hence the vectorial and scalare element areas are d⃗σ = (∂ ⃗A ∂ρ ∧ ∂ ⃗A ∂t )dρdt = � � 0 0 ρr2θ′ dρdt � � , dσ = ρr2θ′ dρdθ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='59) Therefore the area between t0 and t is A(t) = A(t0) + � 1 ρ=0 � t τ=t0 ρr2(τ)θ′(τ) dρdτ = 1 2 � t τ=t0 r(τ)2θ′(τ) dτ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='60) Hence A′(t) = r(t)2θ′(t) = r(t0)2θ′(t0) (= constant = ||⃗Z(t0)||), (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='61) cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='56).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='29 Prove the Binet formulas (non rectilinear central motion): VP (t)2 = Z2 0 � 1 r2 + (d 1 r dθ )2� (t), ⃗ΓP (t) = −Z2 0 r2 �1 r + d2 1 r dθ2 � (t)⃗er(t), (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='62) for the energy and the acceleration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proposition E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='27 tells that Φ is a planar motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' With (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='53) and ⃗er(t) = � cos(θ(t)) sin(θ(t)) � we have ⃗ϕ(t) = r(t)⃗er(t) (in the plane).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let ⃗eθ(t) = � − sin(θ(t)) cos(θ(t)) � , thus ⃗V (t) = dr dt (t)⃗er(t) + r(t)d⃗er dt (t) = r′(t)⃗er(t) + r(t)θ′(t)⃗eθ(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And ⃗er(t) ⊥ ⃗eθ(t) gives V 2(t) = (r′(t))2 + (r(t)θ′(t))2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Since θ′(t) ̸= 0 for all t (non rectilinear central motion) Let s(θ(t)) = r(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let us suppose that θ is C1, thus θ′ > 0 or θ′ < 0, and θ : t → θ(t) defines a change of variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And r′(t) = s′(θ(t))θ′(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='61) and θ′(t) = Z0 r2(t) give V 2(t(θ)) = (s′(θ))2 Z2 0 r4(t) + r2(t) Z2 0 r4(t) = Z2 0((s′(θ))2 s4(θ) + 1 s2(θ)) = Z2 0[ �d 1 s dθ (θ) �2 + 1 s2(θ)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus r(t) = s(θ) and dr dθ := ds dθ give the first Binet formula.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then ⃗Γ(t) = r′′(t)⃗er(t) + r′(t)d⃗er dt (t) + (r′(t)θ′(t) + r(t)θ′′(t))⃗eθ(t) + r(t)θ′(t)d⃗eθ dt (t), with d⃗er dt ∥ ⃗eθ, and d⃗eθ dt (t) = −θ′(t)⃗er(t), and ��eθ ⊥ ⃗Γ (central motion), we get ⃗Γ(t) = (r′′(t) − r(t)(θ′(t))2)⃗er(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And r′(t) = s′(θ)θ′(t) = s′(θ) Z0 r2(t) = Z0 s′(θ) s2(θ) = −Z0 d 1 s dθ (θ), thus r′′(t) = −Z0 d2 1 s dθ2 (θ) θ′(t) = − Z2 0 r2(t) d2 1 s dθ2 (θ), which is the second Binet formula.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 114 115 F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The Riesz representation theorem F Riesz representation theorem F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 The Riesz representation theorem Framework: (E, (·, ·)g) is Hilbert space, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E is a vector space equipped with an inner dot product (·, ·)g such that, with the associated norm defined by||⃗v||g := � (⃗v,⃗v)g, (E, ||.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='||g) is a complete space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And E∗ = L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) is the space of the linear and continuous forms on E (the space of linear “measuring tools”) equipped with its norm ||ℓ||E∗ := sup ||⃗x||g=1 |ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x| < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' We have the easy statement: ∀⃗v ∈ E (vector), ∃!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='vg ∈ E∗ (linear continuous form) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' vg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x = (⃗v, ⃗x)g, ∀⃗x ∈ E, (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1) and ||vg||E∗ = ||⃗v||g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Usual notation in finite dimension: vg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x = ⃗v •g ⃗x, or simply v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x = ⃗v • ⃗x if a chosen (·, ·)g is imposed to all observers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Indeed: Define vg : E → R by vg(⃗x) = (⃗v, ⃗x)g for all ⃗x ∈ E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The definition domain of vg is E and vg is trivially linear;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And the Cauchy–Schwarz inequality gives |vg(⃗x)| = |(⃗v, ⃗x)g| ≤ ||⃗v||g ||⃗x||g for all ⃗x ∈ E, thus ||vg||E∗ ≤ ||⃗v||g < ∞, thus vg is continuous;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And |vg(⃗v)| = |(⃗v,⃗v)g| = ||⃗v||g ||⃗v||g, thus ||vg||E∗ ≥ ||⃗v||g, thus ||vg||E∗ = ||⃗v||g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The Riesz representation theorem concerns the converse: If you choose an inner dot product (·, ·)g in E (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' English of French), then you can represent a “measuring instrument” ℓ ∈ E∗ by a vector ⃗ℓg ∈ E: Theorem F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 (Riesz representation theorem, and definition) (E, (·, ·)g) being a Hilbert space, ∀ℓ ∈ E∗ (linear continuous form), ∃!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ℓg ∈ E (vector) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x = (⃗ℓg, ⃗x)g, ∀⃗x ∈ E, (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2) and ||⃗ℓg||g = ||ℓ||E∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And ⃗ℓg is called the (·, ·)g-Riesz representation vector of ℓ (depends on g).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Usual notation in finite dimension: vg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x = ⃗v •g ⃗x, or simply v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x = ⃗v • ⃗x if a chosen (·, ·)g is imposed to all observers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Easy in finite dimension: With a basis (⃗ei), if [ℓ]|⃗e = ( ℓ1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ℓn ) (row matrix since ℓ is a linear form) then (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2) gives [ℓ]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗x]|⃗e = [⃗ℓg]T ⃗e .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [g]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗x]|⃗e, thus [⃗ℓg]⃗e = [g]−1 |⃗e .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [ℓ]T |⃗e (column matrix), thus ⃗ℓg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' General case (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' with E = L2(Ω) and the finite element method): If ℓ = 0 then ⃗ℓg = ⃗0 (trivial).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Suppose ℓ ̸= 0: Thus Kerℓ = ℓ−1({0}) ̸= {⃗0} (the kernel).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' If dim E = 1, it is trivial (exercise).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Suppose dim E ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Since ℓ is continuous, its kernel Kerℓ = ℓ−1({0}) is closed in E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus, if ⃗x ∈ E, then its (·, ·)g- orthogonal projection ⃗x0 ∈ Kerℓ on Kerℓ exists, is unique, and is given by: ∀⃗y0 ∈ Kerℓ, (⃗x −⃗x0, ⃗y0)g = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (So ⃗x − ⃗x0 ⊥g Kerℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Choose a ⃗x /∈ Kerℓ (possible since ℓ ̸= 0), and let ⃗n := ⃗x−⃗x0 ||⃗x−⃗x0||g ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So ⃗n is a (·, ·)g- orthonormal vector to Kerℓ, and (Kerℓ)⊥ = Vect{⃗n} since dim(Kerℓ)⊥ = 1 (in finite dimension cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' the Dimension Formula which states that the dimension of the domain of a linear map is the sum of the dimension of its range and the dimension of its kernel, and in infinite dimension see next exercise F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And E = Kerℓ ⊕ (Kerℓ)⊥ since both vector spaces are closed (an orthogonal is always closed in a Hilbert space).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus if ⃗x ∈ E then ⃗x = ⃗x0 + λ⃗n ∈ Kerℓ ⊕ (Kerℓ)⊥;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus (⃗x,⃗n)g = λ and ℓ(⃗x) = 0 + λℓ(⃗n) = (⃗x,⃗n)gℓ(⃗n) = (⃗x, ℓ(⃗n)⃗n)g (bilinearity of (·, ·)g);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus ⃗ℓg := ℓ(⃗n)⃗n satisfies (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And if ⃗ℓg1 and ⃗ℓg2 satisfy (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2) then (⃗ℓg1 − ⃗ℓg2, ⃗x)g = 0 for all ⃗x ∈ E, thus ⃗ℓg1 − ⃗ℓg2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus ⃗ℓg is unique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And the Cauchy–Schwarz theorem give ||ℓ||E∗ := sup||⃗x||g=1 |ℓ(⃗x)| = sup||⃗x||g=1 |(⃗ℓg, ⃗x)g| = ||⃗ℓg||g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rg is an isomorphism between Banach spaces: linearity since (⃗Rg(ℓ + λm), ⃗x)g = (ℓ + λm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x = ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x + λm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x = (⃗Rg(ℓ), ⃗x)g +λ(⃗Rg(m), ⃗x)g = (⃗Rg(ℓ)+λ⃗Rg(m), ⃗x)g for all ⃗x gives ⃗Rg(ℓ+λm) = ⃗Rg(ℓ)+λ⃗Rg(m), bijectivity thanks to (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1) and (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2), and the norm is kept since ||⃗ℓg||g = ||ℓ||E∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Prove: If ℓ ∈ E∗−{0} then dim(Kerℓ)⊥ = 1 (= dim(Im(ℓ)) = dim R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Consider the restriction ℓ|Kerℓ⊥ : � (Kerℓ)⊥ → R ⃗x → ℓ|Kerℓ⊥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x = ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' It is linear (since ℓ is), and thus one to one: Indeed it is onto since ℓ ̸= 0, and it is one to one since if ℓ|Kerℓ⊥(⃗x) = 0 = ℓ(⃗x) then ⃗x ∈ (Kerℓ)⊥ � Kerℓ = {⃗0}, thus ⃗x = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus dim(Kerℓ)⊥ ≤ dim(Im(ℓ)) = 1: Indeed, if ⃗z1, ⃗z2 ∈ (Kerℓ)⊥−{⃗0} then ℓ|Kerℓ⊥(⃗z1) ∈ R and ℓ|Kerℓ⊥(⃗z2) ∈ R, thus ∃λ ∈ R s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ℓ|Kerℓ⊥(⃗z2) = λℓ|Kerℓ⊥(⃗z1), thus ℓ|Kerℓ⊥(⃗z2 − λ⃗z1) = 0, thus ⃗z2 − λ⃗z1 = ⃗0 since ℓ|Kerℓ⊥ is one to one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And ⃗n ∈ (Kerℓ)⊥ gives dim(Kerℓ)⊥ ≥ 1 (above proof).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus dim(Kerℓ)⊥ = 1 = Vect{⃗n}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 115 116 F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The Riesz representation operator F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 The Riesz representation operator The Riesz representation theorem F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 gives the (·, ·)g-Riesz representation operator ⃗Rg : � E∗ → E ℓ → ⃗Rg(ℓ) := ⃗ℓg, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (⃗Rg(ℓ),⃗v)g = ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v, ∀⃗v ∈ E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3) So ⃗Rg transforms a « covariant ℓ » into a « contravariant ⃗ℓg » thanks to the tool (·, ·)g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' NB (fundamental): ⃗Rg is a isomorphism between the Banach spaces (E, ||.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='||g) and (E∗, ||.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='||E∗), but ⃗Rg is not canonical since it requires a man made tool (an inner dot product chosen by some observer) to be defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (An isomorphism E ↔ E∗ can never be canonical, see § T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') And with G the set of inner dot products in E, we have thus defined the Riesz representation mapping ⃗R : � G × E∗ → E (g, ℓ) → ⃗R(g, ℓ) := ⃗ℓg = ⃗Rg(ℓ) = ⃗ℓ(g).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4) So ⃗R has two inputs: A choice (·, ·)g by an observer for the first slot, a linear form for the second slot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Quantification with a basis Here E is finite dimensional, dim E = n, ℓ ∈ E∗ (a linear form), (·, ·)g is an inner dot product, (⃗ei) is a basis, (πei) is the dual basis (classical notations).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let gij = g(⃗ei,⃗ej), ℓ = n � i=1 ℓiπei, ⃗ℓg = n � i=1 (⃗ℓg)i⃗ei, ⃗Rg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='πej = n � i=1 Rij⃗ei, (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [g]|⃗e = [gij], [ℓ]|πe = ( ℓ1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ℓn ) (row matrix), [⃗ℓg]|⃗e = � � � (⃗ℓg)1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (⃗ℓg)n � � � (column matrix), [⃗Rg]πe,⃗e = [Rij].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Duality notations: ℓ = �n i=1ℓiei, ⃗ℓg = �n i=1ℓi g⃗ei, ⃗Rg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='ej = �n i=1Rij⃗ei, [⃗Rg]e,⃗e = [Rij].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Proposition F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 [⃗ℓg] = [g]−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [ℓ]T and [⃗Rg] = [g]−1 , i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (⃗ℓg)i = n � j=1 ([g]−1)ij(ℓ)j = n � j=1 (⃗Rg)ij(ℓ)j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6) Full matrix notation: [⃗ℓg]|⃗e = ([g]|⃗e)−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ([ℓ]|πe)T , and [⃗Rg]|πe,⃗e = ([g]|⃗e)−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Duality notation to see the change of variance induced by (·, ·)g (bottom index for ℓ, top index for ⃗ℓg): ℓi g = n � j=1 Rijℓj, (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ℓi g = �n j=1gijℓj when ([g]−1)ij =noted [gij].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (In particular, if (⃗ei) is a (·, ·)g-orthonormal basis, then [⃗Rg] = [g]−1 = I and ℓi g = ℓi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2) gives [ℓ]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗x]|⃗e = [⃗ℓg]T |⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[g]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗x]|⃗e for all ⃗x, thus [ℓ]|⃗e = [⃗ℓg]T |⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [g]|⃗e, thus [g]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗ℓg]|⃗e = [ℓ]T |⃗e (since [g]|⃗e = [g]T |⃗e), thus [⃗ℓg] = [g]−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [ℓ]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And ⃗Rg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='ℓ =(F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3) ⃗ℓg gives �n j=1(ℓ)j ⃗Rg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='πj = �n i=1(⃗ℓg)i⃗ei, thus �n i,j=1(ℓ)jRij⃗ei = �n i=1(⃗ℓg)i⃗ei, thus �n j=1Rij(ℓ)j = (⃗ℓg)i for all i, thus [⃗Rg].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [ℓ]T = [⃗ℓg].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus [⃗Rg] = [g]−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Remark F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 If a chosen inner dot product (·, ·)g is imposed (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Euclidean foot based) and if duality notations are used, then a usual notation for ⃗ℓg is ℓ♯, since ⃗ℓg = ⃗Rg(ℓ) = �n i=1ℓi⃗ei with a top index for ℓi: the index i has been raised through ⃗Rg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2) and (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6) read (isometric framework) ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x = ℓ♯ • ⃗x and [ℓ♯]|⃗e = [g]−1 |⃗e .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [ℓ]T |⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8) We won’t use this notation (we deal with objectivity).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 116 117 F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Change of Riesz representation vector, and Euclidean case F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Change of Riesz representation vector, and Euclidean case For one linear form ℓ ∈ E∗, two observers with their inner dot products (·, ·)g and (·, ·)h get two Riesz representation vectors ⃗ℓg = ⃗Rg(ℓ) and ⃗ℓh = ⃗Rh(ℓ) given by, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2): ∀⃗x ∈ E, (⃗ℓg, ⃗x)g = ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x = (⃗ℓh, ⃗x)h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9) Proposition F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 For any basis (⃗ei) in E, we have the change of representation vector formula: [h]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗ℓh]|⃗e = [g]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗ℓg]|⃗e, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗ℓh]|⃗e = [h]−1 |⃗e .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [g]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗ℓg]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10) In particular (for the Euclidean case), with λ > 0: If (·, ·)g = λ2(·, ·)h then ⃗ℓh = λ2⃗ℓg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11) Conversely, if ⃗ℓh = λ2⃗ℓg for all linear forms ℓ ∈ E∗, then (·, ·)g = λ2(·, ·)h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So, a linear form ℓ cannot be identified with a Riesz representation vector (which one: ⃗ℓg?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗ℓh?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' );' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In other words, a Riesz representation vector ⃗Rg(ℓ) is not objective, is not intrinsic to a linear form ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' NB: (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10)-(F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11) is a “change of vector formula” (one linear form gives two vectors relative to two inner dot products);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' It is not a “change of basis formula” (for one vector and its two sets of components).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9) gives [⃗x]T |⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[g]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗ℓg]|⃗e = [⃗x]T |⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[h]|��e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗ℓh]|⃗e for all ⃗x, hence [g]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗ℓg]|⃗e = [h]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗ℓh]|⃗e, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In particular λ2(·, ·)h = (·, ·)g give λ2(⃗ℓg, ⃗x)h = (⃗ℓg, ⃗x)g =(F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9)(⃗ℓh, ⃗x)h for all ⃗x, hence λ2⃗ℓg = ⃗ℓh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Converse: λ2⃗ℓg = ⃗ℓh for all ℓ gives λ2(⃗ℓg, ⃗x)h = (⃗ℓh, ⃗x)h (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9) = (⃗ℓg, ⃗x)g, for all ⃗x and for all ℓ, thus for all ⃗ℓg thanks to the isomorphism ⃗Rg : E∗ → E, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3), thus λ2(·, ·)h = (·, ·)g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Example F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 If (·, ·)g and (·, ·)h are the Euclidean dot products made with the foot and the metre then, with (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9), (·, ·)g = λ2(·, ·)h =⇒ ⃗ℓh = λ2⃗ℓg, with λ2 > 10 : (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12) ⃗ℓg (English) and ⃗ℓh (French) are quite different!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A Riesz representation vector is subjective, and certainly not “canonical” (a word that you may find in books where.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' nothing is defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', aviation: If you do want to use a Riesz representation vector to represent a ℓ ∈ Rn∗, it is vital to know which Euclidean dot product is in use, see also remark A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14 (Mars Climate Orbiter Crash).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Recall: The foot is the international unit of altitude for aviation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Example F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 If f ∈ C1(Rn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) and p ∈ Rn, the differential of f at p is the linear form df(p) ∈ Rn∗ defined by, for all ⃗w ∈ ⃗Rn, df(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w := lim h→0 f(p + h⃗w) − f(p) h (definition independent of any inner dot product), (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13) see (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' If you can choose an inner dot product (·, ·)g then the gradient ⃗ gradgf(p) is the (·, ·)g-Riesz representation vector of df(p): ⃗ gradgf(p) := ⃗Rg(df(p)), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' df(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w = ⃗ gradgf(p) •g ⃗w, ∀⃗w ∈ ⃗Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14) And (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12) gives ⃗ gradhf(p) = λ2 ⃗ gradgf(p) with λ2 > 10 (English vs French) : (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='15) The gradient is very dependent on the observer (the gradient is subjective, the differential is objective).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Remark F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8 The “gradient” is observer dependent;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' We already had this observer dependence for the usual derivative in the 1-D case f : x ∈ R → f(x) ∈ R;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Question: What does f ′(x) = 3 mean?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 11- For one observer, it means f ′(x) = limh→0 f(x+h)−f(x) h .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' but.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' where in the departure space this observer has chosen a basis vector ⃗a of length 1 for him (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' length 1 foot) which he calls 1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So, with no abusive notations, his derivative f ′(x) is in fact f ′ a(x) = limh→0 f(x+h⃗a)−f(x) h .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 117 118 F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A Riesz representation vector is contravariant 12- For some other observer, it means f ′(x) = limh→0 f(x+h)−f(x) h .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' but.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' where in the departure space this observer has chosen a basis vector ⃗b of length 1 for him (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' length 1 metre) which he calls 1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So, with no abusive notations, his derivative f ′(x) is in fact f ′ b(x) = limh→0 f(x+h⃗b)−f(x) h .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 13- Both observer use the same formula f ′(x) = limh→0 f(x+h)−f(x) h but get different results!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In- deed, if ⃗b = λ⃗a, then = lim h→0 f(x + h⃗b) − f(x) h = lim h→0 f(x + hλ⃗a) − f(x) h = λ lim h→0 f(x + (hλ)⃗a) − f(x) (hλ) = λ lim k→0 f(x + k⃗a) − f(x) k thus f ′ b(x) = λf ′ a(x), with λ ≃ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='28 (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16) with foot and metre.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Quite different results!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (In fact f ′(x) = opposite side adjacent side depends on the length of the adjacent side.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Remark F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9 We insist on the subjectivity of the gradient: 20- The differential of f at a point x along a vector ⃗w ∈ ⃗R is df(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w = limh→0 f(x+h⃗w)−f(x) h and is objective: The observers all use this same formula.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 21- An observer chooses a Euclidean dot product (·, ·)g (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' based on the foot), then represent df(x) by its (·, ·)g-Riesz representation vector ⃗Rg(df(x)) =noted ⃗ gradgf(x) called the gradient of f at x relative to (·, ·)g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 22- Another observer chooses a Euclidean dot product (·, ·)h (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' based on the metre), then represent df(x) by its (·, ·)h-Riesz representation vector ⃗Rh(df(x)) =noted ⃗ gradhf(x) called the gradient of f at x relative to (·, ·)h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 23- Both observer use the same formula df(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w = limh→0 f(x+h⃗w)−f(x) h to get a different result: ⃗ gradhf = λ2 ⃗ gradgf, because they use different measuring tools (one based on the foot, the other on the metre).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 24- Recall: The gradient depends on a choice of a Euclidean unit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10 In (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16) we have f ′ b(x) = λf ′ a(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And the 1-D gradient gives gradbf(x) = λ2gradaf(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Why?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' To define a gradient gradaf we need a Euclidean dots products (·, ·)a built from a basis (⃗a) in ⃗R, while to define f ′ a we need a unit of length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Details: (⃗a) and (⃗b) are two bases in ⃗R with ⃗b = λ⃗a, thus (·, ·)a = λ2(·, ·)b (since 1 = (⃗a,⃗a)a = (⃗b,⃗b)b = (λ⃗a, λ⃗a)b = λ2(⃗a,⃗a)b gives (⃗a,⃗a)a = λ2(⃗a,⃗a)b and (⃗a) is a basis).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And we have f ′ b(x) =(F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16) λf ′ a(x), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' df(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗b = λdf(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗a, thus (gradfb(x),⃗b)b = λ(gradfa(x),⃗a)a, thus (gradfb(x),⃗b)b = λλ2(gradfa(x), ⃗b λ)b = (λ2gradfa(x),⃗b)b, thus gradfb(x) = λ2gradfa(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11 1- Prove that (·, ·)g = λ2(·, ·)h gives ||⃗ℓh||g = λ||⃗ℓh||h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 2- Does it contradict the Riesz representation theorem which gives ||ℓ||Rn∗ = ||⃗ℓg||Rn?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 1- ⃗ℓh =(F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11) λ2⃗ℓg gives ||⃗ℓh||h = λ2||⃗ℓg||h = λ||⃗ℓg||g since ||.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='||h = λ||.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='||g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 2- No, since ||ℓ||Rn∗ := sup||⃗x||Rn =1 |ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x| depends on the norm ||.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='||Rn chosen;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Here ||.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='||Rn is either ||.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='||g or ||.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='||h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus if you write ||ℓ||Rn∗ =noted ||ℓ||g∗ if you use the norme ||.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='||g, then ||ℓ||h∗ = sup⃗v∈⃗Rn |ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v| ||⃗v||h = sup⃗v∈⃗Rn |ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v| 1 λ ||⃗v||g = λ sup⃗v∈⃗Rn |ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v| ||⃗v||g = λ||ℓ||g∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 A Riesz representation vector is contravariant ⃗ℓg is a vector in E, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2), so it is contravariant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' To be convinced: Exercice F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12 Check: [⃗ℓg]|new = P −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗ℓg]|old (contravariance formula).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='17) Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Consider two bases (⃗eold,i) and (⃗enew,i) in E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' With the change of basis formulas [⃗x]|new = P −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗x]|old and [g]|new = P T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [g]|old.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P, (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2) gives (with (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='94)), for all ⃗x, [⃗x]T |old.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[g]|old.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗ℓg]|old = ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x = [⃗x]T |new.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[g]|new.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗ℓg]|new = ([⃗x]T |old.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P −T ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (P T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [g]|old.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗ℓg]|new = [⃗x]T |old.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[g]|old.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='(P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗ℓg]|new), (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='18) thus [⃗ℓg]|old = P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[⃗ℓg]|new since [g] is invertible (an inner dot product is positive definite), thus (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='17).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 118 119 F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' What is a vector versus a (·, ·)g-vector?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Remark F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13 • Dont forget: A representation vector ⃗ℓg is not intrinsic to the linear form ℓ because it depends on a (·, ·)g (depends on a observer: foot?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' metre?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=')).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Reminder: there is no natural canonical isomorphism between E and E∗, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' it is impossible to identify a linear form with a vector, see § T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗ℓg is incompatible with the use of push-forwards, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' § 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗ℓg is incompatible with the use of Lie derivatives, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='51).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 What is a vector versus a (·, ·)g-vector?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 1- Originally, a vector was a bipoint vector ⃗v = −−→ AB in ⃗R3 used to represent of a “material object”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' the height of a child is represented on a wall by a vertical bipoint vector ⃗x starting from the ground up to a pencil line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The vector ⃗x is objective: Any observer uses this same vector to get the height of the child.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' and then use “their subjective unit” (foot, metre.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') to give a value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 2- Then (mid 19th century), the concept of vector space was introduced: It is a quadruplet (E, +, K, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') where + is an inner law, (E, +) is a group, K is a field, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' is a external law on E (called a scalar multiplication) compatible with + (see any math book).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And then the concept of scalar inner dot product (in a vector space) was introduced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 3- We can then get non “material” vectors (“subjectively built vectors”).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' : start with our usual vector space ⃗Rn of bi-point vectors, then consider its dual (Rn∗, +, R, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') =noted Rn∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then, for a given ℓ ∈ Rn∗ (a given measuring device), consider two observers: An English observer with his foot built Euclidean dot product (·, ·)g, and a French observer with with his metre built Euclidean dot product (·, ·)h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' These observers build their own artificial Riesz representation vectors ⃗ℓg = ⃗Rg(ℓ) ∈ ⃗Rn and ⃗ℓh = ⃗Rh(ℓ), cf (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' They remark that ⃗ℓg ̸= ⃗ℓh: These constructions are very subjective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 4- Then, with differential geometry, a vector ⃗v has been redefined: It is a “tangent vector”, which means that there exists a C1 curve c : s ∈ [a, b] → c(s) ∈ E such that ⃗v is defined at a p = c(s) ∈ Im(c) by ⃗v(p) := ⃗c ′(s) (so a vector is part of a vector field, here defined along the range of c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (This definition of a tangent vector is applicable to “tangent vectors to a surface” i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' tangent vectors to a manifold, see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' § 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1,2-.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Then it is shown that ⃗v is equivalent to ∂ ∂⃗v = the directional derivative in the direction ⃗v (natural canonical isomorphism between E and E∗∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' For other equivalent definitions of vectors, see Abraham–Marsden [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 The “(·, ·)g-dual vectorial bases” of one basis (and warnings) Framework: E is a finite dimensional vector space, dim E = n (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E = ⃗R3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' An observer chooses an inner dot product (·, ·)g (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', in ⃗R3, a foot-built Euclidean dot product).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Hence the results will be subjective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And (⃗ei) is some basis in E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 A basis and its many associated “dual vectorial basis” Definition F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14 The (·, ·)g-dual vectorial basis (or (·, ·)g-vectorial dual basis, or (·, ·)g-dual basis) of the basis (⃗ei) is the basis (⃗eig) in E defined by ∀j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', n, (⃗eig,⃗ej)g = δij, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗eig •g ⃗ej = δij .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='19) NB: A vectorial dual basis is not unique: It depends on the chosen inner dot product, see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' NB: Pay attention to the notations: ⃗eig is a contravariant vector (⃗eig ∈ E), so, even if you use the Einstein convention, the index i in ⃗eig must be a bottom index.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let (πei) be the (covariant) dual basis of the basis (⃗ei), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' the πei ∈ E∗ are the objective (the same for all observers) linear forms defined by πei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej = δij for all j, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='15 (Equivalent definition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') The (·, ·)g-dual vectorial basis of the basis (⃗ei) is the basis (⃗eig) in E made of the (·, ·)g-Riesz representative vectors of the πei, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗eig := ⃗Rg(πei) , i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗eig •g ⃗v = πei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v, ∀⃗v ∈ E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='20) where ⃗Rg is the (·, ·)g-Riesz operator, see (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' With duality notations, (ei) is the dual basis and ⃗eig := ⃗Rg(ei), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (⃗eig,⃗v)g = ei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v for all ⃗v ∈ E where here the position of the index i is bottom on the left and up on the right, since ⃗Rg changes a covariant vector (a linear form) into a contravariant vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 119 120 F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The “(·, ·)g-dual vectorial bases” of one basis (and warnings) Exercice F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16 Prove that the vectors ⃗eig satisfy the contravariant change of basis formula [⃗eig]|new = P −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗eig]|old (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='21) (the ⃗ejg are indeed “contravariant vectors”).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' • First answer: ⃗eig is a vector in E, thus it is contravariant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Second answer: Apply (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='17) since ⃗eig is a Riesz-representation vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Third answer = direct computation: Consider two bases (⃗ai) and (⃗bi), and the transition matrix P from (⃗ai) to (⃗bi), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ⃗bj = �n i=1Pij⃗ai for all j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='19) and the change of basis formulas for the vectors ⃗ei and the bilinear form (·, ·)g give [⃗ej]T |⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[g]|⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗eig]|⃗a = (⃗eig,⃗ej)g = [⃗ej]T |⃗b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[g]|⃗b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗eig]|⃗b = (P −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗ej]|⃗a)T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (P T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [g]|⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗eig]|⃗a = [⃗ej]T |⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[g]|⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗eig]|⃗a for all i, j, thus [⃗eig]|⃗a = P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[⃗eig]|⃗b, thus (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='21).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='17 Consider two inner dot products (·, ·)a and (·, ·)b (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', a foot-built and a metre-built Euclidean dot product), and a basis (⃗ei) in E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Call (⃗eia) and (⃗eib) the (·, ·)a and (·, ·)b-dual vectorial bases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Prove: (·, ·)a = λ2(·, ·)b =⇒ ⃗eib = λ2⃗eia, ∀i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22) E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', λ2 > 10 with foot and metre built Euclidean bases: ⃗eib is very different from ⃗eia !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A dual vectorial basis highly depends on an observer: A vectorial dual basis is not intrinsic to (⃗ei) (not objective).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='19) gives (⃗eib,⃗ej)b = δij = (⃗eia,⃗ej)a = λ2(⃗eia,⃗ej)b, thus (⃗eib − λ2⃗eia,⃗ej)b = δij, for all i, j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Example F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='18 If (⃗ei) is a (·, ·)g-orthonormal basis we trivially get ⃗eig = ⃗ei for all i, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', (⃗eig) = (⃗ei).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='This particular case is not compatible with joint work by an English (foot) and French (metre) observer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Components of ⃗ejg in the basis (⃗ei) Proposition F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='19 The components of ⃗ejg in the basis (⃗ei) are given by, for any j ∈ [1, n]N, [⃗ejg]|⃗e = [⃗Rg]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗ej]|⃗e = ([g]|⃗e)−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗ej]|⃗e = the j-th column of ([g]|⃗e)−1, (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='23) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' the i-th component of ⃗ejg is ([g]−1 |⃗e )ij.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus the matrix of g(·, ·) in the basis (⃗eig) is the inverse of the matrix of g(·, ·) in the basis (⃗ei): ([g(⃗eig,⃗ejg)] =) [g]|(⃗eig) = [g]|(⃗ei) −1 (= ([g(⃗ei,⃗ej)])−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='24) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' First proof of (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='23) (straight forward calculation): (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='19) gives, for all i, j, [⃗ej]T |⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[g]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗eig]|⃗e = δij = [⃗ej]T |⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗ei]|⃗e, thus [g]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗eig]|⃗e = [⃗ei]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='25) Second proof of (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='23): Apply (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6) (generic Riesz representation result) to get (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='23).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus, [g]|⃗e being symmetric we have [g]|⃗e−1 symmetric, and g(⃗eig,⃗ejg) = [⃗eig]T |⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[g]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗ejg]|⃗e = [⃗ei]T |⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[g]|⃗e−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[g]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[g]|⃗e−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗ej]|⃗e = [⃗ei]T |⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[g]|⃗e−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗ej]|⃗e = ([g]|⃗e−1)ij, thus (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='24).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Example F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='20 ⃗R2, [g]|⃗e = � 1 0 0 2 � , thus [g]−1 |⃗e = � 1 0 0 1 2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus ⃗e1g = ⃗e1, ⃗e2g = 1 2⃗e2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Remark F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='21 Warning: When ([g]−1 |⃗e )ij =noted gij then (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='23) reads ⃗ejg = n � i=1 gij⃗ei, (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='26) where the Einstein convention is not satisfied: The Einstein convention is satisfied with ⃗ejg = n � i=1 (⃗ejg)i⃗ei noted = n � i=1 (Pj)i⃗ei (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='27) (the components of vectors have up indices), and this can be verified with (⃗eig,⃗ej)g =(F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='19) δij which gives �n k,ℓ=1(Pi)kgkj = δij.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And in (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='26) the scalars gij is just another name for (Pj)i, nothing more (nothing to do with the Einstein convention).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 120 121 F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The “(·, ·)g-dual vectorial bases” of one basis (and warnings) We insist:In other words: M = [g]|⃗e = [Mij] is a matrix, and its inverse is the matrix M −1 = [Mij]−1: A matrix is just a collection of scalars (has nothing to do with the Einstein convention), and its inverse is also a collection of scalars, and you do not change this fact by calling M −1 =noted [M ij] (the use of up indices is irrelevant for matrices).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' See remark A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And because (Pj)i equals ([g]−1 |⃗e )ij =noted gij, some people rename ⃗ejg as ⃗e j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' to get ⃗e j = �n i=1gij⃗ei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' But doing so they despise Einstein’s convention, despite eventual claims: They confuse covariance and contravariance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' and add confusion to the confusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' NB: Recall: If in trouble with a notation which comes as a surprise (the notation gij here), use classical notations: Then no misuse of Einstein’s convention and no possible misinterpretation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In particular here ⃗ejg is a (contravariant) vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Multiple admissible notations for the components of ⃗ejg Let P ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E) be the change of basis endomorphism from (⃗ei) to (⃗eig): defined by P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej = ⃗ejg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And let P = [P]|⃗e (the associated transition matrix).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' It gives multiple admissible (non confusing) notations for the components of ⃗ejg relative to the basis (⃗ei): ⃗ejg = P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej = n � j=1 Pij⃗ei = n � j=1 (Pj)i⃗ei � �� � clas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' = n � j=1 (Pj)i⃗ei = n � j=1 P i j⃗ei � �� � dual , (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='28) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' the i-th component of the vector ⃗ejg has the names Pij = (Pj)i = (Pj)i = P ij, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' P = [P]|⃗e = [Pij] = [(Pj)i] = [(Pj)i] = [P ij] (four different notations for the same matrix), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ∀j, [⃗ejg]|⃗e = [P]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗ej]|⃗e = � � � P1j .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Pnj � � � = � � � (Pj)1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Pj)n � � � = � � � P 1j .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' P nj � � � = � � � (Pj)1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Pj)n � � � (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='29) = the j-th column of [P]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' You can choose any notation, depending on your current need or mood.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 (Huge) differences between “the (covariant) dual basis” and “a dual vectorial basis” 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A basis (⃗ei) has an infinite number of vectorial dual bases (⃗eig), as many as the number of inner dot products (·, ·)g (as many as observers), see (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='23).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' While a basis (⃗ei) has a unique intrinsic (covariant) dual basis (πei) noted = (ei), cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7): Two observers who consider the same basis (⃗ei) have the same (covariant) dual basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' πei = ei is covariant, while ⃗ei and ⃗eig are contravariant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And there is no transition matrix between (⃗ei) and (πei) = (ei), since ⃗ei ∈ E and πei = ei ∈ E∗ don’t live in the same vector space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' If you fly, it is vital to use the dual basis (πei) = (ei): It is possibly fatal if you confuse foot and metre at takeoff and at landing (if you survived takeoff) because of the choice of different Euclidean dot product (·, ·)g or (·, ·)h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' See e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' the Mars Climate Orbiter crash, remark A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Einstein’s convention can help.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' only if it is really followed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 About the notation gij = shorthand notation for (g♯)ij Definition F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22 The Riesz associated inner dot product g♯ ∈ L(E∗, E∗;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) is the bilinear form defined by, for all ℓ, m ∈ E∗, g♯(ℓ, m) := g(⃗ℓg, ⃗mg), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (ℓ, m)g♯ := (⃗ℓg, ⃗mg)g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='30) where ⃗ℓg = ⃗Rg(ℓ) and ⃗mg = ⃗Rg(m).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus g♯(·, ·) =noted (·, ·)g♯ is indeed an inner dot product in E∗: trivial check.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Quantification: (⃗ei) is a basis in E and (ei) is its dual basis (duality notations).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='30) gives: (g♯)ij := g♯(ei, ej) = g(⃗eig,⃗ejg), thus [g♯]|e = [(g♯)ij] = [gij]−1 = [g]−1 |⃗e , (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='31) cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='24).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And [(g♯)ij] shorthand = notation [gij] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='32) Classical notations: [g♯]|e = [(g♯)ij] = [g♯(πei, πej)] = [g(⃗eig,⃗ejg)] = [gij]−1 = ([g]|⃗e)−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 121 122 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Goal Exercice F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='23 How do we compute g♯(ℓ, m) with matrix computations?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ℓ = �n i=1ℓiei and m = �n j=1mjej give g♯(ℓ, m) = �n i,j=1ℓimjg♯(ei, ej) = �n i,j=1ℓi(g♯)ijmj = [ℓ]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[g♯]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [m]T |⃗e = [ℓ]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [g]−1 |⃗e .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [m]T |⃗e (a linear form is represented by a row matrix,).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='24 (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='30) tells that the �2 0 � tensor g♯ ∈ L(E∗, E∗;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) was created from the �0 2 � tensor g = (·, ·)g ∈ L(E, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) using twice the (·, ·)g-Riesz representation theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 1- Show that if you use the (·, ·)g-Riesz representation theorem just once you get the �1 1 � tensor g♮ ∈ L(E∗, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) ≃ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E) given by g♮ = I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='33) 2- Reciprocal: What is the �0 2 � tensor g♭ ∈ L(E, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) that you create from the identity I ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E) when using the (·, ·)g-Riesz representation theorem once?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 3- Summary: �I = g♮ gives (�I)♭ = g♭ = g and (�I)♯ = g♯ Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 1- g♮ ∈ L(E∗, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) is defined by g♮(ℓ, ⃗w) = (⃗ℓg, ⃗w)g for all (ℓ, ⃗w) ∈ E∗ × E, where ⃗ℓg is the (·, ·)g-Riesz representation vector of ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus g♮(ℓ, ⃗w) = ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w = ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w, for all (ℓ, ⃗w) ∈ E∗×E, hence g♮ ∈ L(E∗, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) is naturally canonically associated with the identity I ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 2- The identity operator I ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E) (observer independent) is naturally canonically associated with the �1 1 � tensor �I ∈ L(E∗, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) defined by �I(ℓ, ⃗w) = ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w = ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w for all (ℓ, ⃗w) ∈ E∗ × E, thus �I = g♮.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' G Cauchy–Green deformation tensor C = F T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F Framework: �Φ : � R × Obj → Rn (t, PObj) → �Φ(t, PObj) � is a motion of Obj, Ωτ = �Φ(τ, PObj) is the configuration of Obj at any τ, t0 and t are fixed, Φ := Φt0 t : � Ωt0 → Ωt P → p = Φ(P) � is the associated motion between t0 and t, and F(P) := dΦ(P) : � � � � � ⃗ Rn t0 → ⃗Rn t ⃗W → ⃗w = F(P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W := lim h→0 Φ(P+h ⃗W) − Φ(P) h � � � � � is the deformation gradient at P between t0 and t, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='0 Goal Construction of C (summary of Cauchy’s approach): 1- At t0, consider two vectors ⃗W1 and ⃗W2, 2- at t, they are distorted by the motion and become the vectors F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W1 and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 3- Then choose a Euclidean dot product (·, ·)g =noted · ·, the same at all t (to simplify);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 4- Then, by definition of the transposed, (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W1) • (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W2) = (F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W1) • ⃗W2: You have got the Cauchy strain tensor C := F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 5- Then (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W1) • (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W2) − ⃗W1 • ⃗W2 = ((C−I).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W1) • ⃗W2 gives a measure of the deformation with ⃗W2 as a reference, measure that is used to build first order constitutive laws for the stress (Cauchy).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Transposed F T: Inner dot products required We first give the functional definition of F T (qualitative);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then we get the usual matrix representation of F T relative to observers (quantification).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definition of the function F T At t0, a past observer chose an inner dot product (·, ·)G in ⃗Rn t0, and at t the present observer chooses an inner dot product (·, ·)g in ⃗Rn t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' By definition, the transposed of the linear map F(P) ∈ L(⃗Rn t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t ) relative to (·, ·)G and (·, ·)g is the linear map F(P)T Gg ∈ L(⃗Rn t ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t0) defined by, for all ⃗UP ∈ ⃗Rn t0 (vector at P) and ⃗wp ∈ ⃗Rn t (vector at p), (F(P)T Gg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wp, ⃗UP )G = (F(P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗UP , ⃗wp)g, in short (F T Gg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w, ⃗U)G = (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗U, ⃗w)g , (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1) 122 123 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Transposed F T : Inner dot products required see (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='68).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' This defines F T Gg(p) := F(P)T Gg when p = Φ(P): F T Gg : � � � Ωt → L(⃗Rn t ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t0) p → F T Gg(p) := F(P)T Gg � � � , so in short (F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w) •G ⃗U = ⃗w •g (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗U) , (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2) without forgetting that F T := F T Gg depends on (·, ·)G and (·, ·)g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W = ⃗z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W = F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗z = ⃗W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗z, which dots are inner dot products?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' What does F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W2 = ⃗W1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W2 mean?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' No choice: ( ⃗W, ⃗z) ∈ ⃗Rn t0 × ⃗Rn t , so (F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗z) •G ⃗W = ⃗z •g (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W) = (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W) •g ⃗z = ⃗W •G (F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' No choice: ⃗W1, ⃗W2 ∈ ⃗Rn t0, so (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W1) •g (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W2) = ⃗W1 •G (F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W2)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Remark G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 More generally, on a surface Ω (a manifold), (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1) is defined for all (⃗UP , ⃗wp) ∈ TP Ωt0 × TpΩt, where Tpτ Ωτ is the tangent space at Ωτ at pτ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Quantification with bases (matrix representation) Classical notations: (⃗ai) is a basis in ⃗Rn t0, and (⃗bi) is a basis in ⃗Rn t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Marsden–Hughes duality notations: ( ⃗EI) is a basis in ⃗Rn t0 and (⃗ei) is a basis in ⃗Rn t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And the reference to the points P and p is omitted to lighten the writings (use the full notation of § G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 if in doubt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let [G] := [(⃗ai,⃗aj)G], [g] := [(⃗bi,⃗bj)g], [F]|⃗a,⃗b = [Fij] =noted [F], [F T ]|⃗b,⃗a = [(F T )ij] =noted [F T ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1) gives [⃗U]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [G].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w] = [F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗U]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [G].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗w], thus [⃗U]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [G].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [F T ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗w] = [⃗U]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [F]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [g].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗w], for all ⃗U, ⃗w, thus [G].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [F T ] = [F]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [g], i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [F T ] = [G]−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [F]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [g] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3) Remark G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 If (⃗ai) and (⃗bi) are (·, ·)G and (·, ·)g-orthonormal bases, then [C] = [F]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [F].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' But recall: If you need to work with a coordinate system, then the bases in use are the coordinate system bases which are not orthonormal in general, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [G]−1 ̸= I and [g]−1 ̸= I in general.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Use classical notation, then Marsden duality notations, to express (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3) with components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Classical notations: Gij = G(⃗ai,⃗aj), gij = g(⃗bi,⃗bj), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [G]⃗a = [Gij], [g]|⃗b = [gij], and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj = n � i=1 Fij⃗bi, F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗bj = n � i=1 (F T )ij⃗ai, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [F]|⃗a,⃗b = [Fij], [F T ]|⃗b,⃗a = [(F T )ij].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4) Then (F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗bj,⃗ai)G =(G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1)(⃗bj, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ai)g gives (�n k=1(F T )kj⃗ak,⃗ai)G = (⃗bj, �n k=1Fki⃗bk)g, thus �n k=1(F T )kj(⃗ak,⃗ai)G = �n k=1Fki(⃗bj,⃗bk)g with Fki = ([F]T )ik, thus n � k=1 Gik(F T )kj = n � k=1 ([F]T )ikgkj, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (F T )ij = n � k,ℓ=1 ([G]−1)ikFℓkgℓj, (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5) for all i, j, thus (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Marsden notations: GIJ = G( ⃗EI, ⃗Ej), gij = g(⃗ei,⃗ej), F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗EJ = �n i=1F i J⃗ei, F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej = �n I=1(F T )I j ⃗EI, thus n � K=1 GIK(F T )K j = n � k=1 F k Igkj, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (F T )I j = n � K,k=1 GIKF k Kgkj where [GIJ] := [GIJ]−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Remark: F ∗ (For mathematicians: F ∗ doesn’t seem to be very useful in mechanics, apart from making simple things difficult, and playing games with components and duality notations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 The adjoint of the linear map F ∈ L(⃗Rn t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t ) (acting on vectors) is the linear map F ∗ ∈ L(⃗Rn∗ t ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn∗ t0 ) (acting on functions) canonically defined by, for all m ∈ ⃗Rn∗ t , F ∗(m) := m ◦ F, written F ∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='m = m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F (∈ ⃗Rn∗ t0 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6) 123 124 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Cauchy–Green deformation tensor C So, for all (m, ⃗W) ∈ ⃗Rn∗ t × ⃗Rn t0, (F ∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='m).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W = m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W (∈ R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7) Quantification (matrix representation): (πai) and (πbi) are the covariant dual bases of (⃗ai) and (⃗bi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let (F ∗)ij be the components of F ∗ relative to these dual bases: F ∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='πbj = n � I=1 (F ∗)ijπai, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [F ∗]|πb,πa = [(F ∗)ij].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8) (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7) gives (F ∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='πbj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ai = πbj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ai, thus ∀i, j, (F ∗)ij = Fji , i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [F ∗]|πb,πa = ([F]|⃗a,⃗b)T , in short [F ∗] = [F]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9) Marsden duality notations: F ∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='ej = �n I=1(F ∗)IjEI gives (F ∗)Ij = F jI for all I, j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Interpretation of F ∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' As usual in classical mechanics, we use Euclidean dot products, here (·, ·)G in ⃗Rn t0 and (·, ·)g in ⃗Rn t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then we use the (·, ·)G-Riesz representation vector ⃗RG(F ∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='m) ∈ ⃗Rn t0 of F ∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='m ∈ ⃗Rn∗ t0 , and the (·, ·)g-Riesz representation vector ⃗Rg(m) ∈ ⃗Rn t of m ∈ ⃗Rn∗ t , so, for all m ∈ ⃗Rn∗ t and ⃗W ∈ ⃗Rn t0, (F ∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='m).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W = ⃗RG(F ∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='m) •G ⃗W, and m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='(F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W) = ⃗Rg(m) •g F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W = (F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗Rg(m)) •G ⃗W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10) Thus (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7) gives ⃗RG(F ∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='m) = F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗Rg(m), thus ⃗RG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F ∗ = F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗Rg, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F ∗ = ⃗RG −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗Rg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11) Remark G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 The definition of F ∗ is intrinsic to F (objective), while the definition of F T is not intrinsic to F (not objective) since it needs inner dot products (observer choices) to be defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Cauchy–Green deformation tensor C G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definition of C Consider vectors ⃗Wi ∈ ⃗Rn t0 at P, i = 1, 2, and their push forwards ⃗wi toward p = Φ(P), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗wi = F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Wi, (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12) short notation for ⃗wi(p) = F(P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Wi(P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' With the chosen inner dot products (·, ·)G in ⃗Rn t0 and (·, ·)g in ⃗Rn t , we get (⃗w1(p), ⃗w2(p))g = (F(P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W1(P), F(P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W2(P))g=(G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2)(F T Gg(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F(P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W1(P), ⃗W2(P))G when p = Φ(P), written in short: (⃗w1, ⃗w2)g = (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W1, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W2)g = (F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F � �� � C .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W1, ⃗W2)G, (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13) Definition G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 The (right) Cauchy–Green deformation tensor at P ∈ Ωt0 relative to (·, ·)G and (·, ·)g, is the endomorphism CGg(P) ∈ L(⃗Rn t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t0) defined by CGg(P) := F T Gg(p) ◦ F(P), in short C := F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14) So C = F T ◦ F : ⃗W F −→ F( ⃗W) F T −→ F T (F( ⃗W)) = C( ⃗W), (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='15) with F and F T linear, thus C is linear and C( ⃗W) is written C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W = F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13) tells that C is characterized by, for all ⃗W1, ⃗W2 ∈ ⃗Rn t0, ⃗w1 •g ⃗w2 = (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W1) •G ⃗W2 = (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W1) •g (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W2) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16) Moreover, (·, ·)g being symmetric (inner dot product), C is a (·, ·)G-symmetric endomorphism in ⃗Rn t0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', for all ⃗W1, ⃗W2 ∈ ⃗Rn t0, (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W1, ⃗W2)G = ( ⃗W1, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W2)G, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W1) •G ⃗W2 = ⃗W1 •G (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W2), (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='17) since (F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W1, ⃗W2)G = (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W1, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W2)g = ( ⃗W1, F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W2)G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 124 125 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Time Taylor expansion of C G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Quantification (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14) gives [C] = [F T ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [F], with [F T ] =(G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3)[G]−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [F]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [g], thus [C] = [G]−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [F]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [g].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [F] , (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='18) short notation for [CGg]|⃗a = [G]−1 |⃗a .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ([F]|⃗a,⃗b)T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [g]|⃗b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [F]|⃗a,⃗b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8 Use classical notation, then duality notations, to express (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='18) with components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Classical notations: F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj = n � i=1 Fij⃗bi and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj = n � i=1 Cij⃗ai, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [F]|⃗a,⃗b = [Fij] and [C]|⃗a = [Cij].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='19) (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16)-(G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='17) give (⃗ai, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj)G = (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ai, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj)g, so (⃗ai, � k Ckj⃗ak)G = (� k Fki⃗bk, � ℓ Fℓj⃗bℓ)g, thus � k Ckj(⃗ai,⃗ak)G = � kℓ Fki(⃗bk,⃗bℓ)gFℓj, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' n � k=1 GikCkj = n � k,ℓ=1 Fki gkℓFℓj = n � k,ℓ=1 ([F]T )ik gkℓFℓj, so [G].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [C] = [F]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [g].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [F] , (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='20) so Cij = �n k,ℓ,m=1([G]−1)imFkm gkℓFℓj = �n k,ℓ,m=1([G]−1)im([F]T )mk gkℓFℓj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Duality notations: F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗EJ = n � i=1 F i J⃗ei and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗EJ = n � I=1 CI J ⃗EI, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [F]| ⃗ E,⃗e = [F i J] and [C]| ⃗ E = [CI J], and n � K=1 GIKCK J = n � k,ℓ=1 F k I gkℓF ℓ J, and CI J = n � k,ℓ,M=1 GIMF k M gkℓF ℓ J when [GIJ] := [GIJ]−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='21) Exercice G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9 (·, ·)G is a Euclidean dot product in foot, (·, ·)g is a Euclidean dot product in metre, so (·, ·)g = µ2(·, ·)G with µ ≃ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3048;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And (⃗ai) = (⃗bi) is a (·, ·)G-orthonormal basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Prove [C] = µ2[F]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [F].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22) Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [C]|⃗a =(G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='18) [G]−1 |⃗a .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [F]T |⃗a,⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[g]|⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [F]|⃗a,⃗a gives [C]|⃗a = I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [F]T |⃗a,⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='µ2I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[F]|⃗a,⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Shorten notation = (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Time Taylor expansion of C Here we use a unique inner dot product (·, ·)G = (·, ·)g at all time (to compare results in the vicinity of t0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Moreover we use an orthonormal basis (to lighten the notations), thus, in short, [C] = [F]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [F].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' P is fixed, Ct0 t (P) =noted C(t), and [C(t)] = [F(t)]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [F(t)] (since [G] = [g] = I here), and ⃗V t0 t (P) =noted ⃗V (t) and ⃗At0 t (P) =noted ⃗A(t) are the Lagrangian velocities and accelerations, and ⃗v(t, p) and ⃗γ(t, p) are the Eulerian velocities and accelerations at t at p = Φt0 t (t, P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' With Lagrangian variables (used to define C): F(t+h) = F(t) + h d⃗V (t) + h2 2 d ⃗A(t) + o(h2) gives [C(t+h)] = [F(t+h)]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [F(t+h)] = [F T + h d⃗V T + h2 2 d ⃗AT + o(h2)](t)[F + h d⃗V + h2 2 d ⃗A + o(h2)](t) = [C(t) + h ([F T ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [d⃗V ] + [d⃗V ]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [F])(t) � �� � =[(Ct0 P )′(t)] =noted [C′(t)] +h2 2 ([F]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [d ⃗A] + 2[d⃗V ]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [d⃗V ] + [d ⃗A]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [F])(t) � �� � =[(Ct0 P )′′(t)] =noted [C′′(t)] )(t) + o(h2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='23) (As usual with Lagrangian variables, we have three times involved: t0, t and t+h).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') In particular [Ct0 P (t0+h)] = I + ([d⃗V ] + [d⃗V ]T )(t0) + h2 2 ([d ⃗A] + 2[d⃗V ]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [d⃗V ] + [d ⃗A]T )(t0) + o(h2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='24) Abusively written Ct0 P (t0+h) = I + (d⃗V + d⃗V T )(t0) + h2 2 (d ⃗A + 2d⃗V T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗V + d ⃗AT )(t0) + o(h2), but don’t forget it is a matrix meaning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 125 126 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Remark: C♭ With Eulerian variables: With p(t) = Φt0(t, P), we have d⃗V t0(t, P) = d⃗v(t, p(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F(t) and d ⃗At0(t, P) = d⃗γ(t, p(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F(t), thus writing d⃗v := d⃗v(t, p(t)) and d⃗γ := d⃗γ(t, p(t)) (for short), Ct0 P (t+h) = Ct0 P (t) + h (F T (t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (d⃗v + d⃗vT )(t, p(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F(t)) + h2 2 (F T (t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (d⃗γ + 2d⃗vT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v + d⃗γT )(t, p(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F(t)) + o(h2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='25) abusive notation of [Ct0 P (t+h)] = .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (matrices relative to a basis).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Remark G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10 F ′′ = d ⃗A is easy to interpret, but C′′ = F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d ⃗A + 2d⃗V T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗V + d ⃗AT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F = (F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d ⃗A + d⃗V T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗V ) + (F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d ⃗A + d⃗V T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗V )T is not that easy to interpret (and in not linear in ⃗V ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' We already had a problem with the composition of flows: The formula F t0 t2 = F t1 t2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F t0 t1 is simple (determinism), but the formula Ct0 t2 = (F t0 t2 )T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F t0 t2 = (F t0 t1 )T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (F t1 t2 )T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F t1 t2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F t0 t1 = (F t0 t1 )T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='Ct1 t2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F t0 t1 is “not that simple” (̸= Ct1 t2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='Ct0 t1 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Indeed, to consider C instead of F amounts to consider the “motion squared”, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W, ⃗W)g = ||F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W||2 g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Since C′(t0) = d⃗V (t0) + d⃗V (t0)T this may have little consequences for linear approximation near t0, but ultimately not small consequences for second-order approximations (and large deformations) if C′′ is used to make constitutive laws.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The consideration of Lie derivatives may be an interesting alternative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Remark: C♭ For mathematicians: May produce errors, misuses, covariance-contravariance confusion, see next § G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' For the general ♭ notation see § A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definition of C♭.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11 At P ∈ Ωt0, the bilinear form C♭ Gg(P) =noted C♭ ∈ L(⃗Rn t0, ⃗Rn t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) associated with the linear map CGg(P) =noted C ∈ L(⃗Rn t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t0) is defined by, for all ⃗W1, ⃗W2 ∈ ⃗Rn t0 vectors at P, C♭( ⃗W1, ⃗W2) := ( ⃗W1, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W2)G (= (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W1, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W2)g).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='26) Then C♭ is a bilinear symmetric form (trivial) and is a metric in ⃗Rn t0 when F t0 t =noted F is a diffeo- morphism (usual hypothesis), but not a Euclidean one (it is iff C = I i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' for rigid body motions).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Quantification: (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='26) gives [ ⃗W2]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [C♭].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [ ⃗W1] = [ ⃗W2]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [G].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[C].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [ ⃗W1] for all ⃗W1, ⃗W2 since C♭ and (·, ·)G are symmetric, thus [C♭] = [G].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [C] (= [F]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [g].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [F]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='27) Exercice G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12 Use duality notations to express (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='27) with components, and explain the flat ♭ notation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='26) gives C♭( ⃗EJ, ⃗EI) := (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗EJ, ⃗EI)G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus with C♭( ⃗EI, ⃗EJ) = CIJ and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗EJ = � I CI J ⃗EI we get CJI = � K CK J( ⃗EK, ⃗EI)G = � K CK JGKI;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And C♭ and (·, ·)G are symmetric, thus CIJ = � K GIKCK J, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [C♭]| ⃗ E = [G]| ⃗ E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[C]| ⃗ E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='28) The flat notation C♭ is due to: The top index I in CI J has been transformed into a bottom index in CIJ in C♭, which characterizes a change of variance because of the use of an inner dot product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='27) also gives CIJ = (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗EI, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗EJ)g = � kℓ F k IF ℓ J(⃗bk,⃗bℓ)g, thus CIJ = � kℓ F k IgkℓF ℓ J = � kℓ (F T )I kgkℓF ℓ J, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [C♭]| ⃗ E = ([F]| ⃗ E,⃗e)T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [g]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [F]| ⃗ E,⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='29) G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' and remarks about C♭.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' and Jaumann C♭ can also be defined only with (·, ·)g by, for all ⃗W1, ⃗W2 ∈ ⃗Rn t0, C♭ g( ⃗W1, ⃗W2) := (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W1, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W2)g, (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='30) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', C♭ g := g∗ =noted C♭.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So we can also say that C♭ g is the pull-back of the metric (·, ·)g by Φ, see (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 126 127 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Stretch ratio and deformed angle However C♭ = C♭ g is useless in itself: C♭ is not a Euclidean dot product (it is a metric defined at each P by C♭ g(P)( ⃗W1, ⃗W2) := (F(P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W1, F(P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W2)g for all ⃗W1, ⃗W2 ∈ ⃗Rn t0 vectors at P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In fact, C♭ is only useful to characterize a deformation if the value C♭( ⃗W1, ⃗W2) can be compared with the initial value ( ⃗W1, ⃗W2)G, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' if a Euclidean dot product (·, ·)G was introduced in ⃗Rn t0: This is why C♭ is classically defined from C, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='26).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' You may want to use the infinitesimal strain tensor ε = F +F T 2 − I, or the Green–Lagrange defor- mation tensor E = 1 2(C − I), obtained from F T := F T Gg (essential).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' There is no objective “trace” for a �0 2 � tensor like C♭, while Tr(C) is objective since C is an endo- morphism (≃ a �1 1 � tensor).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The Lie derivatives of a second order tensor depends on the type of the tensor, and the Lie derivative of the �1 1 � tensor like C gives the Jaumann derivative, which is usually preferred to the Lie derivative of the �0 2 � tensor like C♭ which is the lower convected Lie derivative, see remark G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So the introduction and use of C♭ in mechanics mostly complicate things unnecessarily, and interferes with basic understandings like the distinction between covariance and contravariance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Remark G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13 Interpretation issue (with Jaumann).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 2D = d⃗v + d⃗vT gives 2 DD Dt = D(d⃗v) Dt + D(d⃗v)T Dt = d⃗γ + d⃗γT − d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v − d⃗vT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗vT , thus, with (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='23) and keeping in mind the matrix meaning, C′′(t) = F(t)T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (2DD Dt + d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v + d⃗vT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗vT + 2d⃗vT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v)(t, p(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F(t) = 2F(t)T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (DD Dt + D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v + d⃗vT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='D)(t, p(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='31) The DD Dt + D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v + d⃗vT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='D term looks like a lower-convected Lie derivative, but with d⃗vT instead of d⃗v∗, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='58);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So you may find (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='31) written as C′′ = 2F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L⃗vD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' But you get disappointing results when using the the lower convected Lie derivative (Jaumann is usually preferred).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In fact, it is L⃗vD♭ (lower convected Lie derivative) that should be used, where D♭ g := d⃗v♭ g+(d⃗v♭ g)T 2 , to get (C♭)′′ = 2F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L⃗vD♭ g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Stretch ratio and deformed angle Here (·, ·)g = (·, ·)G, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' at t0 and t we use the same Euclidean dot product, to be able to compare the lengths relative to the same unit of measurement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (If (·, ·)g ̸= (·, ·)G then use (·, ·)g = µ2(·, ·)G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Stretch ratio The stretch ratio at P ∈ ⃗Rn t0 between t0 and t for a ⃗WP ∈ ⃗Rn t0 is defined by λ( ⃗WP ) := ||⃗wp||G || ⃗WP ||G = ||FP .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗WP ||G || ⃗WP ||G (= ||FP .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ( ⃗WP || ⃗WP ||G )||G) (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='32) where ⃗wp = FP .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗WP is the deformed vector by the motion at p = Φ(P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', in short ∀ ⃗W ∈ ⃗Rn t0 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' || ⃗W|| = 1, λ( ⃗W) := ||F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W||.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='33) (You may find: λ(d ⃗X) = ||F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d ⃗X|| with d ⃗X a unit vector(!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' );' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' This notation should be avoided, see § 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Deformed angle Recall: The angle θt0 = � ( ⃗W1, ⃗W2) formed by two vectors ⃗W1 and ⃗W2 in ⃗ Rn t0−{⃗0} at P ∈ Ωt0 is given by cos(θt0) = ⃗ W1 || ⃗ W1||G ⃗ W2 || ⃗ W2||G (= ( ⃗ W1 || ⃗ W1||G , ⃗ W2 || ⃗ W2||G )G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' With the deformed vectors ⃗wi = F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Wi at p = Φt0 t (P), the deformed angle is θt defined by cos(θt) := � (⃗w1, ⃗w2) = ⃗w1 ||⃗w1|| ⃗w2 ||⃗w2|| = F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W1 ||F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W1|| F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W2 ||F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W2|| (= (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W1) • ⃗W2 ||⃗w1|| ||⃗w2|| ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='34) 127 128 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Decompositions of C G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 Decompositions of C G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Spherical and deviatoric tensors Definition G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14 The deformation spheric tensor is Csph = 1 nTr(C) I, (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='35) with Tr(C) = the trace of the endomorphism C (there is no “trace” for the �0 2 � tensor C♭).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='15 The deviatoric tensor is Cdev = C − Csph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='36) (So Tr(Cdev) = 0 , and C = Csph + Cdev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Rigid motion The deformation is rigid iff, for all t0, t, (F t0 t )T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F t0 t = I, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Ct0 t = I, written C = I = F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='37) Thus, after a rigid body motion, lengths and angles are left unchanged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Diagonalization of C Proposition G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16 C = F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F being symmetric positive, C is diagonalizable, its eigenvalues are positive, and ⃗ Rn t0 has an orthonormal basis made of eigenvectors of C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (C(P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W1, ⃗W2)G = (F(P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W1, F(P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W2)g = ( ⃗W1, C(P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W2)G, thus C is (·, ·)G-symmetric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W1, ⃗W1)G = (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W1, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W1)g = ||F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W1||2 g > 0 when ⃗W1 ̸= ⃗0, since F invertible (Φt0 t is supposed to be a diffeomorphism).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus C est (·, ·)G-symmetric definite positive real endomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='17 Let λi be the eigenvalues of C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then the √λi are called the principal stretches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And the associated eigenvectors give the principal directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Mohr circle This § deals with general properties of 3 ∗ 3 symmetric positive endomorphism, like Ct0 t (P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Consider ⃗R3 with a Euclidean dot product (·, ·)R3 and a (·, ·)R3-orthonormal basis (⃗ai).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let M : ⃗R3 → ⃗R3 be a symmetric positive endomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus M is diagonalizable in a (·, ·)R3- orthonormal basis (⃗e1,⃗e2,⃗e3), that is, ∃λ1, λ2, λ3 ∈ R, ∃⃗e1,⃗e2,⃗e3 ∈ ⃗R3 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ei = λi⃗ei and (⃗ei,⃗ej)R3 = δij, so [M]|⃗e = diag(λ1, λ2, λ3) = � � λ1 0 0 0 λ2 0 0 0 λ3 � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='38) And the orthonormal basis (⃗e1,⃗e2,⃗e3) is ordered s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' λ1 ≥ λ2 ≥ λ3 (> 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let S be the unit sphere in R3, that is the set {(x, y, z) : x2 + y2 + z2 = 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Its image M(S) by M is the ellipsoid {(x, y, z) : x2 λ2 1 + y2 λ2 2 + z2 λ2 3 = 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then consider ⃗n = � i ni⃗ei s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ||⃗n||R3 = 1: [⃗n]|⃗e = � � n1 n2 n3 � � with n2 1 + n2 2 + n2 3 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='39) Thus its image ⃗A = M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗n ∈ M(S) satisfies ⃗A = M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗n, [ ⃗A]|⃗e = � � λ1n1 λ2n2 λ3n3 � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='40) Then define An = ( ⃗A,⃗n)R3, ⃗A⊥ = ⃗A − An⃗n, A⊥ := || ⃗A⊥||.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='41) So ⃗A = An⃗n + ⃗A⊥ ∈ Vect{⃗n} ⊗ Vect{⃗n}⊥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Remark: ⃗A⊥ is not orthonormal to the ellipsoid M(S), but is orthonormal to the initial sphere S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') 128 129 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Green–Lagrange deformation tensor E Mohr Circle purpose: To find a relation: A⊥ = f(An), (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='42) relation between “the normal force An” (to the initial sphere) and the “tangent forceA⊥” (to the initial sphere).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='39), (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='40) and An = (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗n,⃗n)R3 give � � � � � n2 1 + n2 2 + n2 3 = 1, λ1n2 1 + λ2n2 2 + λ3n2 3 = An λ2 1n2 1 + λ2 2n2 2 + λ2 3n2 3 = || ⃗A||2 = A2 n + A2 ⊥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='43) This is linear system with the unknowns n2 1, n2 2, n2 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The solution is � � � � � � � � � � � � � � � � � n2 1 = A2 ⊥ + (An − λ2)(An − λ3) (λ1 − λ2)(λ1 − λ3) , n2 2 = A2 ⊥ + (An − λ3)(An − λ1) (λ2 − λ3)(λ2 − λ1) , n2 3 = A2 ⊥ + (An − λ1)(An − λ2) (λ3 − λ1)(λ3 − λ2) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='44) The n2 i being non negative, and with λ1 > λ2 > λ3 ≥ 0, we get � � � � � A2 ⊥ + (An − λ2)(An − λ3) ≥ 0, A2 ⊥ + (An − λ3)(An − λ1) ≤ 0, A2 ⊥ + (An − λ1)(An − λ2) ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='45) Then let x = An and y = A⊥, and consider, for some a, b ∈ R, the equation y2 + (x − a)(x − b) = 0, so (x − a+b 2 )2 + y2 = (a−b)2 4 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' This is the equation of a circle centered at ( a+b 2 , 0) with radius |a−b| 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='45)2 tells that An and A⊥ are inside the circle centered at ( λ1+λ3 2 , 0) with radius λ1−λ3 2 , and (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='45)1,3 tell that An and A⊥ are outside the other circles (adjacent and included in the first, drawing).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='18 What happens if λ1 = λ2 = λ3 > 0?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then � � � � � � � � � � � � � n2 1 + n2 2 + n2 3 = 1, n2 1 + n2 2 + n2 3 = An λ1 , n2 1 + n2 2 + n2 3 = A2 n + A2 ⊥ λ2 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' � � � � � � � � � � � � � Thus An = λ1 and A2 n + A2 ⊥ = λ2 1, thus A⊥ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Here C = λ1I, and we deal with a dilation: A⊥ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='19 What happens if λ1 = λ2 > λ3 > 0?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then � � � � � � � n2 1 + n2 2 + n2 3 = 1, λ1(1 − n2 3) + λ3n2 3 = An, λ2 1(1 − n2 3) + λ2 3n2 3 = A2 n + A2 ⊥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' � � � � � � � Thus An = λ1 − (λ1 − λ3)n2 3 ∈ [λ3, λ1], and A⊥ = ±(λ2 1 − (λ2 1 − λ2 3)n2 3 − A2 n) 1 2 , with A2 n + A2 ⊥ a point on the circle with radius λ2 1(1 − n2 3) + λ2 3n2 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 Green–Lagrange deformation tensor E (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13) gives (⃗w1, ⃗w2)g = (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W1, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W2)g = (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W, ⃗W)G at p = Φ(P), thus (⃗w1, ⃗w2)g − ( ⃗W1, ⃗W2)G = ((C − I).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W1, ⃗W2)G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='46) 129 130 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Small deformations (linearization): The infinitesimal strain tensor ε Definition G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='20 The Green–Lagrange tensor (or Green–Saint Venant tensor) at P relative to t0 and t is the endomorphism Et0 t (P) ∈ L(⃗Rn t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t0) defined by Et0 t (P) := Ct0 t (P) − It0 2 , in short E = C − I 2 (= F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F − I 2 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='47) (In particular E = 0 for rigid body motions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') And Et0 t : Ωt0 → L(⃗Rn t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t0) is the Green–Lagrange tensor relative to t0 and t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The 1 2 because (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') = (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') corresponds to the “motion squared”, see the following linearization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And we get the time Taylor expansion of Et0 P (t) = 1 2(Ct0 P (t) − It0) with p(t) = Φt0 P (t) and (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='25): Et0 P (t+h) = F t0 P (t)T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' � h d⃗v + d⃗vT 2 + h2 2 (d⃗γ + d⃗γT 2 + d⃗vT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v) � (t, p(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F t0 P (t) + o(h2) = F t0 P (t)T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' � h D + h2 ((DD Dt + D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v + d⃗vT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='D)(t, p(t))).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F t0 P (t) + o(h2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='48) G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8 Small deformations (linearization): The infinitesimal strain tensor ε G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Landau notations big-O and little-o Reminder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let f, g : R → R and x0 ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' f = O(g) near x0 ⇐⇒ ∃C > 0, ∃η > 0, ∀x s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' |x − x0| < η, |f(x)| < C|g(x)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='49) and f is said to be “comparable with g” near x0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' If |g| > 0 then the conclusion reads |f(x)| |g(x)| < C;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And f = O(xn) near x=0 iff |f(x)| |xn| < C near x=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And f = o(g) near x0 ⇐⇒ ∀ε > 0, ∃η > 0, ∀x s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' |x − x0| < η, |f(x)| < ε|g(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='50) and f is said to be “negligible compared with g near x0”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' If |g| > 0 then the conclusion reads |f(x)| |g(x)| −→x→x0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And f = o(xn) near x=0 iff |f(x)| |xn| −→x→0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Definition of the infinitesimal strain tensor ε The motion is supposed to be C2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Along a trajectory, with F t0 P (t0) = I we have, near t0, F t0 P (t0+h) = I + O(h), (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='51) thus F t0 P (t0+h).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W = ⃗W + O(h) for all ⃗W ∈ ⃗Rn t0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', near t0, ||⃗w − ⃗W|| = O(h) when ⃗w = F t0 P (t0+h).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='52) This supposes the use of a unique inner dot product (·, ·)G = (·, ·)g at all time, and (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='52) means ||⃗w − ⃗W||g = O(h) near t0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='21 If (·, ·)g is an inner dot product, the same at all time, and if (⃗ei) is a (·, ·)g-orthonormal basis, the same at all time, then the infinitesimal strain tensor at P is the matrix defined by [ε(P)]|⃗e = [F(P)]|⃗e + [F(P)]T |⃗e 2 − [I], (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='53) abusively written in short, ε := F + F T 2 − I (matrix meaning).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='54) (And more precisely, at P ∈ Ωt0 and between t0 and t, [εt0 t (P)]|⃗e = [F t0 t (P )]|⃗e+[F t0 t (P )]T |⃗e 2 − [I].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') So ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W = F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗ W +F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗ W 2 − .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W means [ε]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [ ⃗W]|⃗e = [F ]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [ ⃗ W ]|⃗e+[F ]T |⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [ ⃗ W ]|⃗e 2 − [ ⃗W]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 130 131 H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition Remark G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22 ε in (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='54) cannot be a tensor (cannot be a function) since F t0 t (P) : ⃗ Rn t0 → ⃗ Rn t and F t0 t (P)T : ⃗ Rn t → ⃗ Rn t0 and It0 : ⃗ Rn t0 → ⃗ Rn t0 don’t have the same definition domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So ε is not a function, is not a tensor: It is a matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' But is called “the infinitesimal strain tensor”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proposition G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='23 The Green–Lagrange tensor E = F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F −I 2 ∈ L(⃗Rn t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t0) satisfies near t0: E = ε + o(t−t0) (= F + F T 2 − I + o(t−t0)) (matrix meaning), (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='55) which means [E] = [ε] + o(t−t0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus, “for small deformations” we write E ≃ ε, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E ≃ F +F T 2 − I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Interpretation: (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='55) is a linearization of E, since we keep the linear part of the “quadratic” E = 1 2(F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F − I) given by (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W, ⃗U)g = 1 2 � (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗U)g − ( ⃗W, ⃗U)g � for all ⃗U, ⃗W ∈ ⃗Rn t0 (“motion squared” cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' the (F·, F·)g term).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A (·, ·)g-orthonormal basis being chosen, [F T ] =(G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3)[F]T , thus [C] = [F]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [F], thus 2[E] = [C] − [I] = [F]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [F] − [I] = ([F]T − [I).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ([F] − [I) + [F]T + [F] − 2[I].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='56) Then, near t0 and with h = t−t0, (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='51) gives ([F]T − [I]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ([F] − I]) = O(h)O(h) = O(h2), thus 2[E] = [F]T + [F] − 2[I] + O(h), thus (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='55).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' H Finger tensor F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F T (left Cauchy–Green tensor) Finger’s approach is consistent with the foundations of relativity (Galileo classical relativity or Einstein general relativity): We can only do measurements at the current time t, and we can refer to the past.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' There is a lot of misunderstandings, as was the case for the Cauchy–Green deformation tensor C, due to the lack of precise definitions: Definition domain?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Value domain?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Points at stake (p or P)?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Euclidean dot product (English?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' French?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=')?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Covariance?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Contravariance?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='. H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definition Let �Φ be motion, t0 ∈ R, Φt0 the associated motion, P ∈ Ωt0, t ∈ R, and F t0 t (P) := dΦt0 t (P) ∈ L( ⃗ Rn t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗ Rn t ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And let (·, ·)G and (·, ·)g be Euclidean dot products in ⃗ Rn t0 and ⃗ Rn t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 The Finger tensor bt0 t (pt), or left Cauchy–Green deformation tensor, at t at pt relative to t0 is the endomorphism ∈ L( ⃗ Rn t ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗ Rn t ) defined by, with P = Φt0 t −1(pt), bt0 t (pt) := F t0 t (P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (F t0 t )T Gg(pt) written in short b = F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F T , (H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' is defined by (bt0 t (pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w1, ⃗w2)g = (F t0 t (P)T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w1, F t0 t (P)T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w2)G = ((F t0 t )T (pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w1, (F t0 t )T (pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w2)G, for all ⃗w1, ⃗w2 vectors at pt ∈ Ωt, written in short (b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w1, ⃗w2)g = (F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w1, F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w2)G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2) (To compare with C = F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F and (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W1, ⃗W2)G = (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W1, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W2)g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') And the Finger tensor relative to t0 is bt0 : � � � � � C = � t ({t} × Ωt) → L( ⃗ Rn t ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗ Rn t ) (t, pt) → bt0(t, pt) := bt0 t (pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3) NB: bt0 looks like a Eulerian function, but isn’t, since it depends on a t0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Other definition found: Bt0 t := bt0 t ◦ (Φt0 t )−1, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Bt0 t (P) := bt0 t (pt) = F t0 t (P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F t0 t (P)T , written B = F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4) Pay attention: Bt0 t (P) ∈ L( ⃗ Rn t ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗ Rn t ) is an endomorphism at t at pt, not at t0 at P: E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', Bt0 t (P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wt(pt) = bt0 t (pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wt(pt) is meaningful, while Bt0 t (P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Wt0(P) is absurd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Remark H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 The push-forward by Φ := Φt0 t of the Cauchy–Green deformation tensor C = F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F is Φ∗(C) = F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F −1 = F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F T = b, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='15): It is the Finger tensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So the endomorphism C in ⃗Rn t0 is the pull-back of the endomorphism b in ⃗Rn t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (However a push-forward and a pull-back don’t depend on any inner dot product while the transposed F T does.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 131 132 H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' b−1 H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 b−1 With pull-backs (towards the virtual power principle at t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' With pt = Φt0 t (P) and ⃗Wi(P) = (F t0 t (P))−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wi(pt): ( ⃗W1, ⃗W2)G = (F −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w1, F −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w2)G = (F −T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w1, ⃗w2)g = (b−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w1, ⃗w2)g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5) So b−1 := (bt0 t )−1 is useful: (bt0 t )−1 : � Ωt → L(⃗Rn t ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t ) pt → (bt0 t )−1(pt) = F t0 t (P)−T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F t0 t (P)−1 = Ht0 t (pt)T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='Ht0 t (pt) (H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6) with pt = Φt0 t (P) and Ht0 t (pt) = (F t0 t (P))−1 cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='41).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus we can define (bt0)−1 : � � � � � � t ({t} × Ωt) → L(⃗Rn t ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t ) (t, pt) → (bt0)−1(t, pt) := (bt0 t )−1(pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7) Remark: (bt0)−1 looks like a Eulerian function, but isn’t, since it depends on t0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In short: b−1 = HT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='H, to compare with C = F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F, (H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8) and with ⃗w = F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W, b−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w = HT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W, to compare with C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W = F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w, (H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9) and with ⃗Wi = F −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wi, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗wi = F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Wi, (b−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w1, ⃗w2)g = ( ⃗W1, ⃗W2)G, to compare with (C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W1, ⃗W2)G = (⃗w1, ⃗w2)g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10) Remark H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 pt = Φt0 t (P) and b(pt) = F(P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F(P)T and C(P) = F(P)T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F(P) give b(pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F(P) = F(P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='C(P), (H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11) written b = F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus b−1 = F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='C−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F −1, so Φt0∗ t b−1 = F −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='b−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F = F −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F −T = (F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F)−1 = C−1, (H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' the pull-back of b−1 is C−1, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' b−1 is the push-forward of C−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Time derivatives of b−1 With (H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7) let (bt0)−1 =noted b−1 = HT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus, along a trajectory, and with (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='45), we get Db−1 Dt = DHT Dt .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='H + HT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='DH Dt = −d⃗vT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='HT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='H − HT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v = − b−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v − d⃗vT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='b−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13) Exercice H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Prove (H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13) with (H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10) gives D Dt(b−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w1, ⃗w2)g = 0 = ( Db−1 Dt .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w1, ⃗w2)g + (b−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' D ⃗w1 Dt , ⃗w2)g + (b−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w1, D ⃗w2 Dt )g, and ⃗wi(t, p(t)) = F t0(t, P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Wt0(P) gives D ⃗wi Dt = d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wi, thus ( Db−1 Dt .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w1, ⃗w2)g +(b−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w1, ⃗w2)g +(b−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w1, d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w2)g = 0, thus (H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Prove (H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13) with F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='b−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F = It0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' b−1 = (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F T )−1 = F −T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F −1 gives F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='b−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F = It0, thus (F T )′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='b−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F + F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Db−1 Dt .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F + F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='b−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F ′ = 0, thus F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗vT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='b−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F + F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Db−1 Dt .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F + F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='b−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F = 0, thus (H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 132 133 H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Euler–Almansi tensor a H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Euler–Almansi tensor a Euler–Almansi approach is consistent with the foundations of relativity (Galileo relativity or Einstein general relativity): We can only do measurements at the current time t, and we can refer to the past.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' At t in Ωt, consider the Finger tensor b = F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F T and its inverse b−1 = F −T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F T = HT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='H cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 Euler–Almansi tenor at pt ∈ Ωt is the endomorphism at0 t (pt) ∈ L( ⃗ Rn t ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗ Rn t ) defined by at0 t (pt) = 1 2(It − bt0 t (pt)−1) = 1 2(It − H(pt)T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='H(pt)), (H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14) written a = 1 2(I − b−1) = 1 2(I − HT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='H), (H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='15) to compare with the Green–Lagrange tensor E = 1 2(C − I) = 1 2(F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F − I) ∈ L( ⃗ Rn t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗ Rn t0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Remark: at0 looks like a Eulerian function, but isn’t, since it depends on t0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10) gives (⃗wi = F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Wi) (⃗w1, ⃗w2)g − ( ⃗W1, ⃗W2)G = 2(a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w1, ⃗w2)g, (H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16) to compare with (⃗w1, ⃗w2)g − ( ⃗W1, ⃗W2)G = 2(E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W1, ⃗W2)G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (This also gives (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w1, ⃗w2)g = (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W1, ⃗W2)G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') And (H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='15) gives F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F = E, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' a = F −T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F −1, (H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='17) standing for F t0 t (P)T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='at0 t (p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F t0 t (P) = Et0 t (P) when p = Φt0 t (P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Remark H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 at0 t is not the push-forward of Et0 t by Φt0 t (the push-forward is F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F −1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Time Taylor expansion for a (H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13) gives Da Dt = b−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v + d⃗vT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='b−1 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='18) H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 Almansi modified Infinitesimal strain tensor �ε We are at t (present time) and remember the past: We prefer a definition of a infinitesimal strain tensor �ε from the Euler–Almansi tensor a, instead of ε from Euler–Lagrange tensor E, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' § G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Same Euclidean framework as in § G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2, and matrix meaning again.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' We have I − b−1 = I − HT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='H = −(I − HT ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (I − H) + 2I − HT − H where H stands for Ht0 t (pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus, for small displacement we get I − b−1 = 2I − HT − H + O(h), so a(t, p(t)) = �ε(t, p(t)) + O(h) where �ε := I − H + HT 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='19) And, with t = t0 + h we have F t0(t, P) = I + (t−t0) d⃗v(t, P) + o(t−t0), cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='35), thus we have Ht0(t, p(t)) = F t0(t, P)−1 = I − (t−t0) d⃗v(t, P) + o(t−t0) when p(t) = Φt0(t, P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus F t0(t, P) − I = I − Ht0(t, p(t)) + O(t−t0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='20) Therefore, for small displacements (|t − t0| << 1): a(t, p(t)) ≃ �ε(t, p(t)) ≃ εt0(t, P) (matrix meaning).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='21) I Polar decomposition, elasticity and objectivity I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Polar decompositions of F (“isometric objectivity”) The motion is supposed regular, t0, t ∈ R, pt0 ∈ Ωt0, F := F t0 t (pt0) (= dΦt0 t (pt0)), (·, ·)G and (·, ·)g are Euclidean dot products in ⃗Rn t0 and ⃗Rn t , and C = F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F ∈ L(⃗Rn t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Here the covariant objectivity is abandoned due to the need for inner dot products.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 133 134 I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Polar decompositions of F (“isometric objectivity”) I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 F = R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='U (right polar decomposition) The endomorphism C being (·, ·)G-symmetric definite positive (the motion is supposed to be regular), ∃α1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', αn ∈ R∗ + (the eigenvalues), ∃⃗c1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗cn ∈ ⃗Rn t0 (associated eigenvectors), such that, for all i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', n, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ci = αi⃗ci and (⃗ci) is a (·, ·)G-orthonormal basis in ⃗Rn t0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1) So, if (⃗ai) is a (·, ·)G-Euclidean basis then D = P −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [C]⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P, where D = diag(α1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', αn) = [C]⃗c and P −1 = P T , P = [Pij] being the transition matrix from (⃗ai) to (⃗ci), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' defined by ⃗cj = � i Pij⃗ai for all j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then, define the endomorphism U ∈ L(⃗Rn t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t0), called the right stretch tensor, by, for all i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', n, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ci = √αi ⃗ci, and U noted = √ C, (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2) the √αi being called the principal stretches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then, define the linear map R ∈ L(⃗Rn t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t ), called the rotation map, by R := F ◦ U −1 noted = F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='U −1, (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3) so that F = R ◦ U noted = R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='U, called the right polar decomposition of F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4) Proposition I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 We have: C = U ◦ U noted = U 2, U is symmetric definite positive, R−1 = RT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5) And the right polar decomposition F = R ◦ U is unique : (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6) If F = �R◦ �U where �U ∈ L(⃗Rn t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t0) is symmetric definite positive and �R ∈ L(⃗Rn t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t ) satisfies �R−1 = �RT , then �U = U and �R = R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2) yields (U ◦ U).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗cj = λ⃗cj = C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗cj for all j, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1), thus U ◦ U = C ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then (U T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ci,⃗cj)G = (⃗ci, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗cj)G = (⃗ci, √αj⃗cj)G = √αj(⃗ci,⃗cj)G = √αjδij = √αiδij = √αi(⃗ci,⃗cj)G = (√αi⃗ci,⃗cj)G = (U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ci,⃗cj)G for all i, j, thus U T = U (symmetry).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then RT ◦ R = U −T ◦ F T ◦ F ◦ U −1 = U −T ◦ C ◦ U −1 = U −1 ◦ (U ◦ U) ◦ U −1 = It0 identity in ⃗Rn t0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Details: (RT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W, ⃗Z)G = (R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗Z)g = (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='U −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='U −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗Z)g = (F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='U −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W, U −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗Z)G = (U 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='U −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W, U −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗Z)G = (U −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W, ⃗Z)G = ( ⃗W, ⃗Z)G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Thus R−1 = RT ∈ L(⃗Rn t ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t0), thus R ◦ RT = R ◦ R−1 = It identity in ⃗Rn t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And F = �R ◦ �U = R ◦ U gives F T ◦ F = �U T ◦ �RT ◦ �R ◦ �U = U T ◦ �RT ◦ �R ◦ U, thus F T ◦ F = �U T ◦ �U, with F T ◦ F = U T ◦ U, thus �U ◦ �U = U ◦ U = √ C, thus �U = U (uniqueness of the positive square root eigenvalues).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Hence �R = R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 F = S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='R0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='U (shifted right polar decomposition for covariant objectivity) In fact we need to be more specific if the gift of ubiquity is prohibited: Since we work with the affine space Rn, consider the Marsden’s shifter S := St0 t (pt0) : � Tpt0(Ωt0) noted = ⃗Rn t0 → Tpt(Ωt) noted = ⃗Rn t ⃗wt0,pt0 → (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wt0,pt0 )(t, pt) = ⃗wt0,pt0 where pt = Φt0 t (pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7) NB: 1- S looks like the algebraic identity if you have time and space ubiquity gift (otherwise it is not), 2- S is not a topological identity since it changes the norms in the general case: You consider ||⃗wt0,pt0 ||G at t0 and ||S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wt0,pt0 ||g = ||⃗wt0,pt0 ||g at t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then, let R0 ∈ L(Tpt0(Ωt0);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Tpt0(Ωt0)) =noted L(⃗Rn t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t0) be the endomorphism defined by, in short, R0 := S−1 ◦ R noted = S−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='R, so R = S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='R0 (= S ◦ R0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8) Full notations: (R0)t0 t,Gg(pt0) := (St0 t )−1(Rt0 t,Gg(pt0)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 134 135 I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Polar decompositions of F (“isometric objectivity”) Proposition I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 The endomorphism R0 = S−1 ◦ R is a rotation operator in (⃗Rn t0, (·, ·)G): R−1 0 = RT 0 in (⃗Rn t0, (·, ·)G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9) And F = S ◦ R0 ◦ U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10) Interpretation: F is composed of: The pure deformation U (endomorphism in ⃗Rn t0), the rotation R0 (endomorphism in ⃗Rn t0), and the shift operator S : ⃗Rn t0 → ⃗Rn t (from past to present time and position).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (RT 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W2, ⃗W1)G = (R0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W1, ⃗W2)G (definition of the transposed) = (S−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W1, ⃗W2)G (definition of R0) = (R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W1, ⃗W2)G (S is the algebraic identity) = (RT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W2, ⃗W1)g (definition of RT ) = (R−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W2, ⃗W1)g (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5) ) = (R−1 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W2, ⃗W1)G (S is the algebraic identity), (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11) true for all ⃗W1, ⃗W2 ∈ ⃗Rn t0, thus RT 0 = R−1 0 in (⃗Rn t0, (·, ·)G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8) and (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4) give (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Let D = diag(αi), let (⃗ai) be a Euclidean basis in ⃗Rn t0, let P be the transition matrix from (⃗ai) to (⃗ci), so [C]|⃗a = P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P −1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Prove [U]|⃗a = P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' √ D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Case (⃗ai) = ( ⃗Ei) is a (·, ·)g-orthonormal basis?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The n equations (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1) (for j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', n), read as the matrix equation [C]|⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P = P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='D since [⃗cj]⃗a is the j-th column of P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And he n equations (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2) (for j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', n), read as the matrix equation [U]|⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P = P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' √ D since [⃗cj]⃗a is the j-th column of P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Remark I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Instead of R0 ∈ L(⃗Rn t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t0), cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8), you may prefer to consider �R0 ∈ L(⃗Rn t ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t ) defined by R = �R0 ◦ S, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', �R0 = R ◦ S−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 F = V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='R (left polar decomposition) Same steps than for the right polar decomposition, but with pull-backs (with F −1 instead of F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let pt = Φt0 t (pt0) ∈ Ωt, let bt0 t (pt) := F t0 t (pt0) ◦ (F t0 t )T (pt) ∈ L(⃗Rn t ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t ), written b = F ◦ F T (the left Cauchy–Green deformation tensor also called the Finger tensor).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The endomorphism b being symmetric definite positive: ∃β1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', βn ∈ R∗ + (the eigenvalues), ∃⃗d1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ⃗dn ∈ ⃗Rn t (associated eigenvectors), such that, for all i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', n, b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗di = βi ⃗di, and (⃗di) is a (·, ·)g-orthonormal basis in ⃗Rn t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12) Then, define the unique endomorphism V ∈ L(⃗Rn t ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t ), called the left stretch tensor, by, for all i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', n, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗di = � βi ⃗di, and V noted = � b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13) (Full notation: V t0 t,Gg(pt) = � bt0 t (pt)Gg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Then define the linear map Rℓ ∈ L(⃗Rn t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t ) by Rℓ := V −1 ◦ F noted = V −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F, (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14) so that F = V ◦ Rℓ noted = V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='Rℓ, called the left polar decomposition of F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='15) Proposition I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 We have: 1- b = V ◦ V noted = V 2, V is symmetric definite positive, R−1 ℓ = RT ℓ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16) And the left polar decomposition F = V ◦ R is unique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 2- Rℓ = R and V = R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='R−1 (so U and V are similar), thus U and V have the same eigenvalues, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', αi = βi for all i, and ⃗di = R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ci for all i gives a relation between eigenvectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 135 136 I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Linear elasticity: A Classical “tensorial” approach Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 1- Use F −1 and b−1 = (F −1)T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (F −1), instead of F and C = F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F, to get F −1 = R−1 ℓ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='U −1 ℓ , cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus F = Uℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='Rℓ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then name Uℓ = V to get (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='15) and (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 2- V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='Rℓ = F = R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='U = (R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='R−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='R, thus, by uniqueness of the right polar decomposition, V = R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='R−1 (so U and V are similar) and Rℓ = R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus, with (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12), βi ⃗di = V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗di = R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (R−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗di), thus with ⃗ci = R−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗di, then (⃗ci) is an orthonormal basis in ⃗Rn t0 and βiR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ci = R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ci = αiR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ci gives βi = αi and the ⃗ci are eigenvectors of U, for all i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Linear elasticity: A Classical “tensorial” approach I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Classical approach (“isometric objectivity”), and an issue With the infinitesimal strain “tensor” (which is not a tensor but a matrix) ε = F + F T 2 − I, (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='17) the homogeneous isotropic elasticity constitutive law reads (matrix equation for the stress) (σ(Φ) =) σ = λTr(ε)I + 2µε, (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='18) where λ, µ are the Lamé coefficients and σ is the Cauchy stress “tensor”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Issue: Recall: Adding F and F T to make ε is functionally a mathematical nonsense since F : ⃗Rn t0 → ⃗Rn t and F T : ⃗Rn t → ⃗Rn t0 and I is some identity operator: σ is not a tensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In particular the meaning of Tr(ε) is questionable (since ε is not an endomorphism and Tr(ε) means Tr([ε]) = Tr([F ])+Tr([F T ]) 2 − n), as well as the meaning of ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗n = 1 2(F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗n + F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗n), or the meaning of σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗n = λTr(ε)⃗n + 2µε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗n (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='19) since ⃗n has to be defined at (t0, pt0) for F and at (t, pt) for F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Cauchy’s approach: ⃗n is defined at (t, pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') So, despite the eventual claims, neither ε nor σ are tensors (they don’t have a functional meaning): They only have a questionable matrix meaning (observer dependent) [ε] := [F ]+[F ]T 2 − [I] and [σ] = λTr([ε])[I] + 2µ[ε], and [σ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗n] = λTr([ε])[⃗n] + 2µ[ε].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗n].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='20) Remark I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 To justify the name “tensor” applied to ε, you may read: “For small displacements the Eulerian variable pt and the Lagrangian variable pt0 can be confused”: pt ≃ pt0 (so Ωt0 and Ωt are “almost equal”, so F(pt0) + F T (pt) can be considered).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Which means that you use the zero-th order Taylor expansions pt = Φt0 pt0 (t) = pt0 + o(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' But then, you cannot also use the first (or higher) order Taylor expansion in following calculations, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' you cannot use velocities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 A functional (tensorial) formulation (“isometric objectivity”) Question: Can the constitutive law (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='18) be modified into a tensorial expression (a functional expression)?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proposal for a yes: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Consider the “right polar decomposition” F = R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='U where U ∈ L(⃗Rn t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t0), cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The Green Lagrange tensor E = C−I 2 (endomorphism in ⃗Rn t0) then reads, with (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5), E = U 2−It0 2 = (U−It0)2 + 2(U − It0) 2 (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='21) (the Green–Lagrange tensor is independent of the rotation R), thus, with U − It0 = O(h) (small defor- mation approximation), we get the modified infinitesimal strain tensor at pt0 ∈ Ωt0 �ε = U−It0 ∈ L(⃗Rn t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t0), (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22) endomorphism in ⃗Rn t0 (to compare with ε which is not a function, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' the previous §).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Full notation �εt0 t,Gg(pt0) = U t0 t,Gg(pt0)−It0(pt0) in L(⃗Rn t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') And, for all ⃗W ∈ ⃗Rn t0 we get �ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W = U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W − ⃗W = R−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w − ⃗W ∈ ⃗Rn t0, when ⃗w = F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W (push-forward).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='23) Interpretation: From ⃗w = F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W = R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W ∈ ⃗Rn t (the deformed by the motion), remove the “rigid body rotation” to get R−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w = U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W ∈ ⃗Rn t0, to which you remove the initial ⃗W to obtain �ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W ∈ ⃗Rn t0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 136 137 I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Linear elasticity: A Classical “tensorial” approach In particular ||�ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W||G = ||(U−It0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W||G measures the relative elongation undergone by ⃗W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And you can then apply R to get back into ⃗Rn t at pt: R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='(�ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W) = F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W − R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W = ⃗w − R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W ∈ ⃗Rn t , when ⃗w = F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W = (push-forward).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='24) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then, at pt0 ∈ Ωt0, consider the stress tensor �Σ(Φ) =noted �Σ ∈ L(⃗Rn t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t0) (functionally well) defined by �Σ = λTr(�ε)It0 + 2µ�ε = λTr(U−It0)It0 + 2µ(U−It0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='25) (The trace Tr(�ε) is well defined since �ε is an endomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Then for any ⃗W ∈ ⃗Rn t0 you get in ⃗Rn t0, at pt0 ∈ Ωt0, �Σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W = λTr(�ε) ⃗W + 2µ�ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W = λTr(U−It0) ⃗W + 2µ(U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W− ⃗W) (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='26) (functionally well defined in ⃗Rn t0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then rotate and shift with R to get into ⃗Rn t at pt, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='�Σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W = λTr(�ε)R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W + 2µR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='�ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W = λTr(U−It0)R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W + 2µR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='(U−It0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W = λTr(U−It0)R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W + 2µ(F − R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W, = λTr(U−It0)R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W + 2µ(⃗w − R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W), where ⃗w = F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W = R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='27) You have defined the two point tensor (functionally well defined) R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='�Σ = λTr(�ε)R + 2µR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='�ε ∈ L(⃗Rn t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='28) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then you can propose the constitutive law with the stress tensor (the symmetric endomorphism) in ⃗Rn t given by (�σ(Φ) =) �σ = R ◦ �Σ ◦ R−1 noted = R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='�Σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='R−1 ∈ L(⃗Rn t ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='29) (Functionally well defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') And, for all vector fields ⃗w defined in Ωt, you get the (functionally well defined) vector field �σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w = R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='�Σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='R−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w ∈ ⃗Rn t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='30) Interpretation of (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='29)-(I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='30): Shift and rigid rotate backward by applying R−1, apply the elastic stress law with Σ which corresponds to a rotation free motion (Noll’s frame indifference principle), then shift and rigid rotate forward by applying R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Detailed expression for (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='29)-(I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='30): With Tr(R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='�ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='R−1) = Tr(�ε) (see exercise I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8), we get, at (t, pt), �σ = λTr(�ε) It + 2µR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='�ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='R−1 = λTr(U−It0) It + 2µR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (U−It0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='R−1 = λTr(U−It0) It + 2µ(F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='R−1−It).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='31) And for any ⃗w ∈ ⃗Rn t , and with ⃗w = R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W, you get �σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w = λTr(�ε) ⃗w + 2µR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='�ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W = λTr(U−It0) ⃗w + 2µR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='(U−It0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W = λTr(U−It0) ⃗w + 2µ(R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='R−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w−⃗w).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='32) To compare with the classical functionally meaningless (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='19).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Remark I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 Doing so, you avoid the use of the Piola–Kirchhoff tensors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8 Prove: Tr(R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='�ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='R−1) = Tr(�ε) = � i(αi−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (NB: �ε is an endomorphism in ⃗Rn t0 while R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='�ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='R−1 is an endomorphism in ⃗Rn t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' det|⃗e(R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='�ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='R−1 − λIt) = det|⃗e(R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='(�ε−λIt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='R−1) = det| ⃗ E,⃗e(R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' det| ⃗ E(�ε−λI).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' det|⃗e, ⃗ E(R−1) = det| ⃗ E(�ε−λI) for all Euclidean bases ( ⃗Ei) and (⃗ei) in ⃗Rn t0 and ⃗Rn t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (With L = �ε and components, Tr(R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='R−1) = � i(R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='R−1)i i = � ijk Ri jLj k(R−1)k i = � jk(R−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='R)k j Lj k = � jk δk j Lj k = � j Lj j = Tr(L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') 137 138 I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Elasticity with a covariant objective approach?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9 Elongation in R2 along the first axis : origin O, same Euclidean basis ( ⃗E1, ⃗E2) and Eu- clidean dot product at all time, ξ > 0, t ≥ t0, L, H > 0, P ∈ [0, L] × [0, H], [−−→ OP]| ⃗E = � X0 Y0 � , and [−−−−−−→ OΦt0 t (P)]| ⃗E = � X0 + ξ(t−t0)X0 Y0 � = � X0(κ+1) Y0 � = � x y � = [−→ Op]| ⃗E, where κ = ξ(t−t0) > 0 for t > t0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 1- Give F, C, U = √ C and R = F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='U −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Relation with the classical expression ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 2- Spring −−→ OP = −−→ Oct0(s) = X0 ⃗E1+Y0 ⃗E2+s ⃗W, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [−−→ OP]| ⃗E = [−−→ Oct0]| ⃗E = � X0+sW1 Y0+sW2 � | ⃗E with s ∈ [0, L] and ⃗W = W1 ⃗E1 + W2 ⃗E2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Give the deformed spring, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' give p = ct(s) = Φt0 t (ct0(s)), and ⃗ct′, and the stretch ratio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 1- [F] = [dΦ] = � κ+1 0 0 1 � , same Euclidean dot product and basis at all time, thus [F T ] = [F]T = [F], then [C] = [F T ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [F] = [F]2 = � (κ+1)2 0 0 1 � , thus [U] = [F] = � κ+1 0 0 1 � , thus [R] = [I].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' All the matrices are given relative to the basis ( ⃗Ei), thus F, C, U, R (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗E1 = (κ+1)2 ⃗E1 and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗E2 = ⃗E2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Since R = I and [ε] = [�ε], (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='31) gives the usual result [σ] = λTr([ε])I + 2µ[ε], cf (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='18) (matrix meaning).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 2- −−−−→ Oct(s) = −−−−−−−−−→ OΦt0 t (ct0(s)) = � (X0+sW1)(κ+1) Y0+sW2 � | ⃗ E , thus ⃗ct ′(s) = � W1(κ+1) W2 � | ⃗ E , stretch ration W 2 1 (κ+1)2+W 2 2 W 2 1 +W 2 2 at (t, pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10 Simple shear in R2 : [−−−−−−→ OΦt0 t (P)]| ⃗E = � X + ξ(t−t0)Y Y � =noted � X + κY Y � = � x y � = [−→ Op]| ⃗E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Same questions, and moreover give the eigenvalues of C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 1- [F] = � 1 κ 0 1 � , [C] = � 1 0 κ 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' � 1 κ 0 1 � = � 1 κ κ κ2+1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Eigenvalues: det(C − λI) = λ2 − (2+κ2)λ + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Discriminant ∆ = (2+κ2)2 − 4 = κ2(κ2+4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Eigenvalues α± = 1 2(2+κ2 ± κ √ κ2+4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (We check that α± > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Eigenvectors ⃗v±(main directions of deformations) given by (1−α±)x+κy = 0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', y = 1 2(κ± √ κ2+4)x, thus, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ⃗v± = � 2 κ ± √ κ2+4 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (We check that ⃗v+ ⊥ ⃗v−.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') With P the transition matrix from ( ⃗E1, ⃗E2) to ( ⃗v+ ||⃗v+||, ⃗v− ||⃗v−||) and D = diag(α+, α−) we get C = P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P −1 (with P −1 = P T since here ( ⃗v+ ||⃗v+||, ⃗v− ||⃗v−||) is an orthonormal basis), thus U = P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' √ D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P −1 (we check that U T = U and U 2 = C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And R = F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='U −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 2- −−−−→ Oct(s) = −−−−−−−−−→ OΦt0 t (ct0(s)) = � (X0+sW1) + κ(Y0+sW2) Y0+sW2 � , thus [⃗ct ′(s)] = � W1 + κW2 W2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Stretch ratio (W1+κW2)2+W 2 2 W 2 1 +W 2 2 at (t, pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Second functional formulation: With the Finger tensor The above approach uses the push-forward: It uses F, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' you arrive with your memory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' You may prefer to use the pull-back, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' use F −1 (you remember the past which is Cauchy’s point of view): Then you use F −1 = R−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='V −1 the right polar decomposition of F −1, and you consider the tensor ��εt = V −1−It ∈ L(⃗Rn t ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t ), (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='33) and (σt(Φ) =) σt = λTr(��εt)It + 2µ��εt, and σt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗nt = λTr(��εt)⃗nt + 2µ��εt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗nt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='34) (Quantities functionally well defined: Give a tensorial approach).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Elasticity with a covariant objective approach?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In § I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 you need to start with Euclidean dot products, so from the start the result can’t be covariant objective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Can you start without Euclidean dot products to set up general laws?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proposal: Hypothesis: The Cauchy stress ⃗w is a Eulerian vector field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then we could use the (covariant objective) Lie derivative which characterizes the rate of stress, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' § 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 and 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5: With a particle PObj ∈ Obj, with ⃗v(τ, pτ) = ∂�Φ ∂τ (τ, PObj) its Eulerian velocity at τ at 138 139 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The displacement vector ⃗U pτ = �Φ(τ, PObj), the Lie derivative of a Eulerian vector field ⃗w along ⃗v is, at (t, pt), L⃗v ⃗w(t, pt) = lim τ→t ⃗w(τ, pτ) − ⃗wt∗(τ, pτ) τ − t = (∂ ⃗w ∂t + d⃗w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v − d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w)(t, pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='35) Hence the proposal, with the virtual power principle to measure the rate of stress (see https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='org/abs/2208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10780v1 for a full description).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 1- Hypotheses: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1- Suppose that n Eulerian vector fields ⃗wj (“force fields”), j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', n, enable to characterize a material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (In fact, for elasticity problems it could be better to replace vector fields ⃗wj with 1-forms αi to characterize the work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2- With a basis (⃗ei) chosen in ⃗Rn t , with (ei) its (covariant) dual basis in ⃗Rn∗ t , assume that the internal power density at (t, pt) is given by (at first order): pint(⃗v) = n � j=1 ej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L⃗v ⃗wj = n � j=1 ej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (∂ ⃗wj ∂t + d⃗wj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v − d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='36) (At second order you can add second order Lie derivatives as L⃗v(L⃗v ⃗wj), similarly for higher orders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') 2- Then, so that this pint satisfies the frame invariance hypothesis, choose a Euclidean dot prod- uct (·, ·)g in ⃗Rn t ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then, first, the internal power has to vanish if d⃗v = 0, thus we are left with pint(⃗v) = − n � j=1 ej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wj = −τ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='. d⃗v, where τ = n � j=1 ⃗wj ⊗ ej, (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='37) defined at t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (The j-th column of [τ]|⃗e is [⃗wj]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') And, second, the internal power vanishes if d⃗v +d⃗vT = 0 (rotation), thus we are left with pint(⃗v) = −τ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='. d⃗v + d⃗vT 2 = −σ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='. d⃗v where σ = τ + τ T 2 , (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='38) this pint(⃗v) = −σ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='. d⃗v being the usual expression of the internal power at first order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Example I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11 (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='36) may be applied to orthotropic elasticity, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' for a material which fibers at some time t0 are along ⃗e1, in a 2-D case for simplicity: 1- With an elongation type motion (Φe) given by [(Fe)(pt0)] = [d(Φe)(pt0)] = � 1+α11(pt0) 0 0 1−α22(pt0) � you measure the Young moduli in the direc- tions ⃗e1 and ⃗e2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 2- And with a shear type motion given by [(Fs)(pt0)] = [d(Φs)(pt0)] = � 1 γ12 0 1 � you measure the shear modulus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' For more complex material, you may need more vectors ⃗wj to describe the constitutive law, that is, (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='36) may be considered with �m i=1ej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L⃗v ⃗wj with m > n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Remark I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12 The Lie approach is different from the usual classic approach: 1- The classic approach looks for an order two stress tensor [σ] as a function of the deformation gradient [F], cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='18).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 2- The Lie approach begins with the internal power (which measures forces), cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='36), which then enable to build τ and the σ (the stress tensor), cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='37)-(I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='38).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', application to visco-elasticity: With the Lie approach, you automatically use Lie derivative of vector fields (and/or of differential forms), instead of Lie derivative of order 2 tensor fields (which does not seem to give good result, see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' the Maxwell visco-elastic type laws, as well as footnote1 page 25).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' J Displacement J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 The displacement vector ⃗U In Rn, let pt = Φt0 t (pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then the bi-point vector ⃗Ut0 t (pt0) = Φt0 t (pt0) − It0(pt0) = pt − pt0 = −−→ pt0pt (J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1) is called the displacement vector at pt0 relative to t0 and t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' This defines the map ⃗Ut0 t : � Ωt0 → ⃗Rn pt0 → ⃗Ut0 t (pt0) := pt − pt0 = −−→ pt0pt when pt = Φt0 t (pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2) 139 140 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The differential of the displacement vector Remark J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 ⃗Ut0 t (pt0) doesn’t define a vector field (it is not tensorial), because ⃗Ut0 t (pt0) = pt−pt0 = −−→ pt0pt is a bi-point vector which is neither in ⃗Rn t0 or in ⃗Rn t since pt0 ∈ Ωt0 and pt ∈ Ωt (it requires time and space ubiquity gift).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In particular, it makes no sense on a non-plane surface (manifold).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' More at § J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Remark J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 For elastic solids in Rn, the function ⃗Ut0 is often considered to be the unknown (to be computed);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' But the “real” unknown is the motion Φt0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And it is sometimes confused with the extension of a spring 1-D case;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' But see figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 where ||⃗wt0(pt0)|| represents the initial length and ||⃗wt0∗(t, pt)|| represents the current length of the spring, while the length of the displacement vector ⃗Ut0 t = pt − pt0 can be very long for a very small elongation ||⃗wt0∗(t, pt)|| − ||⃗wt0(pt0)|| of the spring.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 The differential of the displacement vector The differential of ⃗Ut0 t at pt0 is d⃗Ut0 t (pt0) = dΦt0 t (pt0) − It0 = F t0 t (pt0) − It0, written d⃗U = F − I, (J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3) thus isn’t defined as a function, because F t0 t (pt0) : ⃗Rn t0 → R while It0 : ⃗Rn t0 → ⃗Rn t0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So d⃗Ut0 t (pt0) as to be understood as a matrix: With [⃗Ut0 t (pt0)] = [−−→ pt0pt] = [−−−−−−→ OΦt0 t (pt0)] − [−−→ Opt0], (J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4) relative to an origin O and a unique basis at all time, compute [d⃗Ut0 t (pt0)] = [dΦt0 t (pt0)] − I, abusively written d⃗U = dΦ − I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then, with ⃗W ∈ ⃗Rn t0 , d⃗U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W = F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W − ⃗W, which means = [F t0 t (pt0)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [ ⃗W] − [ ⃗W].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5) Thus we have defined (matrix meaning) ⃗Ut0 : � [t0, T] × Ωt0 → ⃗Rn (t, pt0) → ⃗Ut0(t, pt0) := ⃗Ut0 t (pt0), and ⃗Ut0 pt0 : � [t0, T] → ⃗Rn t → ⃗Ut0 pt0 (t) := ⃗Ut0 t (pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6) J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Deformation “tensor” ε (matrix), bis (J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3) gives (matrix meaning) F t0 t (pt0) = It0 + d⃗Ut0 t (pt0), written F = I + d⃗U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7) Therefore, Cauchy–Green deformation tensor C = F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F reads, in short, (matrix meaning) C = I + d⃗U + d⃗UT + d⃗UT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗U (matrix meaning), (J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [Ct0 t (pt0)] = [It0] + [d⃗Ut0 t (pt0)] + [d⃗Ut0 t (pt0)]T + [d⃗Ut0 t (pt0)]T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [d⃗Ut0 t (pt0)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus the Green–Lagrange deformation tensor E = C−I 2 , cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='47), reads, in short, (matrix meaning) E = d⃗U + d⃗UT 2 + 1 2d⃗UT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗U (matrix meaning).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9) Thus the deformation tensor ε, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='54), reads (matrix meaning) ε = E − 1 2(d⃗U)T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗U, (J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10) with ε the “linear part” of E (small displacements: we only used the first order derivative dΦt0 t ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 140 141 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Small displacement hypothesis, bis J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Small displacement hypothesis, bis (Usual introduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Let pt = Φt0 t (pt0), ⃗Wi ∈ ⃗ Rn t0, ⃗wi(pt) = F t0 t (pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Wi(pt0) ∈ ⃗Rn t (the push-forwards), written ⃗wi = F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Wi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then define (matrix meaning) ⃗∆i := ⃗wi − ⃗Wi = dU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Wi, and ||⃗∆||∞ = max(||⃗∆1||Rn, ||⃗∆2||Rn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11) Then the small displacement hypothesis reads (matrix meaning): ||⃗∆||∞ = o(|| ⃗W||∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12) Thus ⃗wi = ⃗Wi + ⃗∆i (with ⃗∆i “small”) and the hypothesis (·, ·)g = (·, ·)G (same inner dot product at t0 and t) give (⃗w1, ⃗w2)G − ( ⃗W1, ⃗W2)G = (⃗∆1, ⃗W2)G + (⃗∆2, ⃗W1)G + (⃗∆1, ⃗∆2)G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So (J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10) gives 2(E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W1, ⃗W2)G = 2(ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W1, ⃗W2)G + (d⃗UT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W1, ⃗W2)G, And (J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12) gives (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W1, ⃗W2)G = (ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗W1, ⃗W2)G + O(||⃗∆||2 ∞), (J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13) so Et0 t is approximated by εt0 t , that is, Et0 t ≃ εt0 t (matrix meaning).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Displacement vector with differential geometry J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 The shifter We give the steps, see Marsden–Hughes [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The complexity introduced is due to the small displacement hypothesis applied to the Green–Lagrange tensor E = F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F −I 2 which linearization gives ε = F +F T 2 − I (the classical approach “squares the motion” to get E, then “linearizes” E .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' to get back to F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' with a spurious F T ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let P ∈ Ωt0, ⃗WP ∈ ⃗Rn t0, pt = Φt0 t (P) ∈ Ωt, and ⃗wpt = F t0 t (P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗WP ∈ ⃗Rn t (push-forward).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Affine case Rn (continuum mechanics): With pt = Φt0 t (P), the shifter is: � St0 t : � Ωt0 × ⃗Rn t0 → Ωt × ⃗Rn t (P, ⃗ZP ) → � St0 t (P, ⃗ZP ) = (pt, St0 t (⃗ZP )) with St0 t (⃗ZP ) = ⃗ZP .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14) (The vector is unchanged but the time and the application point have changed: A real observer has no ubiquity gift).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So: St0 t ∈ L(⃗Rn t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t ) and [St0 t ]|⃗e = I identity matrix, (J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='15) the matrix equality being possible after the choice of a unique basis at t0 and at t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And (simplified notation) � St0 t (P, ⃗ZP ) =noted St0 t (⃗ZP ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then the deformation tensor ε at P can be defined by εt0 t (P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗Z(P) = (St0 t )−1(F t0 t (P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗Z(P)) + F t0 t (P)T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (St0 t (P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗Z(P)) 2 − ⃗Z(P), (J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16) in short: ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗Z = (St0 t )−1(F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗Z)+F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (St0 t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗Z) 2 − ⃗Z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In a manifold: Ω is a manifold (like a surface in R3 from which we cannot take off).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let TP Ωt0 be the tangent space à P (the fiber at P), and TptΩt be the tangent space à pt (the fiber at pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In general TP Ωt0 ̸= TptΩt (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' on a sphere “the Earth”).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The bundle (the union of fibers) at t0 is TΩt0 = � P ∈Ωt0 ({P} × TP Ωt0), and the bundle at t is TΩt = � pt∈Ωt({pt} × TptΩt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then the shifter � St0 t : � TΩt0 → TΩt (P, ⃗ZP ) → � St0 t (P, ⃗ZP ) = (pt, St0 t (⃗ZP )), (J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='17) is defined such that ⃗ZP ∈ TP Ωt0 “as little distorted as possible” along a path.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', on a sphere, if the path is a geodesic, if θt0 is the angle between ⃗ZP and the tangent vector to the geodesic at P, then θt0 is also the angle between St0 t (⃗ZP ) and the tangent vector to the geodesic at pt, and St0 t (⃗ZP ) has the same length than ⃗ZP (at constant speed in a car you think the geodesic is a straight line, although St0 t (⃗ZP ) ̸= ⃗ZP : the Earth is not flat).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 141 142 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Alternating multilinear form J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 The displacement vector (Affine space framework, Ωt0 open set in Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Let P ∈ Ωt0, ⃗WP ∈ ⃗Rn t0, pt = Φt0 t (P) ∈ Ωt, and dΦt0 t = F t0 t ∈ L(⃗Rn t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Define δ� ⃗Ut0 t : � � � Ωt0 × ⃗Rn t0 → Ωt × L(⃗Rn t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t ) (P, ⃗ZP ) → δ� ⃗Ut0 t (P, ⃗ZP ) = (pt, δ ⃗Ut0 t (⃗ZP )) with δ ⃗Ut0 t (⃗ZP ) = (F t0 t − St0 t ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ZP .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='18) Then δ� ⃗Ut0 t = F t0 t − St0 t is a two-point tensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And Ct0 t = (F t0 t )T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F t0 t = (δUt0 t + St0 t )T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (δUt0 t + St0 t ) = I + (St0 t )T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='δUt0 t + (δUt0 t )T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='St0 t + (δUt0 t )T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='δUt0 t , (J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='19) since (St0 t )T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='St0 t = I identity in TΩt0: Indeed, ((St0 t )T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='St0 t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗A, ⃗B)Rn = (St0 t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗A, St0 t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗B)Rn = ( ⃗A, ⃗B)Rn, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14), for all ⃗A, ⃗B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then the Green–Lagrange tensor is defined on Ωt0 by Et0 t = 1 2(Ct0 t − It0) = (St0 t )T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='δUt0 t + St0 t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (δUt0 t )T 2 + 1 2(δUt0 t )T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='δUt0 t , (J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='20) to compare with (G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='47).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' K Determinants K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Alternating multilinear form Let E be a vector space, and let L(E, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) =noted L(En;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) be the set of multilinear forms, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' m ∈ L(En;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) iff m(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ⃗x + λ⃗y, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') = m(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ⃗x, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') + λm(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ⃗y, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1) for all ⃗x, ⃗y ∈ E and all λ ∈ R and for all “slot”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In particular, m(λ1⃗x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', λn⃗xn) = (� i=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',n λi) m(⃗x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ⃗xn), for all λ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', λn ∈ R and all ⃗x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ⃗xn ∈ E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 If n = 1 then a 1-alternating multilinear function is a linear form, also called a 1-form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' If n ≥ 2 then Aℓ : � En → R (⃗v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗vn) → Aℓ(⃗v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗vn) � ∈ L(En;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) is a n-alternating multilinear form iff, for all ⃗u,⃗v ∈ E, Aℓ(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ⃗u, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗v, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') = −Aℓ(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗v, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ⃗u, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='), (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2) the other elements being unchanged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' If n = 1, the set of 1-forms is Ω1(E) = E∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' If n ≥ 2, the set of n-alternating multilinear forms is Ωn(E) = {m ∈ L(En;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) : m = Aℓ is alternating}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3) If Aℓ, Bℓ ∈ Ωn(E) and λ ∈ R then Aℓ + λBℓ ∈ Ωn(E) thanks to the linearity for each variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus Ωn(E) is a vector space, sub-space in (F(En;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R), +, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Leibniz formula Particular case dim E=n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let Aℓ ∈ Ωn(E) (a n-alternating multilinear form).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Recall (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Cartan [5]): 1- A permutation σ : [1, n]N → [1, n]N is a bijective map (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' one-to-one and onto);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let Sn be the set of permutations of [1, n]N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 2- A transposition τ : [1, n]N → [1, n]N is a permutation that exchanges two elements, that is, ∃i, j s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' τ(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', i, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', j, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') = (.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', j, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', i, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='), the other elements being unchanged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 3- A permutation is a composition of transpositions (theorem left as an exercise, of see Cartan).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And a permutation is even iff the number of transpositions is even, and a permutation is odd iff the number of transpositions is odd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Based on: The parity (even or odd) of a permutation is an invariant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 4- The signature ε(σ) = ±1 of a permutation σ is +1 if σ is even, and is −1 if σ is odd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 142 143 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Determinant of vectors Proposition K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 (Leibniz formula) Let Aℓ ∈ Ωn(E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let (⃗ei)i=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',n =noted (⃗ei) be a basis in E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' For all vectors ⃗v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗vn ∈ E, with ⃗vj = �n i=1vi j⃗ei for all j, Aℓ(⃗v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗vn) = c � σ∈Sn ε(σ) n � i=1 vσ(i) i = c � τ∈Sn ε(τ) n � i=1 vi τ(i) (with c := Aℓ(⃗e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗en)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4) Thus if c = Aℓ(⃗e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗en) is known, then Aℓ is known.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus dim(Ωn(E)) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Classic not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' : ⃗vj = �n i=1vij⃗ei, Aℓ(⃗v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗vn) = c � σ∈Sn ε(σ) �n i=1 vσ(i),i = c � τ∈Sn ε(τ) �n i=1 vi,τ(i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let F := F([1, n]N;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [1, n]N) =noted [1, n][1,n]N N be the set of functions i : � [1, n]N → [1, n]N k → ik = i(k) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Aℓ being multilinear, Aℓ(⃗v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗vn) = �n j1=1 vj1 1 Aℓ(⃗ej1,⃗v2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗vn) (“the first column” development).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' By recurrence we get Aℓ(⃗v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗vn) = �n j1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',jn=1 vj1 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='vjn n Aℓ(⃗ej1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗ejn) = � j∈F �n k=1 vj(k) k Aℓ(⃗ej(1), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗ej(n)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And Aℓ(⃗ei1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗ein) ̸= 0 iff i : k ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', n} → i(k) = ik ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', n} is one-to-one (thus bijective).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus Aℓ(⃗v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗vn) = � σ∈Sn �n i=1 vσ(i) i Aℓ(⃗eσ(1), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗eσ(n)) = � σ∈Sn ε(σ) �n i=1 vσ(i) i Aℓ(⃗e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗en), which is the first equality in (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then � σ∈Sn ε(σ) �n i=1 vσ(i) i = � σ∈Sn ε(σ) �n i=1 vσ(σ−1(i)) σ−1(i) since σ is bijectif, thus � σ∈Sn ε(σ) �n i=1 vσ(i) i = � τ∈Sn ε(τ −1) �n i=1 vi τ(i), thus the second equality in (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4) since ε(τ)−1 = ε(τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (See Cartan [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Determinant of vectors Definition K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 (⃗ei)i=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',n being a basis in E, the alternating multilinear form det|⃗e ∈ Ωn(E) defined by det |⃗e (⃗e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗en) = 1 (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5) is called the determinant relative to (⃗ei).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And, with prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 (here c = 1), det |⃗e (⃗v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗vn) = � σ∈Sn ε(σ) n � i=1 vσ(i) i = � τ∈Sn ε(τ) n � i=1 vi τ(i) (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6) is called the determinant of the vectors ⃗vi relative to (⃗ei).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And we write Ωn(E) = Vect{det |⃗e } (the 1-D vector space spanned by det|⃗e).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7) Thus, if Aℓ ∈ Ωn(E) then Aℓ = Aℓ(⃗e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗en) det |⃗e , (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8) thus if (⃗bi) is another basis then ∃c ∈ R, det |⃗b = c det |⃗e , with c = det |⃗b (⃗e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗en).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9) Exercice K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Change of measuring unit: If (⃗ai) is a basis and ⃗bj = λ⃗aj for all j, prove ∀j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', n, ⃗bj = λ⃗aj =⇒ det |⃗a = λn det |⃗b (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10) (relation between volumes relative to a change of measuring unit in the Euclidean case).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' det |⃗a (⃗b1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗bn) = det |⃗a (λ⃗a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', λ⃗an) multi = linear λn det |⃗a (⃗a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗an) (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5) = λn (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5) = λn det |⃗b (⃗b1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗bn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proposition K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 det|⃗e(⃗v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗vn) ̸= 0 iff (⃗v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗vn) is a basis, or equivalently, det|⃗e(⃗v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗vn) = 0 iff ⃗v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗vn are linearly dependent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' If one of the ⃗vi is = ⃗0 then det|⃗e(⃗v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗vn) = 0 (multilinearity), and if �n i=1ci⃗vi = 0 and one of the ci ̸= 0 and then a ⃗vi is a linear combination of the others thus det|⃗e(⃗v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗vn) = 0 (since det|⃗e is alternate).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus det|⃗e(⃗v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗vn) ̸= 0 ⇒ the ⃗vi are independent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And if the ⃗vi are independent then (⃗v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗vn) is a basis, thus det|⃗v(⃗v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗vn) = 1 ̸= 0, with det|⃗v = c det|⃗e, thus det|⃗e(⃗v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗vn) ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 143 144 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Determinant of a matrix Exercice K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 In R2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let ⃗v1 = �2 i=1 vi 1⃗ei and ⃗v2 = �2 j=1 vj 2⃗ej (duality notations).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Prove: det |⃗e (⃗v1,⃗v2) = v1 1v2 2 − v2 1v1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11) Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Development relative to the first column (linearity used for the first vector ⃗v1 = v1 1⃗e1 + v2 1⃗e2): det|⃗e(⃗v1,⃗v2) = det|⃗e(v1 1⃗e1 + v2 1⃗e2,⃗v2) = v1 1 det|⃗e(⃗e1,⃗v2) + v2 1 det|⃗e(⃗e2,⃗v2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus (linearity used for the second vector ⃗v2 = v1 2⃗e1 + v2 2⃗e2): det|⃗e(⃗v1,⃗v2) = 0 + v1 1v2 2 det(⃗e1,⃗e2) + v2 1v1 2 det(⃗e2,⃗e1) + 0 = v1 1v2 2 − v2 1v1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 In R3, with ⃗vj = �3 i=1 vi j⃗ei, prove: det(⃗v1,⃗v2,⃗v3) = 3 � i,j,k=1 εijkvi 1vj 2vk 3, (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12) where εijk = 1 2(j−i)(k−j)(k−i), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' εijk = 1 if (i, j, k) = (1, 2, 3), (3, 1, 2) or (2, 3, 1) (even signature), εijk = −1 if (i, j, k) = (3, 2, 1), (1, 3, 2) and (2, 1, 3) (odd signature), and εijk = 0 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Development relative to the first column (as in exercise K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Result = v1 1v2 2v3 3 + v1 2v2 3v3 1 + v1 3v2 1v3 2 − v3 1v2 2v1 3 − v3 2v2 3v1 1 − v3 3v2 1v1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Determinant of a matrix Let M = [Mij] i=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',n j=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',n be a n2 real matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let ⃗Rn = R × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' × R (Cartesian product n-times) with its canonical basis ( ⃗Ei).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let ⃗vj ∈ ⃗Rn, ⃗vj = �n i=1Mij ⃗Ei;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So M = � [⃗v1]| ⃗E, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', [⃗vn]| ⃗E � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8 The determinant of the matrix M = � [⃗v1]| ⃗E, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', [⃗vn]| ⃗E � is det(M) := det | ⃗E (⃗v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗vn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13) Proposition K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9 Let M T be the transposed matrix, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', (M T )ij = Mji for all i, j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then det(M T ) = det(M).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' det[Mij] = det ⃗E (⃗v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗vn) (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6) = � σ∈Sn ε(σ) n � i=1 vσ(i) i = � τ∈Sn ε(τ) n � i=1 vi τ(i) = det[Mji].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Volume Definition K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10 Let (⃗ei) be a Euclidean basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Consider a parallelepiped in Rn which sides are vectors ⃗v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗vn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Its algebraic volume relative to (⃗ei) is algebraic volume = det |⃗e (⃗v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗vn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='15) And its volume relative to (⃗ei) is (non negative) volume = ��det |⃗e (⃗v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗vn) ��.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16) E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', if n = 1 and ⃗v = v1⃗e1, then det|⃗e(⃗v) = v1 is the algebraic length of ⃗v (relative to the unit of measurement given by ⃗e1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And | det|⃗e(⃗v)| = |v1| is the length of ⃗v (the norm of ⃗v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (The volume function (⃗v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗vn) → ��det|⃗e(⃗v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗vn) �� is not a multilinear form, because the absolute value function is not linear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', if n = 2 or 3, see exercises K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6-K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Notation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let (⃗ei) be a Cartesian basis and (ei) = (dxi) be the dual basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Cartan [6], det |⃗e noted = e1 ∧ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ∧ en = dx1 ∧ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ∧ dxn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='17) And, for integration, the volume element (non negative) uses a Euclidean basis (⃗ei) and is dΩ(⃗x) = | det |⃗e | = |dx1 ∧ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ∧ dxn| noted = dx1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dxn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='18) Thus the volume of a parallelepiped at ⃗x which sides are given by δx1⃗u1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', δxn⃗un is dΩ(⃗x)(δx1⃗u1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', δxn⃗un) = |δx1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='δxn| | det|⃗e(⃗u1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ⃗un)|;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus the volume of a polygonal domain Ω = 144 145 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Determinant of an endomorphism �N i=1 Pi where Pi is a parallelepiped which sides are given by δxi,1⃗ui,1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', δxi,n⃗ui,n is |Ω| = N � i=1 | det |⃗e (⃗ui,1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ⃗ui,n)|δxi,1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='δxi,n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='19) And thus (Riemann approach), the volume of a regular domain Ω is written |Ω| = � Ω dΩ = � ⃗x∈Ω | det |⃗e (⃗ui,1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ⃗ui,n)| dx1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dxn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='20) In particular, since any regular volume Ω can be approximated with cubes as small as wished, |Ω| = �N i=1 |δxi,1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='δxi,n det|⃗e(⃗e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗en)| = �N i=1 |δxi,1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='δxi,n| gives |Ω| = � Ω dΩ = � ⃗x∈Ω dx1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dxn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='21) Exercice K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11 Let Ψ : ⃗q = (q1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', qn) ∈ [a1, b1] × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' × [an, bn] → ⃗x = (x1 = Ψ1(⃗q), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', xn = Ψn(⃗q)) ∈ Ω be a parametric description of a domain Ω;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Prove dΩ(⃗x) = |JΨ(⃗q)| dq1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dqn (= | det |⃗e (⃗p1(⃗x), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ⃗pn(⃗x))| dq1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dqn), (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22) where (⃗pi(x)) = ( ∂Ψ ∂qi (⃗q)) is the parametric basis at ⃗x = Ψ(⃗q) and JΨ(⃗q) = det|⃗e[dΨ(⃗q)]|⃗e is the Jacobian matrix of Ψ at ⃗q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And thus |Ω| = � ⃗q |JΨ(⃗q)| dq1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Polar coordinates for illustration purpose (immediate generalization): Consider the disk Ω parametrized with the polar coordinate system Ψ : ⃗q = (ρ, θ) ∈ [0, R] × [0, 2π] → ⃗x = (x = ρ cos θ, y = ρ sin θ) ∈ R2 where a Euclidean basis (⃗e1,⃗e2) has been used in R2 (so ⃗x = ρ cos θ⃗e1 + ρ sin θ⃗e2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The associated polar ba- sis at ⃗x = Ψ(⃗q) is (⃗p1(⃗x) = ∂Ψ ∂ρ (ρ, θ), ⃗p2(⃗x) = ∂Ψ ∂θ (ρ, θ)), so [⃗p1(⃗x)]|⃗e = � cos θ sin θ � and [⃗p2(⃗x)]|⃗e = � −ρ sin θ ρ cos θ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus det|⃗e(⃗p1(⃗x), ⃗p2(⃗x)) = ρ (> 0 here), thus dΩ = |ρ| dρdθ = ρ dρdθ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus the volume is |Ω| = � ⃗x∈Ω dΩ = � R ρ=0 � 2π θ=0 ρ dρdθ (= πR2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12 What is the “volume element” on a regular surface Σ in R3, called the “surface element”?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let (⃗e1,⃗e2,⃗e3) be a Euclidean basis in R3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' We need a regular parametric description Ψ : (u, v) ∈ [a1, b2]× [a2, b2] → ⃗x = Ψ(u, v) = x1(u, v)⃗e1 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' + x3(u, v)⃗e3 of the geometric surface Σ = Im(Ψ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus ⃗t1(⃗x) = ∂Ψ ∂u (u, v) and ⃗t2(⃗x) = ∂Ψ ∂v (u, v) are tangent vectors at Σ at ⃗x = Ψ(u, v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Hence a normal unit vector is ⃗n(⃗x) = ⃗t1(⃗x)∧⃗t2(⃗x) ||⃗t1(⃗x)∧⃗t2(⃗x)||, and thus det|⃗e(⃗t1,⃗t2,⃗n) = ||⃗t1(⃗x) ∧ ⃗t2(⃗x)|| is the area of the parallelogram which sides are given by ⃗t1 and ⃗t2 (volume with height 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus the surface element at ⃗x = Ψ(u, v) is dΣ(⃗x) = || ∂Ψ ∂u (u, v) ∧ ∂Ψ ∂v (u, v)|| dudv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus |Σ| = � ⃗x∈Σ dΣ(⃗x) = � b1 u=a1 � b2 v=a2 || ∂Ψ ∂u (u, v) ∧ ∂Ψ ∂v (u, v)|| dudv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 Determinant of an endomorphism K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definition and basic properties Definition K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13 The determinant of an endomorphism L ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E) relative to a basis (⃗ei) is � det |⃗e (L) := det |⃗e (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗en).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='23) This define � det|⃗e : L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E) → R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (If the context is not ambiguous, then � det|⃗e =noted det|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Proposition K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14 Let L ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 1- If L = I the identity, then � det|⃗e(I) = 1 for all basis (⃗ei).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 2- For all ⃗v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗vn ∈ E, det |⃗e (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗vn) = � det |⃗e (L) det |⃗e (⃗v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗vn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='24) 3- If L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej = �n i=1Lij⃗ei, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [L]|⃗e = [Lij], then � det |⃗e (L) = det([L]|⃗e) = det([Lij]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='25) 4- For all M ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E), and with M ◦ L =noted M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L (thanks to linearity), � det |⃗e (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L) = � det |⃗e (M) � det |⃗e (L) = � det |⃗e (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='M).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='26) 5- L is invertible iff � det|⃗e(L) ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 145 146 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Determinant of an endomorphism 6- If L is invertible then � det |⃗e (L−1) = 1 � det|⃗e(L) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='27) 7- If (·, ·)g is an inner dot product in E and LT g is the (·, ·)g transposed of L (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', (LT g ⃗w, ⃗u)g = (⃗w, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u)g for all ⃗u, ⃗w ∈ E) then � det |⃗e (LT g ) = � det |⃗e (L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='28) 8- If (⃗ei) and (⃗bi) are two (·, ·)g-orthonormal bases in ⃗Rn t (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' two Euclidean basis for the same measuring unit), then det|⃗b = ± det|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 1- � det|⃗e(I) =(K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='23) det|⃗e(I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗en) =(K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5) det|⃗e(⃗e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗en) = 1, true for all basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 2- Let m : (⃗v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗vn) → m(⃗v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗vn) := det|⃗e(L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗vn): It is a multilinear alternated form, since L is linear;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus m =(K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8) m(⃗e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗en) det|⃗e;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' With m(⃗e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗en) =(K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='23) � det|⃗e(L), thus (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='24).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 3- Apply (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13) with M = [L]|⃗e to get (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='25).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 4- det|⃗e((M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗en) = det|⃗e(M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='(L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗e1), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='(L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗en)) =(K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='24) � det|⃗e(M) det|⃗e(L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗en).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 5- If L is invertible, then 1 = � det|⃗e(I) = � det|⃗e(L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L−1) = � det|⃗e(L) � det|⃗e(L−1), thus � det|⃗e(L) ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' If � det|⃗e(L) ̸= 0 then det|⃗e(L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗en) ̸= 0, thus (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗en) is a basis, thus L is invertible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 6- (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='26) gives 1 = � det|⃗e(I) = � det|⃗e(L−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L) = � det|⃗e(L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' � det|⃗e(L−1), thus (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='27).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 7- (LT g ⃗w, ⃗u)g = (⃗w, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u)g gives [g]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [LT g ]|⃗e = ([L]|⃗e)T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [g]|⃗e, thus det([g]|⃗e) det([LT g ]|⃗e) = det(([L]|⃗e)T ) det([g]|⃗e), and det([g]|⃗e) ̸= 0 (exercise), thus (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='28).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 8- Let P be the change of basis endomorphism from (⃗ei) to (⃗bi), and P be the transition matrix from (⃗ei) to (⃗bi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Both basis being (·, ·)g-orthonormal, P T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P = I, thus det(P) = ±1 = � det|⃗e(P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And det|⃗e(⃗b1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗bn) = det|⃗e(P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗en) = � det|⃗e(P) det|⃗e(⃗e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗en) = � det|⃗e(P) det|⃗b(⃗b1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗bn), thus det|⃗e = � det|⃗e(P) det|⃗b = ± det|⃗b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='15 Two (·, ·)g-orthonormal bases (⃗ei) and (⃗bi) have the same orientation iff det|⃗b = + det|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16 Prove � det|⃗e(λL) = λn � det|⃗e(L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' � det |⃗e (λL) = det |⃗e (λL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', λL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗en) = λn det |⃗e (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗en) = λn � det |⃗e (L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 The determinant of an endomorphism is objective Proposition K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='17 Let (⃗ai) and (⃗bi) be bases in E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The determinant of an endomorphism L ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E) is objective (observer independent, here basis independent): (det([L]|⃗a) =) � det |⃗a (L) = � det |⃗b (L) (= det([L]|⃗b)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='29) NB: But the determinant of n vectors is not objective, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9) (compare the change of basis formula for vectors [⃗w]|⃗b = P −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗w]|⃗a with the change of basis formula for endomorphisms [L]|⃗b = P −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [L]|⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let (⃗ai) and (⃗bi) be bases in E, and P be the transition matrix from (⃗ai) to (⃗bi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The change of basis formula [L]|⃗b = P −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [L]|⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P and (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='26) give det([L]|⃗b) = det(P −1) det([L]|⃗a) det(P) = det([L]|⃗a), thus (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='25) gives (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='29).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='18 Let (⃗ai) and (⃗bi) be bases in E, and P ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E) be the change of basis endomorphism from (⃗ai) to (⃗bi) (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj = ⃗bj for all j).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Prove det |⃗a (⃗b1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗bn) = � det |⃗a (P), thus det |⃗a = � det |⃗a (P) det |⃗b , i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' det |⃗b = det|⃗a � det|⃗a(P) , (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='30) Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' det |⃗a (⃗b1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗bn) = det |⃗a (P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗an) (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='24) = � det |⃗a (P) det |⃗a (⃗a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗an) = � det |⃗a (P) 1 = � det |⃗a (P) det |⃗b (⃗b1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗bn), thus (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='30) and det|⃗a = � det|⃗a(P) det|⃗b and det|⃗a(⃗v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗vn) = � det|⃗a(P) det|⃗b(⃗v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗vn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 146 147 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Determinant of a linear map K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 Determinant of a linear map (Needed for the deformation gradient F t0 t (P) = dΦt0 t (P) : ⃗Rn t0 → ⃗Rn t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Let A and B be vector spaces, dim A = dim B = n, and (⃗ai) and (⃗bi) be bases in A and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definition and first properties Definition K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='19 The determinant of a linear map L ∈ L(A;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' B) relative to the bases (⃗ai) and (⃗bi) is � det |⃗a,⃗b (L) := det |⃗b (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗an).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='31) (And � det|⃗a,⃗b(L) =noted det(L) if the bases are implicit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Thus, (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13) gives, with L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj = �n i=1Lij⃗bi, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [L]|⃗a,⃗b = [Lij]: � det |⃗a,⃗b (L) = det([L]|⃗a,⃗b) = det([Lij]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='32) Proposition K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='20 Let ⃗u1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ⃗un ∈ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then det |⃗b (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗un) = � det |⃗a,⃗b (L) det |⃗a (⃗u1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ⃗un).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='33) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' m : (⃗u1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ⃗un) ∈ An → m(⃗u1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ⃗un) := det|⃗b(L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗un) ∈ R is a multilinear alternated form, since L is linear;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And m(⃗a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗an) = det|⃗b(L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗an) =(K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='31) � det|⃗a,⃗b(L) = � det|⃗a,⃗b(L) det|⃗a(⃗a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',⃗an).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus m = � det|⃗a,⃗b(L) det|⃗a, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9), thus (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='33).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Corollary K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='21 Let A, B, C be vector spaces such that dim A = dim B = dim C = n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let (⃗ai), (⃗bi), (⃗ci) be bases in A, B, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let L : A → B and M : B → C be linear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then, with M ◦ L =noted M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L (thanks to linearity), � det |⃗a,⃗c(M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L) = � det |⃗a,⃗b (L) � det |⃗b,⃗c (M).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='34) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' � det |⃗a,⃗c(M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L) = det |⃗c (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗a1), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗an)) = � det |⃗b,⃗c (M) det |⃗b (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗an) = � det |⃗b,⃗c (M) � det |⃗a,⃗b (L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Jacobian of a motion, and dilatation Let �Φ be a motion, let t0, t ∈ R, let Φt0 t be the associated motion, let F t0 t (pt0) := dΦt0 t (pt0) : ⃗Rn t0 → ⃗Rn t the deformation gradient at pt0 ∈ Ωt0 relative to t0 and t, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let ( ⃗Ei) be a Euclidean basis in ⃗ Rn t0 and (⃗ei) be a Euclidean basis in ⃗ Rn t for all t ≥ t0, and [F t0 t (pt0)]| ⃗E,⃗e = [Fij(pt0)], i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', F t0 t (pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Ej = �n i,j=1Fij(pt0)⃗ei for all j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22 The “volume dilatation” at pt0, relative to the Euclidean bases ( ⃗Ei) in ⃗ Rn t0 and (⃗ei) in ⃗ Rn t , is J| ⃗E,⃗e(Φt0 t )(pt0) := � det | ⃗E,⃗e (F t0 t (pt0)) (= det |⃗e (F t0 t (pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗E1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', F t0 t (pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗En) = det([Fij(pt0)])), (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='35) usually written J| ⃗E,⃗e := det([F]| ⃗E,⃗e) (or simply J = det(F) when everything is implicit).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So, at t0 at pt0, (pt0, ⃗E1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ⃗En) is a unit parallelepiped which volume is 1 relative to the unit of mea- surement chosen in ⃗Rn t0, and, at t at pt = Φt0 t (pt0), J| ⃗E,⃗e(Φt0 t )(pt0) = det|⃗e(F t0 t (pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗E1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', F t0 t (pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗En) is the volume of the parallelepiped (pt, F t0 t (pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗E1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', F t0 t (pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗En) relative to the unit of measurement chosen in ⃗Rn t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Interpretation: With t2 > t1 ≥ t0, and [⃗ei) is the basis at t1 and t2: Dilatation if J| ⃗E,⃗e(Φt0 t2)(pt0) > J| ⃗E,⃗e(Φt0 t1)(pt0) (volume increase), 147 148 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Dilatation rate contraction if J| ⃗E,⃗e(Φt0 t2)(pt0) < J| ⃗E,⃗e(Φt0 t1)(pt0) (volume decrease), and incompressibility if J| ⃗E,⃗e(Φt0 t2)(pt0) = J| ⃗E,⃗e(Φt0 t1)(pt0) for all t (volume conservation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In particular, if (⃗ei) = ( ⃗Ei) then J|⃗e,⃗e(Φt0 t0)(pt0) = 1, and if t > t0, then Dilatation if J|⃗e,⃗e(Φt0 t )(pt0) > 1 (volume increase), contraction if J|⃗e,⃗e(Φt0 t )(pt0) < 1 (volume decrease), and incompressibility if J|⃗e,⃗e(Φt0 t )(pt0) = 1 for all t (volume conservation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='23 Let ( ⃗Ei) be a Euclidean basis in ⃗Rn t0, and let (⃗ai) and (⃗bi) be two Euclidean bases in ⃗Rn t for the same Euclidean dot product (·, ·)g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Prove: J| ⃗E,⃗a(Φt0 t (P)) = ±J| ⃗E,⃗b(Φt0 t (P)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='36) Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' P being the transition matrix from (⃗ai) to (⃗bi), det(P) = ±1 here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='30) gives [F]| ⃗ E,⃗a = P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[F]| ⃗ E,⃗b, thus det([F]| ⃗ E,⃗a) = ± det([F]| ⃗ E,⃗b), thus det|⃗a(F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗E1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗En) = ± det|⃗b(F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗E1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗En).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Determinant of the transposed Let (A, (·, ·)g) and (B, (·, ·)h) be finite dimensional Hilbert spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let L ∈ L(A;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' B) (a linear map).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Recall: The transposed LT gh ∈ L(B;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A) is defined by, for all ⃗u ∈ A and all ⃗w ∈ B, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='68) (LT gh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w, ⃗u)g := (⃗w, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u)h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='37) Let (⃗ai) be a basis in A and (⃗bi) be a basis in B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then � det([LT gh]|⃗b,⃗a) = det([L]|⃗a,⃗b)det([(·, ·)g]|⃗a) det([(·, ·)h]|⃗b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='38) Indeed, (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='37) gives [(·, ·)g]|⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [LT gh]|⃗b,⃗a = ([L]|⃗a,⃗b)T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [(·, ·)h]|⃗b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8 Dilatation rate A unique Euclidean basis (⃗ei) at all time is chosen, and (·, ·)g is the associated inner dot product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 ∂Jt0 ∂t (t, pt0) = Jt0(t, pt0) div⃗v(t, pt) A regular motion �Φ is considered, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5), and the Eulerian velocity is ⃗v(t, pt) = ∂�Φ ∂t (t, PObj) at pt = �Φ(t, PObj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let t0 be given;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The associated motion Φt0 is given by Φt0(t, pt0) = �Φ(t, PObj) =noted pt when pt0 = �Φ(t0, PObj), (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1), and is supposed to be at least C2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The Lagrangian velocity is ⃗V (t, pt0) = ∂Φt0 ∂t (t, pt0), and the Eulerian velocity satisfies ⃗v(t, pt) = ∂Φt0 ∂t (t, pt0) when pt = Φt0(t, pt0), cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='25).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let F t0(t, pt0) = dΦt0(t, pt0) = F t0 t (pt0) = dΦt0 t (pt0), and consider the Jacobian Jt0 t (pt0) = det |⃗e (F t0 t (pt0)) = Jt0(t, pt0), (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='39) Lemma K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='24 ∂Jt0 ∂t (t, pt0) satisfies, with pt = Φt0 t (pt0), ∂Jt0 ∂t (t, pt0) = Jt0(t, pt0) div⃗v(t, pt) (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='40) (value to be considered at t at pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In particular, �Φ is incompressible iff div⃗v(t, pt) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let O be a origin in Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let −−−→ OΦt0 = �n i=1Φi⃗ei, ⃗V t0 = �n i=1V i⃗ei, ⃗v = �n i=1vi⃗ei, F t0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Ej = dΦt0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Ej = �n i=1 ∂Φi ∂Xj ⃗ei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let [F t0]| ⃗E,⃗e =noted F, Jt0 =noted J and [dΦi]| ⃗E = � ∂Φi ∂X1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ∂Φi ∂Xn � =noted dΦi 148 149 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Dilatation rate (row matrix).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus J = det F = det � � dΦ1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' dΦn � �, thus (a determinant is multilinear) ∂J ∂t = det � � � � � � ∂(dΦ1) ∂t dΦ2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' dΦn � � � � � � + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' + det � � � � � dΦ1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' dΦn−1 ∂(dΦn) ∂t ) � � � � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' With Φt0 C2, thus ∂(dΦi) ∂t (t, pt0) Swhartz = d(∂Φi ∂t )(t, pt0) = dV i(t, pt0) = dvi(t, pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F(t, pt0), cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='27).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus det � � � � � � ∂(dΦ1) ∂t dΦ2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' dΦn � � � � � � = det � � � � � � � n � i=1 ∂v1 ∂xi dΦi dΦ2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' dΦn � � � � � � � det is = alternating det � � � � � � ∂v1 ∂x1 dΦ1 dΦ2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' dΦn � � � � � � = ∂v1 ∂x1 det � � � � dΦ1 dΦ2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' dΦn � � � � = ∂v1 ∂x1 J Idem for the other terms, thus ∂J ∂t (t, pt0) = ∂v1 ∂x1 (t, pt) J(t, pt0) + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' + ∂vn ∂xn (t, pt) J(t, pt0) = div⃗v(t, pt) J(t, pt0), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='40).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='25 div⃗v(t, pt) is the dilatation rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Leibniz formula Proposition K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='26 (Leibniz formula) Under regularity assumptions (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' hypotheses of the Lebesgue theorem to be able to derive under � ) we have d dt �� pt∈Ωt f(t, pt) dΩt � = � pt∈Ωt �Df Dt + f div⃗v � (t, pt) dΩt = � pt∈Ωt �∂f ∂t + df.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v + f div(⃗v) � (t, pt) dΩt = � pt∈Ωt �∂f ∂t + div(f⃗v) � (t, pt) dΩt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='41) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let Z(t) := � p∈Ωt f(t, p) dΩt = � P ∈Ωt0 f(t, Φt0(t, P)) Jt0(t, P) dΩt0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (The Jacobian is positive for a regular motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Then (derivation under � ) Z′(t) = � P ∈Ωt0 Df Dt (t, pt) Jt0(t, P) + f(t, pt)∂Jt0 ∂t (t, P) dΩt0 = � P ∈Ωt0 (Df Dt (t, pt) + f(t, pt) div⃗v(t, pt))Jt0(t, P) dΩt0, thanks to (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='40).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And div(f⃗v) = df.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v + f div⃗v gives (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='41).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Corollary K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='27 With (⃗u, ⃗w)g =noted ⃗u • ⃗w (in the given Euclidean framework), d dt � Ωt f(t, pt) dΩt = � Ωt ∂f ∂t (t, pt) dΩt + � ∂Ωt (f⃗v • ⃗n)(t, pt) dΓt, (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='42) sum of the temporal variation within Ωt and the flux through the surface ∂Ωt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Apply (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='41)3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 149 150 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ∂J/∂F = J F −T K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9 ∂J/∂F = J F −T K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Meaning of ∂ det ∂Mij ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let Mnn = {M = [Mij] ∈ Rn2} be the set of n ∗ n matrices, and consider the function Z := det : � Mnn → R M = [Mij] → Z(M) := det(M) = det([Mij]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='43) Question: What does ∂Z ∂Mij (M) mean?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer: It is the “standard meaning” of a directional derivative ∂f ∂xi (⃗x) = df(⃗x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' where here f = Z, thus ⃗x =noted M is a matrix (a vector in Mnn), and (⃗ei) is the canonical basis (mij) in Mnn (all the elements of the matrix mij vanish but the element at intersection of line i and column j which equals 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So: ∂Z ∂Mij (M) := dZ(M).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='mij = lim h→0 Z(M + hmij) − Z(M) h (∈ R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='44) K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Calculation of ∂ det ∂Mij Proposition K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='28 ∀i, j, ∂Z ∂Mij (M) = Z(M) (M −T )ij, written ∂Z ∂M = Z M −T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='45) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ∂Z ∂Mij (M) := limh→0 det(M+hmij)−det(M) h ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The development of the determinant det(M + hmij) relative to the column j gives det(M + h[mij]) = det(M) + h cij (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='46) where cij is the (i, j)-th cofactor of M;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus ∂Z ∂Mij (M) = limh→0 Z(M+hmij)−Z(M) h = cij;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And since M −1 = 1 det(M)[cij]T , i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [cij] = det(M)M −T , we get ∂Z ∂Mij (M) = det(M)(M −T )ij, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='45).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 ∂J/∂F = J F −T usually written [ ∂J ∂Fij ] = J F −T Setting of § K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8: With F := dΦ(pt0) we have F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Ej = �n i=1Fij⃗ei where Fij = ∂Φi ∂Xj (pt0), and JΦ,pt0, ⃗E,⃗e noted = J : � � � � � L(⃗Rn t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t ) → R F → J(F) := det([Fij]) (= det([ ∂Φi ∂Xj (pt0)]), (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='47) so, J(F) is the Jacobian � det| ⃗E,⃗e(dΦ(pt0)) of Φ at pt0 relative to ( ⃗Ei) and (⃗ei).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='45) gives: Corollary K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='29 ∀i, j, ∂J ∂Fij (F) = J(F) ([F]−T )ij, written ∂J ∂F = J F −T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='48) K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Interpretation of ∂J ∂Fij ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The first derivations into play are along the directions ⃗Ej at t0: The Fij = ∂Φi ∂Xj (pt0) := dΦi(pt0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Ej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Question: ∂J ∂Fij is the usual notation for a directional derivative, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' § K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So ∂J ∂Fij is the derivative in which direction?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer: 1- “Identify” F ∈ L(⃗Rn t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t ) with the tensor �F ∈ L(⃗Rn∗ t , ⃗Rn t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) given by �F(ℓ, ⃗U) = ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗U);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So, if F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Ej = �n i=1Fij⃗ei then �F = �n i,j=1Fij⃗ei ⊗ πEj, relative to a basis ( ⃗Ei) and its covariant dual basis (πEi) in ⃗Rn t0 and a basis (⃗ei) and ⃗Rn t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 2- Define the function � det ⃗E,⃗e = �J : � � � L(⃗Rn∗ t , ⃗Rn t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) → R �F → �J( �F) := J(F) = det ⃗E,⃗e (F) = det([Fij]) � � �;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 150 151 L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Transformed parallelepiped 3- Then it is meaningful to differentiate �J along the direction ⃗ei ⊗ πEj ∈ L(⃗Rn∗ t , ⃗Rn t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) to get ∂ �J ∂Fij ( �F) := lim h→0 �J|⃗e, ⃗E( �F + h⃗ei ⊗ πEj) − �J|⃗e, ⃗E( �F) h ( noted = ∂J ∂Fij (F));' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='49) This is a derivation in both directions πEj in ⃗Rn t0 (past at pt0) and ⃗ei in ⃗Rn t (present at pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' What does this derivative mean?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (The answer is unknown to the author.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') L Transport of volumes and areas Here Rn = R3 the usual affine space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let t0, t ∈ R, and Φt0 t : R × Ωt0 → Ωt, see (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let FP = dΦt0 t (P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let (·, ·)g be a Euclidean dot product in ⃗Rn (English, French.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='), with ||.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='||g the associated norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Transformed parallelepiped The Jacobian of Φt0 t at P relative to a (·, ·)g-Euclidean bases is defined in (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='35): With FP = F t0 t (P), JP = J(P) := det |⃗e (F t0 t (P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗E1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', F t0 t (P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗En)), and JP > 0 (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1) the motion being supposed regular.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus, if (⃗U1P , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ⃗UnP ) is a parallelepiped at P at t0, if ⃗uip = FP .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗UiP , then (⃗u1p, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ⃗unp) is a parallelepiped at p at t which volume is det |⃗e (⃗u1p, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ⃗unp) = JP det |⃗e (⃗U1P , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ⃗UnP ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2) L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Transformed volumes Riemann integrals and (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2) give the change of variable formula: For any regular function f : Ωt → R, � pt∈Ωt f(pt) dΩt = � P ∈Ωt0 f(Φt0 t (P)) |J(P)| dΩt0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3) (See (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='18): dΩt is a positive measure: It is not a multilinear form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') In particular, |Ωt| = � pt∈Ωt dΩt(pt) = � P ∈Ωt0 |J(P)| dΩt0(P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4) (With J(P) > 0 for regular motions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Transformed parallelogram Consider two independent vectors ⃗U1P , ⃗U2P ∈ ⃗Rn t0 at t0 at P, and the vectors ⃗u1p = FP .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗U1P and ⃗u2p = FP .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗U2P at t at p = Φt0 t (P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Since Φt0 t is a diffeomorphism, ⃗u1p and ⃗u2p are independent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then choose a Euclidean dot product (·, ·)g (English, French.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') to be able to use the vectorial product, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='15), the same at all time t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then the areas of the parallelograms are ||⃗U1P ∧ ⃗U2P ||g and ||⃗u1p ∧ ⃗u2p)||g, (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5) and unit normal vectors to the quadrilaterals are ⃗NP = ⃗U1P ∧ ⃗U2P ||⃗U1P ∧ ⃗U2P ||g ∈ ⃗Rn t0, and ⃗np = ⃗u1p ∧ ⃗u2p ||⃗u1p ∧ ⃗u2p||g ∈ ⃗Rn t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6) Proposition L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 If ⃗u1p = FP .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗U1P and ⃗u2p = FP .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗U2P , then ⃗u1p ∧ ⃗u2p = JP F −T P .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' �⃗U1P ∧ ⃗U2P � , and ||⃗u1p ∧ ⃗u2p||g = JP ||F −T P .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (⃗U1P ∧ ⃗U2P )||g, (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7) since JP > 0 (for regular motions), and ⃗np = F −T P .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗NP ||F −T P .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗NP ||g (̸= FP .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗NP in general).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8) 151 152 L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Transformed surface Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let ⃗WP ∈ ⃗ Rn t0 and ⃗wp = FP .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗WP .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then the volume of the parallelepiped (⃗u1p, ⃗u2p, ⃗wp) is (⃗u1p ∧ ⃗u2p, ⃗wp)g = det(⃗u1p, ⃗u2p, ⃗wp) = det(FP .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗U1P , FP .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗U2P , FP .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗WP ) = det(FP ) det(⃗U1P , ⃗U2P , ⃗WP ) = JP (⃗U1P ∧ ⃗U2P , ⃗WP )g = JP (⃗U1P ∧ ⃗U2P , F −1 P .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wp)g = JP (F −T P .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (⃗U1P ∧ ⃗U2P ), ⃗wp)g, (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9) for all ⃗wp, thus (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7), thus ⃗u1p∧⃗u2p ||⃗u1p∧⃗u2p||g = JP F −T P .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (⃗U1P ∧⃗U2P ) JP ||F −T P .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (⃗U1P ∧⃗U2P )||g , thus (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Transformed surface L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Deformation of a surface A parametrized surface Ψt0 in Ωt0 and the associated geometric surface St0 are defined by Ψt0 : � [a, b] × [c, d] → Ωt0 (u, v) → P = Ψt0(u, v) � and St0 = Im(Ψt0) ⊂ Ωt0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10) (It is also represented after a choice of an origin O by the vector valued parametrized surface ⃗rt0 = −−−→ OΨt0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') The transformed parametric surface is Ψt := Φt0 t ◦ Ψt0 and the associated geometric surface is St: Ψt := Φt0 t ◦ Ψt0 : � [a, b] × [c, d] → Ωt0 (u, v) → p = Ψt(u, v) = Φt0 t (Ψt0(u, v)) = Φt0 t (P) � and St = Φt0 t (St0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11) (After a choice of an origin O, the associated vector valued parametrized surface is ⃗rt = −−→ OΨt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Let ( ⃗E1, ⃗E2) be the canonical basis in the space R × R ⊃ [a, b] × [c, d] = {(u, v)} of parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The surface Ψt0 is supposed to be regular, that is, Ψt0 is C1 and, for all P = Ψt0(u, v) ∈ St0, the tangents vectors ⃗T1P and ⃗T2P at P are independent, that is, ⃗T1P := dΨt0(u, v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗E1 noted = ∂Ψt0 ∂u (u, v), ⃗T2P := dΨt0(u, v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗E2 noted = ∂Ψt0 ∂v (u, v), � � � � � and ⃗T1P ∧ ⃗T2P ̸= ⃗0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12) And the tangent vectors at St at p = Φt0 t (P) at t are � � � � � ⃗t1p := dΨt(u, v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗E1 = ∂Ψt ∂u (u, v), so ⃗t1p = FP .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗T1P (= dΦt0 t (P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='∂Ψt0 ∂u (u, v)), ⃗t2p := dΨt(u, v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗E2 = ∂Ψt ∂v (u, v), so ⃗t2p = FP .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗T2P (= dΦt0 t (P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='∂Ψt0 ∂v (u, v)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13) These vectors are independent since Φt0 t is a diffeomorphism and Ψt0 is regular.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In facts, we used tangent vectors to curves and their push-forwards, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 and § 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Euclidean dot product and unit normal vectors Then choose a Euclidean dot product (·, ·)g (English, French.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='), to be able to use the vectorial product, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='15), the same at all time t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then the scalar area elements dΣP at P at St0 relative to Ψt0, and dσp at p at St relative to Ψt, are � � � � � dΣP := ||∂Ψt0 ∂u (u, v) ∧ ∂Ψt0 ∂v (u, v)||g du dv (= ||⃗T1P ∧ ⃗T2P ||g du dv), dσp := ||∂Ψt ∂u (u, v) ∧ ∂Ψt ∂v (u, v)||g du dv (= ||⃗t1p ∧ ⃗t2p||g du dv).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14) And the areas of St0 and St are � � � � � � � � � |St0| = � P ∈St0 dΣP := � b u=a � d v=c ||∂Ψt0 ∂u (u, v) ∧ ∂Ψt0 ∂v (u, v)||g du dv, |St| = � p∈St dσp := � b u=a � d v=c ||∂Ψt ∂u (u, v) ∧ ∂Ψt ∂v (u, v)||g du dv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='15) (See (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='18): dΣP and dσp are positive measures: They are not multilinear forms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') 152 153 L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Piola identity And the unit normal vectors ⃗NP at St0 at P at t0 and ⃗np at St at p at t are � � � � � � � � � � � ⃗NP = ∂Ψt0 ∂u (u, v) ∧ ∂Ψt0 ∂v (u, v) || ∂Ψt0 ∂u (u, v) ∧ ∂Ψt0 ∂v (u, v)||g (= ⃗T1P ∧ ⃗T2P ||⃗T1P ∧ ⃗T2P ||g ) ⃗np = ∂Ψt ∂u (u, v) ∧ ∂Ψt ∂v (u, v) || ∂Ψt ∂u (u, v) ∧ ∂Ψt ∂v (u, v)||g (= ⃗t1p ∧ ⃗t2p ||⃗t1p ∧ ⃗t2p||g = .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16) Then the vectorial area elements d⃗ΣP at P at St0 = Im(Ψt0) relative to ⃗rt0 and d⃗σp at p at St = Im(Ψt) relative to Ψt are � � � � � d⃗ΣP := ⃗NP dΣP = ∂Ψt0 ∂u (u, v) ∧ ∂Ψt0 ∂v (u, v) du dv (= ⃗T1P ∧ ⃗T2P du dv) d⃗σp := ⃗np dσp = ∂Ψt ∂u (u, v) ∧ ∂Ψt ∂v (u, v) du dv (= ⃗t1p ∧ ⃗t2p du dv).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='17) (Useful to get the flux through a surface: � Γ ⃗f • ⃗n dσ = � Γ ⃗f • d⃗σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') (NB: d⃗ΣP and d⃗σp are not multilinear since dΣP and dσp are not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Relations between surfaces ⃗t1p ∧ ⃗t2p = JP F −T P .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (⃗T1P ∧ ⃗T2P ), cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7), gives ∂Ψt ∂u (u, v) ∧ ∂Ψt ∂v (u, v) = JP F −T P .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (∂Ψt0 ∂u (u, v) ∧ ∂Ψt0 ∂v (u, v)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='18) This gives the relation between vectorial and scalar area elements, ⃗n dσp = d⃗σp = JP F −T P .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗ΣP = JP F −T P .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗NP dΣP , and dσp = JP ||F −T P .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗NP ||g dΣP .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='19) (Check with (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Piola identity Reminder: Let M = [M i j] be a 3∗3 matrix function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' We use the usual divergence in continuum mechanics (non objective) given by divM := � � � ∂M 1 1 ∂X1 + ∂M 1 2 ∂X2 + ∂M 1 3 ∂X3 ∂M 2 1 ∂X1 + ∂M 2 2 ∂X2 + ∂M 2 3 ∂X3 ∂M 3 1 ∂X1 + ∂M 3 2 ∂X2 + ∂M 3 3 ∂X3 � � � = � � � � �n j=1 ∂M 1 j ∂Xj �n j=1 ∂M 2 j ∂Xj �n j=1 ∂M 3 j ∂Xj � � � �, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='65).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And if Cof(M) is the matrix of cofactors (in R3: Cof(M)i j = M i+1 j+1M i+2 j+2 − M i+1 j+2M i+2 j+1), then M −1 = 1 det M Cof(M)T , i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', (det M)M −1 = Cof(M)T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='20) The framework being Euclidean, we use a Euclidean basis and the associated matrix, and thus (matrix meaning) J(P)F(P)−T = Cof(F(P)) noted = Cof(F)(P), written JF −T = Cof(F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='21) Proposition L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 (Piola identity) In R3, we have div(JF −T )(P) = 0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ∀i, n � j=1 ∂Cof(F)i j ∂Xj (P) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22) Also written �n j=1 ∂ ∂Xj (J ∂Xi ∂xj ) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' NB: (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22) is a just a matrix computation since we used the divergence of a matrix (we used components relative to a given basis).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' We are in R3, thus Cof(F)i j = F i+1 j+1F i+2 j+2 − F i+1 j+2F i+2 j+1, and F = [dΦt] = [ ∂ϕi ∂Xj ], that is, F i j = ∂ϕi ∂Xj .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus ∂Cof(F)i j ∂Xj = ∂2ϕi+1 ∂Xj∂Xj+1 ∂ϕi+2 ∂Xj+2 + ∂ϕi+1 ∂Xj+1 ∂2ϕi+2 ∂Xj∂Xj+2 − ∂2ϕi+1 ∂Xj∂Xj+2 ∂ϕi+2 ∂Xj+1 − ∂ϕi+1 ∂Xj+2 ∂2ϕi+2 ∂Xj∂Xj+1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus, for all i = 1, 2, 3, we get �n j=1 ∂Cof(F )i j ∂Xj = 0 (the terms cancel each other out two by two).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 153 154 L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Piola transformation L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 Piola transformation Let ⃗u be a vector field in Ωt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The goal is to find a vector field ⃗UPiola in Ωt0 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' for all open subset ωt ⊂ Ωt with ωt0 = Φt0 t −1(ωt) ⊂ Ωt0, � ∂ωt0 ⃗UPiola • ⃗N dΣ = � ∂ωt ⃗u • ⃗n dσ, (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='23) or � ωt0 div(⃗UPiola) dΩt0 = � ωt div(⃗u) dΩt, (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='24) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' � P ���ωt0 div(⃗UPiola)(P) dΩt0 = � P ∈ωt0 div(⃗u)(Φt0 t (P)) J(P) dΩt0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='25) (The motion is supposed to be regular, so J(P) > 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus we want div⃗UPiola(P) = J(P) div⃗u(p) when p = Φt0 t (P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='26) Definition L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 The Piola transform is the map � � � C∞(Ωt;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Rn) → C∞(Ωt0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Rn) ⃗u → ⃗UPiola, ⃗UPiola(P) := J(P)F(P)−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u(p) when p = Φt0 t (P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='27) (So ⃗UPiola(P) = J(P)Φ∗(⃗u)(P) where Φ∗(⃗u)(P) = F(P)−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u(p) = the pull-back with Φ = Φt0 t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Proposition L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 With p = Φt0 t (P), ⃗UPiola = �n i=1U i Piola⃗ei and ⃗u = �n i=1ui⃗ei we get div⃗UPiola(P) = J(P) div⃗u(p), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' n � i=1 ∂U i Piola ∂Xi (P) = J(P) n � i=1 ∂ui ∂xi (p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='28) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' div(τ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w) =(S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='61) � div(τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w + τ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='. d⃗w gives div((JF −1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (⃗u ◦ Φt0 t ))(P) = (div(JF −T )(P), ⃗u(p))g + (J(P)F(P)−1) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='. (d⃗u(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F(P))=(L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22)0+J(P)(F(P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F(P)−1) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='. d⃗u(p) = J(P) I 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='. d⃗u(p) = J(P)div⃗u(p), which gives (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='28).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' M Work and power M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definitions M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Work (Thermodynamic like approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') The elementary work is a differential form α, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' α = dU (internal energy density), α = δW = (elementary work).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Consider a regular curve c : t ∈ [t0, T] → c(t) ∈ Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And let ⃗v(t, c(t)) := ⃗c ′(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The work of α along the curve is � c α := � T t=t0 α(t, c(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗c ′(t) dt noted = � T t=t0 α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗c = � T t=t0 α(t, c(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v(t, c(t)) dt noted = � T t=t0 α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v dt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1) E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', W t0 T (α, c) = � c δW = work along c of the differential form α = δW.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then consider an object Obj and its motion �Φ : (t, PObj) → p(t) = �Φ(t, PObj) = �ΦPObj (t) ∈ Rn, the curves cPObj = �ΦPObj : t ∈ [t0, T] → p(t) = �ΦPObj (t) ∈ Rn, and the Eulerian velocities ⃗v(t, p(t)) = �ΦPObj ′(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The work for Obj and a Eulerian differential form α along �Φ is the sum of work of α of all particles, formally � PObj ∈Obj( � cPObj αPObj ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So with the associated motion Φt0(t, pt0) = �Φ(t, PObj) = p(t) = Φt0 pt0 (t) when pt0 = �Φ(t0, PObj), and with Ωt = �Φ(t, Obj), W t0 T (�Φ) := � pt0∈Ωt0 � T t=t0 α(t, Φt0 pt0 (t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v(t, Φt0 pt0 (t)) dt dΩt0 = � T t=t0 � pt∈Ωt α(t, pt)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v(t, pt) dΩt dt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2) (The last equality if Fubini theorem can be applied, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' if α is C0 and Φt0 is C1, Obj being bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') 154 155 M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Piola–Kirchhoff tensors Exercice M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 If α is a stationary and exact differential form, α = dU, then prove that � c dU = U(c(T)) − U(c(t0)) noted = ∆U (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3) only depends on the extremities c(t0) and c(T) of the curve c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' � c dU = � T t=t0 dU(c(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗c ′(t) dt = � T t=t0 d(U◦c) dt (t) dt = [U ◦ c]T t0 = U(c(T)) − U(c(t0)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Remark (continuum mechanics): An observer chooses a Euclidean dot product (·, ·)g = .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' •g .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' = .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' • .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (if (·, ·)g is imposed and implicit).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And if he chooses to represent a linear form αt(pt) with its (·, ·)g-Riesz representation vector ⃗ft(pt) (observer dependent), cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8), then � c α = � T t=t0 α(t, c(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗c ′(t) dt = � T t=t0 ⃗f • d⃗c = � T t=t0 ⃗f • ⃗v dt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4) M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 And its associated power density Definition: The power density of a differential form α along �Φ is the Eulerian function ψ := α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v : � � � � � C = � t∈[t0,T ] ({t} × Ωt) → R (t, p) → ψ(t, p) = α(t, p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v(t, p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5) And the power at t is Pt(�Φ) = P(t, �Φ) := � p∈Ωt ψ(t, p) dΩt = � p∈Ωt αt(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗vt(p) dΩt noted = P(t,⃗vt) = Pt(⃗vt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6) Remark: With a Euclidean dot product (·, ·)g, then with the (·, ·)g-Riesz representation vector ⃗f of α (observer dependent) we get ψ = ⃗f • ⃗v, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ψ(t, p) = ⃗f(t, p) •g ⃗v(t, p) (= (⃗f(t, p),⃗v(t, p))g), (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7) which gives P(t, �Φ) := � p∈Ωt ⃗f(t, p) • ⃗v(t, p) dΩt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Piola–Kirchhoff tensors Consider a regular Eulerian velocity field ⃗v, so d⃗v is an endomorphism (identified with a �1 1 � tensor).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then we need another endomorphism τ (identified with a �1 1 � to get the objective double contraction τ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='. d⃗v := Tr(τ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v), (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8) which means τ(t, p) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='. d⃗v(t, p) := Tr(τ(t, p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v(t, p)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Quantification: With a basis (⃗ei) at t and τ = � ij τ i j⃗ei ⊗ ej and d⃗v = � jk vj |k⃗ej ⊗ ek (the endomor- phisms have been written like �1 1 � tensors for calculation purpose), τ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗v = � ijk τ i jvj |k⃗ei ⊗ ek and τ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='. d⃗v = n � i,j=1 τ i jvj |i (objective value), (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9) see (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='32).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then choose a Euclidean dot product (·, ·)g, to be able to use the double matrix product τ : d⃗v := n � i,j=1 τ i jvi |j = [τ]|⃗e T : [d⃗v]|⃗e (subjective value).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10) M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Objective internal power for the stress: function of d⃗v Usual hypothesis for the internal stress in a material: At first order, the power density is of the type ψ = τ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='. d⃗v, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ψ(t, p) = τ(t, p) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='. d⃗v(t, p), ∀(t, p) ∈ C, (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11) thus the power at t is Pt(⃗vt) = � p∈Ωt ψ(t, p) dΩt = � p∈Ωt τ t(p) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='. d⃗vt(p) dΩt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12) 155 156 M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Piola–Kirchhoff tensors M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 The first Piola–Kirchhoff tensor The Piola–Kirchhoff approach consists in transforming Eulerian quantities into Lagrangian quantities to refer to the initial configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12) gives Pt(⃗vt) = � P ∈Ωt0 ψt(Φt0 t (P)) |Jt0 t (P)| dΩt0 = � P ∈Ωt0 τ t(Φt0 t (P)) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='. d⃗vt(Φt0 t (P)) Jt0 t (P) dΩt0 (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13) (the Jacobian Jt0 t (P) = det(F t0 t (P)) of Φt0 t at P is positive for a regular motion).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The Lagrangian velocity ⃗V t0(t, P) = ⃗vt(Φt0 t (P)) satisfies d⃗V t0 t (P) = d⃗vt(pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F t0 t (P) where pt = Φt0(t, P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus τ t(pt) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='. d⃗vt(pt) = τ(pt) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='. (d⃗V t0 t (P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F t0 t (P)−1) = (F t0 t (P)−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='τ(pt)) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='. d⃗V t0 t (P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14) Quantification: Choose a basis and a Euclidean dot product (·, ·)g, thus Pt(⃗vt) = � P ∈Ωt0 (Jt0 t (P)τ(pt)T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F t0 t (P)−T � �� � PKt0 t (P ) ) : d⃗V t0 t (P) dΩt0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='15) Definition M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 The first Piola–Kirchhoff (two point) tensor at P ∈ Ωt0, relative to t0, t and a basis (⃗ei), is the linear map PKt0 t (P) ∈ L(⃗Rn t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t ) defined by PKt0 t (P) = Jt0 t (P) σt(Φt0 t (P)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F t0 t (P)−T , where σ = τ T , (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16) abusively written PK = J σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F −T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='17) Hence Pt(⃗vt) = � Ωt0 PKt0 t (P) : d⃗V t0 t (P) dΩt0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='18) Remark M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 The Piola–Kirchhoff tensor is not that easy to master: Everything is quite simple in a Eulerian framework (the configuration at t where the laws are expressed to begin with), but then everything is made more complicated when expressed in an initial configuration (at t0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So, when the Piola–Kirchhoff tensor is used to introduce the Lie derivatives (Eulerian type), it makes the Lie derivative quite a mysterious mathematical object, see footnote page 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Remark M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Continuation of the remark: With the pull-backs, (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13) reads (Jt0 t (P) being positive) P(t, �Φ) = � pt∈Ωt ψt(pt) dΩt = � P ∈Ωt0 � (Φt0 t )∗ψt � (P) � (Φt0 t )∗dΩt � , (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='19) since ((Φt0 t )∗dΩt) = Jt0 t (P) dΩt0 and ((Φt0 t )∗ψt)(P) = ψt(pt) (scalar valued functions).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' It gives the Piola–Kirchhoff tensor (pull-back to the initial configuration) since (Φt0 t )∗(αt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗vt)(pt) = (αt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗vt)(Φt0 t (P)) = αt(Φt0 t (P)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗vt(Φt0 t (P)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 The second Piola–Kirchhoff tensor The first Piola–Kirchhoff tensor PK may confuse Eulerian and Lagrangian variables, linear maps and endomorphisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And PK(pt0) is not symmetric: It can’t be since PK(pt0) ∈ L(⃗Rn t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t ) is not an endomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' To get a symmetric tensor, the second Piola–Kirchhoff tensor is defined: Definition M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 The second Piola–Kirchhoff tensor is the endomorphism SKt0 t (P) ∈ L(⃗Rn t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t0) defined by, in short, SK = F −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='PK = JF −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F −T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='20) Full notation: SKt0 t (P) = (F t0 t (P))−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='PKt0 t (P) = Jt0 t (P)(F t0 t (P))−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='σt(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (F t0 t (P))−T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So if σt(p) ∈ L(⃗Rn t ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t ) is symmetric then SKt0 t (P) ∈ L(⃗Rn t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t0) is symmetric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 156 157 M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Classical hyper-elasticity: ∂W/∂F Thus, with the pull-back of the endomorphism d⃗vt ∈ L(⃗Rn t , ⃗Rn t ): ((Φt0 t )∗d⃗vt)(P) = F t0 t (P)−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗vt(pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F t0 t (P), (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='21) and with d⃗vt(pt) = d⃗V t0 t (P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F t0 t (P)−1 and σt(p) symmetric (so SKt0 t is symmetric), Pt(⃗vt) = � Ωt0 PKt0 t : d⃗V t0 t dΩt0 = � Ωt0 (F t0 t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='SKt0 t ) : d⃗V t0 t dΩt0 = � Ωt0 ([F t0 t ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [SKt0 t ]) : [d⃗V t0 t ]T dΩt0 = � Ωt0 SKt0 t : ((d⃗V t0 t )T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F t0 t ) dΩt0 = � Ωt0 SKt0 t : (F t0 t T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗V t0 t + d(⃗V t0 t )T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F t0 t 2 ) dΩt0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22) Remark M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 It is a “chosen time derivative” of SK(t) = J(t)F(t)−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='σ(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F(t)−T that leads to some kind of Lie derivative as explain in books in continuum mechanics, as in footnote page 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Classical hyper-elasticity: ∂W/∂F E and F are finite dimensional spaces, dim E = n, dim F = m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definition Reminder: Consider a function � W : � L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) → R L → � W(L) (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='23) Its differential d� W : � L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) → L(L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) L → d� W(L) � is defined at L by, in a direction M, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3), d� W(L)(M) = lim h→0 � W(L + hM) − � W(L) h noted = ∂� W ∂L (L)(M).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='24) Also written d� W(L)(M) = d� W(L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='M since d� W(L) is linear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Example M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 � W : F ∈ L(⃗Rn t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t ) → � W(F) ∈ R (real valued function), with F := F t0 t (pt0) the deformation gradient at ∈ Ωt0 at t at pt0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus d� W(F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='M = limh→0 � W (F +hM)−� W (F ) h =noted ∂� W ∂F (F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='M ∈ R is the derivative of � W at F in a direction M ∈ L(⃗Rn t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Example M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8 m = n, endomorphisms L ∈ L(⃗Rn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn), and � W(L) := Tr(L) (the trace).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Here dTr(L)(M) = limh→0 Tr(L+hM)−Tr(L) h = Tr(M) (the trace is linear), thus dTr(L) = Tr for all L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Expression with bases (quantification): The ∂W/∂Lij Let (⃗ai) and (⃗bi) be bases in E and F, with (πai) the (covariant) dual basis of (⃗ai).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let (Lij) i=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',m j=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',n = (⃗bi ⊗ πaj) be the associated basis in L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' the Lij are defined by Lij.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aℓ = δjℓ⃗bi for all i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', m and j, ℓ = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', n, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='41 (all the elements of the matrix [Lij]|⃗a,⃗b vanish except the element at the intersection of row i and column j which equals 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let L ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The derivation of � W at L in a direction Lij is d� W(L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='Lij = lim h→0 � W(L + hLij) − � W(L) h noted = ∂� W ∂Lij (L) (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='25) (usual notation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Associated matrix relative to the chosen bases: [d� W(L)]|Lij := [ ∂� W ∂Lij ] i=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',m j=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',n noted = [d� W(L)]|⃗a,⃗b ( noted = [d� W(L)ij]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='26) So if M = �m i=1 �n j=1MijLij then d� W(L)(M) = � ij Mij d� W(L)(Lij) since d� W(L) is linear, so d� W(L)(M) = n � i,j=1 ∂� W ∂Lij (L)Mij = [d� W(L)]|⃗a,⃗b : [M]|⃗a,⃗b, (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='27) double matrix contraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Duality notations: d� W(L)(M) = � ij ∂� W ∂Li j (L)M i j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 157 158 M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Classical hyper-elasticity: ∂W/∂F Remark M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9 The notation [M]| ⃗E,⃗e : [d� W(L)]| ⃗E,⃗e is just a matrix product, since M = L(⃗Rn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗ Rm) and d� W(L) ∈ L(L(⃗Rn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗ Rm);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) are different kinds of mathematical objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Example M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10 Continuing example M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8 with (⃗ei) = ( ⃗Ei): Then � W(L) = Tr(L) gives d� W(L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='M = Tr(M) = � i Mii, thus ∂� W ∂Lij (L) = δij for all i, j, thus [d� W(L)]|⃗e = [I] = [ ∂Tr ∂Lij (L)] (identity matrix), and we recover dTr(L)(M) = [ ∂Tr ∂Lij (L)] : [M] = [I] : [M] = �n i=1Mii = Tr(M).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Example M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11 Continuing example M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7: The meaning of the derivation ∂� W ∂Fij is intriguing: It is a derivation in the direction Lij =noted ⃗ei ⊗ πEj, where (⃗ei) is a basis at p = Φt0 t (P) in ⃗Rn t and (πEj) is the dual basis of a basis ( ⃗Ej) at P in ⃗Rn t0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ∂� W ∂Fij (F) = d� W(F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='Lij =noted d� W(F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (⃗ei ⊗ πEj) is a derivation “at the same time” in the directions ⃗ei (at (t, p)) and πEj (at (t0, P)), where F stands for F t0 t (P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Motions and ω-lemma Generalization of (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='23) to C1 functions, with UE open subset in a affine space which associated vector space is E, � W : � UE × L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) → R (P, L) → � W(P, L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='28) At P, let � WP (L) := � W(P, L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The differential d� WP (L) =noted ∂2� W(P, L) in a direction M ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) is ∂2� W(P, L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='M := d(� WP )(L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='M = lim h→0 � W(P, L + hM) − � W(P, L) h noted = ∂� W ∂L (P, L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='29) With a motion Φ := Φt0 t : Ωt0 → Ωt define f : � C1(Ωt0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Ωt) → C0(Ωt0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) Φ → f(Φ) := � W(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', dΦ(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' )), (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='30) a function of Φ which only depends on its first (covariant) gradient;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So, for all P ∈ Ωt0, f(Φ)(P) = � W(P, dΦ(P)) ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='31) (This kind of relation is generally deduced after application of the frame invariance principle, and the hypothesis of dependence on only the first order derivative dΦ = F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Lemma M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12 (ω-lemma) For all Φ, Ψ ∈ C1(Ωt0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Ωt), df(Φ)(Ψ) = ∂2� W(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', dΦ)(dΨ) noted = ∂� W ∂F (.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', dΦ)(dΨ) , (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='32) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', for all P ∈ Ωt0, df(Φ)(Ψ)(P) = ∂� W ∂F (P, dΦ(P))(dΨ(P)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' With bases ( ⃗Ei) and (⃗ei) in ⃗Rn t0 and ⃗Rn t and dΨ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Ej = �n i=1 ∂Ψi ∂Xj ⃗ei, we get df(Φ)(Ψ) = n � i,j=1 ∂� W ∂Fij (.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', dΦ) ∂Ψi ∂Xj (.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') noted = [ ∂� W ∂Fij ] : [ ∂Ψi ∂Xj ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='33) Marsden notations: df(Φ)(Ψ) = �n i,J=1 ∂� W ∂F i J ∂Ψi ∂XJ = [ ∂� W ∂F i J ] : [ ∂Ψi ∂XJ ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' C1(Ωt0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Ωt) is a vector space, so df(Φ)(Ψ) = limh→0 f(Φ+hΨ)−f(Φ) h ∈ C0(Ωt0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Ωt), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', for any P ∈ Ωt0 we have df(Φ)(Ψ)(P) = limh→0 f(Φ+hΨ)(P )−f(Φ)(P ) h = limh→0 � W (P,dΦ(P )+h dΨ(P ))−� W (P,dΦ(P )) h = d ⃗WP (dΨ(P), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='32) 158 159 M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Classical hyper-elasticity: ∂W/∂F M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Application to classical hyper-elasticity: PK = ∂W/∂F Let (·, ·)g be a unique Euclidean dot product in ⃗Rn t at all times t, and let ( ⃗Ei) and (⃗ei) be Euclidean bases at t0 and at t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let σt(p) = the Cauchy stress tensor at t at p = Φt0 t (P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let PK(P) = J(P) σt(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F −T (P) = the first Piola–Kirchhoff (two point) tensor at P, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Since PK depends on Φ, the full notation is PK = PK(Φ) given by PK(Φ)(P) = J(P) σt(Φ(P)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΦ(P)−T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='34) Definition M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13 If there exists a function � PK such that PK reads PK(Φ)(P) = � PK(P, dΦ(P)) (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='35) then � PK is called a constitutive function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (First order hypothesis: � PK only depends on dΦ = F the first order derivative of Φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Definition M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14 The material is hyper-elastic iff there exists a function � W : � Ωt0 × L(⃗Rn t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t ) → R (P, L) → � W(P, L) � such that (PK(Φ) =) � PK(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', dΦ) = ∂� W ∂F (.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', dΦ), written � PK = ∂� W ∂F , (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='36) that is, � PK(P, F(P)) = ∂� W ∂F (P, F(P)) for all P ∈ Ωt0, where F = dΦ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' With bases ( ⃗EI) and (⃗ei) in ⃗Rn t0 and ⃗Rn t , and (EI) the dual basis of ( ⃗EI), and PK = �n i,J=1PKi J⃗ei⊗EJ, [PK(Φ)]| ⃗E,⃗e = [� PK(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', F)]| ⃗E,���e = [∂� W ∂F (.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', F)]| ⃗E,⃗e, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [PKi J] = [ ∂� W ∂F i J (.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', F)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='37) Thus, for any (virtual) motion Ψ : Ωt0 → Ωt, with (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='32) and (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='27), � PK(dΦ)(dΨ) = ∂� W ∂F (dΦ)(dΨ) = � iJ ∂� W ∂F i J (F) ∂Ψi ∂XJ noted = [� PK] : [dΨ], (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='38) that is, � PK(dΦ)(dΨ)(P) = � iJ ∂� W ∂F i J (P, F t0 t (P)) ∂Ψi ∂XJ (P) for all P ∈ Ωt0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='15 With a unique Euclidean dot product (·, ·)g both in ⃗Rn t0 and ⃗Rn t , with Euclidean bases ( ⃗Ei) ∈ ⃗Rn t0 and (⃗ei) ∈ ⃗Rn t , and with (Ei) the dual basis of ( ⃗Ei), with C = F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F, prove (derivation in the direction ⃗ei ⊗ EJ): ∂C ∂F i J (F) = � K F i K ⃗EJ ⊗ EK + � K F i K ⃗EK ⊗ EJ (= dC(F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (⃗ei ⊗ EJ)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='39) ∂ √ C ∂F (F) = 1 2 �� C(F) �−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='∂C ∂F (F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='40) ∂ √ C ∂C = 1 2( √ C)−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='41) Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let F = � iJ F i J⃗ei ⊗ EJ, so F T = � Ij(F T )I j ⃗EI ⊗ ej = � Ij F j I ⃗EI ⊗ ej, and C = � IJ CI J ⃗Ei ⊗ EJ = F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F = � IJ � k(F T )I kF k J ⃗EI ⊗ EJ = � IJ � k F k I F k J ⃗EI ⊗ EJ = C(F), so CI J = � k F k I F k J = CI J(F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And C(F + h⃗ei ⊗ EJ) = (F + h⃗ei ⊗ EJ)T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (F + h⃗ei ⊗ EJ) = (F T + h ⃗EJ ⊗ ei).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (F + h⃗ei ⊗ EJ) = C(F) + h ( ⃗EJ ⊗ ei).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='F + h F T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (⃗ei ⊗ EJ) + h2 ⃗EJ ⊗ Ei = C(F) + h ( � K F i K ⃗EJ ⊗ EK + ��� K (F T )K i ⃗EK ⊗ EJ) + h2 ⃗EJ ⊗ EJ (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='42) Thus (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='39).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And C(F + h⃗ei ⊗ EJ) − C(F) = ( √ C(F + h⃗ei ⊗ EJ) + √ C(F)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ( √ C(F + h⃗ei ⊗ EJ) − √ C(F)) gives dC(F)(⃗ei ⊗ EJ) = 2 √ C(F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d √ C(F)(⃗ei ⊗ EJ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus ∂ √ C ∂F i J (F) = 1 2( � C(F))−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ∂C ∂F i J (F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (C + h⃗ei ⊗ ej) − C = ( √ C + h⃗ei ⊗ ej + √ C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ( √ C + h⃗ei ⊗ ej − √ C), divided by h, gives ⃗ei ⊗ ej = 2 √ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' limh→0 √ C+h⃗ei⊗ej− √ C h = 2 √ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d √ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='(⃗ei ⊗ ej), thus L = 2 √ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='(d √ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L) for all L (linearity of d √ C), thus d √ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L = 1 2( √ C)−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 159 160 M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Classical hyper-elasticity: ∂W/∂F M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Corollary (hyper-elasticity): SK = ∂W/∂C With the symmetry of the second Piola–Kirchhoff tensor SK = F −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='PK, we deduce SKt0 t (Φt0 t )(P) = � SKt0 t (P, F t0 t (P)) (constitutive function).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And we deduce the existence of a function � W : � Ωt0 × L(⃗Rn t0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn t0) → R (P, L) → � W(P, L) � such that, � SKt0 t (.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', C) = ∂� W ∂C (.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='43) (See Marsden and Hughes [12] for details and the thermodynamical hypotheses required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') N Conservation of mass Let ρ(t, p) = ρt(p) be the (Eulerian) mass density at t at p ∈ Ωt, supposed to be > 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The mass m(ωt) of a subset ωt ⊂ Ωt is m(ωt) = � p∈ωt ρt(p) dωt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1) Conservation of mass principle (no loss nor production of particles): For all ωt0 ⊂ Ωt0 and all t, m(ωt) = m(ωt0), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' � p∈ωt ρt(p) dωt = � P ∈ωt0 ρt0(P) dωt0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2) Proposition N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 If (N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2) then, with Jt0 t (P) = det(dΦt0 t (P)) (positive Jacobian the motion being sup- posed regular) and p = Φt0 t (P), ρt(p) = ρt0(P) Jt0 t (P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The change of variable formula gives � p∈ωt ρt(p) dωt = � P ∈ωt0 ρt(Φt0 t (P)) Jt0 t (P) dωt0, thus (N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2) gives ρt(Φt0 t (P))Jt0 t (P) = ρt0(P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proposition N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 ⃗v = ⃗v(t, pt) being the Eulerian velocity at (t, pt) ∈ R × Ωt, (N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2) gives Dρ Dt + ρ div⃗v = 0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ∂ρ ∂t + div(ρ⃗v) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4) Thus, for all ωt ⊂ Ωt, � ωt ∂ρ ∂t dωt = − � ∂ωt ρ⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗n dσt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2) gives d dt( � p(t)∈ωt ρ(t, p(t)) dωt) = 0, and Leibniz formula (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='41) applied for all ωt gives (N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then the Green formula � Ωt div(ρ⃗v) dΩt = � ∂Ωt ρ⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗n dσt gives (N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Use (N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3) to prove (N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' J(t, P)ρ(t, Φ(t, P)) = ρt0(P) give, with pt = Φ(t, P), ∂J ∂t (t, P) ρ(t, pt) + J(t, P) �∂ρ ∂t (t, pt) + dρ(t, pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΦ(t, P) � = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus ∂J ∂t (t, P) = J(t, P) div⃗v(t, p), cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='40), gives (N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 160 161 O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Framework O Balance of momentum O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Framework �Φ : [t0, T] × Obj → Rn is a regular motion, Ωt = �Φ(t, Obj), Γt = ∂Ωt (the boundary), ⃗v is the Eulerian velocity field, ωt is a regular sub domain in Ωt and ∂ωt is its boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' An observer chooses a Euclidean basis (⃗ei) (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' made with the foot or the metre) and call (·, ·)g the associated Euclidean dot product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And ⃗n(t, p) = ⃗nt(p) is the outer unit normal at t at p ∈ ∂ωt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' All the functions are assumed to be regular enough to validate the following calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let ρ : � � � � � � t∈[t0,T ] ({t} × Ωt) → R (t, pt) → ρ(t, pt) � � � � � (a mass density), let ⃗f : � � � � � � t∈[t0,T ] ({t} × Ωt) → ⃗Rn (t, pt) → ⃗f(t, pt) � � � � � (a body force density), and let ⃗T : � � � � � � t∈[t0,T ] ({t} × ∂ωt × ⃗ Rn t ) → ⃗Rn (t, pt,⃗n(pt)) → ⃗T(t, pt,⃗n(pt)) � � � � � (a surface force density) defined for any regular subset ωt ⊂ Ωt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Master balance law Definition O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 The balance of momentum is satisfied by ρ, ⃗f and ⃗T iff, for all regular open subset ωt in Ωt, d dt( � ωt ρ⃗v dΩt) = � ωt ⃗f dΩt + � ∂ωt ⃗T∂ωt dΓt (master balance law).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1) (It is in fact a linearity hypothesis, see theorem O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Thus, with (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='41), � ωt D(ρ⃗v) Dt + ρ⃗v div⃗v dΩt = � ωt ⃗f dΩt + � ∂ωt ⃗T∂ωt dΓt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2) And with the conservation of mass hypothesis, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4), we get � ωt ρD⃗v Dt dΩt = � ωt ⃗f dΩt + � ∂ωt ⃗T∂ωt dΓt, (O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3) with D⃗v Dt = ⃗γ = the Eulerian acceleration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Cauchy theorem ⃗T = σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗n (stress tensor σ) Theorem O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 (Cauchy first law: Cauchy stress tensor) If the master balance law (O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1) is satis- fied, then ⃗T is linear in ⃗n, that is, there exists a Eulerian endomorphism σ, identified to a Eulerian tensor σ ∈ T 1 1 (Ωt), called the Cauchy stress tensor, s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' on all ∂ωt, in short ⃗T = σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗n, (O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4) where ⃗n is the unit outward normal to ∂ωt (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ⃗T(t, pt) = σ(t, pt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗n(t, pt) for all t and pt ∈ ∂ωt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The proof is based on: Lemma O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Let ϕ : � Ω → R p → ϕ(p) � ∈ C1(Ω;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) and ψ : � Ω × ⃗R3 → R (p, ⃗w) → ψ(p, ⃗w) � ∈ C1(Ω, ⃗R3;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' If ∀ω open in Ω, � p∈ω ϕ(p) dΩ = � p∈∂ω ψ(p,⃗n(p)) dΓ (O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5) (no dependence on the curvature or on higher derivatives since at any p ∈ ∂ω, ψ only depends on ⃗n(p)), then ∃⃗k ∈ C1(Ω;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗R3) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ψ = (⃗k,⃗n)g, and ϕ = div⃗k, (O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ψ depends linearly on ⃗n, and ϕ is a divergence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 161 162 O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Cauchy theorem ⃗T = σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗n (stress tensor σ) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Lemma O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') (This proof is standard: We recall it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Let p ∈ Ω ⊂ R3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Consider the tetrahedral defined by its vertices p, p + (h1, 0, 0), p + (0, h2, 0) and p + (0, 0, h3), with hi > 0 for all i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (On each face of a tetrahedron, the unit normal vector is uniform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Let Σ1 the side which outer unit normal is − ⃗E1: It area is σ1 = 1 2h2h3 (square triangle).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Idem for Σ2 and Σ3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let Σ be the fourth side: its area is σ = 1 2 � h2 2h2 3 + h2 3h2 1 + h2 1h2 2 and its outer unit normal is ⃗n = 1 2σ(h2h3, h3h1, h1h2) (see exercise O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5), that is ⃗n = (n1, n2, n3) with ni = σi σ pour i = 1, 2, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The volume of the tetrahedral is 1 6h1h2h3 =noted ℓ3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let M := supp∈Ω |ϕ(p)|;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' We have M < ∞, since ϕ is continuous in Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then (O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6) give Mℓ3 ≥ | � ∂ωt ψ(p,⃗n(p)) dΓ|, so � ∂ωt ψ(p,⃗n(p)) dΓ = O(ℓ3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7) And ψ being continuous, the mean value theorem applied on Σi gives: There exists pi ∈ Σi s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' � Σi ψ(p,⃗n(p)) dΓ = σiψ(pi,⃗ni).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus � ∂ωt ψ(p,⃗n(p)) dΓ = � σ1ψ(p1, − ⃗E1) + σ2ψ(t, p2, − ⃗E2) + σ3ψ(p3, − ⃗E3) + σψ(p4,⃗n) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then, Ψ being continous, (O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7) gives σ1ψ(p1, − ⃗E1) + σ2ψ(p2, − ⃗E2) + σ3ψ(p3, − ⃗E3) + σψ(p4,⃗n) = O(ℓ3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8) We flatten the tetrahedron on the yz face by taking h2 = h3 =noted h and h1 = h2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus σ1 = 1 2h2, σ2 = o(h2), σ3 = o(h2), σ ∼ σ1, ℓ3 = 1 6h4, with ⃗n ∼ −⃗n1 = ⃗E1 and pi ∼ p;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then ψ(p, − ⃗E1) + ψ(p, + ⃗E1) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9) Idem with xz and xy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And for a fixed tetrahedron with h1, h2, h3 given, consider the smaller tetrahedron with εh1, εh2, εh3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then as ε → 0 (O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8) with (O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9) give ψ(p,⃗n) = − σi σ ψ(p, − ⃗E1) − σ2 σ ψ(p, − ⃗E2) − σ3 σ ψ(p, − ⃗E3) = 3 � i=1 niψ(p, ⃗Ei), since ni = σi σ pour i = 1, 2, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The same steps can be done for any (inclined) tetrahedron (or apply a change of variable to get back to the above tetrahedron).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus ψp is a linear map in ⃗np, that is, there exists a linear form αp s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ψp(⃗np) = αp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗np for any p ∈ ∂ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And the Riesz representation theorem gives: ∃⃗kp s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' αp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗np = (⃗kp,⃗np)g =noted ⃗kp • ⃗np.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Apply Lemma O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 component by component with ⃗ϕ = ρ D⃗v Dt − ⃗f = �n i=1ϕi⃗ei, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Corollary O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 With divσ := �n i=1(�n j=1 ∂σij ∂xj )⃗ei (definition of “the matrix divergence” see (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='65)), � � � ⃗f + divσ = ρD⃗v Dt in Ωt, σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗n = ⃗T on Γt (O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10) (matrix meaning).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (With duality notations, divσ := �n i=1(�n j=1 ∂σi j ∂xj )⃗ei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Apply the divergence Formula to (O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Consider a triangle T in R3 which vertices are A = (h1, 0, 0), B = (0, h2, 0), C = (0, 0, h3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Prove that ⃗n = (h2h3, h3h1, h1h2) is orthogonal to T and that σ = 1 2 � h2 2h2 3 + h2 3h2 1 + h2 1h2 2 is its area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Consider the parametric surface ⃗r(t, u) = A + t ⃗ AB + u ⃗ AC for t, u ∈ [0, 1] describing the triangle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus ⃗n = ∂⃗r ∂t ∧ ∂⃗r ∂u = ⃗ AB ∧ ⃗ AC = � � −h1 h2 0 � � ∧ � � −h1 0 h3 � � = � � h2h3 h3h1 h1h2 � � is orthonormal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And dσ = || ∂⃗r ∂t ∧ ∂⃗r ∂u||dudt = � h2 2h2 3 + h2 3h2 1 + h2 1h2 2dudt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus σ = � 1 t=0 � 1 u=0 dσ = � h2 2h2 3 + h2 3h2 1 + h2 1h2 2 is twice the aera of the triangle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 162 163 Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Tensorial product and multilinear forms P Balance of moment of momentum Definition P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 The balance of moment of momentum is satisfied by ρ, ⃗f and ⃗T iff for all regular sub-open set ωt ⊂ Ωt d dt � ωt ρ −−→ OM ∧ ⃗v dΩt = � ωt ρ −−→ OM ∧ ⃗f dΩt + � ∂ωt −−→ OM ∧ ⃗T dΓt, (P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1) equality called the master balance of moment of momentum law.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (This excludes e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Cosserat continua materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Theorem P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 (Cauchy second law.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') If the master balance law (so ⃗T = σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗n) and the master balance of moment of momentum law are satisfied then σ is symmetric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Standard proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Let ⃗x = −−→ OM = � i xi ⃗Ei, and ⃗T = � i Ti ⃗Ei = σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗n = � ij σijnj ⃗Ei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then (first component) (⃗x ∧ ⃗T)1 = x2T3 − x3T2 = x2(σ31n1 + σ32n2 + σ33n3) − x3(σ21n1 + σ22n2 + σ23n3) = (x2σ31 − x3σ21)n1 + (x2σ32 − x3σ22)n2 + (x2σ33 − x3σ23)n3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus � ∂ωt(⃗x ∧ ⃗T)1 dΓt = � ωt ∂(x2σ31−x3σ21) ∂x1 + ∂(x2σ32−x3σ22) ∂x2 + ∂(x2σ33−x3σ23) ∂x3 dΩt = � ωt x2(divσ)3 + x3(divσ)2 + σ32 − σ23 dωt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10) gives ρ D⃗v Dt − ⃗f = divσ, thus ⃗x ∧ (ρ⃗γ − ⃗f) = ⃗x ∧ divσ, so the first component of ⃗x ∧ (ρ⃗γ − ⃗f) is x2(divσ)3−x3(divσ)2, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus (P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1) gives � ωt σ32−σ23 dωt = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' True for all ωt, thus σ32−σ23 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Idem for the other components: σ is symmetric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Q Uniform tensors in Lr s(E) Uniform tensors enable to define without ambiguity the “objective contraction rules”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Uniform tensors are scalar valued multilinear functions acting on both vectors and linear forms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' NB: In classical mechanics courses, what is called a “tensor” generally not a tensor but a matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' you may encounter the expression “Euclidean tensor” which means: The matrix representation of “something” with respect to a Euclidean basis (based on the foot, metre,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') chosen by some observer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (An “Euclidean tensor” is a non-sense, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' can you define a “Euclidean vector”?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Tensorial product and multilinear forms Let A1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', An be n finite dimension vector spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And A∗ i = L(Ai;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) the set of linear forms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Tensorial product of functions Let f1 : A1 → R, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', fn : An → R be n functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Their tensorial product is the function f1 ⊗ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⊗ fn : A1 × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' × An → R defined by (separate variable function) (f1 ⊗ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⊗ fn)(⃗x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ⃗xn) = f1(⃗x1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='fn(⃗xn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1) (E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', n = 2 and A1 = A2 = R and (cos ⊗ sin)(x, y) = cos(x) sin(y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Tensorial product of linear forms: multilinear forms Let L(A1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', An;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) be the set of R-multilinear forms on the Cartesian product A1 × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' × An, that is, the set of the functions M : A1 × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' × An → R s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', for all i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', n, all ⃗xi, ⃗yi ∈ Ai and all λ ∈ R, M(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ⃗xi + λ⃗yi, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') = M(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ⃗xi, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') + λ M(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ⃗yi, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='), (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2) the other variables being unchanged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition: An elementary tensor is multilinear form M = ℓ1 ⊗ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='. ⊗ ℓn, with ℓi ∈ A∗ i for all i;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So ∀(⃗xi)i∈N∗ ∈ n � i=1 Ai, (ℓ1 ⊗ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⊗ ℓn)(⃗x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ⃗xn) = (ℓ1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗x1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='(ℓn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗xn) ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3) (The dot in ℓi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗xi is not an inner dot product: It is the duality “outer product” ℓi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗xi := ℓi(⃗xi), cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='45).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') 163 164 Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Uniform tensors in L0 s(E) Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Uniform tensors in L0 s(E) Let E be a real vector space, with dim(E) = n ∈ N∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In this section we consider the first overlay on E made of multilinear forms M on E, called the uniform tensors of type 0 s or of type �0 s � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', M ∈ L0 1(E) a linear form, M ∈ L0 2(E) an inner dot product, M ∈ L0 n(E) a determinant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Notations for quantification purposes: (⃗ei) is a basis in E, (πei) is its (covariant) dual basis (basis in E∗ = L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R)), (∂i) is its bidual basis (basis in E∗∗ = L(E∗;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definition of type �0 s � uniform tensors L0 0(E) := R, and if s ∈ N∗ then L0 s(E) := L(E × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' × E � �� � s times ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4) is called the set of uniform tensors of type �0 s � on E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Example: Type �0 1 � uniform tensor = linear forms A type �0 1 � uniform tensor is an element of L0 1(E) = L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) = E∗: It is a linear form ℓ ∈ L0 1(E) = E∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Quantification: With ℓi := ℓ(⃗ei) we have, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10), ℓ = n � i=1 ℓiπei, and [ℓ]|πe = ( ℓ1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ℓn ) noted = [ℓ]|⃗e (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5) (row matrix for a linear form).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Duality notations: (ei) is the covariant dual basis and ℓ = �n i=1ℓiei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus, if ⃗v ∈ E, ⃗v = �n i=1vi⃗ei, then ⃗v is represented by [⃗v]|⃗e = � � v1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' vn � � (column matrix for a vector), and the matrix calculation rules give ℓ(⃗v) = [ℓ]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗v]|⃗e = ( ℓ1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ℓn ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' � � v1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' vn � � = n � i=1 ℓivi noted = ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6) Duality notations: ⃗v = �n i=1vi⃗ei and ℓ(⃗v) = �n i=1ℓivi, and Einstein’s convention is satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Example: Type �0 2 � uniform tensor A type �0 2 � uniform tensor is an element of L0 2(E) = L(E, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R): It is a bilinear form T ∈ L(E, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Quantification: Let Tij := T(⃗ei,⃗ej).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then, with ⃗v = �n i=1vi⃗ei and ⃗w = �n i=1wi⃗ei, T(⃗v, ⃗w) = n � i,j=1 Tijviwj = [⃗v]T |⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[T]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗w]|⃗e, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' T = n � i,j=1 Tijπei ⊗ πej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7) Duality notations: T(⃗v, ⃗w) = �n i,j=1Tijviwj, and Einstein’s convention is satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' An elementary uniform tensor in L0 2(E) is a tensor T = ℓ ⊗ m, where ℓ, m ∈ E∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And so, for all ⃗v, ⃗w ∈ E, (ℓ ⊗ m)(⃗v, ⃗w) = (ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v)(m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8) Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Example: Determinant The determinant is a alternating �0 n � uniform tensor, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Uniform tensors in Lr s(E) In this section we consider an over-overlay on E: The multilinear forms acting on both vectors (∈ E) and functions ∈ E∗ (linear forms).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 164 165 Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Uniform tensors in Lr s(E) Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definition of type �r s � uniform tensors Let r, s ∈ N s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' r + s ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The set of multilinear forms Lr s(E) := L(E∗ × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' × E∗ � �� � r times , E × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' × E � �� � s times ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9) is called the set of uniform tensors of type �r s � on E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The case r = 0 has been considered at § Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' When r ≥ 1, a tensor T ∈ Lr s(E) is a functional: Its domain of definition contains a set of functions (the set E∗ = L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Example: Type �1 0 � uniform tensor: Identified with a vector A uniform �1 0 � tensor is a element T ∈ L1 0(E) = L(E∗;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) = L(L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) = E∗∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' With the natural canonical isomorphism J : � E → E∗∗ = L1 0(E) ⃗w → J (⃗w) = w, defined by w(ℓ) := ℓ(⃗w), ∀ℓ ∈ E∗, (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10) cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9) and prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5, w noted = ⃗w, so w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='ℓ noted = ⃗w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='ℓ (= ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11) So a �1 0 � type uniform tensor w is identified (natural canonical) to the vector ⃗w = J −1(w).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Interpretation: E∗∗ is the set of directional derivatives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Indeed, if E is an affine space, if E is the associated vector space, if p ∈ E, and if f is a differentiable function at p, then w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='df(p) =(Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10) df(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w is the directional derivative along ⃗w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Remark: In differential geometry, w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='df is written ⃗w(f), so ⃗w(f)(p) := df(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w, the definition of a vector being a directional derivative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Quantification: For all i, j, ∂i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='πej = δij = πej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ei, thus ∂i = J (⃗ei) noted = ⃗ei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12) Duality notations: ∂i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='ej = δj i = ej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', if f is a C1 function then df(p) = �n i=1f|i(p) πei (= �n i=1f|i(p) ei) and ∂i(df(p)) = df(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ei = f|i(p) noted = ∂i(f)(p) noted = ⃗ei(f)(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13) Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Example: Type �1 1 � uniform tensor An elementary uniform tensor in L1 1(E) is a tensor T = u ⊗ β, where u ∈ E∗∗ and β ∈ E∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And, with ⃗u = J−1(u) ∈ E, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10), we also write T = ⃗u ⊗ β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus, for all ℓ ∈ E∗ and ⃗w ∈ E (u ⊗ β)(ℓ, ⃗w) = u(ℓ)β(⃗w) = ℓ(⃗u)β(⃗w) noted = ⃗u(ℓ)β(⃗w) noted = (⃗u ⊗ β)(ℓ, ⃗w).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14) Quantification: Let T(πei,⃗ej).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So T = n � i,j=1 Tij ⃗ei ⊗ πej, and [T]|⃗e = [Tij], (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='15) [T]|⃗e = [Tij] being the matrix of T relative to the basis (⃗ei).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Duality notations: T(ei,⃗ej) = T ij, [T]|⃗e = [T ij], T = �n i,j=1T ij⃗ei ⊗ ej, and Einstein’s convention is satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus with ℓ ∈ E∗, ℓ = �n i=1ℓiei ∈ E∗, and ⃗w ∈ E, ⃗w = �n i=1wi⃗ei ∈ E, (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='15) gives T(ℓ, ⃗w) = n � i,j=1 Tij⃗ei(ℓ)πej(⃗w) = n � i,j=1 Tijℓiwj = [ℓ]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[T]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗w]|⃗e (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16) ([ℓ]|⃗e is a row matrix).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Duality notations: T(ℓ, ⃗w) = �n i,j=1T ijℓiwj and Einstein convention is satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 165 166 Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exterior tensorial products Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Example: Type �1 2 � uniform tensor The same steps are applied to any tensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', if T ∈ L1 2(E), then with duality notations, T ijk = T(ei,⃗ej,⃗ek) and T = n � i,j,k=1 T i jk⃗ei ⊗ ej ⊗ ek, and T(ℓ, ⃗u, ⃗w) = n � i,j,k=1 T i jkℓiujwk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='17) Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Exterior tensorial products Let T1 ∈ Lr1 s1(E) and T2 ∈ Lr2 s2(E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Their tensorial product is the tensor T1 ⊗ T2 ∈ Lr1+r2 s1+s2(E) defined by (T1 ⊗ T2)(ℓ1,1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ℓ2,1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ⃗u1,1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ⃗u2,1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') := T1(ℓ1,1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ⃗u1,1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=')T2(ℓ2,1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ⃗u2,1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='18) Particular case: with λ ∈ L0 0(E) = R and T ∈ Lr s(E), λ ⊗ T = T ⊗ λ := λT ∈ Lr s(E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='19) Example Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 let T1, T2 ∈ L1 1(E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Quantification: Let T1 = �n i,j=1(T1)i j⃗ei ⊗ ej and let T2 = �n k,m=1(T2)k m⃗ek ⊗ em;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then T1 ⊗ T2 = �n i,j,k,m=1(T1)i k(T2)j m⃗ei ⊗ ⃗ej ⊗ ek ⊗ em ∈ L2 2(E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Remark Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Alternative definition: T1 �⊗T2 := �n i,j,k,m=1(T1)i j(T2)k m⃗ei ⊗ ej ⊗ ⃗ek ⊗ em ∈ L(E∗, E, E∗, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And we get back to the previous definition thanks to the natural canonical isomorphism �J : L(E∗, E, E∗, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) → L(E∗, E∗, E, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) = L2 2(E) defined by �J( �T) = T where T(ℓ, m,⃗v, ⃗w) = �T(ℓ,⃗v, m, ⃗w).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Contractions Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Contraction of a linear form with a vector Let ℓ ∈ L0 1(E) = E∗ and ⃗w ∈ E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Their contraction is the value ℓ(⃗w) linearity = ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w noted = ⃗w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='20) And with a basis (⃗ei) and its dual basis (πei), ℓ = �n i=1ℓiπei and ⃗w = �n i=1wi⃗ei give ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w = n � i=1 ℓiwi = [ℓ]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗w]|⃗e = n � i=1 wiℓi = ⃗w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='ℓ = Tr(⃗w ⊗ ℓ), (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='21) where Tr is the objective trace operator Tr : L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E) ≃ L1 1(E) → R (defined by Tr(⃗ei ⊗ πej) = δi j).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Duality notations: ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w = �n i=1ℓiwi, and Einstein convention is satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Use the change of coordinate formulas to prove that the computation ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w in (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='21) gives a result independent of the basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let P be the change of basis matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So [⃗w]new = P −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗w]old and [ℓ]new = [ℓ]old.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='28), thus [ℓ]new.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗w]new = ([ℓ]old.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (P −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗w]old) = [ℓ]old.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P −1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗w]old = [ℓ]old[⃗w]old (= ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Contraction of a �1 1 � tensor and a vector Let ℓ ∈ E∗ and ⃗u ∈ E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The contraction of the elementary tensor ⃗w ⊗ ℓ ∈ L1 1(E) with ⃗u is defined by: (⃗w ⊗ ℓ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u ���� contraction = (ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u)⃗w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22) Thus, if (⃗ei) is a basis in E and (πei) is the dual basis, and T = �n i,j=1Tij⃗ei ⊗ πej ∈ L1 1(E) and ⃗u = �n j=1uj⃗ej ∈ E, then T = n � i,j=1 Tij⃗ei ⊗ ej =⇒ T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u = n � i,j=1 Tijuj j⃗ei (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='23) because πej(⃗u) = uj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Duality notations: T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u = �n i,j=1T i juj⃗ei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 166 167 Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Contractions Then, with the natural canonical isomorphism (L1 1(E) =) L(E, E∗;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) ≃ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E), see (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7), any endomorphism L ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E) defined by L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej = �n i=1Lij⃗ei can be written, for calculation purpose, �L = n � i,j=1 Lij⃗ei ⊗ πej noted = L, which means L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22) = n � i=1 Lijuj⃗ei (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='24) when ⃗u = � i uj⃗ej, since πej(⃗u) = uj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Duality notations: L = �n i,j=1Lij⃗ei ⊗ ej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Contractions of uniform tensors More generally, the contraction of two tensors, if meaningful, is defined thanks to (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='20): Let T1 ∈ Lr1 s1(E), T2 ∈ Lr2 s2(E), ℓ ∈ E∗ and ⃗u ∈ E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 The objective contraction of T1 ⊗ ℓ ∈ Lr2 s2+1(E) and ⃗u ⊗ T2 ∈ Lr2+1 s2 (E) is the tensor (T1 ⊗ ℓ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (⃗u ⊗ T2) ∈ Lr1+r2 s1+s2 given by (T1 ⊗ ℓ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (⃗u ���� contraction ⊗T2) := (ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u) T1 ⊗ T2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='25) In particular (T1 ⊗ ℓ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u = (ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u) T1 (as in (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22)), and ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (⃗u ⊗ T2) = (ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u) T2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And the objective contraction of T1 ⊗ ⃗u ∈ Lr2+1 s2 (E) and ℓ ⊗ T2 ∈ Lr2 s2+1(E) is the tensor (T1 ⊗ ⃗u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (ℓ ⊗ T2) ∈ Lr1+r2 s1+s2 given by (T1 ⊗ ⃗u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (ℓ ⊗ T2) = (⃗u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='ℓ) T1 ⊗ T2 (= (ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u) T1 ⊗ T2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='26) Quantification with a basis (⃗ei), examples to avoid cumbersome notations: Example Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Let T ∈ L1 1(E) = L1 0+1(E), T = �n i,j=1T i j⃗ei ⊗ ej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' With ⃗w ∈ E ∼ E∗∗ = L1 0(E), ⃗w = �n j=1wj⃗ej, (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='25) gives T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w ∈ L1 0(E) ∼ E and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w = n � i,j=1 T i jwj⃗ei, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w]|⃗e = [T]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗w]|⃗e (column matrix).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='27) (Einstein’s convention is satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Indeed, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w = �n i,j,k=1T i jwk(⃗ei ⊗ ej).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ek = �n i,j,k=1T i jwk⃗ei(ej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ek) = �n i,j,k=1T i jwk⃗ei(δj k) = �n i,j=1T i jwj⃗ei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' With ℓ ∈ E∗ = L0 1(E), ℓ = �n i=1ℓiei, (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='25) gives ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='T ∈ L0 1(E) = E∗ and ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='T = n � i,j=1 ℓiT i jej, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='T]|⃗e = [ℓ]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [T]|⃗e (row matrix).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='28) (Einstein’s convention is satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Indeed ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='T = (�n i=1ℓiei).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (�n j,k=1T k j ⃗ek⊗ej) = �n i,j,k=1ℓiT k j (ei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ek)ej = �n i,j=1ℓiT i jej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Example Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 Let S, T ∈ L1 1(E), S = �n i,k=1Si k⃗ei ⊗ ek and T = �n j,k=1T k j ⃗ek ⊗ ej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='T = n � i,j,k=1 Si kT k j ⃗ei ⊗ ej, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='T]|⃗e = [S]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [T]|⃗e (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='29) (Einstein’s convention is satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Indeed S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='T = (�n i,k=1Si k⃗ei ⊗ ek).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (�n j,m=1 T m j ⃗em ⊗ ej) = �n i,j,k,m=1Si kT m j ⃗ei(ek.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗em) ⊗ ej = �n i,j,k=1Si kT k j ⃗ei ⊗ ej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Example Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 Let T ∈ L1 2(E), T = �n i,j,k=1T i jk⃗ei ⊗ ej ⊗ ek, and ⃗u, ⃗w ∈ E ∼ L1 0(E), ⃗w = �n i=1wi⃗ei and ⃗u = �n i=1ui⃗ei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w = n � i,j,k=1 T i jkwk⃗ei ⊗ ej ∈ L1 1(E), and (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u = n � i,j,k=1 T i jkwkuj⃗ei noted = T(⃗u, ⃗w).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='30) (Einstein’s convention is satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') So [T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w]|⃗e = [�n k=1T i jkwk] i=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',n j=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=',n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And with ℓ ∈ E∗, ℓ = �n i=1ℓiei, ((T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='ℓ = n � i,j,k=1 T i jkwkujℓi = T(ℓ, ⃗u, ⃗w) = ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='T(⃗u, ⃗w) = ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='31) 167 168 Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Contractions Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Objective double contractions of uniform tensors Definition Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8 Let S, T ∈ L1 1(E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And let (⃗ei) be a basis in E, (ei) its dual basis, S = �n i,j=1Si j⃗ei ⊗ ej and T = �n i,j=1T i j⃗ei ⊗ ej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The double objective contraction S 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='. T of S and T is defined by S 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='. T = n � i,j=1 Si jT j i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='32) (Einstein convention is satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Proposition Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9 S 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='. T defined in (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='32) is an invariant: It is the trace Tr(LS ◦ LT ) of the endo- morphisms LS, LT ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E) naturally canonically associated to S and T (given by ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='LS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u := S(ℓ, ⃗u) and ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='LT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u := T(ℓ, ⃗u) for all (⃗u, ℓ) ∈ E × E∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So the real value �n i,j=1Si jT j i has the same real value regardless of the chosen basis (⃗ei).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Which is not the case of the term to term matrix multiplication S : T = �n i,j=1Si jT i j, see next § Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 and example Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let (⃗ai) and (⃗bi) be two bases and P = [P i j] be the transition matrix from (⃗ai) to (⃗bi), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ⃗bj = �n i=1P i j⃗ai for all j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let Q = [Qi j] := P −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then bi = �n i=1Qi jai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let S = � ij(Sa)i j⃗ai ⊗ aj = � ij(Sb)i j⃗bi ⊗ bj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So [(Sb)i j] = P −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [(Sa)i j].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P (change of basis formula for �1 1 � tensors identified with endomorphisms), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Sb)i j = � km Qi k(Sa)k mP m j for all i, j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Idem with T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus � i,j(Sb)i j(Tb)j i = � i,j,k,m,α,β Qi k(Sa)k mP m j Qj α(Ta)α βP β i = � i,j,k,m,α,β(Sa)k m(Ta)α βP β i Qi kP m j Qj α = � k,m,α,β(Sa)k m(Ta)α βδβ k δm α = � k,m(Sa)k m(Ta)m k .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10 More generally, the objective double contractions S 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='. T of uniform tensors, is obtained by applying the objective simple contraction twice consecutively, when applicable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', T1 ⊗ ℓ1,1 ⊗ ℓ1,2 and ⃗u2,1 ⊗ ⃗u2,2 ⊗ T2 give (T1 ⊗ ℓ1,1 ⊗ ℓ1,2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (⃗u2,1 � �� � first ⊗⃗u2,2 ⊗ T2) = (ℓ1,2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u2,1)(T1 ⊗ ℓ1,1) ⊗ (⃗u2,2 � �� � second ⊗T2) = (ℓ1,2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u2,1)(ℓ1,1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u2,2) T1 ⊗ T2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='33) Example Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11 Let S ∈ L1 2(E), T ∈ L2 1(E), S = �n i,j,k=1Si jk⃗ei ⊗ej ⊗ej, T = �n α,β,γ=1 T αβ γ ⃗eα ⊗⃗eβ ⊗eγ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='T = n � i,j,k,β,γ=1 Si jkT kβ γ ⃗ei ⊗ ej ⊗ ⃗eβ ⊗ eγ, and S 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='. T = n � i,j,k,γ=1 Si jkT kj γ ⃗ei ⊗ eγ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='34) (Einstein’s convention is satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Exercice Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12 If S ∈ L(E, F;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R), T ∈ L(F, G;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) and U ∈ L(G, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) then prove S 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='. (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='U) = (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='T) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='. U = (U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='S) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='. T (circular permutation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='35) Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' If S = � Si j⃗ai ⊗ bj, T = � T i j⃗bi ⊗ cj and U = � U i j⃗ci ⊗ aj, then T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='U = � T i kU k j ⃗bi ⊗ aj, thus S 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='. (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='U) = � Si mT m k U k i , and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='T = � Si kT k j ⃗ai ⊗ cj, so (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='T) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='. U = � Si kT k mU m i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And the second equality thanks to the symmetry of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='. , i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='T) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='. U = U 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='. (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='T) = (U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='S) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='. T with the previous calculation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' We define in the same way the triple objective contraction (apply the simple contraction three times consecutively).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', with (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='34) we get S 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' T = n � i,j,k=1 Si jkT kj i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='36) (Einstein’s convention is satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') 168 169 Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Kronecker (contraction) tensor, trace Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Non objective double contraction: Double matrix contraction The engineers often use the double matrix contraction of second order tensors defined by (term to term multiplication): If S = [Sij] = [Si j] and T = [Tij] = [T i j] then S : T := n � i,j=1 SijTij = n � i,j=1 Si jT i j noted = Tr(S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='T T ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='37) Einstein’s convention is not satisfied, and the result is observer dependent for associated endomorphism: Example Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13 Let (⃗ei) be a basis, let S ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E) given by [S]⃗e = � 0 4 2 0 � (so S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗e1 = 2⃗e2 and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗e2 = 4⃗e1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then the double matrix contraction (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='37) gives S : S = [S]⃗e : [S]⃗e = 4 ∗ 4 + 2 ∗ 2 = 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='38) Change of basis: let ⃗b1 = ⃗e1 and ⃗b2 = 2⃗e2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The transition matrix from (⃗ei) to (⃗bi) is P = � 1 0 0 2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus [S]⃗b = P −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [S]⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P = � 1 0 0 1 2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' � 0 8 2 0 � = � 0 8 1 0 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus S : S = [S]⃗b : [S]⃗b = 8 ∗ 8 + 1 ∗ 1 = 65 ̸= 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='39) To be compared with the double objective contraction: [S]⃗e 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='. [S]⃗e = 4∗2+2∗4 = 16 = [S]⃗b 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='. [S]⃗b = S 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='. S (observer independent result = objective result).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So it is absurd to use S : S (double matrix contraction) if you need objectivity: Recall that the foot is the international vertical unit in aviation, and thus the use of the double objective contraction is vital, while the use of the double matrix contraction can be fatal (really).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Also see the Mars climate orbiter probe crash.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14 Let S ∈ L0 2(E) (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' a metric), let (⃗ai) be a Euclidean basis in foot, and let (⃗bi) = (λ⃗ai) be the related euclidean basis in metre (change of unit).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Give [S]|⃗a : [S]|⃗a and [S]|⃗b : [S]|⃗b and compare.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (The simple and double objective contractions are impossible here since S and T are not compatible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let S = �n i,j=1Sa,ijai ⊗ aj = �n i,j=1Sb,ijbi ⊗ bj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Since (⃗bi) = (λ⃗ai) we have bi = 1 λai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus �n i,j=1Sa,ijai ⊗ aj = �n i,j=1Sa,ijλ2bi ⊗ bj, thus λ2Sa,ij = Sb,ij.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus [S]|⃗b : [S]|⃗b = n � i,j=1 (Sb,ij)2 = λ4 n � i,j=1 (Sa,ij)2 = λ4[S]|⃗a : [S]|⃗a, (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='40) with λ4 ≥ 100: Quite a difference isn’t it?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 Kronecker (contraction) tensor, trace Definition Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='15 The Kronecker tensor is the �1 1 � uniform tensor δ ∈ L1 1(E) defined by ∀(ℓ, ⃗u) ∈ E∗ × E, δ(ℓ, ⃗u) := ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='41) And the Kronecker symbols relative to a basis (⃗ei) are the reals defined by, calling (πei) the dual basis, ��ij := δ(πei,⃗ej) = � 1 if i = j, 0 if i ̸= j, � i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' δ := n � i=1 πei ⊗ ei, [δ] = [δj] = [I] (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='42) (identity matrix whatever the basis).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Duality notations: δi j := δ(ei,⃗ej), δ := �n i=1 ⃗ei ⊗ ei and [δ] = [δi j].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16 The trace of a �1 1 � uniform tensor T ∈ L1 1(E) is � Tr(T) = δ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='. T (= Tr(LT )) (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='43) (with the natural canonical isomorphism T ∈ L1 1(E) ≃ LT ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E) given by T(ℓ,⃗v) := ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='LT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus � Tr(T) = �n i=1T ii.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In particular � Tr(δ) = n, and � Tr(⃗v ⊗ ℓ) = � i viℓi = ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v when ⃗v = � i vi⃗ei and ℓ = � j ℓjej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 169 170 R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Introduction, module, derivation R Tensors in T r s (U) R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Introduction, module, derivation Let A and B be any sets, and let F(A;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' B) be the set of functions A → B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The “plus” inner operation and the “dot” outer operation are defined by, for all f, g ∈ F(A;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' B), all λ ∈ R and all p ∈ A, � (f + g)(p) := f(p) + g(p), and (λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='f)(p) := λ f(p), λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='f noted = λf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1) (F(A;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' B), +, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', R) is thus a vector space on the field R (see any elementary course) called F(A;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' But the field R is “too small” to define a tensor which can be seen as “a linear tool that satisfies the change of coordinate system rules”: Example R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Fundamental counter-example: Derivation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let U be an open set in Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The derivation d : ⃗w ∈ C1(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn) → d⃗w ∈ C0(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' L(⃗Rn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn)) is R-linear: In particular d(λ⃗w) = λ(d⃗w) for all λ ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='but d doesn’t satisfy the change of coordinate system rules, see (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='35).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So a derivation it not a tensor (it is a “spray”, see Abraham–Marsden [1]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In fact, one requirement for T to be a tensor is, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' with T = ⃗w a vector field: For all ϕ ∈ C∞(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R), and all ⃗w ∈ Γ(U) (C∞-vector field), T(ϕ⃗w) = ϕ T(⃗w).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2) While d(ϕ⃗w) ̸= ϕ d(⃗w), because d(ϕ⃗w) = ϕ d⃗w + dϕ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3) Thus the elementary R-linearity requirement “T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (λ⃗w) = λ(T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w) for all λ ∈ R is not sufficient to charac- terize a tensor: The R-linearity has to be replaced by the C∞(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R)-linearity, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus we will have to replace a real vector space (V, +, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', R) over the field R with the “module” (V, +, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', C∞(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R)) over the ring C∞(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R), which mainly amounts to consider (R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1) for all λ = ϕ ∈ C∞(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Remark: The use of a module is very similar to the use of a vector space, but for the use of the inverse: all real λ ̸= 0 has a multiplicative inverse in R (namely 1 λ), but a function f ∈ C∞(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' “f ̸= 0 and f vanishes at one point” doesn’t have a multiplicative inverse in C∞(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Field of functions and vector fields Framework of classical mechanics: U is an open set in an affine space E which associated vector is E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And the definition of tensors is done at a fixed time t (concerns the space variables).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' As before, the approach is first qualitative, then quantitative with a basis (⃗ei(p)) and its dual basis (πei(p)) = (ei(p)), at any p ∈ E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Field of functions Let f ∈ C∞(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) be a function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The associated function field is �f : � U → U × R p → �f(p) := (p;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' f(p)), (R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4) and p is called the base point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So Im �f = {(p;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' f(p)) : p ∈ U} is the graph of f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition: T 0 0 (U) := { �f : f ∈ C∞(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R)} = {field of functions} = the set of �0 0 � type tensor on U, (R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5) or the set of tensors of order 0 on U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Abusive short notations (to lighten the writings): �f(p) noted = f(p), and T 0 0 (U) noted = C∞(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R), (R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6) but keep the base point in mind (no ubiquity gift).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In T 0 0 (U), the internal sum is defined by, for all �f, �g ∈ T 0 0 (U) with �f(p) = (p;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' f(p)) and �g(p) = (p;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' g(p)), ( �f + �g)(p) := (p;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (f + g)(p)) (= (p;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' f(p) + g(p))), (R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7) and the external multiplication on the ring C∞(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) is defined by, for all ϕ ∈ C∞(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R), (ϕ �f)(p) := (p;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (ϕf)(p)) (= (p;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ϕ(p)f(p))) (R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8) (the base point p remains unchanged).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus (T 0 0 (U), +, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') is a module over the ring C∞(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 170 171 R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Differential forms R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Vector fields Let ⃗w ∈ C∞(U, E) be a vector valued function (at least Lipschitzian, to get integral curves, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Cauchy– Lipschitz theorem).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The associated vector field is �⃗w : � U → U × E p → �⃗w(p) = (p;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗w(p)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9) So Im�⃗w = {(p;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗w(p)) : p ∈ U} is the graph of ⃗w, and the definition of �⃗w tells that the vector ⃗w(p) has to be drawn at p (the base point).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Abusive short notation: �⃗w(p) noted = ⃗w(p) instead of �⃗w(p) = (p;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗w(p)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10) It lightens the notations, but keep the base point in mind.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let Γ(U) := the set of vector fields on U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11) More precisely, we will use the following full definition of vector fields (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Abraham–Marsden [1]): A vector field is built from tangent vectors to curves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' It makes sense on non planar surfaces, and more generally on differential manifolds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Differential forms The basic concept is that of vector fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A first over-layer is made of differential forms (which “measure vector fields”): Definition R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Let α � U → E∗ p → α(p) � (so α(p) is a linear form at p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The associated differential form (also called a 1-form) is “the field of linear forms” defined by �α : � U → U × E∗ p → �α(p) = (p;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' α(p)) ( = “a pointed linear form at p”).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12) And p is called the base point, and Im�α = {(p;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' α(p)) : p ∈ U} is the graph of α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus, if �α ∈ Ω1(U) (differential form) and �⃗w ∈ Γ(U) (vector field), then �α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='�⃗w ∈ T 0 0 (U) (field of scalar valued functions) satisfies �α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='�⃗w : � U → U × R p → (�α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='�⃗w)(p) = (p;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w)(p)) = (p;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' α(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w(p)) ∈ U × R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13) Short notation: �α(p) noted = α(p), instead of �α(p) = (p;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' α(p)), (R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14) but keep the base point in mind.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And Ω1(U) := the set of differential forms U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='15) R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Tensors A second over-layer is introduced with the tensors with are “functions defined on vector fields and on differential forms” (which “measure vector fields and differential forms”).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let r, s ∈ N, r+s ≥ 1, and let T : � U → Lr s(E) p → T(p) � (so T(p) is a uniform �r s � tensor for each p, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And consider the associated function �T : � U → U × Lr s(E) p → �T(p) = (p;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' T(p)) (R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16) Abusive short notation: �T(p) noted = T(p) instead of �T(p) = (p;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' T(p)), (R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='17) but keep the base point in mind.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 171 172 R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' First Examples Definition R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 (Abraham–Marsden [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') �T is a tensor of type �r s � iff T is C∞(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R)-multilinear (not only R-multilinear), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', for all f ∈ C∞(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R), all z1, z2 vector field or differentiable form where applicable, and all p ∈ U, � T(p)(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', z1(p) + z2(p), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') = T(p)(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', z1(p), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') + T(p)(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', z2(p), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='), and T(p)(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', f(p)z1(p), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') = f(p) T(p)(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', z1(p), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='), (R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='18) written in short � T(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', z1 + z2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') = T(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', z1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') + T(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', z2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='), and T(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', fz1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') = f T(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', z1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='19) And T r s (U) := the set of �r s � type tensors on U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='20) (Recall: T 0 0 (U) := C∞(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) the set of function fields, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Remark R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Definition in differential geometry lessons: A tensor is a section of a certain bundle over a manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' For classical mechanics, definition R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 gives an equivalent definition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 First Examples R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Type �0 1 � tensor = differential forms If T ∈ T 0 1 (U) then T(p) ∈ E∗, so T = α ∈ Ω1(U) is a differential form: T 0 1 (U) ⊂ Ω1(U).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Converse: Does a differential form α ∈ Ω1(U) defines a �0 1 � type tensor on U?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Yes: We have to check (R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='18), which is trivial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So α ∈ T 0 1 (U), so Ω1(U) ⊂ T 0 1 (U).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus T 0 1 (U) = Ω1(U).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='21) R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Type �1 0 � tensor (identified to a vector field) Let T ∈ T 0 1 (U), so T(p) ∈ L1 0(E) = L(E∗;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) = E∗∗ for all p ∈ U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus, thanks to the natural canonical isomorphism E∗∗ ≃ E, T(p) can be identified to a vector, thus T 0 1 (U) ⊂ Γ(U).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Converse: Does a vector field ⃗w ∈ Γ(U) defines a �1 0 � type tensor on U?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Yes: We have to check (R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='18), which is trivial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So Γ(U) ⊂ T 1 0 (U).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus T 1 0 (U) ≃ Γ(U).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22) R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 A metric is a �0 2 � tensor Let T ∈ T 0 2 (U), so T(p) ∈ L0 2(E) for all p ∈ U, and T(⃗u, ⃗w) ∈ T 0 0 (U) for all ⃗u, ⃗w ∈ Γ(U).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 A metric g on U is a �0 2 � type tensor on U such that, for all p ∈ E, g(p) =noted gp is an inner dot product on E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 �1 1 � tensor, identification with fields of endomorphisms Let T ∈ T 1 1 (U), so T(p) ∈ L1 1(E) for all p ∈ U, and T(α, ⃗w) ∈ T 0 0 (U) for all α ∈ Ω1(U) and ⃗w ∈ Γ(U) (so T(p)(α(p), ⃗w(p)) ∈ R for all p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The associated field of endomorphisms on U is �LT : � U → U × L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E) p → �LT (p) = (p, LT (p)) � where LT (p) is identified with T(p) thanks to the natural canonical isomorphism L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E) ≃ L(E∗, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) = L1 1(E) given by ∀ℓ ∈ E∗, ∀⃗w ∈ E, ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (LT (p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w) = T(p)(ℓ, ⃗w).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='23) R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 Unstationary tensor Let t ∈ [t1, t2] ⊂ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let (Tt)t∈[t1,t2] be a family of �r s � tensors, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then T : t → T(t) := Tt is called an unstationary tensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And the set of unstationary tensors is also noted T r s (U).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', a Eulerian velocity field is a �1 0 � unstationary vector field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 172 173 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Differential S Differential, its eventual gradients, divergences S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Differential The definition of the differential of a function is observer independent: All observers have the same definition (qualitative: no man made tool required, like a basis or an inner dot product).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Framework Classical Framework: E are F affine spaces associated with vector spaces E and F, and ||.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='||E and ||.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='||F are norms in E and F such that (E, ||.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='||E) and (F, ||.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='||F ) are complete (we need “limit that stay in the space as h → 0”, ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' U is an open set in E, and Φ : � U → F p → pF = Φ(p) � is a function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' If applicable, E and/or F can be replaced by E and/or F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (The definitions can be generalized to manifolds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Reminder: Definition S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Let p ∈ U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The function Φ is said to be continuous at p iff Φ(q) −→ q→p Φ(p) relative to the considered norms, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', ||Φ(q) − Φ(p)||F −→||q−p||E→0 0, also written (Landau notation): Near p, Φ(q) = Φ(p) + o(1), (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1) called “the zero-th order Taylor expansion of Φ near p”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In other words: ∀ε > 0, ∃η > 0 s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ∀q ∈ E s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ||q − p||E < η we have ||Φ(q) − Φ(p)||F < ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And C0(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) is the set of functions that are continuous at all p ∈ U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Directional derivative and differential (observer independent) Let p ∈ U, ⃗u ∈ E, and let f : R → F defined by f(h) := Φ(p + h⃗u) (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2) Definition S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 The function Φ is differentiable at p in the direction ⃗u iff f is derivable at 0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' iff the limit f ′(0) = limh→0 Φ(p+h⃗u)−Φ(p) h =noted dΦ(p)(⃗u) exists in F, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' iff, near p, Φ(p + h⃗u) = Φ(p) + h dΦ(p)(⃗u) + o(h), (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3) equation called the first order Taylor expansion of Φ at p in the direction ⃗u (it is the first order Taylor expansion of f near p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then dΦ(p)(⃗u) is called the directional derivative of Φ at p in the direction ⃗u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And if, for all ⃗u ∈ E, dΦ(p)(⃗u) exists (in F) then Φ is called Gâteaux differentiable at p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Prove: If Φ is Gâteaux differentiable at p then dΦ(p) is homogeneous, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', dΦ(p)(λ⃗u) = λ dΦ(p)(⃗u) for all ⃗u ∈ E and all λ ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' limh→0 Φ(p+h(λ⃗u))−Φ(p) h = λ limh→0 Φ(p+λh⃗u)−Φ(p) λh = λ limk→0 Φ(p+k⃗u)−Φ(p) k .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 If Φ is Gateaux differentiable and if moreover dΦ(p) is linear and continuous at p, then Φ is said to be differentiable at p (or Fréchet differentiable at p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So Φ(q) = Φ(p) + h dΦ(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='−→ pq + o(||−→ pq||E), (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4) since then dΦ(p)(⃗u) =noted dΦ(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u for all ⃗u ∈ E (linearity).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And the affine function affp : q → affp(q) := Φ(p) + dΦ(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='−→ pq is the affine approximation of Φ at p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (So, the graph of affp is the tangent plane of Φ at p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Definition S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Φ : U → F is said to be differentiable in U iff Φ is differentiable at all p ∈ U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then its differential is the map dΦ : � U → L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) p → dΦ(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5) And C1(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) is the set of differentiable functions ψ such that dΦ ∈ C0(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And C2(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) is the set of differentiable functions ψ such that dΦ ∈ C1(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And Ck(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) is the set of differentiable functions ψ such that dΦ ∈ Ck−1(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='. 173 174 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A basis and the j-th partial derivative Proposition S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 The differentiation (or derivation) operator d : � C1(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) → C0(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F)) Φ → dΦ � is R-linear (“a derivation is linear”).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' d(Φ + λΨ)(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u = limh→0 (Φ+λΨ)(p+h⃗u)−(Φ+λΨ)(p) h = limh→0 Φ(p+h⃗u)−Φ(p)+λΨ(p+h⃗u)−λΨ(p) h = limh→0 Φ(p+h⃗u)−Φ(p) h + λ limh→0 Ψ(p+h⃗u)−Ψ(p) h = dΦ(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u + λdΨ(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u = (dΦ(p) + λdΨ(p)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u for all p and ⃗u, thus d(Φ + λΨ) = dΦ + λdΨ for all λ ∈ R and Φ, Ψ ∈ C1(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 Prove: if f ∈ C1(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) (scalar values) and Φ ∈ C1(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) then, for all ⃗u ∈ E, d(fΦ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u = (df.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u)Φ + f(dΦ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u) (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6) (and we also write d(fΦ) = Φ ⊗ df + f dΦ for a use with contraction rules).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' d(fΦ)(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u = lim h→0 f(p+h⃗u)Φ(p+h⃗u) − f(p)Φ(p) h = lim h→0 f(p+h⃗u)Φ(p+h⃗u) − f(p)Φ(p+h⃗u) h + f(p)Φ(p+h⃗u) − f(p)Φ(p) h = lim h→0 f(p+h⃗u) − f(p) h (Φ(p) + o(1)) + lim h→0 f(p)Φ(p+h⃗u) − Φ(p) h = (df(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u)Φ(p) + f(p)(dΦ(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7) Tensorial writing: d(fΦ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u = (Φ ⊗ df).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u + (f dΦ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u, thanks to the contraction rule which gives (Φ ⊗ df).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u + (f dΦ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u = Φ(df.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u) + f(dΦ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Remark S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8 In differential geometry, the definition of a tangent map is defined by, with definition S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4: TΦ : � U × E → F × F (p, ⃗u) → TΦ(p, ⃗u) = (Φ(p), dΦ(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8) The two points p (input) and Φ(p) (output) are the base points, and the two vectors ⃗u (input) and dΦ(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u (output) are the initial vector and its push-forward by Φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Notation for the second order Differential Let Φ ∈ C2(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus dΦ ∈ C1(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F)), thus d(dΦ) ∈ C0(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F)));' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So, for p ∈ U and ⃗u ∈ E, we have d(dΦ)(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u = limh→0 dΦ(p+h⃗u)−dΦ(p) h ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F), and, with ⃗v ∈ E we have (d(dΦ)(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v ∈ F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9 The bilinear map d2Φ(p) ∈ L(E, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) is defined by d2Φ(p)(⃗u,⃗v) = (d(dΦ)(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v, (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9) thanks to the natural canonical isomorphism L ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F)) ↔ TL ∈ L(E, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) given by TL(⃗u1, ⃗u2) := (L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u2 for all ⃗u1, ⃗u2 ∈ E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus L =noted TL, thus d(dΦ) =noted d2Φ(p) ∈ L(E, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' This gives the usual second order Taylor expansion of Φ (supposed C2) near p in the direction ⃗u: Φ(p + h⃗u) = Φ(p) + h dΦ(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u + h2 2 d2Φ(p)(⃗u, ⃗u) + o(h2) (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10) (=the second order Taylor expansion of f : h → f(h) = Φ(p + h⃗u) near h = 0, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And Schwarz’s theorem tells that d2Φ(p) is symmetric when Φ is C2, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' d2Φ(p)(⃗u,⃗v) = d2Φ(p)(⃗v, ⃗u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 A basis and the j-th partial derivative Definition S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10 Let Φ ∈ C1(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F), ⃗u ∈ Γ(U) (a vector field), p ∈ U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The derivative of Φ at p along ⃗u is defined by ∂⃗uΦ(p) := dΦ(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u(p) (= lim h→0 Φ(p + h⃗u(p)) − Φ(p) h ∈ F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11) This defines the directional derivative operator along ⃗u: ∂⃗u : � C1(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) → C0(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) Φ → ∂⃗u(Φ) := dΦ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ∂⃗u(Φ)(p) := dΦ(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12) (And ∂⃗u(Φ)(p) =noted ⃗u(Φ)(p) in differential geometry thanks to E ≃ E∗∗ which gives ∂⃗u ≃ ⃗u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') 174 175 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Application 1: Scalar valued functions In particular, if (⃗ei(p)) is a basis at p, then the j-th partial derivative of Φ at p is ∂⃗ejΦ(p) =noted ∂jΦ(p) (the derivative along ⃗ej), and the j-th directional derivative operator is ∂j : � C1(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) → C0(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) Φ → ∂jΦ := dΦ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej , i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ∂j(Φ)(p) := dΦ(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13) (In differential geometry ∂jΦ =noted ⃗ej(Φ), so ⃗ej(Φ)(p) := dΦ(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Application 1: Scalar valued functions S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Differential of a scalar valued function (objective) Here Φ noted = f : � U → R p → f(p) � is a C1 scalar valued function, so df ∈ Ω1(U)∩C0(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E∗) (a C0 differential form).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So df(p) ∈ E∗ for all p ∈ U, and df(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u = limh→0 f(p+h⃗u)−f(p) h ∈ R for all ⃗u ∈ E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11 Prove: If f, g ∈ C1(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) then (derivative of a product) d(fg) = (df)g + f(dg), (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', d(fg).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w = (df.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w)g + f(dg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w) for all ⃗w ∈ Γ(U).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' limh→0 f(p+h ⃗w)g(p+h ⃗w)−f(p)g(p) h = limh→0 f(p+h ⃗w)g(p+h ⃗w)−f(p)g(p+h ⃗w) h + limh→0 f(p)g(p+h ⃗w)−f(p)g(p) h = limh→0 f(p+h ⃗w)−f(p) h (g(p) + o(1)) + limh→0 f(p) g(p+h ⃗w)−g(p) h ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' calculation that only requires the first order (affine) approximation of f and g: We get the same result as with the affine functions f(x) = a0+a1x and g(x) = b0+b1x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' which give (fg)(x) = a0b0 + (a0b1+a1b0)x + a1b1x2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' and then (fg)′(x) = a0b1+a1b0 + 2a1b1x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' which is indeed equal to (f ′g + fg′)(x) = a1(b0+b1x) + (a0+a1x)b1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Quantification Let (⃗ei(p)) be a basis at p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So ∂jf(p) =(S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13) df(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej(p) (= limh→0 f(p+h⃗ej(p))−f(p) h ), and we write ∂jf(p) noted = f|j(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='15) So, with (πei(p)) the dual basis of the basis (⃗ei(p)), and with f|j(p) := πei(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='df(p) (j-th component of df(p) in the basis (πei(p))), we have df = n � j=1 f|jπej, and [df(p)]|⃗e = ( f|1(p) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' f|n(p) ) (row matrix).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16) So df.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u = �n j=1f|juj = [df]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗u]|⃗e when ⃗u(p) = � i ui(p)⃗ei(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In particular with a Cartesian basis, (πei(p)) =noted (dxj), and df = �n j=1 ∂f ∂xj dxj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Duality notations: πei = ei, ⃗u = �n j=1uj⃗ej, df = �n j=1f|j ej, df.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u = �n j=1f|juj, and with a Cartesian basis, πei = dxi and df = �n j=1 ∂f ∂xj dxj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12 Prove: (fg)|j = f|j g + f g|j when f, g : U → R are C1 scalar valued functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Apply (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7): here d(fg) = g df + f dg, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' d(fg).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej = (df.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej) g + f (dg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej) for all j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And df(p) ∈ E∗ satisfies the covariant change of basis formula for linear forms, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', if (⃗ai(p)) and (⃗bi(p)) are two bases at p and P(p) is the transition matrix from (⃗ai(p)) to (⃗bi(p)), then [df(p)]|⃗b =(A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='28) [df(p)]|⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P(p), or in short: [df]|⃗b = [df]|⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P (covariance formula).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='17) 175 176 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Application 2: Coordinate system basis and Christoffel symbols S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Gradients (subjective) associated with a differential through inner dot products Let f ∈ C1(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) (a C1 scalar valued function).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Choose (subjective) an inner dot product (·, ·)g in E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13 The conjugate gradient ⃗ gradgf(p) of f at p ∈ U relative to (·, ·)g, also called the (·, ·)g-conjugate gradient of f at p, is the (·, ·)g-Riesz representation vector of the linear form df(p) ∈ E∗: ⃗ gradgf(p) := ⃗Rg(df(p)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='18) I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', the vector ⃗ gradgf(p) ∈ E is characterized by, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2), ∀⃗u ∈ E, df(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u = ( ⃗ gradgf(p), ⃗u)g = ⃗ gradgf(p) •g ⃗u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='19) Fundamental: An English observer with his Euclidean dot product (·, ·)a in foot and a French observer with his Euclidean dot product (·, ·)b in metre have the same differential df (defined independently of any unit of measurement);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' But do not have the same gradient: ⃗ gradbf (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12) = λ2 ⃗ gradaf with λ2 > 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='20) Quite different vectors isn’t it?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The “gradient vector” strongly depends on the chosen inner dot product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And to forget this fact leads to accidents like the crash of the Mars Climate Orbiter probe, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' remark A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Subjective first order Taylor expansion: If an inner dot product (·, ·)g exists and is used, then the first order Taylor expansion (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3) gives f(p + h⃗u) = f(p) + h ( ⃗ gradgf(p), ⃗u)g + o(h) (= f(p) + h ⃗ gradgf(p) •g ⃗u + o(h)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='21) Fundamental once again (we insist): An inner dot product does not always exist (as a meaningful tool), see § B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 (thermodynamics), thus, for a C1 function, a gradient does not always exists (contrary to a differential).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' df(p) is a linear form (covariant) while ⃗ gradgf(p) is a vector (contravariant).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In particular the change of basis formulas differ, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='28): [df]|new = [df]|old.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P, while [ ⃗ gradg]|new = P −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [ ⃗ gradg]|old.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22) df cannot be identified ⃗ gradf (with one?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') (Recall;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' there is no natural canonical isomorphims between E and E∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') The differential df is also called the “covariant gradient”, and any of its associated gradient vectors is also called the “contravariant gradient relative to an inner dot product”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Isometric Euclidean framework: If one Euclidean dot product can be imposed to all observers (foot?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' metre?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') then ⃗ gradgf =noted ⃗ gradf = ⃗∇f and (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='19) is written df.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u = ⃗ gradf • ⃗u = ⃗∇f • ⃗u (isometric framework).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14 Cartesian basis (⃗ei) and (·, ·)g given by [g][⃗e = � 1 0 0 2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Give [df]|⃗e and [ ⃗ gradgf]|⃗e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [df]|⃗e = ( ∂f ∂x1 ∂f ∂x2 ) (row matrix) and (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='19) gives [ ⃗ gradgf]|⃗e = � ∂f ∂x1 1 2 ∂f ∂x2 � (column matrix ̸= [df]T ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Application 2: Coordinate system basis and Christoffel symbols (Necessary when dealing with covariance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Coordinate system, and coordinate system basis Consider a (open) set Upar = {⃗q ∈]a1, b1[×.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='×]an, bn[}, called the set of parameters, in the Cartesian space Rn, consider an open set U ⊂ Rn, called the set of geometric positions, and consider a C2- diffeomorphism Ψ : ⃗q ∈ Upar → p ∈ U, called a coordinate system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let (⃗ai) the canonical basis of the parameter space, let ⃗q = � i qi⃗ai ∈ Upar (the qi are called the parameters).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', see the polar coordinate system at § 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 where ⃗q = (q1, q2) = (r, θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 176 177 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Application 2: Coordinate system basis and Christoffel symbols Ψ being a diffeomorphism, at any p = Ψ(⃗q) ∈ U the vectors ⃗ai∗(p) := dΨ(⃗q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ai (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='23) make a basis in E at p, and (⃗ai∗(p)) is called the coordinate system basis at p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Its dual basis at p is made of the linear forms dqi(p), so where, for all i, j, dqi(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj∗(p) = δj i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='24) Duality notations: dqi(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj∗(p) = δi j for all i, j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Parametric expression of the differential of a scalar valued function With a coordinate system Ψ, a scalar valued function f : � U → R p → f(p) � defined in U can be described with the function g = f ◦ Ψ : � Upar → R ⃗q → g(⃗q) := f(p) when p = Ψ(⃗q) � defined in Upar, and g is called the parametric expression of f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus dg(⃗q) = df(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΨ(⃗q) when p = Ψ(⃗q), (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='25) in particular, ∂g ∂qj (⃗q) := dg(⃗q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj = df(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΨ(⃗q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj = df(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj∗(p) noted = ∂f ∂qj (p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='26) Warning, pay attention: f is a function of p, not a function of ⃗q, and the notations ∂f ∂qj (p) means := ∂(f◦Ψ) ∂qj (⃗q) when p = Ψ(⃗q), and nothing else.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus with (dqj(p)) the dual basis of the coordinate basis (⃗ai∗(p)) at p, df(p) (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='26) = n � j=1 ∂f ∂qj (p) dqj(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='27) Duality notations: df(p) = � j ∂f ∂qj (p) dqj(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Remark S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='15 Pay attention to the notations that could contradict themselves: 1- In Upar the dual basis (πai) of the Cartesian basis (⃗ai) is a uniform basis (independent of ⃗q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' and is (almost) never written (dqi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 2- Indeed, (dqi(p)) is the name reserved for the dual basis of (⃗ai∗(p)) in the geometric space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Mind the notations!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' for polar coordinates (dq1(p), dq2(p)) = (dr(p), dθ(p)) is the dual basis of the polar coordinate system basis (⃗a1∗(p),⃗a2∗(p)) at p, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16 Bases (⃗ai) and (⃗bi) at p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A vector ⃗x is expressed as ⃗x = � i xa,i⃗ai = � i xb,i⃗bi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Prove: ⃗bi = λ⃗ai, ∀i =⇒ ∂f ∂xb,i = λ ∂f ∂xa,i or ∂f ∂xa,i = ∂f ∂(λxa,i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='28) (Change of unit formula.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Duality notations: ∂f ∂xj b = λ ∂f ∂xj a .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' df(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗bj(p) = λdf(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj(p) (linearity of df(p)) reads (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='28).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Or [df]|⃗b = [df]|⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P with P = λI here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Exercice S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='17 [df]|⃗b = [df]|⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='17), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ∂f ∂xj b = �n i=1 ∂f ∂xia P i j is also noted ∂f ∂xj b = n � i=1 ∂f ∂xia ∂xi a ∂xj b .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='29) Why?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 177 178 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Application 2: Coordinate system basis and Christoffel symbols Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Quick answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗x]|⃗b = P −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗x]|⃗a, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗x]|⃗a = P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[⃗x]|⃗b, which means [⃗x]|⃗a([⃗x]|⃗b) = P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[⃗x]|⃗b, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' � � � x1 a(x1 b, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', xn b ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' x1 a(x1 b, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', xn b ) � � � = � � � �n j=1P 1 j xj b .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' �n j=1P n j xj b � � � , thus ∂xi a ∂xj b (x1 b, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', xn b ) = P i j , ∀i, j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='30) Thus (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='29) means ∂f ∂xj b (p) = n � i=1 ∂f ∂xia (p)∂xi a ∂xj b (x1 b, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', xn b ) thus = n � i=1 ∂f ∂xia (p) P i j , (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='31) as given in (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='17).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Detailed answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let O be a point (origin) in U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' If p ∈ U, let ⃗x = −→ Op = �n i=1xi a⃗ai = �n i=1xi b⃗bi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' This define the function [⃗x]|⃗a : [⃗x]|⃗b → [⃗x]|⃗a([⃗x]|⃗b), and we have [⃗x]|⃗a([⃗x]|⃗b) = P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[⃗x]|⃗b (change of basis formula).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then let fa, fb : Rn → R be defined by fa([⃗x]|⃗a) := f(p) and fb([⃗x]|⃗b) := f(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (NB: fa and fb don’t have the same definition domain: They are different).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus fa([⃗x]|⃗a) = fb([⃗x]|⃗b) (= f(p)) when [⃗x([⃗x]|⃗b)]|⃗a = P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='[⃗x]|⃗b, so (fa ◦ [⃗x]|⃗a)([⃗x]|⃗b) = fb([⃗x]|⃗b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus ∂(fa◦[⃗x]|⃗a) ∂xi b ([⃗x]|⃗b) = ∂fb ∂xi b ([⃗x]|⃗b), thus the meaning of (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='29) is n � j=1 ∂fa ∂xj a ([⃗x]|⃗a)∂xj a ∂xi b ([⃗x]|⃗b) = ∂fb ∂xi b ([⃗x]|⃗b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='32) Question: Why did we introduce fa and fb (and not just keep f)?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer: Because a vector is not just a collection of components (is not just a matrix), and −→ Op cannot be reduced to a matrix of components (which one: [⃗x]|⃗a?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗x]|⃗b?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Here f is a function acting on a point p (independent of a referential), while fa and fb are functions acting on matrices (dependent on the choice of a referential): The domain of definitions are different, so the functions f, fa and fb are different.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Christoffel symbols We use duality notations for readability and usage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='18 In a coordinate system basis (⃗ei(p)) in E (previously called (⃗ai∗(p)), the Christoffel symbol γi jk(p) ∈ R are the components of the vector d⃗ek(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej(p), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' d⃗ek(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej(p) = �n k=1γi jk(p)⃗ei(p), so d⃗ek.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej = n � i=1 γi jk⃗ei , or d⃗ej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ei = n � k=1 γk ij⃗ek.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='33) (So, with (ei(p)) the dual basis of (⃗ei(p)), γi jk := ei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗ek.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej, and, for calculations with contractions, d⃗ek = � ij γi jk⃗ei ⊗ ej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') (The Christoffel symbols vanish in a Cartesian framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') (Differential geometry in manifolds: ∇⃗ej⃗ek = �n i=1γi jk⃗ei, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' the γi jk = ei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='∇⃗ej⃗ek are the component of the connection ∇, the usual connection in a surface in Rn being the Riemannian connection, in which case ∇⃗ej⃗ek is the orthogonal projection of d⃗ek.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej on the surface relative to a Euclidean dot product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' for the polar coordinate system, see remark 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12, d⃗e2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗e2 = −r⃗e1, thus γ1 22 = −r and γ2 22 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='19 Prove: If (⃗ei(p)) is the coordinate system basis of a C2 coordinate system, then: ∀i, j, d⃗ei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej = d⃗ej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ei (= ∂2Ψ ∂qi∂qj ), and ∀i, j, k, γk ji = γk ij (symmetry for lower indices).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='34) Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗ei(p) = (⃗ei ◦ Ψ)(⃗q) =(S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='23) dΨ(⃗q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ai gives d(⃗ei ◦ Ψ)(⃗q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj = d(dΨ(⃗q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ai).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj, thus d⃗ei(Ψ(⃗q)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dΨ(⃗q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj = ∂ ∂Ψ ∂qi ∂qj = ∂ ∂Ψ ∂qj ∂qi (Schwarz theorem since Ψ is C2) = d⃗ej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ei =noted ∂2Ψ ∂qj∂qi , thus �n k=1γk ij⃗ek = �n k=1γk ji⃗ek.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='20 Consider two coordinate system bases (⃗ai(p)) and (⃗bi(p)) at p, P(p) = [P i j(p)] the tran- sition matrix from (⃗ai(p)) to (⃗bi(p)), and Q = P −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Using the generic notation d⃗ek.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej = �n i=1γi jk,e⃗ei, prove the change of basis formula for the Christoffel symbols: γi jk,b = n � λ,µ,ν=1 Qi λP µ j P ν k γλ µν,a+ n � λ,µ=1 Qi λP µ j (dP λ k .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aµ) (= n � λ,µ,ν=1 Qi λP µ j P ν k γλ µν,a+ n � λ=1 Qi λ(dP λ k .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗bj)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='35) (Because of the term � µν Qi λP µ j (dP λ k .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aµ), a derivation is not a tensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') 178 179 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Application 3: Differential of a vector field Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗bk(p) = � ν P ν k (p)⃗aν(p) gives d⃗bk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗bj = � ν(dP ν k .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='���bj)⃗aν + � ν P ν k (d⃗aν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗bj) = � µν P µ j (dP ν k .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aµ)⃗aν + � µν P ν k P µ j (d⃗aν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aµ);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And bi = � λ Qi λaλ, thus γi jk,b = bi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='d⃗bk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗bj = � λµν Qi λP µ j (dP ν k .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aµ)aλ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aν + � λµν Qi λP µ j P ν k aλ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (d⃗aν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aµ) = � λµ Qi λP µ j (dP λ k .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aµ) + � λµν Qi λP µ j P ν k γλ µν,a, thus (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='35).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Application 3: Differential of a vector field Here F = E = ⃗Rn, Φ =noted ⃗w ∈ Γ(U) is a vector field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus d⃗w(p) ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E) and d⃗w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u is a vector field in E for all ⃗u ∈ Γ(U), given by (d⃗w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u)(p) = d⃗w(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u(p) = limh→0 ⃗w(p+h⃗u(p))− ⃗w(p) h ∈ E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Quantification: (⃗ei(p)) is a basis at p in E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Call wi(p) ∈ R the components of ⃗w(p), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗w(p) = �n i=1wi(p)⃗ei(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And call wi|j(p) the components of d⃗w(p) (endomorphism in E): ⃗w = n � i=1 wi⃗ei, d⃗w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej = n � i=1 wi|j⃗ei, [d⃗w]|⃗e = [wi|j] (Jacobian matrix).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='36) And tensorial notations for calculations with contractions: (πei(p)) being the dual basis, d⃗w = n � i,j=1 wi|j⃗ei ⊗ πej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='37) Duality notations: ⃗w = ���n i=1wi⃗ei, d⃗w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej = �n i,j=1wi |j⃗ei, [d⃗w]|⃗e = [wi |j], and d⃗w = �n i,j=1wi |j⃗ei ⊗ ej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In a Cartesian basis: Here (⃗ei) is uniform, so ⃗w(p) = �n i=1wi(p)⃗ei gives d⃗w(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej = �n i=1(dwi(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej)⃗ei, thus (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='36) gives wi|j = ∂wi ∂xj (p) noted = wi,j, so [d⃗w]|⃗e = [∂wi ∂xj ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='38) Duality notations: wi |j = ∂wi ∂xj and [d⃗w]|⃗e = [ ∂wi ∂xj ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In a coordinate system basis: With the coordinate system described in § S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 and the duality notations for readability (and usage).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗w(p) = �n i=1wi(p)⃗ei(p) gives, for all j, d⃗w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej = n � i=1 (dwi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej)⃗ei + n � i=1 wi(d⃗ei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej) (= n � i=1 wi |j⃗ei).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='39) (Tensorial notations to be used with contractions: d⃗w = � i ⃗ei ⊗ dwi + � i wi d⃗ei = � ij wi |j⃗ei ⊗ ej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') And � i wi(d⃗ei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej) =(S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='33) � ik wiγk ji⃗ek = � ik wkγi jk⃗ei, thus, for all i, j, wi |j = ∂wi ∂qj + n � k=1 wkγi jk where ∂wi ∂qj := dwi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='40) ( ∂wi ∂qj := dwi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej is the derivation along the j-th coordinate line of the scalar valued function wi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (In particular, if ⃗w = ⃗eℓ = � i δi ℓ⃗ei, we recover d⃗eℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej = � i 0⃗ei + � ik δk ℓ γi jk⃗ei = � i γi jℓ⃗ei, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='33).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Exercice S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='21 With exercise S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='20, and ⃗w = �n i=1ui⃗ai = � n vi⃗bi, check with calculations (d⃗w is an endomorphism defined independently of any basis): [d⃗w]|⃗b = P −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [d⃗w]|⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' vi |j = n � k,ℓ=1 Qi kuk |ℓP ℓ j .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='41) Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗bj = � ℓ P ℓ j⃗aℓ for all i, Q = P |1, and [⃗w]|⃗b = Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [⃗w]|⃗a reads vi = � k Qi kuk for all i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Cartesian basis: dvi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗bj = d(� k Qi kuk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (� ℓ P ℓ j⃗aℓ) = � kℓ Qi k(duk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aℓ)P ℓ j , qed (here the Qi k are uniform i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' independent of p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 179 180 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Application 4: Differential of a differential form Coordinate system basis: vi = � λ Qi λuλ gives dvi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗bj = � λ(dQi λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗bj)uλ + � λ Qi λ(duλ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗bj);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus vi |j (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='33) = dvi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗bj + � k vkγi jk,b = � λµ uλP µ j (dQi λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aµ) + � λµ Qi λP µ j (duλ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aµ) + � kλµν (Qk λuλ)Qi νP µ j (dP ν k .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aµ) + � kωλµν (Qk ωuω)Qi λP µ j P ν k γλ µν,a And Qk ωP λ k = δλ ω gives (dQk ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aµ)P λ k + Qk ω(dP λ k .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aµ) = 0, thus the third term reads � kλµν uλQi νP µ j Qk λ(dP ν k .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aµ) = − � kλµν uλQi νP µ j P ν k (dQk λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aµ) = − � λµ uλP µ j (dQi λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aµ), which cancels the first term: Thus vi |j = � λµ Qi λP µ j (duλ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aµ) + � λµν uνQi λP µ j γλ µν = � λµ Qi λui |jP µ j , i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='41).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 Application 4: Differential of a differential form Here F = R, Φ =noted ℓ ∈ Ω1(U) (differential form) supposed C1, p ∈ U, so ℓ(p) ∈ E∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Its differential at p in a direction ⃗u is dℓ(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u = limh→0 ℓ(p+h⃗u)−ℓ(p) h ∈ E∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And (dℓ(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v = limh→0 ℓ(p+h⃗u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v−ℓ(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v h ∈ R for all ⃗u,⃗v ∈ E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Quantification: (πei(p) its the dual basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Call ℓi(p) ∈ R the components of ℓ(p), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ℓ(p) = �n i=1ℓi(p)πei(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And call ℓi|j(p) the components of dℓ(p) ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E∗): ℓ = n � i=1 ℓiπei, dℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej = n � i=1 ℓi|jπei, [dℓ]|⃗e = [ℓi|j].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='42) Tensorial notations, to be used with contractions: dℓ = �n i,j=1ℓi|jπei ⊗ πej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Duality notations: ℓ = � i ℓiei, dℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej = �n i=1ℓi|jei, [dℓ]|⃗e = [ℓi|j], and dℓ = �n i,j=1ℓi|jei ⊗ ej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In a Cartesian basis: Here (⃗ei) is uniform, so ℓi|j = ∂ℓi ∂xj (p) noted = ℓi,j, so [dℓ]|⃗e = [ ∂ℓi ∂xj ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='43) Duality notations: ℓi|j = dℓi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej = ∂ℓi ∂xj and [dℓ]|⃗e = [ ∂ℓi ∂xj ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In a coordinate system basis: With duality notations and Christoffel symbols: dei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej = − n � k=1 γi jkek .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='44) Indeed, ei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ek = δi k gives (dei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ek + ei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (d⃗ek.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej) = 0, thus (dei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ek = −ei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' � ℓ γℓ jk⃗eℓ = −γi jk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus ℓi|j = ∂ℓi ∂qj − n � k=1 ℓkγk ji where ∂ℓi ∂qj (p) := dℓi(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ei(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='45) Indeed, ℓ = � i ℓiei gives dℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej = � i(dℓi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej)ei + � i ℓi(dei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej) = � i(dℓi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej)ei − � ik ℓiγi jkek.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 Application 5: Differential of a 1 1 tensor Consider a C1 �1 1 � tensor τ : � U → L(E∗, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) p → τ(p) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Its differential dτ : � U → L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' L(E∗, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R)) p → dτ(p) � is defined by dτ(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u = limh→0 τ(p+h⃗u)−τ(p) h ∈ L(E∗, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R), so (dτ(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u)(ℓ,⃗v) = limh→0 τ(p+h⃗u)(ℓ,⃗v)−τ(p)(ℓ,⃗v) h (∈ R), for all ⃗u,⃗v ∈ E and ℓ ∈ E∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Quantification (duality notations): Basis (⃗ei(p)) in E at p, dual basis (ei(p)), call τ i j(p) the components of τ(p), call τ i j|k(p) the components of dτ(p): τ = � ij τij⃗ei ⊗ ej, dτ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ek = n � i,j=1 τ i j|k⃗ei ⊗ ej .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='46) Tensorial notations, to be used with contractions: dτ = �n i,j,k=1τ i j|k⃗ei ⊗ ej ⊗ ek.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Classical notations: τ = � ij τij⃗ei ⊗ πej, dτ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ek = � ij τij|k⃗ei ⊗ πej, and dτ = � ijk τij|k⃗ei ⊗ πej ⊗ πek.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') 180 181 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Divergence of a vector field: Invariant Cartesian basis: dτ(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ek = � ij(dτ i j(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ek)⃗ei ⊗ ej, so τ i j|k = ∂τ i j ∂xk noted = τ i j,k (:= dτ i j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ek).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='47) Coordinate system basis: τ(p) = �n i,j=1τ i j(p)⃗ei(p) ⊗ ej(p) gives, for all k, dτ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ek = � ij(dτ i j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ek)⃗ei ⊗ ej + � ij τ i j(d⃗ei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ek) ⊗ ej + � ij τ i j⃗ei ⊗ (dej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ek) = � ij(dτ i j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ek)⃗ei ⊗ ej + � ijℓ τ i jγℓ ki⃗eℓ ⊗ ej − � ijℓ τ i jγj kℓ⃗ei ⊗ eℓ = � ij(dτ i j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ek)⃗ei ⊗ ej + � ijℓ τ ℓ j γi kℓ⃗ei ⊗ ej − � ijℓ τ i ℓγℓ kj⃗ei ⊗ ej (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='48) thus τ i j|k = ∂τ i j ∂qk + n � ℓ=1 τ ℓ j γi kℓ − n � ℓ=1 τ i ℓγℓ kj where ∂τ i j ∂qk := dτ i j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ek.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='49) (We have the + sign from vector fields, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='40), and the − sign from differential forms, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='45).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Exercice S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='22 If ⃗u ∈ E, ℓ ∈ E∗ then for the elementary �1 1 � tensor τ = ⃗u ⊗ ℓ prove: d(⃗u ⊗ ℓ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ek = (d⃗u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ek) ⊗ ℓ + ⃗u ⊗ (dℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ek), and (⃗u ⊗ ℓ)i j|k = ui |kℓj + uiℓj|k, (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='50) when ⃗u = � i ui⃗ei, ℓ = � j ℓjej, d⃗u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ek = � i ui |k⃗ei, dℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ek = � j ℓj|kej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' τ = ⃗u ⊗ ℓ = � ij τ i j⃗ei ⊗ ej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' where τ i j = uiℓj, and dτ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ek = �n i,j=1τ i j|k⃗ei ⊗ ej where τ i j|k = (uiℓj)|k = ui |kℓj + uiℓj|k = (⃗u ⊗ ℓ)i j|k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus (similar to the derivation of a product): d(⃗u ⊗ ℓ)(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ek(p) = lim h→0 (⃗u ⊗ ℓ)(p+h⃗ek(p)) − (⃗u ⊗ ℓ)(p) h = lim h→0 ⃗u(p+h⃗ek(p)) ⊗ ℓ(p+h⃗ek(p)) − ⃗u(p) ⊗ ℓ(p) h = lim h→0 ⃗u(p+h⃗ek(p)) ⊗ ℓ(p+h⃗ek(p)) − ⃗u(p+h⃗ek(p)) ⊗ ℓ(p) h + lim h→0 ⃗u(p+h⃗ek(p)) ⊗ ℓ(p) − ⃗u(p) ⊗ ℓ(p) h = lim h→0(⃗u(p+h⃗ek(p)) ⊗ (ℓ(p+h⃗ek(p)) − ℓ(p) h ) + lim h→0(⃗u(p+h⃗ek(p)) − ⃗u(p) h ) ⊗ ℓ(p) = ⃗u(p) ⊗ (dℓ(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ek(p)) + (d⃗u(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ek(p)) ⊗ ℓ(p), thus (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='50)1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Which gives d(⃗u ⊗ ℓ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ek = (� i ui⃗ei) ⊗ (� j ℓj|kej) + (� i ui |k⃗ei) ⊗ (� j ℓjej), thus (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='50)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8 Divergence of a vector field: Invariant Γ(U) is the set of C1 vector fields in U, and Tr : L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E) → R is the trace operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='23 The divergence operator is div := Tr ◦ d : � Γ(U) → C0(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) ⃗w → div⃗w := Tr(d⃗w), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' div⃗w(p) := Tr(d⃗w(p)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='51) (So div⃗w(p) = trace of the endomorphism d⃗w(p)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Tr and d are linear, hence div = Tr ◦ d is R-linear (composed of two R-linear maps).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proposition S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='24 The divergence of a vector field is objective (is an invariant): Same value for all observers (objective quantity) intrinsic to ⃗w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The differential and the trace are objective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Or computation: ⃗w = � i ui⃗ai = � i vi⃗bi gives vi |j = � kℓ Qi kuk |ℓP ℓ j , see (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='41), thus � i vi |i = � ikℓ P ℓ i Qi kuk |ℓ = � kℓ δℓ kuk |ℓ = � k uk |k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Quantification: ⃗w ∈ Γ(U), (⃗ei) is a basis, ⃗w = �n i=1wi⃗ei with classical notations, and wi|j(p) are the components of the vector d⃗w(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej(p) in the basis (⃗ei(p)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus div⃗w = n � i=1 wi|i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='52) Duality notations: ⃗w = �n i=1wi⃗ei, d⃗w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej = �n i=1wi |j⃗ei, [d⃗w]|⃗e = [wi |j], div⃗w = �n i=1wi |i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 181 182 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Objective divergence for 1 1 tensors Cartesian basis (⃗ei) (classical notations): dwi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej =noted ∂wi ∂xj and wi|j = ∂wi ∂xi , thus div⃗w = n � i=1 ∂wi ∂xi .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='53) Coordinate system basis (⃗ei) (duality notations): With the Christoffel symbols, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='33), (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='40) gives wi |i = ∂wi ∂qi + n � i=1 wkγi ik, thus div⃗w = n � i=1 ∂wi ∂qi + n � i,k=1 wkγi ik.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='54) Exercice S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='25 Prove: div(f ⃗w) = df.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w + f div⃗w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='55) Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' d(f ⃗w) = ⃗w ⊗ df + f d⃗w, thus Tr(d(f ⃗w)) = Tr(⃗w ⊗ df) + Tr(f d⃗w) = df.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w + f Tr(d⃗w).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Use a coordinate system if you prefer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Remark S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='26 If α is a differential form, if (⃗ei) is a basis and (ei) its dual basis, and if α = �n i=1αiei, then dα = �n i=1αi|jei ⊗ ej, with αi|j := ⃗ei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='dα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Here it is impossible to define an objective trace of dα like �n i=1αi|i: The result depends on the choice of the basis (the Einstein convention is not satisfied, and e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' with a Euclidean basis the result depends on the choice of unit of length: Foot?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Meter?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus the objective (or intrinsic) divergence of a differential form is a nonsense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9 Objective divergence for 1 1 tensors To create an objective divergence for a second order �1 1 � tensor τ ∈ T 1 1 (U), in (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='46) we have to contract an admissible index with the “differential index k”, So, no choice: Contract i and k to get � divτ := �n i,j=1τ i j|iej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let us start with: Definition S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='27 Let ⃗u ∈ Γ(U) and ℓ ∈ Ω1(U) be C1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The objective divergence of the elementary �1 1 � tensor ⃗u ⊗ ℓ ∈ T 1 1 (U) is the differential form � div(⃗u ⊗ ℓ) ∈ Ω1(U) defined by � div(⃗u ⊗ ℓ) = (div⃗u)ℓ + dℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u, (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='56) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' defined by � div(⃗u ⊗ ℓ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w = (div⃗u)(ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w) + (dℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w)⃗u for all ⃗w ∈ E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And the objective divergence operator � div : � T 1 1 (U) → Ω1(U) τ → � divτ � is the linear map defined on elementary tensors with (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='56).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Quantification: (⃗ei) is a basis, (ei) its dual basis, ⃗u = � i ui⃗ei, ℓ = � j ℓjej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus ⃗u⊗ℓ = � ij uiℓj⃗ei⊗ej, and (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='50)-(S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='56) give � div(⃗u ⊗ ℓ) = n � i,j=1 (ui |iℓj + ℓj|iui)ej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='57) So for an elementary tensor τ = ⃗u ⊗ ℓ, τ = � ij τ i j⃗ei ⊗ ej, and dτ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ek = � ijk τ i j|k⃗ei ⊗ ej and � div(τ) = � ij τ i j|iei, with τ i j|k = ui |kℓj + uiℓj|k, here with τ i j = uiℓj, and τ i j|k = ui |kℓj + uiℓj|k, so τ i j|i = ui |iℓj + uiℓj|i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus, by linearity of � div, for all tensors τ ∈ T 1 1 (U), we have with (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='46): � divτ = n � i,j=1 τ i j|iej , i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [ � divτ]|⃗e = � � i τ i 1|i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' � i τ i n|i � (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='58) (row matrix since � divτ is a differential form).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', we have contracted i and k in (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='46).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Classical notations: � divτ := �n i,j=1τij|iπej, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [ � divτ]|⃗e = ( � i τi1|i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' � i τin|i ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') So Cartesian bases: � divτ = n � i,j=1 ∂τ i j ∂xi ej, Coord.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' sys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' bases: � divτ = n � i,j=1 �∂τ i j ∂qi + n � k=1 τ k j γi ik − n � k=1 τ k i γi kj � ej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='59) Indeed: With τ = � j(� i τ i j⃗ei) ⊗ ej = � j ⃗wj ⊗ ej where ⃗wj = � i τ i j⃗ei, the linearity of � div gives � divτ = � j � div(⃗wj ⊗ ej);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus, with (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='56): 1- Cartesian basis: div⃗wj = � i ∂τ i j ∂xi and dej = 0 give � divτ = 182 183 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Objective divergence for 1 1 tensors � j � i ∂τ i j ∂xi ej = � ij τ i j,iej, thus (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='59)1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And 2- Coordinate system basis: div⃗wj=(S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='54)� i ∂τ i j ∂qi +� ik τ k j γi ik and dej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wj = � k τ k j dej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ek = � k τ k j (− � i γj kiei), thus � j dej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗wj = − � ijk τ k j γj kiei = − � ijk τ k i γi kjej, thus (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='59)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='28 Prove: If f ∈ C1(U;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) and τ = �n i,j=1τ i j⃗ei ⊗ ej ∈ T 1 1 (U) ∩ C1 then � div(fτ) = df.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='τ + f � divτ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='60) Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' fτ = � ij fτ i j⃗ei ⊗ ej gives d(fτ) = � ijk(fτ i j)|k⃗ei ⊗ ej ⊗ ek = � ijk(f|kτ i j + fτ i j|k)⃗ei ⊗ ej ⊗ ek, thus � div(fτ) = � ij(f|iτ i j + fτ i j|i)ej;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And df.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='τ + f � divτ = � ij f|iτ i jej + f � ij τ i j|iej.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='29 Prove: If τ ∈ T 1 1 (U) and ⃗w ∈ Γ(U) then div(τ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w) = � div(τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w + τ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='. d⃗w .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='61) Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' τ = � ij τ i j⃗ei ⊗ ej and ⃗w = � i wi⃗ei give τ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w = � ij τ i jwj⃗ei, thus div(τ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗w) = � ij τ i j|iwj + τ i jwj |i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Exercice S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='30 If τ ∈ T 1 1 (U) check with component calculations (since � div(τ) is objective): [ � div(τ)]|b = [ � div(τ)]|a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P (covariance formula), (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='62) where P is the transition matrix from a basis (⃗ai) to a basis (⃗bi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let τ = � ij σi j⃗ai ⊗ aj = � ij τ i j⃗bi ⊗ bj, so τ i j = � λµ Qi λσλ µP µ j .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 1- Cartesian bases: � i τ i j|i = � i dτ i j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗bi = � i d(� λµ Qi λσλ µP µ j ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (� ν P ν i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aν) = � iλµν Qi λP µ j P ν i (dσλ µ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aν) = � λµν δν λP µ j (dσλ µ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aν) = � λµ P µ j (dσλ µ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aλ) = � µ(� λ σλ µ|λ)P µ j as desired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 2- Coordinate system bases: � i τ i j|i =(S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='59) � i dτ i j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ei + � iℓ τ ℓ j γi iℓ,b − � iℓ τ i ℓγℓ ij,b (with j fixed);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' With � i (dτ i j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗bi) = � iλµ Qi λ (dσλ µ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗bi) P µ j + � iλµ (dQi λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗bi) σλ µ P µ j + � iλµ Qi λ σλ µ (dP µ j .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗bi) = � iλµν Qi λP µ j P ν i (dσλ µ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aν) + � iλµν σλ µ P µ j P ν i (dQi λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aν) + � iλµν σλ µ Qi λP ν i (dP µ j .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aν) = � λµ P µ j (dσλ µ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aλ) − � iλµν σλ µ P µ j Qi λ(dP ν i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aν) + � λµ σλ µ (dP µ j .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aλ) since P ν i Qi λ = δν λ gives P ν i (dQi λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aν) − Qi λ(dP ν i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aν).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And, with (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='35), � iℓ τ ℓ j γi iℓ,b = � iℓ ( � λµ Qℓ λσλ µP µ j )( � αβω Qi αP β i P ω ℓ γα βω,a + � αβ Qi αP β i (dP α ℓ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aβ)) = � λµα σλ µP µ j γα αλ,a + � ℓλµα σλ µQℓ λP µ j (dP α ℓ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aα), (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='63) and − � iℓ τ i ℓγℓ ij,b = − � iℓ ( � λµ Qi λσλ µP µ ℓ )( � αβω P α i P β j Qℓ ωγω αβ,a + � αω P α i Qℓ ω(dP ω j .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aα)) = − � λµβ σλ µP β j γµ λβ,a − � λµ σλ µ(dP µ j .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aλ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='64) Thus � i τ i j|i = � λµ P µ j (dσλ µ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aλ) + � λµα σλ µP µ j γα αλ,a − � λµβ σλ µP β j γµ λβ,a = � λµ P µ j σλ µ|λ as desired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Divergence of a 2 0 tensor Let τ ∈ T 2 0 (U) and τ = �n i,j=1τ ij⃗ei⊗⃗ej, thus dτ = �n i,j,k=1τ ij |k⃗ei⊗⃗ej⊗ek;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then two objective divergences may be defined: by contracting k with i, or k with j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (The Einstein convention is then satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Divergence of a 0 2 tensor Let τ = ��n i,j=1τijei ⊗ ej ∈ T 0 2 (U).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus dτ = �n i,j,k=1τij|kei ⊗ ej ⊗ ek, and there are no indices to contract to satisfy Einstein convention: There is no objective divergence of 0 2 tensors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 183 184 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Euclidean framework and “classic divergence” of a tensor (subjective) S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10 Euclidean framework and “classic divergence” of a tensor (subjective) Let σ be a C1 tensor of order 2 of any kind.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' An observer chooses a (Cartesian) Euclidean basis (⃗ei) and call (·, ·)g the associated Euclidean dot product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And he calls σij the components of σ, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' writes σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗ej = � i σij⃗ei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='31 (Usual divergence in classical mechanics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') The divergence divσ of σ relative to the basis (⃗ei), is the column matrix (it is not a vector) diveσ = � � � �n j=1 ∂σ1j ∂xj .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' �n j=1 ∂σnj ∂xj � � � noted = divσ (a matrix).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='65) (Take the divergences of the “row vectors” of [σ]|e = [σij] to make the “column vector” [diveσ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Proposition S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='32 The “so called vector” divσ, in (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='67), is not a vector: It does not satisfy the change of basis formula: If (⃗ai) and (⃗bi) are bases, if P is the transition matrix from (⃗ai) to (⃗bi), if [σ]|⃗a = [Aij] and [σ]|⃗b = [Bij], with the divergence of σ relative to (⃗ai) and (⃗bi) called divaσ and divbσ, then neither a contravariant nor a covariant change of basis formula applies in general: neither [divbσ]|⃗b ̸= P −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [divaσ]|⃗a nor [divbσ]T |⃗b = [divaσ]T |⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='66) (compare with (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='62)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So divσ as given in (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='67) is neither a contravariant vector nor a covariant vector (it is just a matrix which depends on an observer).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Consider the simple case ⃗bi = λ⃗ai, for all i, λ > 1: Transition matrix P = λI, and P −1 = 1 λI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' For a �1 1 � tensor: σ = � ij(σb)i j⃗bi ⊗ bj = � ij(σa)i j⃗ai ⊗ aj, [σ]|⃗b = P −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [σ]|⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P = 1 λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [σ]|⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='λ = [σ]|⃗a, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (σa)i j = (σb)i j for all i, j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='67) gives divbσ = � ij(d(σb)i j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗bj)⃗bi = � ij(d(σa)i j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (λ⃗aj))(λ⃗ai) = λ2divaσ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus [divbσ]|⃗b ̸= P −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [divbσ]|⃗a and [divbσ]T |⃗b ̸= [divaσ]T |⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' For a �0 2 � tensor: σ = � ij σb,ijbi ⊗ bj = � ij σa,ijai ⊗ aj, and [σ]|⃗b = P T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [σ]|⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P = λ2[σ]|⃗a, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' σb,ij = λ2σa,ij for all i, j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='67) gives divbσ = � ij(dσb,ij.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗bj)⃗bi = λ2 � ij(dσa,ij.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (λ⃗aj))(λ⃗ai) = λ4divaσ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus [divbσ]|⃗b ̸= P −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [divbσ]|⃗a and [divbσ]T |⃗b ̸= [divaσ]T |⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' For a �2 0 � tensor: σ = � ij σij b ⃗bi ⊗ ⃗bj = � ij σij a ⃗ai ⊗ ⃗aj, and [σ]|⃗b = P −T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [σ]|⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P −1 = 1 λ2 [σ]|⃗a, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' σij b = 1 λ2 σij a for all i, j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='67) gives divbσ = � ij(dσij b .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗bj)⃗bi = 1 λ2 � ij(dσij a .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (λ⃗aj))(λ⃗ai) = divaσ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus [divbσ]|⃗b ̸= P −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [divbσ]|⃗a and [divbσ]T |⃗b ̸= [divaσ]T |⃗a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Remark: (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='65) can be written divσ = � ij ∂σij ∂xj ⃗Ei (S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='67) where ( ⃗Ei) is the canonical basis in Mn1 the space of n ∗ 1 column vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' T Natural canonical isomorphisms T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 The adjoint of a linear map Setting of § A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12: E and F are vector spaces, E∗ = L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) and F ∗ = L(F;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) are their dual spaces, and the adjoint of a linear map P ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) is the linear map P∗ ∈ L(F ∗;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E∗) canonically defined by ∀ℓ ∈ F ∗, P∗(ℓ) := ℓ ◦ P, written P∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='ℓ = ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1) (dot notations P∗(ℓ) =noted P∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='ℓ and ℓ◦P =noted ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P since ℓ and P∗ are linear), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', for all (ℓ, ⃗u) ∈ F ∗×E, P∗(ℓ)(⃗u) = ℓ(P(⃗u)), written (P∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='ℓ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u = ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2) Interpretation: If P is the push-forward of vector fields, then P∗ is the pull-back of differential forms, see remark 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In particular, it will be interpreted with P ∈ Li(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) (linear and invertible = a change of observer).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 184 185 T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' An isomorphism E ≃ E∗ is never natural (never objective) T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 An isomorphism E ≃ E∗ is never natural (never objective) Two observers A and B consider a linear map L ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E∗);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let P ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E) be the change of observer endomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Willing to work together, A and B (“naturally”) consider the diagram E L −→ E∗ ← considered by observer A P ↓ ↑ P∗ E −→ L E∗ ← considered by observer B (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3) Definition T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 (Spivak [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') A linear map L ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E∗) is natural iff the diagram (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3) commutes for all P ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E): L ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E∗) is natural ⇐⇒ ∀P ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E), P∗ ◦ L ◦ P = L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4) (In that case, if A computes L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u with the top line of the diagram, if B computes with the bottom line of the diagram, then they can easily check their results since here L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u = (P∗ ◦ L ◦ P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Question: Does there exist an endomorphism L such that the diagram (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3) commutes for all change of observers?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' That is, do we have ∃?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E), ∀P ∈ Li(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E), P∗ ◦ L ◦ P = L ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5) Answer: Always no (if L ̸= 0): Theorem T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 A (non-zero) linear map L ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E∗) is not natural: If L ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E∗) − {0}, then ∃P ∈ Li(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' L ̸= P∗ ◦ L ◦ P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Spivak [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') It suffices to prove this proposition for E = ⃗R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let L ∈ L(⃗R;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (⃗R)∗), L ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let (⃗a1) be a basis in ⃗R (chosen by A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let (⃗b1) be a basis in ⃗R (chosen by B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Consider P ∈ Li(⃗R;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗R) defined by P(⃗a1) = ⃗b1 (change of observer), and let λ ∈ R s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗b1 = λ⃗a1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1) gives P∗(ℓ)(⃗a1) := ℓ(P(⃗a1)) = ℓ(⃗b1) = ℓ(λ⃗a1) = λℓ(⃗a1), thus P∗(ℓ) = λℓ for all ℓ ∈ (⃗R)∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus P∗(L(P(⃗a1))) = P∗(L(λ⃗a1)) = λP∗(L(⃗a1)) = λ2L(⃗a1) ̸= L(⃗a1) when λ2 ̸= 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', P = 2I gives L ̸= P∗ ◦ L ◦ P (= 4L), thus (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6): A (non-zero) linear map E → E∗ cannot be natural.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Example T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Consider E s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' dim E = 1, and consider the linear map L ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E∗) which sends a basis (⃗a1) onto its dual basis (πa1), so L is defined by L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗a1 := πa1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Question: If (⃗b1) is another basis, λ ̸= ±1 and ⃗b1 = λ⃗a1 (change of unit of measurement), does L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗b1 = πb1, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' does L also sends (⃗b1) onto its dual basis?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer: No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Indeed, ⃗b1 = λ⃗a1 gives πb1 = 1 λπa1, thus L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗b1 = λL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗a1 = λπa1 = λ2πb1 ̸= πb1 since λ2 ̸= 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In words: L is not natural, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A different presentation: Let LA and LB be defined by LA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj = πaj and LB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗bj = πbj for all j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And suppose that ⃗bj = λ⃗aj for all j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then, LA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗bj = λLA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj = λπaj = λ2πbj = λ2LB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗bj ̸= LB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗bj when λ2 ̸= 1, that is, LA ̸= LB when λ2 ̸= 1: An operator that sends a basis onto its dual basis is not natural.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Example T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Let (·, ·)g be an inner dot product in E = ⃗Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let ⃗Rg ∈ L(E∗;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E) be the Riesz rep- resentation map, that is, defined by ⃗Rg(ℓ) = ⃗ℓg where ⃗ℓg is defined by (⃗ℓg,⃗v)g = ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v for all ⃗v ∈ ⃗Rn, cf (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Question: Is ⃗Rg natural?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer: No: Consider the diagram � E∗ ⃗Rg −→ E P∗ ↓ ↑ P E∗ −→ ⃗Rg E � with P = λI, λ ̸= ±1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then P∗ = λI, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗Rg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='ℓ = λ2 ⃗Rg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='ℓ ̸= ⃗Rg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='ℓ gives P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗Rg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P∗ ̸= ⃗Rg: So ⃗Rg is not natural, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (You may prefer to consider the diagram (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3) with L = ⃗R−1 g .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') A different presentation: Consider two distinct Euclidean dot products (·, ·)g and (·, ·)h (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', built with a foot and built with a metre).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So (·, ·)h = λ2(·, ·)g with λ2 ̸= 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let ⃗Rg, ⃗Rh ∈ L(Rn∗;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Rn) be the Riesz operators relative to (·, ·)g and (·, ·)h, that is ⃗Rg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='ℓ = ⃗ℓg and ⃗Rh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='ℓ = ⃗ℓh are given by ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v = (⃗ℓg,⃗v)g = (⃗ℓh,⃗v)h for all ⃗v ∈ ⃗Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' We have ⃗ℓh = λ2⃗ℓg, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11), thus ⃗Rh = λ2 ⃗Rg ̸= ⃗Rg since λ2 ̸= 1: A Riesz representation operator is not natural (it is observer dependent).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 185 186 T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Natural canonical isomorphism E ≃ E∗∗ T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Natural canonical isomorphism E ≃ E∗∗ Two observers A and B consider the same linear map L ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E∗∗) (where E∗∗ = (E∗)∗ = L(E∗;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Willing to work together, they (“naturally”) consider the diagram E L −→ E∗∗ ← considered by observer A P ↓ ↓ P∗∗ E −→ L E∗∗ ← considered by observer B (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7) where P ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E) is a linear diffeomorphism, P∗ ∈ L(E∗;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E∗) its adjoint, given by P∗(ℓ) = ℓ ◦ P cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1), and P∗∗ ∈ Li(E∗∗;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E∗∗) the adjoint of P∗, thus given by P∗∗(u) = u ◦ P∗ for all u ∈ E∗∗ cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' P∗∗ is given by, for all (ℓ, u) ∈ E∗ × E∗∗, (P∗∗(u))(ℓ) = u(ℓ ◦ P), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (P∗∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='ℓ = u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8) Question: Does there exist a linear map L ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E∗∗) that is natural?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Answer: Yes (particular case of the next proposition): Proposition T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 The canonical isomorphism JE : � E → E∗∗ ⃗u → u = JE(⃗u) defined by JE(⃗u)(ℓ) := ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u, ∀ℓ ∈ E∗, (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9) is natural, that is, F being another finite dimensional vector space, the diagram E JE −→ E∗∗ P ↓ ↓ P∗∗ F −→ JF F ∗∗ written E J −→ E∗∗ P ↓ ↓ P∗∗ F −→ J F ∗∗ (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10) commutes for all P ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ∀P ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F), P∗∗ ◦ JE = JF ◦ P, and we write E ≃ E∗∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11) Thus we can use the unambiguous notation (observer independent) J (⃗u) noted = ⃗u, and J (⃗u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='ℓ noted = ⃗u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='ℓ (= ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12) (And u = J (⃗u) is the derivation operator in the direction ⃗u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Spivak [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') It is trivial that JE is linear and bijective (E is finite dimensional): It is an isomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then (P∗∗ ◦ JE(⃗u))(ℓ) (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8) = JE(⃗u)(ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P) (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9) = (ℓ ◦ P)(⃗u) = ℓ(P(⃗u)) (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9) = JF (P(⃗u))(ℓ), for all ℓ ∈ F ∗ and all ⃗u ∈ E, thus P∗∗ ◦ JE(⃗u) = JF (P(⃗u)), for all ⃗u ∈ E, thus P∗∗ ◦ JE = JF ◦ P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proposition T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 (Characterization of JE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') JE sends any basis (⃗ai) onto its bidual basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (Expected, since JE(⃗u) is the directional derivative in the direction ⃗u, whatever ⃗u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let (⃗ai) be a basis and (πai) be its dual basis (defined by πai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj = δij for all i, j).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9) gives JE(⃗aj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='πai = πai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗aj = δij for all i, j, thus (JE(⃗aj)) is the dual basis of (πai), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', is the bidual basis of (⃗ai);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' True for all basis: JE(⃗bj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='πbi = πbi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗bj = δij for all i, j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Natural canonical isomorphisms L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) ≃ L(F ∗, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) ≃ L(E∗;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F ∗) E, F, A, B are finite dimensional vector spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Consider the canonical isomorphism JEF : � L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) → L(F ∗, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) L → �L = JEF (L) where �L(ℓ, ⃗u) := ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u, ∀(ℓ, ⃗u) ∈ F ∗ × E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13) 186 187 T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Natural canonical isomorphisms L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F)) ≃ L(E, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) ≃ L(F ∗, E, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) Let P1 ∈ Li(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A) and P2 ∈ L(F;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' B), and consider the diagram L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) JEF −→ L(F ∗, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) IP ↓ ↓ � IP L(A;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' B) −→ JAB L(B∗, A;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14) where IP(L) = P2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P−1 1 and � IP(�L)(b,⃗a) = �L(b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P2, P−1 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗a) ∀(b,⃗a) ∈ B∗ × A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='15) (IP and � IP are the push-forwards for linear maps L ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) and for bilinear forms �L ∈ L(F ∗, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Proposition T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 The canonical isomorphism JEF is natural, that is, the diagram (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14) commutes for all P1 ∈ Li(E, A) and all P2 ∈ L(F, B): � IP ◦ JEF = JAB ◦ IP, and L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) natural ≃ L(F ∗, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16) Thus L(E∗;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F ∗) natural ≃ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' JAB(IP(L))(b,⃗a) (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13) = b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='IP(L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗a (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='15) = b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (P2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P−1 1 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗a = (b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (P−1 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗a) (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13) = JEF (L)(b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P2, P−1 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗a) (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='15) = � IP(JEF (L))(b,⃗a), true for all L ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F), b ∈ B∗, ⃗a ∈ A, thus (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus L(E∗;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F ∗) (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16) ≃ L((F ∗)∗, E∗;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11) ≃ L(F, E∗;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16) ≃ L(E∗∗;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11) ≃ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Consider the canonical isomorphism (defines the transposed of a bilinear map) KEF : � L(E, F;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) → L(F, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) T → KEF (T) � , KEF (T)(⃗u,⃗v) := T(⃗v, ⃗u), ∀(⃗u,⃗v) ∈ E × F, (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='17) and ZAB ∈ L(E, F;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) → L(A, B;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) defined by ZAB(T)(⃗a,⃗b) := T(P−1 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗a, P−1 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗b) for all (⃗a,⃗b) ∈ A × B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proposition T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8 The canonical isomorphism KEF is natural: For all (P1, P2) ∈ Li(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' A)×L(F;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' B), the diagram L(E, F;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) KEF −→ L(F, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) ZAB ↓ ↓ ZBA L(A, B;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) −→ KAB L(B, A;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) commutes: L(E, F;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) natural ≃ L(F, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' KEF (ZAB(T))(⃗b,⃗a) = ZAB(T)(⃗a,⃗b) = T(P−1 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗b, P−1 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗a) and ZBA(KEF (T))(⃗a,⃗b) = KEF (T)(P−1 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗a, P−1 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗b) = T(P−1 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗b, P−1 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗a), thus KAB ◦ ZAB = ZBA ◦ KEF .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Natural canonical isomorphisms L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F)) ≃ L(E, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) ≃ L(F ∗, E, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) For application to the second order derivative d(d⃗u) ≃ d2⃗u and, with ⃗u ∈ T 1 0 (U), the notation d⃗u ∈ T 1 1 (U), then d2⃗u ∈ T 1 2 (U), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', dk⃗u ∈ T 1 k (U), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Consider the canonical isomorphism J12E : � L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F)) → L(E, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) T1 → T2 = J12E(T1) � , J12E(T1)(⃗u1, ⃗u2) := T1(⃗u1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗u2 ∈ F, ∀⃗u1, ⃗u2 ∈ E, (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='18) and the canonical isomorphism J23E : � L(E, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) → L(F ∗, E, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) T2 → J23E(T2) = T3 � , T3(ℓ, ⃗u,⃗v) := ℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='T2(⃗u1, ⃗u2), ∀⃗u1, ⃗u2 ∈ E, ∀ℓ ∈ F ∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='19) Proposition T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9 J12 and J23 are natural.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Thus J23 ◦ J12 is natural.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 187 188 U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definitions Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 1- We have to prove that the following diagram commutes: L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F)) J12E −→ L(E, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) ZAB ↓ ↓ YAB L(A;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' L(A;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' B)) J12A −→ L(A, A;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' B) where ZAB(T1)(⃗a1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗a2 := T1(P−1 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗a1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (P−1 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗a2), YAB(T2)(⃗a1,⃗a2) = T2(P−1 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗a1, P−1 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗a2), (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='20) (the “push-forwards) for all ⃗a1,⃗a2 ∈ A and LAB ∈ L(A;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let T1 ∈ L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' L(E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' We have J12A(ZAB(T1))(⃗a1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗a2 = ZAB(T1)(⃗a1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗a2 = T1(P−1 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗a1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (P−1 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗a2), and YAB(J12E(T1))(⃗a1,⃗a2) = J12E(T1)(P−1 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗a1, P−1 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗a2) = T1(P−1 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗a1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (P−1 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗a2), thus J12A ◦ ZAB = YAB ◦ J12E, thus J12 is natural.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 2- We have to prove that the following diagram commutes: L(E, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F) J23E −→ L(F ∗, E, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) ZAB ↓ ↓ YAB L(A, A;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' B) J23A −→ L(B∗, A, A;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) where ℓB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='ZAB(T2)(⃗a1,⃗a2) := (ℓB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='T2(P−1 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗a1, P−1 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗a2), YAB(T3)(ℓB,⃗a1,⃗a2) = T3(ℓB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P2, P−1 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗a1, P−1 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗a2), (T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='21) (the “push-forwards) for all ⃗a1,⃗a2 ∈ A and ℓB ∈ B∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let T2 ∈ L(E, E;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' We have J23A(ℓB, ZAB(T2)(⃗a1,⃗a2)) = ℓB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='ZAB(T2)(⃗a1,⃗a2) = (ℓB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='T2(P−1 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗a1, P−1 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗a2), and YAB(J23A(T2))(ℓB,⃗a1,⃗a2) = J23A(T2)(ℓB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P2, P−1 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗a1, P−1 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗a2) = ℓB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='P2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='T2(P−1 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗a1, P−1 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗a2) thus J23A ◦ ZAB = YAB ◦ J23E, thus J23 is natural.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' U Distribution in brief: A covariant concept We refer to the books of Laurent Schwartz for a full description.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In continuum mechanics, with Ω an open set in Rn and for the space of the finite energy functions L2(Ω) and its sub-spaces, a distribution gives a covariant formulation for the virtual power, as used by Germain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Definitions Usual notations: Let p ∈ [1, ∞[ (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' p = 2 for finite energy functions), and let Lp(Ω) := {f : Ω → R : � Ω |f(x)|p dΩ < ∞} and ||f||p = ( � Ω |f(x)|p dΩ) 1 p , (U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1) the space of functions such that |f|p is Lebesgue integrable with ||.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='||p its usual norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then (Lp(Ω), ||.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='||Lp) is a Banach space (a complete normed space).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And let L∞(Ω) := {f : Ω → R : sup x∈Ω (|f(x)|) < ∞}, and ||f||∞ = sup x∈Ω (|f(x)|), (U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2) the space of Lebesgue measurable bounded functions with ||.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='||∞ its usual norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then (L∞(Ω), ||.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='||L∞) is a Banach space (a complete normed space).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 If f ∈ F(Ω;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R), then its support is the set supp(f) := {x ∈ Ω : f(x) ̸= 0} = the closure of {x ∈ Ω : f(x) ̸= 0} (U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3) = the set where it is interesting to study f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The closure is required: E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', if Ω =]0, 2π[ and f(x) = sin x for all x ∈ ω, then {x ∈ Ω : f(x) ̸= 0} = ]0, π[∪]π, 2π[;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And the point π is a point of interest since sin varies in its vicinity: f ′(π) = cos(π) = −1 ̸= 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So it is the closure supp(f) := ]0, π[∪]π, 2π[ = [0, 2π] that is considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 (Schwartz notation, D being the letter after C:) Let D(Ω) := C∞ c (Ω;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) = {ϕ ∈ C∞(Ω;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' supp(ϕ) is compact in Ω}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4) 188 189 U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Derivation of a distribution E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', Ω = R, ϕ(x) := e− 1 1−x2 if x ∈]−1, 1[ and ϕ(x) := 0 elsewhere: ϕ ∈ D(R) with supp(ϕ) = [−1, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And D(Ω) is a vector space which is dense in (Lp(Ω), ||.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='||Lp) for any p ∈ [1, ∞[.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 A distribution in Ω is a linear D(Ω)-continuous3 function T : � D(Ω) → R ϕ → T(ϕ) noted = ⟨T, ϕ⟩ (U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5) The space of distribution in Ω is named D′(Ω) (the dual of D(Ω)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The notation ⟨T, ϕ⟩D′(Ω),D(Ω) = ⟨T, ϕ⟩ is the “duality bracket” = the “covariance–contravariance bracket” between a linear function T ∈ D′(Ω) and a vector ϕ ∈ D(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='4 Let f ∈ Lp(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The regular distribution Tf ∈ D′(Ω) associated to f is defined by Tf(ϕ) := � Ω f(x)ϕ(x) dΩ, ∀ϕ ∈ D(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6) So Tf is a measuring instrument with density dmf(x) = f(x) dΩ, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Tf(ϕ) := � Ω ϕ(x) dmf(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5 Let x0 ∈ Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' The Dirac measure at x0 is the distribution T noted = δx0 ∈ D′(R) defined by, for all ϕ ∈ D(R), δx0(ϕ) = ϕ(x0), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⟨δx0, ϕ⟩ = ϕ(x0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7) And δx0 is not a regular distribution (δx0 is not a density measure): There is no integrable function f such that Tf = δx0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Interpretation: δx0 corresponds to an ideal measuring device: The precision is perfect at x0 (gives the exact value ϕ(x0) at x0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' In real life δx0 is the ideal approximation of Tfn where fn is e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' given by fn(x) = n1[x0,x0+ 1 n ] (drawing): For all ϕ ∈ D(Ω), Tfn(ϕ) −→n→∞ δx0(ϕ) = ϕ(x0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Generalization of the definition: In (U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='5) D(Ω) = C∞ c (Ω;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) is replaced by C∞ c (Ω;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So if you consider a basis (⃗ei) then ⃗ϕ ∈ C∞ c (Ω;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⃗Rn) reads ⃗ϕ = �n i=1ϕi⃗ei with ϕi ∈ D(Ω) for all i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Example U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6 Power: Let α : Ω → T 0 1 (Ω) be a differential form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then P = Tα defined by P(⃗v) = � Ω α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗v dΩ gives the virtual power associated to α relative to the vector field ⃗v (mechanics and thermodynamics).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Derivation of a distribution Let O be a point in Rn (an origin).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' If p ∈ Rn and if (⃗ei) is a basis in ⃗Rn, let ⃗x = −→ Op = �n i=1xi⃗ei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Definition U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='7 The derivative ∂T ∂xi of a distribution T ∈ D′(Ω) is the distribution ∈ D′(Ω) defined by, for all ϕ ∈ D(Ω), ∂T ∂xi (ϕ) := −T( ∂ϕ ∂xi ), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ⟨ ∂T ∂xi , ϕ⟩ := −⟨T, ∂ϕ ∂xi ⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8) ( ∂T ∂xi is indeed a distribution: Easy check.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Example U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8 If T = Tf is a regular distribution with f ∈ C1(Ω), then ∂(Tf ) ∂xi = T( ∂f ∂xi ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Indeed, for all ϕ ∈ D(Ω), ∂(Tf ) ∂xi (ϕ) = −Tf( ∂ϕ ∂xi ) = − � Ω f(x) ∂ϕ ∂xi dΩ = + � Ω ∂f ∂xi ϕ(x) dΩ + � Γ 0 dΓ, since ϕ vanishes on Γ = ∂Ω (the support of ϕ is compact in Ω), thus ∂(Tf ) ∂xi (ϕ) = T( ∂f ∂xi )(ϕ) for all ϕ ∈ D(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Example U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9 Consider the Heaviside function (the unit step function) H0 := 1R+ and the associated distribution T = TH0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then ⟨(TH0)′, ϕ⟩ := −⟨TH0, ϕ′⟩ = − � Ω H0(x)ϕ′(x) dx = − � ∞ 0 ϕ′(x) dx = ϕ(0) = ⟨δ0, ϕ⟩ for any ϕ ∈ D(R), thus (TH0)′ = δ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Written H0 ′ = δ0 in D′(Ω), which is not in a equality between functions, because H0 is not derivable at 0 as a function, and δ0 is not a function;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' It is equality between distributions: The notation H0 ′ can only be used to compute H0 ′(ϕ) (= ⟨H0 ′, ϕ⟩ := −⟨H0, ϕ′⟩).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 3The D(Ω)-continuity of T is defined by: 1- A sequence (ϕn)N∗ in D(Ω) converges in D(Ω) towards a function ϕ ∈ D(Ω) iff there exists a compact K ⊂ Ω s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' supp(ϕn) ⊂ K for all n, and || ∂kϕ ∂xi1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='∂xik − ∂kϕn ∂xi1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='∂xik ||∞ −→n→∞ 0 for all k ∈ N and all ij;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 2- T is continuous at ϕ ∈ D(Ω) iff T(ϕn) −→ n→∞ T(ϕ) for any sequence (ϕn)N ∈ D(Ω)N −→ n→∞ ϕ in D(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 189 190 U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Hilbert space H1(Ω) U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Hilbert space H1(Ω) U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='1 Motivation Consider the hat function Λ(x) � � � � � = x + 1 if x ∈ [−1, 0], = 1 − x if x ∈ [0, 1], = 0 otherwise � � � � � (drawing).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' When applying the finite element method, it is well-known that, if you use integrals (if you use the virtual power principle which makes you compute average values), then you can consider the derivative of the hat function Λ as if it was the usual derivative, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' at the points where the usual computation of Λ′ is meaningful, that is, Λ′(x) � � � � � = 1 if x ∈] − 1, 0[, = −1 if x ∈]0, 1[, = 0 if x ∈ R − {−1, 0, 1} (U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9) (drawing).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Problem: Λ′ is not defined at −1, 0, 1 (the function Λ is not derivable at −1, 0, 1);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Question: So does the “usual” computation I = � R Λ′(x)ϕ(x) dx with (U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='9) gives the good result?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (This is not a trivial question: E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', with H0 = 1R+ instead of Λ, we would get the absurd result H′ 0 = 0, absurd since H′ 0 = δ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Answer: Yes: 1- Consider TΛ the regular distribution associated to Λ, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='6);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 2- Then consider (TΛ)′, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8): We get ⟨(TΛ)′, ϕ⟩ (U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='8) = −⟨TΛ, ϕ′⟩ = − � R Λ(x)ϕ′(x) dx = − � 0 −1 Λ(x)ϕ′(x) dx − � 1 0 Λ(x)ϕ′(x) dx = + � 0 −1 1]−1,0[(x)ϕ(x) dx + � 1 0 1]0,1[ϕ(x) dx, for any ϕ ∈ D(R);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 3- Thus (TΛ)′ = Tf where f = 1]−1,0[ + 1]0,1[, that is (TΛ)′ is a regular distribution, And its is named f = Λ′ within the distribution framework, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', for computations ⟨Λ′, ϕ⟩ := ⟨(TΛ)′, ϕ⟩ with ϕ ∈ D(R) (value = � R f(x)ϕ(x) dx).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='2 Definition of H1(Ω) The space C1(Ω;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) is too small in many applications (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', for the Λ function above);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' We need a larger space where the functions are “derivable is a weaker sense” which is the distribution sense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Consider a basis in Rn: Definition U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10 The Sobolev space H1(Ω) is the subspace of L2(Ω) restricted to functions whose gen- eralized derivatives are in L2(Ω): H1(Ω) = {v ∈ L2(Ω) : ∂v ∂xi ∈ L2(Ω), ∀i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', n}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='10) Usual shortened notation: H1(Ω) = {v ∈ L2(Ω) : ⃗ gradv ∈ L2(Ω) n}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' So to check that v ∈ H1(Ω), even if ∂v ∂xi does not exists in the classic way (see the above hat function Λ), you have to: 1- Consider its associated regular distribution Tv, 2- Compute ∂Tv ∂xi in D′(Ω), 3- And if, for all i, there exists fi ∈ L2(Ω) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' ∂Tv ∂xi = Tfi, then v ∈ H1(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 4- And then fi is noted ∂v ∂xi when used within the Lebesgue integrals � Ω ∂v ∂xi (x)ϕ(x) dx with ϕ ∈ D(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', Λ ∈ H1(R) since (TΛ)′ = Tf with f = 1]−1,0[ + 1]0,1[ ∈ L2(R);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And (TΛ)′ =noted Λ′ (= f) in the distribution context (integral computations).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let (·, ·)L2 and ||.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='||L2 be the usual inner dot product and norm in L2(Ω), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (u, v)L2 = � Ω u(x)v(x) dΩ, and ||v||L2 = � (v, v)L2 = ( � Ω v(x)2 dΩ) 1 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11) (L2(Ω), (·, ·)L2) is a Hilbert space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Then define, for all u, v ∈ H1(Ω), (u, v)H1 = (u, v)L2 + n � i=1 ( ∂u ∂xi , ∂v ∂xi )L2, and ||v||H1 = (v, v) 1 2 H1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='12) Then (H1(Ω), (·, ·)H1) is a Hilbert space (Riesz–Fisher theorem).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 190 191 U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Hilbert space H1(Ω) With a Euclidean dot product (·, ·)g in ⃗Rn and a (·, ·)g-orthonormal basis, (u, v)H1 = (u, v)L2 + ( ⃗ gradu, ⃗ gradv)L2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='13) U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='3 Subspace H1 0(Ω) and its dual space H−1(Ω) The boundary Γ = ∂Ω of Ω is supposed to be regular.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Let H1 0(Ω) := {v ∈ H1(Ω) : v|Γ = 0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='14) Then (H1 0(Ω), (·, ·)H1) is a Hilbert space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' More generally (without any regularity assumption on Γ), H1 0(Ω) := D(Ω) H1 = the closure of D(Ω) in (H1(Ω), ||.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='||H1): This closure of D(Ω) in H1(Ω) enables the use of the distribution framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Notation : The dual space of H1 0(Ω) is the space H−1(Ω) = (H1 0(Ω))′ = L(H1 0(Ω);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' R) (U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='15) equipped with the (usual) norm ||T||H−1 := sup ||v||H1 0 =1 |T(v)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' And (duality bracket), if v ∈ H1 0(Ω) and T ∈ H−1(Ω) then T(v) noted = ⟨T, v⟩H−1,H1 0 noted = ⟨T, v⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='16) Theorem U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='11 (Characterization of H−1(Ω) = (H1 0(Ω))′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') A distribution T is in H−1(Ω) iff ∃(f,⃗g) ∈ L2(Ω) × L2(Ω) n s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' T = f − div⃗g (∈ D′(Ω)), (U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='17) that is, for all v ∈ H1 0(Ω), ⟨T, v⟩H−1,H1 0 = � Ω fv dΩ + � Ω dv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='⃗g dΩ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='18) And if Ω is bounded then we can choose f = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' If moreover ⃗g ∈ H1(Ω) n then ⟨T, v⟩H−1,H1 0 = � Ω f(x)v(x) dx − � Ω div⃗g(x)v(x) dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='19) (In fact we only need ⃗g ∈ Hdiv(Ω) = {⃗g ∈ L2(Ω) n : div⃗g ∈ L2(Ω)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=') Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', see Brezis [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' For boundary value problems with Neumann boundary conditions, we then need (H1(Ω))′ the dual space of H1(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Characterization of (H1(Ω))′: We still have (U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='18), but we have to replace (U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='17) or (U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='19) by, with a Euclidean dot product in ⃗Rn, see Brezis [4], ⟨T, v⟩(H1)′,H1 = � Ω f(x)v(x) dx − � Ω div⃗g(x)v(x) dx + � Γ ⃗g(x) • ⃗n(x) v(x) dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' (U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='20) 191 192 REFERENCES References [1] Abraham R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', Marsden J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' : Foundation of mechanics, 2nd edition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Addison-Wesley, 1985.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [2] Arnold V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' : Equations différentielles ordinaires.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Editions Mir, 1974.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [3] Arnold V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' : Mathematical Methods of Classical Mechanics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Second Edition, Springer 1989.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [4] Brézis H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=': Functional Analysis, Sobolev spaces and Partial differential equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Springer, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [5] Cartan H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=': Formes différentielles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Hermann 1967.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [6] Cartan H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=': Cours de calcul différentiel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Hermann 1990.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [7] Forest et al: Mécanique de milieux continus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Ecole des Mines de Paris.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' http://mms2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='ensmp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='fr/mmc_paris/poly/MMC2020web.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='pdf [8] Germain P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=': Cours de Mécanique des Milieux Continus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Tome 1: théorie générale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Masson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Paris.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 1973.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [9] Germain P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=': The Method of Virtual Power in Continuum Mechanics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Part 2: Microstructure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' SIAM Journal on Applied Mathematics, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 25, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 3 (Nov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', 1973), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 556-575.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [10] Hughes T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', Marsden J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' : A short Course in Fluid Mechanics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Publish or Perish, 1976.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [11] Le Dret Hervé: Méthodes mathématiques en élasticité, notes de cours de DEA 2003–2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Université Pierre et Marie Curie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [12] Marsden J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', Hughes T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' : Mathematical Foundations of Elasticity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Dover publications, 1993.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [13] Maxwell: A treatise on electricity and magnetism, Clarendon press series, 1873.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [14] Misner C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', Thorne K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', Wheeler J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' : Gravitation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Freeman and Cie, 1973 [15] Petropoulos M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=': Relativité Générale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' La gravitation en une leçon et demie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' https://gargantua.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='polytechnique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='fr/siatel-web/linkto/mICYYYTEsNY [16] Sadd Martin H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=': Elasticity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Theory, Applications, and Numerics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Elsevier 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [17] Spivak M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=': A comprehensive introduction to differential geometry, Volume 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Publish or Perish, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 1979.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [18] Strang G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=': Introduction to linear algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 5th edition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Wellesley - Cambridge Press 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [19] Truesdell C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=', Noll W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=': The Non-Linear Field Theories of Mechanics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' Springer, 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' [20] http://planet-terre.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='ens-lyon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='fr/article/force-de-coriolis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content='xml, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'} +page_content=' 192' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfH_vd/content/2301.01056v1.pdf'}