diff --git "a/IdE2T4oBgHgl3EQfUQce/content/tmp_files/2301.03810v1.pdf.txt" "b/IdE2T4oBgHgl3EQfUQce/content/tmp_files/2301.03810v1.pdf.txt" new file mode 100644--- /dev/null +++ "b/IdE2T4oBgHgl3EQfUQce/content/tmp_files/2301.03810v1.pdf.txt" @@ -0,0 +1,5549 @@ +ALGEBRAIC APPROACH TO SUPERINTEGRABLE SYSTEMS IN DARBOUX SPACES +Algebraic approach and exact solutions of superintegrable +systems in 2D Darboux spaces +Ian Marquette ∗, Junze Zhang †and Yao-Zhong Zhang ‡ +School of Mathematics and Physics, The University of Queensland +Brisbane, QLD 4072, Australia +January 11, 2023 +Abstract +Superintegrable systems in 2D Darboux spaces were classified and it was found that there exist 12 +distinct classes of superintegrable systems with quadratic integrals of motion (and quadratic symmetry +algebras generated by the integrals) in the Darboux spaces. In this paper, we obtain exact solutions via +purely algebraic means for the energies of all the 12 existing classes of superintegrable systems in four +different 2D Darboux spaces. This is achieved by constructing the deformed oscillator realization and +finite-dimensional irreducible representation of the underlying quadratic symmetry algebra generated +by quadratic integrals respectively for each of the 12 superintegrable systems. We also introduce generic +cubic and quintic algebras, generated respectively by linear and quadratic integrals and linear and +cubic integrals, and obtain their Casimir operators and deformed oscillator realizations. As examples +of applications, we present three classes of new superintegrable systems with cubic symmetry algebras +in 2D Darboux spaces. +1 +Introduction +Superintegrable systems of different orders have been attracting a large amount of international research +activities, see e.g. [1], [2], [3], [4], [5], [6] , [7], [8] and [9]. This paper is a contribution to the underlying +algebraic structures and exact solutions of superintegrable systems in 2-dimensional (2D) curved spaces. +Superintegrable systems in 2D spaces with constant or non-constant curvatures have been widely +studied by means of separation of variables and St¨ackel transforms [10], [11], [12], [13], [14] and [15]. The +St¨ackel transforms have been widely studied [16], [14], [17] provide useful tools in the classification of 2D +superintegrable systems. Through the method of the so-called coupling constant metamorphosis, St¨ackel +transforms [18] enable one to establish the relationship between different superintegrable systems: they +provide equivalence classes at the level of integrable and superintegrable Hamiltonians. However, even if +such Hamiltonians are connected via the St¨ackel transformations, they are distinct as Sturm-Liouville and +spectral problem, and their exact solvability (with possibly different boundary conditions) and algebraic +solutions need to be investigated separately. For a given superintegrable Hamiltonian which is separable +in various coordinates, its solvability would in general depend on the coordinates used in the separation +of variables, e.g. it is exactly solvable in one coordinate system but only quasi-exactly solvable in another +coordinate system. +It is well known that symmetry algebra structures play an important role in the analytic analysis of +physical systems. In the context of superintegrable models, the underlying symmetry algebra structures +are usually polynomial algebras such as quadratic and cubic algebras. In [19], [2], [10], rank-1 quadratic +algebra structures underlying certain 2D superintegrable systems, generated by integrals of motion of the +∗i.marquette@uq.edu.au +†junze.zhang@uqconnect.edu.au +‡yzz@maths.uq.edu.au +1 +arXiv:2301.03810v1 [nlin.SI] 10 Jan 2023 + +ALGEBRAIC APPROACH TO SUPERINTEGRABLE SYSTEMS IN DARBOUX SPACES +systems, were exploited. The authors in these references obtained the Casimir operator and deformed +oscillator algebra realization of a generic quadratic algebra, and applied the relates to study the energy +spectrum of the superintegrable systems. In [14] and [11], examples of rank-1 cubic and quintic algebras +in Darboux spaces were given. Higher order or higher rank polynomial algebras generated by integrals +and their deformed oscillator algebra realizations were studied in [5], [20], [21], [22], [23], [24] , [25], [26], +[27] and [28]. More recently, by extending the Wigner-In¨on¨u method of Lie algebra contraction, the +authors in [29], [30] showed that quadratic algebras from certain second-order superintegrable systems in +2D spaces are contractions of those with general 3-parameter potentials on S2. +Superintegrable systems in 2D Darboux spaces were classified in [14][15]. In 2 dimensions, there exist +4 possible Darboux spaces with metrics given by [31] +I. +d1(x, y) = (x + y) dxdy +II. +d2(x, y) = +� +Ω +(x − y)2 + Λ +� +dxdy +III. +d3(x, y) = +� +Ω exp +� +−x + y +2 +� ++ Λ exp(−x − y) +� +dxdy +IV. +d4(x, y) = +Ω +� +exp +� +x−y +2 +� ++ exp +� +y−x +2 +�� ++ Λ +exp +� +x−y +2 ++ exp +� +y−x +2 +��2 +dxdy +Here Ω, Λ ∈ R are constants. According to the classification in [14][15], there exist 12 distinct classes of +superintegrable systems with non-trivial potentials in the 2D Darboux spaces. In each case, quadratic +integrals of motion of the system were determined and were found to form a quadratic algebra. The +wave functions and energy spectra of the systems were obtained by means of separation of variables. +Superintegrable systems in Darboux spaces were also studied in [11] [32] [33]. It was shown there that +free superintegrable systems (i.e. systems without potentials) in 2D and 3D flat conformal spaces are +equivalent to systems in 2D and 3D Darboux spaces, respectively. However, as far as we know, finite +dimensional representations of the polynomial algebras and algebraic derivations of the energy spectrum +of the superintegrable systems have remained an open problem. +In this paper we present a genuine algebraic approach to superintegrable systems in the 2D Darboux +spaces. The purpose of this paper is twofold. One is to give algebraic solutions to the existing 12 distinct +classes of superintegrable systems in the four 2D Darboux spaces. This is achieved by constructing the +finite dimensional irreducible representation of the quadratic algebras underlying the 12 superintegrable +systems via the deformed oscillator algebra techniques in [1] and [5]. As one will see, energy spectrum for +superintegrable systems in Darboux spaces are often determined by very complicated algebraic equations +whose analytic and closed-form solutions can only be obtained by restricting the model parameter spaces. +The second purpose is to investigate superintegrable systems in 2D Darboux spaces with linear, quadratic +or cubic integrals of motion. It was found in [11] that the free systems with linear and quadratic integrals +in 2D Darboux spaces have cubic algebras as their underlying symmetry algebras. We will introduce +generic cubic and quintic algebras, generated by linear and quadratic integrals and linear and cubic +integrals, respectively, and construct their Casimir operators and deformed oscillator algebra realizations. +We also present three classes of new superintegrable systems with non-trivial potentials in 2D Darboux +spaces which have cubic algebras as their symmetry algebras. These superintegrable systems do not seem +to belong to the families classified in [14][15] for systems with quadratic integrals in 2D Darboux spaces. +This paper is organised as follows. +In Section 2, we obtain the Casimir operators, the deformed +oscillator algebra realizations and finite-dimensional irreducible representations for the quadratic algebras +generated by the quadratic integrals of motion of the 12 superintegrable systems in 2D Darboux spaces. +This enables us to give an algebraic derivation for the energy spectra of all the 12 classes of superintegrable +systems. In Section 3, we introduce generic cubic and quintic algebras generated by linear and higher order +integrals of motion. We construct their Casimir operators and deformed oscillator algebra realizations. +We also present examples of new superintegrable systems with linear and quadratic integrals in the 2D +Darboux spaces. In Section 4, we provide a summary of the main results of our work. +2 + +ALGEBRAIC APPROACH TO SUPERINTEGRABLE SYSTEMS IN DARBOUX SPACES +2 +Solutions of the 12 distinct classes of superintegrable systems in 2D +Darboux spaces +Consider a superintegrable system in a 2D Darboux space with coordinates (x, y) and metric gij(x, y). +The Hamiltonian of the system with potential V (x, y) is given by +ˆH = +2 +� +j,k=1 +1 +� +det(gjk) +∂ +∂xk +�� +det(gjk)gjk +∂ +∂xk +� ++ V (x, y). +Let ˆX be an integral of motion (aka, constant of motion) of the system which commute with the Hamil- +tonian, i.e. [ ˆX, ˆH] = 0. An integral of motion is said to be a polynomial in momenta of degree p, denoted +by deg ˆX = p, if it has the form +ˆX = +p +� +j=0 +rj(x, y) ∂p−j +x +∂j +y + s(x, y), +where rj(x, y), s(x, y) are smooth functions in the coordinates x, y. In particular, integrals of motion +of degree 1, 2 or 3 are usually called linear, quadratic or cubic integrals, respectively. Note that the +Hamiltonian has degree 2, i.e. deg ˆH = 2. +As mentioned in the Introduction, superintegrable systems in the four 2D Darboux spaces with +quadratic integrals of motion were classified in [14][15], and 12 distinct classes of potentials which pre- +serve superintegrability were found. In this section, we present algebraic solutions to all the 12 existing +superintegrable systems. +Note that in the following we will use the so-called separable coordinates in [14][15] for each case. As +indicated in [14][15], in such coordinates the parameters Ω, Λ in the metrics of the Darboux spaces can +be conveniently absorbed into the model parameters of the systems by redefinition so that they do not +appear explicitly in the expressions of Hamiltonians and integrals. +2.1 +Darboux Space I +According to the classification in [14][15], in the Darboux space I, there are two possible superintegrable +systems with potentials given by +V1(x, y) = b1(4x2 + y2) +4x ++ b2 +x + b3 +xy2 , +V2(x, y) = a1 +x + a2y +x + a3(x2 + y2) +x +, +respectively, where bi, ai are real constants. +2.1.1 +Potential V1(x, y) +For superintegrable system in Darboux space I with the Hamiltonian ˆH = +1 +4x +� +∂2 +x + ∂2 +y +� ++ V1(x, y) asso- +ciated to V1, the constants of motion are given by [15] +A = ∂2 +y + 4b3 +y2 + b1y2, +B = y∂y∂x − x∂2 +y + ∂x +2 − y2 +4x +� +∂2 +x + ∂2 +y +� ++ b1y4 +4x + b2y2 +x ++ b3(4x2 + y2) +y2x +. +These integrals satisfy the following quadratic algebra relations +[A, B] = C, +[A, C] = −8 ˆHA − 16b1B, +[B, C] = 6A2 + 8 ˆHB + 16b2A − 2b1(3 + 16b3). +3 + +ALGEBRAIC APPROACH TO SUPERINTEGRABLE SYSTEMS IN DARBOUX SPACES +This is the symmetry algebra of the superintegrable system The Casimir of this algebra is given by +K1 = C2 − 4A3 + 8 ˆH{A, B} − 16b2A2 − 16b1B2 + 4b1(11 + 16b3)A. +We can show that with the differential realization of A, B the Casimir K1 has the following form in terms +of the Hamiltonian ˆH, +K1 = −4(3 + 16b3) ˆH2 + 16b1b2(3 + 16b3). +In order to obtain the energy spectrum of the system via algebraic means, we now construct realization +of the quadratic algebra in terms of the deformed oscillator algebra of the form +[N, b†] = b†, +[N, b] = −b, +bb† = Φ(N + 1), +b†b = Φ(N), +(1) +where N is the number operator and Φ(z) is a well-defined real function satisfying +Φ(0) = 0, +Φ(z) > 0, ∀z > 0. +(2) +Φ(x) is called the structure function of the deformed oscillator algebra. +It is non-trivial to obtain such a realization and the corresponding structure function Φ(z). After a +long computation, we find in the present case that +A = 4 +� +−b1 (N + η), +B = +2 ˆH +√−b1 +(N + η) + b† + b +map the quadratic algebra to the deformed oscillator algebra with structure function given by +Φ(I) +1 (N, η) = − +1 +16b1 +� +−4(N + η)16b1b2 + (−b1)3/2(16b3 + 11) − 4 ˆH2 + 2b3/2 +1 +(16b3 + 3) ++64 +� +−b1b1(N + η)3 + 16(N + η)2(4b1b2 − ˆH2) − (16b3 + 3)(2b1 +� +−b1 − 4b1b2 + ˆH2) +� +. +Here η is a constant to be determined from the constraints on the structure function Φ. +We now obtain the finite-dimensional unitary irreducible representations (unirreps) of the deformed +oscillator algebra in the Fock space. Let |z, E⟩, denote the Fock basis states labelled by the eigenvalues +z and E of N and ˆH, respectively. Acting the structure function on the Fock states, we find that it is +factorized to the following form +ΦI +1(z, η) = +� +z + η − 1 +4 +� +2 − +� +1 − 16b3 +�� � +z + η − 1 +4 +� +2 + +� +1 − 16b3 +�� +� +z + η + 2b1 +�√−b1 − 2b2 +� + E2 +4(−b1)3/2 +� +. +For the unirreps to be finite dimensional, we impose the following constraints on the structure function, +Φ(0, η) = 0, +Φ(p + 1, η) = 0, +(3) +where p is a positive integer, p = 0, 1, 2, · · · . These constraints give (p+1)-dimensional unirreps in the Fock +space and their solutions give the constant η and energy spectrum E of the underlying superintegrable +system. +There are two sets of solutions from the constraints on the structure function: +η = 1 +4 +� +2 + ϵ√1 − 16a2 +� +, +Eim = ±2 +√ +−1 (−b1)3/4 +� +p + 1 − ϵ +4 +� +1 − 16b3 + +b2 +√−b1 +, +4 + +ALGEBRAIC APPROACH TO SUPERINTEGRABLE SYSTEMS IN DARBOUX SPACES +and +η = −2b1 +�√−b1 − 2b2 +� + E2 +4(−b1)3/2 +, +Eϵ = ±2(−b1)3/4 +� +p + 1 + ϵ +4 +� +1 − 16b3 − +b2 +√−b1 +, +where ϵ = ±1. The first set of solutions give complex energies which are not physical and thus will be +discarded. So the energy spectrum of the system is given by the second set of solutions which are real +for ϵ = +1, b1 < 0, b2 ≤ 0, b3 < 1/16. The structure function for the corresponding (p + 1)-dimensional +unirreps is +Φ(I) +E+(z) = z(z − p − 1) +� +z − 2b1 +�√−b1 − 2b2 +� + E2 ++ +4(−b1)3/2 +− 1 +4 +� +2 + +� +1 − 16b3 +�� +. +In the following subsections, we would only give the values of parameter η which can lead to real +energies E. +2.1.2 +Potential V2(x, y) +Constants of motion for the superintegrable system in Darboux space I with the Hamiltonian ˆH = +1 +4x +� +∂2 +x + ∂2 +y +� ++ V2(x, y) corresponding to the potential V2 are given by [15] +A = y∂y∂x − x∂2 +y + ∂x +2 − y2 +4x +� +∂2 +x + ∂2 +y +� +− 2a2y +x ++ 2a2(x2 − y2) +x ++ 2a2y(x2 − y2) +x +, +B = ∂2 +y + 4a2y + 4a3y2. +They satisfy the following quadratic algebra relations +[A, B] = C, +[A, C] = 16a2 ˆH − 16a3B, +[B, C] = 16a3A + 8(a2 +2 + 4a1a3) − 8 ˆH2. +The Casimir operator of the algebra is given by +K2 = C2 + 16a3A2 + 16a3B2 − 32a2 ˆHB + 16 +� +(a2 +2 + 4a1a3) − ˆH2� +A, +which in terms of the differential realization of A, B takes the constant value K2 = 64(a2 +3 − a1a2 +2). +We then determine the realization of above quadratic algebra in terms of the deformed oscillator +algebra (1) and apply its finite dimensional unirreps to obtain the energy spectrum of the system. After +computations, we find that +A = 4√−a3(N + η), +B = a2 ˆH +a3 ++ b† + b. +transform the quadratic algebra to the deformed oscillator algebra with structure function +Φ(I) +2 (N, η) = +� +4a1a3 + a2 +2 − ˆH2�2 +16a2 +3 +− a1a2 +2 +a3 +− 1 +12(N + η) +� +24a2 ˆH +√−a3 ++ 48a3 +� ++ a2 ˆH +√−a3 ++ 4a3(N + η)2 + a3. +Moreover, the action of this structure function on the Fock states |z, E⟩ is factorized as +Φ(I) +2 (z, η) = +� +z + η − m+(E) + 2a3 +4a3 +� � +z + η − m−(E) + 2a3 +4a3 +� +, +5 + +ALGEBRAIC APPROACH TO SUPERINTEGRABLE SYSTEMS IN DARBOUX SPACES +where η is a constant to be determined and +m±(E) = a2E +√−a3 +± +� +64a2 +1a2 +3 + 4a1 +�a2 +2(8a3 − 1) − 8a3E2� + 4a4 +2 − a2 +2(8a3 + 1)E2 +a3 ++ 4E4. +We now impose the constraints (3) to obtain finite-dimensional unirreps of the algebra. We find that +for p = 0, 1, 2, · · · , we have +Case 1: η−(E) = +1 +4a3 (m−(E) + 2a3) and +� +64a2 +1a2 +3 + 4a1 +�a2 +2(8a3 − 1) − 8a3E2� + 4a4 +2 − a2 +2(8a3 + 1)E2 +a3 ++ 4E4 = 2a3(p + 1), +(4) +which has solutions only for a3 > 0 and the energy spectrum of the system is given by +E+a3 = ± +1 +√8a3 +�� +128a1a2 +2a2 +3 + a4 +2(16a3 + 1) + 64a4 +3(p + 1)2 + 32a1a2 +3 + a2 +2(8a3 + 1), +Notice that E+a3 is real for a1 > 0, a3 > 0. +Case 2 η+(E) = +1 +4a3 (m+(E) + 2a3) and +� +64a2 +1a2 +3 + 4a1 +�a2 +2(8a3 − 1) − 8a3E2� + 4a4 +2 − a2 +2(8a3 + 1)E2 +a3 ++ 4E4 = −2a3(p + 1), +which has solutions only for a3 < 0 and the energies of the system are +E−a3 = ± +1 +√−8a3 +�� +128a1a2 +2a2 +3 + a4 +2(16a3 + 1) + 64a4 +3(p + 1)2 − 32a1a2 +3 − a2 +2(8a3 + 1). +(5) +Obviously for a3 < 0 there exist ranges of model parameters a1, a2 such that the eneries E−a3 of the +system are real. +The structure function for both cases 1 and 2 corresponding to the (p + 1)-dimensional unirreps of +the algebra is given by Φ(I) +E±a3(z) = z(z − p − 1). +2.2 +Darboux Space II +In the Darboux space II, there are three superintegrable systems with potentials given by [14] +V1(x, y) = +x2 +x2 + 1 +� +a1 +� +x2 +4 + y2 +� ++ a2y + a3 +x2 +� +, +V2(x, y) = +x2 +x2 + 1 +� +b1(x2 + y2) + b2 +x2 + b3 +y2 +� +V3(x, y) = +c1 + c2 +x2 + c3 +y2 +x2 + y2 + 1 +x2 + 1 +y2 +, +respectively, where aj, bj, cj are real constants. +2.2.1 +Potential V1(x, y) +The constants of motion of the superintegrable system in Darboux space II with the Hamiltonian ˆH = +x2 +x2+1 +� +∂2 +x + ∂2 +y +� ++ V1(x, y) associated to the potential V1 are +A = ∂2 +y + a1y2 + a2y, +B = +2y +x2 + 1 +� +∂2 +y − x2∂2 +x +� ++ 2x∂x∂y + ∂y + a1 +2 y +� +x2 + x2 + 4y2 +x2 + 1 +� ++ a2 +2 +� +x2 + +4y2 +x2 + 1 +� +− 2a3y +x2 + 1. +6 + +ALGEBRAIC APPROACH TO SUPERINTEGRABLE SYSTEMS IN DARBOUX SPACES +They satisfy the following quadratic algebra relations [14] +[A, B] = C, +[A, C] = −4a1B − 4a2A, +[B, C] = −24A2 + 4a2B + 32 ˆHA − 8 ˆH2 − 8a1 ˆH + 6a1 + 8a1a3. +Its Casimir operator can be shown to be given by +K1 = C2 − 16A3 + 4a1B2 + 4a2{A, B} + +� +4a1(4a3 − 11) − (16a1 ˆH + 16 ˆH2) +� +A + 32 ˆHA2. +In term of the differential realization of A, B, the Casimir K1 takes the simple form K1 = (32a1+4a2 +2) ˆH− +a2 +2(3 + 4a3). +By computations similar to those in the previous subsection, we find that +A = 2√−a1(N + η), +B = +2a2 +√−a1 +(N + η) + a2 ˆH +a1 ++ b† + b +map the quadratic algebra to the deformed oscillator algebra (1) with structure function given by +Φ(II) +1 +(N, η) = − 12a3 +1 − 3√−a1a1a2 +2 − 16a3 +1a3 − 4√−a1a1a2 +2a3 + 32√−a1a2 +1 ˆH + 16a3 +1 ˆH +− 8a1a2 +2 ˆH + 4√−a1a1a2 +2 ˆH + 16a2 +1H2 + 4√−a1a2 +2H2 ++ (N + η) +� +88a3 +1 + 16√−a1a1a2 +2 + 32a3 +1a3 − 128√−a1a2 +1 ˆH − 32a3 +1 ˆH + 16a1a2 +2 ˆH − 32a2 +1 ˆH2� ++ (N + η)2 � +−192a3 +1 − 16√−a1a1a2 +2 + 128√−a1a2 +1 ˆH +� ++ 128a3 +1(N + η)3. +Here η is a constant to be determined from the constraints of the structure function. Acting on the Fock +basis states |z, E⟩, the structure function Φ(II) +1 +becomes factorized +Φ(II) +1 +(z, η) = +� +z + η − f1(E) + ω(E) + f2(E) +24a3 +1 +� +� +z + η − +1 +96a3 +1 +� +4f1(E) − 2 +� +1 − i +√ +3 +� +ω(E) + +� +1 + i +√ +3 +� +f2(E) +�� +� +z + η − +1 +96a3 +1 +� +4f1(E) − 2 +� +1 + i +√ +3 +� +ω(E) + +� +1 − i +√ +3 +� +f2(E) +�� +, +where +f1(E) =a1 +� +12a2 +1 + √−a1a2 +2 + 8(−a1)3/2E +� +, +f2(E) = +1 +ω(E) +� +a3 +1(12a3 +1(4E − 4a3 + 1) − a4 +2 − 16a2 +1E2 − 8a1a2 +2E) +� +, +ω(E) = 3� +τ1(E) + τ2(E), +τ1(E) =6a6 +1 +� +a4 +2 + 8a1Ea2 +2 + 16a2 +1E2 + a3 +1(−16a3 + 16E + 4) +� � +3(4a3 − 4E − 1), +τ2(E) =a1a6 +2(−a1)7/2 + 12a4 +2E(−a1)11/2 − 48a2 +2E2(−a1)13/2 +− 4 +� +9a2 +2(4a3 − 4E − 1) − 16E3� +(−a1)15/2 − 144E(−4a3 + 4E + 1)(−a1)17/2. +To determine the constant η and energy spectrum E of the superintegrable system, we impose the +constraints (3) which give (p + 1)-dimensional unirreps of the algebra. We find +Case 1: The constant η is given by +η1(E) = f1(E) + ω(E) + f2(E) +24a3 +1 +7 + +ALGEBRAIC APPROACH TO SUPERINTEGRABLE SYSTEMS IN DARBOUX SPACES +and the energy E satisfies the algebraic equation, +ω(E) + f2(E) + 1 +2 +� +1 − ϵ i +√ +3 +� +ω(E) − 1 +4 +� +1 + ϵ i +√ +3 +� +f2(E) = −24(p + 1)a3 +1. +(6) +Case 2: +η2(E) = +1 +96a3 +1 +� +4f1(E) − 2 +� +1 − ϵ i +√ +3 +� +ω(E) + +� +1 + ϵ i +√ +3 +� +f2(E) +� +and the energy is determined by +ω(E) + f2(E) + 1 +2 +� +1 − ϵ i +√ +3 +� +ω(E) − 1 +4 +� +1 + ϵ +√ +3i +� +f2(E) = 24(p + 1)a3 +1. +(7) +In both cases above, ϵ = ±1. +The energy spectrum E of the system are obtained by solving the algebraic equations (6) and (7). +However, it is in general very difficult to obtain analytical solutions of these equations, due to their +complicated form. To demonstrate that these equations have real solutions, we have a closer look at +restricted model parameter spaces. Without the loss of generality, we consider the case where −a1 = +a2 = a3 = a for any a ∈ R. For such model parameters, the structure function has the simple form, +Φ(II) +1 +(z, η) = +� +z + η − 1 +8 +�√a + 4 +�� � +z + η − 1 +4a +� +2√aE + 2a − a +√ +4E + 1 − 4a +�� +� +z + η − 1 +4a +� +2√aE + 2a + a +√ +4E + 1 − 4a +�� +. +Imposing the constraints (3) on the structure function lead to the determination of constant η and energy +E of the superintegrable system for the model parameters −a1 = a2 = a3 = a. There are two sets of +solutions: One is that η = 1 +8 (√a + 4) and +Eϵ = 1 +4 +� +8√a(p + 1) + 3a + 2ϵ +� +8a3/2(p + 1) − 2a2 + a +� +, +where ϵ = ±1, with the associated structure function Φ(II) +Eϵ (z) = z(p + 1 − z)2. The energy spectrum Eϵ +is real for 0 < a ≤ 1/2. +The second set of solutions is given by +η(E) = 1 +4a +� +2√aE + 2a − a +√ +4E + 1 − 4a +� +and the corresponding energy spectrum of the system and structure function for the (p + 1)-dimensional +unirreps of the deformed oscillator algebra are given by +E = p(p + 2) + a + 3 +4, +Φ(II) +E +(z) = z(z − p − 1) +� +z + 1 +8a +� +3a3/2 − 4a(p + 1) + √a(4p2 + 8p + 3) +�� +. +Thus we have demonstrated that there exist indeed non-trivial model parameters which give real +energies of the superintegrable system in both Case 1 and Case 2 above. +2.2.2 +Potential V2(x, y) +The superintegrable system in Darboux II with potential V2(x, y) has Hamiltonian ˆH = +x2 +x2+1 +� +∂2 +x + ∂2 +y +� ++ +V2(x, y). This system possesses the following integrals of motion [14] +A = ∂2 +y + b1y2 + b3 +y2 , +B = (y2 − x4)∂2 +y + x2(1 − y2)∂2 +x +x2 + 1 ++ 2xy∂x∂y + x∂x + y∂y − 1 +4 + x2 + y2 +x2 + 1 +� +b1(x2 + y2) − b2 − b3 +x2 +y2 +� +, +8 + +ALGEBRAIC APPROACH TO SUPERINTEGRABLE SYSTEMS IN DARBOUX SPACES +which form the quadratic algebra relations +[A, B] = C, +[A, C] = 8A2 − 16b1B + 16b1 ˆH − 16b1(b2 + b3 + 3 +4), +[B, C] = −8{A, B} + 8 ˆHB + 12A − 8 ˆH2 + 8(b2 − b3 − 3 +4) ˆH. +By a direct calculation, we find the Casimir operator of the algebra +K2 =C2 − 8{A2, B} + 8 ˆH{A, B} + 16b1B2 + 76A2 + +� +16(b3 − b2 + 19 +4 ) ˆH − 16 ˆH2 +� +A ++ +� +8b1(4(b2 + b3) + 3) − 32b1 ˆH +� +B. +This Casimir operator can be expressed in terms of Hamiltonian as +K2 = −16 +� +b1 + b3 + 3 +4 +� +ˆH2 − 8b1(4b3 − 4b2 + 3) ˆH + b1 +� +36 + 48b3 − (4b3 − 4b2 + 3)2� +. +It can be shown that after the change of basis +A = 4 +� +−b1(N + η), +B = 8(N + η)2 − +2 ˆH +√−b1 +− 16(b2 + b3 + 3 +4)(N + η) − b1 ˆH +b1 ++ b† + b, +the quadratic algebra becomes the deformed oscillator algebra with structure function +Φ(II) +2 +(N, η) = 1 +16 +� +4b3 + 16N 2 + 16N(2η − 1) + 16η2 − 16η + 3 +� +� +4b2 + 1 − 4 ˆH +�√−b1 + 2N + 2η − 1 +� +√−b1 ++ 16N 2 + 32Nη − 16N + 16η2 − 16η + 3 +� +. +On the Fock states |z, E⟩, the structure function is factorized as follows +Φ(II) +2 +(z, η) = +� +z + η − 1 +4 +� +2 − +� +1 − 4b3 +�� � +z + η − 1 +4 +� +2 + +� +1 − 4b3 +�� +� +z + η − 2b1 − γ+(E) +4b1 +� � +z + η − 2b1 − γ−(E) +4b1 +� +, +where +γ±(E) = +� +b2 +1(4E − 4b2 + 1) ± +� +−b1E. +Imposing the constraints (3), for any p ∈ N+ we get the following values for the parameter η and +energy E: +Case 1. η+(E) = +1 +4b1 (2b1 − γ+(E)). This η value gives the following energy spectrum of the system +and the corresponding structure function of the deformed oscillator algebra +E− = −(p + 2) +� +−b1, +Φ(II) +E− (z) = z(z − p − 1) +� +z + 1 +4b1 +� +b1 +� +1 − 4b3 − γ+(E−) +�� � +z − 1 +4b1 +� +b1 +� +1 − 4b3 + γ+(E−) +�� +. +The enegry E− is real for b1 < 0. +Case 2. η−(E) = +1 +4b1 (2b1 − γ−(E)). This η value gives two sets of energies of the system, +E+ =(p + 2) +� +−b1, +(8) +Eϵ = − 2b1 + 4 +� +−b1 +� +p + 1 + ϵ +4 +� +1 − 4b3 +� +± +� +4b2 +1 − 16b1 +� +−b1 +� +p + 1 + ϵ +4 +� +1 − 4b3 +��� ++ 4b1b2 − b1. +(9) +9 + +ALGEBRAIC APPROACH TO SUPERINTEGRABLE SYSTEMS IN DARBOUX SPACES +Eϵ above is obtained by solving the algebraic equation γ−(E) = 4b1 +�p + 1 + ϵ +4 +√1 − 4b3 +� from the con- +straints. (Notice that the other algebraic equation γ+(E) = 4b1 +�p + 1 + ϵ +4 +√1 − 4b3 +� lead to complex +solutions and its solutions are not shown here.) +Obviously E+ is real for b1 < 0 and Eϵ is real for +ϵ = +1, b1 < 0, b2 < 1 +4, b3 < 1 +4. The structure functions corresponding to E+, Eϵ in the Case 2 above are +given by +Φ(II) +E+ (z) = z(z − p − 1) +� +z + 1 +4b1 +� +b1 +� +1 − 4b3 − γ−(E+) +�� � +z − 1 +4b1 +� +b1 +� +1 − 4b3 + γ−(E+) +�� +, +Φ(II) +Eϵ (z) = z(z − p − 1) +� +z + 1 +2b1 +� +−b1 Eϵ +� � +z − 1 +4b1 +� +γ−(Eϵ) + ϵb1 +� +1 − 4b3 +�� +, +respectively. +Case 3: η = 1 +4 +�2 + ϵ√1 − 4b3 +�. The corresponding energies are given the same expression as Eϵ +above (and are obtained from solving the algebraic equation γ+(E) = −4b1 +�p + 1 + ϵ +4 +√1 − 4b3 +�). +2.2.3 +Potential V3(x, y) +The constants of motion for the superintegrable system in Darboux space II with the Hamiltonian ˆH = +x2 +x2+1 +� +∂2 +x + ∂2 +y +� ++ V3(x, y) associated to the potential V3 are given by +A = +� +y2 + 1 +y2 +� +∂2 +x − +� +x2 + 1 +x2 +� +∂2 +y +x2 + y2 + 1 +x2 + 1 +y2 ++ c1x2(y4 + 1) + c2(y4 + 1) − c3(x4 + 1) +(x2y2 + 1)(x2 + y2) +, +B =c1(x2 + y2) − c2(y4 − 1) − c3(x4 − 1) +4(x2y2 + 1) ++ xy(x2 − y2) +� +xy∂2 +x − xy∂2 +y + (x2 − y2)∂x∂y +� ++ +1 +x2y2 + 1 +�� +x2 − y2 +4 ++ y4 +� +x2∂2 +x + +� +x2 − y2 +4 ++ x4 +� +y2∂2 +y + 2xy +� +x2 − y2 +2 +− x2y2 +� +∂x∂y +� +. +They form the following quadratic algebra relations +[A, B] = C, +[A, C] = 2A2 + 2c1A + 16 ˆHB + 6 ˆH − 8 ˆH2, +[B, C] = −2{A, B} + (c2 + c3)A − c1c3. +The Casimir operator of this algebra is +K3 = C2 − 2{A2, B} − 16 ˆHB2 + (c2 + c3 + 4)A2 + 2c1{A, B}a − 2c1(c3 + 2)A + (16 ˆH2 − 12 ˆH)B. +With the differential realization of A, B, the Casimir operator can be expressed in terms of the Hamilto- +nian as +K3 = 4(c2 + c3) ˆH2 + (c2 +1 − 4c2c3 − 3(c2 + c3)) ˆH − 3 + 4c3 +4 +c2 +1. +We can convert the quadratic algebra into the deformed oscillator algebra by using the realization +A = 4 +� +ˆH(N + η), +B = −2(N + η)2 + +c1 +2 +� ˆH +(N + η) − 3 ˆH − 4 ˆH2 +8 ˆH ++ b† + b +with the corresponding structure function given by +Φ(II) +3 +(N, η) = − +1 +256 ˆH +� +4c3 − 4 ˆH + 16N 2 + 32Nη − 16N + 16η2 − 16η + 3 +� +× +� +−c2 +1 + 4c1 +� +ˆH(2N + 2η − 1) + ˆH +� +−4c2 + 4 ˆH − 16N 2 − 32Nη + 16N − 16η2 + 16η − 3 +�� +. +10 + +ALGEBRAIC APPROACH TO SUPERINTEGRABLE SYSTEMS IN DARBOUX SPACES +By acting Φ(II) +3 +on the Fock basis states |z, E⟩, we find that the structure function is factorised as +Φ(II) +3 +(z, η) = +� +z + η − 1 +4 +� +2 − +� +−4c3 + 4E + 1 +�� � +z + η − 1 +4 +� +2 + +� +−4c3 + 4E + 1 +�� +× +� +z + η − 1 +4E +� +−E +� +−4c2 + 4E + 1 + c1 +√ +E + 2E +�� +× +� +z + η − 1 +4E +� +E +� +−4c2 + 4E + 1 + c1 +√ +E + 2E +�� +. +We now obtain the energy spectrum of the system from the finite-dimensional unirreps of the deformed +oscillator algebra. Imposing the constraints (3) which give (p + 1)-dimensional unirreps for any p ∈ N+, +we determine the parameter η and the energy E of the system. There are two sets of solutions; +Case 1: η(E) = 1 +4 +�2 − √−4c3 + 4E + 1 +� and the energies are determined by either +� +−4c3 + 4E + 1 − 2(p + 1) = 0 +(10) +or +c1 +√ +E ++ +� +−4c3 + 4E + 1 + +� +−4c2 + 4E + 1 = 4(p + 1). +(11) +Solution to the algebraic equation (10) gives the energies +Ec3 = p(p + 2) + c3 + 3 +4. +The structure function of the corresponding (p + 1)-dimensional unirreps is +Φ(II) +Ec3 (z) =z(z − p − 1) +� +� +� +�z − 1 +2 +� +p + 1 − +� +(p + 1)2 + c3 − c2 +� +− +c1 +4 +�� +p + 1 +2 +� � +p + 3 +2 +� ++ c3 +� +� +� +� +� +� +� +�z − 1 +2 +� +p + 1 + +� +(p + 1)2 + c3 − c2 +� +− +c1 +4 +�� +p + 1 +2 +� � +p + 3 +2 +� ++ c3 +� +� +� +� . +Other possible energies of the system are given by solutions to the algebraic equation (11), which read +E± = 1 +4 +(p + 1 + c1)2 � +2c2 + 2c3 − 1 ± +� +(p + 1 + c1)2 + 4c2c3 − (c2 + c3) + 1 +4 +� +(p + 1 + c1)2 − (c2 − c3)2 +. +These energies are real for the model parameters satisfying 4c2c3 + 1 +4 > c2 + c3. The corresponding +structure functions for the (p+1)-dimensional unirreps of the algebra are +Φ(II) +E± (z) =z(z − p − 1) +� +z − 1 +2 +� +−4c3 + 4E± + 1 +� +� +z − 1 +4 +�� +−4c3 + 4E± + 1 − +� +−4c2 + 4E± + 1 + +c1 +√E± +�� +. +Case 2: η(E) = +1 +4E +� +c1 +√ +E + 2E − E√−4c2 + 4E + 1 +� +. +This η value gives the following energy +spectrum of the system and the corresponding structure function of the unirreps, +Ec2 = p(p + 2) + c2 + 3 +4, +Φ(II) +Ec2 (z) =z(z − p − 1) +� +� +� +�z + 1 +2 +� +p + 1 − +� +(p + 1)2 + c2 − c3 +� ++ +c1 +4 +�� +p + 1 +2 +� � +p + 3 +2 +� ++ c2 +� +� +� +� +� +� +� +�z − 1 +2 +� +p + 1 + +� +(p + 1)2 + c2 − c3 +� ++ +c1 +4 +�� +p + 1 +2 +� � +p + 3 +2 +� ++ c2 +� +� +� +� . +11 + +ALGEBRAIC APPROACH TO SUPERINTEGRABLE SYSTEMS IN DARBOUX SPACES +2.3 +Darboux Space III +In Darboux space III, there exist 4 different potentials. In terms of the separable coordinates (u, v) and +(µ, ν), they are given by +V1(u, v) = a1u + a2v + a3 +4 + u2 + v2 +, +V2(u, v) = +b1 +u2 + b2 +v2 + b3 +4 + u2 + v2 , +V3(µ, ν) = +c1(µ + ν) + c2 +µ+ν +µν + c3 +ν2−µ2 +ν2µ2 +(µ + ν)(2 + µ − ν) +, +V4(µ, ν) = d1µ + d2ν + d3ν2 + µ2 +(µ + ν)(2 + µ − ν) +, +where ai, bi, ci, di are real constants. +2.3.1 +Potential V1(u, v) +The constants of motion of the superintegrable system in Darboux space III with the Hamiltonian ˆH = +exp(2u) +4(exp(u))+1 +�∂2 +u + ∂2 +v +� + V1(u, v) associated to the potential V2 are given by [14] +A = (2 + v2)∂2 +u − (2 + u2)∂2 +v +2(4 + u2 + v2) ++ a1u(2 + v2) − 2a2v(2 + u2) + a3(v2 − u2) +4(4 + u2 + v2) +, +B = 2uv +(∂2 +u + ∂2 +v) +2(4 + u2 + v2) − 2∂u∂v + a1v(v2 − u2 + 4) + a2u(u2 − v2 + 4) − 2a3vu +4(4 + u2 + v2) +. +They form the quadratic algebra with the commutation relations +[A, B] = C, +[A, C] = ˆHB − a2a1 +8 +, +[B, C] = − ˆHA − a2 +2 − a2 +1 +16 +, +which is the symmetry algebra of the superintegrable system. +By a direct computation, we obtain the Casimir operator of this algebra +K1 = − ˆHA2 − ˆHB2 − a2 +2 − a2 +1 +8 +A + a1a2 +4 +B. +We can show that in terms of the Hamiltonian this Casimir operator takes the form +K1 = − ˆH3 + 1 +2(a3 + 1 +2) ˆH2 + 1 +16(2a2 +1 + 2a2 +2 − a2 +3) ˆH − a3(a2 +1 + a2 +2) +32 +. +To determine the energy spectrum of the system, we now construct the deformed oscillator algebra +realization of the quadratic algebra. We find that +A = +� +ˆH(N + η), +B = a1a2 +8 ˆH ++ b† + b, +trsansform the quadratic algebra into the deformed oscillator algebra with the structure function +Φ(III) +1 +(N, η) = +1 +256 ˆH +� +a2 +1 + 2a3 ˆH − 4 ˆH3/2 +� +2 +� +ˆH + 2N + 2η − 1 +�� +× +� +a2 +2 + 2a3 ˆH + 4 ˆH3/2 +� +−2 +� +ˆH + 2N + 2η − 1 +�� +. +Here η is a constant parameter to be determined from the constraints (1). Acting on the Fock basis states +|z, E⟩, the structure function Φ(III) +1 +becomes +Φ(III) +1 +(z, η) = +� +z + η − +1 +8E3/2 +� +a2 +1 + 2E +� +a3 − 4E + 2 +√ +E +��� +× +� +z + η + +1 +8E3/2 +� +a2 +2 + 2E(a3 − 4E − 2 +√ +E) +�� +. +12 + +ALGEBRAIC APPROACH TO SUPERINTEGRABLE SYSTEMS IN DARBOUX SPACES +The constraints (3) give the (p + 1)-dimensional unirreps of the deformed oscillaor algebra and their +solutions determine the constant η and energy spectrum of the superintegrable system. There are two +sets of solutions: +Case 1: η(E) = +1 +8E3/2 +� +a2 +1 + 2E +� +a3 − 4E + 2 +√ +E +�� +and energies E are determined by the algebraic +equation +8E3/2 (p + 1) + 4a3E + a2 +1 + a2 +2 = 16E2. +(12) +Case 2: η(E) = − +1 +8E3/2 +� +a2 +2 + 2E +� +a3 − 4E − 2 +√ +E) +�� +and energies E satisfy +16E2 + 8E3/2 (p + 1) = 4a3E + a2 +1 + a2 +2. +(13) +The algebraic equations (12) and (13) can be solved by using symbolic computation packages. +It can be shown that there exist model parameters ai such that solutions to these algebraic equations +for energies are real. To demonstrate this, we consider the case in which the model parameters satisfy +a1 = 0 and a2 = a3 = 1. In this case we find that the structure function reduces to +Φ(III) +1 +(z, η) = +� +z + η − +�1 +2 − +√ +E + +1 +4 +√ +E +�� � +z + η − +�1 +2 + +1 +8E3/2 (8E2 − 2E − 1) +�� +. +Imposing the constraints (3) gives the constant η and energies as follows. +a. η(E) = 1 +2 − +√ +E + +1 +4 +√ +E which leads to the algebraic equation 4E(1 − 4E) + 1 + 8E3/2(p + 1) = 0 +for E. This equation has real solution given by +E± = 1 +48 +� +3p2 + +√ +3 g(p) + 6p + 9 ± +� +6 f(p) +� +, +where +e(p) = +3 +� +27p4 + 108p3 + 252p2 + 3 +√ +3 +� +(p + 1)4 (27p4 + 108p3 + 310p2 + 404p + 575) + 288p + 367 +g(p) = +� +3 (p2 + 2p + 3)2 + 2 × 22/3e(p) + +1 +e(p) 4 +3√ +2 (6p2 + 12p + 31) + 8 +f(p) = 3 +� +p2 + 2p + 3 +�2 − 22/3e(p) − +1 +e(p)2 +3√ +2 +� +6p2 + 12p + 31 +� ++ +1 +g(p) 3 +√ +3(p + 1)2 � +p4 + 4p3 + 12p2 + 16p + 23 +� ++ 8. +It is clear that g(p) is real for all p ∈ N+. We now show that f(p) > 0 for all p ∈ N+. Let +f0(p) = 3 +� +p2 + 2p + 3 +�2 − 22/3e(p) − +1 +e(p) 2 +3√ +2 +� +6p2 + 12p + 31 +� ++ 8. +By using symbolic computation package, we found that df0(p) +dp +> 0 for all p ∈ N+. Hence f0(p) is strictly +increasing. Moreover, f0(0) = −62 3� +2 +15 +√ +69+367 − 22/3 3� +15 +√ +69 + 367 + 35 ∼= 12.5741 > 0. It follows that +f(p) > 0 for all p ∈ N+ and the energy E given above is real. +b. η(E) = 1 +2 + +1 +8E3/2 (8E2−2E−1). This leads to the algebraic equation 4E(4E−1)−1+8E3/2(p+1) = +0. It gives the same energy expression as in Case a above. +For both case a and case b above, the structure function corresponding to the (p + 1)-dimensional +unirreps of the deformed oscillator algebra is simply Φ(III +a,b (z) = z(z − p − 1). +13 + +ALGEBRAIC APPROACH TO SUPERINTEGRABLE SYSTEMS IN DARBOUX SPACES +2.3.2 +Potential V2(u, v) +The integrals of motion of the superintegrable system associated to the potential V2 with Hamiltonian +ˆH = +exp(2u) +4(exp(u))+1 +�∂2 +u + ∂2 +v +� + V2(u, v) in Darboux space III are given by [14], +A = u2∂2 +v − 2uv∂u∂v + v2∂2 +u + b1v2 +4u2 + b2u2 +4v2 , +B = (2 + v2)∂2 +u − (2 + u2)∂2 +v +2(4 + u2 + v2) ++ 2b1v2(v2 + 2) − 2b2u2(u2 + 2) + b3(v2 − u2) +4(4 + u2 + v2) +. +These integrals form the quadratic algebra of the form +[A, B] = C, +[A, C] = −2{A, B} − (b1 + b2 + 1)B + (b1 − b2) ˆH + (b2 − b1)b3 +4 +, +[B, C] = −2B2 − (b1 + b2 + 1)B + (b1 − b2) ˆH + (b2 − b1)b3 +4 +. +By a direct calculation, we find the Casimir operator of the algebra +K2 = C2 + 2{A, B2} + (b1 + b2 + 5)B2 − 4 ˆHA2 − 2(b1 − b2) ˆHB +− b3(b2 − b1)B − 4 ˆHA + (2b3 − 1) ˆHA − b2 +3 +4 A. +With the differential realization of A, B and in terms of ˆH, the Casimir K2 takes the simple form +K2 = −(b1 + b2 − 2) ˆH2 + +� +(b3 + 3 +2)(b1 + b2) +2 +− b3 − b1b2 − 1 +2 +� +ˆH − b2 +3(b1 + b2 − 2) +16 +. +The quadratic algebra can be transformed into the deformed oscillator algebra via the realization +(i.e., change of basis) +A = − +� +(N + η)2 − 1 +4 + b1 + b2 + 1 +4 +� +, +B = −(b1 − b2) ˆH + (b2−b1)b3 +4 +16 +� +(N + η)2 − 1 +4 +� ++ b†ρ(N) + ρ(N)b, +where +ρ(N) = +1 +3 · 212 · (−2)8(N + η)(1 + N + η)(1 + 2(N + η))2 . +The structure function is given by +Φ(III) +2 +(N, η) = 4096((2N + 2η − 1)2 � +b2 +2(3b1 + 3b2 + 7) − 4 ˆH +� +3b2 +1 + b1(12b2 − 12 ˆH + 11) ++9b2 +2 − 12b2 ˆH + 25b2 − 28 ˆH + 4 +�� +− 48(1 − 2(N + η))2 +� +− 1 +16b2 +2(b1 + b2 − 2) ++1 +2 +ˆH +�� +b2 + 3 +2 +� +(b1 + b2) − 2b1b2 − 2b2 − 1 +� +− ˆH2(b1 + b2 − 2) +� ++ (2N + 2η − 1)2 � +12N 2 + 12N(2η − 1) + 12η2 − 12η − 1 +� +× +� +b2 +2 − 4 ˆH(2b1 + 4b2 − 4 ˆH + 1) +� ++ 12(b1 − b2)2(b2 − 2 ˆH)2 − 12 ˆH(2(N + η) − 3)(2(N + η) + 1)(1 − 2(N + η))4). +Here η is a constant to be determined from the constraints on the structure function. +14 + +ALGEBRAIC APPROACH TO SUPERINTEGRABLE SYSTEMS IN DARBOUX SPACES +By acting on Fock basis states |z, E⟩, we can show that the structure function Φ(III) +2 +is factorized as +Φ(III) +2 +(z, η) = +� +z + η − 1 +12 +� +6 − +√ +3 +� +δ1(E) + (b3 − 4E)2 +E +− 8(b1 + b2) + +g(E) +Eδ1(E) + 12 +�� +� +z + η − 1 +12 +� +6 + +√ +3 +� +δ1(E) + (b3 − 4E)2 +E +− 8(b1 + b2) + +g(E) +Eδ1(E) + 12 +�� +� +�z + η − 1 +24 +� +�12 − +√ +6 +� +f(E) +E ++ (−1 + i +√ +3)δ1(E) +E +− (1 + i +√ +3)g(E) +Eδ1(E) ++ 24 +� +� +� +� +� +�z + η − 1 +24 +� +�12 + +√ +6 +� +f(E) +E ++ (−1 + i +√ +3)δ1(E) +E +− (1 + i +√ +3)g(E) +Eδ1(E) ++ 24 +� +� +� +� +� +�z + η − 1 +24 +� +�12 − +√ +6 +� +f(E) +E +− (1 + i +√ +3)δ1(E) +E ++ (−1 + i +√ +3)g(E) +Eδ1(E) ++ 24 +� +� +� +� +� +�z + η − 1 +24 +� +�12 + +√ +6 +� +f(E) +E +− (1 + i +√ +3)δ1(E) +E ++ (−1 + i +√ +3)g(E) +Eδ1(E) ++ 24 +� +� +� +� , +where +f(E) = 2 +� +b2 +3 − 8Eb3 − 8(b1 + b2 − 2E)E +� +, +g(E) = b4 +3 − 16Eb3 +3 + 4E(2b1 + 2b2 + 24E + 3)b2 +3 − 32E2(2b1 + 2b2 + 8E + 3)b3, ++ 16E2(b2 +1 + 14b2b1 + 8(E − 3)b1 + b2 +2 + 16E2 + 8b2(E − 3) + 12E + 15), +δ1(E) = +3� +ρ1(E) + ρ2(E), +with +ρ1(E) = b6 +3 − 24Eb5 +3 + 240E2b4 +3 + 12b1Eb4 +3 + 12b2Eb4 +3 + 18Eb4 +3 − 1280E3b3 +3 +− 192b1E2b3 +3 − 192b2E2b3 +3 − 288E2b3 +3 + 3840E4b2 +3 + 1152b1E3b2 +3 + 1152b2E3b2 +3 ++ 1728E3b2 +3 + 48b2 +1E2b2 +3 + 48b2 +2E2b2 +3 − 288b1E2b2 +3 − 480b1b2E2b2 +3 +− 288b2E2b2 +3 + 360E2b2 +3 − 6144E5b3 − 3072b1E4b3 − 3072b2E4b3 − 4608E4b3 +− 384b2 +1E3b3 − 384b2 +2E3b3 + 2304b1E3b3 + 3840b1b2E3b3 + 2304b2E3b3 − 2880E3b3 ++ 4096E6 + 3072b1E5 + 3072b2E5 + 4608E5 + 768b2 +1E4 + 768b2 +2E4 − 4608b1E4 +− 7680b1b2E4 − 4608b2E4 + 5760E4 + 64b3 +1E3 + 64b3 +2E3 + 3744b2 +1E3 − 2112b1b2 +2E3 ++ 3744b2 +2E3 − 8064b1E3 − 2112b2 +1b2E3 + 10944b1b2E3 − 8064b2E3 + 3456E3; +ρ2(E) = 128 +2043 +�� +− +� +b2 +3 − 8Eb3 − 8(b1 + b2 − 2E)E +�2 − 12E +� +(2b1 + 2b2 + 1)b2 +3 +−8(2b1 + 2b2 + 1)Eb3 − 4E +� +b2 +1 − 2(b2 + 4E − 4)b1 + b2 +2 + 8b2 − 8b2E − 4E − 5 +���3 ++ 262144 +� +b6 +3 − 24Eb5 +3 + 6E(2b1 + 2b2 + 40E + 3)b4 +3 − 32E2(6b1 + 6b2 + 40E + 9)b3 +3 ++ 24E2 � +2b2 +1 − 4(5b2 − 12E + 3)b1 + 2b2 +2 + 160E2 + 72E + 12b2(4E − 1) + 15 +� +b2 +3 +− 192E3 � +2b2 +1 − 4(5b2 − 4E + 3)b1 + 2b2 +2 + 32E2 + 24E + 4b2(4E − 3) + 15 +� +b3 ++ 32E3 � +2b3 +1 + (−66b2 + 24E + 117)b2 +1 − 6 +� +11b2 +2 + (40E − 57)b2 − 16E2 + 24E + 42 +� +b1 ++2b3 +2 + 3b2 +2(8E + 39) + 12b2 +� +8E2 − 12E − 21 +� ++ 4 +� +32E3 + 36E2 + 45E + 27 +���2� 1 +2 . +Imposing the constraints (3) which give the (p + 1)-dimensional unirreps of thedeformed oscillator +algebra, we determine the constant η and obtain the following algebraic equations for the energies E: +15 + +ALGEBRAIC APPROACH TO SUPERINTEGRABLE SYSTEMS IN DARBOUX SPACES +1. η1(E) = +1 +12 +� +6 − +√ +3 +� +δ1(E)+(b3−4E)2 +E +− 8(b1 + b2) + +g(E) +Eδ1(E) + 12 +� +. This η value gives five sets of +algebraic equations, +δ1(E) + (b3 − 4E)2 + g(E) +δ1(E) = (12p(p + 2) + 8(b1 + b2)) E, +η1(E) − 1 +24 +� +�12 + ϵ +√ +6 +� +f(E) +E ++ (−1 + i +√ +3)δ1(E) +E +− (1 + i +√ +3)g(E) +Eδ1(E) ++ 24 +� +� + p + 1 = 0, +η1(E) − 1 +24 +� +�12 + ϵ +√ +6 +� +f(E) +E +− (1 + i +√ +3)δ1(E) +E ++ (−1 + i +√ +3)g(E) +Eδ1(E) ++ 24 +� +� + p + 1 = 0, +where ϵ = ±1. Real solutions to each algebraic equation above give the energies of the system. +2. η2(E) = 1 +24 +� +12 − +√ +6 +� +f(E) +E ++ +i(i+ +√ +3)δ1(E) +E +− +i(−i+ +√ +3)g(E) +Eδ1 ++ 24 +� +and energy spectra from the real +solutions of the three sets of algebraic equations +f(E) + i(i + +√ +3)δ1(E) − +i +� +−i + +√ +3 +� +g(E) +δ1(E) += 24p(p + 2)E, +η2(E) − 1 +24 +� +� +�12 + ϵ +√ +6 +� +� +� +�f(E) +E +− +i +� +−i + +√ +3 +� +δ1(E) +E ++ +i +� +i + +√ +3 +� +g(E) +Eδ1(E) ++ 24 +� +� +� + p + 1 = 0, +where again ϵ = ±1. +3. η3(E) = 1 +24 +� +12 − +√ +6 +� +f(E) +E +− (1+i +√ +3)δ1(E) +E ++ (−1+i +√ +3)g(E) +Eδ1(E) ++ 24 +� +. This η yields the algebraic equa- +tion whose real solutions gives other possible energies of the system, +f(E) − (1 + i +√ +3)δ1(E) + (−1 + i +√ +3)g(E) +δ1(E) += 24p(p + 2)E. +It is in general very difficult to solve the above algebraic equations for E analytically due to their +complicated forms. To demonstrate the existence of real solutions to the above algebraic equations, we +have a closer look at cases of restricted model parameter space. As an example, we consider b1 = b2 = +b3 = h for any h ∈ R. In this case the structure function reduces to +Φ(III) +2 +(z, η) = +� +z + η − 1 +2 +�2 +� +�z + η − 1 +8 +� +�4 − +� +2h2(E) − 2h1(E) +E +� +� +� +� +� +�z + η − 1 +8 +� +�4 + +� +2h2(E) − 2h1(E) +E +� +� +� +� +� +�z + η − 1 +8 +� +�4 − +� +2h2(E) + 2h1(E) +E +� +� +� +� +� +�z + η − 1 +8 +� +�4 + +� +2h2(E) + 2h1(E) +E +� +� +� +� , +where +h1(E) = +� +h4 + 16h3E + 8h2E(12E + 1) + 64hE2(4E − 15) + 16E2 (16E2 + 8E + 17), +h2(E) = h2 − 24hE + 16E2 + 12E. +Imposing the constraints (3), we determine the constant η and the corresponding energies for the model +parameters b1 = b2 = b3 = h as follows. +16 + +ALGEBRAIC APPROACH TO SUPERINTEGRABLE SYSTEMS IN DARBOUX SPACES +a. η1 = 1 +2 and +E1,± = 4h2 + 12hp2 + 24hp + 15h + 8p4 + 32p3 + 42p2 + 20p + 1 ± m(h, p) +4 (4h + 4p2 + 8p + 3) +, +where +m(h, p) = +� +(4h2 + 3h (4p2 + 8p + 5) + 8p4 + 32p3 + 42p2 + 20p + 1)2 − h2 (4h + 4p2 + 8p + 3)2. +It is easy to check that m(p) is real for any p ∈ N+ if h > 0 and so E1,± give the energies of the system +for the model parameters b1 = b2 = b3 = h > 0. +b. η2(E) = 1 +8 +� +4 + ϵ +� +2h2(E)−2h1(E) +E +� +with ϵ = ±1. For this η value, the energies are +E2,± = 8h2 + 6hp2 + 12hp + 12h + p4 + 4p3 + 3p2 − 2p − 4 ± n(h, p) +8(4h + p(p + 2)) +, +where +n(h, p) = +� +(8h2 + 6h (p2 + 2p + 2) + p4 + 4p3 + 3p2 − 2p − 4)2 − 4h2(4h + p(p + 2))2. +It can be checked that n(p) is real for h > 1 and so E2,± give the energies of the system for the model +parameters b1 = b2 = b3 = h > 1. +Other possible energies corresponding to η2(E) are +E3,± = 1 +8 +� +4 +� +(1 − 4h)p(p + 2) − 2h + 4p2 + 8p + 3 ± l(h, p) +� +, +where +l(p, h) = 8p2� +4z(h, p)(16p + 7) − 4h (4z(h, p) + 20p2 + 40p + 3) + 16p4 + 64p3 + 80p + 22, +z(p, h) = +� +(1 − 4h)p(p + 2). +It is easily seen that l(p) and z(p) are real for h < 0. Hence, E3,± are real for h < 0 and give the energies +of the system for model parameters b1 = b2 = b3 = h < 0. +2.3.3 +Potential V3(µ, ν) +The constants of motion of the superintegrable system with potential V3 and the Hamiltonian ˆH = +µ2∂2 +µ−ν2∂2 +ν +(µ+ν)(2+µ−ν) + V3(µ, ν) are given by [14], +A = −4µ2ν2 (∂µ + ∂ν)2 +(µ + ν)2 +− c2 +µ − ν +µν +− c3 +(µ − ν)2 +µ2ν2 +, +B = ν2(µ + 2)µ∂2 +ν − µ2(ν − 2)ν∂2 +µ +(µ + ν)(2 + µ − ν) +− 4µ2ν2 (∂µ + ∂ν)2 +(µ + ν)2 +− c1µ2ν2 + c2µν + 2c3(1 + µ − ν) +µν(2 + µ − ν) +. +These integrals form the quadratic algebra with the commutation relations +[A, B] = C, +[A, C] = −2{A, B} − B − 2c1c2 + 4c2 ˆH, +[B, C] = 2B2 − 8c3 ˆH. +The Casimir operator for the quadratic algebra is given by +K3 = C2 + 2{A, B2} − 16c3 ˆHA + 5B2 + 4c2 +� +c1 − 2 ˆH +� +B, +17 + +ALGEBRAIC APPROACH TO SUPERINTEGRABLE SYSTEMS IN DARBOUX SPACES +which can be expressed in terms of the Hamiltonian as +K3 = 16c3 ˆH2 + 4(c2 +2 − 4c1c3) ˆH + 4c2 +1c3. +It can be shown that +A = (N + η)2 − 1 +2, +B = − +c1c2 − 2c2 ˆH +2 +� +(N + η)2 − 1 +4 +� + b†ρ(N) + ρ(N)b, +where η is a constant to be determined and +ρ(N) = +1 +3 · 220(N + η)(1 + N + η)(1 + 2(N + η))2 , +convert the quadratic algebra into the deformed oscillator algebra with the structure function +Φ(III) +3 +(N, η) = −786432 +� +−c2 +1 + 4c1 ˆH + ˆH (2N + 2η − 1)2 − 4 ˆH2� � +c2 +2 − c3(2N + 2η − 1)2� +. +By acting it on a Fock basis |z, E⟩, the structure function becomes +Φ(III) +3 +(z, η) = 12582912 c3 E +� +z + η − +� +1 +2 − +c2 +2√c3 +�� � +z + η − +� +1 +2 + +c2 +2√c3 +�� +� +z + η − E − +√ +E(c1 − 2E) +2E +� � +z + η − E + +√ +E(c1 − 2E) +2E +� +. +Imposing the constraint conditions (3), we obtain +1. η(E) = E− +√ +E(c1−2E) +2E +or η(E) = E+ +√ +E(c1−2E) +2E +. For both cases, we have +E = 1 +8 +� +4c1 + (p + 1)2 ± (p + 1) +� +8c1 + (p + 1)2 +� +, +which is real for c1 > 0. This gives the energy spectrum of the system for any model parameters c1, c2, c3 +with c1 > 0. +2. ηϵ = 1 +2 +� +1 + ϵ +c2 +√c3 +� +, where ϵ = ±1. The corresponding energies are given by +Eϵ = 1 +8 +� +��4c1 + +� +2(p + 1) + ϵ c2 +√c3 +�2 +± +� +2(p + 1) + ϵ c2 +√c3 +� � +� +� +�8c1 + +� +2(p + 1) + ϵ c2 +√c3 +�2 +� +�� , +which is real for c1 > 0 and c3 > 0. +2.3.4 +Potential V4(µ, ν) +For a superintegrable system with the Hamiltonian ˆH = +µ2∂2 +µ−ν2∂2 +ν +(2+µ−ν)(µ+ν)+V4(µ, ν) associated to the potential +V4, the constants of motion are given by [14] +A = ν2(µ + 2)µ∂2 +ν − µ2(ν − 2)ν∂2 +µ +(µ + ν)(2 + µ − ν) +− µν (d1(ν − 2) + d2(µ + 2) + 2d3(ν − µ + µν)) +(µ + ν)(2 + µ − ν) +, +B = +1 +4µν(µ − ν + 2)(µ + ν)2 +�� +µ4(12ν3 − 12ν2 + ν + 1) + 2µ3ν − (ν − 1)µ2ν2� +∂2 +µ ++ µν(µ − ν + 2) +� +µ2(12ν2 + 1) + 2µν + ν2� +∂µ∂ν ++ν2 � +µ3(12ν2 − 1) + µ2(12ν2 − 1) + µ(ν − 2)ν − ν2� +∂2 +ν +� +− (µ − ν) +�(µ − ν)(d1µ + d2ν) − 2d3(µ2 + ν2 + µν(2 + µ − ν)) +� +4µν(µ + ν)(2 + µ − ν) +. +18 + +ALGEBRAIC APPROACH TO SUPERINTEGRABLE SYSTEMS IN DARBOUX SPACES +They satisfy the quadratic algebra relations +[A, B] = C, +[B, C] = −2B2 + 2 ˆHB − d2 +3 +2 , +[A, C] = 2{A, B} − 2 ˆHA − B + (d1 + d2 + 1 +2) ˆH − d1d2 +2 +− 2 ˆH2. +By a direct calculation, we find the Casimir operator of this algebra +K4 = C2 − 2{A, B2} + 5B2 + 2 ˆH{A, B} − d2 +3A + +� +4 ˆH − (2d1 + 2d2 + 5) ˆH + d1d2 +� +B. +By means of the differential operator representation of A and B above, the Casimir operator K4 can be +expressed in terms of ˆH as +K4 = 4 ˆH3 − (2d1 + 2d2 + 1) ˆH2 + +� +(d1 + d2)2 +4 ++ d3(d2 − d1) +� +ˆH − d3(d3 − d2 +1 + d2 +2) +4 +. +We can show that +A =(N + η)2, +B = +ˆH +2 − −4 ˆH + 8(d1 + d2 + 1 +2) ˆH − 4d1d2 +32 +� +(N + η)2 − 1 +4 +� ++ ρ(N)b† + bρ(N) +with +ρ(N) = +1 +3 · 220(N + η)(1 + N + η)(1 + 2(N + η))2 , +give a realization of the quadratic algebra in terms of the deformed oscillator algebra, with the structure +function given by +Φ(III) +4 +(N, η) =16384(1 − 2(N + η))2 � +3 +� +d3 +� +−d2 +1 + d2 +2 + d3 +� ++ 4d3 ˆH(d1 − d2) ++4 ˆH2(2d1 + 2d2 + 1) − ˆH(d1 + d2)2 − 16 ˆH3� ++ 6d1 ˆH(d2 − 2 ˆH) +−4 ˆH2(3d2 − 6 ˆH + 2) + +� ˆH2 − d2 +3 +� � +12(N + η)2 − 12(N + η) − 1 +� +− 7d2 +3 +� +. +Here η is a constant parameter to be determined. Acting on the Fock states |z, E⟩, the structure function +is factorized as +Φ(III) +3 +(z, η) = +� +z + η − 1 +2 +�2 � +z + η − +� +1 +2 − +γ1(E) +2 +�d2 +3 − E2� +�� � +z + η − +� +1 +2 + +γ1(E) +2 +�d2 +3 − E2� +�� +, +where +γ1(E) = +� +d2 +3 − E2 × +� +−d2 +1(d3 + E) + 4d1E(d3 + E) + d2 +2(d3 − E) + 4d2E(E − d3) − 8E3. +From the constraints (3), we determine the constant η and the energy spectrum E of the system. We list +the results as follows. +Case 1: η(E) = 1 +2 − +γ1(E) +2(d2 +3−E2). Corresponding to this η value, we have either +� +−d2 +1(d3 + E) + 4d1E(d3 + E) + d2 +2(d3 − E) + 4d2E(E − d3) − 8E3 = (p + 1) +��d2 +3 − E2� +(14) +or +� +−d2 +1(d3 + E) + 4d1E(d3 + E) + d2 +2(d3 − E) + 4d2E(E − d3) − 8E3 = 2(p + 1) +��d2 +3 − E2�. +(15) +19 + +ALGEBRAIC APPROACH TO SUPERINTEGRABLE SYSTEMS IN DARBOUX SPACES +Notice that obviously the solution space of the algebraic equation (15) is subspace of that of (14) and so +the energy spectrum of the system corresponding to η1(E) is given by solutions to (14). +Case 2: η = 1 +2. In this case, E satisfies the same algebraic equation as (15) and so do not give new +energies of the system. +Case 3: η(E) = +� +1 +2 + +γ1(E) +2(d2 +3−E2) +� +. This η value give the same equations for E as those in Case 1 +above. +Due to the complexity of the algebraic equations, it is hard to see whether or not they lead to real +energies E for general model parameters. However, we can show that when the model parameter d3 = 0, +the structure function reduces to +Φ(III) +3 +(z, η) = +� +z + η − 1 +2 +�2 � +z + η − 1 +2E +� +E − +� +E +�d2 +1 − 4d1E + d2 +2 − 4d2E + 8E2��� +� +z + η − 1 +2E +� +E + +� +E +�d2 +1 − 4d1E + d2 +2 − 4d2E + 8E2��� +. +In this case, by imposing the constraints (3) we obtain the parameter η and the energies of the system +with model parameter d3 = 0, +η−(E) = 1 +2E +� +E − +� +E +�d2 +1 − 4d1E + d2 +2 − 4d2E + 8E2�� +, +E± = 1 +16 +� +4d1 + 4d2 + (p + 1)2 ± +� +(p + 1)2 ((p + 1)2 + 8(d1 + d2)) − 16 (d1 − d2)2 +� +. +Other η values from the constraints give rise to same energies as E± above. +It is clear that both E± are real for d1 = d2 > 0. So E± give the energy spectrum of the system for +model parameters d1 = d2 > 0, d3 = 0. The corresponding structure function of the p + 1)-dimensional +unirreps is +Φ(III)E±(z) = z(z − p − 1) +� +z − +1 +2E± +� +E± +�d2 +1 − 4d1E± + d2 +2 − 4d2E± + 8E2 +± +� �2 +. +2.4 +Darboux Space IV +In Darboux space IV, there are 3 different potentials in the separable coordinates (µ, ν), (u, v) and (ω, ϕ): +V1(µ, ν) = −sin2(2µ)(4a1 exp(2ν) + 4a2 csc2(2µ) + 4a3 exp(4ν)) +2 cos 2µ + a4 +, +V2(u, v) = − +sin2(2u)( +b2 +sinh2 v + +b3 +cosh2 v) + b1 +2 cos 2u + b4 +, +V3(ω, ϕ) = +c1 +cos2 ϕ + +c2 +cosh2 ω + c3 +� +1 +sin2 ϕ − +1 +sinh2 ω +� +c4+2 +sinh2(2ω) + +c4−2 +sin2(2ϕ) +, +where ai, bi ci are real model parameters. +2.4.1 +Potential V1(µ, ν) +The integrals of motion of the superintegrable system in Darboux space IV with potential V1 and the +Hamiltonian ˆH = − +4µ2ν2 +(a4+2)µ2+(a4−2)ν2 + V1(µ, ν) are +A =µ2∂2 +µ + 2µν∂µ∂ν + ν2∂2 +ν + µ∂µ + ν∂ν + a1(µ2 + ν2) + a3(µ2 + ν2)2; +B = 4(a4 + 2)µ2∂2 +µ − 4(a4 − 2)ν2∂2 +ν +(a4 + 2)µ2 + (a4 − 2)ν2 ++ 2a1 +�(a4 + 2)µ2 − (a4 − 2)ν2� + 4a3 +�(a4 + 2)µ4 − (a4 − 2)ν4� + 16a2 +(a4 + 2)µ2 + (a4 − 2)ν2 +. +20 + +ALGEBRAIC APPROACH TO SUPERINTEGRABLE SYSTEMS IN DARBOUX SPACES +They form the quadratic algebra with the commutation relations given by [14] +[A, B] = C, +[A, C] = 8{A, B}a − 16B + 32a1 ˆH, +[B, C] = −8B2 + 256a3A + 128 a3a4 ˆH + 32(a2 +1 + 4a3 + 16). +By a direct calculation, we find that the Casimir operator is +K1 = C2 − 8{A, B2} + 256 a3A2 + 80B2 + +� +256 a3a4 ˆH + 64(16a2a3 + a2 +1 + 4a3) +� +A − 64 a1 ˆHB. +With the differential operator representation of A and B, the Casimir operator can be expressed in terms +of ˆH as +K1 = −256 a3 ˆH2 + 64 a4(4a3 − a2 +1) ˆH + 128(a2 +1 + 4a3 + 8a2a3 − 2a2 +1a2). +After a long calculation, we find that the change of basis +A = 4(N + η)2, +B = − +128a1 ˆH +256 +� +(N + η)2 − 1 +4 +� + ρ(N)b† + bρ(N), +where +ρ(N) = +1 +3 · 215(N + η)(1 + N + η)(1 + 2(N + η))2 +maps the quadratic algebra to the deformed oscillator algebra with the structure function +Φ(IV ) +1 +(N, η) = − 805306368 (2(N + η) − 1)2 +× +� +128(−2a2 +1a2 + a2 +1 + 8a2a3 + 4a3) + 64 ˆHa4(4a3 − a2 +1) − 256a3 ˆH2� ++ 131072 +� +12(N + η)2 − 12(N + η) − 1 +� +(2(N + η) − 1)2 +× +� +131072(a2 +1 + 16a2a3 + 4a3) + 524288 a3a4 ˆH + 1048576 a3 +� +− 16384 (2(N + η) − 1)2 � +−7340032(a2 +1 + 16a2a3 + 4a3) + 29360128 a3a4 ˆH − 46137344 a3 +� ++ 51539607552 a2 +1 ˆH2 + 206158430208 a3 (2(N + η) − 3) (2(N + η) + 1) (2(N + η) − 1)4. +Acting on the Fock basis state |z, E⟩, we find that the structure function has the factorization +Φ(IV ) +1 +(z, η) = +� +z + η − +� +1 +2 − +ia1 +4√a3 +�� � +z + η − +� +1 +2 + +ia1 +4√a3 +�� +� +z + η − +1 +2 +√ +2 +�√ +2 − +� +1 − 4a2 − Ea4 − m1(E) +�� +� +z + η − +1 +2 +√ +2 +�√ +2 + +� +1 − 4a2 − Ea4 − m1(E) +�� +� +z + η − +1 +2 +√ +2 +�√ +2 − +� +1 − 4a2 − Ea4 + m1(E) +�� +� +z + η − +1 +2 +√ +2 +�√ +2 + +� +1 − 4a2 − Ea4 + m1(E) +�� +, +where +m1(E) = +� +(4a2 + Ea4 + 1)2 − 4(4a2 + E(E + a4)). +Imposing the constraints (3), we have +21 + +ALGEBRAIC APPROACH TO SUPERINTEGRABLE SYSTEMS IN DARBOUX SPACES +1. +η1(E) = +1 +2 +√ +2 +�√ +2 − +� +1 − 4a2 − Ea4 − m1(E) +� +. +This η value gives the following two sets of +energies and corresponding structure functions +E1,ϵ =1 +2(p + 1) +� +−(p + 1) a4 + ϵ +� +(a2 +4 − 4)(p + 1)2 + 16(1 − a2) +� +, +Φ(IV ) +E1,ϵ (z) =z(z − p − 1) +� +z − +1 +2 +√ +2 +� +1 − 4a2 − E1,ϵa4 − m1E1,ϵ) − +ia1 +4√a3 +� +� +z − +1 +2 +√ +2 +� +1 − 4a2 − E1,ϵa4 − m1(E1,ϵ) + +ia1 +4√a3 +� +� +z − +1 +2 +√ +2 +�� +1 − 4a2 − E1,ϵa4 − m1(E1,ϵ) − +� +1 − 4a2 − E1,ϵa4 + m1(E1,ϵ +�� +� +z − +1 +2 +√ +2 +�� +1 − 4a2 + E1,ϵa4 − m1(E1,ϵ) + +� +1 − 4a2 − E1,ϵa4 + m1(E1,ϵ) +�� +, +E2,ϵ = − +1 +a4 + ϵ 4 +� +4a2 + 4p2 + 8p + 3 +� +, +a4 ̸= ±4, +ΦE2,ϵ(z) =z(z − p − 1) +� +z − +1 +2 +√ +2 +� +1 − 4a2 − E2,ϵa4 − m1E2,ϵ) − +ia1 +4√a3 +� +� +z − +1 +2 +√ +2 +� +1 − 4a2 − E2,ϵa4 − m1(E1,ϵ) + +ia1 +4√a3 +� +� +z − 1 +√ +2 +�� +1 − 4a2 − E2,ϵa4 − m1(E2,ϵ) +�� +� +z − +1 +2 +√ +2 +�� +1 − 4a2 + E2,ϵa4 − m1(E2,ϵ) + ϵ +� +1 − 4a2 − E2,ϵa4 + m1(E2,ϵ) +�� +, +where ϵ = ±1. Notice that the energies E1,ϵ are real for a2 +4 > 4, a2 < 1. +2. η2(E) = +1 +2 +√ +2 +�√ +2 − +� +1 − 4a2 − Ea4 + m1(E) +� +. The energies are the same as those given in case +1 above +2.4.2 +Potential V2(u, v) +The constants of motion of the superintegrable system in Darboux space IV with the Hamiltonian ˆH = +− +sin2(2u)(∂2 +v+∂2 +u) +2 cos(2u)+b4 ++ V2(u, v) are [14], +A = e−2v +��e4v + 1 +� (2b4 cos(2u) + 3 cos(4u) + 1) +2b4 + 4 cos(2u) +∂2 +v − sin(2u) +�e4v + 1 +� sin(2u) +b4 + 2 cos(2u) ∂2 +u +� ++ e−2v � +sin(2u) +� +e4v + 1 +� +∂u + sin(2u) +� +e4v − 1 +� +∂u∂v + cos(2u) +� +e4v − 1 +� +∂v +� ++ +1 +2 cos 2u + b4 +� +2b1 cosh 2v + (b2 + b3)(4 − b2 +4) + (cos 4u + 2b4 cos 2u + 3) +� +b2 +sinh2 v − +b3 +cosh2 v +�� +, +B = ∂2 +v + +b2 +sinh2 v + +b3 +cosh2 v. +These integrals generates the quadratic algebra the commutation relations as follows +[A, B] =C, +[A, C] =8{A, B} + 16b4(b2 + b3)A − 16B + 32(b1 + b3) ˆH − 16b4(b2 + b3), +[B, C] =8B2 + 96A2 + +� +64b4 ˆH + (2b2 − 2b3 + b1 + 3) +� +A + 32 ˆH2 + 32b4(2b2 − 2b3 + 1) ˆH ++ 64b1(b2 − b3) − 8(b2 +4 − 4)(b2 + b3)2 + 32(b1 + 2b2 − 2b3). +22 + +ALGEBRAIC APPROACH TO SUPERINTEGRABLE SYSTEMS IN DARBOUX SPACES +By a direct computation, we find the Casimir operator of the algbebra, +K2 = C2 + 64A3 − 8{A, B2} − 16b4(b2 + b3){A, B} + 64 +� +b4 ˆH + 2b2 − 2b3 + b1 + 7 +� +A2 ++ +� +160b4(b2 + b3) − 64(b2 + b3) ˆH +� +B − 64b4(2b3 − 2b2 − 1) ˆHA +− 16 +� +(b2 +4 − 4)(b2 + b3)2 + 8(b1 + 1)(b3 − b2) − 4b1 + 32 +� +A + 64 ˆH2A. +With the differential realization of A and B, the Casimir K2 is expressible in terms of ˆH as follows +K2 =128(b3 − b2 + 1) ˆH2 + 128b4(b2 − b3 + 1) ˆH ++ (128 − 80b2 +4 − 64b1)(b2 + b3)2 − 128(b1 + 2)(b3 − b2 − 1) − 256. +After a long computation, we find that the realization +A = −4 +� +(N + η)2 − 1 +2 +� +, +B = b4(b2 + b3) +8 +− −32 · 16b4(b2 + b3) − 256 · (b1 + 2b2 − 2b3) +4γ3 +� +(N + η)2 − 1 +4 +� ++ ρ(N)b† + bρ(N), +where +ρ(N) = +1 +3 · 212 · (−8)8(N + η)(1 + N + η)(1 + 2(N + η))2 , +converts the quadratic algebra into the deformed oscillator algebra with the structure function +Φ(IV ) +2 +(N, η) =268435456 +� +(2N + 2η − 1)2 � +48(5a2 + 4b1 − 8)(b2 + b3)2 ++384 +� +(b1 + 2)(b2 − b3 + 1) + ˆH2(−b2 + b3 + 1) + ˆHb4(b2 − b3 + 1) − 2 +�� ++ 64 (2N + 2η − 1)2 � +12(N + η)2 − 12(N + η−) − 1 +� +× +� +b1(2b2 − 2b3 + 3) + b2 +2 + 2b2(b3 + ˆHb4 + 3) + b2 +3 − 2b3 ˆHb4 − 6b3 + ˆH2 + 3 ˆHb4 + 9 +� ++ (2N + 2η + 1)(2N + 2η − 1)6(b1 + 2b2 − 2b3 + ˆHb4 + 6) +× +� +986 b1(b2 − b3) + 448 +� +b1 + 2b2 − 2b3 + ˆHb4(2b2 − 2b3 + 1) +� +− 112 +� +b2 +4 − 4 +� +(b2 + b3)2 + 448 ˆH2 + 96 b4(b2 + b3) +� +2 ˆH(b1 + b3) − b4(b2 + b3) +� ++704 +� +b1 + 2b2 − 2b3 + ˆHb4 + 3 +� +− 32b2 +4(b2 + b3)2 + 192 +� ++192 +� +2N + 2η − 3 + ˆH2(b1 + b3)2 − (2N + 2η − 1)4 � +4(N + η)2 − 4(N + η) − 3 +�2�� +. +23 + +ALGEBRAIC APPROACH TO SUPERINTEGRABLE SYSTEMS IN DARBOUX SPACES +Acting on Fock basis states |z, E⟩, the structure function is factorized as follows +Φ(IV ) +2 +(z, η) = +� +z + η − +1 +2 +√ +2 +�√ +2 − +� +1 − 2b2 + 2b3 − +� +(1 − 4b2)(1 + 4b3) +�� +� +z + η − +1 +2 +√ +2 +�√ +2 + +� +1 − 2b2 + 2b3 − +� +(1 − 4b2)(1 + 4b3) +�� +� +z + η − +1 +2 +√ +2 +�√ +2 − +� +1 − 2b2 + 2b3 + +� +(1 − 4b2)(1 + 4b3) +�� +� +z + η − +1 +2 +√ +2 +�√ +2 + +� +1 − 2b2 + 2b3 + +� +(1 − 4b2)(1 + 4b3) +�� +� +z + η − +1 +2 +√ +2 +�√ +2 − +� +1 − b1 − Eb4 − m2(E) +�� +� +z + η − +1 +2 +√ +2 +�√ +2 + +� +1 − b1 − Eb4 − m2(E) +�� +� +z + η − +1 +2 +√ +2 +�√ +2 − +� +1 − b1 − Eb4 + m2(E) +�� +� +z + η − +1 +2 +√ +2 +�√ +2 + +� +1 − b1 − Eb4 + m2(E) +�� +, +where +m2(E) = +� +(1 + b1 + Eb4)2 − 4 (b1 + E2 + Eb4). +Imposing the constraint conditions (3), we determine the parameter η and the corresponding energies +of the system. We find +Case 1: η1,± = +1 +2 +√ +2 +�√ +2 − +� +1 − 2b2 + 2b3 ± +� +(1 − 4b2)(1 + 4b3) +� +and the energies E satisfy +2 +√ +2(p + 1) − n2,± = +� +1 − b1 − Eb4 + m2(E), +where +n2,± = +� +1 − 2b2 + 2b3 ± +� +(1 − 4b2)(1 + 4b3). +Noticing (1 − 4b2)(1 + 4b3) = (1 − 2b2 + 2b3)2 − (2b2 + 2b3)2 ≤ (1 − 2b2 + 2b3)2, we conclude that both +n2,± are real if b2 < 1 +4, b3 > −1 +4. +Solving the algebraic equations give the energies of the system and the corresponding structure func- +tions of the (p + 1)-dimensional unirreps of the algebra. We have +E1±,ϵ = − b4 +4 +� +2 +√ +2(p + 1) − n2,± +�2 ++ ϵ +� +2 +√ +2(p + 1) − n2,± +� � +8(1 − b1) + (b2 +4 − 4) +� +2 +√ +2(p + 1) − n2,± +�2, +Φ(IV ) +E1±,ϵ(z, η) =z (z − p − 1) +� +z − 1 +√ +2n± +� � +z − +1 +2 +√ +2(n± − n∓) +� � +z − +1 +2 +√ +2(n± + n∓) +� +� +z − +1 +2 +√ +2 +� +n± − +� +1 − b1 − E1±,ϵb4 − m2(E1±,ϵ) +�� +� +z − +1 +2 +√ +2 +� +n± + +� +1 − b1 − E1±,ϵb4 − m2(E1±,ϵ) +�� +� +z − +1 +2 +√ +2 +� +n± − +� +1 − b1 − E1±,ϵb4 + m2(E1±,ϵ) +�� +, +where ϵ = ±1. The energies E1±,ϵ are real for the model parameters b2 < 1 +4, b3 > −1 +4, b1 < 1, b2 +4 > 4. +24 + +ALGEBRAIC APPROACH TO SUPERINTEGRABLE SYSTEMS IN DARBOUX SPACES +Case 2: η1,± = +1 +2 +√ +2 +�√ +2 + +� +1 − 2b2 + 2b3 ± +� +(1 − 4b2)(1 + 4b3) +� +and the energies E satisfy +2 +√ +2(p + 1) + n2,± = +� +1 − b1 − Eb4 + m2(E). +Solutions of the equations give the energies of the system and the corresponding structre functions of the +(p + 1)-dimensional unirreps of the algebra. We have +E2±,ϵ = − b4 +4 +� +2 +√ +2(p + 1) + n2,± +�2 ++ ϵ +� +2 +√ +2(p + 1) + n2,± +� � +8(1 − b1) + (b2 +4 − 4) +� +2 +√ +2(p + 1) + n2,± +�2, +Φ(IV ) +E2±,ϵ(z, η) =z (z − p − 1) +� +z + 1 +√ +2n± +� � +z + +1 +2 +√ +2(n± − n∓) +� � +z + +1 +2 +√ +2(n± + n∓) +� +� +z + +1 +2 +√ +2 +� +n± − +� +1 − b1 − E2±,ϵb4 − m2(E2±,ϵ) +�� +� +z + +1 +2 +√ +2 +� +n± + +� +1 − b1 − E2±,ϵb4 − m2(E2±,ϵ) +�� +� +z + +1 +2 +√ +2 +� +n± + +� +1 − b1 − E2±,ϵb4 + m2(E2±,ϵ) +�� +, +where ϵ = ±1. The energies E2±,ϵ are real for the model parameters b2 < 1 +4, b3 > −1 +4, b1 < 1, b2 +4 > 4. +Case 3: η3,−(E) = +1 +2 +√ +2 +�√ +2 − +� +1 − b1 − Eb4 + m2(E) +� +and +√ +2(p + 1) = +� +1 − b1 − Eb4 + m2(E) +or +2 +√ +2(p + 1) = +� +1 − b1 − Eb4 + m2(E) + +� +1 − b1 − Eb4 − m2(E). +The first algebraic equation gives the energies +E3,1 = p + 1 +2 +� +−(p + 1)b4 ± +� +4(1 − b1) + (b2 +4 − 4)(p + 1)2 +� +, +which is real for b1 < 1, b2 +4 > 4. The corresponding structure function is +Φ(IV ) +E3,1 (z, η) =z (z − p − 1) +� +z − +1 +2 +√ +2 +�� +1 − b1 − E3,1b4 + m2(E3,1) − n− +�� +� +z − +1 +2 +√ +2 +�� +1 − b1 − E3,1b4 + m2(E3,1) + n− +�� +� +z − +1 +2 +√ +2 +�� +1 − b1 − E3,1b4 + m2(E3,1) − n+ +�� +� +z − +1 +2 +√ +2 +�� +1 − b1 − E3,1b4 + m2(E3,1) + n+ +�� +� +z − +1 +2 +√ +2 +�� +1 − b1 − E3,1b4 + m2(E3,1) − +� +1 − b1 − E3,1b4 − m2(E3,1) +�� +� +z − +1 +2 +√ +2 +�� +1 − b1 − E3,1b4 + m2(E3,1) + +� +1 − b1 − E3,1b4 − m2(E3,1) +�� +. +The second algebraic equation yields the energies +E3,2 = +1 +2 − b4 +� +4(p + 1)2 + b1 − 1 +� +, +25 + +ALGEBRAIC APPROACH TO SUPERINTEGRABLE SYSTEMS IN DARBOUX SPACES +which is well defined for the model parameter b4 ̸= 2. The associated structure function is given by +Φ(IV ) +E3,2 (z, η) =z (z − p − 1) +� +z − +1 +2 +√ +2 +�� +1 − b1 − E3,2b4 + m2(E3,2) − n− +�� +� +z − +1 +2 +√ +2 +�� +1 − b1 − E3,2b4 + m2(E3,2) + n− +�� +� +z − +1 +2 +√ +2 +�� +1 − b1 − E3,2b4 + m2(E3,2) − n+ +�� +� +z − +1 +2 +√ +2 +�� +1 − b1 − E3,2b4 + m2(E3,2) + n+ +�� +� +z − +1 +2 +√ +2 +�� +1 − b1 − E3,2b4 + m2(E3,2) − +� +1 − b1 − E3,2b4 − m2(E3,2) +�� +� +z − 1 +√ +2 +� +1 − b1 − E3,2b4 + m2(E3,2) +� +. +Case 4: η4,+ = +1 +2 +√ +2 +�√ +2 + +� +1 − b1 − Eb4 − m2(E) +� +. We have the algebraic equation +2 +√ +2(p + 1) = +� +1 − b1 − Eb4 + m2(E) − +� +1 − b1 − Eb4 − m2(E). +Solving, we obtain +E4 = +1 +2 + b4 +� +4(p + 1)2 + b1 − 1 +� +. +This gives the energy spectrum of the system for the model parameter b4 ̸= −2. The corresponding +structure function is +Φ(IV ) +E4 (z, η) =z (z − p − 1) +� +z + +1 +2 +√ +2 +�� +1 − b1 − E4b4 − m2(E4) − n− +�� +� +z + +1 +2 +√ +2 +�� +1 − b1 − E4b4 − m2(E4) + n− +�� +� +z + +1 +2 +√ +2 +�� +1 − b1 − E4b4 − m2(E4) − n+ +�� +� +z + +1 +2 +√ +2 +�� +1 − b1 − E4b4 − m2(E4) + n+ +�� +� +z + 1 +√ +2 +� +1 − b1 − E4b4 − m2(E4) +� +� +z + +1 +2 +√ +2 +�� +1 − b1 − E4b4 − m2(E4) + +� +1 − b1 − E4b4 + m2(E4) +�� +. +26 + +ALGEBRAIC APPROACH TO SUPERINTEGRABLE SYSTEMS IN DARBOUX SPACES +2.4.3 +Potential V3(ω, ϕ) +The constants of motion of the superintegrable system in Darboux space IV with the potential V3(ω, ϕ) +are [14] +A = − 2c4 +∂2 +ϕ + ∂2 +ω +c4+2 +sinh2(2ω) + +c4−2 +sin2(2ϕ) ++ (c4 + 2) sin2(2ϕ)∂2 +ϕ − (c4 − 2) sinh2(2ω)∂2 +ω +(c4 + 2) sin2(2ϕ) + (c4 − 2) sinh2(2ω) ++ +1 +c4+2 +sinh2(2ω) + c4−2 +sin2 ω +� +c4 + 2 +sinh2(2ω) +� +c3 +sin2 ϕ + +c1 +cos2 ϕ +� ++ +c4 − 2 +sin2(2ω) +� +c3 +sinh2 ω − +c2 +cosh2 ω +�� +, +B =1 +2 sin(2ϕ) sinh(2ω) tan(ϕ − iω) tan(ϕ + iω) +� +cot(2ϕ) ∂2 +ω + coth(2ω) ∂2 +ϕ +� ++ +� +−i cos(2ϕ) sinh(2ω) sinh +� +log +�tan(ϕ − iω) +tan(ϕ + iω) +�� +∂ω ++i cosh(2ω) sin(2ϕ) sinh +� +log +�tan(ϕ − iω) +tan(ϕ + iω) +�� +∂ϕ + 2 cosh +� +log +�tan(ϕ − iω) +tan(ϕ + iω) +��� ++ +1 +c4+2 +sinh2 2ω + c4−2 +sin2 ω +� +� c4 + 2 +sinh2 2ω +� +�c1 cosh 2ω tan2 ϕ − c2 cos 2ϕ − +c3 +� +2 cos2 ϕ(sinh2 ω − sin2 ϕ) +� ++ 1 +sin2 ϕ +� +� ++ c4 − 2 +sin2 2ϕ +� +�c2 cos 2ϕ tanh2 ω + c1 cosh 2ω − +c3 +� +2 cosh2 ω(sinh2 ω − sin2 ϕ) + 1 +� +sinh2 ω +� +� +� +� . +These integrals form the quadratic algebra with the following commutation relations +[A, B] =C, +[A, C] = − 8{A, B} − 16B − 16(c1 − c3)(c2 − c3), +[B, C] = − 24A2 + 8B2 + 16 +� +2c4 ˆH − 2c1 + 2c2 + 3 +� +A − 16 [(c4 + 2)c1 + (c4 − 2)c2 − c4 + 64c3] ˆH +− 8(c2 +4 − 4) ˆH2 − 8c2 +1 − 8c2 +2 + 16c2 +3 + 32c1c2 + 48c3(c1 + c2) − 16(c1 − c2), +which is the symmetry algebra of the superintegrable system. We can calculate the Casimir operator of +the algebra +K3 =C2 − 16A3 + 8{A, B2} − 16(2c2 − 2c1 − 7)A2 + 80B2 +− 16 +� +c2 +4 − 4 + 2(c4 + 2)c1 − 2(c4 − 2)c2 + 8c3 + 2c4 +� ˆH ++ 16 +� +c2 +1 + c2 +2 − 2c2 +3 − 6c3(c1 + c2) − 4c1c2 + 2c1 − 2c2 − 8 +� +A + 32(c2 − c3)(c1 − c3)B. +We can show that in terms of the Hamiltonian the Casimir K3 takes the simple form +K3 =16(c2 +4 − 4) ˆH2 − 16 +� +(c4 + 2)((c1 − c3)2 − 2c1) + (c4 − 2)((c2 − c3)2 + 2c2) − 8c3 − 4c4 +� ˆH +− 32(c1 − c2)(3c2 +3 − c1c2 − c3(c1 + c2)) + 32(c2 +1 + c2 +2 − 4c3(c1 + c2) − 2c1c2 + 2c1 − 2c2). +After a long computation, we find that the realization +A(N) = −4(N + η)2, +B = −(c1 − c3)(c2 − c3) +4 +� +(N + η)2 − 1 +4 +� + ρ(N)b + b†ρ(N) +with +ρ(N) = +1 +3 · 212 · (−8)8(N + η)(1 + N + η)(1 + 2(N + η))2 , +27 + +ALGEBRAIC APPROACH TO SUPERINTEGRABLE SYSTEMS IN DARBOUX SPACES +changes the quadratic algebra to the deformed oscillator algebra with the structure function +Φ(IV ) +3 +(N, η) =268435456 +� +16 +� +12N 2 + 12N(2η − 1) + 12η2 − 12η − 1 +� +(2N + 2η − 1)2 +× +� +c2 +1 + c1 +� +−4c2 − 6c3 + 2 ˆHc4 + 4 ˆH − 2 +� ++ c2 +2 + c2 +� +−6c3 − 2 ˆHc4 + 4 ˆH + 2 +� +−2c2 +3 + 128c3 ˆH + ˆH2c2 +4 − 4 ˆH2 + 6 ˆHc4 + 9 +� ++ 16 (2N + 2η − 1)2 � +7c2 +1 − 2c1 +� +14c2 + 21c3 − 7 ˆHc4 − 14 ˆH + 4 +� ++ 7c2 +2 ++c2 +� +−42c3 − 14 ˆH(c4 − 2) + 8 +� +− 14c2 +3 + 896c3 ˆH + 7 ˆH2c2 +4 − 28 ˆH2 + 36 ˆHc4 + 36 +� +− 3 (2N + 2η − 1)2 � +352 ˆH +� +−c1 + (c4 − 2)(c2 − c3)2 + 2c2(c4 − 2) − c2 +3 − 8c3 − 4c4 +� ++32(c1 − c2) (c1(c2 + c3) + c3(c2 − 3c3)) − 16 ˆH2 � +c2 +4 − 4 +�� ++ 48(c1 − c3)2(c2 − c3)2 +− 96 (2N + 2η − 3)(2N + 2η + 1)(2N + 2η − 1)4(c1 − c2 − ˆHc4 − 3) ++48 (2N + 2η − 1)4 � +(2N + 2η − 1)4 − 8(2N + 2η − 1)2 + 16 +�� +. +The structure function is a polynomial of degree 8 in N. Acting on the Fock basis states |z, E⟩, it becomes a +polynomial of degree 8 in z. In order to determine the energy spectrum of the superintegrable system, we have +to find the finite-dimensional unirreps of the deformed oscillator algebra by solving the constraints. This requires +the factorization of the structure function. However, it turns out to be very difficult to factorize the structure +function for general model parameters ci (even using symbolic computation softwares such as Mathematica). In +the following we restrict our attention to special model parameters and present analytic and closed-form results +for c1 = c2 = 1, c3 = c4 = 0. +In this case, we find that the structure function factorizes as +Φ(IV ) +3 +(z, η) = +� +z + η − +1 +2 +√ +2 +�√ +2 − +� +− +� +4E2 − 12E + 5 − 2E + 3 +�� +� +z + η − +1 +2 +√ +2 +�√ +2 + +� +− +� +4E2 − 12E + 5 − 2E + 3 +�� +� +z + η − +1 +2 +√ +2 +�√ +2 − +�� +4E2 − 12E + 5 − 2E + 3 +�� +� +z + η − +1 +2 +√ +2 +�√ +2 + +�� +4E2 − 12E + 5 − 2E + 3 +�� +� +z + η − +1 +2 +√ +2 +�√ +2 − +� +− +� +4E2 − 4E − 3 + 2E − 1 +�� +� +z + η − +1 +2 +√ +2 +�√ +2 + +� +− +� +4E2 − 4E − 3 + 2E − 1 +�� +� +z + η − +1 +2 +√ +2 +�√ +2 − +�� +4E2 − 4E − 3 + 2E − 1 +�� +� +z + η − +1 +2 +√ +2 +�√ +2 + +�� +4E2 − 4E − 3 + 2E − 1 +�� +. +Imposing the constraints (3), we determine the constant η and obtain the energies of the system and the structure +function of the symmetry algebra for the model parameters c1 = c2 = 1, c3 = c4 = 0 as follows. +a. The constant η is ηa(E) = +1 +2 +√ +2 +�√ +2 − +� +− +√ +4E2 − 12E + 5 − 2E + 3 +� +and the energies are given by the +equation +2 +√ +2(p + 1) = +�� +4E2 − 12E + 5 − 2E + 3 + +� +− +� +4E2 − 12E + 5 − 2E + 3 +=⇒ +Ea = −2(p + 1)2 + 5 +2. +28 + +ALGEBRAIC APPROACH TO SUPERINTEGRABLE SYSTEMS IN DARBOUX SPACES +The associated structure function is +Φ(IV ) +Ea (z, η) = z (z − p − 1) +� +z − 1 +√ +2 +� +− +� +4E2a − 12E2a + 5 − 2Ea + 3 +� +� +z − +1 +2 +√ +2 +�� +− +� +4E2a − 12Ea + 5 − 2Ea + 3 − +�� +4E2a − 12Ea + 5 − 2Ea + 3 +�� +� +z − +1 +2 +√ +2 +�� +− +� +4E2a − 12Ea + 5 − 2Ea + 3 − +� +− +� +4E2a − 4Ea − 3 + 2Ea − 1 +�� +� +z − +1 +2 +√ +2 +�� +− +� +4E2a − 12Ea + 5 − 2Ea + 3 + +� +− +� +4E2a − 4Ea − 3 + 2Ea − 1 +�� +� +z − +1 +2 +√ +2 +�� +− +� +4E2a − 12Ea + 5 − 2Ea + 3 − +�� +4E2a − 4Ea − 3 + 2Ea − 1 +�� +� +z − +1 +2 +√ +2 +�� +− +� +4E2a − 12Ea + 5 − 2Ea + 3 + +�� +4E2a − 4Ea − 3 + 2Ea − 1 +�� +. +b. The constant η is given by ηb(E) = +1 +2 +√ +2 +�√ +2 − +�√ +4E2 − 12E + 5 − 2E + 3 +� +and the energies are +√ +2(p + 1) = +�� +4E2 − 12E + 5 − 2E + 3 +=⇒ +Eb = −1 +2 +� +(p + 1)2 − 3 + +1 +(p + 1)2 +� +. +The corresponding structure function of the (p + 1)-dimensional unirreps is +Φ(IV ) +Eb +(z, η) = z (z − p − 1) +� +z − 1 +√ +2 +�� +4E2 +b − 12Eb + 5 − 2Eb + 3 +� +� +z − +1 +2 +√ +2 +��� +4E2 +b − 12Eb + 5 − 2Eb + 3 − +� +− +� +4E2 +b − 12Eb + 5 − 2Eb + 3 +�� +� +z − +1 +2 +√ +2 +��� +4E2 +b − 12Eb + 5 − 2Eb + 3 − +� +− +� +4E2 +b − 4Eb − 3 + 2Eb − 1 +�� +� +z − +1 +2 +√ +2 +��� +4E2 +b − 12Eb + 5 − 2Eb + 3 + +� +− +� +4E2 +b − 4Eb − 3 + 2Eb − 1 +�� +� +z − +1 +2 +√ +2 +��� +4E2 +b − 12Eb + 5 − 2Eb + 3 − +�� +4E2 +b − 4Eb − 3 + 2Eb − 1 +�� +� +z − +1 +2 +√ +2 +��� +4E2 +b − 12Eb + 5 − 2Eb + 3 + +�� +4E2 +b − 4Eb − 3 + 2Eb − 1 +�� +. +c. The constant η is η2c(E) = +1 +2 +√ +2 +�√ +2 + +� +− +√ +4E2 − 12E + 5 − 2E + 3 +� +and the energy E satisfies +2 +√ +2(p + 1) = +�� +4E2 − 12E + 5 − 2E + 3 − +� +− +� +4E2 − 12E + 5 − 2E + 3 +=⇒ +Ec = −2(p + 1)2 + 1 +2. +The structure function is given by +Φ(IV ) +Ec +(z, η) = z (z − p − 1) +� +z + 1 +√ +2 +� +− +� +4E2c − 12Ec + 5 − 2Ec + 3 +� +� +z + +1 +2 +√ +2 +�� +− +� +4E2c − 12Ec + 5 − 2Ec + 3 − +�� +4E2c − 12Ec + 5 − 2Ec + 3 +�� +� +z + +1 +2 +√ +2 +�� +− +� +4E2c − 12Ec + 5 − 2Ec + 3 − +� +− +� +4E2c − 4Ec − 3 + 2Ec − 1 +�� +� +z + +1 +2 +√ +2 +�� +− +� +4E2c − 12Ec + 5 − 2Ec + 3 + +� +− +� +4E2c − 4Ec − 3 + 2Ec − 1 +�� +� +z + +1 +2 +√ +2 +�� +− +� +4E2c − 12Ec + 5 − 2Ec + 3 − +�� +4E2c − 4Ec − 3 + 2Ec − 1 +�� +� +z + +1 +2 +√ +2 +�� +− +� +4E2c − 12Ec + 5 − 2Ec + 3 + +�� +4E2c − 4Ec − 3 + 2Ec − 1 +�� +. +29 + +ALGEBRAIC APPROACH TO SUPERINTEGRABLE SYSTEMS IN DARBOUX SPACES +d. The constant η is ηd(E) = +1 +2 +√ +2 +�√ +2 − +� +− +√ +4E2 − 4E − 3 + 2E − 1 +� +and the energies are +2 +√ +2(p + 1) = +�� +4E2 − 4E − 3 + 2E − 1 + +� +− +� +4E2 − 4E − 3 + 2E − 1 +=⇒ +Ed = 2(p + 1)2 − 1 +2. +The corresponding structure function reads +Φ(IV ) +d +(z, η) = z (z − p − 1) +� +z − +1 +2 +√ +2 +�� +− +� +4E2 +d − 4Ed − 3 + 2Ed − 1 − +� +− +� +4E2 +d − 12Ed + 5 − 2Ed + 3 +�� +� +z − +1 +2 +√ +2 +�� +− +� +4E2 +d − 4Ed − 3 + 2Ed − 1 + +� +− +� +4E2 +d − 12Ed + 5 − 2Ed + 3 +�� +� +z − +1 +2 +√ +2 +�� +− +� +4E2 +d − 4Ed − 3 + 2Ed − 1 − +�� +4E2 +d − 12Ed + 5 − 2Ed + 3 +�� +� +z − +1 +2 +√ +2 +�� +− +� +4E2 +d − 4Ed − 3 + 2Ed − 1 + +�� +4E2 +d − 12Ed + 5 − 2Ed + 3 +�� +� +z − 1 +√ +2 +� +− +� +4E2 +d − 4Ed − 3 + 2Ed − 1 +� +� +z − +1 +2 +√ +2 +�� +− +� +4E2 +d − 4Ed − 3 + 2Ed − 1 − +�� +4E2 +d − 4Ed − 3 + 2Ed − 1 +�� +. +e. The constant η is ηe(E) = +1 +2 +√ +2 +�√ +2 − +�√ +4E2 − 4E − 3 + 2E − 1 +� +and the energies and structure functions +are given by +√ +2(p + 1) = +�� +4E2 − 4E − 3 + 2E − 1 +=⇒ +Ee = 1 +2 +� +(p + 1)2 + 1 + +1 +(p + 1)2 +� +, +Φ(IV ) +e +(z, η) = z (z − p − 1) +� +z − +1 +2 +√ +2 +��� +4E2e − 4Ee − 3 + 2Ee − 1 − +� +− +� +4E2e − 12Ee + 5 − 2Ee + 3 +�� +� +z − +1 +2 +√ +2 +��� +4E2e − 4Ee − 3 + 2Ee − 1 + +� +− +� +4E2e − 12Ee + 5 − 2Ee + 3 +�� +� +z − +1 +2 +√ +2 +��� +4E2e − 4Ee − 3 + 2Ee − 1 − +�� +4E2e − 12Ee + 5 − 2Ee + 3 +�� +� +z − +1 +2 +√ +2 +��� +4E2e − 4Ee − 3 + 2Ee − 1 + +�� +4E2e − 12Ee + 5 − 2Ee + 3 +�� +� +z − 1 +√ +2 +�� +4E2e − 4Ee − 3 + 2Ee − 1 +� +� +z − +1 +2 +√ +2 +��� +4E2e − 4Ee − 3 + 2Ee − 1 − +� +− +� +4E2e − 4Ee − 3 + 2Ee − 1 +�� +. +f. The constant η is ηf(E) = +1 +2 +√ +2 +�√ +2 + +� +− +√ +4E2 − 4E − 3 + 2E − 1 +� +and the energies are +2 +√ +2(p + 1) = +�� +4E2 − 4E − 3 + 2E − 1 − +� +− +� +4E2 − 4E − 3 + 2E − 1 +=⇒ +Ef = 2(p + 1)2 + 3 +2. +30 + +ALGEBRAIC APPROACH TO SUPERINTEGRABLE SYSTEMS IN DARBOUX SPACES +The structure function of the (p + 1)-dimensional unirreps has the form +Φ(IV ) +f +(z, η) = z (z − p − 1) +� +z + +1 +2 +√ +2 +�� +− +� +4E2 +f − 4Ef − 3 + 2Ef − 1 − +� +− +� +4E2 +f − 12Ef + 5 − 2Ef + 3 +�� +� +z + +1 +2 +√ +2 +�� +− +� +4E2 +f − 4Ef − 3 + 2Ef − 1 + +� +− +� +4E2 +f − 12Ef + 5 − 2Ef + 3 +�� +� +z + +1 +2 +√ +2 +�� +− +� +4E2 +f − 4Ef − 3 + 2Ef − 1 − +�� +4E2 +f − 12Ef + 5 − 2Ef + 3 +�� +� +z + +1 +2 +√ +2 +�� +− +� +4E2 +f − 4Ef − 3 + 2Ef − 1 + +�� +4E2 +f − 12Ef + 5 − 2Ef + 3 +�� +� +z + 1 +√ +2 +� +− +� +4E2 +f − 4Ef − 3 + 2Ef − 1 +� +� +z + +1 +2 +√ +2 +�� +− +� +4E2 +f − 4Ef − 3 + 2Ef − 1 − +�� +4E2 +f − 4Ef − 3 + 2Ef − 1 +�� +. +3 +New superintegrable systems in 2D Darboux spaces +In this section, we investigate superintegrable systems in 2D Darboux spaces with linear and quadratic or quintic +integrals of motion. We will first construct generic cubic and quintic algebras and derive their Casimir operators +and realizations in terms of the deformed oscillator algebras. We will then present examples of new superintegrable +systems in 2D Darboux spaces with cubic symmetry algebras. +3.1 +Generic cubic and quintic algebras generated by linear, quadratic or quintic +integrals +We start with the construction of generic cubic and quintic algebras with structure coefficients involving the +Hamiltonians. +Let ˆX1, ˆY1 be linear integrals, and let ˆX2, ˆY2 be quadratic and cubic integrals, respectively. That is, deg ˆX1 = +1 = deg ˆY1, deg ˆX2 = 2, deg ˆY2 = 3. We define the operators ˆF and ˆG by ˆF = [ ˆX1, ˆX2] and ˆG = [ ˆY1, ˆY2]. Then +deg ˆF = deg ˆX1 + deg ˆX2 − 1 = 2 and deg ˆG = deg ˆY1 + deg ˆY2 − 1 = 3. By analysing the degrees of the integrals +and applying the Jacobi identity constraint [34], we obtain the following generic cubic and quintic algebras +Proposition 3.1. Integrals { ˆX1, ˆX2, ˆF} satisfy the cubic commutation relations, +[ ˆX1, ˆX2] = ˆF, +[ ˆX1, ˆF] =u1 ˆX2 +1 + u2 ˆX1 + u3 ˆX2 + u, +[ ˆX2, ˆF] =v1 ˆX3 +1 + v2 ˆX2 +1 + v3 ˆX1 − u2 ˆX2 − u1{ ˆX1, ˆX2} + v, +(16) +and integrals { ˆY1, ˆY2, ˆG} form the following quintic commutation relations, +[ ˆY1, ˆY2] = ˆG, +[ ˆY1, ˆK] =α ˆY 3 +1 + β ˆY 2 +1 + δ ˆY1 + ϵ ˆY2 + ζ, +[ ˆY2, ˆK] =a ˆY 5 +1 + b ˆY 4 +1 + c ˆY 3 +1 + d ˆY 2 +1 + e ˆY1 + 1 +2 (α ϵ − 2 δ) ˆY2 − 3 +2α{ ˆY 2 +1 , ˆY2} − β{ ˆY1, ˆY2} + z, +(17) +where uj, vj, . . . , α, . . . , z are polynomials of the Hamiltonian ˆH. Moreover, the coefficients v1 in (16)and a in (17) +are not zero polynomials of ˆH. +The proof of this proposition is a short and straightforward computation from the Jacobi identity requirement. +Remark 3.2. For the polynomials on both sides of the commutation relations (16) and (17) to have the same degree, +we must have that v1, v2, u1, u2, u3, α, β, ϵ, a, b are constants and +u = u(0) + u(1) ˆH, +v3 = v(0) +3 ++ v(1) +3 +ˆH, +v = v(0) + v(1) ˆH, +δ = δ(0) + δ(1) ˆH, +ζ = ζ(0) + ζ(1) ˆH, +c = c(0) + c(1) ˆH, +d = d(0) + d(1) ˆH, +e = e(0) + e(1) ˆH + e(2) ˆH2, +z = z(0) + z(1) ˆH + z(2) ˆH2, +31 + +ALGEBRAIC APPROACH TO SUPERINTEGRABLE SYSTEMS IN DARBOUX SPACES +where u(0), u(1), . . . , are constants. +We now construct the Casimir operators for both polynomial algebras. We have +Proposition 3.3. The Casimir operators C(3) and C(5) for the cubic and quintic algebras are respectively given by +C(3) = ˆF 2 − u1{ ˆX2 +1, ˆX2} − u2{ ˆX1, ˆX2} + v1 +2 +ˆX4 +1 + 2 +3v2 ˆX3 +1 + +� +v3 + u2 +1 +� ˆX2 +1 + (u1u2 + 2v) ˆX1 − 2u ˆX2 − u3 ˆX2 +2, +C(5) = ˆG2 − α{ ˆY 3 +1 , ˆY2} + β{ ˆY 2 +1 , ˆY2} − δ{ ˆY1, ˆY2} − ϵ ˆY 2 +2 − 2ζ ˆY2 + a +3 +ˆY 6 +1 + 2 +5b ˆY 5 +1 ++ 1 +2 +� +c + 5 +3aϵ + 3αδ +� +ˆY 4 +1 + +� +2β(δ + 3α) + 2 +5ϵb − 2d +� +ˆY 3 +1 ++ +�1 +6 (5 − 6a) ϵ2 + e + 1 +2ϵc + β2 − 3 +4α (αϵ − 2δ) +� +ˆY 2 +1 + +� +2z + βδ + βϵ(α + δ) − 1 +5bϵ2 − ϵd +� +ˆY1. +Proof. By analysinf the degrees of the integrals in the algebras, we see that the Casimir operators C(3) and C(5) of +the cubic and quintic algebras have the following general form +C(3) = ˆF 2 + w1{ ˆX2 +1, ˆX2} + w2{ ˆX1, ˆX2 +2} + w3{ ˆX1, ˆX2} + w4 ˆX4 +1 ++ w5 ˆX3 +1 + w6 ˆX2 +1 + w7 ˆX1 + w8 ˆX2 + w9 ˆX2 +2, +C(5) = ˆG2 + ω1{ ˆY 3 +1 , ˆY2} + ω2{ ˆY 2 +1 , ˆY2} + ω3{ ˆY1, ˆY 2 +2 } + ω4{ ˆY1, ˆY2} ++ ω5 ˆY 2 +2 + ω6 ˆY2 + ω7 ˆY 6 +1 + ω8 ˆY 5 +1 + ω9 ˆY 4 +1 + ω10 ˆY 3 +1 + ω11 ˆY 2 +1 + ω12 ˆY1, +where wj and ωj are coefficients. +Now using the quadratic commutation relations (16), we have +[C(3), ˆX1] = − (u1 + w1){ ˆF, ˆX2 +1} − (w3 + u2 + w2u1){ ˆF, ˆX1} − (w9 + u3){ ˆF, ˆX2} +− (2u + w8 + w2u2) ˆF − w2{ ˆF, { ˆX1, ˆX2}} + ˆX1(w1){ ˆX2 +1, ˆX2} + . . . + ˆX1(w9) ˆX2 +2. +Setting the coefficients to be zero gives +w1 = −u1, +w2 = 0, +w3 = −u2, +w8 = −2u, +w9 = −u3. +Similarly, from [C(3), ˆX2] = 0,, we have +0 =(2w4 − v1){ ˆF, ˆX3 +1} + (3w5 +2 +− v2){ ˆF, ˆX2 +1} + (w6 − v3 − u2 +1){ ˆF, ˆX1} ++ (w7 − u1u2 − 2v) ˆF. +This gives +w4 = v1 +2 , +w5 = 2v2 +3 , +w6 = v3 + u2 +1, +w7 = u1u2 + 2v. +This finishes the proof for C(3). +The derivation of C(5) is slightly more complicated. We express [C(5), ˆY1] and [C(5), ˆY2] in terms of { ˆG, ˆY n +1 } +and { ˆG, { ˆY1, ˆY2}}. By [34, Lemma 2] and quintic commutation relations, we have +[C(5), ˆY1] = − (α + ω1){ ˆG, ˆY 3 +1 } − +� +β + ω2 − 3αω3 +2 +� +{ ˆG, ˆY 2 +1 } − (δ + ω3β + ω4){ ˆG, ˆY1} +− (ϵ + ω5){ ˆG, ˆY2} − ω3{ ˆG, { ˆY1, ˆY2}} + +��αϵ +2 − δ +� +ω3 − 2ζ − ω6 +� +ˆG. +Setting the coefficients of { ˆK, { ˆY1, ˆY2}} and { ˆK, ˆY2} to be zero, we obtain that ω3 = 0 and ω5 = −ϵ. Then [C(5), ˆY1] +is reduced to the form +[C(5), ˆY1] =(α − ω1){ ˆG, ˆY 3 +1 } + (β − ω2){ ˆG, ˆY 2 +1 } + [δ − ω4)]{ ˆG, ˆY1} + (2ζ − ω6) ˆG. +From [C(5), ˆY1] = 0 it follows that the coefficients of { ˆG, ˆY l +1} are zero for all 1 ≤ n ≤ 3. Thus +ω1 = −α, ω2 = −β, ω4 = −δ and ω6 = −2ζ. +32 + +ALGEBRAIC APPROACH TO SUPERINTEGRABLE SYSTEMS IN DARBOUX SPACES +Similarly, after some manipulations we find +[C(5), ˆY2] =(3ω7 − a){ ˆG, ˆY 5 +1 } + +�5ω8 +2 +− b +� +{ ˆG, ˆY 4 +1 } − (c + 3αδ + 5ϵω7 − 2ω9){ ˆG, ˆY 3 +1 } ++ +�3α +2 +�αϵ +2 − δ +� +− β2 + 3αδϵ +2 ++ 3ϵ2ω7 − e − ϵω9 + ω11 +� +{ ˆG, ˆY1} +− +� +βδ + ϵω8 +2 +− 1 +2ω10 − 3αβ + d +� +{ ˆG, ˆY 2 +1 } ++ +� +β +�αϵ +2 − δ +� +− ϵω10 +2 ++ ϵ2ω8 + 3αβϵ +2 ++ (ω12 − 2z) +� +ˆG. +It follows from [C(5), ˆY2] = 0 that +ω7 = a +3, +ω8 = 2b +5 , +ω9 = 1 +2 +� +c + 5ϵ +3 + 3αδ +� +, +ω10 = 2(β(δ + 3α) + ϵb +5 − d) +ω11 = +�5 +6 − a +� +ϵ2 + e + ϵc +2 + β2 − 3α +2 +�αϵ +2 − δ +� +, +ω12 = 2z + βδ + βϵ(α + δ) − bϵ2 +5 − ϵd +as required. +we now construct realizations of these algebras in terms of the deformed oscillator algebras (1) and determine +their structure functions. After long computations, we obtain the following results. +Proposition 3.4. The realization +ˆX1 =√u3 (N + η), +ˆX2 = − u3 (N + η)2 − u2 +√u3 +(N + η) + b† + b − u +u3 +, +(18) +where η is a constant parameter to be determined, changes the cubic algebra (16) to the deformed oscillator algebra +(1) with the structure function given by +Φ(N, η) = +1 +1 − 2u3 +� +C(3) − u2 +u3 ++ uu2 +√u3 ++ √u3v + (N + η)2 � +−2uu1 + 2u1u2 +√u3 − u2 +2 + (u2 + v2)u3/2 +3 +− u3 +� ++ (N + η) +� +2uu1 − 2uu2 +√u3 +− √u3(u1u2 + 2v) + u2 +2 + u3v3 +� ++(N + η)3 +� +−2u1u2 +√u3 + 2u1u2 +3 − 2 +3v2u3/2 +3 ++ v1u2 +3 +� ++ (N + η)4 +� +−2u1u2 +3 + u3 +3 − 1 +2v1u2 +3 +�� +. +Note that Φ is a quartic polynomial of the number operator N. +Proposition 3.5. The transformation +ˆY1 =√ϵ(N + η), +ˆY2 = − α√ϵ(N + η)3 − β(N + η)2 − δ +√ϵ(N + η) + b† + b − ζ +ϵ , +(19) +where η is a constant parameter to be determined, maps the quintic algebra (17) to the deformed oscillator algebra +with the structure function +Φ(N, η) = 1 +4ϵC(5) + (N + η)6 +�aϵ4 +12 − 3α2ϵ3 +4 +� ++ (N + η)5 +�3α2ϵ +4 ++ 1 +2αβϵ5/2 − aϵ2 +4 + 1 +10bϵ7/2 +� ++ (N + η)4 +� +−1 +4αβ√ϵ + 1 +8ϵ3 +� +3αδ + 5aϵ +3 ++ c +� ++ 1 +2αδϵ2 + β2ϵ2 +4 +− 1 +4bϵ3/2 +� ++ (N + η)3 +� +−1 +4α(2αϵ − δ) − 3αδ +4 ++ 1 +2αζϵ3/2 − β2 +2 + 1 +2βδϵ3/2 − cϵ +4 + 1 +4ω10ϵ5/2 +� ++ (N + η)2 +�β(2αϵ − δ) +4√ϵ +− 3αζ +4√ϵ − βδ +2√ϵ + βζϵ +2 ++ δ2ϵ +4 − d√ϵ +4 ++ ω11ϵ2 +4 +�� ++ (N + η) +�δ(2αϵ − δ) +4ϵ +− βζ +2ϵ + 1 +2δζ√ϵ − e +4 + 1 +4ω12ϵ3/2 +� ++ ζ2 +4 + ζ(2αϵ − δ) +4ϵ3/2 +. +The structure function Φ(N) is a polynomial of N of degree 6. +In the next subsection, we will present new superintegrable systems in 2D Darboux spaces with cubic symmetry +algebras. +33 + +ALGEBRAIC APPROACH TO SUPERINTEGRABLE SYSTEMS IN DARBOUX SPACES +3.2 +Superintegrable systems in 2D Darboux spaces with cubic symmetry algebras +In this subsection we obtain potentials in the 2D Darboux spaces which can be added to the Hamiltonians of +the free superintegrable systems studied in [11] and preserve their superintegrability. The free systems have only +kinetic terms and possess linear and quadratic integrals of motion. We will determine the integrals corresponding +to the superintegrable systems with potnetials. +3.2.1 +Darboux space I +The Hamiltonian of the free system in Darboux space I with separable local coordinates (x, y) studied in [11] has +the form H1 = ϕ1(x)(∂2 +x + ∂2 +y), where ϕ1(x) = +1 +αx+β . This system has linear integral X1 = ∂y and quadratic +integral given by +X2 = y∂x∂y − x∂2 +y + 1 +2∂x − 1 +4αy2ϕ1(x)(∂2 +x + ∂2 +y), +where α is a constant. +We seek new superintegrable system in Darboux space I with Hamiltonian +ˆH1 = H1 + V1(x, y), +where V1(x, y) is potential function, which preserves the separability of the coordinates and the superintegrability +of the original system. Without loss of generality, we assume that the local separable coordinates (x, y) is an +orthogonal system. After some computations, we find the allowed potential V1 and the corresponding integrals +ˆX1, ˆX2. The results are as follows. +ˆH1 = ϕ1(x)(∂2 +x + ∂2 +y) + c1ϕ1(x), +ˆX1 = ∂y, +ˆX2 = y∂x∂y − x∂2 +y + 1 +2∂x − 1 +4αy2ϕ1(x)(∂2 +x + ∂2 +y) − 1 +4c1αϕ1(x)y2 +where c1 is a constant. +By a direct calculation, we can show that the integrals ˆX1, ˆX2 form the cubic algebra, +[ ˆX1, ˆX2] = ˆF, +[ ˆX1, ˆF] = α +2 +ˆH1, +[ ˆX2, ˆF] = −2X3 +1 + α ˆH1X1 − c1X1, +(20) +where explicitly ˆF = ∂x∂y − 1 +2αyϕ1(x) +� +∂2 +x + ∂2 +y +� ++ 1 +2c1αϕ1(x)y. This cubic algebra is a special case of (16) in +Proposition 3.1 with +v1 = −2, +u1 = u2 = u3 = v2 = v = 0, +u = α +2 +ˆH1, +v3 = β ˆH1 − c1. +Then it follows that its Casimir operator is +C(3) = ˆF 2 − X4 +1 − α ˆH1 ˆX2 + (β ˆH1 − c1)X2 +1. +Since u3 = 0 it follows from Proposition 3.4 that this cubic algebra does not have realization in terms of the +deformed oscillator algebra. +3.2.2 +Darboux space II +The Hamiltonian of the free superintegrable system in 2D Darboux space II is H2 = ϕ2(x) +� +∂2 +x + ∂2 +y +� +, where +ϕ2(x) = +x2 +a2−a1x2 , a1, a2 ∈ R. The system possesses the following linear and quadratic integrals of motion, +X1 = ∂y, +X2 = 2xy∂x∂y + (y2 − x2)∂2 +y + x∂x + y∂y + a1y2H2. +It can be shown that we can add the potential V2(x, y) = c2 ϕ2(x), where c2 is a real constant, to the free +Hamiltonian such that +ˆH2 = ϕ2(x) +� +∂2 +x + ∂2 +y +� ++ c2 ϕ2(x) +is separable and superintegrable in the 2D Darboux space II, with integrals of motion given by +ˆX1 = ∂y, +ˆX2 = 2xy∂x∂y + (y2 − x2 + 1)∂2 +y + x∂x + y∂y + a1y2H2 + +a2c2y2 +a2 − a1x2 . +34 + +ALGEBRAIC APPROACH TO SUPERINTEGRABLE SYSTEMS IN DARBOUX SPACES +By a direct computation, we find that these integrals obey the cubic commutation relations +[ ˆX1, ˆX2] = ˆF, +[ ˆX1, ˆF] = 2a1 ˆH2 + 2 ˆX2 +1 + 2c2, +[ ˆX2, ˆF] = 4 ˆX3 +1 − 2{ ˆX1, ˆX2} + (2c2 + 1 − 2a2 ˆH2)X1. +(21) +The Casimir operator of this cubic algeba is given by +C(3) = ˆF 2 − 2{X2 +1, ˆX2}a + 2 ˆX4 +1 + (c2 + 5 − 2a2 ˆH2)X2 +1 − 4(a1 ˆH2 + c2) ˆX2. +By Proposition 3.1 and Proposition 3.4, we again find that the cubic algebra has no realization in terms of the +deformed oscillator algebra. +3.2.3 +Darboux space III +In the 2D Darboux space III, the free superintegrable system Hamiltonian and its constants of motion in the +separable local coordinates (u, v) are given by +H3 = ϕ3(v)(∂2 +u + ∂2 +v), +X1 = ∂u, +X2 = 1 +2e−v � +cos u(2∂2 +u + ∂v) + sin u (2∂u∂v − ∂u) +� ++ α cos uH3, +where ϕ3(v) = +e−v +βev−2α with α, β being real constants. +We seek potential of the form V3(u, v) = ϕ3(v)(f3(u) + g3(v)) such that system in Darboux space III with +this potential is superintegrable. We thus expect that ˆH3 = H3 + V3(u, v) possesses linear and quadratic integrals +of the form, ˆX1 = X1, +ˆX2 = X2 + f3(u, v). After some manipulations, we find that V3(u, v) = c3 ϕ3(v) and +f3(u, v) = c3 βev cos(u) +2βev−4α , where c3 is a constant. That is, we obtain the superintegrable system in Darboux space III +with Hamiltonian and integrals given by +ˆH3 = ϕ3(v)(∂2 +u + ∂2 +v) + +c3 +βev − 2α, +ˆX1 = ∂u, +ˆX2 = 1 +2 exp(−v) +� +cos u(2∂2 +u + ∂v) + sin u(2∂u∂v − ∂u) +� ++ α cos uH3 + c3 βev cos(u) +2βev − 4α . +These integrals form the following algebra, +[ ˆX1, ˆX2] = ˆF, +[ ˆX1, ˆF] = − ˆX2, +[ ˆX2, ˆF] = −β ˆH3 ˆX1. +(22) +The Casimir operator of this algebra is given by C(3) = ˆF 2−β ˆH3X2 +1+ ˆX2 +2. It is interesting that the algebra generated +by the above linear and quadratic integrals in the Darboux space III is “linear” in the generators (though with +coefficient involving the Hamiltonian ˆH3). +3.2.4 +Darboux space IV +In terms of separable local coordinates (u, v), the Hamiltonian of the free superintegrable system in 2D Darboux +space IV is H4 = ϕ4(u) +� +∂2 +u + ∂2 +v +� +, where ϕ4(u) = +sin2 u +β−2α cos u α, β ∈ R. The system possesses the following linear +and quadratic integrals of motion, +X1 = ∂v, +X2 = exp(v) +2 +� +cos u(2∂2 +v − ∂v) − sin u(2∂u∂v − ∂v) − 2αH4 +� +. +By analysis similar to previous cases, we find that the system with the Hamiltonian +ˆH4 = ϕ4(u) +� +∂2 +u + ∂2 +v +� ++ +c4 +β − 2α cos u, +where c4 is a constant, is superintegrable with linear and quadratic integrals given by +ˆX1 = ∂v, +ˆX2 = exp(v) +2 +� +cos u(2∂2 +v − ∂v) − sin u(2∂u∂v − ∂v) − 2αH4 +� ++ +4c4e−v +β − 2α cos u. +These integrals form the cubic algebra, +[X1, ˆX2] = ˆF, +[X1, ˆF] = − ˆX2, +[ ˆX2, ˆF] = 4X3 +1 − 2β ˆH4X1 + 1 +2 +ˆX1 − 2αc4X1. +(23) +35 + +ALGEBRAIC APPROACH TO SUPERINTEGRABLE SYSTEMS IN DARBOUX SPACES +The Casimir operator of the algebra is +C(3) = −1 +2{ ˆX2, ˆF}a + β ˆH4X2 +1 + X4 +1 + (5 + 4c4)X2 +1, +which can be expressed as C(3) = ˆH2 +4 + β ˆH4 + 4c4 in terms of the Hamiltonian ˆH4. Through the change of basis, +X1 = (N + η), +X2 = −(N + η)2 + b† + b +the cubic algebra relations become those of the deformed oscillator algebra with structure function +Φ(N, η) = (N + η)4 − 4(+N + η)3 + (N + η)2 − (N + η) +� +−2αc4 − 2βE + 1 +2 +� +− 4c4 − E2 − βE. +Here η is a constant which can be determined from the constraints on the structure function. +4 +Conclusions +We have presented a genuine algebraic analysis for the superintegrable systems in 2D Darboux spaces. The main +results in this paper are following. +The first main result is the construction of the Casimir operators, deformed oscillator algebra realizations +and finite-dimensional unirreps for all the 12 distinct quadratic algebras underlying the 12 superintegrable systems +found in the classification of [14][15]. This allows us to give an algebraic derivation for the energy spectrum of the 12 +existing classes of superintegrable systems with quadratic integrals in the 2D Darboux spaces and the determination +for the structure functions of the finite-dimensional unitary irreducible representations of the deformed oscillator +algebras (corresponding to the quadratic algebras). As our results demonstrate, superintegrable systems in curved +(Darboux) spaces have much richer structures than those in flat spaces. For instance, the structures of energies of +the systems and structure functions of the associated deformed oscillator algebras can be very complicated in the +Darboux spaces, and in some cases we have to restrict the model parameter spaces in order to find explicit analytic +and closed form solutions. +Another main result of the paper is the construction of generic cubic and quintic algebras, generated by first, +quadratic and cubic integrals, their Casimir operators and deformed oscillator algebra realizations. As examples +of applications, we obtain four classes of new superintegrable systems with non-trivial potentials and with linear +and quadratic integrals in the 2D Darboux spaces, three of which have cubic algebras as their symmetry algebras. +Acknowledgement +IM and YZZ were supported by Australian Research Council Future Fellowship FT180100099 and Discovery Project +DP190101529, respectively. +References +[1] C. Daskaloyannis. +Quadratic Poisson algebras of two-dimensional classical superintegrable systems and +quadratic associative algebras of quantum superintegrable systems. J. Math. Phys., 42(3):1100–1119, 2001. +[2] C. Daskaloyannis and Y. Tanoudis. +Quantum superintegrable systems with quadratic integrals on a two +dimensional manifold. J. Math. Phys., 48(7):072108, 22, 2007. +[3] M. A. Escobar-Ruiz, E. G. Kalnins, and W. Miller Jr. Separation equations for 2D superintegrable systems +on constant curvature spaces. J. Phys. A, 50(38):385202, 25, 2017. +[4] S. Gravel and P. Winternitz. Superintegrability with third-order integrals in quantum and classical mechanics. +J. Math. Phys., 43(12):5902–5912, 2002. +[5] I. Marquette. Superintegrability with third order integrals of motion, cubic algebras, and supersymmetric +quantum mechanics. I. Rational function potentials. J. Math. Phys., 50(1):012101, 23, 2009. +[6] I. Marquette and P. Winternitz. Polynomial Poisson algebras for classical superintegrable systems with a third +order integral of motion. J. Math. Phys., 49(1):019901, 1, 2008. +[7] W. Miller Jr, S. Post, and P. Winternitz. Classical and quantum superintegrability with applications. J. Phys. +A, 46(42):423001, 97, 2013. +[8] C. Quesne. Generalized deformed parafermions, nonlinear deformations of so(3) and exactly solvable potentials. +Phys. Lett. A, 193(3):245–250, 1994. +36 + +ALGEBRAIC APPROACH TO SUPERINTEGRABLE SYSTEMS IN DARBOUX SPACES +[9] P. Tempesta, P. Winternitz, J. Harnad, W. Miller Jr, G. Pogosyan, and M. Rodriguez, editors. Superintegrabil- +ity in classical and quantum systems, volume 37 of CRM Proceedings & Lecture Notes. American Mathematical +Society, Providence, RI, 2004. Papers from the workshop held at the Universit´e de Montr´eal, Montr´eal, QC, +September 16–21, 2002. +[10] C. Daskaloyannis and K. Ypsilantis. +Unified treatment and classification of superintegrable systems with +integrals quadratic in momenta on a two-dimensional manifold. J. Math. Phys., 47(4):042904, 38, 2006. +[11] A. P. Fordy. First integrals from conformal symmetries: Darboux-Koenigs metrics and beyond. J. Geom. +Phys., 145:103475, 13, 2019. +[12] E. G. Kalnins, J. M. Kress, and W. Miller Jr. Second-order superintegrable systems in conformally flat spaces. +I. Two-dimensional classical structure theory. J. Math. Phys., 46(5):053509, 28, 2005. +[13] E. G. Kalnins, J. M. Kress, and W. Miller Jr. Second order superintegrable systems in conformally flat spaces. +II. The classical two-dimensional St¨ackel transform. J. Math. Phys., 46(5):053510, 15, 2005. +[14] E. G. Kalnins, J. M. Kress, W. Miller Jr, and P. Winternitz. Superintegrable systems in Darboux spaces. J. +Math. Phys., 44(12):5811–5848, 2003. +[15] E. G. Kalnins, J. M. Kress, and P. Winternitz. Superintegrability in a two-dimensional space of nonconstant +curvature. J. Math. Phys., 43(2):970–983, 2002. +[16] C. P. Boyer, E. G. Kalnins, and W. Miller Jr. St¨ackel-equivalent integrable Hamiltonian systems. SIAM J. +Math. Anal., 17(4):778–797, 1986. +[17] E. G. Kalnins, J. Kress, W. Miller Jr, and S. Post. Structure theory for second order 2D superintegrable +systems with 1-parameter potentials. SIGMA Symmetry Integrability Geom. Methods Appl., 5:Paper 008, 24, +2009. +[18] J. Hietarinta, B. Grammaticos, B. Dorizzi, and A. Ramani. Coupling-constant metamorphosis and duality +between integrable Hamiltonian systems. Phys. Rev. Lett., 53(18):1707–1710, 1984. +[19] C Daskaloyannis. Finite dimensional representations of quadratic algebras with three generators and applica- +tions. arXiv preprint math-ph/0002001, 2000. +[20] I. Marquette. Superintegrability with third order integrals of motion, cubic algebras, and supersymmetric +quantum mechanics. II. Painlev´e transcendent potentials. J. Math. Phys., 50(9):095202, 18, 2009. +[21] I. Marquette. Quartic Poisson algebras and quartic associative algebras and realizations as deformed oscillator +algebras. J. Math. Phys., 54(7):071702, 15, 2013. +[22] B. Hall. Lie groups, Lie algebras, and representations, volume 222 of Graduate Texts in Mathematics. Springer, +Cham, second edition, 2015. An elementary introduction. +[23] M. F. Hoque, I. Marquette, and Y.-Z. Zhang. A new family of N dimensional superintegrable double singular +oscillators and quadratic algebra Q(3) ⊕ so(n) ⊕ so(N-n). J. Phys. A, 48(44):445207, 14, 2015. +[24] M. F. Hoque, I. Marquette, and Y.-Z. Zhang. Recurrence approach and higher rank cubic algebras for the +N-dimensional superintegrable systems. J. Phys. A, 49(12):125201, 12, 2016. +[25] M. F. Hoque, I. Marquette, and Y.-Z. Zhang. Quadratic algebra for superintegrable monopole system in a +Taub-NUT space. J. Math. Phys., 57(9):092104, 10, 2016. +[26] M. F. Hoque, I. Marquette, S. Post, and Y.-Z. Zhang. Algebraic calculations for spectrum of superintegrable +system from exceptional orthogonal polynomials. Ann. Physics, 391:203–215, 2018. +[27] M. F. Hoque, I. Marquette, and Y.-Z. Zhang. Recurrence approach and higher order polynomial algebras for +superintegrable monopole systems. J. Math. Phys., 59(5):052101, 10, 2018. +[28] F. Correa, M. F. Hoque, I. Marquette, and Y.-Z. Zhang. N-dimensional Smorodinsky-Winternitz model and +related higher rank quadratic algebra sw(n). J. Phys. A, 54(39):Paper No. 395201, 19, 2021. +[29] J. A. Calzada, J. Negro, M. A. del Olmo, and M. A. Rodr´ıguez. Contraction of superintegrable Hamiltonian +systems. J. Math. Phys., 41(1):317–336, 2000. +[30] E. G. Kalnins, W. Miller Jr, and S. Post. Contractions of 2D 2nd order quantum superintegrable systems and +the Askey scheme for hypergeometric orthogonal polynomials. SIGMA Symmetry Integrability Geom. Methods +Appl., 9:Paper 057, 28, 2013. +[31] G. Darboux. Le¸cons sur la th´eorie g´en´erale des surfaces et les applications g´eom´etriques du calcul infinit´esimal. +Troisi`eme partie. Chelsea Publishing Co., Bronx, N.Y., 1972. +37 + +ALGEBRAIC APPROACH TO SUPERINTEGRABLE SYSTEMS IN DARBOUX SPACES +[32] A. P. Fordy and Q. Huang. Superintegrable systems on 3 dimensional conformally flat spaces. J. Geom. Phys., +153:103687, 27, 2020. +[33] A. P. Fordy and Q. Huang. Adding potentials to superintegrable systems with symmetry. Proc. R. Soc. +London A, 477(2248):Paper No. 20200800, 21, 2021. +[34] P. S. Isaac and I. Marquette. +On realizations of polynomial algebras with three generators via deformed +oscillator algebras. J. Phys. A, 47(20):205203, 26, 2014. +38 +